
UNIVERSITÀ DEGLI STUDI DI MILANO

SCUOLA DI DOTTORATO IN INFORMATICA

DIPARTIMENTO DI INFORMATICA

CORSO DI DOTTORATO - CICLO XXV

TESI DI DOTTORATO DI RICERCA

BTLD+:

A Bayesian Approach to Tracking Learning Detection by Parts

INF/01

Candidato
Giorgio Gemignani

Tutor
Prof. Alfredo Petrosino

Coordinatore del Dottorato
Prof. Ernesto Damiani

ANNO ACCADEMICO 2012/2013



This thesis is dedicated to my family
For their endless love, support and encouragement



ii

Acknowledgments

First of all, I have to thank myself. To my madness in beginning this
amazing adventure.
I would like to express my gratitude to my parents, Domenico and
Francesca for their understanding, encouraging as well personal guid-
ance. Thanks to my sister Sara and her boyfriend Enrico, for sup-
porting me in this last critical year. A very special acknowledgment
goes to my girlfriend Maria, who loved and supported me during the
final, critical months of my dissertation, and made me feel like any-
thing was possible. I love you, Mary. I would also like to acknowl-
edge her parents Giuseppe and Alessandra, as well as her brother
Edo, who treated me like family.
I would like to sincerely thank my supervisor, Prof. Alfredo Pet-
rosino, for his guidance and support throughout this study, and es-
pecially for his confidence in me. I would also like to thank Dr.
Ferone for helping me. His comments and questions were very bene-
ficial in my completion of the manuscript. I learned from his insight
a lot.
During these years, I have collaborated with people of CVPRLab
(Computer Vision and Pattern Recognition Laboratory), of Univer-
sity of Naples “Parthenope”, with whom I shared funny and joyful
moments, and to whom I wish to extend my warmest thanks. Thank
you Mario , Alessia and Ihsan.
To all my friends, thank you for your understanding and encourage-
ment in my many,many moments of crisis. Your friendship makes
my life a wonderful experience. I cannot list all the names here, but
you are always on my mind.



iii

Tracking objects of interest in video streams, referred in computer
vision literature as visual tracking, is a challenging task involving im-
age perception and object understanding capabilities. Visual track-
ers rely on an appearance model, i.e. an internal representation of
the target appearance, learned by extracting highly discriminative
visual informations characterizing the target. Target localization is
formulated as the problem of searching for the most similar image
region to representation encoded into the appearance model.
Despite extensive research on such topic, it remains extremely chal-
lenging and far from being solved. Indeed, several factors such as illu-
mination variation, partial occlusion, shape deformation, and camera
motion generate high variability in object appearance. Learning such
variability is the main issue addressed by visual trackers.
In the last decades, significant advances have been achieved in track-
ing known classes of objects such as people and cars. For such
objects, a large amounts of hand-labeled data is available and su-
pervised learning methods have demonstrated impressive results in
capturing the complete data variability. However, in many practi-
cal applications only partially labeled or unlabeled data is available.
Building an appearance model by supervised learning methods re-
quires hand-labeling for such unlabeled data, a very annoying and
time consuming process. To overcame this task, researchers are mov-
ing towards semi-supervised learning techniques. With such method-
ologies a learner builds the target appearance model from a minimal
set of labeled data. Model adaption is performed by exploring the
large amount of unlabeled data revealed during the tracking pro-
cess. Such scenario has been recently proposed to the attention of
computer vision scientists through the definition of the challenge of
“robust long-term visual tracking of an unknown object with mini-
mum prior information”, where labeled data are available only at
the first frame of the sequence.
The contribution proposed in this thesis focuses on this particular
instance of the visual tracking problem, referred as Adaptive Ap-
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pearance Tracking. We proposed different approaches based on the
Tracking Learning Detection (TLD) decomposition proposed in [55].
TLD decomposes visual tracking into three components, namely the
tracker, the learner and detector. The tracker and the detector are
two competitive processes for target localization based on comple-
mentary sources of informations. The former searches for local fea-
tures between consecutive frames in order to localize the target; the
latter exploits an on-line appearance model to detect confident hy-
pothesis over the entire image. The learner selects the final solution
among the provided hypothesis. It updates the target appearance
model, if necessary, reinitialize the tracker and bootstraps the detec-
tor’s appearance model. In particular, we investigated different ap-
proaches to enforce the TLD stability. First, we replaced the tracker
component with a novel one based on mcmc particle filtering ; after-
wards, we proposed a robust appearance modeling component able
to characterize deformable objects in static images; after all, we inte-
grated a modeling component able to integrate local visual features
learning into the whole approach, lying to a couple layered represen-
tation of the target appearance.

Keywords: computer vision, machine learning, on-line learning,
boosting, feature selection, object detection, object tracking, back-
ground modeling,particle filter, mcmc, drifting, supervision.
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Chapter 1
Introduction

The proliferation of high-powered computers, the availability of high
quality and inexpensive video cameras has generated a great deal of
interest in development of intelligent machines able to understand
and react to their surrounding environment using visual perception
as humans. The research discipline involved with development of
mathematical models and algorithms able to understand digital im-
ages and videos is referred as computer vision [76] and represent the
scientific field investigated in this thesis.
Among the huge set of problems investigated by computer vision
scientists, visual tracking or video tracking, represents a challenging
task. It formalizes the problem of localizing an object of interest
in video stream. We investigated on a particular instance of visual
tracking problem defined as the task of localizing an unknown object
in unconstrained video stream. Our objective is to enable real-time,
accurate as well as robust tracking.
This chapter provides an overview of the entire thesis. Section 1.1
introduces the problem. Section 1.2 presents the main challenges
that have to be tackled. Section 1.3 introduces possible applications
of our research. Section 1.4 introduces the contributions made in the
thesis. Section 1.5 outlines the rest of the thesis.

1
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1.1 Adaptive Visual Tracking

In its elementary form, visual tracking is formulated as the problem
of estimating the location X t of an object of interest at time t given
a sequence of images I1, · · · ,It extracted from a video stream.
To estimate object trajectory, visual trackers learn an internal repre-
sentation of the target appearance, the appearance model, by extract-
ing highly discriminative visual features characterizing the target in
each incoming video frame. This model is exploited to evaluate im-
age regions similarity and estimate the most confident target location
in the current frame.
In [54], single target trackers are classified into two broad categories
namely, short term trackers (STT ) and long term trackers (LTT ).
The former refers to standard tracking approaches such as [96] that
try to solve frame to frame correspondences assuming no complete
occlusion or disappearance of the tracked object between consecu-
tive frames; the latter refers to methods copying with sequences of
possibly infinite length, affected by frame cuts, fast camera move-
ments and object temporary disappearance from the scene. In [55] a
new challenge for single target trackers is formulated as “long-term
on-line tracking with minimum prior information”. In this scenario,
a tracker learns an appearance model by continuously adapting it-
self to new observed data and exploiting only information from the
past. Minimum prior information underlines that the labeled data
necessary to learn the appearance model, are provided manually by
the user only at the first frame of the sequence. Such formulation
poses fundamental questions on how continuously adapt the visual
model describing the target. Model adaptation introduces several
challenges, such as the need for simultaneous fulfillment of the con-
tradicting goals of rapid learning and stable memory referred in [45]
as the stability-plasticity dilemma. Furthermore, on-line evaluation
of new data samples becomes a critical issue since detection and
learning changes in pose and scale or varying illumination condition
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is an essential feature for a stable tracker. These conditions generate
an high variability into the data, namely the “intra class variabil-
ity”. The appearance model should be flexible enough capture such
variability. At the same time it should be plastic to discard wrong
measurements generated by tracking failures. This issue is referred
as the “wrong sample selection” problem [93]. Adaptive Appearance
Trackers (AAT ), [55, 77, 118, 104, 6, 105] relying on models able
to learn changing imaging conditions, represent the new generation
of visual trackers designed to solve the challenges involved with the
long term tracking task.
In the last decades, supervised statistical machine learning tech-
niques [12] have demonstrated impressive results in learning complex
object representation for a wide range of object classes such as car
or people. Given a set of training samples, the objective of a super-
vised machine learning algorithm is to train a model able to predict
the labels of samples even if they have not been observed during the
training stage. Such capability is referred in machine learning liter-
ature as generalization.
In practice, both the training samples and their corresponding la-
bels are provided by a human labeler in advance and are assumed to
be enough representative to capture the whole intraclass variability.
The learners are thus called supervised methods and when enough
and proper training samples exist, these approaches can obtain very
high recognition and classification performances.
Supervised learning algorithms are batch or off-line learning meth-
ods, because the learning algorithm analyzes all samples simultane-
ously and repeatedly process the entire training set until a certain
stopping criterion is met; i.e., the training error has fallen under
a certain threshold or the maximum number of iterations has been
reached. The main limitation with such approaches is related to the
data availability, that should be given in advance. In contrast to off-
line methods, there exist incremental or on-line approaches where
the data is usually not provided at once but arrives sequentially.
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Both incremental and on-line methods process only one sample at a
time and then update the model.
The main difference between the two is that in on-line learning each
sample is discarded after an update, in incremental learning not.
On-line learning is always incremental, whereas, incremental learn-
ing can be done either on-line or off-line.
The lack of sufficient labeled training data and the demand of real
time localization make supervised learning methods not completely
reliable for the long term visual tracking task and have led to re-
cent attentions towards the investigation of unsupervised and semi-
supervised on-line learning methods.
Unsupervised learning methods try to find an interesting natural
structure in the data using training samples without their corre-
sponding labels, i.e., unlabeled data. Although unsupervised learn-
ing in principle is convenient because human labeling can be fully
avoided, it can be far from reaching the discriminative performance
of supervised learning algorithms.
In contrast, semi-supervised learning tries to exploit both, a reason-
ably small amount of labeled data and a large amount of unlabeled
data. Basically it combines the benefits of both supervised learning
because highly discriminative classifiers are learned and unsupervised
learning because it holds the potential to reasonably exploit a mas-
sive amount of unlabeled data. Semi-supervised approach represents
the best learning methodology to design the long term tracking task.
It naturally fits our problem and defines the specific field of research
investigated in this thesis to build the target appearance model.
Despite several advances has been reached by adaptive visual track-
ers, long term tracking stability is nowadays an open problem far
from been solved as stated by organizers of the visual object track-
ing workshop VOT2013 1. The absence of a definitive solution to long

1VOT2013, is a workshop, which will be held in conjunction with the International Conference on
Computer Vision, ICCV2013, where researchers are invited to participate in a first challenge focusing
on single object visual tracking. Its aim is to provide a common platform for comparison, analysis
and discussion of existing as well as new single object trackers.
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term visual tracking is one the most important aspect motivating the
studies proposed in this thesis.

1.2 Challenges

Given a video stream depicting various moving objects and a bound-
ing box enclosing an object of interest indicated by the user, our
objective is to automatically discover object’s position or reporting
its absence in every successive frame. The object may be occluded
or disappears from the camera field of view for an unknown length
of time, reappearing at certain point and at any possible location.
Frame cut in video stream and high noised images are also possible.
In other words, our goal is to assigns consistent labels to the tracked
object over the different frames of a video.
In this scenario, the construction of an appearance model able to con-
tinuously adapt to changes of appearance and at the same time, ro-
bust to wrong measurements generated by object having similar ap-
pearance, represent a fundamental issue in order to perform accurate
visual tracking. Considering our tracking task, where an unknown
object is marked in the first frame, a powerful tracking approach is to
learn a binary classifier with the marked patch as positive sample and
the surrounding patches as negatives, respectively. Then, the track-
ing task can be performed by using this classifier to re-detect the
marked object in the subsequent frames. This approach is referred
in literature as tracking-by-detection ([93]) and represents the most
popular paradigm exploited to design adaptive appearance models.
In order to make the classifiers adaptive towards rapid appearance
and illumination changes, typically the classifier updates itself on the
re-detected object, according to hand-designed update rules. Such
approach yield highly fast and accurate trackers because the object
has only to be discriminated versus its local background and the
model complexity can be kept very low. Nevertheless, one problem
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that all of these methods have in common is that slight errors dur-
ing the self-updating process can easily accumulate and finally lead
to failure of tracking, i.e., the object is lost. This is condition is
referred to as the drifting problem. The main reason for drifting
in tracking-by-detection approaches lies in the fact that supervised
learners are abused for an in principle unsupervised learning task.
In fact, as previously described, labeled data is only available at the
first frame when the object is marked. In all subsequent frames the
tracker performs autonomously, without getting any additional la-
bels for the data it is observing.
Hence, the learner over time has to be able to exploit both labeled
data and unlabeled data, which is a natural semi-supervised learning
problem. Following this observation, in the recent years, novel on-
line semi-supervised learning algorithms have applied to make the
tracker less sensitive to the risk of including wrong hypothesis while
updating the target model[55, 40, 41, 101].
Evaluating on-line and without ground truth the quality of the es-
timated target location, so as to adjust accordingly its contribution
to model update, is main challenge associated with long term vi-
sual tracking. Additionally, the appearance of other objects and of
the background may be similar to the appearance of the target and
therefore may interfere with its observation. In such a case, image
features extracted from non-target image areas may be difficult to
discriminate from the features that we expect the target to generate.
This phenomenon is referred as clutter.
Furthermore, there are several external events that interfere during
the tracking, increasing the difficulty of the overall process.

Occlusion and disappearance of the object. During tracking,
the object may be occluded or disappear from the camera field of
view for an unknown length of time, reappearing at certain point
and at any location. Occlusions can be classified in to two cate-
gories: partial occlusions and total occlusions.
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Figure 1.1: Partial occlusion. As the puppet starts moving behind the leafs, a partial
occlusion is verified. (a-b-c) depict respectively frames 4, 58, 108 from the
Tiger1 sequence from MILBOOST Dataset [6]

The former affects only a small portion of the target area and are
generally verified in cluttered scenes where other moving objects ob-
scure the view of a target; in fig. 1.1, a partial occlusion of the
puppet is depicted. The latter, involve the complete object disap-
pearance and are typically verified when target is moving behind a
static object, such as a column or wall. To address this challenge,
a long term tracker should integrate a mechanism to control each
level of occlusion. Local feature based representations, encoding in-
formation for a small region of the target, increase the robustness of
a video tracker to partial occlusions. Higher-level reasoning about
typical motion behaviors and preexisting occlusion patterns are gen-
erally used to deal with total occlusions.

Camera motion and viewpoint changes. The object of interest
may change its appearance according to its position relative to the
camera view. This events stresses the ability of the learning method
to capture intraclass variability. When only a single sample from the
initial frame is available, the problem becomes even more critical.
Indeed, the initial object appearance can be very dissimilar from the
other appearances observed during tracking. In fig. 1.2 an example
of this challenge is showed.
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Figure 1.2: Camera motion and viewpoint changes. Camera and target motion in-
evitably affects target appearance state. (a- b-c) depicts respectively frames
1, 86, 156 from the David sequence from MILBOOST Dataset [6]

Ambient illumination. The direction, intensity and color of the
external light sources corrupts the appearance of the target. More-
over, changes in global illumination are often a challenge in both
outdoor (i.e. clouds obscure the sun ) and indoor scenes( the light
turns off, as in fig. 1.3).

Figure 1.3: Changes of light conditions. Adversary light conditions are possible. (a-
b-c) depicts respectively frames 3, 100, 115 of the Night scenario sequence
from KSERA Dataset [116].

Noise. The image acquisition process is affected by a certain de-
gree of noise, depending on the quality of the sensor. Additionally,
motion blurring corrupts visual features representing the object ap-
pearance. In fig. 1.4 is depicted a scenario with low-resolution im-
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ages. A long-term tracker should be robust to noise sources that may
affect input data.

a b c

Figure 1.4: Low sensor quality and motion blur. Low qualities instances of the
appearance model have to be learned. (a-b-c) depicts respectively frames 1,
100, 654 from the Girl sequence from TLD Dataset [55]

Another important aspect to be taken in account is the limited
processing required by interactive applications. A tracker should
run at full frame rate, limiting the complexity of algorithms that
have to be extremely efficient.

1.3 Applications

Visual trackers can support several tasks in daily life scenarios. They
provide low level information to huge number of higher level appli-
cations ranging from medical to video surveillance.
Their use can increase productivity in several context due to the re-
duced amount of manual work that is necessary to complete a task
and to enable natural interaction with machines.
Video tracking is a useful tool used in automated video surveil-
lance for security, business intelligence assisted living applications.
In surveillance systems, tracking can be used either as a forensic tool
or as a processing stage prior to algorithms that analyze suspicious
behaviors [3] . Complex video surveillance system are built on com-
bination of video-trackers and behavior analysis models, realizing an
affective tool for security events analysis.
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Smart surveillance systems pervade a variety of different indoor and
outdoor environments such as roads, airports, railway stations, ports,
public and private buildings such as schools and banks. Examples
of video effective surveillance systems are Smart Surveillance System
[50] developed by IBM and VisioWave Intelligent Video Platform [30]
from General Electrics.
Another interesting application domain for video-trackers is retail
intelligence [51], where tracking results can be used to learn a cus-
tomers profile. Indeed, tracking the position of customer in a shop,
combined with information from the point of sales provide informa-
tion to learn a behavioural model describing customers preferences,
how they interact with products depending on their location, and
what items they buy. Such information helps the marketing team in
different context such as products placement in the retail space or
advertisement content selection.
Ambient assisted living (AAL) is another emerging area of research
that exploit visual trackers to build intelligent environment able to
contribute in increasing human comfort and simplify people daily
activities. In [116] a socially assistive system is built to support
some activities of daily life as well as health care needs of an el-
derly person, specifically persons suffering from chronic obstructive
pulmonary Disease. Object localization is based on visual tracking
from ceiling mounted camera.
Recent video analysis applications are built on the top of trackers re-
sults to produce enhanced visualization of sport events [100]. Track-
ers are effective to estimate the position of players in the field in order
to gather statistics about a game (e.g. a football match). Statistics
and enhanced visualizations aid the commentators, coaches and sup-
porters in highlighting team tactics and player performance.
Recently video tracking has been increasingly used by medical sys-
tems to aid expert’s diagnosis and speed up the clinical analysis
task: in[83] automated algorithms track the ventricular motion in
ultrasound images; in [83] an on-line learning based feature track-
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ing method for accurate estimation and tracking of dynamic tissue
deformation is proposed; authors in [115] estimates the trajectories
of Escherichia coli bacteria from in vivo phase-contrast microscopy
videos; moreover, video tracking has been applied to automatically
estimate the position of particular instruments such as needles [29]
and [80] during surgery.
Video tracking is also pervading the human-machine interaction do-
main providing new interfaces of communication with machines. In-
teractive games are common example where tracking technology is
used to capture gestures that are converted into gaming actions [35].
Webcams are already shipped with tracking software that localizes
and follows the face of a user for on-desk video conferencing [38].
In summary ability to robustly track an arbitrary object with min-
imal training stage is of great interest with possible applications in
several scenarios such as gaming, advertisement, medical, education,
tourism and military, providing another reason to motivate our re-
search in this field.

1.4 Contribution

The main contribution provided in this thesis relies on the definition
of novel effective approaches that bring long term visual tracking
closer to a solution by letting the tracker adaption to changing en-
vironment conditions. In particular, we proposed to adapt the most
crucial component of the visual tracker: the appearance model. Such
adaptation is performed on-line, frame-by-frame as the object is lo-
calized in the image.
We propose a novel approach based on Tracking Learning Detection
(TLD), a state of the art paradigm that decomposes visual tracking
into three components, named the tracker, the learning and detector.
The tracker localizes the target between consecutive frames search-
ing for a fixed set of local visual features in a neighbor of previous
estimated location. The detector maintains on-line an internal ap-
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pearance model and explore the whole image to provide confident
hypothesis on the target location. Exploiting the space-time struc-
ture in the video sequence, the learning component corrects detec-
tor’s errors and build a robust appearance model. By combination of
such independent processes, an effective appearance model is learned
on-line from a minimal amount of labeled samples.
In this thesis, we investigated novel approaches to stabilize the ap-
pearance model adaption exploiting the TLD decomposition.
In particular we redesigned the tracker component to reduce its in-
stability under critical conditions such as occlusions and resembling
background. We proposed a novel approach based on Bayesian op-
timal filtering that performs feature selection and target state esti-
mation in a joint fashion. In contrast to the baseline method, we
introduced a filtering stage to select high discriminative features ac-
cording to the maximum a posterior solution. Experiments have
demonstrated the efficacy of the proposed approach while tracking
non deformable objects, such as car and faces. However critical lim-
itations have been observed on fast deformable objects such as hu-
mans. Indeed with such objects, local features becomes extremely
variable and easily confused with surrounding background.
To overcame this limitation, we investigated a solution based on mo-
tion detection. Exploiting motion classification provided by robust
background subtraction, we stabilize the tracker performances. We
evaluated the proposed solution in an ambient assisted living sce-
nario, where humans are observed from a ceiling mounted camera.
Experiments demonstrated how motion classification refines on lo-
cal feature selection. Unfortunately this strategy is feasible only for
static cameras where static background can be statistically modeled.
To overcame this limitation, a novel local feature selection approach
has been proposed. We designed a learning component able to dis-
criminate among target local features. The proposed appearance
model, in conjunction with the old one, defines a couple-layered rep-
resentation of the object that is robust to the wrong sample selection
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problem. As demonstrated in experimental session, by combination
of local feature and global features informations, we a more stable
and effective long term tracker is obtained.

1.5 Thesis outline

The thesis is organized in two main parts. In the first part, to better
contextualize our contributions, we first introduce a general formu-
lation of the long term tracking problem. We reviewed the state of
the art approaches to adaptive appearance modeling, analyzing in
detail theTracking Learning Detection approach. In the second Part
we describe our approaches to adaptive appearance tracking.
More in detail, the parts are organized as follows:

Part I:

• in chapter 2, we briefly introduce an abstract view of the long
term visual tracking task, analyzing the main subtask involved
in its design: the state estimation problem and the appearance
modeling problem. State estimation is formulated as bayesian
inference process. A brief analysis of mcmc particle filter is
presented. Appearance modeling is analyzed from a machine
learning perspective. We provide a compounded review on state
of the art approaches adopted to build object visual representa-
tions.

• In chapter 3, we analyze in detail the Tracking Learning Detec-
tion paradigm, pointing out strength and weakness that moti-
vated the direction of research followed in this thesis.

Part II:

• In chapter 4 we propose a bayesian approach to tracking learning
detection (BTLD). We designed a novel tracker component able
to improve TLD performances under critical conditions such as
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occlusions and resembling background. Our approach exploits
bayesian optimal filtering for local feature selection and target
state estimation. We designed a particle filtering algorithm for
parameter inference and propose a solution that enables accu-
rate and efficient tracking. The performance and the long-term
stability are demonstrated and evaluated on a set of challenging
video sequences usually employed to test tracking algorithms.

• In chapter 5, we extended the BTLD approach for tracking fast
deformable objects in static images. We integrated a motion de-
tection component based on robust background subtraction able
to exchange information with both the tracker and the detector
component. Exploiting motion classification we redesigned the
appearance model, proposing a novel one based on color his-
togram representation.

• In chapter 6, we formulate our novel appearance modeling com-
ponent that combine global appearance representation with part
based representation, building a couple-layered representation
of the object. We model target appearance as of collections of
positive and negative samples representing respectively the com-
plete target appearance and informative subregions (the parts)
belonging to it. As demonstrated in experimental session, by
combination of local feature and global features informations we
achieve a more stable and effective modeling component with
superior long term tracking capabilities.

• In chapter 7 , we give a conclusion by summarizing open ques-
tions. Furthermore, ongoing work is briefly presented which
gives some ideas to overcome the limitations shown before.



Chapter 2
Related Work

Long-term visual tracking is a complex task that combines into an
unified process object appearance modeling and object localization.
Appearance modeling is the process of building and adapting a visual
representation of the target. Machine learning and statistical pat-
tern recognition provide theories and algorithms to effectively deal
with such task. Localization is the process of estimating the state of
the object, indirectly observed through noisy measurements, between
consecutive frames relying on temporal coherence in the video. Opti-
mal filtering theory, defines state estimation as a recursive inference
problem and provides a rigorous formulation to estimate optimal or
approximate solutions when dealing with object localization.
To give an overview of the most relevant problems involved with vi-
sual tracker design, the chapter is split into four parts. Section 2.1
formulate visual tracking from an abstract point of view, decompos-
ing it into two main problems: the state estimation and the target
appearance representation and modeling. In section 2.2, we briefly
introduce the theory of time varying dynamical system and describe
the baseline techniques used in this thesis to approach the state es-
timation. In section 2.3, we review the state of art approaches to
object appearance modeling. We first analyze the visual representa-
tions from a feature-construction viewpoint, categorizing visual rep-
resentations into local and global features based. Then, we review

15
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statistical modeling schemes adopted for the model construction and
adaption. In section 2.4 we conclude by a discussion on the open
problems related to the adaptive appearance modeling.

2.1 Adaptive Visual Tracking: a general overview

Let IT = {It}Tt=1 be an image sequence and xt ∈ X ⊂ Rd a variable
encoding the target state at time t. X is referred as the state space.
According to the application requirements, xt encodes position, di-
mensions and optionally, other geometric or kinematic informations
such as scale, aspect ratio, orientation with respect to image axes
and velocity. A long term tracker estimates the target trajectory
XT = {xt ∈ X}Tt=1 given an instance of the overall target appear-
ance model At up to time t.
According to the strategy adopted to build the appearance model,

Figure 2.1: The visual tracking problem decomposition. On the left the estimated
object trajectory XT . On the right the observation space A

visual trackers can be classified in two broad categories namely non-
adaptive trackers and adaptive trackers. The former learn At off-line
and keep it unchanged throughout the entire sequence, while the
latter update the model At over time by estimating at+1, the ap-
pearance state at time t+1. Such updating process defines the main
challenge of adaptive trackers.
Following the unified model proposed in [93], the processing pipeline
of an adaptive appearance tracker can be decomposed into three
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phases namely sampling and labeling stage, the feature extraction
and refinement stage and the model estimate and update stage.
Within the sampling and labeling stage, several state hypothesis xti
are drown from X according to some criteria. A measurement step
is performed in order to provide a confidence cti, measuring how such
hypothesis are agree compatible with At.
The process that project the image space I into the observation
space A is referred to as feature extraction. Depending on the ap-
pearance modeling scheme, cti represent the likelihood of a particle
in a generative appearance method [22], the margin of a classifier in
a discriminative appearance approach [40] or a combination of both
in an hybrid method [55].
During the refinement stage, high confident hypotheses may be pruned
to remove outliers and noisy measurement. In addiction a re-sampling
stage can be performed in order to provide new discriminative fea-
tures to update stage.
Given the refined features, the current appearance model state at+1

is estimated. A merging step, fuses the previous model At with at+1,
yielding the updated appearance model At+1 for the next tracking
iteration. Such procedure, referred to as the tracking loop is repeated
for all the frames in the video stream as depicted in fig 2.1.
This abstract description of the tracking problem, highlights four
fundamental questions related to the design of a visual tracking sys-
tem:

1. How to model the state space? The choice of a representa-
tion encoding the target state, referred in literature as the target
representation problem [73] depends on the object of interest. In
visual tracking, it should be descriptive enough to discriminate
cluttered scenes and false targets (object with similar shape),
while allowing a certain degree of flexibility to capture changes
in pose and scale. In sec. 2.3.1 a short analysis of the most
common target state representation is presented.
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2. How to characterize the observation space? The obser-
vation space associated with a certain state can be defined by
several informations. Low-level features exploit color or gradi-
ent informations; mid-level features exploit informations such as
edges or contours; high level features extract interest points over
the target surface. We briefly review the most popular feature
description adopted in visual tracking in 2.3.2.

3. How to build the appearance model? The choice of a
method to model visual appearance over time is referred in lit-
erature as the appearance modeling problem. Pattern recogni-
tion and machine learning concentrates on how to build effective
mathematical models for object identification using statistical
learning techniques.

4. How to solve the state estimation problem? By exploit-
ing recursively information from the feature extraction step and
from the already available state estimates the trajectory should
be derived. This task links different instances of the same ob-
ject over time and has to compensate for occlusions, clutter, and
local and global illumination changes.

Designing an effective visual tracker involves a joint solution for all
the aforementioned issues. The strategy adopted to approach and
combine such problems each other, plays a decisive role in the ro-
bustness and efficiency of the tracker. The importance of each sub-
problem depends on the application requirements: for example, face
tracking in a crowded scene relies more on target representation than
on target dynamics [11], while in aerial video surveillance, the target
motion and the ego-motion of the camera are the more important
components [78].
In addiction, strategies to control the trajectory state over time, ac-
cording to the specific domain need to be defined. For example in a
human video surveillance scenario a target can be occluded by other
people or moving out of the field of view of the camera leading to a
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fragmentation of the trajectory. An effective tracker should be able
to relocate the target and reconstruct its global trajectory. More-
over, when a new target appears in the scene (target birth [93]), the
tracker must initialize a new trajectory. A target birth usually hap-
pens at specific entry areas (e.g. doors), at the image boundaries,
in the far-field of the camera (when the size of the projection onto
the image plane increases and the target becomes visible), or when
a target spawns from another target (e.g. a driver parking a car
and then stepping out). Similarly, a trajectory must be terminated
(target death [93]) when the target leaves the field of view of the
camera, or disappears at a distance or inside another object. In ad-
dition to the above, it is desirable to terminate a trajectory when
the tracking performance is expected to degrade under a predefined
level, thus generating a track loss condition. Another important is-
sue is related to the computational complexity, that for real-time
applications, should be as low as possible in order to perform other
higher-level tasks such as recognition, trajectory interpretation and
reasoning.
From an architectural design point of view, the sub-problems are
generally implemented into two components, namely the Target rep-
resentation module and the state estimation module. The former im-
plement a a bottom-up process which has to cope with the changes in
the appearance of the target and of its surrounding background, deal-
ing with the feature extraction and the appearance modeling prob-
lems.
The latter implement a top-down process dealing with the dynamics
of the tracked object, learning of scene priors, evaluation of different
hypotheses and track management process. Following this architec-
tural decomposition, in the next sections, we briefly review the most
popular and effective approaches characterizing such building blocks
in state of the art visual trackers.
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2.2 State Estimation

The demand for updating the state as new uncertainty measure-
ments becomes available, naturally lead to represent target state as
the state of a discrete-time dynamical system.
Optimal filtering refers to the theory that deal with estimating the
state of a time-varying system, which is indirectly observed through
noisy measurements. The state of the system refers to the collection
of dynamic variables such as position, velocities and accelerations
or orientation and rotational motion parameters, which describe the
physical state of the system. As will be pointed out in section 2.3.1,
several state representation have been studied, from a bounding box
[4, 55] to 3D articulated models [114].
The noise in the measurements refers to a noise in the sense that
the measurements are uncertain, i.e even if we knew the true system
state the measurements would not be deterministic functions of the
state, but would have certain distribution of possible values.
The time evolution of the state is modeled as a dynamic system,
which is perturbed by a certain process noise. This noise is used for
modeling the uncertainties in the system dynamics even if in most
cases the system is not truly stochastic, but the stochasticity is only
used for representing the model uncertainties.
In this thesis, optimal filtering is reviewed in terms of bayesian in-
ference, and both the classical and recent filtering algorithms are
described using the same bayesian notation and formalism.
The probabilistic formulation provides a rigorous and general frame-
work for dynamic state estimation applied to the context of visual
tracking. From a bayesian perspective, all algorithms are treated as
approximations to certain probability distributions or their parame-
ters describing both the uncertainties in the models and the physical
randomness.
Following the classical formulation of recursive Bayesian inference,
we briefly introduce the theory of probabilistic filtering for state es-
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timation of a dynamic system.

Definition 2.2.1 (State space model [56]). A discrete-time state
space model or probabilistic non-linear filtering model is a recursively
defined probabilistic model of the form

xt ≈ p(xt|xt−1)

at ≈ p(at|xt) (2.1)

where:

• xt ∈ X ⊂ Rm is the state of the system at time step t.

• at ∈ A ⊂ Rn is the measurement at time step t.

• p(xt|xt−1) is the dynamic model, which models the stochastic dy-
namics of the system. The dynamic model can be a probability
density, a counting measure or combination of them. Depending
on the state xt it is continuous, discrete or hybrid.

• p(at|xt) is the measurement model, defining the distribution of
the observations given the state.

The model is assumed to be markovian. Such property implies
constraints on the time dependency for the state and the observation
variable simplifying the inference problem. Such dependencies are
formulated in the following properties:

Property 2.2.1 (Markovian property of states [56]). The states
{xt : t = 1, 2, . . . , T} form a markov sequence (or markov chain
when the state is discrete). This markov property means that xt and
actually the whole future xt+1, xt+2, . . . given xt−1 is independent from
anything that has happened in the past:

p(xt|x1:t−1, a1:t−1) = p(xt|xt−1) (2.2)

and again, the past is independent of the future given the present:

p(xt−1|xt:T , at:T ) = p(xt−1|xt) (2.3)
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Property 2.2.2 (Conditional independence of observations
[56]). The observation at given the state xt is conditionally indepen-
dent from the observation and state histories:

p(at|x1:t, a1:t−1) = p(at|xt) (2.4)

The filtering model can be equivalently expressed as an hidden
markov chain or a directed graphical model whose representation is
depicted in figure 2.2

Figure 2.2: The directed graph of the Filtering Model. The link xt and xt−1 express the
markov property while the link between at and xt express the conditional
independence property of measurements

The purpose of optimal filtering is to compute the marginal poste-
rior distribution of the state xt on the time step t given the history
of the measurements up to the time step t, referred in literature as
the filtering distribution:

p(xt|a1:t) (2.5)
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The fundamental equations leading to filtering distribution esti-
mate are provided by the following theorem:

Theorem 2.2.1 (Bayesian optimal filtering equations [56]).
The recursive equations for computing the predictive distribution
p(xt|a1:t−1) and the filtering distribution p(xt|a1:t) on the time step t
are given by the following Bayesian filtering steps:

1. Initialization. The recursion starts from the prior distribution
p(x0).

2. Prediction. The predictive distribution of the state xt on time
step t given the dynamic model can be computed by the Chapman-
Kolmogorov equation

p(xt|a1:t−1) =

∫
p(xt|xt−1)p(xt−1|a1:t−1)dxt−1 (2.6)

3. Update. Given the measurement at on time step t the posterior
distribution of the state xt can be computed by the bayes rule

p(xt|a1:t) =
1

Zt
p(at|xt)p(xt|a1:t−1) (2.7)

where the normalization constant Zt is given as

Zt =

∫
p(at|xt)p(xt|a1:t−1)dxt (2.8)

If some of the components of the state are discrete, the correspond-
ing integrals are replaced with summations.

The solution of Chapman-Kolmogorov equation is analytically
solvable only in few cases. A notable one is when the dynamic and
measurements models are linear gaussian. In this situation, the op-
timal solution is provided by the Kalman filter [56], that exploits
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the well behaved properties of gaussian function under integration
to derive the closed form solution to the filtering problem.
The estimated filtering distribution, provided by the Kalman filter
is still a gaussian, whose parameters are updated according to lin-
ear operators [56]. The filtering and association techniques discussed
above have been applied in computer vision for various tracking sce-
narios [16] When the functions and are nonlinear, by linearization
the extended kalman Filter (EKF ) [112] is obtained, the posterior
density being still modeled as gaussian. A recent alternative to the
EKF is the unscented kalman filter (UKF )[109] which uses a set of
discretely sampled points to parameterize the mean and covariance
of the posterior density. When the state space is discrete and consists
of a finite number of states, Hidden markov Models (HMM) filters
[86] can be applied for tracking. In [89] EKF is used to estimate a
3D object trajectory from 2D image motion.

2.2.1 Particle Filters

When the assumptions made by the kalman filter do not hold, ap-
proximate solutions to the optimal filtering problem are obtained
with particle filters [88]. Particle Filtering, refers to a class of general
computational approaches that replaces analytic integration defined
in 2.6, 2.7,2.8 by summation over samples generated by iterative al-
gorithms.
Problems that are intractable using analytic approaches often be-
come treatable using some form of particle filters such as importance
sampling (IS ), importance resampling (IR) and markov chain monte
carlo (MCMC ), even with high-dimensional problems [66].
Given the filtering distribution p(xt|a1:t), an approximate estimation
of the state at time t is given in the form of:

xt =

∫
f(xt)p(xt|a1:t)dxt (2.9)

With monte carlo methods, a numerical evaluation of the integral is
computed by generating N samples xti from the posterior and then
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evaluating the sample mean:

x̂t =
1

N

N∑
i=1

f(xti) (2.10)

Unfortunately, it is not possible to sample from the posterior in non
gaussian-non linear case, since it has a non standard form and it is
usually known only up to a proportionality constant. In practice, a
density π(xt) approximating the posterior is available and equation
2.9 is approximated by drawing sample from π(xt) and weighting
them accordingly,

x̂t =
1

N

N∑
i=1

f(xti)w(xti) with w(xti) =
p(xti|a1:t)

π(xti)
(2.11)

This technique is referred as importance sampling and the pdf π is
referred to as the importance or proposal density. Particle filter are
based on sequential importance sampling.
The key idea is to represent the posterior by a set of random samples
with associated weights, namely the particles. The posterior pdf is
approximated as

p(xti|a1:t) =
N∑
i=1

w(xti)f(xt − xti) (2.12)

where samples are obtained at each time step from the proposal
density

w(xti) ≈
p(xt|a1:t)

π(xt|x1:t−1, a1:t)
≈ w(xt−1

i )
p(xt|ati)p(xti|xt−1

i )

π(xti|x1:t−1
i , at)

(2.13)

and then normalized to sum to one.
The convergence of Monte Carlo approximation is guaranteed by cen-
tral limit theorem (CLT) [66] and the error term is O(N

1
2 ), regardless

of dimensionality of x. This invariance of dimensionality is unique
to Monte Carlo methods and makes them superior to practically all
other numerical methods when dimensionality of x is considerable.
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In particular, the precision of the approximation depends on the in-
dependence of the samples: when the samples are correlated, the
effective sample size decreases.
A problem of SIS algorithm is their tendency to generate a lot of
particles having zero weights while only a few of them (or only one)
are non-zero. This is referred to the degeneracy problem[66] in par-
ticle filtering literature and it limited practical applications of par-
ticle filters for long time. In order to overcame, this phenomena,
re-sampling algorithms have been introduced, leading to so called
sequential importance re-sampling algorithms SIR[66]. With SIR
samples with low weights are eliminated, while samples with high
importance weights are increased. This corresponds to computing
a less accurate approximation of the posterior that concentrates on
salient regions of the state space and avoids to waste computational
power by propagating particles that carry on negligible contributions
to the posterior approximation.
The new set of particles is generated by re-sampling with replace-
ment L times from the cumulative sum of normalized weights of
the particles. Particle filtering was first introduced in vision as the
Condensation algorithm [52]. Based on particle filtering, in [31] is
proposed an novel approach to integrate multiple cues based on con-
cept of reliability, which is defined relative to the success of the other
cues in tracking the target object. During tracking, different cues try
to reach an agreement on a joint result and they adapt themselves
considering the result currently agreed on. In [22, 85] particle filters
are used tracks in a joint fashion a set of parts building the pictorial
structure representation of the object of interest.

2.2.2 Markov Chain Monte Carlo

The development of MCMC is arguably the biggest advance in the
computational approach to statistics. A markov chain is a stochastic
process where a transition from one state to another is defined by
a simple sequential procedure. The chain is started at some initial
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state x0, and use a transition function p(xt|xt−1), to determine the
next state, x1 conditioned on the last observed state. Iterating such
procedure a sequence of states forms the markov chain:

x1 → x2 → . . .→ xt

The procedure for generating a sequence of T states from a markov
chain is reported in sketch:

MARKOV CHAIN GENERATION

0. Set t = 1
1. Generate a initial value u, and set xt = u
3. Repeat
3.1 t = t+ 1
3.2 Sample a new value u from the transition function p(xt|xt−1)
3.3 Set xt = u

4. Until t = T

During the chain evolution, the next state of the chain at t + 1 de-
pends only on the previous state at t, giving to the whole procedure a
“memoryless” property. This local dependency behavior is an impor-
tant property when using markov chains for monte carlo integration.
When initializing each markov chain, the chain will wander in state
space around the starting state. Therefore, if we start a number of
chains, each with different initial conditions, the chains will initially
be in a state close to the starting state. This period is referred to as
the burnin.
An important property of markov chains is that the starting state of
the chain no longer affects the state of the chain after a sufficiently
long sequence of transitions (assuming that certain conditions about
the markov chain are met). At this point, the chain is said to reach
its steady state and the states reflect samples from its stationary dis-
tribution.
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This convergency property is quite important, because when applied
to monte carlo integration, it allow us to draw samples from a dis-
tribution using a sequential procedure but where the starting state
of the sequence does not affect the estimation process.
The goal of MCMC is to build a markov chain such that the sta-
tionary distribution of the chain is exactly the target distribution, i.e
the distribution we are interested in sampling from.
In other words, the states sampled from some markov chain will gen-
erate samples drawn from the filtering distribution p(xti|a1:t).
The Metropolis-Hastings (M-H ) sampler [66] represent a popular and
effective method exploited to generate samples from a multivariate
distribution. The goal is to sample from the target density p(θ), with
θ ∈ RN .
The Metropolis sampler creates a markov chain that produces a se-
quence of states,

θ1 → θ2 → . . .→ . . .→ . . . θt

where θt represents the state of a markov chain at iteration t. The
samples from the chain, after burnin, reflect samples from the target
distribution p(θ).
In this procedure, the first state, θ1 is initialized to some initial value.
Then, a proposal distribution π(θt|θt−1) generates a candidate point
θ∗ corresponding to a possible value for state at time t conditioned
on the previous state of the sampler.
The next step is to either accept the proposal or reject it. The prob-
ability α of accepting the proposal is defined as:

α = min(1,
p(θ∗)

p(θt−1)

π(θt−1|θ∗)
π(θ∗|θt−1)

(2.14)

To make a decision on whether accept or reject the proposal, a uni-
form deviate u is generated. If u > α, the proposal is accepted and
the next state is set equal to the proposal (θt = θ∗ ).
If u ≤ α, the proposal is rejected and the next state is set equal to
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the old state (θt = θt−1). The procedure continues generating new
proposals conditional on the current state of the sampler, until the
sampler reaches convergence. At this point, the samples θt reflect
samples from the target distribution p(θ).
To intuitively understand why the process leads to samples from the
target distribution, note that the method will always accept a new
proposal if it is more likely under the target distribution than the
old state.
The choice of the proposal distribution depends on the problem at
hand. A common approach consist in defining symmetric proposal
distribution ( π(θ = θt|θt−1) = π(θ = θt−1|θt)) such that the proposal
ratio in 2.14 drops out. One important constraint for the proposal
distribution is that it should cover the state space such that each po-
tential outcome in state space has some non-zero probability under
the proposal distribution old state.
Therefore, the sampler will move towards the regions of the state
space where the target function has high density. However, note
that if the new proposal is less likely than than the current state, it
is still possible to accept this worse proposal and move toward it.
This process of always accepting a good proposal, and occasionally
accepting a bad proposal ensures that the sampler explores the whole
state space, by sampling from all parts of a distribution (including
the tails).
According to the strategy adopted to explore multidimensional space
underlying the target distribution, the M-H samplers are classified
in block-wise (BW) or component-wise (CW) updating samplers.
The BW approach uses a proposal distribution having same dimen-
sionality as the target distribution. So, when sampling from a proba-
bility distribution involving N variables, an N -dimensional proposal
distribution is needed. Acceptation or rejection treats θ∗ as a block,
leading to high rejection rates. Another potential problem with this
updating approach is related to the difficulty in defining a suitable
high-dimensional proposal distributions.
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In contrast, the CW approach instead of accepting or rejecting a
proposal for θ involving all its components simultaneously, generates
proposal for individual components of θ, once per time. This leads to
a computationally simpler updating scheme where at each iteration
t, an independent proposal θ∗i for each component status θti given its
previous state θt−1

i is generated. The acceptance ratio is evaluated
by comparing the likelihood of (θ∗i , θ

t−1
j 6=i) against (θt−1

i , θt−1
j 6=i).

The CW Metropolis Hastings sampler represent a key ingredient in
the approaches proposed in this thesis and it is reported in the fol-
lowing algorithm.
METROPOLIS-HASTING CW

0. Set t = 1
1. Generate a initial value θ1 = (θ1

1, θ
1
2, ..., θ

1
N)

2. While t < T

3. For i = 1 : N
3.1 propose a candidate component θ∗i ≈ π(θti|θt−1

i )
3.2. calculate acceptance probability:

α = min(1,
p(θ∗i , θ

t−1
j 6=i)

p(θt−1)

π(θt−1
i |θ∗i )

π(θ∗i |θt−1
i )

)

3.3 generate u from Uniform distribution in [0 , 1]
3.4 if(α ≤ u)
3.5 accept sample component: θti = θ∗i .
3.6 else
3.7 reject sample component: θti = θt−1

i .
3.8 EndFor
4. t+ +

Note that in this proposal procedure, at each time only one com-
ponent is varying while keeping the others constant and updated to
the last accepted proposal. Therefore, the proposal of a new sample
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θtj is conditioned on the proposal generation for all components i < j .
Metropolis Hastings method has been exploited into several approaches
to track single objects [58] or multiple objects [24].
In particular, in multiple target scenario [8], new problems related to
the validation and association of the measurements arise [8, p.150].
Consequently, gating techniques are used to validate only measure-
ments whose predicted probability of appearance is high.
After validation, a data association strategy is required to establish
correspondences between measurements and current targets. The
Nearest Neighbor Filter selects the closest measurement. Assuming
that for any given target only one measurement is valid while the
other represent random interference, i.e i.i.d. uniformly distributed
random variables, the Probabilistic Data Association Filter (PDAF )
[8] selects for each target the most probable measurement.
On the other hand, the Joint Data Association Filter (JPDAF) [8]
calculates the measurement-to-target association probabilities jointly
across all the targets.
A different strategy is represented by the Multiple Hypothesis Filter
(MHF ) [8] which evaluates the probability that a given target gave
rise to a certain measurement sequence. The MHF formulation can
be adapted to track the modes of the state density [21]. The data
association problem for multiple target particle filtering is presented
in [87].
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2.3 Target Representation

As described in section 2.1, the fundamental problems dealing with
the target representation process are related to the choice of:

• the State Space X ⊂ Rn defining the object of interest.

• the Measurement space A ⊂ Rm modeling target visual appear-
ance.

• the approach adopted to build and adapt the appearance model
while tracking.

2.3.1 State Space Modeling

As introduced in 2.1, object state defines the variables estimated
during tracking, encoding the target representation.Based on the in-
formations adopted to define the State Space X visual trackers can
be classified into five main categories.

Points based Trackers. Small object that do not change their
scale are represented by a point. The tracker estimate only trans-
lation of the object’s translation using frame-to-frame tracking [96],
key-point classification [61], or linear prediction [125]. Recent work
is directed towards combining point based trackers with global ap-
pearance trackers leading to a multilayered representation of target
appearance [19].

Geometric shapes based Trackers. Rectangular and elliptical
shapes , are the most popular state representation for objects under-
going significant changes in scale, due to their low complexity[90, 55].
With such representation is possible to estimate object location, scale
and in-plane rotation, while other variations are typically modeled
as the changes of the object appearance.
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Figure 2.3: Object States representations: point(a), rectangle(b), ellipse(c),part
based representation(d), contour(e),3D articulated models(f)
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Articulated models based Trackers. Non rigid objects are
defined as collection of several rigid parts, typically modeled by geo-
metric shapes such as rectangles or ellipses. By identifying the local
components and considering their inter-relationships, better detec-
tion or identification results can be achieved [22, 85, 2].

Contours based Trackers. Another suitable representation for
non-rigid objects are Contours. Parametric representation of con-
tours has been used for tracking of human heads [11] or arbitrarily
complex shapes [52].

3D models based Trackers. Rigid objects, for which the geom-
etry is known are modeled by 3D models. These models estimate
location, scale and pose of the object. These methods have been
applied to various objects including human faces [114].
In our approach, we represent the object state by a bounding box.
This representation balances the tradeoff between the expressive
power of the representation and the difficulty to reliably estimate
the object motion. The major problem of this representation is re-
lated to its high sensitivity to inaccurate target localization, leading
to the injection of background feature into the target appearance
model.

2.3.2 Measurement Space Modeling

Selecting good features to describe object appearance plays a critical
role in visual tracking. Generally, the most desirable property of a
visual feature is its inherent discriminative power so that the objects
can be easily distinguished in the feature space. Depending on the
target properties, i.e. deformable or rigid, planar or 3d object, a vari-
ety of features has been proposed to describe the target appearance.
Motion vectors, motion detection, object classification, low-level fea-
tures such as pixel colors or gradients, or mid-level features such as
edges and interest points are typical example of information that
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could be exploited to represent visual appearance (for a detailed de-
scription we remand to [73]). Based on their spatial extent visual
features can be grouped into two main categories:

• Part-wise features. Features are extracted from small patches
or even single pixels. It is relatively easy to deal with partial
occlusions but these features are hard to match if the target
undergoes deformation or rigid transformations such as rotations
and scalings.

• Target-wise features. The feature represents the whole target
appearance. This kind of features can typically tolerate target
deformations and rigid transformations. Correct handling of oc-
clusions represents a critical limitation of these representations.

Based on the type of visual information emplyed to describe object
appearance visual features can be distinguished in four categories:
color based, shape based, optical flow based and texture based.

Color. When dealing with color based representations the choice of
the color space play a central role to achieve invariance to the spec-
tral power distribution of the illuminant and the surface reflectance
properties of the object. This physical phenomena affects the im-
age formation process, leading to low effective visual representation.
The RGB (Red, Green, Blue) color space, for example is not per-
ceptually uniform, that is, the differences between the colors in the
RGB space do not correspond to the color differences perceived by
humans. Additionally, the RGB dimensions are highly correlated.
In contrast, Luv* and Lab are perceptually uniform color spaces,
while HSV (Hue, Saturation, Value) is an approximately uniform
color space even if hue becomes unstable near the gray axis. In gen-
eral, several color spaces exist [73], each one having different proper-
ties that can affect tracking performances in relation to the scenario
where the task have to be performed.
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Shape. Object boundary or contour is a distinctive feature to model
object shape and it is less sensitive to illumination changes compared
to color features. An edge is defined by a strong discontinuity in im-
age intensity. As consequence edge detectors are defined by operators
on image gradient. Because of its simplicity and accuracy, the most
popular edge detection approach is the Canny Edge detector [18].
Recently, gradient features have become very popular in pedestrian
detection. In [36] is presented a contour based hierarchical cham-
fer matching detector for pedestrian detection. In [65] extended the
global contour based models by parts decomposition and a hierar-
chical tree for the part templates is proposed. Ferrari et al. [33]
used the network of contour segments to represent the shape of an
object in order to detect object in cluttered images. Recently, sta-
tistical summarization have been very popular to exploit gradient
information[69, 9, 26]. The key idea is to extract local informations
characterizing regions of the image in terms of frequency of the gradi-
ent orientation. The Scale-invariant Feature Transform (SIFT ) [69]
is probably the most successful example of such approach. A patch
surrounding a keypoint is split into 4 × 4 cells, within each cell an
eight-bin histogram of gradient orientation is measured which pro-
duces a feature vector of 128 elements. In [9], SURF a much faster
scale and rotation invariant interest point descriptor has been pro-
posed.
In [26] the Histogram of Oriented Gradient (HOG) descriptor in con-
junction with Support Vector Machine ( SVM ) classifier [12] demon-
strated outperforming results for pedestrian detection. Later, in
[124], HOG computational efficiency was significantly improved em-
ploying a boosted cascade of rejectors. In [74] the multi-resolution
HOG descriptor and faster kernel SVM classifier achieved promis-
ing result for pedestrian detection. In [32] a part based deformable
model based on the multi-resolution HOG descriptor in combination
with SVM was used for pedestrian detection.
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Optical Flow. Optical flow is a dense field of displacement vec-
tors which defines the translation of each pixel in a region. It is
computed using the brightness constraint, which assumes brightness
constancy of corresponding pixels in consecutive frames [49]. Opti-
cal flow is commonly used as a feature in motion-based segmentation
and tracking applications. Originally [71], optical flow computation
was performed by assuming the flow constant in a local neighborhood
of the pixel under consideration. The least squares solution of the
optical flow equations defined by all the pixels in such neighborhood
represent the motion of the pixel. Later on, in [13] was proposed a
method dealing with the situations with varying lighting conditions
to estimate optical flow.

Texture. Texture is a measure of the intensity variation in an image
region, that quantifies properties such as regularity and smoothness.
To extract such information, texture descriptors need complex im-
age regions analysis that slow down the performance of the tracker.
Similar to edge features, the texture features are less sensitive to il-
lumination changes compared to color.
Several texture descriptors have been proposed in literature. Gabor
wavelet [75] is probably the most studied texture feature. The Gabor
filters can be considered as orientation and scale tunable edge and
line detectors, and the statistics of these micro-features in a given
region are often used to characterize the underlying texture informa-
tion. In recent years, increasing attention was dedicated to imageś
local patterns for better detection and recognition. Especially, local
patterns that are binarized with an adaptive threshold provide state-
of-the-art results in various application fields, such as face detection
and image classification. In [102] a very efficient texture descriptor,
called Local Binary Patterns (LBP) is proposed. The LBP texture
operator is defined as a gray-scale invariant texture measure, de-
rived from a general definition of texture in a local neighborhood.
Its most important property are tolerance to illumination changes



CHAPTER 2. RELATED WORK 38

and low computational cost.
Many variants of LBP have been recently proposed, including Local
Ternary Patterns (LTP) [103] , multi-scale block LBP (MB-LBP)
[63] and Semantic-LBP and Fourier LBP are proposed in [81]. In
[123] a local binary pattern extracted from the Gabor filter is pro-
posed for the task face representation and recognition. In contrast
to LBP approach that analyzes regular neighbor structures, in [126]
is proposed the FERN descriptor, a local pattern obtained by com-
paring random generated positions over the image. With such com-
parison invariance against constant brightness variations is achieved.

In conclusion, feature description is a crucial aspect for visual track-
ing as well for object detection. However, no single feature descrip-
tor is robust and efficient enough to deal with all kinds of situations.
For instance, the HOG descriptor focuses on edges and structures
but ignores flat areas, thus fails to deal with noisy edge regions. A
possible drawback of the LBP operator is the thresholding operation
when comparing the neighboring pixels that could make it sensitive
to noise. Color features represent the global information of images,
which are relatively independent of the viewing angle, translation,
and rotation of the objects and regions of interest. However, objects
with the same color histogram may be completely different in tex-
ture, thus color histogram cannot provide enough information. How
to combine various kinds of features into a coherent framework needs
much more study.

2.3.3 Statistical Appearance Modeling

According to the learning scheme adopted to build and adapt the
appearance model during tracking, it is possible to distinguish three
main categories of appearance models: generative, discriminative,
and hybrid generative-discriminative.
The generative appearance models aim to accurately fit the data from
the object class, even if it is very difficult to verify the correctness
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of the specified model. By introducing on-line update mechanisms,
these approaches incrementally learn visual representations of the
foreground object while ignoring the influence of the background.
As a result, they often suffer from distractions caused by the back-
ground regions with appearance similar to the object class.
In contrast, discriminative appearance models formulates visual ob-
ject tracking as a binary classification problem, trying to maximize
the separability between the object and non-object regions.Thus,
they can achieve effective and efficient predictive performances.
Nevertheless, a major limitation of the discriminative appearance
models is to rely heavily on training sample selection (e.g., by self-
learning or co-learning). The generative and discriminative appear-
ance models have their own advantages and disadvantages, and to
a certain extent can be considered complementary to each other .
In order to exploit the benefits of both approaches and mitigate
their benefits, researchers propose hybrid generative-discriminative
appearance models to fuse the useful information from the genera-
tive and the discriminative models.

2.3.3.1 Generative Appearance Models

Generative methods, used to learn the appearance of an object, have
been exploited to handle the variability of a target whose model is
often updated on-line to adapt to appearance changes. Object local-
ization becomes a search for the best match between an image patch
and the model. Even though these methods were not designed for
long-term tracking, we briefly review this category of trackers since
they poses several interesting issues addressed by our approach.
Template trackers represent the first attempts to object tracking.
They represent object appearance by a single template (an image
patch) and exploit a similarity measure among patches in order to
find the best affine transformation (translation and rotation) maxi-
mizing such measure. In order to avoid exhaustive search for the best
similarity match, several technique have been proposed.For example,
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assuming linear motion among consecutive frames, some strategies
constrain the search in a neighborhood of the previous location, in-
creasing efficiency of the template tracker and reducing the number
of false matches generated by similar objects [71, 7, 25]. Moreover,
when the target violates the motion assumption, the tracker loses
the object. The most effective approaches based on local searching
from the previous location can classified in two categories: gradient-
based and mean-shift based methods. Gradient-based methods opti-
mize the similarity measure using gradient descent search. Doubt-
less, Lucas-Kanade [71] tracker and its pyramidal implementation
[120], which estimates translation of an image patch, traced the root
for gradient based methods. Affine warping was later proposed in
the Kanade-Lucas-Tomasi tracker [96]. Both of these approaches
have been unified in the Inverse Compositional Algorithm [7]. These
methods employs ssd as the similarity measure. Recently, the mutual
information similarity has been proposed [28] demonstrating better
convergence properties.
The mean-shift algorithm [25] is another approach proposed to avoid
extensive search for the best matching template. The object is mod-
eled by its color distribution and object localization is formulated as
an iterative procedure for matching target distribution over the im-
age. Using the Bhattacharyya coefficient as similarity metric, the
mean shift procedure performs object localization by finding the
basin of attraction of the local maxima. However, the tracker only
considers color information and therefore ignores other useful infor-
mation such as edge and shape, resulting in sensitivity to background
clutters and occlusions. Template tracking faces a trade-off between
static and adaptive tracking even if it presents several drawbacks.
First of all, a single static template is not sufficient to capture the
variability object’s appearance . Furthermore, adaptation of the tem-
plate using the template from the previous frame suffers from drift.
Another limitation is its sensitivity to partial occlusions. To tackle
the trade-off between static and adaptive tracking, the basic solution
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Figure 2.4: Mean shift mode seeking

is to adapt the template only when necessary and exploiting the pre-
viously observed templates otherwise. For this purpose evaluating
the usefulness of the previously observed templates becomes a new
problem to be solved [77].
Recent approaches control appearance variability as well occlusions,
by modeling object appearance on multiple layers. In [53] a mixture
model, named WSL mixture, is estimated on-line by expectation
maximization algorithm to explicitly model different type appear-
ance variability during tracking. The basic WSL mixture model is
built on three layers, namely Wandering, Stable and Lost that model
the inter-frame variations, the stable structure for all past observa-
tions, and outliers such as occluded pixels respectively. A critical
point for generative approaches based on mixture models is related
to the computation required by expectation maximization and the
selection of the fixed number of mixing components building the dis-
tribution that effects tracker flexibility. To overcome such limitation
in [46] an on-line procedure is proposed to automatically determining
in linear time the number of components of the mixture model and
their associated parameters including mean, covariance, and weight.
To model spatial-temporal variations of the tracked objects, in [110]
spatial information are integrated into the color Mixture of Gaus-
sians leading to SMOG, a Spatial-Mixture of Gaussian. Recently,
in [19] a novel coupled-layer visual model that combines the targets
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global and local appearance by interlacing two layers is presented.
The local layer is a set of local patches that geometrically constrain
the changes in the targets appearance. This layer probabilistically
adapts to the targets geometric deformation, while its structure is
updated by removing and adding the local patches. The addition of
these patches is constrained by the global layer that probabilistically
models the targets global visual properties, such as color, shape, and
apparent local motion. The global visual properties are updated
during tracking using the stable patches from the local layer. By
exploiting this coupled constraint paradigm between the adaptation
of the global and the local layer, the method achieve a robust track-
ing through significant appearance changes but presents weakness on
occlusions.
An interesting category of generative methods formulate object ap-
pearance modeling as a subspace learning problem. By focusing on
efficient representations of the object defined over low-dimensional
subspaces underlying the feature space. A first attempt to subspace
learning was proposed in EIGENTRACKING [14] where an off-line
appearance model was build in the eigenspace domain spanned by
principal component analysis. To increase efficiency, incremental
principal component analysis (PCA) algorithms have been investi-
gated. In [62, 97] incremental robust PCA algorithm are investigated
embedding robust analysis into the process of subspace learning.
Incremental Visual Tracking (IVT )[90] builds an on-line PCA-based
appearance model during tracking, proving robustness to illumina-
tion and appearance variations.

Deformable objects often violates the linear manifold assumption,
leading to tracker failures. Therefore, researchers attempt to employ
non-linear subspace learning to capture the underlying geometric in-
formation from target samples. For the robust human tracking, a
nonlinear subspace models [64, 23, 111] have been proposed using
nonlinear dimension reduction techniques.
In summary research in generative trackers demonstrated that drift
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Figure 2.5: IVT tracker in action.

can be reduced by reusing already seen examples of the object, and
that the robustness to partial occlusions can be achieved by decom-
posing the template into independent parts. These concepts have
been exploited in our approach.
However, the most critical limitation of generative trackers is related
to the lack of information coming from the surrounding environment.
As a consequence, generative trackers easily drift in cluttered scenes,
where different objects in the scene may look similar to the object.
In order to increase the tracker robustness, discriminative methods
that consider the background class in the modeling process have been
investigated in the last decades.

2.3.3.2 Discriminative Appearance Models

Adaptive Discriminative Trackers (ADT ) learn an appearance model
focusing on distinctive features that discriminate object and its sur-
rounding environment . This allows them to track a wide range of
objects immediately after initialization, but introduces the problem
of updating the classifier over time in order to handle appearance
changes. According to the learning strategies employed, they can be
categorized into self-learning based and co-learning based methods.
Typically, the self-learning strategy exploits the discriminative infor-
mation extracted from a single source to guide the task of object/non-
object classification, while the co-learning based strategy is based on
multi-source discriminative informations for object detection.
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More specifically, the self-learning ADT first train a classifier over
the data from the previous frames, and subsequently use the trained
classifier to evaluate possible object regions at the current frame.
After object localization, a set of so-called “positive” and “negative”
samples are selected to update the classifier. These samples are la-
beled according to the confidence provided by the previously trained
classifier. Due to tracking failures, the training samples analyzed in
the tracking process may be affected by noise and hence the labels
for the training samples are unreliable. As the tracking process pro-
ceeds, the tracking error may be accumulated, leading the tracker to
drift.
In contrast, the co-learning ADT exploits semi-supervised strategies
for object/non-object classification such as co-training of multiple
classifiers specialized on independent set of features.
According to the learning framework they exploit, we grouped the
most significant ADT in to three categories:

• SVM based appearance models.

• Boosting based appearance models.

• Randomized learning based appearance models.

Svm based appearance models (SAM ). SAM exploits the
power of max-margin learning, to build an effective appearance model
with good generalization capability of distinguishing foreground and
background. Informative instances of the appearance model are
stored in form of support vectors for object/non-object classification,
resulting in a strong discriminative power. Effective kernel selection
and efficient kernel computation play an importance role when de-
signing robust SAM . The first approach to SAM, was proposed in
[4] where an off-line svm classifier able to distinguish a vehicle from
the background was exploited for tracking. Unfortunately, the de-
mand for prior training data in advance, has lead several difficulties
in extending the algorithm to general object tracking task.
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Figure 2.6: Support Vector Tracker. Learning an hyperplane separating the object
from the surrounding background

An ensemble of linear SVM classifiers to construct a SAM is pro-
posed [106]. Such classifiers are adaptively weighted according to
their discriminative abilities during different periods, enhancing the
robustness to large appearance variations. Recently, STRUCK [47] a
novel approach based on structured output support vector machine,
estimates directly the best transformation representing the target
movement during tracking, avoiding the sample selection stage re-
quired to update the classifier. It achieves a good trade-off between
plasticity and stability based on the ranking of support vectors and
the use of the on-line structured output SVM framework to guide
the selection of challenging samples from the background.

Boosting-based Appearance Models (BAM ). Based on-line
boosting framework[84], researchers have developed a variety of com-
puter vision applications such as object detection [108] and visual
object tracking [40]. One of the earliest work based on on-line boost-
ing was proposed in [118] where a method to adaptively select color
features best discriminating the object from the surrounding back-
ground. In [5], an adaptive ensemble of weak classifiers is learned
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Figure 2.7: The boosting framework: by a weighted combination of weak classifiers a
more stable classifier is obtained

to discriminate between pixels of the object and pixels of the back-
ground: each weak classifier is a linear hyperplane learned over an
11D feature space composed of R,G,B color and a histogram of gradi-
ent orientations. With the BOOST TRACKER [40], discriminative
evaluation of each feature from a candidate feature pool and selec-
tion of the top-ranked features is exploited to improve the tracking
process. To accelerate the feature selection process a gradient-based
feature selection scheme is derived in [68] in order to build the ap-
pearance model. The proposed approach requires an initial set of
weak classifiers to be given in advance, leading to difficulty in gen-
eral object tracking.
To reduce the sensitivity to tracking failure that provide erroneous
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samples during the on-line adaption semi-supervised approaches have
been deeply investigated. In [41] an update stage based on two clas-
sifiers defines the SEMIBOOST TRACKER; the first one is used for
tracking while the second one, referred to as auxiliary classifier, is
used to select samples for the updating process. More in details, in
the first frame, both classifiers are trained using the labeled data,
while during the tracking, the auxiliary classifier remained fixed and
provides soft-labels to the unlabeled patches, which are then used to
update the tracking classifier. The method demonstrated reduction
of drift and certain re-detection capabilities.
In BEYONDSEMIBOOST TRACKER [101] another auxiliary clas-
sifier is introduced in order to increase the adaptability of the system.
Subsequently, in [67] the co-training strategy is used to guide on-line
learning of each weak classifier in boosting instead of only the fi-
nal strong classifier. The co-training strategy dynamically generates
a series of unlabeled samples for progressively modifying the weak
classifiers, leading to the robustness to environmental changes. It is
proven that the co-training strategy can minimize the boosting error
bound in theory.
Although this method exhibits high accuracy in scenarios where the
object leaves the field of view completely, it still suffers for object
imprecise localization during the update stage. MIL TRACKER [6]
exploits on-line multiple instance learning to reduce sensitivity to in-
accurate localization providing a stable control of the uncertainties
on the selection of positive updates during tracking process. Re-
cently, in [121] semi-supervised and multiple instance learning are
combined into a coherent framework, leading to more robust results
than applying both approaches separately. A critical factor for on-
line boosting method is their poor capability in capturing the correla-
tion between features, leading to the redundancy of selected features
and the failure to compensate for the tracking error caused by other
features.
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Randomized learning-based appearance models (RLAM).
More recently, randomized learning techniques [17, 61] have been
successfully introduced into the vision community. The key idea be-
hind randomized learning is to build a diverse classifier ensemble by
performing random sample selection and random feature selection.
In contrast to boosting and SVM, they are more computationally
efficient, and easier to be extended for handling multi-class learn-
ing problems. Inspired by randomized learning, a variety of RLAM
have been proposed in the field of visual object tracking, including
online random forests [61], random naive Bayes classifiers [39], and
MILFOREST [60]. In [39] a visual object tracking algorithm based
on on-line random naive Bayes classifiers, with powerful real-time
capability for processing long-duration video sequences is proposed.
In MILFOREST [60] multiple instance learning is combined with
randomized trees, to model hidden class labels inside target bags as
random variables. In [55] an object detector built on an ensemble of
ferns is exploited to localize the target during tracking.
Recently, in [122] a tracking algorithm whose appearance model is
build on non-adaptive random projections is proposed. Such repre-
sentation is able to preserve the structure of the image feature space
of objects. A very sparse measurement matrix is adopted to effi-
ciently extract the features for the appearance model and compress
samples of foreground targets and the background. The tracking
task is formulated as a binary classification via a naive Bayes classi-
fier with on-line update in the compressed domain.
The major limitation associated to RLDAM based methods is their
instability when dealing with deformable objects because of their
random feature selection.

In summary, research in adaptive discriminative tracking has en-
abled tracking of objects that significantly change appearance and
move in cluttered background. The speed of adaptation of the clas-
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sifier plays a crucial role in these systems: it controls the impact of
new appearances on the classifier, but also the speed by which the old
information is forgotten. If the speed of adaptation is correctly set
for a given problem, these trackers demonstrate robustness to short-
term occlusion. On the other hand, if the object is occluded for long
time, the tracker will eventually forget the relevant information and
never recover.

2.3.3.3 Hybrid appearance models (HAM)

As pointed out in [107], the generative and the discriminative mod-
els presents advantages and disadvantages, and are to some extent
complementary to each other. Achieved results in non rigid object
detection and classification support the intuition that neither ap-
proach alone is sufficient for large scale object recognition, and mo-
tivated the interest of researchers in investigating new approaches
to combine generative and discriminative models. As consequence,
much effort has been made to propose a variety of hybrid generative-
discriminative models able to combine the benefits of both the gen-
erative and the discriminative models in a more stable and flexible
visual object model. In EIGENBOOSTING [43] an hybrid method
capable of being discriminative with reconstructive abilities at the
same time is proposed. In principle, EIGENBOOSTING aims to
minimize a modified boosting error-function in which the genera-
tive information (i.e., eigenimages generated from Haarlike binary
basis-functions using robust PCA) is integrated as a multiplicative
prior. Authors in [99], propose to switch between discriminative and
generative observation models according to targets proximity in a
multi-target scenario. In [117] different generative models are aggre-
gated by means of a weighted combination whose values are learned
in each frame, by maximizing the distance to the background appear-
ance; In [15] co-training of a short-term discriminative observation
model and long-term generative one is exploited. In [70] two gener-
ative non-parametric models of target and background appearance
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are used to train a discriminative tracker in each frame.
In [94] a sophisticated tracking system called PROST is proposed. It
achieves top performance with a smart combination of three trackers:
template matching based on normalized cross correlation, mean shift
optical flow [113], and on-line random forests to predict the target
location. Following a decompositional approach, authors in [55] de-
compose the long-term tracking task into three interacting sub-tasks,
Tracking Learning and Detection (TLD), performed by three inde-
pendent components. The tracker is a STT component that follows
the target exploiting optical flow on local feature points lying on a
regular grid generated at each tracking iteration inside the target
bounding box. The detector localizes all appearances that have been
observed so far and if necessary, corrects (re-initialize) the tracker.
The integrator selects hypothesis coming from the aforementioned
components and update the global appearance model defined by a
set of patches. During the update stage, it also estimates detector
errors and updates it to avoid these errors in the future, by pn on-
line learning paradigm [55].
In conclusion, several advances have been achieved in designing hy-
brid methods able to combine generative models with discriminative
ones, but defining an effective strategy to exploit such integration is
still an open problem to be solved.

2.4 Discussion

In conclusion, appearance model adaptation introduces several chal-
lenges that have to be solved in order to limit the chances of drift:

• Stability/Plasticity Dilemma [45]. The simultaneous re-
quirement for rapid learning and stable memory. This is a com-
mon problem of all on-line adaptive systems.

• Robust integration of new target model samples. The
inclusion of new information from the current frame in the target
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model has to be designed to be robust to the presence of outliers
from the background due to non perfect alignment of the tracker
bounding box with the actual target position.

• On-line Evaluation of tracker output. The output of the
tracker must be evaluated on-line in absence of ground truth to
decide whether or not to use it in model update. This is par-
ticularly important to avoid occluders appearance if the target
undergoes occlusions.

In a recent work [93], a comparative analysis of the state of art
adaptive tracker with respect to rare and continuous appearance
changes, partial and total occlusions, initialization errors and wide
angle views has been proposed. The adaptive trackers under analysis
are: BOOST TRACKER [40], SEMIBOOST TRACKER [41], BE-
YONDSEMIBOOST TRACKER [101], A-BHMC (Adaptive Basin
Hopping monte carlo)[58],IVT [90], MILBOOST TRACKER[6], TLD [55]
and STRUCK [47].
From the proposed study, it has emerged that methods that let the
model estimator to influence samples selection are more robust to
the label noise introduced by imprecise object localization and con-
sequently are less sensitive to the drifting problem.
Indeed four trackers exhibited good performance overall: the dis-
criminative tracker STRUCK outperformed other approaches, fol-
lowed by TLD, IVT and MILBOOST. These trackers deploy stable
model representations and updates that are based on support vectors
selection, ranking or subspace fitting and update.
Instead trackers that aim improving the sampling and labeling stage
with priors, either fixed or adaptive, such as BOOST TRACKER,
SEMIBOOST TRACKER, do not correctly update the prior and get
meaningful labeled samples over time.
A promising direction of investigation has been suggested towards
the hybrid methods. Combining the merits of both generative based
on-line learning methods and discriminative based on-line learning
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methods into a coherent framework has been acclared as the fun-
damental open problem to be solved in order to increase long term
tracking stability. Such a combination define a classic open problem
within th machine learning area [107].
Nowadays, TLD tracker represent one of best performing state of the
art hybrid method, even if some critical behavior has been verified
under condition of occlusion, fast appearance changes and resembling
background.
Inspired by such analysis, in this thesis we extensively investigated
the TLD approach with the aim of individuating the design choice
that limited the performance of the approach and proposed two novel
solutions that make the whole approach more robust.



Chapter 3
Tracking Learning Detection:
open issues

Tracking Learning Detection TLD is an hybrid long term tracker
based on a detector trained with examples found on the trajectory
estimated by a short term tracker that itself is independent from
the object detector. By decoupling object tracking and object detec-
tion this approach achieves high robustness and exhibits high perfor-
mance respect with existing adaptive tracking-by-detection methods.
In this chapter we briefly review the Tracking Learning Detection
framework to contextualize in details, the contribution provided in
this thesis.
In section 3.1, we give an overview of the approach, presenting the
main components building the TLD architecture. In section 3.2, we
present the adopted adaptive appearance model while in section 3.3,
we describe the method adopted to solve the state estimation prob-
lem based on the optical flow; in section 3.4 the cascaded approach
building the object detector is presented. In section 3.5 the data
fusion strategy employed by the integrator component is presented,
while in 3.6 the object detector bootstrapping approach is discussed.
In section 3.7 we provide an analysis of TLD weakness, introduc-
ing open problems and challenges that should be solved in order to
improve the capabilities of this high performing framework.

53
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3.1 TLD: system overview

TLD is an hybrid system designed for long-term tracking of unknown
objects in unconstrained environments. The approach is built on four
interacting components namely the tracker, the learner, the detector
and integrator.
In figure 3.1 a schema depicting the complete system is showed. Each

Figure 3.1: Tracking Learning and Detection architecture.

module is designed to perform a particular subtask involved with the
long term tracking process.
In particular:
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• The tracker is an exploratory and error-prone component. it
is employed to solve the short term tracking problem by esti-
mating object frame-to-frame correspondences. It is adaptive
in order to handle appearance and illumination changes. Au-
tomatic detection of tracking failures is an important, but not
required feature.

• The detector is a stabilizing component of the system designed to
detect the appearances learned by the object model. It is build
entirely on-line by efficient incremental update and analyze the
entire image to find appearances similar to the target.

• The learner is designed to perform adaptive object appearance
modeling. It constantly analyzes the output of the tracker and
the detector, estimating errors performed by the detector and
updating the object model to avoid these errors in the future.

• The integrator analyzes the hypothesis from the detector and
the tracker and outputs the final hypothesis about the object
state.

The whole system perform long-term visual tracking in two phases,
namely the start up stage and the run-time stage. The start up stage
requires the first frame of the sequence and the object to be tracked,
in order to perform the following initialization procedures:

• Initialization of the tracker involves setting the initial state of
the tracker by generating the set of points to be tracked in the
next frame.

• Initialization of the object model involves the insertion of posi-
tive examples extracted from overlapping regions with the tar-
get initial state and examples of the background into the object
model.

• Initialization of the detector involves training of the initial ob-
ject detector to localize in the next frames the appearances rep-
resented in the object model.
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After initialization, the TLD framework is ready to process the video
stream frame-by-frame. At each time instance, the system process
the incoming video frame and passes it to the tracker, the detector.
The tracker estimates the object motion based on its previous state
and outputs a single hypothesis. The detector provides a number of
hypotheses about the location of the target object.
The integrator, analyzes the tracker and detector hypothesis in order
to find the best hypothesis according to the appearance model and
returns the final state that is then output of the system. Outputs
of the tracker, the detector and the integrator are analyzed by the
learning component, which estimates errors and updates the detector
to avoid these errors in the future. When relevant changes in object
appearances are detected the learning component proceeds on inte-
gration of such new information into appearance model. The process
is repeated, according to the tracking loop.

3.2 Object Appearance Modeling

According to the description provided in section 2.1, object appear-
ance modeling is performed specifying an object state and an object
appearance representation.

Object state. Object state is represented by a rectangle enclosing
its appearance. Such bounding box has a fixed aspect ratio (given
by the initial bounding box) and is parameterized by its location
and scale. Other state information such as in-plane rotation are not
considered. Spatial similarity between object states is measured in
terms of overlap , which is defined as a ratio between intersection
and union of the two bounding boxes defining the states.

Object appearance representation. A single instance of the ob-
ject appearance is represented by an image patch P . The patch is
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extracted within the object bounding box and then is scaled to a
normalized resolution (typically 15× 15 pixels) regardless of the as-
pect ratio.
A measure based on normalized cross correlation (ncc) S(Pi, Pj) is
employed to evaluate similarity between two patches Pi, Pj:

ncc(P1, P2) =
1

n− 1

n∑
x=1

(P1(x)− E(P1))(P2(x)− E(P2))

V ar(P1)V ar(P2)
(3.1)

where E(P ) and V ar(P ) denotes the mean and variance of gray
intensity level computed over all the pixel p ∈ P , respectively.
Such measure is scaled in range [0 , 1], according to the following
expression:

S(Pi, Pj) = 1− ncc(P1, P2) + 1

2
(3.2)

The whole appearance model is specified by a dynamic data structure
that maintains the object appearances and its surroundings observed
so far. Basically it is defined by collection of positive and negative
patches:

A = {A+
1 , . . .A+

n , A−1 . . .A−m}
where A+ and A− denotes the object and background patches, re-
ported on the left and on the right of figure 3.2 respectively.

Positive patches are ordered according to the insertion time into
the collection A so that A+

1 is the first positive patch added to the
collection while A+

n is the last positive patch added to the set. At
each iteration at least one positive sample is added to the collection
of positive patches. Multiple negative patches detected around the
positive one can be inserted into the model.
To evaluate how much an arbitrary patch P resembles the object ap-
pearances represented in the model A, four similarity measures are
derived from eq. 5.3:

1. Similarity with the positive nearest neighbor:
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Figure 3.2: TLD appearance model, build on David from MILBOOST Dataset. On the
left, A+, the collection of positive samples. On the right, A− the collection
of positive samples.

S+(P,A) = min
Ai∈A+

S(P,A+
i ) (3.3)

It defines the distance of the patch P with respect to the nearest
positive sample stored in the appearance model.

2. Similarity with the negative nearest neighbor:

S−(P,A) = min
Ai∈A−

S(P,A−i ) (3.4)

It defines the distance of the patch P with respect to the nearest
negative sample stored in the appearance model.

3. Relative similarity Sr .
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Sr(P,A) =
S−(P,A−)

S+(P,A+) + S−(P,A−)
(3.5)

Such measure ranges from 0 to 1 and can be interpreted as the
probability that the visual appearance encoded in the patch P
belongs to the object model.

4. Conservative similarity Sc.

Sc(P,A) =
S−(P,A−)

S+(P,A+) + S−(P,A−)
(3.6)

It encodes the same information defined in eq. 5.3, with the
exception that it considers only the first 50% of positive example
in the object model. In such way the visual similarity is more
related to the labeled samples, available during the start up
stage.

Sr is used to define the Nearest Neighbor classifier (NNC ) employed
to discriminate the target from the background. Figure 3.2 depitcs a
clarifying example of how NNC explores the feature space A. A new

Figure 3.3: Feature Space A defined by David and NN classifier

patch P ∈ P is classified as positive if Sr(P,A) > θNN . Parame-
ter θNN enables tuning the nearest neighbor classifier either towards
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precision or recall.
The classification margin is defined as Sr(P,A)− θNN and measures
the confidence of the classification. The integration of new labeled
patches into the object model is performed by adding only those
samples miss-classified by NN classifier, as sketched in algorithm 1.

This strategy leads to a significant reduction of accepted patches

Algorithm 1 NN-Classifier

1: procedure NN-Classifier
2: Input: A = {A+, A−}, P = {P+, P−}
3: for P ∈ P do
4: conf = Sr(P,A)
5: if conf < θNN ∧ P ∈ P+ then
6: A+ = {A+, P}
7: end if
8: if conf > θNN ∧ P ∈ P− then
9: A− = {A−, P}

10: end if
11: end for
12: end procedure

[55] at the cost of coarser representation of the decision boundary.

3.3 Tracker: Median Flow

The tracker component is the short term generative tracker that self-
learns the appearance model at tracking iteration.
It is based on median-flow tracker [54] extended with failure detec-
tion and is designed to estimates object motion between consecutive
frames under the assumption that the motion is limited and the ob-
ject is always visible.
Median-flow tracker represents an object by a rectangle and perform
object localization by estimating displacements of a fixed set of pixels
K = {Kti = (x, y, t)| i = 1 . . . n2} lying on a regular 2D grid overlap-
ping with object, regenerated at each tracking iteration inside the
predicted target state.
To estimate point correspondences between consecutive frames, median-
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flow tracker exploits pyramidal Lucas-Kanade tracker (KLT) [120]
with 2 levels of the pyramid and patches of 10× 10 pixels.
KLT is a differential approach for optical flow estimation that try to
calculate the motion between two image frames which are taken at
times t and t+ ∆t at every pixel position.
Given a pixel location (x, y) at time t with intensity value I(x, y, t)
the objective is to estimate its displacment at time t+ ∆t, indicated
by the variable ∆x, ∆y.
Assuming no change of pixel intesinty, the ”brightness constancy
constraint” gives the relation:

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t) (3.7)

Assuming the movement to be small, the image constraint at I(x, y, t)
with Taylor series can be developed to get:

I(x+ ∆x, y + ∆y, t+ ∆t) = (3.8)

I(x, y, t) +
∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t+ h.o.t.

From these equations it follows that:

∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t = 0 (3.9)

which results in:

∂I

∂x
Vx +

∂I

∂y
Vy +

∂I

∂t
= 0 (3.10)

where Vx, Vy are the x and y components of the velocity or optical
flow of I(x, y, t) and ∂I

∂x , ∂I
∂y and ∂I

∂t are the derivatives of the image
at (x, y, t) in the corresponding directions.
Ix,Iy and It can be written for the derivatives in the following.

IxVx + IyVy = −It (3.11)

This is equation in two unknowns, represents the aperture problem
of the optical flow algorithms and needs additional constraint to be
solved. In [120], the spatial coherence constraint provides a new set
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of equations o solve the problem. It assumes that the displacement
of the image contents between two nearby instants (frames) is small
and approximately constant within a neighborhood of the point p
under consideration. As consequence, the local image flow (velocity)
vector (Vx, Vy) satisfies:

Ix(q1)Vx + Iy(q1)Vy = −It(q1) (3.12)

Ix(q2)Vx + Iy(q2)Vy = −It(q2)
...

Ix(qn)Vx + Iy(qn)Vy = −It(qn)

where q1, q2, . . . , qn are the pixels inside the window, and Ix(qi), Iy(qi),
It(qi) are the partial derivatives of the image I with respect to po-
sition (x, y) and time t, evaluated at the point qi and at the current
time. These equations can be written in matrix form Av = b, where

A =


Ix(q1) Iy(q1)

Ix(q2) Iy(q2)

...
...

Ix(qn) Iy(qn)

 , v =

[
Vx

Vy

]
, b =


−It(q1)

−It(q2)

...

−It(qn)

 (3.13)

This system is over-determined and a linear least squares solution is
obtained by solving the 2× 2 system ATAv = AT b, leading to:Vx

Vy

 = (3.14)

[ ∑n
i Ix(qi)

2
∑n

i Ix(qi)Iy(qi)∑n
i Iy(qi)Ix(qi)

∑n
i Iy(qi)

2

]−1 [−∑n
i Ix(qi)It(qi)

−
∑n

i Iy(qi)It(qi)

]
The matrix S = ATA is referred to as the structure tensor of the
image at the point p.
By analyzing the structure tensor for each layer building a pyramidal
representation of an image is possible to estimate big displacement
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within an iterative approach. The key idea is to solve the optical flow
equation 3.12 for each image building the pyramid, starting from the
lowest resolution. For each layer, the iterative last square solution
is computed providing as starting flow vector the solution estimated
in the previous-level. Addition implementation details are given in
[120]. The basic assumption employed by KLT method are often
violated in real video streams.
For this reason, refinement stages based on motion analysis are em-
ployed to discard wrong correspondences.
The median-flow tracker (described in algorithm 2) exploits two
type of error measures to reject points that were tracked unreliably,
namely forward-backward error and normalized cross correlation.

Algorithm 2 Median Flow Tracker

1: procedure MEDIAN FLOW Tracker
2: Input: Bt It It+1

3: Output: Bt+1

4: Initialize X = {(xi, yi), i = 1 . . . n2} = GridPoints(Bt)
5: while i < n2 do
6: %KLT tracking
7: T f

i = KLTforward(xi)
8: T b

i = KLTbackward(xi)
9: %Error Measures

10: efbi = ||T f
i − T b

i ||
11: encci = ncc(P1, P2)
12: end while
13: %Median Filtering
14: medFB = median(efbi , . . . , e

fb
n2)

15: medNCC = median(encci , . . . , enccn2 )
16: if medFB > θFB then
17: Bt = ∅
18: else
19: %Select Reliable Points
20: Xreliable = {(xt+1,xt+1)|xt+1 6= ∅, efbi ≤ medFB, e

ncc
i ≥ medNCC}

21: %Estimate the Affine Transform: scale S - translation T
22: [S T ] = Transform(Xreliable)
23: %Final State Estimation
24: Bt+1 = SBt +T
25: end if
26: end procedure
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The forward-backward error is based on the idea that the tracking
of points must be reversible and is derived as follow.
Let T tf = {xt−k · · ·xt} be the trajectory of a target point x tracked
up to time t and let xt+1 the corresponding point tracked by KLT
at time t+ 1. The validity of xt+1 is established by tracking it back-
ward for k previous frames and extracting the backward trajectory
T tb = {x̂t−k · · · x̂t} (lines 8-10).
The euclidean distance between the computed trajectories ||T tf −T tb ||
(line 13) defines a measure of reliability of the tracked point, allowing
to discard those points whose trajectory is unstable over time.
Additionally a measure of visual similarity based on normalized cross
correlation (ncc) evaluated on patches P centered on each trajec-
tory location x̂ is employed to establish the visual consistency of
tracked points (line 14). A filtering approach (lines 18-32) employs
the median of all forward-backward errors medFB and the median
medNCC of all similarity measures to reject those points exhibiting
a forward-backward error larger than medFB and a similarity mea-
sure lower than medNCC (line 25). This strategy is able to reliably
identify failures caused by fast motion or fast occlusion of the object
of interest. Indeed, when such events occur the individual displace-
ment become scattered around the image and the residual rapidly
increases (a threshold of 10 pixels was experimentally found not crit-
ical). This heuristic is able to reliably identify most failures caused
by fast motion or fast occlusion of the object of interest. If the failure
is detected, the tracker does not return any bounding box. Other-
wise, the remaining points are used in order to estimate the position
of the new bounding box in the second frame by employing a trans-
formation model based on changes in translation and scale (line 28).
In particular, the pairwise distances between all points are calculated
before and the relative increase is interpreted as the change in scale.
The translation in x-direction is computed using the median of the
horizontal translations of all points. The translation in y-direction
is calculated in the same way.
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This method works most reliably if grid points are located on corners
but becomes very unstable when tracking points are generated over
homogeneous regions. Furthermore, median flow tracker does not
maintain an object model and is therefore unable to recover from
failure. Object detector is the component designed to allow to re-
initialize short term tracker when drifting.

3.4 Object Detector

While the recursive tracker depends on the location of the object
in the previous frame, the object detection mechanism employs an
exhaustive search based on a sliding-window approach [59]. In such
way, re-detection capabilities and invariance to fast changes of target
motion dynamic are enabled in the whole system.
Since several thousands of sub-windows should be tested indepen-
dently to check if they contains the object of interest, a cascaded
object detector based on three stages is employed to reject as many
non relevant sub-windows with a minimal amount of computation.
The complete schema of the this component is depicted in figure 3.4.
In the first stage all sub-windows that exhibit a variance lower than

Figure 3.4: The Cascade Object Detector work-flow. 1) a candidate patch rejected by
the variance filter. 2) a candidate patch rejected by the ensemble classifier.
3) a positive patch detected by the ensemble classifier. 4) the false positive
patch detected by the ensamble classifier

a certain threshold Θvar are rejected. Such a variance filter is able



CHAPTER 3. TRACKING LEARNING DETECTION:
OPEN ISSUES 66

to rapidly reject uniform background regions (the box 1 in fig. 3.4)
but unable to distinguish between different well-structured objects
(boxes 2, 3, 4 in fig. 3.4).
The second stage comprises an ensemble of base classifiers exploit-
ing ferns features [61]. As pointed out in section 2.3.2, ferns fea-
ture is a patch texture descriptor based on a binary comparisons of
the intensity values of d random couple of pixels p1 = (x1, y1) and
p2 = (x2, y2) drawn from a uniform distribution once at startup and
remained constant over time. Such binary test, invariant against
constant brightness variations, defines a binary digit fi as follow:

fi =

{
0 if I(p1) < I(p2)
1 otherwise

(3.15)

By concatenation of the d responses, a binary number F , is generated
and its decimal form defines the ferns response used to derive (as will
explained in section 3.6) the posterior probability P (y = 1|F ) that
a sub-window belongs to positive class (y = 1). The fern classifier
maintains a distribution of posterior probabilities of 2d entries. In
[55] 13 comparisons are used, leading to a space of 8192 possible bi-
nary codes indexing the posterior probability. The approach adopted
to estimate the posterior probability associated with the fern F is
directly encoded into the learning component described in section
3.6. The ensemble classifier is constructed by averaging M different
ferns as showed in fig. 3.5. To guarantee the independence of the
base classifiers [17], the space of pixel locations within a normalized
patch is first discretized and then all possible horizontal and vertical
pixel comparisons are generated. Comparisons of zero length are not
discarded and after random permutation, the remaining comparisons
are split into the base classifiers.
As a result, every classifier is guaranteed to be based on a differ-
ent set of random pixel, uniformly covering the entire patch. This
is in contrast to other approaches [61], where pixel comparisons are
generated independently one other. For each tested sub-window, if
posterior probability P is smaller than a threshold (Θensemble = 0.5)
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Figure 3.5: Ensemble of ferns classifier: average of M fearns feature

the patch is classified as negative and is rejected (boxes 2 in fig. 3.4).
In [55] 10 base classifiers have demonstrated a good trade-off between
detection accuracy and real-time performance capabilities. Clearly,
if the speed is not an issue new base classifiers can be added in-
creasing the performance of the ensemble. Within the third stage,
the detection provided by ensemble classifier are evaluated by the
nearest neighbor classifier building the appearance model.

3.5 Integrator

Median flow tracker and object detector run in parallel in order to
realize the sampling and labeling stage and the feature extraction and
refinement stage described in section 2.1.
They have identical priorities, and they can be thought fundamen-
tally as two competitive estimators of the object state. While the
detector localizes already known templates, the tracker localizes po-
tentially new templates and thus can bring new data for the detector.
The integrator is the component designed to combine the tracker and
the detector hypotheses to predict object location in the current im-
age. A naive implementation is sketched in algorithm 3.

If neither the tracker nor the detector output a bounding box,the
object is declared as not visible. Otherwise the integrator outputs
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Algorithm 3 INTEGRATOR Component

1: procedure INTEGRATOR
2: Input: Bt

tracker , Bt
detector

3: Output: Bt
final

4: if Sr(It(Bt
tracker) > Sr(It(Bt

detector) then
5: Bt

final = Bt
tracker

6: else
7: Bt

final =
∑

B∩Bdetector>0.8B
t
detector

8: end if
9: end procedure

the maximally confident bounding box, measured using the Conser-
vative similarity Sc.
To increase the localization accuracy, when multiple detection are
available in proximity of the the maximally confident detection, the
tracker bounding box is averaged with all detections that exhibits an
overlap > 0.8. If the maximally confident detection is far from the
tracker (overlap < 0.8), the tracker is re-initialized by regenerating
the fixed grid of point inside the estimated state.

3.6 Object detector learning strategy

The objective of the learning component is to train the ensemble de-
tector in the first frame and bootstrap its performance at run-time
using the P/N learning strategy [55] .
The initial training of the detector is performed by synthesizing
200 positive examples from the initial object appearance, providing
scaled, translated and in plane rotated versions of the initial bound-
ing box. Negative patches are collected from the surrounding of the
initial patch, without generating synthetic examples.
The detector update, at run-time is performed through the P/N
learning, a semi-supervised learning approach that, exploiting so-
called structural constraints, extracts training data from new unla-
beled data and updates the classifier building the detector.
Such learning scheme employs two classes of constraint, namely the
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P-Constraint and the N-constraint, in order to update on-line each
fern base classifier Fk.
The P-Constraint assumes that all the patches highly overlapped
with the final result must be classified as positive examples. Ac-
cording to such constraint, the learner perform a label switch for
negative classified patterns that overlaps with final solution. The
N-Constraint requires that all the patches that are not overlapped
with the valid final result must be classified as negative examples.
Consequently it involves a label switch for positive classified patterns
that are far from the current solution. The number of label switch-
ing associated to each ferns Fk measures the feature reliability, i.e. it
indicates how such descriptor is representative for the object. Such
concept is directly expressed in to strategy to update the posterior
probability that is defined by:

p(y = 1|Fk) =

{
pFk

pFk+nFk
if pFk

+ nFk
> 0

0 otherwise
(3.16)

where pFk
is the number of times a P-constraint is applied to Fk while

nFk
nFk

refers to the number of times a N-constraint are applied to
Fk.
Clearly, the initialization stage, set up pFk

= 1 and pFk
= 0 for each

fern Fk. With this rule, structural constraints provide a feedback
about the performance of the classifier which is iteratively improved
in a bootstrapping fashion. In practice, at each tracking iteration,
the training set is augmented with miss-classified examples and clas-
sification functions are updated by hard samples that are more chal-
lenging for the current model. In [55] a theoretical analysis provides
conditions under which the P-N learning guarantees improvement of
the classifier.
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3.7 TLD: open problems and proposed solution

An extensive set of experiments[55] on standard benchmark datasets
(MILBOOST DATASETS, TLD DATASETS ), has demonstrated
TLD capabilities with respect to the closest competitors under var-
ious challenging conditions such as abrupt camera motion, motion
blur, appearance changes.
However some open problems have been recently highlighted in [93].
In particular, a fundamental limitation of the method has been proved
under condition of partial, full occlusion and similar objects or back-
ground. Such events represent the most challenging scenario for this
approach since they severely stress the interaction between the gen-
erative tracker and the discriminative object detector building the
system. Indeed, when the target is partially occluded the generative
tracker systematically learns the occluding appearance as a change
in object appearance.
In the worst case, when the occluding object resembles the target
appearance, the tracker component promotes wrong hypothesis to
the integrator component, causing in the worst case, the learning
of negative examples. Consequently the object detector is wrongly
updated and becomes a persistent source of errors. In figure 3.6 a
clarifying example of this critical behavior is depicted. The coke is
characterized by areas of uniform color resembling surrounding back-
ground and as it moves behind the leaf the tracker component drifts.
Indeed, after reinitialization, stationary local points on the leaf (blue
dots) are identified by median operator as the correct ones, lead-
ing the final solution to drift (yellow box ). Even if among ensemble
detections (all other colored boxes), the correct one is present, its
confidence is still too low to activate error correction. The time re-
quired to correct the tracker depends on leaf similarity respect to
target appearance and on the ability of the detector component to
recover with an higher confidence the correct target hypothesis that
enables error correction trigger.
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Figure 3.6: TLD failure on Coke sequence (MILBOOST DATASET [6]). On the right
column positive samples, on the left negative samples. In yellow TLD final
solution corresponding to median flow tracker solution, while other colored
boxes are detections provided by detector

Avoiding such condition is the open problem of the TLD paradigm,
and from a general point of view it face off an open question of the
machine learning community on how integrating supervised learning
with unsupervised learning methods.
The aim of the approaches proposed in this thesis is directed towards
the solution of this specific problem.
In particular we integrate into the TLD approach two algorithm able
to alleviate such critical behavior and improve the overall system per-
formances.
The first approach,the BTLD tracker, has been designed to tackle the
problem directly on its source (the tracker component). A deep in-
vestigation of median flow has reveled a systematic drifting behavior
caused by reinitialization strategy adopted at each tracking iteration
to regenerate the 2D grid defining the target state. In chapter 4,
our contribution towards the solution of this critical behavior is pre-
sented. The second approach BTLD+, extend the BTLD tracker
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into a discriminative learning framework, introducing a coupled lay-
ered visual representation of the object, that model the target at
different levels of resolution. In such way, the reinitialization strat-
egy is controlled by a classifier able to discriminate among target and
background local features.



Chapter 4
BTLD: a Bayesian Approach to Tracking
Learning Detection

As stated in [93], TLD paradigm is successful in several scenarios but
exhibits a systematic drifting behavior in presence of occlusions and
resembling background, due to the reinitialization strategy adopted
to correct the median flow tracker at each tracking iteration.
Enforcing the robustness of such generative tracker has been pointed
as an open problem for the TLD paradigm.
This challenge poses a fundamental question on how the unsuper-
vised learning component of the system should select new data in
order to find noise free unlabeled data necessary to update the su-
pervised appearance model.
This chapter is organized as follows: section 4.1 analyzing the TLD
weakness from a theoretical point of view, introduces the reason mo-
tivating the design of a novel generative tracker; in section 4.2, we
present the novel generative tracker and its integration into the TLD
framework; sections 4.4 and 4.5 present the object detector and the
integrator component respectively; in section 4.6 experimental re-
sults are showed comparing the proposed approach with the original
TLD and other state-of-the arts methods; finally, section 4.7 summa-
rizes the main contributions and highlights open research challenges.

73
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4.1 Motivation

The systematic drifting behavior of the median flow tracker is re-
lated to the design choice of tracking points lying over a fixed grid
that is reinitialized at each tracking iteration on the estimated target
location. Within reinitialization approach, authors assumes a com-
plete visibility of the target and .
Such reinitialization strategy inevitably involves the selection of new
points, that a priori may generate the failure of the Lukas-Kande
method, since it is able to track points centered on high textured
regions.
This condition represents a fundamental constraint to the above
method, since it allows to verify the assumptions that lead to the
resolution of the aperture problem of the optical flow. It can be seen
from equation 3.13 that v can be calculated only if the structure
tensor S is invertible. S is reliably invertible if it has two large
eigenvalues (λ1, λ2), which is the case when the gradient of the im-
age assume values in both directions. This is the reason that makes
corner points “good feature to track” [96], since they are defined as
high responses to the operator:

det(S)− ktrace(S)2 (4.1)

The median operator applied to forward-backward error and normal-
ized cross correlation control such instability, filtering out unreliable
tracked points. Such measures of spatio-temporal consistency and
visual similarity allows the selection of reliable points in order to es-
timate the final box defining the current state.
Such box is parameterized by horizontal displacement, vertical dis-
placement and scale change and all three parameters are estimated
independently using the median.
When the target overlaps with other objects, the tracker does not de-
tect any occlusion, since the most reliable points continue to maintain
the same relative distance over time and is in accord to the median
statistic. At each subsequent re-initialization, points belonging to
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the target are replaced by the points of the occluding object leading
the tracker to drift.
The detector is designed to correct such failure, but in some cases
wrong samples are learned before the error correction take place,
leading the whole system to an irreversible state. However, the time
required to activate the error trigger is unpredictable. Furthermore,
it strongly depends on how many target variability has been learned
before the occlusion.
Providing a more stable tracker component and in particular a more
flexible reinitialization strategy, is a crucial problem to improve the
TLD performances.
The reinitialization strategy is a challenging problem in adaptive vi-
sual tracking. In [48] a set of simple features (e.g., optical flow fea-
tures) is used to track individual parts of the object while distances
among features are used to add or remove salient points during track-
ing. Since the set of features is geometrically unconstrained, the
tracker is likely to get stuck on the background, losing the target.
In [118] Harris corner is used to detect stable regions for tracking
and enforcing a single global affine transformation constraint to avoid
drifting. However, authors assume that the shape of the object can
be approximated with an ellipsoid and that the object does not de-
form, limiting the generality of the tracker.
In this work we approach the aforementioned problems by focus-
ing short term tracking on high textured regions localized around
Harris local maxima and by motion vector analysis, rejecting unreli-
able KLT points. A novel reinitialization strategy, directly encoded
into our probabilistic framework, is proposed to reidentificate at each
tracking iteration the set of reliable points.
The novel idea behind our reinitialization strategy is to add new re-
gions of interest around high confident points tracked from the pre-
vious frame and filter out those regions that are not geometrically
consistent with the best explanation of the target global appearance
during the inference process.
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Inspired by the outlier filtering scheme proposed in [24] for multiple
target tracking, we designed an markov chain monte carlo (MCMC )
particle filter that automatically rejects local features not consistent
with the current estimate of the target location and scale. In this
way stable regions are geometrically constrained to the estimated
target area without any assumption on its shape.
We integrated our method into TLD approach, resulting in a new
efficient and accurate long term tracker, that we named Bayesian
Tracking Learning Detection (BTLD).
A schema depicting the complete BTLD architecture is showed in
figure 4.1.

Figure 4.1: BTLD architecture.
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4.2 Proposed Approach

With BTLD, we focus KLT only on salient regions defined around
local maximum of Harris operator defined in 4.1. This strategy
as previuosly discussed, reduces KLT serious failures to resembling
background since it restricts the tracking on high textured regions.
As consequence, at each tracking iteration a sparse set of points Kt
is employed to track the target over time, as depicted in figure 4.2.
From now on, Harris local maxima and regions of interest will re-

a b c

Figure 4.2: Tracking a sparse set of corners Kt. Sylv (a), Coke11 (b) ,David (c),from
the MILBOOST Dataset [6]

ferred with the same meaning.
To remove erroneous correspondences generated by KLT failures,
we apply a filtering scheme based on motion analysis. Assuming co-
herent motion of the tracked points, we remove those points whose
motion does not agree with the motion distribution estimated by
kernel density estimation, over the set Kt+1 of tracked points.
This processes removes KLT serious failures but reduces drastically
the number of local feature points. In order to guarantee a sufficient
number of such salient points, new ones, detected near the remaining
points are added. This is the most critical stage, since there is no
prior knowledge about the “nature” of such new salient regions.
The main idea is to allow the selection of new unconstrained salient
points followed by a refining step where not consistent elements are
rejected.
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In this way geometrical constraints can be encoded in our MCMC
particle filter, where we introduce two competitive likelihood func-
tions: one promotes the addiction of new salient points in Kt+1, the
other rejects local feature points that are not consistent with the
appearance encoded into the target visual model.
At each tracking iteration t, the set of tracked points Kt is updated
by two refining event, namely the growing and pruning.
Within the growing event new interest points Ktnew detected in the
current image are proposed as new point of interest to be added to
the set of reliable Kt. On the other hand, the pruning event is de-
signed to remove unreliable tracked points from Kt. The complete
procedure is reported in algorithm 4. At the t iteration, we track

Algorithm 4 BTLD Tracker

1: procedure BTLD Tracker
2: Input: Kt , Bt , It

3: Output: Bt+1

4:

5: Initialize K0 = HarrisCornerDetector(B0)
6:

7: while t < Nframes do
8: Kt+1 = KLTtracker(Kt)
9:

10: %Build Motion Vectors
11: V = |Kt+1 −Kt)|
12:

13: %Build the set of reliable and unreliable points
14: [Kt+1

r , Kt+1
u ] = KernelDensity(V)

15:

16: %Detect new corner
17: [Kt+1

new] = HarrisCornerDetector(θcorner)
18:

19: %Target State Estimation
20: [Bt+1 , Kt+1] = mcmc(Kt+1

r Kt+1
u )

21: end while
22: end procedure

independently by KLT each point belonging to the sets Kt (line 8).
We denote Kt+1, the set of corresponding points, generated by the
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KLT tracker.
In the next step, we compute V t = {|Kt

i −Kt−1
i |, i = 1 . . . |Kt

i |}, the
set of motion vectors associated to tracked points (line 11).
We estimate the motion distribution p(V |V t,Σv) of such points by
gaussian kernel density estimation (KDE ) (line 14):

p(V |V t) =
1

|V t|

|Vt|∑
i=1

Kv(V, V
t
i ) (4.2)

where Kv is gaussian kernel parametrized by the 2 × 2 covariance
matrix Σv. Assuming a motion consistency among positive target
points, we build the set of reliable points Ktr and of unreliable points
Ktu.
Ktr contains the subset of tracked points that are moving in a coherent
way respect to the peak Vmax of p(V |V t) while Ktu maintains rejected
points. The measure of reliability for a motion vector V t

i is obtained
by:

R(V t
i , Vmax) = (V t

i − Vmax)TKv(V
t
i − Vmax) (4.3)

In particular, R(V t
i , Vmax) <= 1, in relation to Kv properties, defines

a circular or elliptical filter centered around Vmax.
In addiction, new corners in proximity of the reliable points are de-
tected and are maintained in Ktnew (line 17). The proximity is speci-
fied by the parameter dcorner, which measure the maximum distance
allowed for new detected corner to be considered as:

• a possible change in object appearance that has not been yet
observed.

• a background region that was not visible before, because oc-
cluded by the target.

The three sets Ktr,Ktu,Ktnew are then refined by our mcmc procedure
that automatically search for the best state X t = [xt , yt , wt , ht]
that jointly:
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• contains the maximum number of reliable tracked points Ktr.

• encloses a visual content that maximizes the visual similarity to
the object appearance model.

In such way, new detected points Ktnew and Ktu unreliable tracked
points are automatically evaluated and inserted in the final set Kt
if they belongs to a state that exhibits high similarity to the global
appearance model.
Figure 4.3 depicts the result produced by the most relevant stages of
the proposed algorithm, while processing the sequence David. The

a b

c d

Figure 4.3: Intermediate results while tracking David from MILBOOST Dataset [6]. a)
The set of tracked point from the frame 295, K295. b) The set K296

r of reliable
tracked point on the frame 296, after motion filtering. b) The set K296

new of
new detected point on the frame 296. In blue the new detected points, in
green the reliable tracked points. c) The final set K296 after mcmc filtering.

four images, illustrate the intermediate results while tracking the



CHAPTER 4. BTLD: A BAYESIAN APPROACH TO TRACKING
LEARNING DETECTION 81

David from frame 295 to 296.
In particular, we can observe:

• the pruning approach realized by the KDE motion filter in order
to detect and remove unreliable tracked points.

• the growing approach realized by the MCMC state estimator to
add new corners (blu points in fig. 4.3-(c)) detected near the
reliable points (green points in figure 4.3-(c)).

4.3 Bayesian Formulation

Following the Sequential Bayesian formulation, the posterior proba-
bility of target state X t a time t is given by:

p(X t|Ot)︸ ︷︷ ︸
posterior

≈ p(Ot|X t)︸ ︷︷ ︸
a

∫
p(X t|X t−1)︸ ︷︷ ︸

b

p(X t−1|Ot−1)︸ ︷︷ ︸
c

dX t−1 (4.4)

where (a), (b) and (c) in Eq. 4.4 represent the observation likelihood,
the motion model and the posterior from previous time, respectively.
The hidden state X t = [ xt, yt, wt, ht] is encoded by location (xt, yt)
and size (wt, ht) information of the 2D box enclosing the target, re-
sulting in a 4D state space X .
Ot = [Kt At] represents the measurement space, where Kt = {Kt

i ∈
R2} is the set of local points tracked from previous frame and At
represent the adaptive global appearance model analyzed in 3.2 and
updated on-line employing the NN classifier described in 7.
Assuming Kt and At independent, the observation likelihood O is
factorized as:

p(At,Kt|X t) = p(At|X t)p(Kt|X t) (4.5)

Observation likelihood of Kt measures the fraction of local feature
points lying inside the candidate target state X t:

p(Kt|X t) =
Ki

t ∈ Xt

|Kt|
. (4.6)
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Such distribution promotes candidate states containing the maxi-
mum number of tracked local features, assuming that they are free
of errors. KLT failures, are automatically rejected by the global ap-
pearance likelihood modeled by TLD.
It assign low confidence to hypothesis containing local tracked points
and not resembling target appearance, assuming an “outliers-rejection”
role similar to ramdom sampling consensus (RANSAC [34]).
The visual likelihood, measuring the visual similarity of a candidate
state respect to the target appearance model, is directly derived by
relative similarity defined in equation 3.5:

p(At|X t) = Sr(P,A) (4.7)

We assume a linear dynamic model modeled by a gaussian distribu-
tion over X , centered on previous target X t−1 location and scale:

p(X t|X t−1) = N(X|X t−1,Σx) (4.8)

Considering the complexity of the given probabilistic formulation, it
is extremely challenging to design an analytical inference method for
estimating the maximum a posterior (MAP) solution:

X̂ t = argmax
Xt∈X

p(X t|Ot) (4.9)

This challenge is due to the presence of the high nonlinearity of
observation likelihood functions. We propose to employ a sampling
based sequential filtering technique based on the MCMC particle
filter[66].
At each time step t, we approximate the posterior by a number N
of samples:

p(X t−1|Ot−1) ≈ {X t−1
s }Ns=1. (4.10)

Propagating samples through the motion model, we generate par-
ticles for the predictive distribution and approximate the posterior
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distribution at time t by Monte Carlo integration:

p(X t|At,Kt) ∝ (4.11)

p(At|X t)p(Kt|X t)
N∑
s=1

p(X t|X t−1
s )p(X t−1

s |At−1,Kt−1)

Approximation in eq. 4.11 is achieved by a Markov chain over
the joint space of X that converges over the posterior distribution
p(X t|At,Kt).
The whole Metropolis-Hasting procedure with component-wise up-
dating scheme is sketched in algorithm 5.

Algorithm 5 MCMC Particle Filter

1: procedure MCMC Particle Filter
2: Input: Kt, Yt, Xt−1

i

3: Output: p(Xt|Yt,Kt)
4:

5: Initialize Xt
0 = Xt−1 = [x, y, w, h]t−1 = {Xl, Xs}t−1

6:

7: while i < Naccept do
8: Select uniformly the candidate component j ∈ [1 2]
9:

10: Propose X∗j ∼ N(Xi
j |X

i−1
j )

11:

12: Build the hypothesis X∗ = {Xj , Xk 6=j}
13:

14: Evaluate the acceptance probability α = min(1, p(X∗
s |At,Kt)

p(Xi−1
s |At,Kt)

)
15:

16: Accept X∗s → Xi+1
s if α < u← uniform sample ∈ [0 1]

17: end while
18: end procedure

For MCMC sampling to be successful, it is critical to have a good
proposal distribution which can explore the hypothesis space effi-
ciently.
Our proposal distribution generates separate random hypothesis for
location (X1) and scale (X2) subspaces (line 8), according to normal
deviates from previous accepted hypothesis (line 10).
The stopping criteria adopted to terminate the proposal generation
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relies on the number of accepted samples Naccept (line 7). Once the
sampling method has reached convergence, the maximum a posterior
estimate for X t is analyzed by the TLD integrator that establishes
the final solution.

4.4 Object Detector

The object detector is built following the approach described in sec-
tion 3.4. In addiction, a refinement step has been introduced to
reduce the number of overlapping produce detections. All relevant
detections are clustered by the agglomerative hierarchical clustering
approach proposed in [82], exploiting a similarity measure based on
overlap ratio between rectangles. According to such measure, the
distance d(B1, B2) between two detections B1, B2 is a value in [0 1]
defined by B1∩B2

B1∪B2
. A threshold value of 0.5 has been used to generate

new clusters, in all of our experiments. All bounding boxes assigned
to a cluster are finally averaged and compressed into a single final
detection.

4.5 Integrator

The tracker and object detector run in parallel with identical objec-
tives. In essence, they defines two experts that compete to object
state estimation. While the detector localizes already known tem-
plates, the tracker localizes potentially new templates and thus can
bring new data for detector. The Integrator is the component de-
signed to fuse the tracker and the detector hypothesis to predict
object location in the current image. The adopted data fusion pro-
cedure is sketched in algorithm 4.5.

The decision is based on the confidence of the tracker hypothesis
Bt
tracker, and on the detection with maximum confidence Bt

detector.
If the detector yields a confidence higher than the result from the
tracker, then the response of the detector is assigned to the final re-
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Algorithm 6 INTEGRATOR Component

1: procedure INTEGRATOR
2: Input: Bt

tracker, Bt
detector

3: Output: Bt
final, V

t

4: Bt
final = ∅

5: V t = false
6:

7: if Sr(Bt
tracker,At) < Sr(Bt

detector,At) then
8: Bt

final = Bt
detector

9: V t = true
10: else
11: Bt

final = Bt
tracker

12: if Sr(Bt
final) > θ+NN then

13: V t = true
14: else
15: if V t−1 ∧ Sr(Bt

final,At) > θ−NN then

16: V t = true
17: end if
18: end if
19: end if
20: end procedure

sult (line 8-10). This corresponds to a re-initialization of the tracker.
If the tracker produced a valid result and is not re-initialized by the
detector because it is less confident than the tracker, the result of
the tracker is assigned to the final result (line 11). In all other cases
the final result remains empty (line 4-5), indicating that the object
is not visible in the current frame. We use a logical variable V t to
memorize the validity of the final result Bt

final over time. Only if the
final result is valid the learning step is performed. The final result is
valid under the following two circumstances, both of which assume
that the tracker was not re-initialized by the detector. The final re-
sult is valid if the tracker produced a result with a confidence value
being larger than θ+

NN (line 13).
The final result is also valid if the previous result was valid and the
tracker produced a result with a confidence larger than θ−NN (Line
16).
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In all other cases, the final result is not valid. The first bounding box
is always valid. The confidence interval [θ−NN θ+

NN ] defines a range
of confidence values to add new samples into the appearance model,
as described in algorithm 7. In particular a negative sample P− is

Algorithm 7 NN-Classifier with confidence interval [θ−NN θ+NN ]

1: procedure NN-Classifier
2: Input: A = {A+, A−}, P = {P+, P−}
3: for P ∈ P do
4: conf = Sr(P,A)
5: if conf < θ+NN ∧ P ∈ P+ then
6: A+ = {A+, P}
7: end if
8: if conf > θ−NN ∧ P ∈ P− then
9: A− = {A−, P}

10: end if
11: end for
12: end procedure

added to A if Sr(P−,A) > θ−NN , while a positive sample P+ is added
A if Sr(P+,A) < θ+

NN .
This strategy allows a significant reduction of accepted patches at
the cost of coarser representation of the decision boundary.

4.6 Experimental Results

We evaluate, quantitatively, BTLD using challenging sequences from
the MILBoost dataset [6]. Each experiment in this section adopts the
evaluation protocol proposed in [55].
The performance are evaluated by Recall measure, indicating the av-
erage percentage of frames for which the overlap between the iden-
tified bounding box and the ground-truth bounding box is at least
50%.
The tracker is initialized in the first frame of a sequence and tracks
the object of interest up to the end.
Authors in [93], identified in Coke and Faceocc2 the most critical
sequences for TLD.
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The Coke sequence (fig. 4.4-a,b,c) proves sensitivity to occlusion and
resembling background. The target is affected by several occlusions
with the leaf at the beginning of the sequence (figure 4.4-a) leading
the tracker component to drift (figure 4.4-b-c). Furthermore, rotated

a b c

d e f

Figure 4.4: From top to bottom: Coke,Faceocc2. In Red TLD estimated object state, in
blue BTLD estimated object state

version of Coke are not learned by the ensemble classifier that em-
ploys several frames to redetect that target and restarting the target
as showed in figure 4.4-c,d). Our method, by tracking only stable
points, does not lose the target (figures 4.4-b,c) outperforming the
baseline method with a Recall 30% higher.
In sequence Faceocc2 sensitivity to occlusions and permanent changes
of appearance is analyzed, since a man is continuously occluding his
face behind a book (fig. 4.4-e). Moreover during the sequence the
man wears a hat (fig. 4.4-c), so that the adaptivity of the tracker
to permanent changes of appearance can be evaluated. Reported
frames (d,e,f) highlight how BTLD produces more accurate detec-
tion results since target state estimation is exploited by temporal
consistency that controls variation in position and scale over time.
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Quantitative results reported in table 4.1 confirm the improvement
in accuracy achieved respect to the baseline method.

We evaluated our method also on sequences Sylvester,Faceocc,

Sequence frames PROST OB FTRACK MIL ORF TLD BTLD
[94] [40] [1] [6] [92] [55]

1. David 1200 0.8 0.23 0.47 0.70 0.95 1.00 1.00

2. FaceOcc 820 1.00 0.35 1.00 0.96 0.70 0.96 1.00

3. Sylvester 1440 0.73 0.51 0.74 0.93 0.71 0.97 1.00

4. Coke 292 — — — 0.46 0.17 0.60 0.91

5. Tiger1 353 0.79 0.38 0.20 0.78 0.27 0.88 0.92

6. Tiger2 364 — — — 0.80 0.21 0.85 0.94

7. Dollar 326 — — — 1.00 — 0.86 0.93

8. Girl 945 0.8 0.24 0.7 47.0 — 0.93 0.95

9. FaceOcc2 812 0.82 0.75 0.48 0.96 0.82 0.96 1.0

Table 4.1: Recall measures. The best performance on each video is boldfaced.

Girl, David, Tiger1, Tiger2 , Dollar. The selected sequences depicts
scenarios where the baseline method produces overall good tracking
results.
Dollar(fig. 4.5-a,b,c ) is a simple but useful sequence to understand
the robustness to distractors and the degree of adaptiveness of the
algorithms in a very controlled and predictable situation.
The target ( fig. 4.5-a) suddenly changes appearance(fig. 4.5-b).
After a while a distractor equal to the original appearance of the
target pops out close to the target (4.5-c) and then moves next to it.
With such scenario the stability of the tracker component is essential
to avoid drifting. Our approach outperforms the baseline method up
to 7% points, highlighting the correctness of our intuition. However,
the MILBOOST tracker exhibits higher performances respect to the
proposed approach. Indeed, since the object is moving very slow,
for few frames (%7) the estimated solution presents an high overlap
with the distractor until the motion of the two objects becomes more
discriminative. For such reason the MILBOOST approach, due to
the high stability of its learning component is not affected by this
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condition. In contrast, in condition where the appearance variability
is high MILBOOST slows down its performances, since the it is not
able to detect such variations.

a b c

d e f

Figure 4.5: From top to bottom: Dollar, Sylv. In Red TLD estimated object state, in
blue BTLD estimated object state

Sylvester(fig. 4.5-d,e,f ) sequence, is a moderately difficult scene,
testing target characterized by uniform regions of color that moves
with out of plane rotation. In such scenario TLD presents several
difficulties since median flow tracker is distracted by similar back-
ground appearances (fig. 4.5-e).
The detector is able to correct the tracker (fig. 4.5-e), but time re-
quired to re-detect the object reduces overall tracking performances,
as shown in table 4.1. Our approach gains 3% on the TLD approach
reaching the maximum recall value.

Faceocc2 sequence , is a moderately difficult scene, testing face
tracking under occlusion. The target is continuously occluding with
a book (fig. 4.6 -b,c), bat once again our approach result not sensitive
to such event.

Tiger1 and Tiger2 depict the same challenging scenario. The main
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a b c

e f g

Figure 4.6: From top to bottom: Faceocc, Tiger. In Red TLD estimated object state, in
blue BTLD estimated object state

difficulties arises from the low size of the target and the continuous
occlusions (fig. 4.6 -f -g). This conjunction of event distract the
TLD tracker that lost the target (fig. 4.6-g). Also in this scenario
our approach is not distracted by occlusions reaching the best per-
formances. Girl analyzes tracker capabilities under low quality im-
ages(fig. 4.7 -a-b). Furthermore, large occlusion and fast appearance
changes are event that occurs in this scenario (fig. 4.7 -a-b).

David sequence (fig. 4.7 -d-e-f) stresses tracker capabilities un-
der camera motion and view point changes. Our approach as well
TLD tracker localize the target with maximum recall. In summary,
results reported in table 4.1 underline the improvement achieved by
integrating our component into the TLD approach. Furthermore,
experiments underline how BTLD also affects appearance modeling
avoiding the selection of wrong sample during the update of the ap-
pearance model.
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a b c

d e f

Figure 4.7: From top to bottom: Girl, David,. In Red TLD estimated object state, in
blue BTLD estimated object state

4.6.1 Computational complexity

An analysis of the computation complexity of each independent com-
ponent is presented. The computation complexity of the NN-classifier
is O(m2|A|) where m2 is the size of the patch and |A| is the total
number of samples defining the appearance model.
The computation complexity of the tracker component depends on
the number of generated samples Naccept during the chain evolution
and on the size of A, leading to O(nsm

2|A|).
As concern the object detector, the computation time for a sub-
window that passes all filtering stages building the cascade is:

• O(4) for the variance filter adopting the integral image approach
that has a pre-computation time of O(MN).

• O(2dK) for the ensemble classifier, where d is the number of
pixel comparison building the fern feature space and K is the
number of ferns building the ensemble.
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• O(m2|A|) for the confidence evaluation.

Furthermore, the hierarchical clustering to reduces detections re-
quires O(C2) distances evaluations, where C is the number of hy-
pothesis produced by the cascade detector. The final computation
complexity is dominated by the tracker, leading to O(Nacceptm

2|A|).
In our experiments, a fixed size for A of 40 samples (20 positives and
20 negatives) has lead to a significant reduction of the computation
time without affecting the tracking accuracy. When the number of
samples exceeds such values, the oldest samples are replaced, keeping
constant the size ofA. With this short-term memory mechanism, the
system could master the challenge of an unstructured environment
as well as moving objects with a rate of 10 fps.

4.6.2 Parameter Selection

Since tuning is a very tedious and time consuming task, here we
report the parameters used in our simulations, to obtain results re-
ported in 4.1

• Appearance Model sample size. We use 15×15 to represent
object and background visual appearance.

• Nearest Neighboor classifier threshold. In our experi-
ments, we used θ−NN = 0.5 and θ+

NN = 0.65 which compromises
the accuracy of representation and the speed of growing of the
object model. Exact setting of this parameter is not critical.

• TLD Object Detector parameters.

– Sliding Window. In sliding-window-based approaches for
object detection, sub-images of an input image are tested
whether they contain the object of interest Given an image
n× n the number of possible sub-windows grows as n4. We
restrict the search space to a subspace W by employing the
following constraints. First, we assume that the object of
interest retains its aspect ratio. Furthermore, we introduce
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margins dx and dy between two adjacent sub-windows and
set dx and dy to be 1 of the values of the original bounding
box. In order to employ the search on 10 multiple scales, we
use a scaling factor s = 1.2a, a ∈ {−5 . . . 5} for the original
bounding box of the object of interest. We also consider
sub-windows with a minimum area of 15 × 15 pixels only.
The size of the set of all sub-windows W constrained in this
manner is then:

|W| =
∑

s∈{1.2−5...1.25}

n− s(w + dx)

sdx

m− s(h+ dy)

sdy
(4.12)

In 4.12 w and h denote the size of the initial bounding box
and n and m the width and height of the image. For an
initial bounding box of size w = 80 and h = 60 the number
of sub-windows in a VGA image is 146, 190.

– Variance threshold. We adopted a Θvar = 10% of the
variance exhibited by the object at first frame.

– Ferns Feature . We adopted 13 binary comparison (S =
13) to build the fern feature.

– Ensamble Detector . We adopted 10 base classifier (M =
10) to build the ensemble classifier and Θensamble = 0.5.

• KLT window size. We employ window 11 × 11 to solve the
optical flow aperture problem and 2 levels for the image pyramid.

• Motion Filter. The 2× 2 covariance matrix Σv specifying the
gaussian kernel employed to estimate the motion distribution
p(V |V t,Σv) of salient points is:

Σv = 2I

• Proposal density. We split the proposal π density into two in-
dependent proposal function, namely πlocation and πsize. πlocation
generates hypothesis for the location (x, y) defining the center
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of bounding box representing the target according to:

πlocation = N(X|X t−1,Σlocation)

where:
Σlocation = 500I

πsize generates hypothesis for the parameters (w, h) specifying
the dimension of the bounding box representing the target ac-
cording to:

πsize = N(X|X t−1,Σlocation)

where:
Σlocation = 10I

• Motion dynamic. The motion dynamic p(X t|X t−1) = N(X|X t−1,ΣX)
is linear motion model:

ΣX =

2000I2×2 0

0 250I2×2

 ,
• Corner Maximum distance Θcorner. It defines the maximum

distance in pixel, that new detected corner should have from the
reliable points to be considered as possible changing appearance
of the target. We use Θcorner = 30.

• Markov Chain evolution. We found experimentally that 1000
accepted samples is good trade off between accuracy in detection
and real-time performances requirements.

4.7 Conclusions

In conclusion BTLD, defines a novel generative tracker that corrects
a systematic drifting behavior revealed in the short term tracker com-
ponent building the TLD approach. The novelty of such generative
tracker relies on its capabilities of solving in joint fashion feature
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selection and re-sampling exploiting the global adaptive appearance
model as outlier removal. A real-time implementation of the MCMC
particle filter framework has been described in detail and an exten-
sive set of experiments was performed in order to highlight the ability
of our approach to increase robustness of TLD tracker.

4.8 Related Publications

• Giorgio Gemignani, Wongun Choi, Alessio Ferone, Alfredo Pet-
rosino, Silvio Savarese. A Bayesian Approach to Tracking Learn-
ing Detection. ICIAP 2013. Lecture Notes in Computer Science
Volume 8156, 2013, pp 803-812



Chapter 5
Application of BTLD in an Ambient
Assistent Living scenario

In the last years, ceiling mounted camera, due to its limited invasive-
ness and cost-effective installation and management, has become an
emerging solution to enable people localization capabilities in Ambi-
ent Assisted Living (AAL) systems, a specific user oriented applica-
tion of the ambient intelligence (AMI ) discipline. However humans
detection and tracking, exploiting only visual informations is still a
challenging problem due to the high variability exhibited by humans
appearance observed from a top view [79, 95, 91, 98, 116].
In this chapter we present the BTLD approach extended with mo-
tion detection for tracking humans in ceiling mounted camera video
stream. In 5.1 we introduce the reasons motivating the proposed
extension; In 5.2 the complete system architecture is described an-
alyzing in detail all the building blocks of the extended system; in
5.2.1, we introduce the motion detection component; in subsection
5.2.2 we describe the proposed human appearance model; in 5.2.3
and 5.2.4 we introduce the tracker and the detector components re-
spectively. In 5.3 experimental results and computational complexity
of the approach are presented, followed by a conclusion.

96
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5.1 Motivation

Despite its high performances, BTLD is not suitable to control com-
plex deformations of target appearance observed from a ceiling mounted
static camera for several reasons. The most critical problems come
from the state representation and appearance descriptor. Indeed,
representing the target state as a rectangle and adopting a similarity
measure based on ncc easily produce low confidence values for new
hypothesis generated by both the tracker and the detector. More-
over, the high density of corners into the surrounding background
leads the tracker to drift as depicted in figure 5.1. As the target

a b c d

Figure 5.1: BTLD failure video1 from KSERA Dataset [116]

moves (figure 5.1 b), erroneous feature points lying inside the target
estimated state, are selected to grow the set of reliable points. After
several frames the tracker drifts and the modeling component learns
wrong samples (fig. 5.1 c-d ).
To overcame this limitation, since the camera is static, we integrated
a motion detection component based on robust background subtrac-
tion [72] providing a new source of information able to stabilize the
performance of each component building the BTLD architecture. In
essence, the motion detector classifies image regions in moving (the
foreground) and static (the background) as showed in figure 5.2. In
particular, the tracker component exploits foreground regions to han-
dle the selection of new salient point of the target. At each tracking
iteration, new points of interest detected in proximity of the tar-
get are added to the set Kt+1

new only if they belong to a foreground
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Figure 5.2: The background subtraction allows to detect moving elements (white regions)
and static elements (black regions) in the current frame.

region. In other words, the motion detector defines a new filtering
stage that rejects corner points belonging to static image regions and
accept corner points belonging to moving regions. With this strat-
egy, the growing-pruning approach building the BTLD approach is
less sensitive to the wrong sample selection problem. The analysis
of foreground image regions, has been incorporated also in to the
cascade object detector as a new preliminary filtering stage . Fur-
thermore, human appearance representation has been modeled by a
color histogram representation, extracted from moving regions de-
tected by robust background subtraction [72]. In such way a more
discriminative representation of the target appearance is available
and described limitations are avoided, stabilizing performances on
real-time human detection and tracking.

5.2 Proposed Architecture

The complete architecture of our tracking system is now built on five
interacting components: the tracker, the object detector, the motion
detector, learning component and integrator as depicted in figure 5.3.
The motion detector maintaining a background appearance model
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Figure 5.3: The proposed system architecture.

Bt over time, detects moving regions into the scene employing ro-
bust background subtraction. Both the tracker and object detector
exploit motion classification to support target localization.
The tracker has been re-designed to solve the short term tracking
problem including moving regions analysis to constraint the selection
of new salient points. Indeed, only foreground regions are allowed
to generate new candidate local feature points. The cascade object
detector performs a full scanning analysis of the image in order to
localize all appearances that are similar to the ones that have been
observed and learned in the past. It is still built on three filtering
stages to rejects as many non relevant sub-windows with a mini-
mal amount of computation. We replaced the first filtering stage of



CHAPTER 5. APPLICATION OF BTLD IN AN AMBIENT
ASSISTENT LIVING SCENARIO 100

the cascade with a background filter that reject static regions and
all moving regions having density of foreground pixels lower than a
threshold θfg. The integrator component continues to perform the
data fusion task as described in sec. 3.5. The learning component
exploits a color histogram based representation, to build the Nearest
Neighbor classifier able to discriminate among the target and the sur-
rounding background. With the collaborative contribution of each
component, the tracking performance are improved significantly.

5.2.1 Motion detector component

We approach motion detection by the Self-Organizing Background
Subtraction (SOBS ) algorithm [72]. It is based on the neural back-
ground model automatically generated by a self-organizing method,
without prior knowledge about the involved patterns. Such adap-
tive model have demonstrated good capabilities in handling scenes
containing moving backgrounds, gradual illumination variations and
camouflage, can include into the background model shadows cast by
moving objects, and achieves robust detection for different types of
videos taken with stationary cameras.
In essence, the background model is built on a self-organizing neu-
ral network arranged as a 2-D flat grid of neurons. Each neuron
computes a function of the weighted linear combination of incoming
inputs, with weights resembling the neural network learning, and can
be therefore represented by a weight vector obtained collecting the
weights related to incoming links. An incoming pattern is mapped to
the neuron whose set of weight vectors is most similar to the pattern,
and weight vectors in a neighborhood of such node are updated; such
learning of the neuronal map allows to adapt the background model
to scene modifications. Specifically, each pixel x is modeled by a
neuronal map consisting of n× n weight vectors b0

i (x), i = 1, . . . , n2

where each weight vector is a 3D vector initialized to the color com-
ponents of the corresponding pixel of the first sequence frame I0.
The complete set of weight vectors for all pixels of an image I0 with
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Figure 5.4: The motion detection approach based on the SOBS algorithm: the incom-
ing image It(x) is compared with the background model Bt(x) in order to
generate the foreground image F t(x)

N rows and M columns is represented as a neuronal map B0 with
n × N rows and n × M columns, where adjacent blocks of n × n

weight vectors correspond to adjacent pixels in image I0. The value
n = 3, suggested and justified in [72], is adopted for all experiments
reported in 5.3. For each frame I t, the color I t(x), at position x is
compared to the weight vectors bt−1

1 (x), . . . , bt−1
n2 (x) related to it in

the model Bt−1, to determine the weight vector bt−1
BM(x) that best

matches it according to a metric d(·):

d(bt−1
BM(x), I t(x)) = min

i=1,...,n2
d(bt−1

i (x), I t(x)). (5.1)

The best matching weight vector is used as the pixel’s encoding ap-
proximation, and therefore x is detected as foreground if the distance
in (5.1) exceeds a threshold ε; otherwise, it is classified as background
as depicted in figure 5.4. Exploiting such classification a foreground
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mask F t, is set according to:

F t(x) =

{
0 if background
1 if moving element

According to [72] we adopted the HSV color space and the Euclidean
distance as distance metric. Learning is able to adapt the background
model Bt−1 to scene modifications and is achieved by updating the
best matching weight vector bt−1

BM(x), supposed at position z of Bt−1,
and all other weight vectors in its neighborhood Nz according to:

bt(y) = (1− αt(y, z))bt−1(y) + αt(y, z)I t(x), ∀y ∈ Nz (5.2)

Here α(y, z) = γt · G(y-z), where γt represents the learning rate,
that depends from scene variability, while G(·) = G(·; 0, σ2) are the
values of a Gaussian filter with zero mean and σ2 variance in Nz.

5.2.2 Appearance Modeling Component

Human appearance is modeled by a dynamic data structure that
maintains the object appearance and its surroundings observed so
far. To this aim, we define a collection of patch histograms At =
{A+,A−}, where A+ = {A+

1 . . .A+
n } and A− = {A−1 . . .A−m} denotes

the sets of object and background patches histogram respectively.
A measure S(Ai, Aj) based on normalized cross correlation (ncc)
is defined to compare patches histograms Ai, Aj, according to the
following expression:

S(Ai, Aj) =
1

2
(ncc(Ai, Aj) + 1) (5.3)

Such measure produces values in the range [0 , 1], assuming 0 when
Ai is equal to Aj and 1 when they are not. In order to evaluate the
degree of similarity of an arbitrary patch histogram H to the object
appearances encoded in A+, we define three similarity measures:

1. Similarity with the positive nearest neighbor defines the
distance of a candidate histogram A and its nearest positive
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sample A+
i ∈ A+:

S+(H,A+) = min
Ai∈A+

S(H,A+
i ) (5.4)

2. Similarity with the negative nearest neighbor defines the
distance of a candidate histogram A and its nearest negative
sample A−i ∈ A−:

S−(H,A−) = min
Ai∈A−

S(H,A−i ) (5.5)

3. Relative similarity Sr defines the confidence that the patch
histogram A belongs to the object appearance model A+.

Sr(H,A) =
S−(H,A−)

S+(H,A+) + S−(H,A−)
(5.6)

The relative similarity is employed to build a Nearest Neighbor (NN )
classifier that discriminates target’s samples from the background as
depicted in figure 5.5. A candidate histogram H is classified as pos-

Figure 5.5: Histogram Feature Space and NN -classifier. In green target feature samples.
In red, background feature samples.
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itive if Sr(H,A) ≤ θNN , where the parameters θNN enables tuning
the nearest neighbor classifier either towards precision or recall. A
new unlabeled patch histogram is added toA only if the NN -classifier
prediction differs from the final label assigned by the tracker or detec-
tor results. This leads to a significant reduction of accepted patches
at the cost of a coarser representation of the decision boundary. We
introduce a confidence interval [θ−NN , θ

+
NN ] representing the range of

confidence values to add new samples into the appearance model. In
particular a negative sample H is added to A− if Sr(H,A) > θ−NN ,
while a positive sample is added A+ if Sr(H,A) < θ+

NN .
In our experiments, we used θ+

NN = 0.5 and θ+
NN = 0.65 which com-

promises the accuracy of representation and the speed of growing of
the object model.

5.2.3 Tracker Component

Following the approach prosed in sec. 4.2 the tracker component
solves the frame to frame correspondences by a growing pruning ap-
proach. The growing procedure is designed to guarantee a sufficient
number of such salient points at each tracking iteration.
In essence, it tries to repopulate the set Kt with new corners de-
tected in proximity of the reliable points and unreliable points that
were removed by the motion filter. This is the most critical stage,
since there is no prior knowledge about the “nature” of new detected
salient regions. The spatial distance respect to the reliable points
coming from the past and global appearance similarity are the only
available information used to infer a decision on the state of such
points.
By exploiting motion detection information, the selection of new
salient points is constrained to moving regions identified by robust
background subtraction( white regions in fig. 5.6-c).

In other words, motion detection allow to discard local feature
points that lies into the target bounding box, but belong to the sur-
rounding background.
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a b c d

Figure 5.6: Intermediate results while tracking Video1 from KSERA Dataset [116]. a)
The set of tracked point from the frame 49, K50. b) The set K50

new of new
detected point on the frame 50. In yellow the new detected points, in green
the reliable tracked points. c) The foreground mask produced by the motion
detector component. d) The final set K50 after mcmc filtering.

The BTLD tracker extended with motion detection is sketched in
algorithm 8.

Algorithm 8 Tracker component

1: procedure BTLD Tracker
2: Input: Kt, Bt, F t

3: Output: Xt+1

4:

5: Initialize K0 = HarrisCornerDetector(B0)
6:

7: while t < Nframes do
8:

9: Kt = KLTtracker(Kt−1)
10:

11: V = |Kt −Kt)|
12:

13: [p(V |V t)] = KernelDensity(V)
14:

15: [Kt
r , Kt

u] = MotionFilter(Vmode)
16:

17: [Kt
new] = HarrisCornerDetector(F t, θcorner)

18:

19: [Xt, Kt] = mcmc(Kt
r, Kt

u, F
t)

20:

21: end while
22: end procedure

At the t tracking iteration, the points correspondences Kt and Kt+1
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are computed by KLT method (line 8). The set of motion vectors
V t = {|Kt

i −Kt−1
i |, i = 1 . . . |Kt

i |} associated with the tracked points
are filtered according to the motion filter described in 4.2 and the
the sets of reliable points Ktr and unreliable points Ktu are populated
(lines 10− 14).
To capture appearance variability, new corners in proximity of the
reliable points are detected on the foreground mask calculated by
the background and are maintained in Ktnew (line 16).
A proximity threshold θcorner, controls the maximum distance al-
lowed to consider new detected corner as a possible change in object
appearance that has not been yet observed or a background region
that was not visible before, because occluded by the target.
The three sets are then refined by our mcmc procedure that auto-
matically search for the best state X t = [x , y , w , h] that jointly:

• contains the maximum number of reliable tracked points Ktr.

• enclose a visual content that maximizes the visual similarity Sr

to the object appearance model defined in 5.6.

• contains an high number of foreground pixels.

In such way, new detected points Ktnew and Ktu unreliable tracked
points are automatically re-evaluated and re-inserted in Kt if they
belongs to a state that exhibits high similarity to the global appear-
ance model.
Following the Sequential Bayesian formulation, the posterior proba-
bility of target state X t a time t is given by:

p(X t|Ot)︸ ︷︷ ︸
posterior

≈ p(Ot|X t)︸ ︷︷ ︸
a

∫
p(X t|X t−1)︸ ︷︷ ︸

b

p(X t−1|Ot−1)︸ ︷︷ ︸
c

dX t−1 (5.7)

where (a), (b) and (c) in Eq. 5.7 represent the observation likelihood,
the motion model and the posterior from previous time, respectively.
The hidden state X t = [ xt, yt, wt, ht] is encoded by location (xt, yt)
and size (wt, ht) information of the 2D box enclosing the target, re-
sulting in a 4D state space X .
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Ot = [Kt , At , F t] defines the observation space, where Kt = {Kt
i ∈

R2} is the set of local points tracked from previous frame, At repre-
sent the adaptive global appearance model learned on-line by BTLD
and F t is the foreground mask produced by the background subtrac-
tion at time t.
Assuming Kt , F t and At independent, the observation likelihood O
is factorized as:

p(At,Ktr,F t|X t) = p(At|X t)p(Ktr|X t)p(F t|X t) (5.8)

Observation likelihood of Ktr measures the fraction of reliable local
feature points lying inside the candidate target state X t:

p(Ktr|X t) =
Ki

t ∈ Xt

|Ktr|
. (5.9)

Such distribution promotes candidate states containing the maxi-
mum number of tracked local features, assuming that they are free
of errors. KLT failures, are automatically rejected by the global
appearance likelihood modeled by BTLD. It assign low confidence
to hypothesis containing local tracked points and not resembling
target appearance, assuming an “outliers-rejection” role similar to
RANSAC. The visual likelihood, measuring the visual similarity of a
candidate state respect to the target’s appearance model, is directly
given by relative similarity defined in equation 5.6, i.e. p(At|X t) =
Sr(H,A). Observation likelihood of F t measures the density of fore-
ground pixels x = (x, y) lying inside the box defined by candidate
target state X t:

p(F t|X t) =
1

|BB(X t)|
∑

∀x∈BOX(Xt)

F t(x) (5.10)

where BB(X t) is the bounding box defined by the hypothesis X t.
Such factor promotes candidate states containing an high number of
foreground pixels increasing the localization accuracy.
We employ a linear dynamic model defined by a gaussian distribution
over X , centered on previous target X t−1 location and scale, leading
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to p(X t|X t−1) = N(X t−1, σI). Considering the complexity of the
given probabilistic formulation, it is extremely challenging to design
an analytical inference method for estimating the MAP solution:

X̂ t = argmax
Xt∈X

p(X t|Ot) (5.11)

This challenge is due to the presence of the high nonlinearity of
observation likelihood functions. We propose to employ a sampling
based sequential filtering technique based on the MCMC particle
filter. At each time step t, we approximate the posterior by a number
N of samples:

p(X t−1|Ot−1) ≈ {X t−1
s }Ns=1. (5.12)

Propagating samples through the motion model, we generate parti-
cles for the predictive distribution p(X t|X t−1,Ot−1) and approximate
the posterior distribution at time t by Monte Carlo integration:

p(X t|Ot) ∝ p(At,Ktr,F t|X t)
N∑
s=1

p(X t|X t−1
s ) (5.13)

Approximation in eq. 5.13 is achieved by a Markov chain over
the joint space of X that converges over the posterior distribution
p(X t|Ot).
For MCMC sampling to be successful, it is critical to have a good pro-
posal distribution which can explore the hypothesis space efficiently.
Our proposal distribution generates separate random hypothesis for
location (X1) and scale (X2) subspaces, according to normal deviates
from previous accepted hypothesis.
The whole Metropolis-Hasting procedure with component-wise up-
dating scheme is sketched in algorithm 9.
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Algorithm 9 MCMC Particle Filter

1: procedure MCMC Particle Filter
2: Input: At, Kt, F t, Xt−1

i

3: Output: p(Xt|X t,Kt)
4:

5: Initialize Xt
0 = Xt−1 = [x, y, w, h]t−1 = {XlXs}t−1

6:

7: while i < Naccept do
8: Select uniformly the candidate component j ∈ [12]
9:

10: Propose X∗j ∼ N(Xi
j |X

i−1
j )

11:

12: Build the hypothesis X∗ = {Xj , Xk 6=j}
13:

14: Evaluate the acceptance probability α = min(1, p(X
∗
s |At,Kt,Ft)

p(Xi−1
s |At,Kt)

)
15:

16: Accept X∗s → Xi+1
s if α < u← uniform sample ∈ [0 1]

17: end while
18: end procedure

Once the sampling method has reached convergence, the maximum
a posterior estimate for X t is analyzed by the integrator that estab-
lishes the final solution.

5.2.4 Detector component

While the recursive tracker performs target localization based on
a smoth variation of estimated location and scale in the previous
frame, the object detector employs an exhaustive search at multiple
scales based on a sliding-window approach [59]. In such way, re-
detection capabilities and recognition of changes in target’s motion
dynamic are enabled in the whole system. Since several thousands of
sub-windows should be tested independently whether it contains the
object of interest, a cascaded object detector based on four stages is
employed to reject as many non relevant sub-windows with a minimal
amount of computation. The complete schema of the this component
is depicted in fig. 5.7. The motion detection result provides useful
informations to reduce the search space, since it restrict to moving
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Figure 5.7: Integration of the motion detection into the cascade object detector. 1-
2) candidate patches rejected by the foreground filter. 3) a positive patch
detected by the ensemble classifier. 4) the true negative patch detected by
the ensemble classifier

regions all the other stages building the cascade object detector as
depicted in fig. 5.7.
In the second stage all the sub-windows that exhibit a density of fore-
ground pixels lower than a certain threshold Θfg are rejected. Such
a foreground filter is able to rapidly reject small foreground regions
(the box 1 in fig. 5.7) but is unable to distinguish between different
well-structured objects (boxes 2, 3, 4 in fig. 5.7).
The second stage comprises an ensemble of base classifiers exploiting
ferns features as described in sec. 3.4. Within the third stage, the
detection provided by ensemble classifier are evaluated by the near-
est neighbor classifier building the appearance model. All relevant
detections are clustered as described in sec. 4.4.

5.3 Experiments and Results

We quantitatively evaluate our approach using challenging sequences
from the KSERA [116] and BOMNI [27] dataset.
The BOMNI datasets collects sequences at resolution 640×480 regis-
tered in a laboratory and was created to evaluate single-target track-
ing as well multi-target tracking systems.
The KSERA dataset proposes video streams at resolution 320× 240
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collected by the ambient assistant living system and was created to
analyze single-target tracker proposed in [116].
Both the datasets depicts common conditions of daily life where the
tracker should be able to perform its task. In table 5.1 we sum-
marize the experimental conditions that have been simulated in each
dataset, in order to evaluate tracker capabilities in handling common
situation of every day life.
Each experiment in this section adopts the evaluation protocol pro-

Table 5.1: Simulated conditions in the KSERA dataset

Moving Sitting Changing Night Distracter Similar
light condition person dress

K
S

E
R

A

video1 X� X� � � X� X�
video2 X� � X� X� � �
video3 X� X� � � X� �
video4 X� X� � � X� �

B
O

M
N

I top-1312975204642 X� X� � � � �
top-1313674683690 X� X� X� � � �
top-1313677458790 X� X� X� � � �
top-1313678291554 X� X� � � X� X�

posed in [116]:

1. The background model is initialized on the first frame of the
sequence.

2. the tracker and the detector component are initialized as soon
as the target has entered in the room.

The tracking process is performed till the end of the sequence. If
the target leave the room, the detector component will be able to re-
localize it. In videos top-1313678291554 ground-truth are available
for all individuals allowing to test each people individually. Results
are reported in table 5.2 where person1, person2 and person3 refer
to each individual test. The camera frames are sub-sampled to the
resolution 320 × 240, to uniform the test conditions. The experi-
mental results reported in table 5.2, have been evaluated according
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to the multiple object tracking accuracy metric (MOTA) [10]. Such

Table 5.2: MOTA accuracy. The best performance on each video is boldfaced.

Sequence frames [116] BTLD

1. video1 1564 0.94 1.00

2. video2 160 0.96 0.98

4. video3 700 0.88 0.91

3. video4 1190 0.91 0.88

5. top-1312975204642 1000 – 0.98

6. top-1313674683690 793 – 0.97

7. top-1313677458790 906 – 0.92

8. top-1313678291554 person1 431 – 0.97

9. top-1313678291554 person2 431 – 0.94

10. top-1313678291554 person3 431 – 0.90

metric has been proposed to measure the performances of a multiple
object tracking system but is also adopted to evaluate single target
trackers.
Since only a single person is tracked in the system, based on our goal
design,at each iteration we count the number of misses mt, the false
positives fpt and the mismatches mmet.
The MOTA is then calculated according to:

MOTA = 1−
∑

tmt + fpt +mmet∑
t gtt

(5.14)

This measure accounts for all object configuration errors made by
the tracker, false positives, misses, mismatches, over all frames. It
provides a very intuitive measure of the tracker’s performance at
detecting objects and keeping their trajectories, independent of the
precision with which the object locations are estimated. The thresh-
old distance of a false positive was defined as 40 pixels; 4 videos made
available by authors of [116], have been evaluated.
On average 90% of the images are tracked correctly. Each test con-
dition is analyzed in detail in the following subsections.
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5.3.1 Tracking a moving person

Tracking a moving person in the room (fig. 5.8 a-b-d-e), is the com-
mon task for all the analyzed sequences. After a person has entered

a b c

d e f

Figure 5.8: Moving and sitting person in KSERA and BOMNI dataset. In green the
estimated target location, in blue the ground truth box. (a) video1-KSERA
frame 78. (b) video2-KSERA frame 273. (c) video4-KSERA frame 734.
(d) top-1313677458790-BOMNI frame 392. (e) top-1313674683690-BOMNI
frame 273. (f) top-1313678291554-BOMNI frame 112.

in the scene, he can sit in a position for a long time, for example
while watching television, reading a book or talking with other per-
sons. In this case, is essential that the motion detector component
classifies the stopped object as a static region without updating the
background model. In the KSERA dataset, the person sits down on
the sofa (fig. 5.8-c) while in the BOMNI dataset several chairs have
been placed in the room to simulate such condition (fig. 5.8-f).
In this scenario color and motion information are feasible to easily
track a person. In test video4, due to the slow velocity of the target
and its overlap with a jacket having similar color, the accuracy of
the predicted solution decreases. However, as soon as the motion be-
comes consistent the tracker increase its accuracy. In this particular
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condition, the approach proposed in [116], exploiting multiple visual
cues for target localization, achieves more accuracy (%3) at the cost
of an higher computational cost.

5.3.2 Tracking in changing light conditions

Sensitivity to changing light condition is an essential feature for a
tracking system based on motion detection. Light variation gener-
ated by shadows are easily detected by the motion detection com-
ponent in all the tested sequences(video4, top-1313674683690, top-
1313677458790 ). Obtained results indicates that the slight change
of light under sufficient sunshine does not disturb the tracking sys-
tem at all. Furthermore the KSERA dataset propose a challenging
sequence (video2 ) where the lights have been switched off after the
person is localized. Due to the dramatic change of the intensity,
both motion detector and ensemble classifier lose the target person
(fig. 5.9-b). However, as soon as the ambient becomes more lighted,

a b c

Figure 5.9: Change light condition in night scenario( video2 -KSERA). In green the es-
timated target location, in blue the ground truth box. (a) frame 92. (b)
frame 97.(c) frame 101.

the detector component re-localize the the target and the tracker is
able to continue the tracking task leading to a (98%) mota accuracy.
Compared to [116] we achieve more %2 points accuracy indicating
less sensitivity to changes of light conditions.
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5.3.3 Tracking interacting persons

Another important scenario proposed in both the datasets is the
presence of multiple people interacting with the target. While in the
KSERA dataset, three people are simultaneously in the scene with
a limited amount of time interaction, in the BOMNI dataset four
people are interacting in to the room for a long time, making more
challenging the tracking task (fig. 5.10-b).

a b c

d e f

g h i

Figure 5.10: Sequence top-1313678291554 -BOMNI dataset. Tracking person1 :(a)
frame 66, (b) frame 109, (c) frame 341. Tracking person2 :(d) frame 238,
(e) frame 299, (f) frame 333. Tracking person3 :(g) frame 128, (h) frame
177, (i) frame 227

Reported results highlight how motion information combined with
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color features is sufficient to avoid drift when the target interacts
with another person moving into the scene.

5.3.4 Computational complexity

The computational complexity of the proposed approach is given
taking into account BTLD extended computational complexity and
the SOBS computational complexity. The former complexity is the
same as BTLD described in 4.6.1, since each component presents
the same complexity of the analogous into the baseline approach.
The SOBS is both in terms of space and time, is O(n2MN) where
n2 is the number of weight vectors used to model each pixel and
M×N is the image dimension. Such requirements are not a problem
for our system since we used the gpu based implementation of the
algorithm, we proposed in [37], that enables real-time processing up
to 70 fps. The final computational complexity is dominated by the
tracker, leading to O(nsm

2|A|). In experiments, a fixed size for A of
40 samples (20 positives and 20 negatives) has lead to a significant
reduction of the computation time without affecting the tracking
accuracy. When the number of samples exceeds such values, the
oldest samples are replaced, keeping constant the size of A. With
this short-term memory mechanism, the system could master the
challenge of an unstructured environment as well as moving objects
in a real ambient intelligent system with a rate of 7 fps.

5.4 Conclusion

We have presented an extension of the BTLD approach for indoor
person detection and tracking in an AMI environment with a ceiling
mounted camera. The system works in real-time and it is able to
track a moving person in the scene learning an appearance model.
Experimental results have been performed on indoor video-sequences
with different illumination conditions and with different number of



CHAPTER 5. APPLICATION OF BTLD IN AN AMBIENT
ASSISTENT LIVING SCENARIO 117

moving people. The system reaches a percentage of correct people
detection ranging from 90% to 98% depending on test conditions.

5.5 Related Publications

• Giorgio Gemignani,Lucia Maddalena, Alfredo Petrosino. Real-
time stopped object detection by neural dual background model-
ing. Proceedings of the 2010 conference on Parallel processing,
pages 357-364.

• Giorgio Gemignani, Alessio Ferone, Alfredo Petrosino. Tracking,
Learning and Detection of Humans in ceiling mounted camera
video streams. Submitted to the Journal of Ambient Intelligence
and Humanized Computing



Chapter 6
Tracking Learning Detection by parts

The critical point of the BTLD approach, is the growing-pruning ap-
proach employed to select new points of interest characterizing the
changing appearance of the tracked object. This filtering procedure
is completely unsupervised, since new detected points are directly
validated during the inference process defining the state estimation
of the generative tracker.
This approach, overcomes the reinitialization strategy error of the
median flow tracker, but raises an interesting question on how de-
tect and validate new local visual features corresponding to target’s
changing appearance. BTLD tackles this problem by exploiting
global similarity measure and spatial distances respect to the points
in track from the previous frame. With BTLD+, we propose a novel
tracker that controls within a supervised approach the discovery and
selection of new unlabeled data during tracking.
Section 6.1 motivates the proposed approach; section 6.2 introduces
an overview of the proposed framework; subsection 6.3 and 6.4 an-
alyze the learning component and its integration into the BTLD
framework, respectively. section 6.5 shows experimental results.

118
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6.1 Motivation

A critical problem characterizing the BTLD approach relies on the
selection of local feature points to guide the state estimation proce-
dure encoded into the MCMC particle filter.
According to fast appearance changes, the number of reliable points
reduces drastically over time. The growing-pruning approach de-
scribed in section 4.2 has been designed to guarantee a sufficient
number of such salient points at each tracking iteration. In essence,
it tries to repopulate the set Kt with new corners detected in prox-
imity of the reliable points and unreliable points that were removed
by the motion filter.
This is the most critical stage, since there is no prior knowledge about
the “nature” of new detected salient regions. Their spatial distance
respect to the reliable points tracked from the past and the global
appearance similarity are the only available information to infer a
decision on the state of such points. The effectiveness of such as-
sumption has been proved in short term tracking rigid objects, but
reveals limitations while tracking deformable objects. Fur such type
of objects, feature points could follow different motion patterns over
time, leading to a consistent loss of points and the subsequent selec-
tion background feature points.
To overcome such limitation, inspired by feature-based tracking ap-
proaches [44, 42], we train on-line a classifier able to establish corre-
spondences for local feature points that disappear when the target
changes its pose.
The main idea here, is that the periodic structure of the data is
exploited to automatically infer a labeling , which is then used to
control the prediction of a tracker.
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6.2 Proposed Approach

With BTLD+, we extended the BTLD local feature selection strat-
egy into a supervised context. We exploit supervised learning to
select new salient regions of interest describing target appearance
during tracking. The complete BTLD+ architecture is depicted in
figure 6.1. We introduced a feature pool that maintains salient point

Figure 6.1: BTLDP+ architecture.
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belonging to the target and the surrounding background, correspond-
ing to Harris operator local maxima.
In such way, we are able to build a nearest neighbor classifier, re-
ferred as the Part classifier, able to discriminate among such local
feature points. This feature enables memory capabilities into tracker
component building the BTLD framework, since it becomes able in
recognizing if a subregion of the target has been observed before.
Moreover, negative visual features bring new useful information that
makes the target state estimation more robust to occlusion and false
positive detections. Indeed, this information is explicitly integrated
in our probabilistic framework as a geometrical constraint on the
position of the target. In other words, we exploit background fea-
ture points to localize positions in the image where the tracked object
can not be. Similar approaches have been proposed in [42, 20], where
the concept of supporters has been introduced. Basically, supporters
points define a subset of highly discriminative regions of the image
which are useful to predict the target object position.
They at least temporarily move in a way which is statistically re-
lated to the motion of the target points (green points in fig. 6.2).
A supporter can be very discriminative respect to an object feature.
At the same time it can provide helpful information to predict the
position of the target.
In [20] a single supporter, defined by a single “companion” region
close to the target, improves object tracking. However, the compan-
ion has a 2D affine relationship to the target limiting the flexibility
of the tracker in controlling non planar motion.
In [42] supporters are defined by local patches extracted around lo-
cal maximum of Harris operator. No constraint on their motion and
location are assumed. Such points are tracked independently over
time. A model consisting of the supporters, continuously estimate,
update, and refine the model which predicts the position of the tar-
get. With such flexibility, the tracker can re-detect the target under
occlusion.
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In contrast to the aforementioned approaches, we consider support-
ers as salient points having strong correlation to the object motion
and scattered around the target estimated bounding box. Further-
more we assume that the class of such points point is not completely
determined.
The key idea beyond our supporters definition is to consider them as
possible new salient regions capturing a change of target appearance
that has not been yet observed. In figure 6.2, we show a clarifying
example of our definition of supporters.
The yellow points define regions that are located around the current

Figure 6.2: Object parts in green, Supporters regions in yellow Bacground points in red.

estimated target state.
Due to appearance changes, tracking failures and imprecise localiza-
tion supporters can be regions of the target or region of the back-
ground. Another goal of our algorithm is to discover the nature of
the supporters while tracking the object of interest.
At each tracking iteration, the set of supporters referred to as Ks
is updated by two refining event, namely the growing and pruning.
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Within the growing event new interest points Kt detected around
the previous estimated target box are added to set Kts of support-
ers. The initial state of such samples is defined according to the part
classifier score. Label switching are possible in order to counteract
the problem of wrong sample selection, generated by an not accurate
estimated solution.
In contrast the pruning event is designed to remove points from Kts
and assign them to the set of positive samples Ktp or negative sam-
ples Ktn building the feature pool. The whole procedure is sketched
in algorithm 10.

A the tracking iteration t, each point belonging to the sets Ktp ,

Algorithm 10 BTLD+ Tracker

1: procedure BTLD+Tracker
2: Input: Kt

p, Kt
s, Kt

n, B
t, It, It+1

3: Output: Bt+1

4:

5: Initialize K0 = CornerDetector(B0)
6: while t < Nframes do
7: %Track Points
8: Kt+1

p = KLT (Kt
p)

9: Kt+1
n = KLT (Kt

n)
10: Kt+1

s = KLT (Kt
s)

11: %Build Motion Vectors
12: Vp = |Kt+1

p −Kt
p)|

13: Vn = |Kt+1
n −Kt

n)|
14: Vs = |Kt+1

s −Kt
s)|

15: % Kernel Density
16: [p(V |Vp)] = KernelDensity(Vp)
17: %Select Reliable points
18: [Kt+1

r , Kt+1
u ] = MotionFilter(p(V |Vp),Vp,Vn,Vs)

19: %Detect new regions of interest
20: [Kt+1

r , Kt+1
u ] = CornerDetector(Bt+1)

21: %Target State Estimation
22: Bt+1 = mcmc(Kt+1

r Kt+1
u )

23: end while
24: end procedure

Kts and Ktn is tracked independently by KLT (lines 9-11). We de-
note Kt+1

p ,Kt+1
s ,Kt+1

n the set of corresponding points, found by KLT
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method.
A refinement stage based on motion analysis is employed to remove
KLT failures. We estimate by gaussian kernel density estimation
the motion distribution p(V |V t) of the positive tracked points, as
described in 4.2 (lines 13-19).
Furthermore, assuming a motion consistency among target points,
we build two sets Kt+1

r , Kt+1
u containing reliable points and of unre-

liable points respectively (line 22).
A point is reliable if it is undergoing the same motion defined by the
peak of the motion distribution p(V |V t); Furthermore, supporter
points observing such motion are inserted in Ktr.
Ktu will contain all the rejected supporter points and the negative
points. New detected corners according to the classification results
are added to Kt+1

r if they have strong confidence or to Kt+1
u (line 25).

This sets allows the introduction of new geometrical constraints, that
we encode in our novel MCMC particle filter. Such constraints ex-
press the following concepts:

• Unreliable tracked pointsKt+1
u cannot belong to the target object

appearance.

• Reliable tracked points Kt+1
r should belong to the target object

appearance as many as possible.

This geometrical constraints are directly encoded in a novel MCMC
particle filter, where we introduce two competitive likelihood func-
tions: one promotes the addiction of reliable tracked points in Kt+1

r ,
the other discard image regions containing unreliable tracked points
in Kt+1

u .
As within BTLD, the visual likelihood evaluates the visual similarity
that a proposed state exhibits respect to the target global appear-
ance model.
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6.3 Parts Appearance Model

Inspired by [57, 90, 55, 6] our learning model implement an incre-
mental growing and pruning approach.
While tracking the object, we learn both new positive and negative
parts of the target and the background are added to the training
pool P .
The whole appearance model is defined as a dynamic data structure
that maintains the objectś parts appearances and its surroundings
observed so far.
We define it as a collection of positive and negative patches:

P = {P+
0,0,P+

i,0, . . .P+
n,t , P−1,t . . .P−m,t}

where:

• P+ denotes the object local patches extracted around Harris
local maxima

• P− denotes the background local patches.

Both positive and negative patches are ordered according to the in-
sertion time into the collection so that P+

0,0 is the first positive part
added to the collection while P+

n,t is the last positive patch added to
the set at time t.
The fundamental problem in learning is the choice of the new positive
sample: we must learn a new sample only if the object appearance
is undergoing changes.
In such way we avoid saturating the training pool with duplicated
sample and add valuable information to the learning component.
We extended the relative similarity measure defined in equation3.5
to measure Part’s similarity respect to P as follow:

1. Similarity with the positive nearest neighbor Part:

S+(P,P+) = min
Pi∈P+

S(P,P+
i ) (6.1)
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It defines the distance of the patch P respect to the nearest
positive sample stored in the appearance model.

2. Similarity with the negative nearest neighbor Part:

S−(P,P−) = min
Pi∈P−

S(P,P−i ) (6.2)

It defines the distance of the patch P respect to the nearest
negative sample stored in the appearance model.

3. Relative similarity Sr .

Sr(P,P) =
S−(P,P−)

S+(P,P+) + S−(P,P−)
(6.3)

Such measure ranges from 0 to 1 and can be interpreted as the
probability that the visual appearance encoded in the patch P
belongs to the part based visual model.

The classifier building the part based object model is built, following
the strategy described in 4.5. A negative part P− is added to P
if Sr(P−,P) > θ−NNpart, while a positive part P+ is added to P if
Sr(P+,P) < θ+

NNpart.
Introducing a part based representation, the complete appearance
models becomes a couple layered model that exploit both global ap-
pearance and local appearance appearance, as depicted in figure 6.3.
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Figure 6.3: The coupled layered appearance model. In red negative samples encoded
into the Global Appearance Model (big box) and the Part based Appearance
Model. In green positive samples encoded into the Global Appearance Model
(big box) and the Part based Appearance Model

6.4 Bayesian Formulation

Following the Sequential Bayesian formulation, the posterior proba-
bility of target state X t a time t is given by

p(X t|Ot)︸ ︷︷ ︸
posterior

≈ p(Ot|X t)︸ ︷︷ ︸
a

∫
p(X t|X t−1)︸ ︷︷ ︸

b

p(X t−1|Ot−1)︸ ︷︷ ︸
c

dX t−1 (6.4)

where (a), (b) and (c) represent the observation likelihood, the mo-
tion model and the posterior from previous time, respectively.
The hidden state X t = [ xt, yt, wt, ht] is encoded by location (xt, yt)
and size (wt, ht) information of the 2D box enclosing the target, re-
sulting in a 4D state space X .
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Ot = [Ktr , Ktp , At] represents the measurement space, where:

• At is the adaptive global appearance model learned on-line by
BTLD.

• Ktr = {Kt
i ∈ R2|R(V t

i , Vmax) ≤ 1} is the set of reliable local
points.

• Ktu = {Kt
i ∈ R2|R(V t

i , Vmax) > 1} is the set of unreliable local
tracked points.

As previously described V t
i represent the motion flow associated to a

tracked point, while Vmax defines the mode of the motion distribution
estimated for Ktp.
Assuming Ktr , Ktu and At independent, the observation likelihood O
is factorized as:

p(At,Kt|X t) = p(At|X t)p(Ktu|X t)p(Ktr|X t) (6.5)

Reliable points likelihood of Ktr measures the fraction of local feature
points lying inside the candidate target state X t:

p(Ktr|X t) =
Kt
r ∈ Xt

|Kt|
(6.6)

Such distribution promotes candidate states containing the maxi-
mum number of reliable tracked local features, assuming that they
are free of errors.
In practice, such component try to enlarge the box enclosing the tar-
get in order to find the best similar patch containing the maximum
number of reliable points.
In contrast, unreliable points likelihood of Ktu measures the fraction
of unreliable tracked points lying inside the candidate target state
X t:

p(Ktu|X t) = 1− Kt
u ∈ Xt

|Kt|
(6.7)
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Such likelihood component is designed to give high confidence to can-
didate states containing the minimum number of unreliable tracked
local features. In practice, this component try to reduce the box en-
closing the target in order to find the best similar patch containing
the minimum number of unreliable points.
The global visual likelihood p(At|X t) as in BTLD evaluates the vi-
sual content of an hypothesis X t. It is once again derived by relative
similarity defined in equation 6.3.
We assume a linear dynamic model modeled by a Gaussian distribu-
tion over X , centered on previous target X t−1 location and scale.
Considering the high nonlinearity of observation likelihood functions,
it is extremely challenging to design an analytical inference method
for estimating the MAP solution:

X̂ t = argmax
Xt∈X

p(X t|At,Kt) (6.8)

We propose a sampling based sequential filtering technique based on
the MCMC particle filter.
At each time step t, we approximate the posterior by a number N
of samples:

p(X t−1|Ot−1) ≈ {X t−1
s }Ns=1. (6.9)

Propagating samples through the motion model, we generate par-
ticles for the predictive distribution and approximate the posterior
distribution at time t by Monte Carlo integration:

p(X t|At,Kt) ∝ (6.10)

p(At|X t)p(Kt|X t)
N∑
s=1

p(X t|X t−1
s )p(X t−1

s |At−1,Kt−1)

Approximation in eq. 6.10 is achieved by a Markov chain over
the joint space of X that converges over the posterior distribution
p(X t|At,Kt).
The whole Metropolis-Hasting procedure is sketched in algorithm 11.
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Algorithm 11 MCMC Particle Filter

1: procedure MCMC Particle Filter
2: Input: Kt, At, Xt−1

i

3: Output: p(Xt|At,Kt)
4:

5: Initialize Xt
0 = Xt−1 = {xywh}t−1 = {XlXs}t−1

6:

7: while i < Naccept do
8: Select uniformly the candidate component j ∈ [1 , 2]
9:

10: Propose X∗j ∼ N(Xi
j |X

i−1
j )

11:

12: Build the hypothesis X∗ = {Xj , Xk 6=j}
13:

14: Evaluate the acceptance probability α = min(1, p(X∗
s |At,Kt)

p(Xi−1
s |At,Kt)

)
15:

16: Accept X∗s → Xi+1
s if α < u← uniform sample ∈ [0 , 1]

17: end while
18: end procedure

For MCMC sampling to be successful, it is critical to have a good pro-
posal distribution which can explore the hypothesis space efficiently.
Our proposal distribution generates separate random hypothesis for
location (X1) and scale (X2) subspaces, according to normal deviates
from previous accepted hypothesis.
Once the sampling method has reached convergence, the maximum
a posterior estimate for X t is analyzed by the TLD integrator that
establishes the final solution and provides to perform the update of
both the appearance models.

6.5 Experimental Results

We evaluate, quantitatively, BTLD+ on MILBoost dataset, adopt-
ing the same evaluation protocol described in section 4.6. Results re-
ported in table 6.1 underlines an improvement of the baseline method
on each tested sequence.

The previous experiments show that BTLD+ performs well on
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Sequence frames PROST OB FTRACK MIL ORF TLD BTLD BTLD+

[94] [40] [1] [6] [92] [55]

1. David 1200 0.8 0.23 0.47 0.70 0.95 1.00 1.00 1.00

2. FaceOcc 820 1.00 0.35 1.00 0.96 0.70 0.96 1.00 1.00

3. Sylvester 1440 0.73 0.51 0.74 0.93 0.71 0.97 1.00 1.00

4. Coke 292 — — — 0.46 0.17 0.60 0.91 1.00

5. Tiger1 353 0.79 0.38 0.20 0.78 0.27 0.88 0.92 1.00

6. Tiger2 364 — — — 0.80 0.21 0.85 0.94 1.00

7. Dollar 326 — — — 1.00 — 0.86 0.93 0.96

8. Girl 945 0.8 0.24 0.7 47.0 — 0.93 0.95 1.00

9. FaceOcc2 812 0.82 0.75 0.48 0.96 0.82 0.96 1.0 1.00

Table 6.1: recall measures. The best performance on each video is boldfaced.

benchmark sequences where the recall is in the range 90− 100. The
Dollar sequence presents the same problem discussed in section 4.6,
even if the time elapsed to filter out wrong feature points has reduced
leading to an improvement of %3 points of accuracy.

a b c d

e f g h

Figure 6.4: From top to bottom: David, Dollar, Faceocc, Faceocc2, Sylv, Tiger, Girl,
Coke11, . In Red TLD estimated object state, in blue BTLD estimated
object state,in green BTLD+ estimated object state
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We consider these sequences saturated. New challenging scenar-
ios have been taken from the TLD DATASET [55]. We selected
different sequences in order to analyze our tracker performances on
long sequences, fast motion generating motion blur and out of plane
rotations. In particular, we analyzed the sequences Car,Panda, Car-
chase, Jumping whose critical condition are summarized in table 6.2.

Sequence frames Fast Full Partial Motion Out of plane Illumination
Motion Occlusion Occlusion Blurring rotation Changes

Car 945 � X� X� � � �
Panda 3000 � X� X� � X� X�
Carchase 9928 X� X� X� X� � X�
Jumping 313 X� � X� X� � �

Table 6.2: Simulated conditions in the TLD dataset

We compared our approach to TLD ([55]),OB ([40]) SB [41], BS
([101]), MIL ([6]) and CoGD ([119]). The Car sequence (fig. 6.5
a-b-c-d), represent a moderately difficult sequence since the target
is affected by several occlusion with the surrounding background.
Our approach is tolerant to occlusion as well is able to re-detect
the object as a soon as it becomes again visibile (fig. 6.5 d) in the
scene. Results reported in table highlight low performances for the
approaches OB, SB , BS , MIL. Since their architecture was not
designed with a detection component, when the object disappears or
is occluded, they are not able to re-localize it achieving low recall
rate.

a b c d

Figure 6.5: Sequence Car(a)
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The Panda sequence (fig. 6.6 a-b-c-d), represent a very challeng-
ing scenario since a fast deformable target is tracked. Furthermore,
occlusions, camouflage with the sorrounding background (fig. 6.6 d)
and object disappearance (fig. 6.6 c) are other events that affects the
tracking task. Our approach correctly tracks the object outperform-
ing the TLD approach as reported in results showed table 6.3. Also
in this scenario, the target camouflage with the backgrounds leads
methods without re-detection capability to low recall values.

a b c d

Figure 6.6: Sequence Panda(a)

The Carchase sequence (fig. 6.7 a-b-c-d), is the longest analyzed
sequence. Fast motion and camera point of view changes (figure 6.7
d) as well object partial and full occlusion (fig. 6.7 c) makes the
tracking process very difficult. Results reported in table 6.3 under-
lines the ability of our approach to perform the long term tracking
task.

a b c d

Figure 6.7: Sequence Carchase)

The Jumping sequence (fig. 6.8 a-b-c-d), tests the sensitivity to
fast motion changes. The object appearance is affected by severe
motion blurring (fig. 6.8 a-d). In such scenario, our approach is
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not accurate as the TLD method, since our detector implementa-
tion does not integrate the learning of synthetic blurred version of
positive samples. This is an essential feature in order to control se-

a b c d

Figure 6.8: Sequence Jumping

vere motion blurring. Indeed, the KLT approach building the tracker
component exibiths an high failure rate. Since the detector is not
able to recognize blurred versions of the target, when the tracker
loses the object (fig. 6.8 c) it is not restarted until motion blurring
becomes less severe (fig. 6.8 d).

Sequence OB [40]] SB [41] BS [101] MIL [6] CoGD [119] TLD[55] BTLD+

1. Car 0.94 / 0.59 / 0.73 1.00 / 0.67 / 0.80 0.99 / 0.56 / 0.72 0.23 / 0.25 / 0.24 0.95 / 0.96 / 0.96 0.92 / 0.97 / 0.94 0.99 / 0.98 / 0.98

2. Panda 0.95 / 0.35 / 0.51 1.00 / 0.17 / 0.29 0.99 / 0.17 / 0.30 0.36 / 0.40 / 0.38 0.12 / 0.12 / 0.12 0.58 / 0.63 / 0.60 0.9 / 0.8 / 0.84

3. Carchase 0.79 / 0.03 / 0.06 0.80 / 0.04 / 0.09 0.52 / 0.12 / 0.19 0.62 / 0.04 / 0.07 0.95 / 0.04 / 0.08 0.86 / 0.70 / 0.77 0.89 / 0.77 / 0.84

4. Jumping 0.47 / 0.05 / 0.09 0.25 / 0.13 / 0.17 0.17 / 0.14 / 0.15 1.00 / 1.00 / 1.00 1.00 / 0.99 / 1.00 1.00 / 1.00 / 1.00 0.9 / 0.7 / 0.78

Table 6.3: Performance evaluation on TLD dataset measured by Precision/Recall/F-
measure. Bold numbers indicate the best score. BTLD+ outperformed in
3/4 sequences

6.5.1 Computational complexity

The computation complexity of the proposed approach is derived
adding to the BTLD computational complexity, the computational
complexity of part besed appearance modeling component. The NN-
classifier building such component exibiths the same complexity of
the global appearance model described in 4.6.1. It is O(m2|P|) where
m2 is the size of the patch and |P| is the total number of samples
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defining the part besed appearance model. The parts are evaluated
only once at each tracking iteration, without affecting significantly
the execution time of the overall approach. Indeed the system could
master the challenge of an unstructured environment as well as mov-
ing objects with a rate of 9 fps.

6.6 Conclusions

In conclusion BTLD+, defines a novel discriminative tracker that en-
forces the feature selection step building the BTLD approach. The
novelty of such discriminative tracker relies on the integration of
memory capabilities into the BTLD approach through the definition
of part classifier able to recognize local feature points belonging to
tracked object. With such capability, wrong sample selection prob-
lem is reduced drastically, increasing the accuracy of MCMC particle
filter framework proposed to solve the state estimation problem. A
real-time implementation of the MCMC particle filter framework has
been described in detail and an extensive set of experiments was per-
formed in order to highlight the ability of our approach to increase
robustness of BTLD tracker.

6.7 Related Publications

• Giorgio Gemignani, Alessio Ferone, Alfredo Petrosino. A Bayesian
Approach to Tracking Learning and Detecting by Parts . Sub-
mitted to ECCV 2014.



Chapter 7
Conclusion

This chapter discusses the contributions proposed in this thesis and
reviews recent developments.

7.1 Contribution

This dissertation has presented the research activity concerning adap-
tive visual tracking carried out during the Ph.D. course.
In particular, a critical analysis of the tracking learning detection
approach has been proposed.
The main weaknesses of TLD approach have been pointed out and
two contributions, namely BTLD and BTLD+ have been proposed.
Concerning BTLD, we proposed a novel tracking component that
employs recursive Bayesian estimation framework to solve the state
estimation problem, defining the essence of the long term tracking
task. The proposed tracker has been shown to outperform the base-
line solution, due to a novel strategy used to exploit the KLT feature
tracker. Our experiments have demonstrated that our novel genera-
tive tracker is able to overcame the main limitations of the baseline

136
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approach, while maintaining unchanged its strengths.
The novelty of our new component relies on the out-lier filtering
scheme that exploit visual similarity to validate new point of inter-
est detected on the target appearance. An application of the BTLD
approach into the Ambient Assisted Living context has been pro-
posed, revealing how application dependent constraint (the static
background) can be integrated into the proposed framework to im-
prove the tracking accuracy.
The proposed solution has highlighted new interesting directions of
research that led us towards the formulation of BTLD+.
With such approach, we introduced into BTLD architecture a dis-
criminative part based appearance representation able of explicitly
perform occlusion reasoning and enabling memory capabilities into
the tracker component. Exploiting a part based representation, the
tracker component is now able to . Moreover, the ability to dis-
criminate target and background feature points, lead us to introduce
geometrical constraint into the optimization problem defined into the
MCMC particle filter framework.
Preliminary experimental results, where our proposal was compared
on challenging sequences against many state of the art trackers are
encouraging and reveal an essential feature to be introduced into the
detector component: the learning of motion blurred versions of the
target appearance.

7.2 On going directions

An extension for our proposal would be introducing different visual
representations, such as gradient and color.
Color information have demonstrated effective discriminative capa-
bilities when it is possible to segment the target appearance.
Unfortunately, since camera motion is possible strategies to model a
moving background and applying background subtraction should be
studied, in order to detect foreground regions and extract only color



CHAPTER 7. CONCLUSION 138

informations associated to the target.
A promising direction of research is in the use of the proposed part
based model as a detector component. Such approach enforces re-
detection capabilities under occlusion, but poses interesting ques-
tions on how controlling false positive and negative detections.
Preliminary results, obtained by using the part-based classifier en-
abling detection capabilities are depicted in figure 7.1. The detec-

Figure 7.1: Sequence Hand from the VOT 2013 Dataset. Preliminary results obtained
exploiting the part based appearance model as a part detector. In red, neg-
ative detections generated by clustering negative detected parts. In yellow,
the positive detection.

tions produced by the part based classifier are clustered according
their spatial proximity and then integrated as constraints on the pos-
sible location where the object may be.
Moreover, exploiting spatial relationship among parts into the gener-
ative model is another cue that could improve tracking performances.
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7.3 Related Publication

Here we report the list of the publications related to this thesis.

• Giorgio Gemignani, Wongun Choi, Alessio Ferone, Alfredo Pet-
rosino, Silvio Savarese. A Bayesian Approach to Tracking Learn-
ing Detection. ICIAP 2013. Lecture Notes in Computer Science
Volume 8156, 2013, pp 803-812.

• Giorgio Gemignani,Lucia Maddalena, Alfredo Petrosino. Real-
time stopped object detection by neural dual background model-
ing. Proceedings of the 2010 conference on Parallel processing,
pages 357-364.

• Giorgio Gemignani, Alessio Ferone, Alfredo Petrosino. Tracking,
Learning and Detection of Humans in ceiling mounted camera
video streams. Submitted to the Journal of Ambient Intelligence
and Humanized Computing.

• Giorgio Gemignani, Alessio Ferone, Alfredo Petrosino. A Bayesian
Approach to Tracking Learning and Detecting by Parts . Sub-
mitted to ECCV 2014.
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