ISOMETRIC EMBEDDINGS OF KÄHLER-RICCI SOLITONS IN
THE COMPLEX PROJECTIVE SPACE

LUCIO BEDULLI AND ANNA GORI

(Communicated by Lei Ni)

Abstract. We prove that a compact complex manifold endowed with a non-trivial Kähler-Ricci soliton cannot be isometrically embedded in the Fubini-Study complex projective space as a complete intersection.

INTRODUCTION

A Kähler metric g on a complex manifold M is said to be a Kähler Ricci soliton if there exists a holomorphic vector field V on M such that

$$\text{Ric}(g) = \lambda g + \mathcal{L}_V g,$$

where λ is a real constant. Kähler Ricci solitons have been extensively studied in recent years mainly because they provide self-similar solutions to the Kähler Ricci flow which was introduced as a mean for finding Kähler-Einstein metrics. Kähler Ricci solitons are indeed a generalization of Kähler-Einstein metrics (taking $V = 0$ in (0.1) we get the Einstein equation) but they are alternative to them because the presence of a Kähler Ricci soliton with nontrivial V is an obstruction to the existence of a Kähler-Einstein metric on a compact complex manifold with positive first Chern class (The Futaki invariant with respect to the real part of V is nonzero). In fact it is a deep result proved by Tian and Zhu [10] that a compact Fano manifold can admit at most one Kähler Ricci soliton, including trivial ones.

The first nontrivial examples of compact Kähler Ricci solitons were found by Koiso: in [5] he proved the existence of a KRS on any Fano manifold admitting a cohomogeneity one action of a compact semisimple Lie group of isometries with two complex singular orbits. After that, Wang and Zhu [11] proved the existence of KRS on any compact toric Fano manifold and this result was later generalized in [8] to toric bundles over generalized flag manifolds. Since all compact KRS are Fano and can be holomorphically embedded in the complex projective space \mathbb{CP}^m, it is natural to ask whether a Kähler Ricci soliton may be induced by the Fubini-Study metric of \mathbb{CP}^m.

In this note we prove the following negative result. Recall that a smooth codimension r subvariety of \mathbb{CP}^m is a complete intersection if its ideal is generated by r elements or equivalently if it may be described as the transverse intersection of r algebraic hypersurfaces.
Theorem 0.1. Let M be a closed complex submanifold of \mathbb{CP}^m such that the metric induced on M by the Fubini-Study metric ω_{FS} is a Kähler-Ricci soliton. If M is a complete intersection then the Kähler-Ricci soliton is trivial and M is a linear subspace or a smooth quadric subvariety of some linear subspace.

Our result may be thought as a generalization of the main theorem of [3] where the classification of Kähler Einstein manifolds isometrically embedded in $(\mathbb{CP}^n, \omega_{FS})$ as complete intersections is given. For general smooth subvarieties, beside the homogeneous case of flag manifolds (see [9] for the classification), no example of positive Kähler Einstein metric induced by ω_{FS} is known. On the other hand a Kähler Einstein submanifold of $(\mathbb{CP}^n, \omega_{FS})$ has necessarily positive scalar curvature by a result of Hulin [4].

1. Proof of the theorem

1.1. Kähler Ricci solitons. Let M be a complex manifold and denote by J its complex structure. Rephrasing (0.1) in terms of 2-forms, a Kähler Ricci soliton on M is a Kähler metric g whose associated, Ricci and Kähler form ρ and $\omega = g(J\cdot, \cdot)$ respectively satisfy

\[\rho = \lambda \omega + \mathcal{L}_V \omega \]

for some holomorphic vector field $V = X - iJX$, where J is the complex structure. We will say that the Kähler Ricci soliton is trivial if $V = 0$, i.e. (M, g) is Kähler-Einstein.

Note that $\mathcal{L}_X J = 0$ because V is holomorphic and equation (1.1) implies that $\mathcal{L}_{JX} \omega = 0$, i.e. JX preserves ω, hence g because it also preserves J. Note also that (1.1) implies

\[\rho = \lambda \omega + \mathcal{L}_X \omega. \]

The fact that ∇X is g-self adjoint means that the 1-form dual to X is closed; since a KRS may exist only on Fano manifolds and these are simply connected (Kobayashi’s theorem), we see that X is the gradient with respect to g of some smooth function f. We will indicate $\nabla f := \text{grad}_g(f)$. This implies that

\[\mathcal{L}_X \omega = \mathcal{L}_{\nabla f} \omega = d\nabla f \omega = dJ\nabla f \omega = dd^c f. \]

Recalling\(^1\) that $\partial = \frac{1}{2}(d + id^c)$ and $\bar{\partial} = \frac{1}{2}(d - id^c)$, equation (1.2) turns out to be equivalent to

\[\rho = \lambda \omega + 2i\bar{\partial} \partial f. \]

Indeed the previous computation shows also that the function f indeed admits another useful interpretation. Since $i_{JX} \omega = -df$ the function f is, up to a constant multiple, a moment map for the infinitesimal action of the Killing vector field JX on M, or more precisely it is the projection along JX of a moment map μ for the Hamiltonian action of $\text{Iso}(M, g)$ on M. (Recall that since M is simply connected every symplectic action on M is Hamiltonian)

\(^1\)We are using the convention according to which $d^c h(Y) = Jdh(Y) = dh(-JY)$.

1.2. proof of the theorem. Let \(n \) be the complex dimension of \(M \) and \(r = m - n \) the codimension. Denote also by \(i : M \to \mathbb{C}P^m \) the inclusion and simply by \(\omega \) the restriction \(i^*\omega_{FS} \). By hypothesis \(\omega \) satisfies (1.3) where \(f \) is the potential of the holomorphic vector field \(X = \nabla f \). We suppose that \(M \) is embedded in \(\mathbb{C}P^m \) as a complete intersection. Namely \(M \) is assumed to admit \(r \) homogeneous polynomials \(P_1, P_2, \ldots, P_r \) on \(\mathbb{C}^{n+1} \) which define \(M \) as their zero locus and generate the ideal associated to \(M \).

It is a direct consequence of the adjunction formula that the canonical line bundle \(K_M = \Lambda^{n,0} \) of \(M \) is the restriction of a line bundle on \(\mathbb{C}P^m \), more precisely

\[
K_M = i^*\mathcal{O}(d - m - 1)
\]

where \(d = \sum_{j=1}^{r} \deg P_j \). Since the Chern class of \(K_M \) is represented by \(\frac{1}{2\pi} \) times the Ricci form, the constant \(\lambda \) in (1.3) is forced to be equal to \(m + 1 - d > 0 \).

It is well known Hermitian metrics \(h \) on \(K_M^* \) correspond bijectively to positive volumes (nowhere vanishing real \(2n \)-forms) \(v \) of \(M \), the correspondence being given by

\[
\langle v, (-2)^m(\sqrt{-1})^m x \wedge \bar{x} \rangle = h(x, x)
\]

for \(x \in K_M^* \). Let \(V \) be the volume of \(M \) corresponding to the fibre metric on \(K_M^* \), whose Chern curvature form is exactly \((m + 1 - d)\omega\). In [3] (proposition 2) it is computed explicitly the real positive function \(\phi \) such that \(\omega^n = \phi V \) in the case where \(M \) is a complete intersection. More precisely, recalling that the Chern curvature form of the fibre metric induced by \(\omega \) on \(K_M^* \) is exactly the Ricci form \(\rho \) (see [1], p.82), we have the following

Proposition 1.1 (Hano [3]). Let \(M \) be a complete intersection in \(\mathbb{C}P^m \) defined by the polynomials \(P_1, \ldots, P_r \). Denote by \(d = \sum_i \deg P_i \) and by \(\rho \) the Ricci form of the metric \(\omega \) induced by \(\omega_{FS} \). Then we have

\[
\rho = (m + 1 - d)\omega + i\partial\bar{\partial} \log \phi, \quad \text{with} \quad \phi = \frac{\|dP_1 \wedge dP_2 \wedge \cdots \wedge dP_r\|^2}{\|z\|^{2(d-r)}}.
\]

Here \(\phi \) is expressed in terms of unitary homogeneous coordinates of \(\mathbb{C}P^m \) and \(\|dP_1 \wedge dP_2 \wedge \cdots \wedge dP_r\|^2 = \sum |P_{\lambda_1 \ldots \lambda_r}|^2 \) where \(dP_1 \wedge dP_2 \wedge \cdots \wedge dP_r = \sum P_{\lambda_1 \ldots \lambda_r} dz_{\lambda_1} \wedge \cdots \wedge dz_{\lambda_r} \). Note also that the previous expression of \(\phi \) is invariant under any unitary coordinate transformation.

Combining (1.4) with the Kähler-Ricci soliton equation we get

\[
\partial\bar{\partial} \log \phi = 2\partial\bar{\partial} f.
\]

so that

\[
\phi = C \cdot e^{2f}
\]

for some constant \(C \in \mathbb{R} \). Now the key fact is that we can find an explicit expression also for \(f \) in terms of homogeneous coordinates of \(\mathbb{C}P^m \). Indeed, as already remarked, \(f \) is a moment map for the action of the 1-parameter group of isometries generated by \(JX \) and this enables us to write it down in suitable coordinates.

To start with, by a famous result of Calabi [2] the Killing vector field \(JX \) can be extended to a Killing vector field of \((\mathbb{C}P^m, \omega_{FS})\) so that with respect to an appropriate system of unitary homogeneous coordinates it can be written in diagonal form \(\text{diag}(i\lambda_0, \ldots, i\lambda_m) \) as an element of \(\text{su}(m+1) \).
Thus a moment map for the Hamiltonian action of the 1-parameter group \(\{ \exp tJX \} \) on \(\mathbb{C}P^m \) is
\[
\mu_{JX} = \frac{1}{2} \sum_{j=0}^{m} \lambda_j |z_j|^2
\]
and \(f \) is nothing but the restriction of \(\mu_{JX} \) to \(M \). So there exists a constant \(C \in \mathbb{R} \) such that on \(M \) one has
\[
\frac{\|dP_1 \wedge dP_2 \wedge \cdots \wedge dP_r\|}{\|z\|^{2(d-r)}} = Ce \frac{\sum \lambda_j |z_j|^2}{\Sigma |z_j|^2}.
\]
We claim that (1.5) holds if and only if \(f(z, \bar{z}) \) is constant. Let \(p \) and \(q \) be any two points of \(M \). Since \(M \) is Fano, by a Theorem of Kollár Miyaoka and Mori [6] there exists a rational curve passing through \(p \) and \(q \), say \(F: \mathbb{C}P^1 \to M \subseteq \mathbb{C}P^m \) defined by \(F([s : t]) = [F_0(s, t) : \ldots : F_m(s, t)] \) where the functions \(F_m(s, t) \) are homogeneous polynomials of degree \(\delta \) in \(s \) and \(t \).

Evaluating (1.5) at \(F(\mathbb{C}P^1) \) we get
\[
\frac{\|dP_1(F([s : t])) \wedge \cdots \wedge dP_r(F([s : t]))\|^2}{(\sum_j |F_j(s, t)|^2)^{(d-r)}} = Ce \frac{\sum \lambda_j |F_j(s, t)|^2}{\Sigma |F_j(s, t)|^2}
\]
for every \([s : t] \in \mathbb{C}P^1 \) and this is clearly impossible unless \(f \) is constant on \(F(\mathbb{C}P^1) \), otherwise the right hand side of (1.6) would not be a rational function of \(s \) and \(t \). Since \(p \) and \(q \) are arbitrary, \(f \) must be constant on all of \(M \): this means that \(X = \nabla f \) vanishes and the Kähler-Ricci soliton is trivial, i.e. \(\omega \) is Kähler-Einstein. According to Hano [3] this happens only if \(M \) is a linear subspace or it is a smooth quadric subvariety of some linear subspace.

References

2. E. Calabi, Isometric embeddings of complex manifolds, Ann. of Math. 58(2) (1953) 1–23;

Dipartimento di Matematica - Università dell’ Aquila, via Vetoio loc. Coppito, 67100 L’Aquila, Italy

E-mail address: lucio.bedulli@dm.univaq.it

Dipartimento di Matematica - Università di Milano, Via Saldini 50, 20133 Milano, Italy

E-mail address: anna.gori@unimi.it