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Abstract

In this note we consider the eigenvalue problem for the Laplacian with the Neumann
and Robin boundary conditions involving the Hardy potential. We prove the existence
of eigenfunctions of the second eigenvalue for the Neumann problem and of the principal
eigenvalue for the Robin problem in ”high” dimensions.

1 Introduction

In this note we assume that Ω ⊂ RN , N ≥ 3, is a bounded, connected open set with a
smooth boundary ∂Ω. We consider the following eigenvalue problem

(1.1)

{
−∆u = µ 1

|x|2u in Ω,
∂u
∂ν

= 0 on ∂Ω.
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Solutions to this problem are sought in the Sobolev space W 1,2(Ω). We recall that W 1,2(Ω)
is the Sobolev space equipped with norm

‖u‖2
W 1,2 =

∫
Ω

(
|∇u|2 + u2

)
dx.

W 1,2
◦ (Ω) is a subspace of W 1,2(Ω) consisting of functions vanishing in the sense of trace on

the boundary ∂Ω of Ω. The norm ‖u‖W 1,2 on this subspace is equivalent to

‖u‖2
W 1,2
◦

=

∫
Ω

|∇u|2 dx.

Problem (1.1) is closely related to the Hardy inequality. The Hardy inequality in W 1,2
◦ (Ω)

has the following form: let 0 ∈ Ω, then

(1.2)

∫
Ω

u2

|x|2
dx ≤ 1

ΛN

∫
Ω

|∇u|2 dx

for every u ∈ W 1,2
◦ (Ω), where ΛN = (N−2)2

4
. The constant ΛN is an optimal constant and

there is no nonzero function in W 1,2
◦ (Ω) which changes this inequality into equality (see

[10], Theorem 4.1). In recent years the Hardy inequality in W 1,2
◦ (Ω) and W 1,2(Ω) and the

related problems for semilinear elliptic equation have attracted considerable interest. We
refer to papers [6] and [7], where further bibliographical references can be found. For further
generalizations and applications of the Hardy - Sobolev type inequalities, we refer to the
papers [1], [2], [3], [4], [16]. The value of the minimum and its attainability of the Rayleigh
with respect to the boundary conditions has been investigated in [5]. According to the results
of this paper the optimal constant in W 1,2(Ω) is zero and is attained by constant functions.
Thus to obtain an extension of (1.2) to W 1,2(Ω) involving the whole norm, it is necessary
to add a new positive term to the right hand side of (1.2). This question is discussed in the
papers [6] and [7]. In this note we need the following extension of (1.2) to the space W 1,2(Ω).

Proposition 1.1 Let 0 ∈ Ω̄. Then for every δ > 0 there exists a constant A = A(δ,Ω) such
that

(1.3)

∫
Ω

u2

|x|2
dx ≤

( 1

ΛN

+ δ
) ∫

Ω

|∇u|2 dx+ A

∫
Ω

u2 dx

for every u ∈ W 1,2(Ω).

The proof of (1.3) can be found in papers [13] and [14]. The case 0 ∈ Ω is considered in [14]
and the case 0 ∈ ∂Ω in [13] (see also [19]).

The paper is organized as follows. In Section 2 we discuss the inequalities of Hardy -
Poincaré type. These inequalities lead to the eigenvalue problem (1.1). A sufficient condition
for the existence of the second eigenvalue and the corresponding eigenfunction is presented
in Section 3, namely that the corresponding Rayleigh quotient lies strictly below the Hardy
constant ΛN (see (3.1)). In Section 4 we give examples of sets which satisfy this condition
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provided the dimension is sufficiently large. The eigenfunctions we find may be singular
at the origin. Section 5 is devoted to the study of the asymptotic behavior of the second
eigenfunction of (1.1) around 0. Since ΛN is not attained on the space W 1,2

◦ (Ω) there is no
analogue to problem (1.1) with Dirichlet boundary conditions. In Section 6 we briefly discuss
the eigenvalue problem involving the Hardy potential with Robin boundary conditions. We
show that the smallest eigenvalue for this problem is attained if it lies below the Hardy
constant ΛN ; again, this is the case if the space-dimension is sufficiently large. In the final
Section 7 we formulate some open problems related to this paper.

Problems (1.1) and (6.1) investigated in this paper are eigenvalue problems with weight
functions. The weight function 1

|x|2 considered here is not in L
N
2 (Ω)∩L∞(Ω) and consequently

the functional u →
∫

Ω
u2

|x|2 dx is not completely continuous in W 1,2(Ω) unlike in papers [8],

[11] and [25]. For a good survey of eigenvalue problems for the p-Laplacian, however without
the Hardy potential, we refer to paper [20].

Throughout this paper in a given Banach space X we denote strong convergence by ”→ ”
and weak convergence by ” ⇀ ”. The norms in the Lebesgue spaces Lp(Ω), 1 < p <∞, are
denoted by ‖ · ‖p.

2 The inequality of the Hardy - Poincaré type

We denote by L2(Ω, 1
|x|2 dx) the weighted Lebesgue space equipped with norm

‖u‖2
∗ =

∫
Ω

u2

|x|2
dx.

The corresponding scalar product on L2(Ω, 1
|x|2 ) is denoted by (·, ·)∗.

Theorem 2.1 Suppose that 0 ∈ Ω̄ and that g ∈ L2(Ω, 1
|x|2 ) with

∫
Ω

g
|x|2 dx = 1. We assume

that Ω is an open, connected and bounded set with a smooth boundary. Then there exists a
constant H = H(g,Ω) such that

(2.1)

∫
Ω

(
u−

∫
Ω

ug

|x|2
dx

)2
dx

|x|2
≤ H

∫
Ω

|∇u|2 dx

for every u ∈ W 1,2(Ω).

The proof is similar to that of Theorem 8.11 in [21] and is omitted. We list below some
consequences of Theorem 2.1.

Corollary 2.2 We make now specific choices of g.
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(a) If g = 1∫
Ω

dx
|x|2

, then (2.1) takes the form: there exists a constant H > 0 such that

∫
Ω

(
u− 1∫

Ω
dx
|x|2

∫
Ω

u

|x|2
dx

)2
dx

|x|2
≤ H

∫
Ω

|∇u|2 dx

for every u ∈ W 1,2(Ω).

(b) If g = |x|2
|Ω| , then (2.1) takes the form: there exists a constant H > 0 such that∫

Ω

(
u− 1

|Ω|

∫
Ω

u dx

)2
dx

|x|2
≤ H

∫
Ω

|∇u|2 dx

for every u ∈ W 1,2(Ω).

(c) If g = |x|2h with h ∈ L2(Ω) and
∫

Ω
h dx = 1, then (2.1) takes the form: there exists a

constant H > 0 such that∫
Ω

(
u−

∫
Ω

uh dx

)2
dx

|x|2
≤ H

∫
Ω

|∇u|2 dx

for every u ∈ W 1,2(Ω).

From the case (c) we derive the following inequality

1

d2

∫
Ω

(
u−

∫
Ω

uh dx

)2

dx ≤
∫

Ω

(
u−

∫
Ω

uh dx

)2
dx

|x|2
≤ H

∫
Ω

|∇u|2 dx,

where d = diam Ω.

If we restrict (2.1) to the subspace of W 1,2(Ω) consisting of functions orthogonal to g in
L2(Ω, 1

|x|2 dx), then (2.1) is reduced to the following inequality: given g ∈ L2(Ω, 1
|x|2 ) with∫

Ω
g
|x|2 dx = 1, then there exists a constant H > 0 such that∫

Ω

u2

|x|2
dx ≤ H

∫
Ω

|∇u|2 dx

for every u ∈ W 1,2(Ω) with (u, g)∗ = 0. This observation can be applied to the cases (a), (b)
and (c) of Corollary 2.2. In particular, from the case (a) we obtain the following inequality:
there exists a constant H > 0 such that

(2.2)

∫
Ω

u2

|x|2
dx ≤ H

∫
Ω

|∇u|2 dx

for every u ∈ W 1,2(Ω) with
∫

Ω
u
|x|2 dx = 0. The reciprocal of the smallest constant H

satisfying inequality (2.2) is the second eigenvalue of the eigenvalue problem (1.1). The first
eigenvalue λ1 = 0 and the corresponding eigenfunctions are constant.
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Using the the triangle inequality we deduce the following estimate from (2.1): given
g ∈ L2(Ω, 1

|x|2 ) with
∫

Ω
g
|x|2 dx = 1, there exists a constant H > 0 such that

(∫
Ω

u2

|x|2
dx

) 1
2

≤ H
1
2

(∫
Ω

|∇u|2 dx
) 1

2

+

(∫
Ω

dx

|x|2

) 1
2
∣∣∣∣∫

Ω

ug

|x|2
dx

∣∣∣∣
for every u ∈ W 1,2(Ω). In the case (a) of Corollary 2.2 this inequality takes the form: there
exists a constant H > 0 such that

(2.3)

(∫
Ω

u2

|x|2
dx

) 1
2

≤ H
1
2

(∫
Ω

|∇u|2 dx
) 1

2

+

(∫
Ω

dx

|x|2

)− 1
2
∣∣∣∣∫

Ω

u

|x|2
dx

∣∣∣∣
for every u ∈ W 1,2(Ω). Obviously, similar inequalities can be established in the cases (b) and
(c).

3 The second eigenvalue

The second eigenvalue λH2 of the eigenvalue problem (1.1) is defined by

λH2 = inf
u∈W 1,2(Ω)−{0},

∫
Ω

u
|x|2

dx=0

∫
Ω
|∇u|2 dx∫

Ω
u2

|x|2 dx
.

Theorem 3.1 Suppose that

(3.1) λH2 < ΛN .

Then there exists an eigenfunction ϕ2 corresponding to the eigenvalue λH2 .

Proof Let {un} be a minimizing sequence for λH2 :
∫

Ω
|∇un|2 dx → λH2 with

∫
Ω

un
|x|2 dx = 0

and
∫

Ω
u2
n

|x|2 dx = 1 for each n. We may assume that un ⇀ u in W 1,2(Ω) and L2(Ω, dx|x|2 ) and

un → u a.e. on Ω. By the P.L. Lions’ concentration - compactness principle [23] there exist
constants µ◦, ν◦ ≥ 0 such that

(3.2) |∇un|2 ⇀ µ ≥ |∇u|2 + µ◦δ◦,

(3.3)
u2
n

|x|2
⇀ ν =

u2

|x|2
+ ν◦δ◦

in the sense of measures and

(3.4) ν◦ΛN ≤ µ◦,
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where δ◦ is the Dirac measure assigned to 0. First, we show that u 6≡ 0. Arguing by
contradiction assume that u ≡ 0 on Ω. Then ν◦ = 1 and ΛN ≤ µ◦. From (3.2) we derive
that

ΛN ≤ µ◦ ≤ λH2 < ΛN

which is impossible. If ν◦ = 0 we are done. So it remains to consider the case 0 < ν◦. In
this case we have

λH2 ≥
∫

Ω

|∇u|2 dx+ µ◦ ≥
∫

Ω

|∇u|2 dx+ ν◦ΛN

≥
∫

Ω

|∇u|2 dx+ ΛN

(
1−

∫
Ω

u2

|x|2
dx

)
.

This yields

(3.5) λH2 − ΛN ≥
∫

Ω

|∇u|2 dx− ΛN

∫
Ω

u2

|x|2
dx.

Since
∫

Ω
u
|x|2 dx = 0, u cannot be a constant function. Hence

∫
Ω
|∇u|2 dx > 0. From (3.5) we

deduce that

ΛN +
λH2 − ΛN∫

Ω
u2

|x|2 dx
≥
∫

Ω
|∇u|2 dx∫

Ω
u2

|x|2 dx
≥ λH2 .

Hence

ΛN − λH2 ≥
ΛN − λH2∫

Ω
u2

|x|2 dx
.

This implies that
∫

Ω
u2

|x|2 dx ≥ 1 which is impossible because
∫

Ω
u2

|x|2 dx < 1. To complete the

proof we show that u is a weak solution to problem (1.2). Let φ ∈ W 1,2(Ω) with
∫

Ω
φ
|x|2 dx = 0.

We put

h(t) =

∫
Ω
|∇(u+ tφ)|2 dx∫

Ω
(u+tφ)2

|x|2 dx

for t ∈ R. Since the function h attains a minimum at t = 0 we get∫
Ω

∇u∇φ dx− λH2
∫

Ω

uφ

|x|2
dx = 0.

To extend this identity for arbitrary φ ∈ W 1,2(Ω) we set ψ = φ−
∫
Ω

φ

|x|2
dx∫

Ω
1
|x|2

dx
. Then

∫
Ω

ψ
|x|2 dx = 0

and ∫
Ω

∇u∇ψ dx =

∫
Ω

∇u∇φ dx = λH2

∫
Ω

uψ

|x|2
dx = λH2

∫
Ω

uφ

|x|2
dx

since u is orthogonal to 1 in L2(Ω, dx|x|2 ). 2
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Remark 3.2 If 0 < µ < λH2 , then problem (1.1) has only the trivial solution in W 1,2(Ω).
Indeed, suppose that u 6≡ 0 belonging to W 1,2(Ω) satisfies (1.1). Then

∫
Ω

u
|x|2 dx = 0 and∫

Ω
|∇v|2 dx∫
Ω

v2

|x|2
= µ < λH2

which is impossible.

4 Examples of sets satisfying (3.1)

In this section we give examples of domains satisfying (3.1). These domains have some sort
of symmetry or satisfy a pinching condition, and they are rather high dimensional.

1. Let Ω = B(0, R). First of all we observe that there are two radial solutions of equation
(1.1) for 0 < λ < ΛN :

u1 = r
−N−2

2
+

√(
N−2

2

)2

−λ
and u2 = r

−N−2
2
−

√(
N−2

2

)2

−λ
.

Since u2 6∈ W 1,2(B(0, R)) we cannot use these radial functions to construct a solution of
(1.1) for λ = λH2 . To verify (3.1) one can use the coordinate function u = xj. It is easy to
show that λH2 ≤ N . Hence (3.1) is satisfied for N ≥ 8. This can be slightly improved by
taking as a test function v(x) = xN

|x| . We then have∫
B(0,R)

|∇v(x)|2 dx =

∫
B(0,R)

(
1

|x|2
− x2

N

|x|4

)
dx =

(
1− 1

N

) ∫
B(0,R)

1

|x|2
dx

= ωN−1R
N−2 N − 1

N(N − 2)
.

Similarly, we have∫
B(0,R)

v(x)2

|x|2
dx =

∫
B(0,R)

x2
N

|x|4
dx =

1

N

∫
B(0,R)

1

|x|2
dx = ωN−1

RN−2

N(N − 2)
.

Hence λH2 ≤ N − 1 and (3.1) is satisfied for N ≥ 7.

2. This observation can be extended to sets which are close to balls, i.e. satisfying a
pinching condition. Let Ω be a bounded domain in RN . Suppose that there exists a ball
B(0, R) ⊂ Ω satisfying the following condition

(∗) |Ω| < 1

N

(N − 2

2

)2|B(0, R)|.

Then (3.1) holds. This condition is meaningful if 1
N

(
N−2

2

)2
> 1, that is N ≥ 8. Obviously

we can assume that B(0, R) is largest ball contained in Ω and satisfying (*). We distinguish

7



two cases: (i)
∫

Ω

xj
|x|2 dx = 0 for some 1 ≤ j ≤ N and (ii)

∫
Ω

xj
|x|2 dx 6= 0 for every j = 1, . . . , N .

In the first case take u = xj; then
∫

Ω
|∇(xj)|2 dx = |Ω| and∫

Ω

x2
j

|x|2
dx ≥

∫
B(0,R)

x2
j

|x|2
dx =

1

N
|B(0, R)|.

Hence λH2 ≤
N |Ω|
|B(0,R)| . If (ii) holds we put u(x) = αkxj − αjxk, where αj =

∫
Ω

xj
|x|2 dx and

αk =
∫

Ω
xk
|x|2 dx. It is clear that

∫
Ω

u
|x|2 dx = 0. We also have

∫
Ω
|∇u|2 dx = (α2

k + α2
j )|Ω| and∫

Ω

u2

|x|2
dx ≥

∫
B(0,R)

α2
kx

2
j + α2

jx
2
k − 2αjαkxjxk

|x|2
dx

=
1

N

(
α2
k + α2

j

)
|B(0, R)|.

Again we obtain the estimate λH2 ≤
N |Ω|
|B(0,R)| . Since (*) holds we get in both cases condition

(3.1).

3. We now consider sets having a symmetry with respect to the coordinate xN . Set
x = (x′, xN) and let Ω = {x′ ∈ D; −f(x′) < xN < f(x′)}, where f : D̄ → (0,∞) is a smooth
function satisfying

(∗∗)
∫
D

f(x′)3 dx′ >
(12)

3
2d3|D|

(N − 2)3
.

We show that (3.1) is satisfied. Take u = xN ; it is clear that
∫

Ω
xN
|x|2 dx = 0. We have∫

Ω

|∇(xN)|2 dx =

∫
D

dx′
∫ f(x′)

−f(x′)

dxN = 2

∫
D

f(x′) dx′

and ∫
Ω

x2
N

|x|2
dx ≥ 1

d2

∫
Ω

x2
N dx =

2

3d2

∫
D

f(x′)3 dx′.

Hence with the aid of the Hölder inequality and (**) we obtain

λH2 ≤
∫

Ω
|∇(xN)|2 dx′∫

Ω

x2
N

|x|2 dx
′
≤

3d2
∫
D
f(x′) dx′∫

D
f(x′)3 dx′

≤ 3d2|D|
2
3

(∫
D

f(x′)3 dx′
)− 2

3

< ΛN .

Let diam D ≤ d, (d = diam Ω). Since maxx′∈D f(x′) ≤ d
2

we have∫
D

f(x′)3 dx′ ≤
(d

2

)3|D|.

Thus condition (**) is meaningful if

(d
2

)3|D| > (12)
3
2d3|D|

(N − 2)3
,
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that is N > 2 + 2
√

12, (N ≥ 9).

4. Suppose that Ω′ ⊂ Ω, with Ω′ as in example 3, that is, Ω′ = {x′ ∈ D; −f(x′) < xN <
f(x′)}, where f : D̄ → (0,∞) is a smooth function. Assume that

(∗ ∗ ∗) |Ω| < 2

3d2
1

(N − 2

2

)2
∫
D

f(x′)3 dx′,

where d1 = diam Ω′. Then (3.1) holds. To show this we distinguish two cases:
(i)
∫

Ω
xN
|x|2 dx = 0 and (ii)

∫
Ω
xN
|x|2 dx 6= 0. Assuming (i), we choose u = xN ; then

∫
Ω
|∇(xN)|2 dx =

|Ω| and ∫
Ω

x2
N

|x|2
dx ≥ 1

d2
1

∫
Ω′
x2
N dx =

2

3d2
1

∫
D

f(x′)3 dx′.

Condition (3.1) follows from (***). In the case (ii) we test λH2 with

u(x) = xN −
∫

Ω
xN
|x|2 dx∫

Ω
dx
|x|2

.

It is clear that
∫

Ω
u
|x|2 dx = 0 and

∫
Ω
|∇u|2 dx = |Ω|. Letting a =

∫
Ω

xN
|x|2

dx∫
Ω

dx
|x|2

we get

∫
Ω

u2

|x|2
dx ≥

∫
Ω′

u2

|x|2
dx =

∫
Ω′

x2
N

|x|2
dx+ a2

∫
Ω′

dx

|x|2
− 2a

∫
Ω′

xN
|x|2

dx

=

∫
Ω′

x2
N

|x|2
dx+ a2

∫
Ω′

dx

|x|2

≥ 2

3 d2
1

∫
D

f(x′)3 dx′ .

The estimate (3.1) follows from (***).

5. Let Ω = {x; (x1 − R)2 + x2
2 + . . . + x2

N ≤ R2}. In this example 0 ∈ ∂Ω. We test λH2
with u(x) = xj for some 2 ≤ j ≤ N . We have

∫
Ω

xj
|x|2 dx = 0,

∫
Ω
|∇(xj)|2 dx = |Ω| and∫

Ω

x2
j

|x|2
dx ≥ 1

4R2

∫
Ω

x2
j dx =

1

4R2

∫
B(0,R)

x2
j dx =

1

4NR2

∫
B(0,R)

|x|2 dx =
ωN−1R

N

4N(N + 2)
.

Thus

λH2 ≤
4N(N + 2)|Ω|
ωN−1RN

= 4(N + 2)

and (3.1) holds provided 4(N + 2) <
(
N−2

2

)
, that is, N ≥ 22.

6. We now give an example of a domain satisfying (3.1) which does not have a symmetry
with respect to 0. Let Ω be a domain from example 3. We put

Ωδ = {x; x′ ∈ D, −f(x′) < xN < (1 + δ)f(x′)},
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where δ > 0. Let 0 < m = minx′∈D̄ f(x′) and M = maxx′∈D̄ f(x′). Suppose that diam D ≤
2M and that

(∗ ∗ ∗∗) m3

6M3

(N − 2

2

)2
> 2 + δ .

(This condition makes sense for N ≥ 9). Then condition (3.1) holds. First we observe that∫
Ωδ

xN
|x|2 dx =

∫
Ωδ−Ω

xN
|x|2 dx > 0. So we introduce a function

v(x) = xN − αδ, αδ =

∫
Ωδ

xN
|x|2 dx∫

Ωδ

dx
|x|2

.

It is clear that
∫

Ωδ

v(x)
|x|2 dx = 0 and∫

Ωδ

|∇v|2 dx = |Ωδ| = (2 + δ)

∫
D

f(x′) dx′.

Letting d = diam Ω we get∫
Ωδ

v2

|x|2
dx ≥

∫
Ω

v2

|x|2
dx =

∫
Ω

x2
N + α2

δ − 2αδxN
|x|2

dx =

∫
Ω

x2
N + α2

δ

|x|2
dx

≥ 2

3d2

∫
D

f(x′)3 dx′ .

Since d = 2M we obtain the following estimate for λH2

λH2 ≤
(2 + δ)

∫
D
f(x′) dx′

2
3d2

∫
D
f(x′)3 dx′

≤ 3(2 + δ)

2
(2M)2 M

m3
= 6(2 + δ)

M3

m3
.

Condition (3.1) follows from (****).

According to example 1 we have λH2 = O(N − 1), as N → ∞, if Ω = B(0, R) ⊂ RN .
Obviously it is not clear whether this asymptotic behaviour is optimal. Below we give an
example of a domain for which λH2 remains bounded as N →∞.

7. Let Ω = {x′ ∈ B(0, 1); −f(x′) < xN < f(x′)}, where f : B(0, 1)→ [1,∞) is a smooth
function. We test λH2 with v(x) = xN |x|. It is clear that

∫
Ω

v
|x|2 dx = 0. Moreover, we have∫

Ω

|∇(xN |x|)|2 dx =

∫
Ω

(
4x2

N + |x′|2
)
dx =

8

3

∫
B(0,1)

f(x′)3 dx′ + 2

∫
B(0,1)

|x′|2f(x′) dx′

and ∫
Ω

v2

|x|2
dx =

∫
Ω

x2
N dx =

2

3

∫
B(0,1)

f(x′)3 dx′.

Hence

λH2 ≤
2
∫
B(0,1)

|x′|2f(x′) dx′ + 8
3

∫
B(0,1)

f(x′)3 dx′

2
3

∫
B(0,1)

f(x′)3 dx′

Since f(x′) ≥ 1 on B(0, 1), we derive from this estimate that λH2 ≤ 7 for every N . Condition
(3.1) is satisfied for N ≥ 10. In the Appendix we give a slightly better estimate of λH2 .
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5 Asymptotic behaviour of the second eigenfunction

around 0

To examine the behaviour around 0 of the second eigenfunction of (1.1) we use some ideas
from [15], [18]. We denote by S = S(Ω) the best Sobolev constant for the embedding of
W 1,2(Ω) into L2∗(Ω), that is,

S = inf
u∈W 1,2(Ω)−{0}

∫
Ω

(
|∇u|2 + u2

)
dx(∫

Ω
|u|2∗ dx

) 2
2∗

.

We only consider the case 0 ∈ Ω.

Proposition 5.1 Suppose that λH2 < ΛN . Then there exists δ◦ ∈ (0, 1) such that the eigen-
function ϕ2 (constructed in Theorem 3.1) belongs to L(1+δ◦)2∗(Ω).

Proof To simplify notation we set λ = λH2 and u = ϕ2. Let φ = umin(|u|, L)p−2 = uup−2
L ,

where p > 2, L > 0. Testing equation (1.1) we obtain

(5.1)

∫
Ω

|∇u|2up−2
L dx+ (p− 2)

∫
Ω

∇u∇uLup−2
L dx = λ

∫
Ω

u2up−2
L

|x|2
dx.

On the other hand we have∫
Ω

|∇
(
uu

p
2
−1

L

)
|2 dx =

∫
Ω

|∇u|2up−2
L dx+

(p− 2)2

4

∫
Ω

|∇uL|2up−2
L dx

+ (p− 2)

∫
Ω

∇u∇uLup−2
L dx

=

∫
Ω

|∇u|2up−2
L dx+

p2 − 4

4

∫
Ω

|∇uL|2up−2
L dx.

It then follows from (5.1) that∫
Ω

|∇u|2up−2
L dx+

p2 − 4

4

∫
Ω

∇u∇uLup−2
L dx ≤ λ(p+ 2)

4

∫
Ω

u2up−2
L

|x|2
dx.

Hence

(5.2)

∫
Ω

|∇
(
uu

p
2
−1

L

)
|2 dx ≤ λ(p+ 2)

4

∫
Ω

u2up−2
L

|x|2
dx.

We now apply inequality (1.3) to uu
p
2
−1

L . For a given ε > 0 we can find a constant
A = A(ε,Ω) > 0 such that

(5.3)

∫
Ω

|∇
(
uu

p
2
−1

L

)
|2 dx ≤ λ(p+ 2)

4

( 1

ΛN

+ ε
) ∫

Ω

|∇
(
uu

p
2
−1

L

)
|2 dx+

λA(p+ 2)

4

∫
Ω

u2up−2
L dx.

11



We now take p = 2 + δ with 0 < δ < 1 chosen so that

λ

ΛN

(
1 +

δ

4

)
< 1.

Next we choose ε small enough so that

λ(p+ 2)

4

( 1

ΛN

+ ε
)

=
(
1 +

δ

4

)( λ
ΛN

+ λε
)
< 1.

With these choices of δ and ε we derive from (5.3) that

S

(
1− λ(p+ 2)

4

( 1

ΛN

+ ε
))(∫

Ω

|
(
uu

p
2
−1

L

)
|2∗ dx

) 2
2∗

≤
(Aλ(p+ 2)

4
+ 1
) ∫

Ω

u2up−2
L dx.

Letting L→∞ the result follows with δ◦ = δ
2
. 2

Theorem 5.2 Suppose that 0 ∈ Ω and λH2 < λN . Then there exists a ball B(0, ρ◦) ⊂ Ω such
that

|ϕ2(x)| ≤ C|x|−(
√

ΛN−
√

ΛN−λH2 ) for x ∈ B(0, ρ◦)− {0},

where C > 0 is a constant and ϕ2 is an eigenfunction from Theorem 3.1.

Proof We use again the notation λ = λH2 and we set u = ϕ2. We put

v(x) = |x|(
√

ΛN−
√

ΛN−λH2 )u(x).

It is clear that v ∈ W 1,2
(
Ω, |x|−2

(√
ΛN−
√

ΛN−λH2
)
dx
)
. By straightforward calculations we

check that

(5.4) div
(
|x|−2

(√
ΛN−
√

ΛN−λH2
)
∇v
)

= 0 in Ω.

Let 0 < r < ρ and B(0, ρ) ⊂ Ω. We put φ = η2vv
2(s−1)
l , where l, s > 1, vl = min(|v|, l) and

η is a C1-function such that η = 1 on B(0, r), η = 0 on Ω − B(0, ρ) and |∇η| ≤ 4
ρ−r on Ω.

Testing (5.4) with φ we obtain
(5.5)∫

Ω

|x|−2
(√

ΛN−
√

ΛN−λH2
)(

2ηvv
2(s−1)
l ∇η∇v + η2v

2(s−1)
l |∇v|2 + 2(s− 1)η2v

2(s−1)
l |∇vl|2

)
dx = 0.

For every ε > 0 there exists C(ε) > 0 such that

2

∫
Ω

|x|−2
(√

ΛN−
√

ΛN−λH2
)
ηvv

2(s−1)
l ∇η∇v dx ≤ ε

∫
Ω

|x|−2
(√

ΛN−
√

ΛN−λH2
)
η2v

2(s−1)
l |∇v|2 dx

+ C(ε)

∫
Ω

|x|−2
(√

ΛN−
√

ΛN−λH2
)
|∇η|2v2v

2(s−1)
l dx.
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Taking ε = 1
2

we derive from (5.5) that∫
Ω

|x|−2
(√

ΛN−
√

ΛN−λH2
)(
η2v

2(s−1)
l |∇v|2 + 2(s− 1)η2v

2(s−1)
l |∇vl|2

)
dx(5.6)

≤ C

∫
Ω

|x|−2
(√

ΛN−
√

ΛN−λH2
)
|∇η|2v2v

2(s−1)
l dx.

In the next step we use the Caffarelli - Kohn - Nirenberg inequality [12]:

(5.7)

(∫
Ω

|x|−bp|w|p dx
) 2

p

≤ Ca,b

∫
Ω

|x|−2a|∇w|2 dx

for every w ∈ W 1,2
◦ (Ω, |x|−2a dx), where −∞ < a < N−2

2
, a ≤ b ≤ a + 1, p = 2N

N−2+2(b−a)
and

Ca,b > 0 is a constant depending on a and b. We choose a = b =
√

ΛN −
√

ΛN − λH2 < N−2
2

.
In this case we have p = 2∗. We then deduce from (5.6) and (5.7) with w = ηvvs−1

l that(∫
Ω

|x|−2∗
(√

ΛN−
√

ΛN−λH2
)
|ηvvs−1

l |
2∗ dx

) 2
2∗

(5.8)

≤ Ca,a

∫
Ω

|x|−2
(√

ΛN−
√

ΛN−λH2
)
|∇
(
ηvvs−1

l

)
|2 dx

≤ 2Ca,a

∫
Ω

|x|−2
(√

ΛN−
√

ΛN−λH2
)(
|∇η|2v2v

2(s−1)
l + η2v

2(s−1)
l |∇v|2

+(s− 1)2η2v
2(s−1)
l |∇vl|2

)
dx

≤ Cs

∫
Ω

|x|−2
(√

ΛN−
√

ΛN−λH2
)
|∇η|2v2v

2(s−1)
l dx.

Since ∫
Ω

|x|−2∗
(√

ΛN−
√

ΛN−λH2
)
|η|2∗v2v2∗s−2

l dx ≤
∫

Ω

|x|−2∗
(√

ΛN−
√

ΛN−λH2
)
|ηvvs−1

l |
2∗ dx

we can rewrite (5.8) as(∫
Ω

|x|−2∗
(√

ΛN−
√

ΛN−λH2
)
|η|2∗v2v2∗s−2

l dx

) 2
2∗

≤ Cs

∫
Ω

|x|−2∗
(√

ΛN−
√

ΛN−λH2
)
|∇η|2v2v

2(s−1)
l dx.

Due to the properties of the function η the above inequality becomes
(5.9)(∫

B(0,r)

|x|−2∗
(√

ΛN−
√

ΛN−λH2
)
v2v2∗s−2

l dx

) 2
2∗

≤ Cs

(ρ− r)2

∫
B(0,ρ)

|x|−2∗
(√

ΛN−
√

ΛN−λH2
)
v2v2s−2

l dx.

We now choose N
N−2

< s∗ <
(
1 + δ◦

)
N
N−2

and define the sequence

sj = s∗
(2∗

2

)j
, j = 0, 1, 2, . . . .

13



Letting s = sj in (5.9) we obtain(∫
B(0,r)

|x|−2∗
(√

ΛN−
√

ΛN−λH2
)
v2v

2∗sj+1−2
l dx

) 1
2sj+1

≤
(

Csj
(ρ− r)2

) 1
2sj

(∫
B(0,ρ)

|x|−2∗
(√

ΛN−
√

ΛN−λH2
)
v2v

2sj−2
l dx

) 1
2sj

.

We put rj = ρ◦(1 + ρj◦), j = 0, 1, 2, . . . with ρ◦ > 0 small so that B(0, 2ρ◦) ⊂ Ω. Substituting
in the above inequality ρ = rj and r = rj+1 we obtain(∫

B(0,rj+1)

|x|−2∗
(√

ΛN−
√

ΛN−λH2
)
v2v

2∗sj+1−2
l dx

) 1
2sj+1

(5.10)

≤
(

Csj

(ρ◦ − ρ2
◦)

2ρ2j
◦

) 1
2sj

(∫
B(0,rj)

|x|−2∗
(√

ΛN−
√

ΛN−λH2
)
v2v

2sj−2
l dx

) 1
2sj

.

Iterating we obtain(∫
B(0,rj+1)

|x|−2∗
(√

ΛN−
√

ΛN−λH2
)
v2v

2∗sj+1−2
l dx

) 1
2sj+1

(5.11)

≤
(

C

ρ◦ − ρ2
◦

)∑∞
j=0

1
sj

ρ
−

∑∞
j=0

1
sj

◦

∞∏
j=0

s
1

2sj

j

(∫
B(0,rj)

|x|−2∗
(√

ΛN−
√

ΛN−λH2
)
v2v2s∗−2

l dx

) 1
2s∗

.

We now notice that the infinite sums and the infinite product in the above inequality are
finite. Since 2∗ < 2s∗ < (1 + δ◦)2

∗ we get that∫
B(0,r◦)

|x|−2∗
(√

ΛN−
√

ΛN−λH2
)
v2v2s∗−2 dx(5.12)

≤
∫
B(0,r◦)

|x|(2s
∗−2∗)

(√
ΛN−
√

ΛN−λH2
)
|u|2s∗ dx

≤ d(2s∗−2∗)
(√

ΛN−
√

ΛN−λH2
) ∫

B(0,r◦)

|u|2s∗ dx <∞.

We now deduce from (5.11) and (5.12) that

‖vl‖L2sj+1 (B(0,r◦))
≤ ‖vl‖L2sj+1 (B(0,rj+1))

≤ d
2∗
(√

ΛN−
√

ΛN−λ
H
2

)
2sj+1

(∫
B(0,rj+1)

|x|−2∗
(√

ΛN−
√

ΛN−λH2
)
v2v

2sj+1−2
l dx

) 1
2sj+1

.

Letting l→∞ and sj →∞ the result easily follows. 2
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6 The Robin boundary conditions

The approach from Section 3 to the eigenvalue problem (1.1) can be extended to the eigen-
value problem with Robin boundary conditions

(6.1)

{
−∆u = µ 1

|x|2u in Ω,
∂u
∂ν

+ βu = 0 on ∂Ω,

where β is a continuous nonnegative function on ∂Ω with β 6≡ 0 on ∂Ω. We assume that
0 ∈ Ω. However, we consider here the smallest eigenfunction

(6.2) λR1 = inf
u∈W 1,2(Ω)−{0}

∫
Ω
|∇u|2 dx+

∫
∂Ω
βu2 ds∫

Ω
u2

|x|2 dx
.

First we show that λR1 > 0. Arguing by contradiction assume λR1 = 0. Then there exits a

sequence {un} ⊂ W 1,2(Ω) such that
∫

Ω
|∇un|2 dx+

∫
∂Ω
βu2

n ds→ 0 as n→∞ and
∫

Ω
u2
n

|x|2 dx =

1 for every n. Since {un} is bounded in W 1,2(Ω) we may assume that un ⇀ u in W 1,2(Ω) and
un → u in L2(Ω) and L2(∂Ω). We now observe that

∫
Ω
|∇un|2 dx → 0, so u = l (constant).

Since β 6≡ 0, l = 0. Thus un → 0 in W 1,2(Ω). This contradicts the fact that
∫

Ω
u2
n

|x|2 dx = 1

for every n. Hence λR1 > 0. Obviously, we have

λR1 ≤ inf
u∈W 1,2

◦ (Ω)

∫
Ω
|∇u|2 dx∫

Ω
u2

|x|2 dx
= ΛN .

We now recall the following inequality: there exists a constant C = C(Ω) > 0 such that

(6.3) ΛN

∫
Ω

u2

|x|2
dx ≤

∫
Ω

|∇u|2 dx+ C

∫
∂Ω

u2 ds

for every u ∈ W 1,2(Ω) (see Theorem 1.1 (inequality (1.4)) in [7]). Actually, this is a simplified
version of inequality (1.4) in [7], which contains an extra positive term on the left hand side.
Let C be a constant from inequality (6.3). If C ≤ β(s) on ∂Ω, then λR1 ≥ ΛN . Thus if
C ≤ β(s) on ∂Ω then λR1 = ΛN .

Theorem 6.1 Suppose that

(6.4) λR1 < ΛN .

Then problem (6.2) admits a minimizer.

The proof is a minor modification of the proof of Theorem 3.1 and is omitted.

Using as a test function u(x) ≡ 1 on Ω we derive the following condition guaranteeing
the validity of (6.4): if

(6.5)

∫
∂Ω

β(s) ds < ΛN

∫
Ω

dx

|x|2
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then (6.4) holds. If Ω = B(0, R), and B = maxs∈∂Ω β(s), then∫
∂Ω
β(s) ds∫
Ω

dx
|x|2

≤ BR(N − 2)

and (6.5) becomes

R <
N − 2

4B
.

Proposition 6.2 Suppose that (6.4) holds. Then the first eigenvalue λR1 is simple and the
corresponding eigenfunction does not change sign on Ω− {0}.

Proof If a function u ∈ W 1,2(Ω) is a minimizer for λR1 , then |u| is also a minimizer for λR1 .
Therefore we can assume that u is nonnegative on Ω−{0}. The fact that u > 0 on Ω−{0}
follows from the Harnack inequality (see Theorem 8.20 in [17]). To prove that λR1 is simple
we follow some ideas from [9] and [24]. We use the Picone identity. Let

L(u, v) = |∇u|2 +
u2

v2
|∇v|2 − 2

u

v
∇u∇v

and

R(u, v) = |∇u|2 −∇v∇
(u2

v

)
.

If u, v ∈ C1(Ω − {0}) ∩W 1,2(Ω), with u ≥ 0, v > 0, then R(u, v) = L(u, v) ≥ 0. Moreover,
R(u, v) = L(u, v) = 0 if and only if u = kv for some k ∈ R. Suppose that φ1 and v1 are
positive eigenfunctions corresponding to λR1 . We choose a sequence ψn ∈ C(Ω) ∩W 1,2(Ω)
such that ψn → φ1 in W 1,2(Ω). We then have

0 =

∫
Ω

|∇φ1|2 dx+

∫
∂Ω

βφ2
1 ds− λR1

∫
Ω

φ2
1

|x|2
dx(6.6)

= lim
n→∞

[∫
Ω

|∇ψn|2 dx+

∫
∂Ω

βψ2
n ds− λR1

∫
Ω

ψ2
n

|x|2
dx

]
.

Testing the equation for v1 with v = ψ2
n

v1+ 1
n

we get

−
∫
∂Ω

βψ2
n

v1(
v1 + 1

n

) ds+ λR1

∫
Ω

v1(
v1 + 1

n

) ψ2
n

|x|2
dx =

∫
Ω

∇v1∇
( ψ2

n

v1 + 1
n

)
dx.

Combining this with (6.6) we derive

0 = lim
n→∞

∫
Ω

(
|∇ψn|2 −∇v1∇

( ψ2
n

v1 + 1
n

))
dx = lim

n→∞

∫
Ω

L(ψn, v1) dx =

∫
Ω

L(φ1, v1) dx.

Thus φ1 = cv1 for some c ∈ R. 2

The asymptotic estimates from Theorem 5.2 continue to hold for the first eigenfunction
of problem (6.1).
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Proposition 6.3 Suppose that (6.4) holds and let v be a minimizer of problem (6.2). Then
there exist positive constants C1, C2 and ρ◦ such that B(0, ρ◦) ⊂ Ω and

C1|x|−
(√

ΛN−
√

ΛN−λR1
)
≤ v(x) ≤ C2|x|−

(√
ΛN−
√

ΛN−λR1
)

for every x ∈ B(0, ρ◦)− {0}.

Proof First we observe that Proposition 5.1 remains true for v. Hence we can repeat the
proof of Theorem 5.2 to obtain the upper bound. The lower bound follows from Proposition
2.2 in [15]. 2.

We now consider the Robin problem (6.1) with a non-positive coefficient β with β 6≡ 0.
We rewrite this problem as

(6.7)

{
−∆u = µ 1

|x|2u in Ω,
∂u
∂ν
− βu = 0 on ∂Ω,

where β is a continuous non-negative function on ∂Ω with β 6≡ 0. We put

(6.8) λ−R1 = inf
u∈W 1,2(Ω)−{0}

∫
Ω
|∇u|2 dx−

∫
∂Ω
βu2 ds∫

Ω
u2

|x|2 dx
.

Theorem 6.4 Suppose that β is a continuous non-negative function on ∂Ω with β 6≡ 0.
Then problem (6.8) admits a minimizer.

Proof We commence by showing that −∞ < λ−R1 < 0. Testing λ−R1 with u ≡ 1 we get
λ−R1 < 0. To show that λ−R1 is finite we recall the following version of the trace inequality in
W 1,2(Ω): for every ε > 0 there exists a constant C(ε) > 0 such that

(6.9)

∫
∂Ω

u2 ds ≤ ε

∫
Ω

|∇u|2 dx+ C(ε)

∫
Ω

u2 dx

for every u ∈ W 1,2(Ω). We choose ε > 0 so that ε‖β‖∞ < 1. With this choice of ε we obtain
the following estimate∫

Ω

|∇u|2 dx−
∫
∂Ω

βu2 ds ≥ (1− ε‖β‖∞)

∫
Ω

|∇u|2 dx− ‖β‖∞C(ε)

∫
Ω

u2 dx.

We may assume that
∫

Ω
u2

|x|2 dx = 1. Hence 1 =
∫

Ω
u2

|x|2 dx ≥
1
d2

∫
Ω
u2 dx. We then derive the

following estimate ∫
Ω

|∇u|2 dx−
∫
∂Ω

βu2 ds ≥ −d2‖β‖∞C(ε).

This argument also shows that every minimizing sequence for λ−R1 must be bounded in

W 1,2(Ω). Let {un} ⊂ W 1,2(Ω) be a minimizing sequence for λ−R1 such that
∫

Ω
u2
n

|x|2 dx = 1

for every n. We may assume that un ⇀ u in W 1,2(Ω) and L2(Ω, 1
|x|2 ) and un → u in L2(Ω)

17



and L2(∂Ω). We claim that u 6≡ 0. In the contrary case by the P.L. Lions concentration
- compactness principle we get (see the proof of Theorem 3.1) 0 > λ−R1 ≥ µ◦ which is
impossible. To complete the proof we show that limn→∞

∫
Ω
|∇un − ∇u|2 dx = 0. Arguing

by contradiction assume limn→∞
∫

Ω
|∇un − ∇u|2 dx = c > 0. Since {un} is a minimizing

sequence for λ−R1 we obtain

λ−R1 =

∫
Ω

|∇un|2 dx−
∫
∂Ω

βu2
n ds+ o(1) = c+

∫
Ω

|∇u|2 dx−
∫
∂Ω

βu2 ds+ o(1)

≥ c+ λ−R1

∫
Ω

u2

|x|2
dx+ o(1).

Hence

c ≤ λ−R1

(
1−

∫
Ω

u2

|x|2
dx
)
≤ 0

and we have arrived at a contradiction. 2

We close this section with remarks on the Robin problem with the coefficient β changing
sign on ∂Ω, that is, we assume β+ 6≡ 0 and β− 6≡ 0 on ∂Ω. We distinguish two cases: (I)∫
∂Ω
β dx ≤ 0 and (II)

∫
∂Ω
β ds > 0. Using the trace inequality (6.9) we can show that λR1 is

finite.

Case (I) In this case λR1 < 0. This is obvious if
∫

Ω
β dx < 0. If

∫
∂Ω
β ds = 0, we test

λR1 with a function u(x) = v(x) + t, where t > 0 is a constant and v ∈ C1(Ω̄), v ≥ 0 on Ω,∫
∂Ω
β−v ds > 0 and supp v ∩ supp β+ = ∅. Thus∫

Ω

|∇u|2 dx+

∫
∂Ω

βu2 ds =

∫
Ω

|∇v|2 dx+

∫
∂Ω

βv2 ds+ 2t

∫
∂Ω

βv ds+ t2
∫
∂Ω

β ds

=

∫
Ω

|∇v|2 dx−
∫
∂Ω

β−v2 ds− 2t

∫
∂Ω

β−v ds < 0

provided t is sufficiently large. Repeating the proof of Theorem 6.4 we obtain the existence
of a minimizer for λR1 .

Case (II) In this case

λR1 ≤
∫
∂Ω
β ds∫

Ω
dx
|x|2

.

To obtain the existence of a minimizer for λR1 we impose the following condition∫
∂Ω

β ds < ΛN

∫
Ω

dx

|x|2
.

Obviously this condition is not needed if it occurs that λR1 ≤ 0.
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7 Open problems

Listed below are some open problems.

1) Do there exist second eigenfunctions in balls with dimensions less than or equal to 6?

2) Do there exist other eigenvalues below the Hardy constant ΛN and possibly above ΛN?

3) Find conditions for the mixed Dirichlet - Neumann problem guaranteeing that the
corresponding minimum of the Rayleigh quotient is strictly less than ΛN and is attained.

8 Appendix

Let Ω be a domain from example 7 in Section 4. We test λH2 with v(x) = x
2k+1
2k+3

N |x|, where
k ≥ 1 is an integer. We have

∇v =

(
x

2k+1
2k+3

N

x1

|x|
, . . . , x

2k+1
2k+3

N

xN−1

|x|
,

2k + 1

2k + 3
x
−2

2k+3

N |x|+ x
2k+1
2k+3

N

xN
|x|

)
.

Thus∫
Ω

|∇v|2 dx =

∫
Ω

(
x

4k+2
2k+3

N +

(
2k + 1

2k + 3

)2

x
− 4

2k+3

N |x|2 +
4k + 2

2k + 3
x

4k+2
2k+3

N

)
dx

=

∫
Ω

(
x

4k+2
2k+3

N +

(
2k + 1

2k + 3

)2

x
4k+2
2k+3

N +

(
2k + 1

2k + 3

)2

x
− 4

2k+3

N |x′|2 +
4k + 2

2k + 3
x

4k+2
2k+3

N

)
dx

= 2

(
2k + 3

6k + 5

∫
|x′|≤1

f(x′)
6k+5
2k+3 dx′ +

(
2k + 1

2k + 3

)2
2k + 3

6k + 5

∫
|x′|≤1

f(x′)
6k+5
2k+3 dx′

+

(
2k + 1

2k + 3

)2
2k + 3

2k − 1

∫
|x′|≤1

|x′|2f(x′)
2k−1
2k+1 dx′ +

4k + 2

6k + 5

∫
|x′|≤1

f(x′)
6k+5
2k+3 dx′

)
≤ 2

(
2k + 3

6k + 5
+

(
2k + 1

2k + 3

)2
2k + 3

6k + 5
+

(
2k + 1

2k + 3

)2
2k + 3

2k − 1
+

4k + 2

6k + 5

)
×

∫
|x′|≤1

f(x′)
6k+5
2k+3 dx′.

We also have ∫
Ω

v2

|x|2
dx ≤

∫
Ω

x
4k+2
2k+3

N dx = 2
2k + 3

6k + 5

∫
Ω

f(x′)
6k+5
2k+3 dx′.

Since
∫

Ω
v
|x′|2 dx = 0, v is a legitimate function to test λH2 and we get

λH2 ≤
(

2k + 3

6k + 5
+

(
2k + 1

2k + 3

)2
2k + 3

6k + 5
+

(
2k + 1

2k + 3

)2
2k + 3

2k − 1
+

4k + 2

6k + 5

)
6k + 5

2k + 3
.
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The sequence on the right - hand side of this inequality tends to 7 as k →∞. However, the
terms of this sequence are strictly less than 6 for k = 2, 3, 4, 5. For example for k = 2 we
have

λH2 ≤ 1 +
25

49
+

25

49
· 17

3
+

10

7
< 5

122

147
< 6.

In particular, condition (3.1) is satisfied for N ≥ 7.
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