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Abstract!

Cardiac reactive fibrosis is a well-known pathological effect derived from 

arterial hypertension. TGF-β plays a key role in the progression from the 

inflammation state to the fibrosis process establishment. Nonetheless, only the 

active form of TGF-β is effective, and this occurs if it is unbound to the latency 

complex proteins (i.e. Latency Associated Protein, LAP and Latent TGF-β Binding 

Protein, LTBP. 

In vivo and in vitro models of different fibrosis-based pathologies (e.g. 

pulmonary and dermal fibrosis), have highlighted a novelty in the activation of TGF–

β, which occurs not only by proteolysis on latent proteins, which involves enzymes 

as plasmin, thrombospondin and matrix metalloproteases, but also through a non-

proteolytic mechanism, defined by Keski-Oja in 2004 "Traction model". This 

mechanism consists in specific binding of several integrins (αVβ3, αVβ6 and αVβ5), 

expressed by myofibroblasts, with LAP and LTBP; contraction forces exerted by 

myofibroblasts are able to active latent TGF-β. 

On the basis of the “traction model” are an initial production of TGF-β, the 

conversion of fibroblast into myofibroblast, the production of α-SMA by myofibroblast 

and their subsequent contractile activity, the increase in ECM production and, 

therefore, further TGF-β production, in a positive feedback mechanism, able to 

amplify the fibrotic process progression.  

Aims of this study are 1) the development of a more fast and efficient protocol 

to cardiac fibroblast extraction, 2) the evaluation of possible involvement of LTBP-1 

and αVβ5 integrin in development of hypertensive-induced cardiac fibrosis and so 3) 
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the speculation about TGF-β1 mechanical activation by traction in primary cardiac 

fibroblasts isolated in hypertensive rats. 
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Aims!of!study!!

 

This study were aimed to: 

• develop a standard protocol, more fast, simple and efficient then commonly 

used, for isolation of rat cardiac fibroblasts; 

• investigate on cardiac tissue of two rats strains, normotensive Wistar Kyoto 

(WKY) and Spontaneously Hypertensive Rats (SHR) the hypertension-

induced fibrosis; 

• deepen key mediators of TGF-β1 activation by non-proteolytic pathway or 

“traction model”, such as Latent TGF-β Binding Protein -1 (LTBP-1), αvβ5 

integrin and TGF-β1 itself, both on cardiac tissue and on isolated cardiac 

fibroblasts; 

• hypothesize the involvement of “traction model” in hypertensive-induced 

cardiac fibrosis. 
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1.!Introduction!

1.1# Cardiac#reactive#fibrosis#and#hypertension#

With terms “cardiac remodeling” or “ventricular remodeling” are described a 

series of alterations in size, shape and function of the left ventricle in response to 

changes in hemodynamic loading conditions, neuro-hormonal activation, or 

induction of local mediators that alter the structural features of the myocardium. 

Remodeling is a dynamic and complex process, resulting from activation of cellular 

and molecular pathways involving cardiomyocytes, fibroblasts and extracellular 

matrix (ECM). Cardiac remodeling can be physiologic (described in elite athletes) or 

pathologic. Pathologic remodeling occurs in three major patterns: a) concentric 

remodelling, when pressure overload causes growth in cardiomyocyte thickness and 

ECM proteins deposition, b) eccentric remodelling, resulting from a volume load that 

produces cardiomyocyte lengthening and c) post-infarction remodeling, which 

involves a combined pressure and volume load on the non-infarcted area [1]. One of 

the major consequence due to first mentioned remodeling type, i.e. concentric 

remodeling, is cardiac hypertrophy. Even if both ventricles may be involved in the 

development of cardiac hypertrophy, the most common feature is left ventricular 

hypertrophy (LVH), which includes arterial hypertension and heart valve stenosis 

among its causes (Figure!1.1).  
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!

Figure!1.1!|!Differences!between!normal!heart!tissue!(left)!and!hypertrophic!heart!disease!(HHD)!phenotypes!
(right).! 

LVH is developed by 15% to 20% of hypertensive patients [2]. Different 

studies have shown that hemodynamic burden accounts for only 10% to 30% of the 

left ventricular mass variability in hypertensive individuals [3, 4]. Myocardial structure 

in hypertensive patients with LVH is affected by two key pathological processes: 

myocytes hypertrophy and a progressive accumulation of fibrous tissue within the 

cardiac interstitium [5].  

Pressure overload, induced by arterial hypertension or aortic stenosis, is 

associated initially with increased stiffness and diastolic dysfunction, which 

frequently progresses to ventricular dilation and heart failure and results in extensive 

cardiac fibrosis [6, 7]. This type of fibrosis is named reactive fibrosis, to distinguish it 

from reparative fibrosis, which is a process of wound healing after myocardial 

damage due to cardiomyocyte necrosis [8, 9]. The main difference between 

reparative and reactive fibrosis is the different localization of the new collagen fibers: 

if in reparative fibrosis the deposition of new ECM take the place of necrotic cells 

(e.g. cardiomyocytes after infarction), on the contrary, in reactive fibrosis the fibrotic 

tissue is morphologically placed perivascularly and involves the intramural coronary 
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arterial vasculature. Thus, the latter form of fibrosis is an interstitial fibrosis (Figure!

1.2), accumulated in the perimysium [10]. 

!

Figure!1.2!|!Interstitial!hypertrophy.!HHD:!hypertrophic!heart!disease.!In!blue!are!indicated!fibrotic!fibers. 

 

Reactive fibrosis is a key pathological process in LVH [11]: both post-mortem 

and endomyocardial biopsy studies have shown that along with a variable increase 

in left ventricular mass, the collagen volume fraction of the myocardium is increased 

in hypertensive patients compared with their normotensive counterparts; moreover, 

histologic evidence of fibrosis, such as interstitial fibrosis has been found during the 

early phases of hypertension in patients with a mild degree of LVH [10, 12].  
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1.2# TGF9β#

Recent studies have shown the important roles played by both molecular (i.e. 

chemokines, cytokines) and cellular (i.e. macrophages, fibroblasts, myofibroblasts) 

inflammation mediators in pro-fibrotic processes; although the initial trigger leading 

to fibrous tissue development is different between reparative and reactive fibrosis 

(i.e. necrosis vs. hemodynamic changes), in both cases the molecular events leads 

to an increased production of the pro-fibrotic transforming growth factor–β (TGF–β), 

which then acts locally, in an autocrine or paracrine fashion, to promote cardiac 

remodelling [1]. 

TGF-β is a pleiotropic cytokine, which is implicated in a wide variety of cell 

functions, critically regulating cell proliferation, differentiation and growth, 

inflammation and ECM deposition. Three structurally similar isoforms of TGF-β 

(TGF-β1, 2 and 3), encoded by three distinct genes, have been identified in 

mammalian species [13]. TGF-β1 is the prevalent isoform and is found almost 

ubiquitously, whereas the other isoforms are expressed in a more limited spectrum 

of cells and tissues. 

TGF-β is produced by many cell types and is secreted as a latent complex, 

unable to associate with its receptors. Activation of TGF-β signaling pathways is 

primarily regulated by release of the active TGF-β from the latent complex, which is 

stored in significant amounts in most tissues. The latent dimeric complex contains 

the C-terminal mature TGF-β and its N-terminal pro-domain, the latency-associated 

peptide (LAP) [14], that prevents TGF-β from interacting with its receptors, 

functioning as an inhibitor due a non-covalent high affinity association with TGF-β. 

Release of bioactive TGF-β requires separation of LAP from TGF-β, a step that 

involves processing of the pro-TGF-β complex by several extracellular mediators, 
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such as plasminogen activator inhibitor-1 (PAI-1) [15], thrombospondin (TSP-1) [16] 

and matrix-metalloproteinase (MMP)-2 and MMP-9 [17] (Figure! 1.3). After its 

release, TGF-β binds to the constitutively active TGF-β type II receptor (TβRII) at the 

cell surface. The complex, subsequently, recruits and trans-phosphorylates the type 

I receptor of TGF-β (TβRI), also known as ALK5. Apart from the well-characterized 

ALK5, which is expressed by many different cell types, endothelial cells express a 

second TβRI, termed ALK1. Both TβRI types activation propagates downstream 

intracellular signals through the Smad proteins, but while Smad2 and Smad3 are 

activated through phosphorylation by ALK5, on the otherside, Smad1, Smad5 and 

Smad8 are activated by ALK1 [18]. 

 

!

Figure!1.3! |! TGFCβ! latency! complex.! a! |!Monomeric!proITGFIβ!peptide.!b! |!Dimeric!proITGFIβ.!c! |!Small! latency!
complex!unfolded.!d! |!Schematization!of! large! latency!complex.! In!brown!is! indicated!LTBP!protein.! |!LAP:! latency!
associated!protein;!RGD:!tripeptide!ArgIGlyIAsp;!LTBP:!latent!TGFIβ!binding!protein. 
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Numerous studies have established the importance of the renin-angiotensin 

system (RAS) in cardiac remodeling. The RAS is markedly activated in response to 

pressure overload and local generation of angiotensin II (AngII) directly induces 

cellular responses in both cardiomyocytes and interstitial cells, such as fibroblasts. 

AngII stimulates fibroblast proliferation and expression of ECM proteins. Extensive 

evidence suggests a direct functional association between the RAS system and the 

TGF-pathway, indicating that TGF-β1 acts downstream of AngII [19]. AngII 

stimulation induces TGF-β1 mRNA and protein expression by cardiomyocytes and 

cardiac fibroblasts [20, 21]. Treatment with angiotensin converting enzyme inhibitors 

or angiotensin receptor type 1 blockers markedly decreased TGF-β1 levels in 

hypertrophic [22] hearts, suggesting that TGF-β induction in the myocardium 

remodeling is at least in part mediated by AngII-mediated signaling.  

To date, it is well know the key role of TGF–β1 in mediating cardiac 

hypertrophy [23]: it is, indeed, able to stimulate cardiomyocytes hypertrophy, 

fibroblast activation and proliferation, and synthesis of collagen and other ECM 

proteins in cardiac tissue [1, 7]. Activation of a small fraction of latent TGF-β1 is 

capable to generate maximal cellular response [17].  

In animal models of pressure overload, myocardial TGF–β1 mRNA 

expression is upregulated in parallel with increasing levels of left ventricular mass 

and ECM proteins [24, 25]. In human studies, analysis of ventricular tissue from 

pressure-overloaded hearts showed that myocardial TGF–β1 overexpression 

correlates with the degree of fibrosis [23, 26] (Figure!1.4).!
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!

Figure!1.4!|!The!key!pleiotropic!role!of!TGFCβ!in!fibrosis!process.!After!different!stimuli!(e.g.!pressure/volume!
overload! or! brief! repetitive! ischemic! events),! subsequent! ROS! production! involves! macrophagic! and! fibroblastic!

progenitor!maturation.!Once!mature,!these!cell!types!produce!TGFIβ,!which!!active!form!is!able!to!stop!inflammation!
process! and! induce! fibrotic!process!progression! (i.e.! differentiation!of! fibroblast! into!myofibroblast! and! collagene!

deposition). 
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1.3# Myofibroblasts#

An important effect of TGF-β1 is found on the most represented cell type of 

the connective tissue: the fibroblast. Since 1993, indeed,  it is well known that TGF-

β1 plays a key role in modulating phenotype switching of fibroblasts into 

myofibroblast [27]; cells become able to acquire contractile features, given by 

expression of tipical stress fibers containing α-smooth muscle actin (α-SMA) 

expression [28]. This is the reason of myofibroblast definition as “specialized 

contractile fibroblast”: modified fibroblasts with SM-like features were first observed 

in granulation tissue of healing wounds. These findings led to the suggestion that 

these cells have a role in the production of the contractile force that is involved in 

this process of wound healing [29].  

Morphologically, myofibroblasts are characterized by the presence of a 

contractile apparatus that contains bundles of actin microfilaments with associated 

contractile proteins such as non-muscle myosin, and which is analogous to stress 

fibers that have been described in cultured fibroblasts. These actin bundles 

terminate at the myofibroblast surface in the fibronexus — a specialized adhesion 

complex that uses transmembrane integrins to link intracellular actin with 

extracellular fibrobectin fibers [30, 31]. 

Functionally, this provides a mechano-transduction system, in which the force 

that is generated by stress fibers can be transmitted to the surrounding ECMand 

then transduced into intracellular signals [31].  

To further produce necessary tension, myofibroblast ECM synthesis and 

processing activity are enhanced in the process of remodeling. The most prominent 

myofibroblast ECM products are collagens of type I, III, IV, and V [32], which are 

produced by a variety of cells. However, the most reliable marker of the 
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myofibroblast ECM to date is the fibronectin (FN) splice variant ED-A FN [33]. ED-A 

FN is also expressed in low amounts by fibroblastic cells in culture [31, 34] and by 

vascular SMC in vivo and in vitro [35].  

Recently, collagen type VI attracted attention as it is upregulated during 

myocardial interstitial fibrosis [36], as well as in other fibrotic tissues. It is important 

to point out that myofibroblasts are not found in healthy myocardium, they only 

appear following cardiac injury [37]. The main mechanism that mediates the 

migration of fibroblasts to the site of injury involves the release of chemokines. In 

addition, myofibroblast themselves produce and secrete a number of cytokines (for 

example, IL-1α, IL-1β, IL-6, IL-10 and TNF-α), which in turn help to maintain the 

inflammatory response to injury [38].  

 

! #



! 10!

1.4# “αv”#integrins#

TGF-β controls the transcription of several genes, including those encoding 

for integrins (Table! 1.1), in several cell types and tissues [39]. Intriguingly, the 

induction of integrin expression by TGF-β can be driven by cooperative signalling 

between the integrin and TGF-β, thereby creating a feedforward loop [40].  

Integrins are heterodimeric transmembrane receptors (Figure! 1.5), 

composed by an “α” and a “β” subunit [41, 42]. They are composed by a large 

extracellular domain (700–1100 amino acids), a single transmembrane segment and 

a short cytoplasmic tail, ranging from 20–60 amino acids. Ligand binding occurs to 

the extracellular domain of the integrin heterodimer, a process that is modified by 

range of amino acids spread throughout both the extracellular and transmembrane 

domains. The cytoplasmic domain of many of the subunits is highly homologous, 

while the subunits sequences are significantly different. It is through the cytoplasmic 

tail that the integrins bind both a range of cytoskeletal linker molecules and also 

signal. 

!

Figure!1.5!|!Generic!integrin!structure.!Three!main!domains!compose!the!single!integrin!monomer:!a!cytoplasmic!
tail!(indicated!as!the!binding!site!for!talin),!a!transmembrane!αIelix!domain!and!an!extracellular!domain,!responsible!
for!RGD!sequence!of!LAP!binding. 
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TGF-β regulates also the expression of integrin ligands, including tenascin, 

vitronectin, fibronectin, and several members of the laminin and collagen families. In 

addition also stimulates the expression of integrin-associated proteins, which could 

increase integrin activation. Therefore, the transcriptional control exerted by TGF-β 

can strongly affect integrin-mediated processes. 

TGF-β activation requires its own dissociation from the latent complex, which 

occurs at low pH (e.g. action of ROS, by acidification of extracellular milieu) or 

through the mechanisms previously described (i.e. proteases, TSP-1. plasmin). The 

LAPs of TGF-β1 and TGF-β3 —but not of TGF-β2— contain RGD motif (Arginine-

Glycine-Aspartate), which can be potentially bound by the αv-containing integrins 

and αIIbβ3, α5β1 and α8β1 [39].  

Integrin-mediated TGF-β activation seems to be possible in a protease-

dependent or -independent manner: the former has only been demonstrated for 

αvβ8 and depends on simultaneous binding of αvβ8 to the RGD site in LAP and 

recruitment of MMP-14, which then releases TGF-β by proteolytic cleavage [43]. 

This mode of activation does not require the proximity of activating and target cells 

(Figure(1.6). Physiological evidences of the mutual interrelation between TGF-β and 

this integrin was found in the differentiation induction of airway fibroblasts into 

myofibroblasts carried out by integrin-mediated active TGF-β; the expression of 

αvβ8 is increased in the airways of chronic obstructive pulmonary disease patients, 

correlating with the severity of the obstruction [44, 45]. 
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!

Figure(1.6( |(The(proteolytic(activation(pathway(of(TGF<β( involves( the(synergic(action(of(αvβ8( integrin(and(
MMP<14.!The!selective!binding!between!αvβ8! integrin!and! latent!TGF8β! lead!to!presentation!of!TGF8β! complex!to!
matrix8metalloprotease!14!(MMP814),!which!activate!TGF8β!by!proteolysis. 

 

The non-proteolytic TGF-β activation occurs through cell traction forces 

exerted by the actin cytoskeleton. These forces are translated by integrins into a 

conformational change of the TGF-β–LAP–LTBP complex, leading to the exposure 

and consequent activation of TGF-β [46-49]. This mechanism has been defined only 

in the 2004 by Keski-Oja as “traction model” [50] (Figure(1.7(a). 

Non-proteolytic activation of latent TGF-β has been demonstrated in vitro for 

αvβ3, αvβ5 and αvβ6, as well as for β1-containing subunit with a still unidentified α-

subunit integrin [49]; whether or not the activation of TGF-β by a β1-integrin is 

relevant physiologically remains controversial.  

!

1.4.1$ Integrins$αvβ6$and$αvβ8$

The importance of integrin-mediated activation of TGF-β in vivo is evident, as 

mutation of the RGD site of LAP leads to defects similar to those observed in TGF-

β1-null mice [51]. In addition, genetic ablation of the β6-subunit, or conditional 

deletion of αv or β8 from dendritic cells, causes exaggerated inflammation as a 

result of impaired TGF-β signalling [52, 53]. The phenotype of mice lacking both the 
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αvβ6 and αvβ8 integrins recapitulates the abnormalities observed in TGF-β1 and 

TGF-β3 —but not in TGF-β2— knockout mice, indicating that the integrins αvβ6 and 

αvβ8 can account for the full activation of TGF-β1 and TGF-β3 in vivo.  

The first clue that the integrin–TGF-β interplay is important in fibrosis came 

from the observation that mice lacking the β6-subunit are protected from bleomycin-

induced pulmonary fibrosis [54] and β6 knockout mice are partly or completely 

protected from pulmonary fibrosis induced by radiation [55]. In addition, low doses of 

antibodies against αvβ6 prevent radiation-induced or bleomycin-induced pulmonary 

fibrosis in mice, without causing inflammation [56, 57]. Furthermore, it has been 

shown that constitutive expression of αvβ6 in the basal layer of the epidermis leads 

to elevated TGF-β1 activation and the development of spontaneous chronic ulcers 

with severe fibrosis [58]. In wild-type mice, fibrosis can be equally inhibited by 

treatment with antagonists of TGF-β signalling or by using a blocking antibody 

against αvβ6 [59, 60]. The importance of αvβ6 in fibrogenesis has been 

demonstrated subsequently in several models; αvβ6 is not normally expressed in 

healthy epithelia but its expression is induced in many human fibrotic disorders 

involving the kidney, liver and lung (e.g. sclerosis and idiopathic pulmonary fibrosis). 

The specific inhibition of αvβ6-induced TGF-β activation at sites of injury is a 

promising therapeutic tool to combat TGF-β-mediated fibrosis.  

 

1.4.2$ Integrins$αvβ3$and$αvβ5$

Mice lacking β3, β5, or both do not develop abnormalities similar to those due 

to deficient TGF-β signalling [61-63]. Nevertheless, αvβ3-mediated or αvβ5-

mediated TGF-β activation could be important in pathological conditions. In fact 

increased expression of both of these integrins, has been observed in the dermis of 



! 16!

scleroderma patients (a chronic disease, involving cutaneous manifestations of 

fibrosis), and these integrins elicit autocrine TGF-β signalling in fibroblasts of 

patients in vitro [64-67]. In addition, TGF-β activation by αvβ5 is important in 

pulmonary fibrosis; however, a causal effect of αvβ3-mediated TGF-β activation in 

human pathology has not yet been established. 

Observations suggest that the integrins αvβ3 and αvβ5 provide additional 

therapeutic targets for this pathology, because of their possible contribution to the 

pathogenesis of systemic sclerosis and scleroderma by TGF-β1 activation [65, 66]. 

In human fibrotic lungs, epithelial cells expressing αvβ5 and PAR1 co-localize with 

myofibroblasts, and TGF-β-mediated pulmonary fibrosis is reduced by the blockade 

of αvβ5 in a mouse model [68]. 

Recently, Henderson et al. have published on Nature Medicine a paper 

where show a system developed to allow gene manipulation in myofibroblasts in 

multiple tissues and where used this system to demonstrate that αv-containing 

integrins on myofibroblasts are components of a core cellular and molecular 

pathway that contributes to pathologic fibrosis in multiple solid organs, suggesting 

that targeting this core pathway could have clinical utility in the treatment of patients 

with a broad range of fibrotic diseases [69]. 
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1.5! The!“traction!model”!in!cardiac!tissue!

The mechanism proposed by Keski-Oja with name of “traction model” [50] 

(Figure( 1.7( a) has been expanded by Wipff et al. in 2007 (Figure( 1.7( b), with the 

introduction of key components involved in this model: 1) cytoskeletal integrity of 

myofibroblasts (and, overall, presence of α-SMA), 2) presence of integrin, connected 

by their cytoplasmic β-tail to the cytoskeleton structure, 3) a mechanically resistant 

ECM, containing all TGF-β latent complex proteins components [49]. 

 

!

Figure(1.7(|(The(evolution(of(TGF<β1(activation(by(traction(model.!a(|!The!traction!model!depicted!by!Keski8Oja,!
2004.!An!integrin8expressing!cell!recognizes!the!RGD!domain!in!latency8associated!protein!(LAP).!In!addition!to!the!
other!extracellular!matrix!(ECM)8binding!sites,!the!large!latent!complex!associates!with!the!ECM.!Both!interactions!
are!essential!for!integrin8mediated!TGF8b!activation.!Cell!movement!(gray!arrow)!distorts!the!structure!of!the!small!
latent!complex.!Because!the!integrin!is!connected!to!the!cytoskeleton,!the!retraction!of!membrane!protrusions!pulls!
LAP!from!the!mature!TGF8b!to!release!the!active!cytokine!from!the!protein!complex.!b(|!The!traction!model!depicted!
by!Wipff,!2007.!The!high!contractile!activity!generated!by!α8SMA!in!stress!fibers!is!transmitted!at!sites!of!integrins!
binding!to!RGD!sites!in!the!LAP!protein,!which!also!includes!TGF8β1!and!LTBP81.!In!the!upper!cartoon,!when!the!
latent!complex!is!anchored!in!a!comparably!stiff!ECM,!cell8mediated!stress!can!induce!allosteric!changes!in!LTBP81!
and/or!LAP!conformation,!leading!to!liberation!of!TGF8β1;!such!activated!TGF8β1!possibly!feeds!back!by!binding!to!
its!receptor,!which!is!located!close!by!in!the!activating!cell.!In!the!lower!figure,!in!the!context!of!compliant!ECM,!the!
latent!complex!is!dragged!toward!the!pulling!cell!but!because!of!the!lack!of!mechanical!resistance,!no!conformation!
change!occurs!and!TGF8β1!remains!latent.!Likewise,!inhibition!of!high!cell!contraction!and!interaction!of!integrins!
with!the!latent!complex!block!mechanical!activation!of!latent!TGF8β1.!
 

 

Although several studies have shown the presence in cardiac tissue of most 

of the "traction model” components, it is not clear yet whether this pattern of 

activation of the TGF-β may be involved in the development of cardiac fibrosis and 

whether a hypertensive context may be a trigger stimulus for its activation.  
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TGF-β mRNA is abundantly expressed in hearts from patients with dilated 

and hypertrophic cardiomyopathy and is associated with increased collagen 

deposition [70]. Furthermore, two different mouse models with cardiac 

overexpression of TGF-β1 suggested a pro-fibrotic effects of TGF-β in the heart. 

First, Rosenkranz et al. demonstrated that cardiac TGF-β1 overexpression resulted 

in ventricular fibrosis associated with increased collagen deposition and inhibition of 

interstitial collagenases [19]. Second, a study of Nakashima et al. showed that 

transgenic mice with a blocking mutation of covalent tethering of the TGF-β1 latent 

complex to the extracellular matrix had a large proportion of constitutively active 

TGF-β1 in heart tissue and the fibrosis [71]. Interestingly, despite showing similar 

levels of TGF-β in both atria and ventricles, these animals exhibited only atrial and 

not ventricular fibrosis. Other investigations demonstrated that decreased TGF-β 

activity prevented fibrotic remodeling of the ventricle in several distinct experimental 

models of cardiac fibrosis. TGF-βeta blockade prevented myocardial fibrosis in 

pressure overloaded rats, decreasing fibroblast-to-myofibroblast phenotype 

switching, limiting collagen deposition and lowering diastolic dysfunction [7, 72]. 

Myofibroblasts are not founded in normal healthy adult myocardium and 

appearing after cardiac injury [38]. In particular, in pressure overload-induced 

cardiac hypertrophy, myofibroblasts increase in number and induce ECM proteins 

synthesis [73]. It has been reported that myofibroblasts derive from 

transdifferentiation of resident cardiac fibroblasts [74] or endothelial cells [75, 76]. 

Endothelial-to-mesenchymal transformation can be induced by TGFβ in a Smad-

dependent fashion during cardiac fibrosis, while bone morphogenic protein (BMP)-7 

blocks this process and could serve as an antifibrotic factor [75]. 
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Myofibroblasts response to TGF-β1 not only results in phenotype switching, 

but also in expression of proteins involved in the “traction model”, such as TGF-β1 

latent complex proteins and integrins. Two important studies published on the 

"Hypertension" journal show how integrin αv, β1, β3 and β5 regulate the activation 

of angiotensin receptor type 1 (AT1) and are upregulated in the hypertrophic 

ventricles of spontaneously hypertensive rats (SHR). Moreover, Kawano et al. show 

that selective blocking of AT1 is associated with downregulation of the same 

previously mentioned integrins [77]. Furthermore, Graf et al. showed how AngII 

activity increases the expression of integrin αvβ3, TGF-β1 and PDGF in neonatal rat 

cardiac fibroblasts [78]. 

This study was aimed 1) to develop a more fast and efficient protocol to 

cardiac fibroblast extraction, 2) to evaluate a possible involvement of LTBP-1 and 

αVβ5 integrin in development of cardiac fibrosis induced by hypertensive stimulus, 

and 3) to speculate about TGF-β1 mechanical activation through “traction model” in 

primary cardiac fibroblasts isolated in SHR.  
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2.#Material#and#Methods#

2.1! Reagents!

- LOADING 5X: 8% SDS, 20% β-mercaptoethanol, 80 mM TRIS, 10% Blu di 

Bromofenolo, pH=6.8; 

- RUNNING BUFFER: 25 mM TRIS, 250 mM Glicina, 0.1% SDS; 

- TRANSFERT BUFFER: 250 mM Glicina, 25 mM TRIS; 

- T-PBS: 20 mM TRIS, 130 mM NaCl, 0.05% Tween 20% 

- DIGESTION BUFFER: PBS with 1% Penicillin/Streptomycin, 1% Fungizone and 

Liberase TH Research Grade Blendzyme (Roche) 

- FIBROBLASTS MEDIUM CULTURE (FMC): Dulbecco’s Modified Eagle Medium, 

High Glucose (Euro-clone), 15% Fetal Bovine Serum (Euro-clone), 2 mM L-

glutammine, 200 U/ml penicillin, 200 µg/ml streptomycin, 0.5% Amphotericin B; 

!

2.2! Cell!isolation!and!culture!!

Primary rat cardiac fibroblasts were isolated from the whole heart of 10 

Wistar Kyoto rats (WKY) and 10 Spontaneously Hypertensive rats (SHR) (Charles 

River), by using a novel protocol strategy. Rats, 5 male and 5 female for each strain, 

were all 5 weeks old. Briefly, the rats were sacrificed, dissected (Figure( 2.1( a), 

whole hearts extracted with sterile pliers (Figure( 2.1( b) and then placed in 50 mL 
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tubes (Figure( 2.1( c) with sterile DMEM High Glucose, with 1% 

Penicillin/Streptomycine, 1:500 Gentamicin and 1% Fungizone (Euroclone). Cardiac 

tissue was transferred into a previously sterilized 100 mm tissue culture dish of 

glass and minced using disposable sterile scalpels (Figure( 2.1( d). The tissue 

fragments were incubated at 37°C for 15 minutes in 10 mL of Digestion Buffer 

(Figure( 2.1( e). After washing 3 times, digested tissue fragments were cultured at 

37°C, 5%CO2 in FMC medium (Figure(2.1( f). Fibroblasts were treated with 5 ng/ml 

TGF-β1 (Sigma-Aldrich) for 72 hours. 

!
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2.2# Antibodies#

Following primary antibodies were used: anti-vimentin (Mouse monoclonal 

[V9] against vimentin, Dako), anti-α-SMA (Mouse monoclonal [1A4] against α-SMA, 

Dako) anti-TGF-β1 (Mouse monoclonal [2Ar2] against TGF-β1, AbCAm), anti-LTBP-

1 (Rabbit polyclonal against LTBP-1, AbCAm) and anti-integrin αvβ6 (Mouse 

monoclonal [P1F6] against Integrin αV+β5, AbCAm).  

For Western blotting, we used HRP-conjugated secondary antibodies goat 

anti–mouse and goat anti–rabbit (AbCAm).!  
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2.3# Histology,#immunohistochemistry#and#microscopy#

Histological and immunohistochemical studies were carried out on 4 µm 

thicktissue sections using a Novolink Polymer Detection System (Novocastra 

Laboratories) with the previously described primary antibodies at following 

concentration and solution for antigen retrieval: anti-LTBP-1, 1:400 dilution (citrate), 

anti-αvβ5, 1:400 (EDTA), anti-TGF-β1, 1:300 (EDTA), anti-vimentin, 1:5000 (citrate) 

and anti-α-SMA, 1:50 (citrate).  

Cell cultures on glass slides were obtained according to the following 

protocol: fibroblasts isolated from rat heart and frozen at the third passage were 

thawed, plated, brought to confluence, detached and plated on poly-L-lysine coated 

slides at a concentration of 1.5 x 105 cells/mL. On the slide, placed in Petri dish, 

were seeded 500µL of cell suspension and then placed in growth for 48 hours with 

95% humidity, 5% CO2. The slides were then rinsed with PBS solution and soaked 

for about 2 minutes in a solution of 4% formalin. 

Sections were deparaffinized in BioClear (Bio Optica) for 20 minutes, washed 

twice in ethanol; after this step, both cell cultures and sections underwent to the 

same procedure. Culture and sections were kept 35 min at 97.5°C in 9 mM sodium 

citrate pH 6.0, EDTA pH 8.0. Endogenous peroxidase activity was quenched with 

3% H2O2 for 10 minutes; incubation of primary antibodies was performed for 1 hour. 

Staining was performed with 3,3-diaminobenzidine (DAB) as a chromogen. Slides 

were immunostained in the samebatch, including negative controls lacking the 

primary antibody. 

The light microscopy used for photos acquisition was AxioSkop 2 Plus 

(Zeiss); quantification analysis has been performed with a dedicated software 

(AxioVision Rel 4.7).  
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2.4# Western#blotting#

Fibroblasts were washed with cold PBS and lysed in a lysis buffer, containing 

a cocktail of protease and phosphatase inhibitors (Sigma-Aldrich). The lysates were 

centrifuged at 14000 rpm for 10 minutes to remove any cell debris. Protein 

concentration was measured using the Bradford Assay (Bio-Rad Laboratories Ltd, 

UK). Equal amounts of proteins were electrophoresed on SDS-Polyacrylamide Gels 

(SDS-PAGE) and electro-transferred into nitrocellulose membranes (Amersham, 

UK) for 90 minutes at 4°C. Then, membranes were blocked for 1 hour in PBS 

containing 0.05% Tween 20 (PBS-T) and 5% of nonfat dry milk. Membranes were 

incubated overnight at 4°C in 5% milk in PBS-T solution containing primary 

antibody, with constant agitation. At the end of the overnight incubation, membranes 

were washed three times for 10 minutes with PBS-T and incubated in HRP-

conjugated secondary antibody (AbCam) in 5% milk in PBS-T solution for 1 hour at 

room temperature. After washing (as previously), positive staining was detected 

using enhanced chemiluminescence (ECL; Amersham, UK). Quantitative antibody 

staining was measured by densitometric analysis (Alliance, UviTech, Cambridge). 
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3.#Results#

3.1# Novel#approach#for#isolation#of#rat#cardiac#fibroblasts#

The isolation protocol of cardiac fibroblast used in this study introduces a 

novelty in the field of rat primary fibroblast culture, because of speed, efficiency and 

simplicity of the used equipments and procedures. Whole hearts explanted from 

WKY and SHR rats were excised in the cell culture hood to avoid any type of 

bacterial or fungal contamination and immediately placed in sterile DMEM, 

supplemented with 1% penicillin/streptomycin, 1% fungizone and gentamicin 1:500. 

Whole heart were minced and digested with Liberase TH Research Grade for 15 

minutes at 37°C, 95%O2, 5% CO2. This ready-to-use mixture containing thermolysin 

at high concentration and several collagenases shows pretty efficacy in limited time 

(performing entire protocol takes approximately 90 minutes). The whole suspension 

of minced tissue was eluted with DMEM (high glucose), supplemented with 15% 

fetal bovine serum (FBS), 2% L-glutamine, 1%penicillin/streptomycin and 1% 

fungizone to stop both thermolysin and collagenases activity. After centrifugation, 

pellet was re-suspended in the same complete medium. The resulting cell 

suspension was seeded into 100 mm culture dishes. After incubation for 6 days at 

37°C, non-adherent cells were removed by rinsing with sterile PBS, and the still 

present tissue pieces were plated on new dishes with complete medium (Figure(3.1(

a,b). Cells were cultured in DMEM (high glucose concentration), supplemented with 

15% FBS, 2% L-glutamine, 1% penicillin/streptomycin and 1% fungizone (Figure(3.1(

c,d).  
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!

Figure(3.1(|(Phases(of(fibroblast(isolation(protocol.(a(|(Fibroblast!migration!out!of!heart!tissue!pieces!after!cardiac!
tissue! treatment! in! six!days!of! culture.( b( |(Higher!magnification! (20X)! shows! tipical! fibroblast! shape!exiting! from!
tissue!biopsy.!c,d(|(Fibroblast!cultures.!!|!WKY!=!Wistar!Kyoto;!SHR!=!Spontaneous!Hypertensive!Rats.!

 

After 2 weeks, cells were trypsinized and splitted into new plates, to allow 

amplification of the cultures. At this culture passage, vimentin immunohistochemistry 
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was performed (Figure(3.2) to characterize fibroblast cell type in culture and also to 

assess the final fibroblast yield in both rat strains. Cell purity was 95–97%, small 

rate of contaminating cells were vascular smooth muscle cells (VSMC) and 

pericytes. So, results of immunohistochemistry for vimentin confirm the efficiency of 

isolation protocol. 

!

Figure(3.2(|(Vimentin(immunostaining(on(isolated(primary(cardiac(fibroblasts.(a,b(|(Vimentin!immunostaining!
on!fibroblast!culture!from!normotensive!rat!heart!(WKY).!b!panel!is!higher!magnification!(20X)!of!black!squared!area!
in!panel!a.(c,d(|(Vimentin!immunostaining!on!fibroblast!culture!from!hypertensive!rat!heart!(SHR).!d!panel!is!higher!
magnification!(20X)!of!black!squared!area!in!panel!c. 
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3.2# SHR#heart#show#a#higher#amount#of#collagen#deposition#

Since pressure overload is one of upstream causes of cardiac hypertrophy 

and LVH pathology, a Masson staining, specific for extracellular collagen fibers, has 

been performed on SHR and WKY tissues (Figure( 3.3). Masson staining is also 

able to detect and highlight, with shades of blue, the older fibers (dark blue) and 

collagen fibers of more recent deposition (light blue). Twenty high magnificated 

fields for each rat were chosen in blind to perform quantification analyses of 

connective tissue deposition. Results demonstrated a higher degree of fibrosis in 

SHR cardiac tissue in comparison with WKY; moreover, as visible in Figure( 3.3( b(

and( Figure( 3.3( e and in their higher magnification (Figure( 3.3( c,f), in SHR tissue 

most of deposited fibers occur in perivascular region in comparison with 

normotensive rats tissue.  

These findings suggest that SHR rats are more prone to fibrosis compared to 

the WKY ones.
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3.3# SHR#cardiac#tissue#overexpresses#TGF7β1#and#LTBP71#

To assess whether higher cardiac hypertrophy levels were associated 

with increased expression of the latent form of TGF-β1 (Figure( 3.4( a-d)( and 

LTBP-1 (Figure( 3.5( a-d), immunohistochemistry of these two markers has 

been performed in both SHR and WKY heart tissues. As previously seen with 

Masson staining, results of this analysis demonstrated a higher signal rate 

(brown dots) of both molecules in SHR cardiac tissue, in comparison with WKY 

(Figure(3.4(e;(Figure(3.5(e). Moreover, TGF-β1 pattern in SHR cardiac tissue 

clearly follows a spot distribution (Figure( 3.4( d), consistently with its 

autocrine/paracrine activation.  

These results suggested that the increase in TGF-β1 and LTBP-1 

expression is related to ECM deposition in cardiac fibrosis observed in SHR. 
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3.4$ SHR$cardiac$tissue$overexpresses$αvβ5$integrin$$$

To verify whether cardiac hypertrophy and higher levels of both TGF-β1 

and LTBP-1 were associated with an enhancing of the third key player of 

“traction model”, such as αvβ5 integrin, immunohistochemistry also of this 

marker has been performed, in both SHR and WKY heart tissues (Figure( 3.6(

a-d). This analysis showed higher signal rate of αvβ5 integrin in SHR cardiac 

tissue (Figure( 3.6( e) and suggest a possible involvement of αvβ5 integrin in 

development of fibrotic process in hypertensive rats. 

 

( 
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3.5$ SHR$cardiac$fibroblast$switch$into$myofibroblast$

To evaluate whether fibroblasts in culture transdifferentiate into myofibroblast 

cell type, an immunohistochemistry for α-SMA has been performed on both WKY 

and SHR cell at third passage of culture (Figure(3.7). 

This analysis( has been performed on WKY and SHR fibroblasts at basal 

condition to better investigate if hypertension has per se a direct effect on cell 

features. 

WKY fibroblasts show a negative result for α-SMA and seems to maintain a 

fibroblastic cell phenotype (Figure( 3.7( a,b), on the contrary, in SHR fibroblasts the 

α-SMA signal is enhanced and so cellular phenotype appears to differentiate in 

myofibroblastic sense. Nonetheless, same SHR cultures express both vimentin and 

α-SMA, maintaining also fibroblast features.  

Results suggest that hypertensive stimulus per se elicit a phenotype transition 

of fibroblast into pathologic myofibroblasts. 
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!

Figure(3.7( |(α1SMA(immunostaining(on(isolated(primary(cardiac( fibroblasts.(a,b( |(α%SMA!immunostaining!on!
fibroblast!culture!from!normotensive!rat!heart!(WKY).!b!panel!is!a!higher!magnification!(40X)!of!black!squared!area!
in!panel!a.(c,h(|(α%SMA!immunostaining!on!fibroblast!culture!from!hypertensive!rat!heart!(SHR).!d!panel!is!a!higher!
magnification!(40X)!of!black!squared!area!in!panel!c. 
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3.6$ SHR$cardiac$fibroblasts$in#vitro$overexpresses$LTBPA1$and$

αvβ5$integrin$

To better understand the effect of TGF-β1 and its relation with "traction 

model” markers in vitro, LTBP-1 and αvβ5 integrin were investigated by using two 

approaches: a western blot assay, to display total protein levels and an 

immunohistochemical assay, performed directly on cells grown on glass slides. 

Western blotting analyses were performed on cells in both basal conditions 

and under treatment with TGF-β1. Results of both western blot analysis for LTBP-1 

and αvβ5 integrin in basal conditions (Figure(3.8(and(3.9(e,!white!bar!graph) did not 

show substantial differences between the two rats strains. However, cells under 

treatment (Figure(3.8(and(3.9(e,!black!bar!graph)(reveal an increase in both markers, 

more evident and statistically significant in SHR then WKY. 

Immunohistochemistry were performed on cells under basal conditions.  

Results of immunohistochemistry highlighted the different distribution pattern of both 

molecules between the two rats strains: LTBP-1 and αvβ5 integrin in WKY cells 

showed only a cytosolic signal (Figure(3.8(b,( 3.9(b). On the contrary, in SHR cells, 

LTBP-1 signal is in extracellular matrix (Figure(3.8(d,!red!arrows) and αvβ5 signal is 

more evident along the cell membrane (Figure(3.8(d,!red!arrows). 
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4.#Discussion#

The innovations introduced in this study concern two different aspects.  

The first novelty regards the description of an alternative protocol for cardiac 

fibroblasts extraction from tissue samples. The isolation protocol is simpler, faster 

and more efficient then those commonly used in research (e.g. cardiac perfusion in 

Langerdorff system). Nevertheless, comparing more similar protocols, i.e. protocols 

which involve the use of different mixtures of collagenases, the employment of 

Liberase with high concentration of Thermolysin allows to further shorten the 

digestion time (only 15 minutes), with a good fibroblast yield (Figure(3.2).  

The second novelty regards the identification of the “traction model” in the 

heart as key mediator of fibrosis. Although results of this study on cardiac tissue 

from normotensive (WKY) and hypertensive rats (SHR) reveal and confirm 

previously shown data about association between fibrotic phenotype in the cardiac 

tissue and pressure-overload hypertrophy [73], for the first time are provided new 

insights into the mechanism of TGF-β activation by the “traction model”. This 

mechanism involves 1) initial production of TGF-β; 2) fibroblast conversion into 

myofibroblast; 3) subsequent myofibroblast contractile activity; 4) increase in ECM 

deposition; 5) further TGF-β activation by a selective binding between integrins 

(αvβ3, αvβ5) and proteins of TGF-β latency complex (LAP and LTBP-1).  

Several new findings establish myofibroblast contraction as a novel 

mechanism to directly activate latent TGF-β1 in the ECM. Indeed, it has been 

reported that fibroblasts, as well as myofibroblasts, which in α-SMA expression was 

downregulated, were less efficient in TGF-β1 activation in comparison with with α-
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SMA–positive counterparts [49], because of their low contractile capability, So, 

mechanical tension is an essential prerequisite for TGF-β1 activation. Additionally, it 

was reported that stimulation of myofibroblast contraction with AngII, endothelin-1, 

and thrombin increases the level of active TGF-β1 independently from protease 

activity [49]. However, this particular mechanism has not been investigated in a 

pathological context, such as hypertension. The gap was filled in this project. In 

particular, in this study both cardiac tissue and isolated fibroblasts of normotensive 

WKY rats (as control) and SHR (as pathologic model) were compared.  

As expected, only hypertensive stimulus has effects on collagen deposition 

(Figure(3.3) and TGF-β1 (Figure(3.4) expression, but, surprisingly, also on proteins 

involved in "traction" model, i.e. LTBP-1 (Figure(3.5) and αvβ5 integrin (Figure(3.6).  

Cells isolated from the two rat strains also have shown different behaviour. 

Cells isolated from WKY heart were visibly more similar to the classic fibroblasts 

(quickly growing in plate, rapidly reaching 100% of confluence, and forming 

monolayer). On the contrary, SHR fibroblasts presented a slow growth, as slowly  

reached the confluence, that is a typical aspect of differentiating cells. Moreover, 

SHR fibroblasts have not shown the typical spindle cell shape of fibroblast, but 

morphologic features more similar to myofibroblast, such as stellate, oblong or 

triangular, shape [79, 80]. This morphological analysis has been confirmed by the 

higher α-SMA positivity in fibroblasts derived from hypertensive rat hearts, 

compared to WKY (Figure(3.7).  

On the basis of results of this study, LTBP-1 was more expressed by SHR 

cardiac tissue and fibroblasts; moreover, treatment with TGF-β1 enhances LTBP-1 

protein expression. However, one of most important result was revealed by 

immunohistochemical analysis: LTBP-1 localizes in the extracellular space only in 
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SHR fibroblasts (Figure( 3.8( d), while in WKY fibroblasts LTBP-1 is not only 

produced in smaller quantities (Figure(3.7(e), but also not secreted (Figure(3.7(b).  

In a similar manner, immunohistochemistry analysis for αvβ5 integrin on cell 

culture has a peculiarity: the protein is clearly visible along the membrane of SHR 

fibroblasts (Figure(3.9(d). On the contrary, in WKY fibroblasts, αvβ5 integrin protein 

is only spread within the cytosol (Figure( 3.9( b). In light of these findings, it can be 

speculated that the hypertensive stimulus per se is sufficient 1) to induce the 

expression of "traction model" components; 2) to lead LTBP-1 and αvβ5 integrin in 

the correct localization (LTBP-1  in ECM and αvβ5 along cell membranes) and 3) to 

elicit a pro-fibrotic state. 

Until now, activation of latent TGF-β1 by cell traction has been suggested 

exclusively for the epithelial αvβ6 integrin [46], which is involved in the initiation of 

lung fibrosis [54]. During fibrosis of epithelialized tissues, such as kidney and lung, 

myofibroblasts are partly recruited through mesenchymal transition of epithelial cells 

[75] involving αvβ6 integrin– mediated latent TGF-β1 activation. On the basis of 

results collected in this study, hypothesis of epithelial-to-mesenchimal transition in 

rat heart should be further deepen, starting from the visible difference in perivascular 

fibrotic tissue thickening found in SHR in comparison with WKY (Figure( 3.9( c,f). It 

should be possible, indeed, that endothelial cells, subjected to hypertensive 

stimulus, undergo to switch into mesenchimal cells, as previously described in 2007 

by Zeisberg et al. In the study authors proposed that hemodynamic stress could 

trigger a pro-inflammatory process in the vicinity of the intracardiac vasculature, 

leading to the activation of endothelial cells; these cells, in turn, can produce 

fibrogenic mediators and induce fibroblast activation and myocardial fibrosis. 

Moreover, Zeisberg et al. speculate on further activities of TGF-β, not only involved 
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in activation of endothelial cells to produce fibrogenic mediators, but also to allow 

exactly this endothelial-to-mesenchimal transition [75]. 

This present study provides, for the first time, evidences on involvement both 

in vivo and in vitro of “traction model” in cardiac tissue. Altogether, it is now clear 

that during hypertension 1) cardiac fibrosis has TGF-β as initial trigger and key 

mediator; 2) cardiac fibroblasts switch into myofibroblasts; 2) the expression and the 

activity of all the components of the “traction model” are exarcebated. Interstitial and 

perivascular deposition of collagen and spotted distribution pattern of TGF-β 

expression in cardiac tissue supports the hypothesis for an autocrine/paracrine 

positive feedback loop in the production and activation of TGF-β, initially borne by 

the fibroblasts and subsequently carried out by differentiated myofibroblasts. 

In conclusion, results of this study support the involvement of the “traction 

model” in cardiac fibrosis development, but further aspects must be investigated in 

future. 

Future prospects regard the validation of the data presented to fully provide 

new insight into the mechanisms by which TGF-β, through the “traction model”, 

orchestrate the fibrotic process during hypertension. Elucidation of this mechanism 

may offer new therapeutic targets for the treatment of targets for the treatment of 

many disease characterised by fibrosis.    
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