A priori bounds for superlinear problems involving the N-Laplacian

Sebastián Lorca, Bernhard Ruf and Pedro Ubilla

Abstract

In this paper we establish a priori bounds for positive solution of the equation

$$-\Delta_N u = f(u), \quad u \in H^1_0(\Omega)$$

where Ω is a bounded smooth domain in \mathbb{R}^N, and the nonlinearity f has at most exponential growth. The techniques used in the proofs are a generalization of the methods of Brezis-Merle to the N-Laplacian, in combination with the Trudinger-Moser inequality, the Moving Planes method and a Comparison Principle for the N-Laplacian.

Keywords and phrases: a priori bounds; moving planes; Trudinger-Moser inequality.

AMS Subject Classification: 35J20 and 35J60.

1 Introduction

This paper is concerned with a priori bounds for positive solutions of equations involving the N-Laplacian and superlinear nonlinearities in bounded domains in \mathbb{R}^N. More precisely, we consider

$$\begin{cases}
-\Delta_N u = f(u) & \text{in } \Omega \\
u > 0 & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega
\end{cases}$$

(1.1)

where Ω is a strictly convex, bounded and smooth domain in \mathbb{R}^N, and $\Delta_N u = \text{div}(|\nabla u|^{N-2}\nabla u)$ is the N-Laplacian operator. On the function $f : \mathbb{R}^+ \to \mathbb{R}^+$ we assume that it is a locally Lipschitz function satisfying the following hypotheses:

*supported by FONDECYT 1080430 and 1080500
\[(f_1) \quad f(s) \geq 0, \text{ for all } s \geq 0,\]

and either

\[(f_2) \quad \text{there exists a positive constant } d \text{ such that} \]
\[\liminf_{s \to +\infty} \frac{f(s)}{s^{N-1+d}} > 0\]

and

\[(f_3) \quad \text{there exist constants } c, s_0 \geq 0 \text{ and } 0 < \alpha < 1 \text{ such that} \]
\[f(s) \leq ce^{s^\alpha}, \text{ for all } s \geq s_0,\]

or

\[(f_4) \quad \text{there exist constants } c_1, c_2 > 0 \text{ and } s_0 > 0 \text{ such that} \]
\[c_1 e^s \leq f(s) \leq c_2 e^s, \text{ for all } s \geq s_0.\]

The main result is the following

Theorem 1.1 (A priori bound). Under the assumptions \((f_1)\) and either \((f_2)\) and \((f_3)\) (subcritical case) or \((f_4)\) (critical case) there exists a constant \(C > 0\) such that every weak solution \(u \in W^{1,N}_0(\Omega) \cap C^1(\Omega)\) of Equation \((1.1)\) satisfies

\[\|u\|_{L^\infty(\Omega)} \leq C.\] \[(1.2)\]

A priori bounds for superlinear elliptic equations have been a focus of research in recent years. On the one hand, such results give interesting qualitative information on the positive solutions of such equations; on the other hand they are also useful to obtain existence results via degree theory.

It seems that the first general result for a priori bounds for superlinear elliptic equations is due to Brezis-Turner \([5]\), 1977. They considered the equation

\[
\begin{cases}
-\Delta u = g(x,u) & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,
\end{cases}
\] \[(1.3)\]

and proved an a priori bound under the (main) hypothesis

\[0 \leq g(x,s) \leq cs^p, p < \frac{N+1}{N-1}.\]

Their method is based on the **Hardy-Sobolev inequality**.

In 1981, Gidas and Spruck \([8]\) considered Equation \((1.3)\) under the assumption

\[\lim_{s \to \infty} \frac{g(x,s)}{s^p} = a(x) > 0 \quad \text{in } \overline{\Omega},\]
and proved a priori estimates under the condition
\[1 < p < \frac{N + 2}{N - 2} = 2^* - 1, \]
using blow-up techniques and Liouville theorems on \(\mathbb{R}^N \).

In 1982, De Figueiredo - P.L. Lions - Nussbaum [9] obtained a priori estimates under the assumptions that \(\Omega \) is convex, and \(g(s) \) is superlinear at infinity and satisfies
\[g(s) \leq cs^p, \quad 1 < p < \frac{N + 2}{N - 2}, \quad \text{(and some technical conditions).} \]
Their method relied on the moving planes technique, see [7], to obtain estimates near the boundary, and on Pohozaev-type identities.

Due to the results by Gidas-Spruck and De Figueiredo-Lions-Nussbaum it was generally believed that the result of Brezis-Turner was not optimal. But surprisingly, Quittner-Souplet [14] showed in 2004 that under the general hypotheses of Brezis-Turner their result is optimal; in fact, they give a counterexample with a \(g(x,s) \) with strong \(x \)-dependence.

Concerning to the \(m \)-Laplace case, Azizieh-Clement [3] studied the problem
\[
\begin{aligned}
-\Delta_m u &= g(x,u) \quad &\text{in } \Omega, \\
u &> 0 \quad &\text{in } \Omega, \\
u &= 0 \quad &\text{on } \partial\Omega.
\end{aligned}
\]
They obtain a priori estimates for the particular case \(1 < m < 2 \), assuming \(g(x,u) = g(u) \), with \(C_1 u^p \leq g(u) \leq C_2 u^p \), where \(1 < p < N(m - 1)/(N - m) \) and \(\Omega \) is bounded and convex.

The more general case \(1 < m \leq 2 \) was considered by Ruiz [16]; he studied problem (1.4) where \(g \) is as in Azizieh-Clement but depends on \(x \); also, he does not need \(\Omega \) convex. In these two works, a blow-up argument together with a non existence result of positive super solutions, due to Mitidieri-Pohozaev [13], are used.

Recently, Lorca-Ubilla [12] obtained a priori estimates for solutions of (1.4) for more general nonlinearities \(g \). They only require \(0 \leq g(x,u) < C_1 u^p \), \(1 < p < N(m - 1)/(N - m) \), together with a superlinearity assumption at infinity. In this case the blow-arguments used by Azizieh-Clement and by Ruiz are not sufficient to obtain a contradiction. However using an adaptation of Ruiz’s argument, which consists in a combination of Harnack inequalities and local \(L^q \) estimates, it is possible to get the a priori estimate.

The above mentioned results are for \(N > 2 \); for \(N = 2 \) one has the embedding \(H^1_0(\Omega) \subset L^p \), for all \(p > 1 \), but easy examples show that \(H^1_0(\Omega) \not\subset L^\infty(\Omega) \). Thus, one may ask for the maximal growth function \(g(s) \) such that \(\int_\Omega g(u) < \infty \) for \(u \in H^1_0(\Omega) \). This maximal possible growth was determined independently by Yudovich, Pohozaev and Trudinger, leading to what is now called the Trudinger inequality: it says that for \(u \in H^1_0(\Omega) \) one has \(\int_\Omega e^{u^2}dx < +\infty \).
So, one can ask whether in dimension $N = 2$ one can prove a priori estimates for nonlinearities with growth up to the Trudinger-Moser growth. This is not the case, however some interesting result for equations with exponential growth have been proved in recent years. First, we mention the result of Brezis-Merle [4] who proved in 1991 that under the growth restriction

$$c_1 e^s \leq g(x,s) \leq c_2 e^s$$

one has: if $\int_{\Omega} g(x,u) dx \leq c$, for all $u > 0$ solution of Equation (1.1), then there exists $C > 0$ such that

$$\|u\|_{\infty} \leq C$$

for all positive solutions.

This is not quite an a priori result yet; however, from the boundary estimates of De Figueiredo - Lions - Nussbaum one obtains, assuming that Ω is convex (and adding some technical assumptions) that the condition $\int_{\Omega} g(x,u) \leq c$ of Brezis-Merle is satisfied. Hence, on convex domains the Brezis-Merle result yields indeed the desired a priori bounds. We note also that Brezis-Merle give examples of nonlinearities $g(x,s) = h(x)e^{\alpha s}$ with $\alpha > 1$ for which there exists a sequence of unbounded solutions.

Our Theorem 1.1 is motivated by the result of Brezis-Merle. We recall that in dimension N the Trudinger inequality gives as maximal growth $g(s) \leq e^{\frac{|s|N}{N-1}}$, while our result shows that for a priori bounds it is again the exponential growth $g(s) \sim e^s$ which is the limiting growth to obtain a priori bounds.

The paper is organized as follows: in section 2 we obtain uniform bounds near the boundary $\partial \Omega$, using results of Damascelli-Sciunzi [6]. In section 3 we show that the boundary estimates yield easily a uniform bound on $\int_{\Omega} g(x,u)$. In section 4 we discuss the "subcritical case", i.e. when assumptions (f2) and (f3) hold, while in section 5 we prove the a priori bounds in the "critical case", i.e. under assumption (f4).

2 The boundary estimate

In this section we obtain a priori estimates on a portion of Ω including the boundary.

Proposition 2.1 Assume (f2) or the left inequality in (f4). Then there exist positive constants r,C such that every weak solution $u \in W^{1,N}_0(\Omega) \cap C^1(\Omega)$ of Equation (1.1) verifies

$$u(x) \leq C \text{ and } |\nabla u(x)| \leq C, x \in \Omega_r,$$

where $\Omega_r = \{ x \in \Omega : d(x,\partial \Omega) \leq r \}$.

Proof. For $x \in \partial \Omega$, let $\eta(x)$ denote the outward normal vector to $\partial \Omega$ in x. By Damascelli-Sciunzi [6], Theorem 1.5, there exists $t_0 > 0$ such that $u(x - t\eta(x))$ is nondecreasing for $t \in [0,t_0]$ and for $x \in \partial \Omega$. Note that t_0 depends only on the
geometry of Ω. Following the ideas of de Figueiredo, Lions and Nussbaum’s paper [9] one now shows that there exists $\alpha > 0$, depending only on Ω, such that

$$u(z - t\sigma) \text{ is nondecreasing for all } t \in [0, t_1],$$

where $|\sigma| = 1$, $\sigma \in \mathbb{R}^N$ verifies $\sigma \cdot \eta(z) \geq \alpha$, $z \in \partial \Omega$,

and $t_1 > 0$ depends only on Ω.

Since $u(z - t\sigma)$ is nondecreasing in t for z and σ as above, for all $x \in \Omega_\epsilon$ we find a measure set I_x, and positive numbers γ and ϵ (depending only on Ω) such that

(i) $|I_x| \geq \gamma$

(ii) $I_x \subset \{x \in \Omega : d(x, \partial \Omega) \geq \frac{\epsilon}{2} \}$

(iii) $u(y) \geq u(x)$, for all $y \in I_x$.

We now use Piccone’s identity (see [2]), which says that if v and u are C^1 functions with $v \geq 0$ and $u > 0$ in Ω, then

$$|\nabla v|^N \geq |\nabla u|^{N-2} \nabla \left(\frac{v^N}{u^{N-1}} \right) \nabla u.$$

We apply this inequality with $v = e_1$, the first (positive) eigenfunction of the N-Laplacian on Ω, and $u > 0$ a (weak) solution of $-\Delta_N u = f(u)$. We assume that e_1 is normalized, i.e. $\int_{\Omega} e_1^N = 1$. Then we have (observe that $\frac{e_1^N}{u^{N-1}}$ belongs to $W^{1,N}_0(\Omega)$ since u is positive in Ω and has nonzero outward derivative on the boundary because of Hopf’s lemma, see [17])

$$c \geq \int_{\Omega} |\nabla e_1|^N dx \geq \int_{\Omega} |\nabla u|^{N-2} \nabla u \nabla \frac{e_1^N}{u^{N-1}} = \int_{\Omega} \frac{f(u) e_1^N}{u^{N-1}}.$$

Thus condition (f_2) (or condition (f_4)) implies $\int_{\Omega} u^d e_1^N \leq \tilde{C}$, and so

$$\eta^N \int_{\Omega \setminus \Omega^{\frac{\epsilon}{2}}} u^d \leq \tilde{C}$$

where $e_1(z) \geq \eta > 0$, $z \in \Omega \setminus \Omega^{\frac{\epsilon}{2}}$. By (ii), given $x \in \Omega_\epsilon$, we have

$$\eta^N \int_{I_x} u^d \leq \tilde{C}.$$

Now since $u^d(x)|I_x| \leq \int_{I_x} u^d$ by (i) and (ii), we have $u^d(x) \leq \frac{\tilde{C}}{\eta^N}$, and so $u(x) \leq C'$, for all $x \in \Omega_\epsilon$. Finally by Lieberman [11] (see also Azizieh and Clément [3]) we have

$$u \in C^{1,\alpha}(\Omega^{\frac{\epsilon}{2}}) \text{ with } \|u\|_{C^{1,\alpha}(\Omega^{\frac{\epsilon}{2}})} \leq C'.$$

(2.1)
3 Uniform bound on $\int_\Omega f(u)$

In this section we show that the boundary estimates yield easily a bound on the term $\int_\Omega f(u)dx$, for all positive solutions of Equation (1.1).

Proposition 3.1 Suppose estimate (2.1) holds. Then there exists a positive constant C such that for every weak solution of Equation (1.1) we have

$$\int_\Omega f(u) \leq C.$$ \hspace{1cm} (3.1)

Proof. Let $\psi \in C_0^\infty(\Omega)$ such that $\psi \equiv 1$ on $\Omega \setminus \Omega_2$. We have

$$\int_\Omega |\nabla u|^{N-2}\nabla u \nabla \psi = \int_\Omega f(u)\psi$$ \hspace{1cm} (3.2)

Using

$$\int_{\Omega \setminus \Omega_2} f(u) \leq \int_\Omega f(u)\psi$$

and the a priori estimates in Ω_2, see (2.1), we get

$$\int_{\Omega \setminus \Omega_2} f(u) \leq \int_\Omega |\nabla u|^{N-2}\nabla u \nabla \psi = \int_{\Omega_2^c} |\nabla u|^{N-2}\nabla u \nabla \psi \leq C.$$

Hence the estimate (3.1) is proved. \hfill \blacksquare

We also state here an adaptation of Theorems 2 and 6 in [15] to the N-Laplace operator Δ_N which will be useful in the sequel.

Lemma 3.2 Let $u \in W^{1,N}_{loc}(\Omega)$ be a solution of

$$-\Delta_N u = h(x) \text{ in } \Omega,$$

where $h \in L^p(\Omega)$, $p > 1$. Let $B_{2R} \subset \Omega$. Then

$$\|u\|_{L^\infty(B_R)} \leq CR^{-1}(\|u\|_{L^N(B_{2R})} + RK)$$

where $C = C(N,p)$ and $K = R^{N(p-1)/p}(\|h\|_{L^p(\Omega)})^{1/(N-1)}$.

4 Subcritical Case

In this section, we prove Theorem 1.1 under the assumptions (f_1), (f_2) and (f_3), i.e. in the subcritical case.

The proof will be based on Hölder’s inequality in Orlicz spaces (cf. [1]): Let ψ and $\widetilde{\psi}$ be two complementary N-functions. Then

$$\left| \int_\Omega h g \right| \leq 2\|h\|_\psi\|g\|_{\widetilde{\psi}},$$ \hspace{1cm} (4.1)

where $\|h\|_\psi$ and $\|g\|_{\widetilde{\psi}}$ denote the Luxemburg (or gauge) norms.

We first prove the following inequality:
Lemma 4.1 Let $\gamma > 0$; then

$$st \leq s(\log(s + 1))^{1/\gamma} + t(e^{t\gamma} - 1), \text{ for all } s, t \geq 0$$

Proof. Consider for fixed $t > 0$

$$\max_{s \geq 0} \{st - s(\log(s + 1))^{1/\gamma}\}$$

In the maximum point s_t we have

$$t = (\log(s_t + 1))^{1/\gamma} + \frac{s_t}{\gamma}(\log(s_t + 1))^{\frac{1}{\gamma} - 1} \geq (\log(s_t + 1))^{1/\gamma}$$

and hence $e^{t\gamma} \geq s_t + 1$. Thus

$$\max_{s \geq 0} \{st - s(\log(s + 1))^{1/\gamma}\} = s_t t - s_t(\log(s_t + 1))^{1/\gamma} \leq s_t t \leq t(e^{t\gamma} - 1).$$

Note that for the N-function $\psi(s) = s(\log(s + 1))^{1/\gamma}$, the complementary N-function $\tilde{\psi}(t)$ is by definition given by

$$\tilde{\psi}(t) = \max_{s \geq 0} \{st - s(\log(s + 1))^{1/\gamma}\}.$$

The above Lemma shows that $\varphi(t) := t(e^{t\gamma} - 1) \geq \tilde{\psi}(t)$, for all $t \geq 0$, and hence $\|g\|_{\tilde{\psi}} \leq \|g\|_{\varphi}$, and so the Hölder inequality (4.1) is valid also for the gauge norm φ in place of $\tilde{\psi}$:

$$\left| \int_{\Omega} hg \right| \leq 2\|h\|_{\psi}\|g\|_{\varphi}, \quad (4.2)$$

Let now $u \in W^{1,N}_0(\Omega)$ be a weak solution of (1.1), denote

$$\gamma = \frac{N}{N - 1} - \alpha, \text{ and } \beta = \frac{\alpha}{\gamma},$$

and consider

$$\int_{\Omega} |\nabla u|^N = \int_{\Omega} f(u)u = \int_{\Omega} \frac{f(u)}{u^\beta} u^{1+\beta} \leq \int_{\Omega} \frac{f(u)}{u^\beta} \chi_u u^{1+\beta} + c, \quad (4.3)$$

where χ_u is the characteristic function of the set $\{x \in \Omega : u(x) \geq 1\}$. By (4.2) we conclude that

$$\int_{\Omega} |\nabla u|^N \leq 2\|u^{1+\beta}\|_{\varphi} \left\| \frac{f(u)}{u^\beta} \chi_u \right\|_{\psi} + c. \quad (4.4)$$

We now estimate the two Orlicz-norms in (4.4):
First note that there exists $d_\gamma > 0$ such that $\varphi(t) = t \left(e^{\gamma t} - 1 \right) \leq e^{d_\gamma t} - 1$, and hence
\[
\|u^{1+\beta}\|_{\varphi} = \inf \left\{ k > 0 : \int_{\Omega} \varphi \left(\frac{u^{1+\beta}}{k} \right) \leq 1 \right\} \\
\leq \inf \left\{ k > 0 : \int_{\Omega} \left(e^{d_\gamma \left(\frac{u^{1+\beta}}{k} \right)^\gamma} - 1 \right) \leq 1 \right\} \\
= \inf \left\{ k > 0 : \int_{\Omega} \left(e^{d_\gamma \frac{N-1}{k}} - 1 \right) \leq 1 \right\}
\tag{4.5}
\]
since $(1 + \beta)\gamma = \gamma + \alpha = N/(N-1)$. Now recall the Trudinger-Moser inequality which says that
\[
\sup_{\|u\|_{W^{1,N}} \leq 1} \int_{\Omega} e^{\alpha \|u\|^N/(N-1)} dx < +\infty, \quad \text{if } \alpha \leq \alpha_N, \tag{4.6}
\]
where $\alpha_N = N \omega_N^{1/(N-1)}$, and ω_N is the measure of the unit sphere in \mathbb{R}^N. Thus, if we take $k^\gamma = \frac{d_\gamma}{\alpha_N} \|\nabla u\|_{L^N(\Omega)}$ in (4.5), we see that the last integral in (4.5) is finite, and it becomes smaller than 1 if we choose $k^\gamma = c \|\nabla u\|_{L^N(\Omega)}^{N-1}$, for $c > 0$ suitably large, since φ is a convex function. Thus, we get
\[
\|u^{1+\beta}\|_{\varphi} \leq c \|\nabla u\|_{L^N(\Omega)}^{1/\gamma} \frac{N}{N-1}.
\]

Next, we show that $\frac{d_\gamma}{\alpha_N} = \beta$ and (3.1) imply
\[
\| \frac{f(u)}{u^\beta} \chi u \|_{\psi} \leq \int_{\Omega} df(u) \leq C.
\]
Indeed, assumption (f_3) implies
\[
\| \frac{f(u)}{u^\beta} \chi u \|_{\psi} = \inf \left\{ k > 0 : \int_{\Omega} \frac{f(u)}{k u^\beta} \chi u \left(\log \left(1 + \frac{f(u)}{k u^\beta} \chi u \right) \right)^{\frac{1}{\gamma}} \leq 1 \right\} \\
\leq \inf \left\{ k > 1 : \int_{\Omega} \frac{f(u)}{k u^\beta} \chi u \left(\log \left(1 + f(u) \right) \right)^{\frac{1}{\gamma}} \leq 1 \right\} \\
\leq \inf \left\{ k > 1 : \int_{\Omega} \frac{f(u)}{k u^\beta} \chi u \left(\log(c e^{\alpha u}) \right)^{\frac{1}{\gamma}} \leq 1 \right\} \\
\leq \inf \left\{ k > 1 : \int_{\Omega} \frac{f(u)}{k} \chi u^{\frac{N}{N-1} - \beta} \leq 1 \right\} \\
\leq \int_{\Omega} df(u) \leq C.
\]
Hence, joining these estimates, we conclude by (4.4) that
\[
\|\nabla u\|_{L^N(\Omega)}^{N} \leq C \|\nabla u\|_{L^N(\Omega)}^{\frac{N}{N-1}} + c.
\]
Finally, note that \(\alpha < 1 \) implies that

\[
\| \nabla u \|_{L^N(\Omega)} \leq C_N,
\]

for any solution positive \(u \in W^{1,N}(\Omega) \), with \(C_N \) depending only on \(N \) and \(\Omega \).

To obtain also a uniform \(L^\infty \)-bound, we proceed as follows: Let \(p > 1 \), then given \(\varepsilon > 0 \) there exists \(C(\varepsilon) \) such that

\[
p^s \alpha \leq \varepsilon s^{N/(N-1)} + C(\varepsilon).
\]

Thus we can estimate

\[
\int_\Omega |f(u)|^p \leq C_1(\varepsilon) \int_\Omega e^{\varepsilon \|u\|_{L^N(\Omega)}^{N/(N-1)}}.
\]

Now, choosing \(\varepsilon > 0 \) such that \(\varepsilon C_N^{N/(N-1)} \leq \alpha N \), the estimate (4.7) and the Trudinger–Moser inequality imply

\[
\int_\Omega |f(u)|^p \leq C_1(\varepsilon) \int_\Omega e^{C_N^{N/(N-1)}} \left\| \frac{u}{\|u\|_{L^N(\Omega)}} \right\|_{L^N(\Omega)}^{N/(N-1)} \leq C.
\]

And so, since \(\int_\Omega |f(u)|^p \leq C \), we have by Lemma 3.2 that \(\|u\|_{L^\infty(K)} \leq C = C(K) \) for every compact \(K \subset \subset \Omega \). We are finished, since in Section 3 we have proved a priori estimates near the boundary.

5 Critical Case

In this section, we will prove Theorem 1.1 under assumptions \((f_1)\) and \((f_4)\). It is convenient to introduce the following number

\[
d_N = \inf_{X \neq Y} \frac{|X|^{N-2}X - |Y|^{N-2}Y, X - Y}{|X - Y|^N}.
\]

By Proposition 4.6 of [10] we know that \(d_N \geq \left(\frac{2}{N} \right) \left(\frac{1}{2} \right)^{N-2} \). Also, by taking \(Y = 0 \) we see that \(d_N \leq 1 \).

We will use the following standard comparison result

Lemma 5.1 Suppose that \(u, v \in W^{1,N}(\Omega) \cap C(\overline{\Omega}) \) verify \(-\Delta_N u \leq -\Delta_N v \) weakly in \(\Omega \), that is

\[
\int_\Omega |\nabla u|^{N-2} \nabla u - |\nabla v|^{N-2} \nabla v, \nabla \phi \leq 0,
\]

for all \(\phi \in W^{1,N}_0 \) such that \(\phi \geq 0 \) in \(\Omega \). If \(u \leq v \) on \(\partial \Omega \), then \(u \leq v \) in \(\Omega \).

Proof.

By taking \(\phi = (u - v)^+ \) we get

\[
d_N \int_{\{u \geq v\}} |\nabla (u - v)|^N \leq \int_{\{u \geq v\}} (|\nabla u|^{N-2} \nabla u - |\nabla v|^{N-2} \nabla v, \nabla (u - v)) \leq 0,
\]
where \(d_N \) is given by (5.1). This inequality implies \(u \leq v \) in \(\Omega \).

We also need the following results by Ren and Wei [15] (Lemmas 4.1 and 4.3), which generalize the corresponding inequality for \(N = 2 \) of Brezis-Merle.

Lemma 5.2 Let \(u \in W^{1,N}(\Omega) \) verifying \(-\Delta_N u = h\) in \(\Omega \) and \(u = 0 \) on \(\partial \Omega \), where \(h \in L^1(\Omega) \cap C^0(\Omega) \) is nonnegative. Then, for every \(\delta \) with \(0 < \delta < N \omega_N^{1-\frac{1}{N}} \)

\[
\int_{\Omega} e^{\frac{(N\omega_N^{1-\frac{1}{N}} - \delta) |u|}{\int_{\Omega} h^{\frac{1}{N-1}}}} \leq \frac{N \omega_N^{\frac{1}{N-1}} |\Omega|}{\delta},
\]

where \(\omega_N \) denotes the surface measure of the unit sphere in \(\mathbb{R}^N \).

Lemma 5.3 Let \(u \in W^{1,N}(\Omega) \) verifying \(-\Delta_N u = h\) in \(\Omega \) and \(u = g \) on \(\partial \Omega \), where \(h \in L^1(\Omega) \cap C^0(\Omega) \) and \(g \in L^\infty(\Omega) \). Let \(\phi \in W^{1,N}(\Omega) \) such that \(\Delta_N \phi = 0 \) in \(\Omega \) and \(\phi = g \) on \(\partial \Omega \). Then, for every \(\delta \) with \(0 < \delta < N \omega_N^{1-\frac{1}{N}} \)

\[
\int_{\Omega} e^{\frac{(N\omega_N^{1-\frac{1}{N}} - \delta) d_N^{\frac{1}{N-1}}}{\int_{\Omega} h^{\frac{1}{N-1}}}} |u - \phi| \leq \frac{N \omega_N^{\frac{1}{N-1}} |\Omega|}{\delta}.
\]

Proof of Theorem 1.1 (critical case)

Suppose by contradiction that there is no a priori estimate, then there would exist a sequence \(\{u_n\}_n \subset W^{1,N}(\Omega) \cap C^{1,\alpha}(\bar{\Omega}) \) of weak solutions of (1.1) such that \(\|u_n\|_{L^\infty(\Omega)} \to \infty \). Observe that by Proposition 3.1 there exists a constant \(C \) such that

\[
\int_{\Omega} f(u_n) \leq C.
\]

We may assume that \(f(u_n) \) converges in the sense of measures on \(\Omega \) to some nonnegative bounded measure \(\mu \), that is

\[
\int_{\Omega} f(u_n) \psi \to \int_{\Omega} \psi \, d\mu, \text{ for all simple functions } \psi.
\]

As in [4], let us introduce the concept of *regular point*. We say that \(x_0 \in \Omega \) is a regular point with respect to \(\mu \) if there exists an open neighborhood \(V \subset \Omega \) of \(x_0 \) such that

\[
\int_{\Omega} \chi_V \, d\mu < N^{N-1} \omega_N.
\]

Next, we define the set \(A \) as follows: \(x \in A \) if and only if there exists an open neighborhood \(U \subset \Omega \) of \(x \) such that

\[
\int_{\Omega} \chi_U \, d\mu < N^{N-1} \omega_N \, d_N,
\]

where \(d_N \) is the constant introduced in (5.1).

Because \(d_N \leq 1 \), we have that the set \(A \) contains only regular points. Also, note that there is only a finite number of points \(x \in \Omega \setminus A \); in fact, if \(x \in \Omega \setminus A \) then

\[
\int_{B_R(x)} \, d\mu \geq N^{N-1} \omega_N \, d_N, \text{ for all } R > 0 \text{ such that } B_R(x) \subset \Omega,
\]
which implies $\mu(\{x\}) \geq N^{N-1} \omega_N d_N$. Hence, since
\[
\sum_{x \in \Omega \setminus A} \mu(\{x\}) \leq \mu(\Omega) = \int_{\Omega} d\mu \leq C,
\]
the set of points in $\Omega \setminus A$ is finite.

Before finishing the proof we need two claims.

Claim 1. Let x_0 be a regular point, then there exist C and R such that for all $n \in \mathbb{N}$
\[
\|u_n\|_{L^\infty(B_R(x_0))} \leq C
\]

Proof of Claim 1. We divide the proof into two cases.

Case 1: $x_0 \in A$

By the definitions of the set A and the measure μ, there exist R, δ and $n_0 > 0$ such that for all $n > n_0$ we have
\[
\left(\int_{B_R(x_0)} f(u_n)\right)^{\frac{1}{N-1}} < \left(N^{\frac{1}{N-1}} - \delta\right) d_N^{\frac{1}{N-1}}.
\]

Let ϕ_n be satisfying
\[
\begin{cases}
-\Delta_N \phi_n = 0 & \text{in } B_R \\
\phi_n = u_n & \text{on } \partial B_R.
\end{cases}
\]

Then $\phi_n \leq u_n$ in B_R by Lemma 5.1. Since $c \geq \int_{\Omega} f(u_n) \geq c_1 \int_{\Omega} e^{u_n}$ by (f_4), we have $\int_{\Omega} u_n^N < C'$ and thus $\int_{\Omega} \phi_n^N < C'$. Now, by using Lemma 3.2 we have
\[
\|\phi_n\|_{L^\infty(B_R^2)} \leq CR^{-1}(\|\phi_n\|_{L^N(B_R^2)} + c) \leq C''.
\]

By applying Lemma 5.3, we get
\[
\int_{B_{R^2}} e^{q|u_n - \phi_n|} \leq \int_{B_{R^2}} e^{q|u_n - \phi_n|} < K.
\]

By (5.3) we conclude that $\int_{B_{R^2}} e^{q|u_n - \phi_n|} \leq CR^{-1}(\|u_n\|_{L^N(B_{R^2})} + RK)$

Again by Lemma 3.2 we infer
\[
\|u_n\|_{L^\infty(B_{R^2})} \leq CR^{-1}
\]

\[
\leq K_1,
\]
where \(K_1 = K \left(R, \| u_n \|_{L^N(B_R)}, \| f(u_n) \|_{L^q(B_R)} \right) \)

Case 2: \(x_0 \notin A \)

Since \(\Omega \setminus A \) is finite we can choose \(R > 0 \) such that \(\partial B_R(x_0) \subset A \). Taking \(x \in \partial B_R(x_0) \), by case 1 there is \(r = r(x) \) such that for all \(n \in \mathbb{N} \)

\[
\| u_n \|_{L^\infty(B_r(x_0))} \leq c(x).
\]

This implies by compactness, for some \(k \in \mathbb{N} \)

\[
\partial B_R \subseteq \bigcup_{i=1}^{k} B_{r(x_i)}(x_i).
\]

Now, if \(y \in \partial B_R \), then \(y \in B_{r(x_i)}(x_i) \), for some \(1 \leq i \leq k \). Hence

\[
\| u_n \|_{L^\infty(\partial B_R)} \leq \max_{i=1, \ldots, k} C(x_i) =: K \text{ for all } n \in \mathbb{N}.
\]

Let \(U_n \) be the solution of

\[
\begin{cases}
-\Delta_N U_n &= f(u_n) \text{ in } B_R \\
U_n &= K \text{ on } \partial B_R,
\end{cases}
\]

which is equivalent to

\[
\begin{cases}
-\Delta_N (U_n - K) &= f(u_n) \text{ in } B_R \\
U_n - K &= 0 \text{ on } \partial B_R.
\end{cases}
\]

Therefore

\[
U_n \geq u_n, \text{ on } B_R,
\]

by Lemma 5.1. Thus by applying Lemma 5.2 we have

\[
\int_{B_R} e^{\frac{1}{\|u_n\|_{L^1}^{n-1}}} |U_n - K| \leq N \omega_N^{\frac{1}{n}} C R^N
\]

for any \(\delta' \in (0, N \omega_N^{1/(N-1)}) \).

Since \(x_0 \) is a regular point, there exist \(R_1 < R \) and \(n_0 \in \mathbb{N} \) such that for every \(n > n_0 \) we have for some \(\delta > 0 \)

\[
\left(\int_{B_{R_1}(x_0)} f(u_n) \right)^{\frac{1}{n-1}} < N \omega_N^{\frac{1}{n-1}} - \delta.
\]

Taking \(\delta' > 0 \) sufficiently small, we have

\[
1 < q = \frac{N \omega_N^{\frac{1}{n-1}} - \delta'}{N \omega_N^{\frac{1}{n-1}} - \delta} < \frac{N \omega_N^{\frac{1}{n-1}} - \delta'}{\| f(u_n) \|_{L^q}^{\frac{1}{q-1}}}.
\]
and hence by (5.4)
\[
\int_{B_{R_1}} e^{q|u_n-K|} < C , \quad \text{and then} \quad \int_{B_{R_1}} e^{qu_n} < K' ;
\]
this implies
\[
\int_{B_{R_1}} e^{qu_n} \leq K'' .
\]
and therefore by \((f_4)\)
\[
\int_{B_{R_1}} f(u_n)^q \leq K(q) , \quad \text{and also} \quad \|u_n\|_{L^N(B_{R_1})} \leq C .
\]
Hence, by Lemma 4.1
\[
\|u_n\|_{L^\infty(B_{R_1})} \leq C R_1^{-1}\left(\|u_n\|_{L^N(B_{R_1})} + C\|f(u_n)\|_{L^q(B_{R_1})}\right) < K''' .
\]
This finishes the proof of Claim 1.

Next, we define
\[
\Sigma = \{x \in \Omega : x \text{ is not regular for } \mu\} .
\]
We note that \(\Sigma \subset \Omega \setminus A\) where \(A\) is defined in the proof of Theorem 1.1. Hence, also \(\Sigma\) has finitely many elements.

The second claim is

Claim 2. \(\Sigma = \emptyset\) .

Proof of Claim 2. Arguing by contradiction, let us assume that there exists \(x_0 \in \Sigma\) and \(R > 0\) such that
\[
B_R(x_0) \cap \Sigma = \{x_0\} .
\]
We recall that \(u_n\) verifies
\[
\begin{cases}
-\Delta_N u_n = f(u_n) & \text{in } B_R(x_0) \\
u_n > 0 & \text{on } \partial B_R(x_0) .
\end{cases}
\]
By the previous claim and because all the points are regular in \(B_R(x_0) \setminus \{x_0\}\), passing to a subsequence we can assume that \(u_n \to u\) \(C^1\)-uniformly on compact subsets of \(B_R(x_0) \setminus \{x_0\}\). Consider the function \(w(x) = N \log \frac{R}{|x-x_0|}\), which satisfies
\[
\begin{cases}
-\Delta_N w = N^{N-1} |x-x_0|^{N-2} & \text{in } B_R(x_0) \\
w = 0 & \text{on } \partial B_R(x_0) .
\end{cases}
\]
For \(k > 0\), and define the functions
\[
T_k(s) = \begin{cases}
0 & \text{if } s < 0 , \\
s & \text{if } 0 \leq s \leq k , \\
k & \text{if } k < s .
\end{cases}
\]
Consider now the functions given by $z_n^{(k)} = T_k(w - u_n)$; because the functions u_n are positive we have that $z_n^{(k)} \in W_0^{1,N}(B_R)$, and $z_n^{(k)}(x_0) = k$, for all $n \in \mathbb{N}$. Also

$$z_n^{(k)} \rightarrow z^{(k)} = \begin{cases} T_k(w - u), & \text{if } x \neq x_0 \\ k, & \text{if } x = x_0. \end{cases}$$

Note that $z^{(k)}$ is a measurable function. We have

$$\int_{B_R} \left(|\nabla w|^{N-2} \nabla w - |\nabla u_n|^{N-2} \nabla u_n \right) \nabla z_n^{(k)} = N^{N-1} \omega_N k - \int_{B_R} f(u_n) z_n^{(k)}. \quad (5.5)$$

Now set $d\mu_n = f(u_n)dx$; then we may apply the following Proposition which is a generalization of Fatou’s Lemma (see e.g. Royden, Real Analysis, Proposition 11.17):

Proposition: Suppose that μ_n is a sequence of (positive) measures which converges to μ setwise, and g_n is a sequence of measurable, nonnegative functions that converge pointwise to g. Then

$$\liminf_{n \to \infty} \int g_n d\mu_n \geq \int g d\mu$$

Hence, we can write

$$\int_{B_R} f(u_n)z_n^{(k)}dx = \int z_n^{(k)}d\mu_n$$

and conclude that

$$\liminf_{n \to \infty} \int_{B_R} f(u_n)z_n^{(k)} = \liminf_{n \to \infty} \int z_n^{(k)}d\mu_n$$

$$\geq \int z^{(k)}d\mu$$

$$\geq \int \{x_0\} z^{(k)}d\mu$$

$$\geq N^{N-1} \omega_N k,$$

where we have used that $z^{(k)}(x_0) = k$ and $\mu(x_0) \geq N^{N-1} \omega_N$, because $x_0 \in \Sigma$.

Thus we obtain from (5.5) that for all $k \in \mathbb{N}$

$$\int_{B_R} \left(|\nabla w|^{N-2} \nabla w - |\nabla u|^{N-2} \nabla u \right) \nabla z^{(k)} \leq 0 ,$$

that is

$$\int_{B_R \cap \{0 \leq w - u \leq k\}} \left(|\nabla w|^{N-2} \nabla w - |\nabla u|^{N-2} \nabla u \right) \nabla (w - u) \leq 0 , \quad k \in \mathbb{N} .$$

By inequality (5.1) we obtain

$$d_N \int_{B_R \cap \{0 \leq w - u \leq k\}} |\nabla (w - u)|^N \leq 0 , \quad k \in \mathbb{N} .$$
Finally, letting $k \to \infty$, we conclude that
\[
d_N \int_{B_R} |\nabla (w - u)^+|^N \leq 0.
\]
Because we know that $(w - u)^+ \leq 0$ on ∂B_R, the above inequality implies that $w \leq u$ in $W^{1,N}_0(B_R)$, and therefore we conclude that
\[
\liminf_{n \to +\infty} \int_{B_R} f(u_n) \geq \liminf_{n \to +\infty} \int_{B_R} c_1 e^{u_n} \\
\geq c_1 \int_{B_R} e^u \\
\geq \int_{B_R} \frac{C}{|x - x_0|^N} = +\infty
\]
This is a contradiction and the proof of Claim 2 is complete.

To finish the proof of Theorem 1.1, we observe that there exists a sequence x_n of points in Ω such that $u_n(x_n) = \|u_n\|_{L^\infty(\Omega)}$ and we can assume that $x_n \to x_0$. Because we have an a priori estimate near the boundary of Ω, we have $x_0 \in \Omega$. It is easy to see that for all $R > 0$ we have
\[
\lim_{n \to +\infty} \|u_n\|_{L^\infty(B_R)} = +\infty.
\]
By Claim 1, we conclude that x_0 is not a regular point, but this is impossible by Claim 2. Hence there are no blow-up points. □

Sebastián Lorca
Universidad de Tarapacá
Instituto de Alta Investigación
Casilla 7D, Arica, Chile
slorca@uta.cl

Bernhard Ruf
Dip. di Matematica, Università degli Studi
Via Saldini 50, I-20133 Milano, Italy
ruf@mat.unimi.it

Pedro Ubilla
Universidad de Santiago de Chile
Casilla 307, Correo 2, Santiago, Chile
pubilla@usach.cl
References

