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1. Introduction 

 

1.1 Malaria 

 

Malaria is a parasitic disease caused by Plasmodium protozoa and, with tuberculosis 

and HIV, is the third cause of death in the world. Five Plasmodium species ar known 

to be infectious to humans: P. falciparum, P. vivax, P. ovale, P. malariae and P. knowlesi. 

These parasites are responsible for different manifestation of this pathology, with P. 

falciparum being the most deadly. In 2011, it has been estimated that 3.3 billion people 

were at risk of contracting malaria, especially in the sub-Saharan regions. According 

to the World Health Organization’s data, 91% of the deaths due to malaria involved 

the regions of Africa (particularly sub-Saharan Africa), where the most affected 

people are children under 5 years and pregnant women (Figure 1.1).1  

While Africa is at great risk, western Asia, the Middle East and Latin America are 

also regions with a great risk of malaria transmission, and even first world country, 

where malaria has been eradicated, are at risk of reintroduction due to migratory 

fluxes.  

 

Figure 1.1 

http://apps.who.int/malaria/wmr2008/
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Geographical factors like temperature, humidity and rain are responsible for the 

distribution of the disease, limiting the ideal mosquito breeding ground in the 

tropical and subtropical regions. This localization had led many to consider malaria a 

“poverty disease”, because these area are often associated with poor economical, 

social and health conditions typical of third world countries. What is often 

overlooked is that the disease is also one of the causes of impoverishment in these 

countries: in high-risk of transmission area, malaria causes an average loss of 

economic annual growth of 1.3%. This fact can be observed comparing the GDP of 

countries where malaria is endemic and those where it has been eradicated. The 

infection has a direct impact on human resources because hinders social 

development and decreases school attendance,2 and direct costs of malaria include 

public and private spending for prevention and treatment of the disease. In some 

countries, malaria is the cause of 40% of public health expenditure, 39-50% of 

hospital admissions and 60% of day care consults. 

Every year between 10,000 and 12,000 cases of imported malaria are reported.2 In the 

European Union, the majority of imported malaria cases can be found in France, the 

United Kingdom, Germany and Italy. 

For over 50 years alkaloids of Cinchona and their derivatives have been used to 

control malaria. Chloroquine, a synthetic derivative of natural alkaloid quinine, has 

been one of the most effective anti-malarial drugs ever produced, but P. falciparum 

strain resistant to this class of drugs, first observed in South East Asia and South 

America, are now common also in Africa and Asia. This has led to a global 

resurgence of malaria, and the global effort to identify another therapeutic agent 

effective against malaria. This research led to the identification of artemisinin, a 

terpene extracted from Artemisia Annua. 

Artemisinin, a very effective antimalarial and expensive compound, quickly became 

a first line drug. Unfortunately, in some regions, resistance to this class of antimalaric 

has already been observed.3 

Therefore, there is a huge need to develop new antimalarial agents that, compared to 

traditional drugs, will be active against these resistant strains with improved 

pharmacokinetic properties, fewer side effects and lower costs. 



 
                                                                                                                                                                                                   Introduction 
 

5 
 

1.2 Parasite life cycle 

 

Malaria is transmitted from person to person almost exclusively by a female 

mosquito of the genus Anopheles, though cases of accidental transmission due to 

blood transfusions or use of contaminated syringes have been reported. 

 

 

Figure 1.2  

 

Infected mosquitoes are able to transmit malaria with every bite during its life cycle, 

inoculating the infectious forms of the parasite, called sporozoites. Sporozoites 

remain in circulation for less than half an hour, after which they move into the 

parenchymal cells of the liver, starting the hepatic phase. During this phase, the 

sporozoites undergo a first cycle of asexual multiplication with the production of 

plurinuclear schizonts which then divide into intracellular mononuclear merozoites. 

Infected hepatocytes then break and release merozoites into the blood stream, where 

they adhere to the red blood cell (RBC) membrane and infect the erythrocytes, 

starting the second asexual phase called "red-cell cycle". Merozoites turn in 

trophozoites which are recognizable under the microscope due to typical ring shape. 
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Trophozoites initially grow feeding on hemoglobin, maturing to the stage of schizont 

with the ability to generate new merozoites. After a series of nuclear divisions, 

schizonts break free from the infected RBC and release numerous merozoites (from 6 

to 36 per schizont), able to start a new invasion (Figure 1.2). 

Malaria symptoms are characterized by fever (due to the breakdown of red blood 

cells and the subsequent invasion of new erythrocytes), shivers, splenomegaly and 

anemia. 

Depending on the Plasmodium species infecting the host, the infection cycle repeats at 

regular intervals: in cases of P. falciparum (malignant tertian malaria), P. ovale and P. 

vivax (benign tertian malaria) fever appears every 48 hours, while in the case of P. 

malariae (quartan malaria) every 72 hours. RBC destruction causes anemia, while in 

several vital organs microvasculature clots consisting of erythrocytes fragment leads to a 

blockage of blood vessels, causing decreased oxygenation of organs such as liver, kidneys or 

brain (cerebral malaria), which my lead to death.
4
 

P. vivax and P. oval hepatic parasites may persist in the liver as hypnozoites to 

generate, even after months or years, new infections of red blood cells known as 

"malarial relapse". 

In order to complete the replication cycle, some trophozoites may transform into 

male and female gametocytes. After a mosquito bites an infected person, ingesting 

the sexual forms, they maturate in its stomach (sporogonic cycle), producing 

numerous oocyst. The oocyst become sporozoites and accumulate in the salivary 

glands of the vector. Subsequent bites are capable of transmitting malaria to a new 

subject. 
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1.3 Pathogenesis 

 

The parasites presence inside the erythrocytes causes significant changes in the RBC 

membrane in order to replicate and avoid detection. Protuberances called knobs, 

consisting in specific proteins of the parasite (HRP-"histidin rich protein"), appear on 

the RBC membrane and adhesion of parasitized erythrocytes on vascular 

endothelium lead to the formation of rosettes (aggregates composed by a parasitized 

red blood cell surrounded by RBC not parasitized and 4-hydroxynonenal [4-HNE]).5 

The phenomenon of adhesion and occlusion of capillaries together with the high 

production of inflammatory factors, such as NO and TNF, is responsible of tissue 

damage, hypoxia and metabolic acidosis that characterize cerebral malaria and cause 

its symptoms.6 

Anemia, that can be observed in cases of severe malaria (SMA), is a complication 

caused by P.falciparum due to the loss of parasitized or not parasitized erythrocytes, 

coupled with a reduced erythropoiesis.7 That can be characterized by a reduction of 

the number of circulating reticulocytes, a normal or increased production of 

erythropoietin (EPO) and the altered morphology of erythroid precursors.8,9 

 

1.4 Red Blood Cells Membrane Remodeling 

 

 

Figure 1.410 

 

The Plasmodium parasite is one of the few pathogens able to invade ad overtake 

mature erythrocytes. In order to infect these cells, the parasite create a localized 

disorganization of the RBC membrane architecture, introducing various features, like 

adhesive and permeability properties,  necessary for its survival (Figure 1.4).11-13 
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A group of parasite proteins, a complex called exportome, is responsible for the 

modifications imposed on the erythrocytes membrane, and a complex mechanism 

regulates the trafficking of these proteins over the plasma membrane and the 

parasitophorous vacuole (PV) in which the parasite resides and selectively direct 

them at specific sites of the host cell.14-17 

The exported proteins modify the architecture of the erythrocyte membrane, affect its 

elasticity and facilitate the transport of adhesins on the surface of red blood cell. To 

regulate proteins transport within the red blood cell, the parasite develops new 

membranous structures in the cytoplasm of the host cell, known as the 

tubulovescicular network and Mauer’s clefts.18-20 

The human erythrocyte is a highly specialized cell, tasked of carrying oxygen to the 

tissues. While the terminal stages of maturation lead to a loss of the nucleus and the 

ability to synthesize protein, its membrane allows him to make a journey of over 500 

km inside the blood vessels, suffering extreme deformations without incurring in any 

lethal fragmentation.21 This remarkable elasticity and resistance is conferred by the 

presence of a hexagonal membrane skeleton consisting in spectrin heterodimers, 

which associate to form tetramers.22 The deformability of the red cell membrane is 

partially due to the structural flexibility of the linker that connect the helical 

tetramers of spectrin and in part to the ability of tetramers to associate and dissociate 

to accommodate the distortions imposed by the circulation in the blood vessels,23-26 

and genetic defects of the proteins that compose the membrane skeleton results in 

hemolytic anemia.27-29 

The lack of a phagocytosis mechanism is one of the first problems that the parasite 

has to face to initiate the infection. In the initial stages the surface proteins of the 

merozoite, EBA175 and EBA140, bind to sialoglycoproteins and glicoporine A and C 

present on the membrane of the red blood cell, or otherwise use proteins capable of 

promoting invasion strategies independent from the presence of sialic acid.10 

After a bond between the two cells is established, the activation of an actine-miosine 

motor30 allows the penetration into the host cell. Simultaneously, lipids and proteins, 

including proteases, are secreted on the red blood cells membrane by some 

organelles known as rhoptri, micronemes and mononemes.31 The proteolytic activity 
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of these enzymes destroys the normal architecture of the cell membrane and its 

connections with the skeleton that supports it, releasing the membrane proteins.32-34 

In this phase of the invasion, the merozoite induces invagination of the membrane 

free of surface proteins,35 initiating the PV formation and completing the cell 

invasion.36 

During the final stages of the invasion, proteins secreted from rhoptri and dense 

granules are secreted into the PV and are transported, together with other proteins 

characteristic of the early stages, in the cytoplasm of the host cell, in order to initiate 

the cascades of events required for the remodeling of cell.37,38 The erythrocytes 

containing mature forms of new merozoites are sequestrated in various organs and 

removed from the bloodstream. The changes made by the plasmodium to the 

membrane give the RBC the ability to adhere to the endothelium via the formation of 

knobs (Figure 1.5), mainly consisting of knob-associated His-rich protein (KAHRP). 

These knobs act as platforms that expose a membrane protein responsible for 

adhering to endothelial cells and other vascular elements, called P. falciparum 

erythrocyte membrane protein 1 (PfEMP1).10 

Through this adhesion process the parasite is able to prevent phagocytosis by the 

spleen, and is associated with lethal complications such as cerebral and placental 

malaria.39,40 During the development of the parasite new structures extend from the 

PV membrane (PVM) in the cytoplasm of the host cell, forming the tubulovescicular 

network (TVN),40,41 and Maurer’s clefts appear along the plasmatic membrane of the 

red blood cells, probably originated by TVN.10 

Maurer’s clefts concentrate parasitic 

secretory proteins before transferring 

them to the erythrocyte membrane, 

although none of the proteins associated 

with these organelles showed significant 

homologies with enzymes that regulate 

the trafficking of proteins in higher 

eukaryotes. It has been hypothesized 

that the parasite developed a new 

Figure 1.5 
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system to direct proteins through the cytoplasm of the RBC.42-44 

Before the proteins can alter the cell membrane, they must cross both the PV and the 

PVM of the parasite to enter the cell cytosol. A hydrophobic domain at the N-

terminal serves as a signal sequence that facilitate the insertion into the endoplasmic 

reticulum and is required for transfer the proteins through the PV. In many cases, 

however, the presence of pentameric sequence is required to proceed through the 

PVM. 

The exportation of these proteins, therefore, depends on the presence in the sequence 

of the Plasmodium export element (PEXEL sequence), RxLxE/Q/D, an extremely 

conserved peptidic motifs identified in many Plasmodium species.45,46 Recognition of 

the Plasmodium export element gave the possibility to predict which proteins should be 

exported to allow the survival of Plasmodium within the erythrocyte, based on its 

presence within a sequence. 

Proteins to be exported are synthesized in the endoplasmic reticulum of Plasmodium 

and, after cleavage at the level of leucine in the PEXEL sequence and acetylation of 

the N-terminal, are transported into the host cell by an ATP-dependent translocone, 

known as complex PTEX.47 Mutations of R or L residues in the sequence lead to an 

attenuation of the cleavage process and proteins exportation, preventing the proper 

maturation of the plasmodium, revealing the great importance that the PEXEL 

sequence has in the parasite development processes.48,49 

 

1.5 Antimalarial therapies 

 

The first treatment used against malaria was the bark of Cinchona, discovered in Perù 

in 1600 and imported in Europe by the Jesuits. In 1800, chemists Pelletier and 

Caventou isolated the active ingredient from the Cinchona bark, an alkaloid called 

quinine. To answer the increasing demands of this drug, the Dutch planted large 

crops of Cinchona ledgeriana in their colonies in Indonesia. Cinchona bark contains 

other anti-malarial drugs (quinidine, cinchonine, cinchonidine) but quinine was the 

most used of them. For centuries, despite its side effects, quinine remained the only 

anti-malarial drug used in therapy. During World War I, the blockade of ports and 
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submarine attacks hindered the supply of quinine, and gave new inputs to the 

research of synthetic antimalarial drugs, generating in new molecules such as 

pamachine, primaquine and mepacrine. The need to protect the american troops in 

the Pacific during World War II, encouraged the development of even more potent 

antimalarial drugs. These research project led to the discovery of chloroquine, 

amodiaquine, pyrimethamine and proguanil.  

As chloroquine resistance appeared in South America and South East Asia in 1960, 

associations of sulfonamide with pyrimethamine and quinine with tetracycline were 

used. During the Vietnam War, mefloquine was discovered at the U.S. Army 

Research Institute "Walter Reed", but unfortunately mefloquine resistance appeared 

Thailand soon after its first use.  

A new therapeutic agents was identified by a government sponsored project aimed 

to research traditional Chinese medicine to find new molecules to be used against 

malaria. Extract of Artemisia annua was traditional be used for the treatment of fevers 

for many years. In 1971 artemisinin, a drug with no resemblance to the previous 

antimalarials, was isolated from Artemisia annua extract, and subsequently 

semisynthetic derivates artemether, artesunate and arteether were synthesized. 

Continuous studies are currently ongoing in order to discover and synthesize 

antimalarial drugs more effective and safe. 

Figure 1.6 shows the chemical structures of the most common antimalarial agents. 
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Figure 1.6 

 

In recent years, the widespread and indiscriminate use antimalarials has prompted 

the development of parasites with high levels of resistance to all classes of drugs.  

Combining two or more antimalarial drugs, with additive or synergistic action, may 

be used as a way to overcome parasite resistance. The ultimate goal is the effective 

elimination of the parasite, that can be achieved with the right combination of drugs 

with different properties. 

The half-life is an important parameter to be considered: if the component with lower 

half-life can eliminate most of the parasites (such as artemisinin and its derivatives), 

the second compound, with a longer half-life (eg. mefloquine and lumefantrine) is 

able to eliminate the few remaining parasites, decreasing the risk of developing 

resistance.50  
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Studies demonstrated that the synergistic interaction between atovaquone and 

proguanil (Malarone), is active against P. falciparum chloroquine resistant strains. The 

association between cycloproguanil and dapson (Lapdap) is another combination 

used in clinical study. 

Artemisinin and its analogues are frequently used in combination therapy due to 

their excellent chemical-physical properties, such as rapid-action, short half-life, 

limited toxicity and activity towards multi-drug resistant strains. 

Artemeter and lumefantrine in combination (Coartem) is effective against P. 

falciparum multidrug resistance and present no serious side effects. Other interesting 

combinations are artesunate (similar to artemisinin), with mefloquine, sulfadoxine-

pyrimethamine or dapson-chloroproguanil.51;52 However in 2006, the first case of 

resistance to artemisinin has been reported at the border between Thailand and 

Cambodia.53 

In 2011, the European Medicines Agency has approved Eurartisim, association of 

Diidroartemisin-piperaquine, developed by Sigma-Tau in collaboration with 

Medicines for Malaria Venture. 
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1.6 Resistance 

 

Resistance of P. falciparum against quinolines and in particular chloroquine led to an 

increase in the number of deaths caused by malaria.54 The areas characterized by the 

presence of parasites resistant to chloroquine or mefloquine are showed in Figure 1.7. 

 

 

Figure 1.7 

 

Chloroquine resistance is associated with a reduction drugs accumulated inside the 

digestive vacuole.54 

Both genetic and biochemical studies have attempted to explain the mechanism 

involved in chloroquine resistace. 

These theories include: 

 

 Alteration of the Na+/H+ pump, causing an increase in cytoplasmic pH and a 

reduction  chloroquine uptake;55 

 Pfmdr amplification, a gene involved in the overexpression of the protein Pgh-

1; 

 Digestive vacuole membrane mutations: P. falciparum cloroquine resistance 

transporter (PfCRT). 
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Martin and colleagues, in recent studies, showed the correlation between the PfCRT 

mutations and the chloroquine resistance.56 This protein is localized in the digestive 

vacuole membrane and has ten transmembrane domains. 

When a mutation of this protein occurs, in particular at Lys76 (K76T), it causes a 

modification of the first transmembrane domain and significant increase of 

chloroquine resistance is observed. Reed et al. have shown that the mutation of the 

protein Pgh-1 contributes not only to the chloroquine resistance but also modulate 

the resistance to other compounds such as mefloquine, alonfantrine and quinine.57 

Interestingly compounds strictly analogous to chloroquine are active on chloroquine-

resistant strains, demonstrating that the resistance is not due to target changes, but it 

is compound-specific. 

Mitochondrial DNA (mtDNA), with 6 kb of length, is quite unusual in malaria 

parasites and is the shortest mtDNA known;58;59 it is highly conserved and encodes 

for only three proteins (subunits I and II of cytochrome oxidase c and cytochrome b). 

Resistance to various cytochrome bc1 complex inhibitors is characterized by 

mutations in a defined region coding for the cytochrome b sequence and mutation in 

these region may explain the different toxicity of different hydroxynaphtoquinonic 

antimalarial. 58;59 The region of the cytochrome b implicated in the mechanism of 

resistance is part of the catalytic domain, site Q0, in which ubiquinol is oxidized by 

the complex bc. Mutations observed in P. yoelii resistant covers a region of 15 amino 

acids surrounding the highly conserved sequence of the cytochrome PEWY B.58;60;61 

Mutations alter the hydrophobicity and the volume of part of the binding cavity: 

therefore even slight variations can affect the affinity of atovaquone towards 

cytochrome bc1.58 Resistance to atovaquone is rapidly observed in P. falciparum 

infections when it is used as a single agent, and experimental evidence have shown 

that parasites that become resistant to atovaquone are also resistant to the synergistic 

effects of proguanil, to which atovaquone is usually associated.58 

Combination therapy based on derivatives of artemisinin or ACT (artemisinin 

combination therapy) provides an important alternative to quinoline derivatives. 

In the last decade almost all countries with endemic malaria adopted this ACT for 

the treatment of P. falciparum malaria. Artemisinin has a very short half-life and is 
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rapidly eliminated from the body due to glucuronidation by CYP 2B6.3 For this 

reason, this molecule is usually associated with long half-life antimalarial drugs such 

as piperaquine or amodiaquine.3 In 2006 the first case of resistance to artemisinine 

was reported in Ta Sanhal, a small city near the border between Thailand and 

Cambodia. The cause of resistance to artemisinin in South-East Asia has been 

attributed to the widespread use of this drug as monotherapy.62 

The World Health Organization (WHO), even before the artemisinine resistance was 

reported, banned artemisinin monotherapy to delay the development of resistance 

and protect these important derivatives for antimalarial therapy.  

In Vietnam, artemisinin is used to control malaria since 1989, and although current 

national guidelines recommend the use ACT, artemisinin and artesunate 

monotherapy are still widely available through the private sector. Vietnam is also 

one of the few countries where artemisinin monotherapy leaded to a highly 

successful program for the malaria control, with reported cases of malaria falling 

sharply from 1,672,000 with 4,650 deaths in 1991, 91,635 clinical cases with 43 deaths 

in 2006.62 

Current data suggest that resistance to artemisinin is simply a natural consequence of 

the massive use of ACTs in South East Asia.53 

 

1.7 Natural products privileged scaffolds in drug discovery 

 

Parasite resistance to many of agents currently employed in therapy is one of the 

main issues that hinder malaria eradication. 

In the quest for new therapeutics, natural products (NPs) have been an invaluable 

source of drug leads over many years.63-66 Natural products have played a dominant 

role in the cancer therapeutic area where, over the last 30 years, 74.8% of approved 

drugs are either natural products, based on natural products, or mimics of natural 

products.67 Up to 2006, 24 unique chemotypes from natural products produced 49 

marketed drugs.68 Numerous scaffolds identified in natural products have led to 

approved drugs or drug candidates for a range of diseases. Examples include 

antibacterials (β-lactams, tetracyclins, erythromycins), antivirals (modified 
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nucleosides), anticholesterolemics (lovastatin), and anti-tumour agents (rapamycins, 

epothilones).69 

Two recent reviews highlight the past achievements of natural products in providing 

new drugs, while at the same time providing a realistic evaluation of commitment 

within the pharmaceutical industry in the area of discovering new natural product 

drugs.70,71 

Harvey highlights the seminal work of Snader on drug prototypes.65 This work on 

the prototypes, the initial lead molecule developed to a candidate drug and then a 

marketed therapeutic, indicated that more than 80% of drug substances were natural 

products or inspired by natural products. 

While Harvey articulates the perceived disadvantages of NPs as  difficulty in access 

and supply, complexities of natural product chemistry, inherent slowness of working 

with natural products, concerns about intellectual property rights and hopes 

associated with the use of collections of compounds prepared by combinatorial 

chemistry methods, the review demonstrates the need to develop new approaches to 

take advantage of NPs. Shoichet et al. have examined the systematic absences in 

chemical biology/screening libraries and found that 83% (12,977) of core ring 

scaffolds present in natural products were absent from commercial collections.72 

Their analysis suggests that collections that include molecules containing scaffolds 

present in natural products will provide better opportunities to find both screening 

hits and chemical biology probes.  
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2. Aim of the Research 

 

Malaria causes 300 to 500 million clinical cases and more than 2.7 million deaths 

annually, almost entirely localized in Africa tropical regions and mostly involving 

children under the age of 5.73 There are four species that can cause this disease in 

humans: Plasmodium falciparum (Pf), Plasmodium vivax (Pv), Plasmodium ovale (Po) and 

Plasmodium malariae (Pm). Pf is the most virulent and is responsible for the high infant 

mortality. One estimate puts 40% of the world population in areas at risk of 

contagion and the threat is increasing in recent years due to global climate changes, 

insurgence of parasite strains resistant to drugs traditionally used and an increase in 

international travels. 

Despite the existence of effective therapies, the living conditions in most of the areas 

affected by the disease limit their use. Also, given their widespread use, low-cost 

drugs currently available are those against which the parasite has developed 

resistance, so there is a dire need of new antimalarial able to overcome the 

disadvantages of the drugs still in use, such as resistance and high costs.  

Plasmepsin V (PMV), the enzyme responsible for cutting the sequence PEXEL, plays 

a critical role in the maturation of merozoites during the early blood stages,74,75 

regulating the translocation of parasite proteins on the membrane of the red blood 

cells. Due to this central role in the onset and propagation of the disease, the 

inhibition of its activity appears to be a promising therapeutic target. The belonging 

of this enzyme to the family of aspartic proteases allows the use a classic approach in 

the development of new inhibitors. 

 

2.1 Plasmepsins 

 

The aspartic proteases present in the Plasmodium are considered one of the most 

promising target for the development of new antimalarial.76 To date, four 

homologous aspartic proteases have been characterized in detail, called plasmepsins 

(PMs). These four plasmepsins (PMI, PMII , PMIV and HAP), are digestive vacuole 

enzymes that are actively involved in hemoglobin degradation77,78 and may also been 
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involved in the degradation of spectrin II and plasmepsin IV.79,80 The inhibition of 

these enzymes effectively blocks the parasite growth, and for this reason, plasmepsin 

have been considered as a possible therapeutic target.78,81,82 Six additional genes 

coding for plasmepsin76 and the mRNA of three of these genes (PMV, IX and X) are 

present in early stages of Pf infection.78 Immunofluorescence analysis showed that 

these plasmepsin are not localized in the digestive vacuole and, therefore do not take 

part in hemoglobin degradation.78 Recently, plasmepsin V (PMV) role has been 

clarified.74,75 This enzyme, localized in the endoplasmic reticulum, cleaves the PEXEL 

sequence that signals the need to export a protein. Aligning the sequence of PMV 

with other aspartic proteases of eukaryotic organisms showed many regions of high 

homology, revealing conserved structural and catalytic residues.83 In Figure 2.1, 

aspartate residues of the catalytic site are highlighted in yellow. A cysteine-rich 

region (Figure 2.1, blue), whose function has yet to be elucidated, has been identified 

in many aspartic proteases of plant origin.84 The C-terminal portion of the sequence 

contains a sequence of 25 hydrophobic aminoacids, whose function is to anchor the 

enzyme to the endoplasmic reticulum (Figure 2.1, red), and 15 other hydrophobic 

aminoacids are present in the N-terminal region, which serve as a signal sequence for 

the secretory system (Figure 2.1, green).83 
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SIKLKNNDKN DDEENNSKDV IVSNNVEDIV WQAITRKYYY YIKIYGLDLY GTNIMDKKEL  

 

       370        380        390        400        410        420  

DMLVDSGSTF THIPENIYNQ INYYLDILCI HDMTNIYEIN KRLKLTNESL NKPLVYFEDF  

 

       430        440        450        460        470        480  

KTALKNIIQN ENLCIKIVDG VQCWKSLENL PNLYITLSNN YKMIWKPSSY LYKKESFWCK  
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       490        500        510        520        530        540  

GLEKQVNNKP ILGLTFFKNK QVIFDLQQNQ IAFIESKCPS NLTSSRPRTF NEYREKENIF  

 

       550        560        570        580        590  

LKVSYINLYC LWLLLALTIL LSLILYVRKM FYMDYFPLSD QNKSPIQEST  

 

Figure 2.183 

 

Experiments conducted by Klemba and Goldberg and have confirmed that the PMV 

is an integral membrane protein.83 Despite PMV is related to the other nine 

plasmepsin present in P. falciparum, there is only a 17% identity with the sequence of 

mature PMIIs, while the identity between PMII and PMIV, both vacuolar 

plasmepsin, reaches 70%.76,85 During the course of the 44 hours necessary to complete 

a replication cycle of P. falciparum, the PMV is observed in small amounts during the 

first 12 hours. Its concentration increases during trophozoite (between 24 and 31 

hours) and schizont (between 31 and 41 hours) maturation. This increase of protein 

levels during development is similar to that observed for the digestive vacuole 

plasmepsin.78 In many aspartic proteases a specific region blocks the catalytic site 

and maintains the enzyme in an inactive state during translocation until it reaches its 

final destination.86 Plasmepsin I, II , IV and HAP possess a proregion including a 

transmembran dominion that anchor the proenzyme to the membrane during 

translocation into the digestive vacuole. The analysis of PMV proregion (Figure 1.6, 

underlined) of different Plasmodium species has revealed a high variability of the 

sequence, indicating the lack of important requirements for the structural or 

functional features of this region and supports the hypothesis that PMV is 

transported into the endoplasmic reticulum in unfolded and, therefore, does not 

require a mechanism to inhibit its activity.83 This mechanism has been observed in 

other aspartic proteases, including BACE, in which the proregion contributes to the 

correct folding of the catalytic site,87 and may have a similar role in PMV. In vitro 

inhibition of this enzyme was obtained using high concentrations of HIV protease 

inhibitors or pepstatin A, while other classes of inhibitors were ineffective. BACE 

inhibitors have little effect on the activity of PMV, probably due to the large 

evolutionary distance present between these two enzymes.75  

Further studies have shown that PMV is a essential protease present in the 

endoplasmic reticulum and P. falciparum parasite modified with a deletion of the 
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transmembrane portion were unable to maturate.83 While this results are promising, 

the lack of an efficient inhibitor of this enzyme limit the studies that could be 

performed to assess the viability of PMV as a new antimalarial target. With this 

work, we aim to synthesize peptidomimetic inhibitors to assess the structural and 

chemical requirements of the enzyme catalytic site, and compare them to the features 

present in recognized natural sequences. Data obtained will be used to design a set of 

compounds with reduced peptidic nature, that may be used as a starting point for a 

new series of antimalarial compounds. The main goal is to understand the 

therapeutic potential of PMV inhibition.  
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3. Discussion 

 

3.1 Aspartic proteases inhibition 

 

The aspartic proteases are a family of proteolytic enzymes, mainly active at acid pH. 

The mechanism of action of these enzymes consist of the establishment of an acid-

base system which involves the two aspartates of the active site and a water molecule 

positioned between the two. The two aspartic acid residues act as a proton acceptor 

and donor, respectively, catalyzing the hydrolysis of the protein substrate. The water 

molecule is partially activated by an aspartate and performs a nucleophilic addition 

on a specific carbonyl of the peptide sequence: the carbonyl oxygen, in turn, captures 

a proton from the second aspartic acid of the active site, generating the tetrahedral 

intermediate, which converts into a stable product, resulting in the cleavage of the 

peptide sequence (Scheme 3.1).88 

 

 

Scheme 3.1 

 

Being part of fundamental processes in the development of various pathologies, the 

aspartic proteases have been for a long time the subject of study for the development 

of inhibitors that could block their activity and thus reduce the onset or development 

of diseases. Among the most known and studied there are renin, an integral part of 

the renin-angiotensin-aldosterone system that regulate blood pressure; BACE, 

responsible for the amyloid precursor protein cleavage, and HIV viral aspartic 



 
                                                                                                                                                                                                       Discussion 
  

23 
 

proteases. The inhibition of these proteases has become an important therapeutic 

approach for the treatment of erectile disfuction, Alzheimer and AIDS.89  

The primary method used to inhibit the aspartic proteases is the use of bioisoster of 

the peptide bond that mimic the tetrahedral intermediate generated during the 

hydrolysis of the amide bond. The design of inhibitors of aspartic proteases exploits 

the formation of the transition state by introducing within the molecule an isosteric 

group that mimics the conformation of the intermediate, but it is not subject to the 

proteolytic activity of the enzyme. Isosteric groups as hydroxyethylaminic, 

hydroxyethilsulphidic and hydroxyethylureidic have successfully been used in the 

development of renin, viral protease and BACE inhibitors.88  

Following the identification of the PMV as a promising therapeutic target in the 

treatment of malaria, prof. Romeo’s group synthesized peptidic inhibitors of the 

enzyme, mimicking the PEXEL sequence but introducing an hydroxyethylamine 

moiety in place of the labile peptide bond, capable of effectively mimic the substrate 

transition state (Scheme 3.2). 

 

 

Scheme 3.2 

 

The HEA group was introduced within a sequence PEXEL replacing the peptide 

bond between the leucine and alanine. The first compound designed wanted to 

imitate as much as possible the sequence of the PMV substrate, RxLxE/Q/D (Figure 

3.1). 
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Figure 3.1 

 

The amino acids present in the various positions have been modified to study the 

interactions required to effectively inhibit the enzyme. Leucine(HEA) was 

maintained constant and multiple substitutions in other positions in the sequences 

were introduced. Since the localization of plasmodium within the red blood cell 

implies that PMV inhibitors should be able to cross biological membranes, the 

amount of charged residues in the sequences were kept to a minimum to allow the 

penetration of lipophilic membrane. The position P3 was the most studied due to its 

extreme conservation in the natural PEXEL sequences. Arginine is a basic amino acid 

with a long side chain, with a positive charge delocalized on the guanidine group at 

physiological pH, and these studies demonstrate how most modifications in the P3 

position led to inactive compounds. The compounds synthesized are shown in Table 

3.1. 

The compounds generated by prof. Romeo’s group are the first reported PMV 

inhibitors, but they were unable to inhibit parasite growth probably due to their 

unfavorable pharmacokinetic properties.90  
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Compound N-terminal P3 P2 P1 P1’ P2’ P3’ C-terminal PMV IC50 

(nM) 

LG21 H Arg Leu  Leu-HEA Ala Glu Ala OH 4 

LG25 H Met Leu Leu-HEA Ala Glu Ala OH inactive 

LG26 H Gln Leu Leu-HEA Ala Glu Ala OH 4900 

LG20 H Arg Leu Leu-HEA Ala Glu Ala NH2 1.6 

LG22 H Arg Ile Leu-HEA Ala Glu Ala NH2 228 

LG23 H Lys Leu Leu-HEA Ala Glu Ala NH2 3300 

LG29 H His Leu Leu-HEA Ala Glu Ala NH2 174 

LG30 H Trp Leu Leu-HEA Ala Glu Ala NH2 3 

LG37 H Tyr Leu Leu-HEA Ala Glu Ala NH2 3000 

SV01 H Arg Leu Leu-HEA Ala Gln Ala NH2 1.04 

LG32 H Lys Leu Leu-HEA Ala Gln Ala NH2 14000 

LG48 H Trp Leu Leu-HEA Ala Gln Ala NH2 700 

LG33 Bz Lys Leu Leu-HEA Ala Gln Ala NH2 inactive 

LG34 Ac Arg Leu Leu-HEA Ala Gln Ala NH2 75.6 

LG38 H Arg Leu Leu-HEA Tyr Glu Ala NH2 0.8 

LG44 H Arg Leu Leu-HEA Tyr Gln Ala NH2 10 

LG45 H His Leu Leu-HEA Tyr Gln Ala NH2 5000 

LG35 Ac Lys Leu Leu-HEA Pro Gln Ala NH2 inactive 

LG40 H Lys Leu Leu-HEA Ala Glu X NH2 1140 

LG46 H X Trp Leu-HEA Tyr Gln Ala NH2 inactive 

 

Table 3.1 
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3.2 Compounds stereochemistry 

 

Compounds generated using SPPS procedures present an undefined stereocenter 

due to the unselective reduction used in the HEA synthesis. During purification of 

compounds 2, 3, 4, 6, 8 and 9 it was possible to isolate a main peak and a secondary 

peak with the expected mass, probably corresponding to the two diastereoisomers.  

Biological testing revealed that the secondary peak possess, in all the instances, an 

inhibitorial activity lower than the main one. This different activity was already been 

observed by different research group working with HEA inhibitors of BACE-1. In 

these cases, the (R)-HEA moiety always showed a better activity compared against 

the same compound containing  the (S)-HEA group.91 

Literature data, also, report that unselective reduction of a carbonyl moiety during 

solid-phase synthesis preferentially generate the (R)-HEA over the (S)-HEA with a 

syn-anti ratio of 80:20 similar to the one observed in the synthesis of these class of 

compounds.92,93 

Experiments to determine the absolute configuration of these compounds are 

currently ongoing. 

 

3.3 SAR studies on peptidomimetics 

 

The first step in this research project was to increase the amount of structure-activity 

relationships of this class of compounds. Previous work was mainly focused on 

sampling the enzyme tolerance to different aminoacidic residues in the P3 position of 

the sequence. This position is the most conserved, and as expected very few 

modifications led to sequences recognized by the enzyme. Building upon that 

knowledge, my work aimed to assess the other position on the sequence in order to 

reduce the peptidic nature of this inhibitors and trying to achieve an inhibition of 

plasmodium growth.  
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3.3.1 P3’ position 

 

In compounds 1-4 (Figure 3.2) the C-terminal alanine was removed. This aminoacid 

was originally added to balance the compounds length, and it is not part of any 

specific PEXEL sequences.  

P3’ modifications does not seem to affect the activity of compounds 1 and 2, 

presenting an arginine in P3, but a complete loss of activity has been observed in 

previously active sequences containing a Trp in P3 (Compound 3 and 4). As 

observed in previous sequences, introduction of Tyr in P1’ slightly decrease the IC50, 

but it’s still considered a favorable modification since allows an easier purification 

process. 

 

 

 

Compound 

Pf 
PMV 
IC50 

[nM] 

Pf 
3D7 
IC50 

[µM] 

1 0.25 >200 

2 1.1/19.9 >200 

3 inactive ND 

4 inactive ND 

 

Figure 3.2 

3.3.2 P2’ position 

Compounds 5-8 (Figure 3.3) were synthesized in order to test the requirements 

present in P2’. Looking at the PEXEL sequences found in nature, the residue present 
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in this position is less conserved than the one occupying P3 and P1, but usually 

sports an acidic sidechain. Glutamic acid, aspartic acid and glutamine are equally 

found in this position when analyzing natural PEXEL sequences. Trying to 

understand the role of the acid group presents on the aminoacid sidechain, 

compounds 5 and 6, presenting a Gln residue in position P2’, were synthesized. 

While active, these compounds showed a nine-fold and a twenty-fold reduction in 

activity when compared with compounds 1 and 2. This shows that, while not 

necessary, the strong interaction of a glutamate residue in the S2’ is important for the 

activity of this class of compounds. 

To further explore the requirements of this pocket, a Gly residue was introduced 

(compounds 7 and 8). In order to maintain an acidic moiety in that position, the 

peptidomimetics were synthesized using 2-chlorotritylic resin, in order to obtain a 

carboxyterminal sequences. These compounds showed a good IC50 against PMV, and 

performed slightly better than compounds 5 and 6, while still being less active than 

compounds 1-2. 

 

Compound 

Pf 
PMV 
IC50 

[nM] 

Pf 
3D7 
IC50 

[µM] 

5 9 >200 

6 20/138 >200 

7 10 >200 

8 2/78 >200 

 

Figure 3.3 
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The last modification introduced was the complete removal of the aminoacid from 

the P2’ position (Figure 3.4). For synthetic reasons, the sequence synthesized was the 

one containing a carboxyterminal Tyr, easier to purify. This compound maintains 

only the two highly conserved residue Arg (in P3) and Leu (in P1), but lacks the 

acidic residue in P2’. 

As expected, compound 9 is almost unable to inhibit PMV activity, with an IC50 in 

the micromolar range, opposed to the other member of this class of inhibitor, that are 

usually in the low nanomolar range. 

 

Compound 

Pf 
PMV 
IC50 

[nM] 

Pf 
3D7 
IC50 

[µM] 

9 2500/9200 >200 
 

Figure 3.4 

 

3.4 Antiplasmodial activity of compounds 1-9 

 

Compounds 1-9 were tested for antimalarial activity against P. falciparum cultures. 

Despites their high inhibitorial activities against PMV, these compounds were unable 

to block parasite proliferation, as it was observed in compounds of the same class 

previously synthesized. This could be attributed to the highly peptidic nature of 

these molecules, which can hinder the peptidomimetic ability to cross biological 

membranes. In order to reach its site of action localized in the endoplasmatic 

reticulum, the compounds need to cross three different biological membranes (RBC 

membrane, PV membrane and finally the parasite membrane), each with different 

physiological properties that may not allow the diffusion of a multiple-charged 

compound. Also, both the erythrocytes and the parasites contain various kinds of 
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proteolytic enzymes, which may be able to cleave the sequences before they reach 

PMV.  

These factors could help to explain the poor performances of these compounds when 

tested against Pf cultures. Since these problems are linked to the peptidic nature of 

these class of compounds, and further modifications usually led to a loss of PMV 

inhibition properties, a new strategy was devised in order to design a new class of 

compounds that could target the PMV pathway, but without all the inherent 

complications arising from working with peptides. A natural product privileged 

scaffold was selected and used as a starting point upon which a small compound 

library was built in order to find a better candidate for drug development. 

 

3.5 Azaspiroundecane scaffold  

 

It has been observed that 83% of the cyclic scaffolds found in nature are not 

represented in commercially available products. These scaffolds have a complex 

three-dimensional structure, which could be exploited for biological interactions. An 

analysis performed by the research group of prof. Quinn (Eskitis Institute, Brisbane, 

Australia) has shown that these scaffolds, which are often main structural features of 

the molecule, are found in many natural products extracted from different biological 

sources. These structures, therefore, offer a versatility that can be exploited to obtain 

a suitably substituted compound possessing the characteristics of the molecules from 

which they derive, and thus eliminating the problems resulting from the total 

synthesis of individual natural products. One of the structures identified by the 

group of prof. Quinn is the 1-azaspiro[5.5]undecane  scaffold (Figure 3.5). 

 

 

Figure 3.5 
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Such scaffold is contained by a diverse set of natural products. There are at least 5 

distinct natural product chemical classes that have this scaffold embedded (Figure 

3.6). The spiro-scaffold is the clear three-dimensional determinant for all these 

molecules. 201 known lycopodium alkaloids, of which 70 belong to the quinolizidine 

class, contains this scaffold. An example of this structural class is lycopodine (Figure 

3.6).  

Erythrinane alkaloids, such as erythralin (Figure 3.6), have been isolated from a 

variety of plants belonging to the genus Erithrina, widely used in traditional 

medicine to treat a number of health problems including anxiety, insomnia and 

inflammation. This family of compounds has been reported to have anticonvulsant, 

hypotensive, hypnotic, analgesic and cytotoxic effects.94-96 

Cylindricines were isolated from the Tasmanian ascidian Clavelina cylindrical,97 and 

the related marine natural product, fasicularin (Figure 3.6) has selective activity 

against a DNA repair-deficient yeast strain.98  

Eudistone A (Figure 3.6) was isolated from the Seychelles tunicate Edistoma sp.,99 

while karachine (Figure 3.6) is a protoberberine alkaloid from Beberis arisata, used in 

the Unani system of medicine for the treatment of jaundice and skin diseases. 

 

 

Figure 3.6 
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3.6 Scaffold library 

 

Prof. Quinn work shows that the 1-azaspiro[5,5]undecane scaffold controls the 3D 

geometry of the compounds in which it is embedded. The orientation provided by 

the 3D geometry of the core scaffold seems to facilitate the interaction with the 

biological space, showed by the high proportion of active compounds in their 

synthetic library. Embedded 3D scaffolds occurring in natural products offer the 

potential to retain the biological relevant chemical space of natural products into 

libraries designed on these scaffolds. Starting from these observation, we used the 

same library used by prof. Quinn group to assess the adaptability of this scaffold in 

our project. Compounds 10-29 have been synthesized using the synthetic strategy 

devised during my stay in prof. Quinn group at the Eskitis Insitute, and they were 

tested in a single dose assay against Pf 3D7 cultures to assess their ability to inhibit 

plasmodium growth.  

Due to the extreme difficulty to assess PMV inhibition, compounds 10-19 were tested 

for their antimalarial properties before further investigation, using a single dose 

assay at high concentration (50 µM) against chloroquine-sensitive and chloroquine-

resistant strains of Pf was used as a preliminary screening.  

In this way we were able to screen the compounds in order to select only the one 

possessing antimalarial activity for further studies on PMV inhibition. 

Table 3.2 shows the activity of compounds 10-19, while the activity of compounds 

20-29 is currently under assessment. 
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Compound 

Pf 3D7 (D10) 

Growth inhibition % 

@ 50 μM 

Pf 3D7 (W2) 

Growth inhibition % 

@ 50 μM 

 
Scaffold A 

 
Inactive Inactive 

 

89.03 88.91 

 

25.41 36.34 

 

27.76 37.20 

 

28.44 30.76 

 

88.62 91.30 

 

85.68 78.94 
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99.48 98.80 

 

99.93 97.39 

 

85.19 85.63 

 

80.93  81.18 

 

Table 3.2 

  

3.7 Activity of compounds 10-19 

 

All compounds, beside 11-13 containing a bromine atom, showed a good inhibitorial 

activity when tested at 50 µM, while the unsubstituted scaffold A was unable to stop 

parasite growth. This is important since allow to rule out an unspecific activity due 

to the presence of the azaspiroundecane scaffold. Since the test was conducted using 

high concentration, it was not possible to observe significant differences in 

compounds activity and identify structure-activity relationships, but the presence of 

inactive compounds (11-13) suggest that a specific target with defined structural 

requirements may be at the base of their activity.  
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These observations led us to design two more compounds, using the SAR obtained 

working on the peptidomimetics in order to synthesize tailored compounds with 

better chances to interact with PMV. 

 

3.8 Design and activity of compounds 30-32 

 

In order to select the appropriate substituent, we looked at the SAR of 

peptidomimetics. Postition P3 was the most critical and the only aminoacid accepted 

in this position, with limited exception consisting in other basic aminoacids like Trp 

of Lys. Therefore, in compounds 30-32, the NP scaffold has been functionalized with 

L-arginine or 6-carboxyindole, in order to mimic the two most effective side-chain 

substitutions found in the SAR study. 6-Carboxyindole was selected in order to move 

away from peptide-like structures. Another advantage of using the spiro-scaffold is 

that the two nitrogen atoms were maintained at a similar distance when compared 

with the peptidomimetic inhibitors (6 bonds, Figure 3.5), and the cleavable bond was 

substituted with a carbamate, another bioisoster of the peptide bond already used in 

other aspartic proteases inhibitors, as Darunavir (Figure 3.5).100 

 

 

Figure 3.5 

 

When tested on Plasmodium cultures, compound 30, containing an arginine residue, 

showed no activity up to 50 μM, while both compounds 31 and 32 showed an 

activity in the low micromolar range (Table 3.3). 
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The reason of this could be due to the multiple charges present on the arginine 

residue, that could hinder the ability of this molecule to cross biological membrane, 

as observed in the peptidomimetic compounds. 

Compounds 31 and 32, the two diastereoisomer of the same molecule, showed 

different activities related to the different stereochemistry. 

 

Compound 
Pf 3D7 (D10) 

IC50 (μM) 

Pf 3D7 (W2) 

IC50 (μM) 

30 >50 >50 

31 12.8 16.5 

32 >20 >20 

 

Table 3.3 

 

Compounds 31 and 32, possessing an acceptable IC50 will soon be tested against PMV 

to assess their ability to inhibit this enzyme.  

 



 
                                                                                                                                                                                                          Synthesis 
  

37 
 

4. Synthesis 

 

4.1 Solid-Phase Peptide Synthesis 

 

The solid-phase peptide synthesis (SPPS) was conceived in 1963 by Merrifield in an 

attempt to solve the problems encountered in peptide synthesis using traditional 

methodology. 

This technique relies on an insoluble polymer matrix, suitably functionalized, acting 

as a physical support for the sequential growth of the peptide. The resin allows for an 

easy removal of unreacted reagents by simple filtration, avoiding laborious 

purification procedures after each synthetic steps. Bypassing the purification steps 

allow for the optimization of parallel synthesis strategies, and also the automation of 

the process. 

This approach evolved in recent years, allowing not only the synthesis of peptides, 

but to introduce modification in the peptidic sequences, such as disulfide bridge or 

unnatural aminoacids. 

During solid-phase synthesis, solubilized reagents reach the free functional groups 

present on the surface and in the inner part of the polymer granules only by 

diffusion: therefore the reaction is conducted using a large excess of reagents. 

Repeated washings and filtrations are then employed to remove the unreacted 

fraction. 

The synthesis (Scheme 4.1) begins with the formation of a covalent bond between the 

carboxy- terminal amino acid and the resin linker, followed by its deprotection and 

the insertion of the next amino acid, a loop that continues until the desired sequence 

is completed. The side chains of amino acids inserted must be protected with groups 

stable in the conditions used in the synthesis, but easily removable in selected 

conditions. The whole process is thus reduced to a series of cycles of coupling- 

deprotection that continue until the desired sequence is obtained, which will be 

finally cleaved from the resin.  

The nature of the terminal group can be selected using different type of linker. 
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The most common protecting groups used primarily the terminal amino groups are 

the t-butylcarbamate (Boc-) and the 9-fluorenylmethyl carbamate (Fmoc) groups. 

These two protecting groups require completely different synthetic strategies, as they 

are labile under different conditions and require specific orthogonal protections.  

The peptide bond formation is made possible by the presence of coupling reagent, 

such as carbodiimides or benzotriazoles. The cleaving methods used to detach the 

peptide sequences from the resin will vary depending on the type of resin, but they 

are usually carried out using a mixture containing different scavengers that mimic 

the functional groups present on the side chains, reducing the risk of parasite 

reactions during the cleavage step. 

 

 

 

Scheme 4.1 
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4.1.1  SPPS features and requirements  

 

The solid phase synthesis has many advantages compared to traditional synthesis: 

• simple work-up; 

• removal of secondary products, cleaved protecting groups and the excess reagents 

at the end of each reaction by simple filtration; 

• Possibility to increase reactions yields by working with large excess of reagents; 

• Avoid problems involving decreased solubility of the peptide during synthesis; 

• Easily automated process. 

 

The support used in the synthesis must be insoluble and chemically inert, with 

granule-size sufficient to allow the fast removal of the solvent by filtration. The 

support must swell quickly, to facilitate the reagents diffusion into its pores, and this 

reaction may be facilitated introducing a spacer that separates the inert matrix and 

the reactive sites. The solvent used in the reaction must be of intermediate polarity, 

such as CH2Cl2 or DMF. 

In optimal conditions, the coupling reaction should always be completed, in order to 

avoid the formation of peptides bearing deletions in the sequence that can complicate 

the final purification step. It is possible to perform, at the end of the coupling, a 

capping of unreacted amino groups by acylation, thus obtaining truncated sequences 

that no longer take part in subsequent coupling reactions. However, there is no 

guarantee that this operation will improve the overall yield , and therefore is often 

avoided. 
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4.2 Organic Reactions 

 

4.2.1 Aza-Michael Addition 

 

The Michael reaction, discovered in 1887, is one of the most important reactions in 

organic chemistry, consisting in the conjugated addition of a nucleophile on an 

unsaturated carbonyl compound, defined Michael acceptor. It consists in the 

nucleophilic attack at the β carbon of an α,β-unsaturated carbonyl compound33. 

Kohler better define the reaction as a 1,4 addition of a doubly stabilized nucleophilic 

carbon to a α,β-unsaturated carbonyl compound. If the functional group which acts 

as the nucleophile is an amine or another nitrogen containing moiety, such as 

carbamates, the reaction is classified as an aza-Michael. The mechanism of the 

reaction is illustrated below (Scheme 4.2). 

 

 

 

Scheme 4.2 

 

For many years the method used for the conjugated-addition between the carbonyl 

and the amino group required acidic or basic conditions and a catalyst. The reaction 

carried out in such environment was not applicable to industrial level, due to the 

numerous secondary products that could be formed in acidic or basic conditions 

High yields are usually observed in this reaction when applied to strong 

nucleophiles; while weak one, such as carbamates, are less prone to react and need a 

much more reactive catalyst. For the aza-Michael reactions involving a carbamate, 

metal catalysts have been studied and bismuth salts have showed a remarkably 

ability to catalyze this kind of reaction. 
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4.2.2 Bismuth role as a catalyst 

 

The success of the Michael reactions in the presence of bismuth nitrate stimulated 

researcher to try to understand the reaction mechanism.101 In absence of bismuth 

nitrate reagents are not completely converted and low product yields are observed. 

Bismuth nitrate produces small amount of nitric acid, which leads to an acid 

environment required for this type of reactions, although substituting bismuth 

nitrate led to decreased yields. These results suggested that the role of this catalyst is 

not only related to the formation of acid, but may be due to it action also as a 

complexing agent. The low yields obtained when the same reaction is catalyzed by 

other nitrate salts, such as sodium nitrate, iron nitrate and zinc nitrate, confirm the 

important role played by bismuth nitrate. The failure of these salts in promoting the 

reaction could be indicative of their inability to release sufficient amount of acid or 

create specific reactive-catalyst coordination complex. In conclusion, bismuth nitrate 

seems to be the catalyst with the ideal characteristics for the success of an aza-

Michael reaction. 

 

4.2.3 Ring-closing metathesis 

 

The ring-closing metathesis (RCM) involves the formation of a ring by the 

intramolecular reaction of two double bonds. The metathesis reaction was discovered 

around 1960 and the search for efficient catalysts led to the synthesis of many 

reagents. The efforts made for the development of this reaction led Robert H. Grubbs, 

Yves Chauvin and Richard R. Schrock to share the Nobel Prize for chemistry in 2005. 

Scheme 4.3 illustrates the reaction mechanism. 
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Scheme 4.3 

 

The formation of the cycle is usually entropically favored and the equilibrium can be 

shifted towards the product removing the ethylene liberated in the reaction. The 

amount of solvent used in the RCM is important, since an excessive or reduced 

dilution could lead to the formation of secondary products. The catalysts used in 

RCM reactions are metal-carbene compounds, and one of the most used the first 

generation Grubbs catalyst, containing ruthenium. Grubbs I catalyst (Figure 4.1) is a 

derivative of Ru(IV) with 16 electrons and, being less reactive than other catalysts, 

need to be used in a slightly higher quantity, usually 0.5-1%. The increasingly 

widespread use of this compound it is due to its excellent compatibility with most of 

the functional groups, except Lewis bases, and its greater air stability compared to 

other catalyst.102 

 

 

Figure 4.1 
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4.3 Reactions schemes 

 
Compounds 1-9 described above present an HEA core, a peptide bond isoster. The 

introduction of this group in a solid-phase synthesis approach is different from the 

normal procedures usually applied in this kind of synthesis, which mainly consists in 

the formation of peptide bonds between the amino acid residues. The HEA group 

was generated after reduction of the carbonyl moiety of an aminomethylketone, 

obtained by alkylation on the N-terminal amine of the peptide anchored to the resin. 

The alkylation was performed exploiting a nucleophilic substitution, which allows 

the formation of the bond between the methyl ketone of Fmoc-3-amino-1-bromo-5-

methylhexan-2-one and the amine of the last amino acid introduced (Scheme 4.4). 

The bromomethylketone (intermediate 1) was obtained by reaction of Fmoc-leucine 

with CH2N2 and subsequent treatment with HBr 48%, as described in literature.91 

 

 

 

Scheme 4.4 

 

Using an alkylation reaction instead of an acylation  generate a secondary amine, a 

group able to further reacts in the later stages of the synthesis, due to the large excess 

of reagents used in SPPS. This problem was solved by the introduction of a Boc 

protecting group, labile under the cleavage conditions. The reduction step was then 
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conducted in a solution of THF/EtOH (1:1), adding a large excess of NaBH4 (Scheme 

4.5). Not being stereoselective, the reduction produced both the diastereoisomers. 

 

 

 

Scheme 4.5 
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4.3.1 Synthesis of peptidomimetics 1-4 

 

Compounds 1-4, synthesized using Rink amide resin, are characterized by a terminal 

dipeptide Ala-Glu or Tyr-Glu that reacts with Fmoc-3-amino-1-bromo-5-

methylhexan-2-one to generate intermediates 2 and 3, the HEA group precursor 

(Scheme 4.6). 

 

 

 

Scheme 4.6 
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HEA group was generated in situ following the procedure showed in Scheme 4.5. 

Scheme 4.7 illustrates the final steps necessary to obtain compounds 1-4. 

 

 

 

Scheme 4.7 
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4.3.2 Synthesis of peptidomimetics 5 and 6 

 

Compounds 5 and 6, synthesized using Rink amide resin, are characterized by a 

terminal dipeptide Ala-Gln or Tyr-Gln that reacts with Fmoc-3-amino-1-bromo-5-

methylhexan-2-one to generate intermediates 4 and 5, the HEA group precursor 

(Scheme 4.8). 

 

 

 

Scheme 4.8 

 

HEA group was generated in situ following the procedure showed in Scheme 4.5. 

Scheme 4.9 illustrates the final steps necessary to obtain compounds 5 and 6. 
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Scheme 4.9 
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4.3.3 Synthesis of peptidomimetics 7 and 8 

 

Compounds 7 and 8, synthesized using 2-Chlorotrytil resin, are characterized by a 

terminal dipeptide Ala-Gly or Tyr-Gly that reacts with Fmoc-3-amino-1-bromo-5-

methylhexan-2-one to generate intermediates 6 and 7, the HEA group precursor 

(Scheme 4.10). 

 

 

 

Scheme 4.10 

 

HEA group was generated in situ following the procedure showed in Scheme 4.5. 

Scheme 4.11 illustrates the final steps necessary to obtain compounds 7 and 8. 
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Scheme 4.11 

 

4.3.4 Synthesis of peptidomimetic 9 

 

Compound 9, synthesized using 2-Chlorotrytil resin, is characterized by a single 

aminoacid in position P1’ that reacts with Fmoc-3-amino-1-bromo-5-methylhexan-2-

one to generate intermediate 8, the HEA group precursor (Scheme 4.12). 
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Scheme 4.12 

 

HEA group was generated in situ following the procedure showed in Scheme 4.5. 

Scheme 4.13 illustrates the final steps necessary to obtain compound 9. 
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Scheme 4.13 
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4.3.5 Synthesis of intermediates 10 and 11 

 

Intermediate 10 and 11 were synthesized according to the synthetic pathway 

illustrated below (Scheme 4.14). 

 

 

Scheme 4.14 

 

The scheme involves a reaction between the 2-cyclohexenone and benzyilcarbamate 

giving intermediate 9, and subsequent one-pot double allylation with formation of 

intermediates 10 and 11.The intermediates 10 and 11 are obtained in a ratio of about 

75:35, calculated on purified compounds. Table 4.1 shows the reactions yields. 

 

Intermediate IUPAC name Yield 

9 benzyl (3-oxocyclohexyl)carbamate 90.4% 

10 
benzyl ((1S±1R,3R±3S)-3-allyl-3-

(allylamino)cyclohexyl)carbamate 
50.6% 

11 
benzyl ((1S±1R,3S±3R)-3-allyl-3-

(allylamino)cyclohexyl)carbamate 
27% 

 

Table 4.1 
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4.3.6 Synthesis of scaffolds A and B 

 

Scaffolds A and B were synthesized according to the synthetic pathway illustrated 

below (Scheme 4.15). 

 

 

Scheme 4.15 

 

The scheme consists of three steps: the protection of the amine with formation of 

intermediate 12 or 13 starting from intermediate 10 or 11, respectively; cyclization of 

those intermediates using first generation Grubbs reagent, generating the 

intermediates 14 and 15; and catalytic hydrogenation with formation respectively of 

scaffolds A and B. Table 4.2 shows the reactions yields. 

 

Intermediate IUPAC name Yield 

12 
allyl(1R±1S,3S±3R)-1-allyl-3-

(((benzyloxy)carbonyl)amino)cyclohexyl)methylcarbamate 
72.7% 

13 
(allyl((1S±1R,3S±3R)-1-allyl-3-

(((benzyloxy)carbonyl)amino)cyclohexyl)methylcarbamate 
67.8% 

14 
(6R±6S,8S±8R)-methyl 8-(((benzyloxy)carbonyl)amino)-1-

azaspiro[5.5]undec-3-ene-1-carboxylate 
91% 

15 
(6S±6R,8S±8R)-methyl 8-(((benzyloxy)carbonyl)amino)-1-

azaspiro[5.5]undec-3-ene-1-carboxylate 
84.9% 
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A 
((6R±6S,8R±8S)-methyl 8-amino-1-azaspiro[5.5]undecane-

1-carboxylate 
99.8% 

B 
((6R±6S,8S±8R)-methyl 8-amino-1-azaspiro[5.5]undecane-

1-carboxylate 
68.6% 

 
Table 4.2 

 

4.3.7 Synthesis of compounds 10-19 

 

Compounds 10-19 were synthesized through a reductive amination reaction starting 

from Scaffold A (Scheme 4.16). 

 

 

Scheme 4.16  
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Scheme 4.16 (continued) 
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Table 4.3 illustrates the reaction yields of each compound. 

 

Compound IUPAC name Yield 

10 
(6R±6S,8R±8S)-methyl 8-(((6,6-dimethyldicyclo[3.1.1]ept-2-en-3-

yl)methyl)amino)-1-azaspiro[5.5]undecane-1-carboxylate 
18.2% 

11 
(6R±6S,8R±8S)-methyl 8-((2-bromobenzyl)amino)-1-

azaspiro[5.5]undecane-1-carboxylate 
95.7% 

12 
(6R±6S,8R±8S)-methyl 8-((3-bromobenzyl)amino)-1-

azaspiro[5.5]undecane-1-carboxylate 
94.5% 

13 
(6R±6S,8R±8S)-methyl 8-((4-bromobenzyl)amino)-1-

azaspiro[5.5]undecan-1-carboxylate 
90.9% 

14 
(6R±6S,8R±8S)-methyl 8-(isopentylamino)-1-

azaspiro[5.5]undecan-1-carboxylate 
77.8% 

15 
(6R±6S,8R±8S)-methyl 8-(benzylamino)-1-

azaspiro[5.5]undecan-1-carboxylate 
51.8% 

16 
(6R±6S,8R±8S)-methyl 8-(adamantan-2-yl)amino)-1-

azaspiro[5.5]undecan-1-carboxylate 
63% 

17 
(6R±6S,8R±8S)- methyl 8-((4-phenoxybenzyl)amino)-1-

azaspiro[5.5]undecane-1-carboxylate 
74.1% 

18 
(6R±6S,8R±8S)-methyl 8-((2,4-dimethoxybenzyl)amino)-1-

azaspiro[5.5]undecane-1-carboxylate 
66.7% 

19 
(6R±6S,8R±8S)-methyl 8-((naphthalen-2-ylmethyl)amino)-1-

azaspiro[5.5]undecane-1-carboxylate 
49.6% 

 
Table 4.3 
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4.3.8 Synthesis of compounds 20-29 

 

Compounds 20-29 were synthesized through a reductive amination reaction starting 

from Scaffold B (Scheme 4.17). 

 

 

Scheme 4.17 
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Scheme 4.17 (continued) 

  



 
                                                                                                                                                                                                          Synthesis 
  

60 
 

Table 4.4 illustrates the reaction yields of each compound. 

 

Compound IUPAC name Yield 

20 
(6R±6S,8S±8R)-methyl 8-(((6,6-dimethyldicyclo[3.1.1]ept-2-en-3-

yl)methyl)amino)-1-azaspiro[5.5]undecane-1-carboxylate 
10% 

21 
(6R±6S,8S±8R)-methyl 8-((2-bromobenzyl)amino)-1-

azaspiro[5.5]undecane-1-carboxylate 
3.85% 

22 
(6R±6S,8S±8R)-methyl 8-((3-bromobenzyl)amino)-1-

azaspiro[5.5]undecane-1-carboxylate 
38.5% 

23 
(6R±6S,8S±8R)-methyl 8-((4-bromobenzyl)amino)-1-

azaspiro[5.5]undecan-1-carboxylate 
10.8% 

24 
(6R±6S,8S±8R)-methyl 8-(isopentylamino)-1-

azaspiro[5.5]undecan-1-carboxylate 
23.1% 

25 
(6R±6S,8S±8R)-methyl 8-(benzylamino)-1-

azaspiro[5.5]undecan-1-carboxylate 
4.6% 

26 
(6R±6S,8S±8R)-methyl 8-(adamantan-2-yl)amino)-1-

azaspiro[5.5]undecan-1-carboxylate 
11.5% 

27 
(6R±6S,8S±8R)-methyl 8-((4-phenoxybenzyl)amino)-1-

azaspiro[5.5]undecane-1-carboxylate 
18.6% 

28 
(6R±6S,8S±8R)-methyl 8-((2,4-dimethoxybenzyl)amino)-1-

azaspiro[5.5]undecane-1-carboxylate 
13.1% 

29 
(6R±6S,8S±8R)-methyl 8-((naphthalen-2-ylmethyl)amino)-1-

azaspiro[5.5]undecane-1-carboxylate 
5.4% 

 
Table 4.4 
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4.3.9 Synthesis of compounds 30-32 

 

Compounds 30-31 were synthesized through a coupling reaction starting from 

Scaffold A, while compound 32 originate from scaffold B (Scheme 4.18). 

Scheme 4.18 
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Table 4.5 illustrates the reaction yields of each compound. 

 

Compound IUPAC name Yield 

Intermediate 
16 

(6S±6R,8S±8R)-methyl 8-((S)-5-(2,3-
bis((benzyloxy)carbonyl)guanidino)-2-((tert-

butoxycarbonyl)amino)pentanamido)-1-
azaspiro[5.5]undecane-1-carboxylate 

60.7% 

30 

(6S±6R,8S±8R)-methyl 8-((S)-2-amino-5-
guanidinopentanamido)-1-azaspiro[5.5]undecane-1-

carboxylate 
88.2% 

31 
(6S±6R,8S±8R)-methyl 8-(1H-indole-6-carboxamido)-1-

azaspiro[5.5]undecane-1-carboxylate 
34.6% 

32 
(6S±6R,8R±8S)-methyl 8-(1H-indole-6-carboxamido)-1-

azaspiro[5.5]undecane-1-carboxylate 
19% 
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 5. Conclusions 

 

In developing countries, endemic malaria epidemics preclude the possibility of 

economic progress and impose a high cost in terms of lost human life.103 The rapid 

onset of the Plasmodium resistance to therapeutic agents is forcing the research to 

develop new molecules and identify alternative targets to devise  an effective method 

to eradicate the parasite from infested areas. Thanks to the discovery the Plasmodium 

export element function,14 the characterization of the aspartic protease plasmepsin V83 

and the interaction between these two elements, which allows the plasmodium 

development,74,75 a new therapeutic target may be now available. Inhibition of PMV 

could stop the modification taking place on the erythrocytes membrane, which is 

necessary to make the RBC capable of supporting the parasite replication process.10 

 

In this work, I evaluated the potential of PMV inhibition as a new target for malaria 

treatment. The advantages in targeting this enzyme are due to its role in plasmodium 

maturation and its presence in gametocytes, that could allow inhibitors to act at 

different stages of the parasite life cycle.  

In order to assess the viability of this target, peptidomimetics compounds were 

synthesized to study the catalytic pocket of the enzyme, and to compare these 

findings with the natural sequences recognized by PMV (Figure 6.1). 
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Figure 6.1 

 

As described previously, the arginine and the leucine in the sequence are conserved 

among all the sequences that share this exportation mechanism.  

While usually, it is possible to observe some degree of difference among recognized 

natural sequences and the inhibitor sequences, our findings highlight that only other 

basic aminoacids could substitute the arginine residue. All other substitutions led to 

molecules with an activity greatly reduced, or inactive compounds. Only in six-

aminoacids peptidomimetics (Compounds 1-4, and previously synthesized 

compounds) modification of P3 position generated active compounds. 

Since positions P2 and P1’ do not show any degree of conservation, they were not 

explored except for synthetic reasons, introducing a Tyr residue in position P1’ to 

simplify the purification process.  

Position P2’, while requiring an acidic sidechain, it is less strict about the identity of 

the residue: glutamate is the most observed aminoacid in natural PEXEL sequences, 

but aspartate and glutamine are also tolerated. The same behavior was found in the 

peptidomimetic inhibitors, where switching from Glu to Gln gave active compounds, 

albeit with a 100-fold loss of activity (Compounds 1 and 5, Compounds 2 and 6). The 
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need for an acidic sidechain was confirmed substituting the glutamate with a 

carboxyterminal glycine: the free carboxylic acid can still interact with the 

aminoacids in the S2’ subsite, and both compounds possess a low micromolar IC50. 

While less conserved, though, the interaction of this residue with the subsite is 

necessary for the inhibitorial activity of the compounds, as showed by the lack of 

activity of compound 9. 

Structure and activity of compounds 1-9 are reported in Table 5.1. 

 

Compound Structure 

Pf 
PMV 
IC50 
[nM] 

1 

 

0.25 

2 

 

1.1/19.9 

3 

 

Inactive 

4 

 

Inactive 

5 

 

9 
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6 

 

20/138 

7 

 

10 

8 

 

2/78 

9 

 

2500/9200 

 

Table 6.1 

 

Structure-activity relationships of this class of compounds, obtained in this thesis and 

during previous work, could be summarized as following: 

 

 

 

 R1: Residues different from arginine are not well tolerated and lead to inactive 

compounds; 

 R2: Leucine or Isoleucine are equally accepted in this position; 

 R3: Tyr slightly decreases the activity of the peptidomimetic sequences but 

simplify the purification process; 
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 R4: Gln may replace Glu without significant loss of activity, and a –COOH 

terminal Gly is able to mimic the Glu sidechain; 

 R5: Removing this aminoacid from the sequence does not significantly affect 

the activity of the peptidomimetics; 

 R6: Alifatic capping groups maintain or increase the activity, while aromatic 

groups kill PMV inhibition. 

 

Since position P3, P1 and P2’ need to be occupied for this class of compounds, it is 

evident that five aminoacids is the minimum length to generate an active compound. 

This is an issue, since it complicates the task of reducing the peptidic nature of the 

molecules, and the charged sidechains seriously hinder the compounds ability to 

cross biological membranes. Due to localization of PMV, the lack of antiplasmodial 

activity of compounds 1-9 could be easily explained as an inability to reach their 

target at an effective concentration. 

Since this problem is intrinsically correlated to their peptidic nature, we decided to 

look into natural products in order to find a suitable scaffold to be used as a starting 

point for a new class of compounds. The existence of three-dimensional skeletons 

overrepresented in many natural products gave us the idea to exploit one of those 

structures, the 1-azaspiro[5,5]undecane, as a core scaffold. 

A small library of compounds was synthesized, and tested against P.f. cultures to 

evaluate their role as a useful starting point. The molecules presenting the 

azaspiroundecane scaffold (Scaffold A) demonstrate a remarkable ability to inhibit 

plasmodium growth at 50 µM, with just three compounds unable to go above 40% 

inhibition (Table 5.2), while the free scaffold is ineffective. These compounds are 

equally active against both chloroquine-resistant and sensitive strains, an important 

feature in the identification of new antimalarial.  
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Compound Structure 

Pf 3D7 (D10) 

Growth 

inhibition % 

@ 50 μM 

Pf 3D7 (W2) 

Growth 

inhibition % 

@ 50 μM 

Scaffold A 

 

Inactive Inactive 

10 

 

89.03 88.91 

11 

 

25.41 36.34 

12 

 

27.76 37.20 

13 

 

28.44 30.76 

14 

 

88.62 91.30 

15 

 

85.68 78.94 
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16 

 

99.48 98.80 

17 

 

99.93 97.39 

18 

 

85.19 85.63 

19 

 

80.93  81.18 

 

Table 5.2 

 

The high activity of these compounds at this concentration make it difficult to 

extrapolate any kind of structure-activity relationship, but the presence of low active 

molecules (compounds 11-13) and the inactive scaffold seem to suggest the presence 

of a defined mechanism of action.  

These data were used to design new molecules with more specific substituents. The 

SAR study performed using the peptidomimetic sequences provided the essential 

requirements for PMV inhibitors, and we decided to introduce a suitable substituent 

able to interact with S3 pocket of the catalytic site. Arginine was an obvious choice, 

but still marred by the presence of multiple positive charges on the guanidine group. 

6-carboxyindole was selected trying to overcome this problem, introducing a basic 

moiety less flexible and with less charges compared to arginine. 

In the scaffold, the distance (in bond length) between the two nitrogens match the 

bond distance occupied by the aminoacids usually found in position P2-P1, putting 
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the methylcarbamate moiety close to the cleaving position of the natural substrate. 

Carbamates have already been used as bioisosters of the peptide bond, as in the HIV 

aspartic protease inhibitor Darunavir, thus providing an optimal substituent for the 

endocyclic amine of the scaffold. 

Compounds 30 and 31 were synthesized and preliminary screened against PMV 

culture in order to assess their IC50. Compound 30, presenting some of the liability of 

the peptidomimetic compounds, resulted inactive, while compound 31 showed a low 

micromolar IC50. Its diasteroisomer, compound 32, was less active (Table 5.3). 

 

Compound Structure 
Pf 3D7 (D10) 

IC50 (µM) 

Pf 3D7 (W2) 

IC50 (µM) 

30 

 

>50 >50 

31 

 

12.8 16.5 

32 

 

>20 >20 

 

Table 5.3 

 

At this stage, unfortunately, there is no direct correlation between the activity of 

these compounds and PMV inhibition; however, they are based on deductive design 

built on SAR data of previously synthesized PMV inhibitors.  

Our collaborators are currently undergoing the assessment of PMV inhibition, but 

this work is hindered by difficulties in purifying the functional enzyme.  
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5.1 Closing remarks 

 

PMV is an interesting enzyme that regulate the trafficking of plasmodium proteins 

during the RBC membrane remodeling stage. Due to its central role in one of the 

fundamental steps of parasite infection, being able to interfere with PMV activity 

may provide a new strategy to fight the insurgence of plasmodium strains resistant 

to conventional therapies.  

While at this stage I could not positively identify PMV as a drugable target, my work 

on this enzyme shed light to some of the structural requirements that potential 

inhibitors should possess in order to efficaciously interact with the catalytic site. 

Moreover, the merging of this information with the exploitation of a natural product 

scaffold led to the identification of a new series of compounds that, while possessing 

an IC50 of low therapeutically interest, do not seem to share the same mechanism of 

action of chloroquine, and could be optimized during further studies to achieve a 

better activity. 
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6. Experimental Section 

 

6.1 Abbreviations 

 

A: Alanine; E: Glutamic acid; H: Histidine; I: Isoleucine; K: Lysine;  L: Leucine; M: 

Methionine; N: Asparagine; P: Proline; Q: Glutamine;  R: Arginine; W: Tryptophan; Y: 

Tyrosine; TBTU: 2-(1H-benzotriazol-1-il)-1,1,3,3-tetramethyluronium tetrafluoroborate;  

HOBt: 1-Hydroxybenzotriazole hydrate; DMF: N,N-Dimethylformamide;  DCM: 

Dicloromethane; NMP: N-Methyl pyrrolidone; DIEA: Diisopropyl ethylamine; Pip: 

Piperidine; MeOH: Methanol; Ac2O: Acetic anhydride; Boc2O: Di-tert-butyldicarbonate; 

THF: Tetrahydrofuran; EtOH: Ethanol; TFA: Trifluoroacetic acid;  NMM: N-methyl 

morpholine; SPPS: Solid phase peptide synthesis. 
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6.2 Reagents and Instrumentations 

 

NMR spectra were recorded at 30°C on either a Varian 500 or 600 MHz Unity 

INOVA spectrometer, the latter spectrometer equipped with a triple resonance cold 

probe (Eskitis Institute, Griffith University) or a Varian 300 MHz Mercury 

spectrometer (Dipartimento di Scienze Farmaceutiche, Università degli Studi di 

Milano), and referenced using the residual non-deuterated solvent peak.  

LR-ESIMS were recorded on a Mariner time-of-flight spectrometer equipped with a 

Gilson 215 eight-probe injector. 

LC-MS were recorded on a ZQ Waters ESI quadrupole LC-MS system. 

Spectrophotometric measurements were performed on a UV-VIS Perkin-Elmer LAMDA 11. 

HR-ESIMS were recorded on a Bruker Daltronics Apex III 4.7e Fourier-transform 

mass spectrometer. 

Alltech Davisil 40−60 μm 60 Å C18 bonded silica was used for preadsorption work. A 

Waters 600 pump equipped with a Waters 996 PDA detector and a Waters 717 

autosampler were used for HPLC. 

A Thermo-Electron C18 Betasil 143Å column (5 μm, 21.2 × 150 mm) was used for 

semipreparative HPLC separations. All solvents used for chromatography and MS 

were HPLC grade (RCI Lab-Scan, Sigma-Aldrich), and the H2O was Millipore Milli-Q 

PF filtered. Natural products used to test activity were isolated in previous work at 

the Eskitis institute and are part of its collection. All reagents were commercially 

obtained (Sigma-Aldrich, Acros, Boron Molecular, IRIS Biotech GmbH, Carlo Erba 

Reagenti) at highest commercial quality and used without further purification. Air- 

and moisture-sensitive liquids and solutions were transferred with a syringe. All 

reactions were carried out under anhydrous conditions with within an argon 

atmosphere in dry solvents, unless otherwise noted. Yields refer to 

chromatographically and spectroscopically (1H NMR, LC, MS) homogeneous 

materials, unless otherwise stated. Reactions were monitored by thin-layer 

chromatography carried out on 0.25 mm Merck silica gel plates (60F-254) with UV 

light as the visualizing agent and permanganate stain solution as developing agent. 

Merck silica gel (60, particle size 0.040–0.063 mm) was used for flash 

chromatography. 



 
                                                                                                                                                                               Experimental Section 
  

74 
 

Resins, Fmoc-aminoacids, solvents and reagents used for SPPS were obtained from IRIS 

Biotech GmbH (Schnelldorf, Germany), Carlo Erba Reagenti (Rodano, Italia) and Sigma-

Aldrich (Schnelldorf, Germany) and used without further purification. Peptides were 

manually synthesized using polypropylene syringes (10 ml) with polyethylene frits bought 

from Grace Discovery. 

 

6.3 SPPS General Procedures 

The peptide synthesis was performed on solid phase, using the Rink amide resin (150 

mmol; loading: 0.46 mmol/g) or the 2-chlorotrityl resin (150 mmol; loading 1.55 

mmol/g). 

 

6.3.1 Resin-specific Solid-Phase Procedures 

 

 Rink amide resin 

  

 

 

The rink amide resin presents a Fmoc-protected amine that need to be cleaved in 

order to activate the resin. 

a) Swelling 

The resin is suspended in a solution of NMP (1 ml per 150 µmol of resin) and DCM 

(7.5 ml) and left in a ultrasound bath for 5 minutes. The swollen resin is moved in a 

reactor, washed 3 times with DCM and filter under vacuum to obtain the dry resin. 
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b) Fmoc Cleavage 

 

 

 

The resin is suspended in a solution of Pip (20% in DMF) and stired for 5 minutes, 

filtered  and the procedure repeated, increasing the stirring time to 15 minutes. After 

that, the resin was filtered and washed 6 times with DMF. The filtered DMF is 

collected in order to quantify the amount of Fmoc cleaved by the deprotection step, 

which is proportional to the amount of aminoacid bound to the resin. 

Measuring the absorbance of the fluorene formed after Fmoc cleavage is possible to 

evaluate the quantity of Fmoc eliminated in the reaction. A sample of the washing 

DMF is dissolved in a known amount of DMF (usually 3 ml) and its UV absorbance 

at 300.8 nm is measured. 

The mol of fluorene are derived from the absorbance using the following formula: 

 

µmol= (abs(Sample)-abs(Blank)) ∙Vs ∙ Vc / (C ∙ Vp) 

 

 Abs(Sample): Sample absorbance at 300,8 nm. 

 Abs(Blank): Blank absorbance at 300,8 nm. 

 Vs: DMF washing volume. 

 Vc: Cuvette volume. 

 Vp: Sample volume. 

 C: Molar extinction coefficient (Cfluorene=7.8 ml/μmol). 
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c) Coupling Reaction 

 

 

 

A solution of Fmoc-AA (3 eq) in TBTU/HOBt (0.45M in DMF, 4 eq) was treated with 

DIEA (8 eq) and added to the resin. The resulting suspension was left shaking for 50 

minutes. Once the reaction is complete, the resin filtered and washed 6 times with 

DMF. 

 

At this stage, if more aminoacids need to be introduced in order to complete the 

sequence, step b) and c) are repeated until the last residue is bound to the resin and 

deprotected. At this point, the resin is washed 3 times with DCM and dried 

thoroughly before proceeding with the peptide cleavage from the resin. 
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 2-Chlorotritylic Resin 

 

 

 

2-Chlorotritylic resin is devoid of protecting group and does not need an activation 

step before the introduction of the first aminoacid.  

 

a) Swelling 

 

The resin is suspended in a solution of NMP (1 ml per 150 µmol of resin) and DCM 

(7.5 ml) and left in a ultrasound bath for 5 minutes. The swollen resin is moved in a 

reactor, washed 3 times with DCM and filter under vacuum to obtain the dry resin. 

 

b) Coupling of the first aminoacid to the resin 

 

 

 

A solution of the Fmoc-AA (150 µmol, 1 eq) in DCM/NMP (2:1, 1 ml) was treated 

with DIEA (2 eq) and added to the resin. The reactor was left shaking for 50 minutes, 

after which 400 µl of MeOH were added in order to cap all the reacting groups left on 

the resin, and the reaction was left shaking for additional 5 minutes. At the end, the 

resin was filtered and washed 6 times with DMF. 
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c) Fmoc Cleavage 

 

 

 

The resin is suspended in a solution of Pip (20% in DMF) and stired for 5 minutes, 

filtered  and the procedure repeated, increasing the stirring time to 15 minutes. After 

that, the resin was filtered and washed 6 times with DMF. The filtered DMF is 

collected in order to quantify the amount of Fmoc cleaved by the deprotection step, 

which is proportional to the amount of aminoacid bound to the resin. 

 

d) Coupling Reaction 

 

 

 

A solution of Fmoc-AA (3 eq) in TBTU/HOBt (0.45M in DMF, 4 eq) was treated with 

DIEA (8 eq) and added to the resin. The resulting suspension was left shaking for 50 

minutes. Once the reaction is complete, the resin filtered and washed 6 times with 

DMF. 

 

At this stage, if more aminoacids need to be introduced in order to complete the 

sequence, step c) and d) are repeated until the last residue is bound to the resin and 

deprotected. At this point, the resin is washed 3 times with DCM and dried 

thoroughly before proceeding with the peptide cleavage from the resin. 
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6.3.2 Common Solid-Phase Procedures 

 

a) Ketomethylamine Synthesis 

 

 

A solution of Fmoc-AA (1 eq) in DMF was treated with DIEA (1 eq) and added to the 

resin. The reactor was left shaking overnight. After that, the resin was filtered and 

washed 6 times with DMF. 

 

b) Boc- Protection 

 

 

 

A solution of Boc2O (5 eq) in DCM was treated with DIEA (10 eq) and added to the 

resin. The suspension was left shaking for 1 hour, after which was filtered and 

washed 6 times with DCM. 

 

c) Hydroxyethylamine Synthesis 

 

 

 

The resin was suspended in THF/EtOH (1:1) and treated with 10 mg of NaBH4. After 

4 hours the resin was filtered, washed 3 times with THF, 6 times with THF/ H2O 

(1:1), 2 times with THF and 3 times with MeOH. 
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d) Peptide Cleavage 

 

After removing the N-terminal Fmoc group, the resin was washed 4 times in DCM 

and dried under vacuum. The cleavage cocktail was prepared according to the 

sequence that need to be cleaved and the resin suspended in 3 ml of it for 2 hours, 

after which the liquid was filtered in the chosen precipitation media. The suspension 

created was centrifugated  and the surnatant removed, and new precipitation media 

was added to the precipitate. These operations were repeated two times to remove all 

the cocktail scavengers, after which the precipitate was solubilized in 1 ml of DMSO 

and purified by preparative HPLC. 

 

e) Peptide Purification 

 

Synthesized peptides were purified by reverse-phase HPLC, using a linear gradient 

from H2O/MeOH/TFA 95:5:0.1 to MeOH/TFA 100:0.1 at 14 ml/min. 

Fractions containing the compound were collected, concentrated to remove the 

MeOH, the TFA salt exchanged with HCl (1M) to obtain the hydrochloride salt and 

freeze-dried to remove the water. 

 

6.4  General Synthetic Procedures 

 

a) Diazomethylketone Synthesis 

 

 

 

A solution of Fmoc-AA in anhydrous THF (4.7 ml/mmol of Fmoc-AA) was cooled to 

-15°C and kept under inert atmosphere. Isobutylchloroformate (1.1 eq) and NMM 

(1.1 eq) were added to the solution and the mixture stirred for 15 minutes. The crude 

was then filtered to remove the NMM-salt and the solution cooled to -70°C. The 
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mixture was kept under inert atmosphere, under vigorous stirring, and an excess of 

CH2N2 in Et2O was slowly added dropwise, keeping the reaction below -60°C, and 

the left reacting overnight at 0°C. 

Once completed, the diazomethane excess was evaporated and quenched with 

AcOH, and the crude mixture evaporated under reduced pressure. The crude was 

then solubilized with AcOEt, extracted 3 times with water and 1 time with brine. The 

organic phase was collected, dried over Na2SO4 and evaporated under reduced 

pressure. 

 

b) Bromomethylketone Synthesis 

 

 

 

A solution of Fmoc-diazomethylketone in Et2O (3.5 ml/mmol) was cooled to 0°C and 

HBr 48% (1 eq) was added dropwise. After complete disappearance of the starting 

material (TLC) the reaction was diluted in AcOEt and washed 3 times with a 

saturated solution of NaHCO3, once with water and once with brine. The organic 

phase was collected, dried over Na2SO4 and dried under vacuum. The product was 

used without further purification. 

 

c) Reductive Amination 

 

 

 

A mixture of the chosen aldehyde or ketone (1 eq) and scaffold A or B (1 eq) in 

methanol was left stirring overnight. To this reaction mixture NaBH4 (2 eq) was 

added portion-wise. After 30 minutes the reaction mixture was preadsorbed on C18 
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bonded silica and chromatographed on a semipreparative C18 HPLC column using a 

30 minutes gradient from H2O/MeOH 95:5 to H2O/MeOH (0.1% TFA) 0:100 to give 

the desired product. 

 

d) Coupling Reaction 

 

 

 

A solution of the carboxylic acid (1.1 eq) and the amine (1.0 eq) in an appropriate 

solvent (DMF or dichloromethane) (5mL/mmol), was cooled to 0°C and 

hydroxybenzotriazole (HOBt) (1.5 eq) and O-(benzotriazol-1-yl)-N,N,N′,N′-

tetramethyluronium hexafluorophosphate (HBTU) was added (1.1 eq). NMM was 

added until pH 8 was reached. The mixture was then stirred at room temperature 

overnight. Dichloromethane was then added and the organic phase washed with 

HCl 1N, saturated NaHCO3, water, brine, dried, filtered and concentrated. The crude 

was the purified using normal or reverse phase chromatography. 

 

e) Removal of the Cbz- protecting group 

 

 

 

The Cbz protected compound was dissolved in methanol (10 mL/mmol) and then 

Pd/C (10%) (80 mg/mmol) was added. The mixture was left under H2 atmosphere 

for 2h, checking the progress with TLC after which the mixture was filtrated, washed 

with methanol and the residue concentrated and used in the next step without any 

further purification or characterization. 
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f) Removal of the Boc- protecting group 

 

 

 

Boc protected compound was cooled to 0°C ND HCl 4N in dioxane was added (10 

mL/g of compound). The mixture was stirred at room temperature for 30 minutes, 

after which it was concentrated and the residue washed 3 times with ethyl ether and 

purified using reverse phase HPLC. 
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6.5  Specific Synthetic Procedures 

Compound 1 

 

 

The peptide was synthesized on rink amide resin using SPPS procedure. Cleavage 

for resin was performer using TFA (10 ml), TIS (0.5 ml), thioanisole (0.25 ml) and 

phenol (75 mg), and the peptide precipitated in a solution of Methyl-t-Butyl 

ether/Petroleum ether 1:1. Only one stereoisomer was recovered as a white solid (7.1 

mg, 7.7%). 

 

HRMS-ESI m/z [M+H]+ calcd for C27H53N9O7: 616.4068, found: 616.41392. 
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Compound 2 

 

 

The peptide was synthesized on rink amide resin using SPPS procedure. Cleavage 

for resin was performer using TFA (10 ml), TIS (0.5 ml), thioanisole (0.25 ml) and 

phenol (75 mg), and the peptide precipitated in a solution of Methyl-t-Butyl 

ether/Petroleum ether 1:1. Both stereoisomers were recovered as a white solids (7.0 

mg, 7.7%; 3.4 mg, 3.2%). 

 

HRMS-ESI m/z [M+H]+ calcd for C33H57N9O8: 708.4330, found: 708.44080 and 

707.43929. 
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Compound 3 

 

 

The peptide was synthesized on rink amide resin using SPPS procedure. Cleavage 

for resin was performer using TFA (10 ml), TIS (0.5 ml), thioanisole (0.25 ml) and 

phenol (75 mg), and the peptide precipitated in a solution of Methyl-t-Butyl 

ether/Petroleum ether 1:1. Both stereoisomers were recovered as a white solids (13.3 

mg, 13.7%; 7.2 mg, 7.5%). 

 

HRMS-ESI m/z [M+H]+ calcd for C32H51N7O7: 646.3850, found: 646.39136 and 

646.39127. 
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Compound 4 

 

 

The peptide was synthesized on rink amide resin using SPPS procedure. Cleavage 

for resin was performer using TFA (10 ml), TIS (0.5 ml), thioanisole (0.25 ml) and 

phenol (75 mg), and the peptide precipitated in a solution of Methyl-t-Butyl 

ether/Petroleum ether 1:1. Both stereoisomers were recovered as a white solids (7.3 

mg, 6.6%; 4.6 mg, 3.1%). 

 

HRMS-ESI m/z [M+H]+ calcd for C38H55N7O8: 738.4112, found: 738.41315 and 

738.41421. 
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Compound 5 

 

 

The peptide was synthesized on rink amide resin using SPPS procedure. Cleavage 

for resin was performer using TFA (10 ml), TIS (0.5 ml), thioanisole (0.25 ml) and 

phenol (75 mg), and the peptide precipitated in a solution of Methyl-t-Butyl 

ether/Petroleum ether 1:1. Only one stereoisomer was recovered as a white solid 

(26.7 mg, 28.9%). 

 

HRMS-ESI m/z [M+H]+ calcd for C27H54N10O6: 615.4228, found: 615.43040 and 

615.42946. 
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Compound 6 

 

 

The peptide was synthesized on rink amide resin using SPPS procedure. Cleavage 

for resin was performer using TFA (10 ml), TIS (0.5 ml), thioanisole (0.25 ml) and 

phenol (75 mg), and the peptide precipitated in a solution of Methyl-t-Butyl 

ether/Petroleum ether 1:1. Both stereoisomers were recovered as a white solids (18.5 

mg, 17.5%; 14.2 mg, 13.4%). 

 

HRMS-ESI m/z [M+H]+ calcd for C33H58N10O7: 707.4490, found: 707.45534 and 

707.45536. 
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Compound 7 

 

 

The peptide was synthesized on 2-Chlorotritylic resin using SPPS procedure. 

Cleavage for resin was performer using TFA (10 ml), TIS (0.5 ml), thioanisole (0.25 

ml) and phenol (75 mg), and the peptide precipitated in a solution of Methyl-t-Butyl 

ether/Petroleum ether 1:1. Only one stereoisomer was recovered as a white solid 

(12.8 mg, 15.6%). 

 

HRMS-ESI m/z [M+H]+ calcd for C24H48N8O6: 545.3697, found: 545.37656. 
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Compound 8 

 

 

The peptide was synthesized on 2-Chlorotritylic resin using SPPS procedure. 

Cleavage for resin was performer using TFA (10 ml), TIS (0.5 ml), thioanisole (0.25 

ml) and phenol (75 mg), and the peptide precipitated in a solution of Methyl-t-Butyl 

ether/Petroleum ether 1:1. Both stereoisomers were recovered as a white solids (13.8 

mg, 14.5%; 8.8 mg, 9.2%). 

 

HRMS-ESI m/z [M+H]+ calcd for C30H52N8O7: 637.3959, found: 637.40227 and 

637.40285. 
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Compound 9 

 

 

The peptide was synthesized on 2-Chlorotritylic resin using SPPS procedure. 

Cleavage for resin was performer using TFA (10 ml), TIS (0.5 ml), thioanisole (0.25 

ml) and phenol (75 mg), and the peptide precipitated in a solution of Methyl-t-Butyl 

ether/Petroleum ether 1:1. Both stereoisomers were recovered as a white solids (12.3 

mg, 14.1%; 10.3 mg, 11.8%). 

 

HRMS-ESI m/z [M+H]+ calcd for C28H49N7O6: 580.3744, found: 58038127 and 

580.38125. 
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Intermediate 9 

 

 

A mixture of benzylcarbamate (1 g, 6.6 mmol) and Bi(NO3)3 (1.92 g, 3.96 mmol) was 

suspended in cyclohex-2-enone (630 µl, 6.6 mmol) and stirred overnight at room 

temperature. After complete consumption of the starting material (TLC 

chromatography), the mixture is diluted using DCM and filtered to remove the 

catalyst. The filtrated solution was then concentrated under pressure, followed by 

flash chromatography (Cyclohexene/AcOEt  100:0 to 50:50). Intermediate 9 was 

isolated as an orange solid (1.46 g, 5.97 mmol, 90.4%). 

 

Rf=0.44 (Cyclohexane/AcOEt 5:5) 

 

1H NMR (500 MHz, CDCl3) δ=7.39 – 7.30 (m, 5H), 5.09 (s, 1H), 4.77 (s, 1H), 3.99 (s, 

1H), 2.70 (dt, J = 17.2, 8.6 Hz, 1H), 2.41 – 2.34 (m, 1H), 2.31 – 2.22 (m, 2H), 2.15 – 2.06 

(m, 1H), 2.02 – 1.93 (m, 1H), 1.83 – 1.55 (m, 1H). 
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Intermediate 10 and 11 

 

A solution of intermediate 9 (1.46 g, 5.97 mmol) in dry toluene over 3Å molecular 

sieves (0.3 g/mmol) was treated with allylamine (1.3 ml, 17.91 mmol) and 

allylboronic acid pinacol ester (5.6 ml, 29.85 mmol) and stirred overnight at 80°C. The 

reaction crude was then filtered to remove the molecular sieves and concentrated 

under vacuum, followed by flash chromatography (Cyclohexane/AcOEt 100:0 to 

50:50). It was possible to separate the two diastereoisomer 10 (0.95 g, 3.02 mmol) and 

11 (0.51 mg, 1.61 mmol) as dark yellow oils due to their different retention (Rf= 0.67 

and Rf=0.32 in cyclohexane/AcOEt 7:3). The overall yield of the reaction was 77.5%.  

 

1H NMR of 10 (500 MHz, [D6]DMSO) δ=8.37 (s, 1H), 7.50 – 7.20 (m, 5H), 6.01 – 5.91 

(m, 1H), 5.79 (td, J = 17.2, 7.3 Hz, 1H), 5.50 (d, J = 17.0 Hz, 1H), 5.41 (d, J = 10.2 Hz, 

1H), 5.24 (d, J = 7.2 Hz, 1H), 5.21 (s, 1H), 5.03 (s, 2H), 3.83 – 3.72 (m, 2H), 3.64 (s, 1H), 

2.45 (d, J = 7.2 Hz, 2H), 2.00 (d, J = 14.0 Hz, 1H), 1.86 – 1.75 (m, 2H), 1.71 – 1.60 (m, 

2H), 1.49 – 1.37 (m, 2H), 1.19 – 1.10 (m, 1H). 

 

1H NMR of 11 (500 MHz, [D6]DMSO) δ=8.56 (d, J = 27.9 Hz, 1H), 7.46 – 7.26 (m, 5H), 

5.95 – 5.75 (m, 2H), 5.49 (d, J = 17.1 Hz, 1H), 5.37 (t, J = 14.2 Hz, 2H), 5.27 (d, J = 9.8 

Hz, 1H), 5.02 (s, 2H), 3.60 (s, 2H), 3.56 – 3.48 (m, 1H), 2.65 – 2.52 (m, 2H), 2.11 (d, J = 

11.7 Hz, 1H), 1.90 – 1.76 (m, 2H), 1.74 – 1.65 (m, 1H), 1.56 – 1.32 (m, 3H), 1.25 – 1.06 

(m, 1H). 
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Intermediate 12  

 

 

A solution of intermediate 10 (1.75 g, 5.56 mmol) in dry THF was cooled at -78°C and 

treated with NaH (0.67 g, 27.8 mmol). After the solution had been stirred for 30 min 

at -78°C the reaction was brought to room temperature and methylchloroformate 

was added dropwise (2.15 ml, 27.8 mmol) and left reacting overnight. At the end of 

the reaction (TLC chromatography) the crude was diluted with DCM and quenched 

with HCl 1M. The organic layer was separated and extracted three times with HCl 

1M, once with brine and then collected, dried (NaSO4) and evaporated under 

vacuum. The residue was purified by flash chromatography (Cyclohexane/AcOEt 

100:0 to 80:20) to give intermediate 12 (1.56 g, 4.04 mmol, 72.6%) as a yellow oil. 

 

Rf=0.57 (Cyclohexane/AcOEt 7:3). 

 

1H NMR (500 MHz, [D6]DMSO) δ=7.42 – 7.25 (m, 5H), 7.17 (d, J = 6.5 Hz, 1H), 5.93 – 

5.80 (m, 1H), 5.79 – 5.66 (m, 1H), 5.18 (d, J = 17.2 Hz, 1H), 5.10 – 4.93 (m, 6H), 4.02 – 

3.91 (m, 2H), 3.55 (s, 3H), 3.47 – 3.38 (m, 1H), 2.70 – 2.61 (m, 1H), 2.41 (d, J = 6.9 Hz, 

2H), 1.78 (d, J = 10.5 Hz, 1H), 1.53 (d, J = 13.2 Hz, 1H), 1.39 – 1.26 (m, 1H), 1.25 – 1.04 

(m, 3H). 
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Intermediate 14 

 

 

To a solution of intermediate 12 (1.56 g, 6.04 mmol) in DCM was added 1% of 1st 

generation Grubbs catalyst and left stirring at 60°C overnight. After complete 

consumption of the reagent (TLC chromatography) the reaction mixture was diluted 

and filtered to eliminate the catalyst, then concentrated under vacuum. Flash 

chromatography (Cyclohexane/AcOEt 100:0 to 70:30) gave intermediate 14 (1.31 g, 

3.65 mmol, 91.0%) as a yellow oil. 

 

Rf=0.42 (Cyclohexane/AcOEt 7:3) 

 

1H NMR (500 MHz, [D6]DMSO) δ=7.43 – 7.26 (m, 5H), 7.18 (d, J = 7.2 Hz, 1H), 5.66 (q, 

J = 10.8 Hz, 2H), 5.00 (s, 2H), 4.11 (d, J = 18.6 Hz, 1H), 3.98 (d, J = 18.6 Hz, 1H), 3.55 (s, 

3H), 3.45 – 3.34 (m, 1H), 2.74 (d, J = 13.2 Hz, 1H), 2.59 (d, J = 13.2 Hz, 1H), 2.15 (d, J = 

17.4 Hz, 1H), 1.91 (d, J = 17.4 Hz, 1H), 1.81 (d, J = 11.6 Hz, 1H), 1.56 (d, J = 13.3 Hz, 

1H), 1.39 (dd, J = 26.6, 13.3 Hz, 1H), 1.21 (ddd, J = 25.1, 12.3, 4.1 Hz, 1H), 1.06 (t, J = 

12.4 Hz, 1H), 0.99 (t, J = 12.4 Hz, 1H). 
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Scaffold A 

 

 

Pd/C (10 wt.%, 31.3 mg) was added to a solution of intermediate 14 (1.40 g, 3.91 

mmol) in isopropanol (3.9 ml) with catalytic amount of TFA (25 µl). After three cycles 

of vacuum/H2, the solution is kept under vigorous stirring in an atmosphere of H2 

until the complete disappearance of the starting material was observed in TLC 

(DCM/MeOH 9:1). The crude was then filtered to remove the catalyst and 

concentrated under vacuum. Flash chromatography (DCM/MeOH/NH3 99:1:0.1 to 

90:10:0.1) gave scaffold A (873.6 mg, 3.86 mmol, 98.7%) as an highly hygroscopic 

solid. 

 

Rf=0.13 (DCM/MeOH/NH3 9:1:0.1). 

 

1H NMR (500 MHz, [D6]DMSO) δ=7.87 (bs, 2H), 3.62 – 3.53 (m, 4H), 3.38 – 3.29 (m, 

1H), 3.16 – 3.05 (m, 1H), 3.01 (d, J = 13.1 Hz, 1H), 2.72 (d, J = 12.7 Hz, 1H), 1.98 – 1.88 

(m, J = 12.1 Hz, 1H), 1.76 – 1.65 (m, 1H), 1.65 – 1.56 (m, 2H), 1.47 (t, J = 6.1 Hz, 2H), 

1.44 – 1.38 (m, 1H), 1.38 – 1.23 (m, 3H), 1.13 (t, J = 12.5 Hz, 1H), 0.93 (td, J = 13.7, 2.7 

Hz, 1H).  

 

HRMS-ESI m/z [M+H]+ calcd for C12H23N2O2: 227,175585, found: 227,175404 

 

  



 
                                                                                                                                                                               Experimental Section 
  

98 
 

Intermediate 13  

 

 

A solution of intermediate 11 (0.66 g, 2.01 mmol) in dry THF was cooled at -78°C and 

treated with NaH (0.24 g, 10.05 mmol). After the solution had been stirred for 30 min 

at -78°C the reaction was brought to room temperature and methylchloroformate 

was added dropwise (0.77 ml, 10.05 mmol) and left reacting overnight. At the end of 

the reaction (TLC chromatography) the crude was diluted with DCM and quenched 

with HCl 1M. The organic layer was separated and extracted three times with HCl 

1M,  once with brine and then collected, dried (NaSO4) and evaporated under 

vacuum. The residue was purified by flash chromatography (Cyclohexane/AcOEt 

100:0 to 50:50) to give intermediate 13 (0.53 g, 1.36 mmol, 67.8%) as a yellow oil. 

 

Rf=0.57 (Cyclohexane/AcOEt 7:3). 

 

1H NMR (300 MHz, CDCl3) δ=7.40 – 7.31 (m, 5H), 5.84 – 5.63 (m, 1H), 5.30 (s, 1H), 

5.15 – 5.02 (m, 4H), 4.57 (d, J = 8.2 Hz, 1H), 3.92 – 3.85 (m, 2H), 3.65 (s, 3H), 2.81 – 2.64 

(m, 3H), 2.42 – 2.32 (m, 1H), 2.01 (d, J = 12.4 Hz, 1H), 1.74 – 1.59 (m, 4H), 1.50 – 1.34 

(m, 1H), 1.34 – 1.21 (m, 2H), 1.06 – 0.95 (m, 1H). 
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Intermediate 15 

 

 

To a solution of intermediate 13 (1.26 g, 3.25 mmol) in DCM was added 1% of 1st 

generation Grubbs catalyst and left stirring at 60°C overnight. After complete 

consumption of the reagent (TLC chromatography) the reaction mixture was diluted 

and filtered to eliminate the catalyst, then concentrated under vacuum. Flash 

chromatography (Cyclohexane/AcOEt 100:0 to 50:50) gave intermediate 15 (0.99 g, 

2.76 mmol, 84.9%) as a yellow oil. 

 

Rf=0.38 (Cyclohexane/AcOEt 7:3). 

 

1H NMR (300 MHz, CDCl3) δ=7.39 – 7.28 (m, 5H), 5.92 – 5.77 (m, 1H), 5.07 (s, 1H), 

4.75 – 4.64 (m, 1H), 3.96 (s, 2H), 3.62 (s, 3H), 2.35 – 2.27 (m, 2H), 2.27 – 2.16 (m, 1H), 

2.13 – 2.03 (m, 2H), 1.95 (d, J = 13.2 Hz, 1H), 1.80 – 1.60 (m, 2H), 1.51 – 1.32 (m, 3H), 

1.26 – 1.06 (m, 2H). 
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Scaffold B 

 

 

Pd/C (10 wt.%, 0.17 mg) was added to a solution of intermediate 15 (0.75 g, 2.11 

mmol) in isopropanol (20 ml) with catalytic amount of TFA (25 µl). After three cycles 

of vacuum/H2, the solution is kept under vigorous stirring in an atmosphere of H2 

until the complete disappearance of the starting material was observed in TLC 

(DCM/MeOH 9:1). The crude was then filtered to remove the catalyst and 

concentrated under vacuum. Flash chromatography (DCM/MeOH/NH3 99:1:0.1 to 

90:10:0.1) gave scaffold B (0.33 g, 1.44 mmol, 68.3%) as an highly hygroscopic solid. 

 

Rf=0.13 (DCM/MeOH/NH3 9:1:0.1). 

 

1H NMR (300 MHz, CDCl3) δ=3.67 (d, J = 8.7 Hz, 2H), 3.61 (s, 3H), 3.43 (d, J = 13.8 

Hz, 2H), 3.22 (s, 1H), 2.70 (t, J = 12.2 Hz, 1H), 2.32 (d, J = 9.8 Hz, 2H), 2.07 (d, J = 10.9 

Hz, 2H), 1.66 (d, J = 23.4 Hz, 4H), 1.38 (s, 2H), 1.25 (s, 1H), 1.15 (d, J = 6.2 Hz, 2H). 

 

HRMS-ESI m/z [M+H]+ calcd for C12H23N2O2: 227,175585, found: 227,175965. 
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Compound 10 

 

 

Compound 10 was prepared according to general procedure by reacting  (−)-

myrtenal (33.0 mg, 0.22 mmol) with A (50 mg, 0.22 mmol). Compound 10 was 

isolated as a light yellow oil (14 mg, 0.04 mmol, 18.2%). 

 

Rf=0.44 (DCM/MeOH 9:1). 

 

1H NMR (500 MHz, CD3OD) δ=5.79 (s, 1H), 3.87 – 3.77 (m, 1H), 3.65 (s, 4H), 3.58 (s, 

1H), 3.52 (d, J = 14.3 Hz, 1H), 3.38 – 3.32 (m, 1H), 3.28 – 3.21 (m, 1H), 2.77 (d, J = 14.5 

Hz, 1H), 2.55 – 2.47 (m, 1H), 2.36 (d, J = 9.8 Hz, 2H), 2.27 – 2.21 (m, 1H), 2.14 (s, 2H), 

1.89 – 1.72 (m, 3H), 1.72 – 1.60 (m, 2H), 1.59 – 1.38 (m, 4H), 1.35 (s, 2H), 1.23 (dd, J = 

8.9, 2.5 Hz, 1H), 1.01 (t, J = 12.9 Hz, 1H), 0.92 – 0.84 (m, 6H). 

 

HRMS-ESI m/z [M+H]+ calcd for C22H37N2O2: 361.284955, found: 361.283845. 
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Compound 11 

 

 

Compound 11 was prepared according to general procedure by reacting 2-

bromobenzaldehyde (40.7 mg, 0.22 mmol) with A (50 mg, 0.22 mmol). Compound 11 

was isolated as a orange oil (83 mg, 0.21 mmol, 94.5%). 

 

Rf=0.50 (DCM/MeOH 9:1). 

 

1H NMR (600 MHz, CD3OD) δ=7.74 (dd, J = 7.4, 4.1 Hz, 1H), 7.62 (dd, J = 7.6, 1.4 Hz, 

1H), 7.48 (t, J = 7.5 Hz, 1H), 7.38 (td, J = 7.9, 1.5 Hz, 1H), 4.48 (t, J = 11.2 Hz, 1H), 4.40 

(t, J = 11.6 Hz, 1H), 3.90 (t, J = 3.7 Hz, 1H), 3.88 (t, J = 3.7 Hz, 1H), 3.67 (s, 3H), 3.59 – 

3.52 (m, 1H), 3.48 (dd, J = 12.6, 2.5 Hz, 1H), 3.26 – 3.20 (m, 1H), 2.82 – 2.75 (m, 1H), 

2.24 (d, J = 10.7 Hz, 1H), 1.92 – 1.78 (m, 3H), 1.69 (m, 2H), 1.60 – 1.52 (m, 3H), 1.52 – 

1.45 (m, 2H), 1.36 (t, J = 12.3 Hz, 1H). 

 

HRMS-ESI m/z [M+H]+ calcd for C19H28BrN2O2: 395.132867, found: 395.134011. 



 
                                                                                                                                                                               Experimental Section 
  

103 
 

Compound 12 

 

 

Compound 14 was prepared according to general procedure by reacting 3-

bromobenzaldehyde (40.7 mg, 0.22 mmol) with A (50 mg, 0.22 mmol). Compound 14 

was isolated as a orange oil (82 mg, 0.21 mmol, 94.5%). 

 

Rf=0.50 (DCM/MeOH 9:1). 

 

1H NMR (600 MHz, CD3OD) δ=7.74 (s, J = 8.7 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.48 

(d, J = 7.7 Hz, 1H), 7.38 (t, J = 7.9 Hz, 1H), 4.27 (t, J = 13.4 Hz, 1H), 4.20 (d, J = 13.3 Hz, 

1H), 3.90 – 3.80 (m, 1H), 3.65 (s, 3H), 3.45 (tt, J = 13.8, 4.6, 3.0 Hz, 1H), 3.40 (dd, J = 

12.6, 2.5 Hz, 1H), 3.22 (ddd, J = 14.5, 11.5, 2.9 Hz, 1H), 3.00 (s, 1H), 2.77 (dd, J = 14.7, 

2.3 Hz, 1H), 2.16 (t, J = 16.7 Hz, 1H), 1.91 – 1.81 (m, 1H), 1.81 – 1.75 (m, 1H), 1.71 – 

1.62 (m, 2H), 1.60 – 1.51 (m, 2H), 1.50 – 1.37 (m, 3H), 1.30 (t, J = 12.3 Hz, 1H), 1.08 – 

0.99 (m, 1H). 

 

HRMS-ESI m/z [M+H]+ calcd for C19H28BrN2O2: 395.132867, found: 395.132189. 
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Compound 13 

 

 

Compound 13 was prepared according to general procedure by reacting 4-

bromobenzaldehyde (40.7 mg, 0.22 mmol) with A (50 mg, 0.22 mmol). Compound 13 

was isolated as a orange oil (78 mg, 0.20 mmol, 90.9%). 

 

Rf=0.35 (DCM/MeOH 9:1). 

 

1H NMR (300 MHz, CDCl3) δ=7.58 (d, J = 8.6 Hz, 2H), 7.10 (d, J = 8.6 Hz, 2H), 3.82 (s, 

2H), 3.61 (s, 3H), 3.11 (d, J = 12.4 Hz, 1H), 2.91 (d, J = 22.1 Hz, 2H), 2.68 (d, J = 12.1 

Hz, 1H), 2.33 – 2.22 (m, 1H), 2.06 – 1.80 (m, 4H), 1.70 – 1.53 (m, 2H), 1.52 – 1.39 (m, 

1H), 1.11 – 0.94 (m, 2H), 0.92 – 0.76 (m, 4H). 

 

RMS-ESI m/z [M+H]+ calcd for C19H28BrN2O2: 395.132867, found: 395.13285. 
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Compound 14 

 

 

Compound 14 was prepared according to general procedure by reacting 

isovaleraldehyde (23.2 mg, 0.27 mmol) with A (60.0 mg, 0.27 mmol). Compound 14 

was isolated as a light yellow oil (61.4 mg, 0.21 mmol, 77.8%). 

 

Rf=0.25 (DCM/MeOH 9:1). 

 

1H NMR (300 MHz, CDCl3) δ=3.26 (s, 3H), 3.23 – 3.16 (m, 1H), 3.12 – 3.00 (m, 2H), 

2.64 – 2.54 (m, 2H), 2.44 – 2.32 (m, 2H), 2.32 – 2.26 (m, 2H), 1.64 – 1.52 (m, 1H), 1.37 – 

1.19 (m, 4H), 1.18 – 1.05 (m, 4H), 1.00 (dt, J = 8.2, 6.4 Hz, 2H), 0.78 – 0.56 (m, 3H), 0.53 

(s, 3H), 0.51 (s, 3H). 

 

HRMS-ESI m/z [M+H]+ calcd for C17H33N2O2: 297.253655, found: 297.253655. 
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Compound 15 

 

 

Compound 15 was prepared according to general procedure by reacting 

benzaldehyde (20 mg, 0.088 mmol) with A (9.35 mg, 0.088 mmol). Compound 15 was 

isolated as a yellow oil (20 mg, 0.063 mmol, 71.6%). 

 

Rf=0.43 (DCM/MeOH 9:1). 

 

1H NMR (600 MHz, [D6]DMSO) δ=7.49 (d, J = 7.0 Hz, 2H), 7.46 – 7.37 (m, 1H), 4.24 – 

4.17 (m, 1H), 4.16 – 4.09 (m, 1H), 3.56 – 3.49 (m, 4H), 3.35 – 3.29 (m, 1H), 3.20 – 3.13 

(m, 1H), 2.72 (d, J = 14.1 Hz, 1H), 2.13 – 2.08 (m, 1H), 2.06 (s, 2H), 1.80 – 1.56 (m, 4H), 

1.53 – 1.26 (m, 6H), 1.20 (t, J = 13.0 Hz, 1H), 1.00 – 0.90 (m, 1H). 

 

 HRMS-ESI m/z [M+H]+ calcd for C19H29N2O2: 317.222355, found: 317.222713. 
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Compound 16 

 

 

Compound 16 was prepared according to general procedure by reacting adamantan-

2-one (81.1 mg, 0.27 mmol) with A (60.0 mg, 0.27 mmol). Compound 16 was isolated 

as a light yellow oil (60.0 mg, 0.17 mmol, 61.6%). 

 

Rf=0.40 (DCM/MeOH 9:1). 

 

1H NMR (300 MHz, CDCl3) δ=3.72 (dt, J = 14.3, 4.5 Hz, 1H), 3.55 (s, 3H), 3.47 (s, 1H), 

3.45 – 3.26 (m, 2H), 3.23 – 3.13 (m, 2H), 2.62 (d, J = 14.2 Hz, 1H), 2.40 – 2.22 (m, 3H), 

2.28 – 2.07 (m, 2H), 1.94 – 1.81 (m, 3H), 1.81 – 1.60 (m, 6H), 1.60 – 1.46 (m, 5H), 1.47 – 

1.33 (m, 3H), 1.21 – 1.15 (m, 2H), 1.09 – 0.97 (m, 2H). 

 

LRMS-ESI m/z [M+H]+ calcd for C22H37N2O2: 361.28, found: 361.43. 
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Compound 17 

 

 

Compound 17 was prepared according to general procedure by reacting 4-

phenoxybenzaldehyde (53.5 mg, 0.27 mmol) with A (60 mg, 0.27 mmol). Compound 

17 was isolated as a yellow oil (81.3 mg, 0.20 mmol, 74.1%). 

 

Rf=0.38 (DCM/MeOH 9:1). 

 

1H NMR (600 MHz, [D6]DMSO) δ=8.71 (s, 1H), 7.52 (d, J = 8.6 Hz, 2H), 7.44 – 7.40 (m, 

2H), 7.18 (t, J = 7.4 Hz, 1H), 7.07 (d, J = 8.6 Hz, 1H), 7.02 (dd, J = 8.6, 1.0 Hz, 1H), 4.24 

– 4.16 (m, 1H), 4.16 – 4.08 (m, 1H), 3.59 – 3.52 (m, 4H), 3.32 – 3.29 (m, 1H), 3.19 (d, J = 

10.9 Hz, 2H), 2.74 (d, J = 14.1 Hz, 1H), 2.12 (s, 1H), 1.74 – 1.59 (m, 4H), 1.52 – 1.30 (m, 

7H), 1.21 (t, J = 13.0 Hz, 1H), 0.98 (dd, J = 18.7, 8.0 Hz, 1H). 

 

HRMS-ESI m/z [M+H]+ calcd for C25H33N2O3: 409.248569, found: 409.249469. 
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Compound 18 

 

 

Compound 18 was prepared according to general procedure by reacting 2,4 

dimethoxybenzaldehyde (44.9 mg, 0.27 mmol) with A (60 mg, 0.27 mmol). 

Compound 18 was isolated as a yellow oil (67 mg, 0.18 mmol, 66.7%). 

 

Rf=0.42 (DCM/MeOH 9:1). 

 

1H NMR (600 MHz, CD3OD) δ=7.29 (d, J = 8.3 Hz, 1H), 6.62 (d, J = 2.3 Hz, 1H), 6.56 

(dd, J = 8.3, 2.3 Hz, 1H), 4.19 (t, J = 13.0 Hz, 1H), 4.12 (t, J = 13.5 Hz, 1H), 3.90 (s, 3H), 

3.84 (t, J = 3.9 Hz, 1H), 3.82 (s, J = 2.7 Hz, 3H), 3.64 (s, 3H), 3.40 – 3.33 (m, 2H), 3.27 – 

3.18 (m, 1H), 2.79 – 2.72 (m, 1H), 2.19 – 2.13 (m, 1H), 1.89 – 1.74 (m, 3H), 1.70 – 1.61 

(m, 2H), 1.59 – 1.49 (m, 2H), 1.49 – 1.40 (m, 3H), 1.30 (t, J = 12.9 Hz, 1H), 1.05 – 0.97 

(m, 1H). 

 

HRMS-ESI m/z [M+H]+ calcd for C21H33N2O4: 377.243484, found: 377.243882. 
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Compound 19 

 

 

Compound 19 was prepared according to general procedure by reacting 2-

naphthaldehyde (42.2 mg, 0.27 mmol) with A (60 mg, 0.27 mmol). Compound 19 was 

isolated as a yellow oil (49 mg, 0.13 mmol, 49.5%). 

 

Rf=0.37 (DCM/MeOH 9:1). 

 

1H NMR (300 MHz, CDCl3) δ=7.88 – 7.72 (m, 4H), 7.54 – 7.36 (m, 3H), 4.01 (s, 2H), 

3.70 – 3.49 (m, 4H), 3.45 – 3.30 (m, 2H), 3.10 (d, J = 15.9 Hz, 1H), 2.91 – 2.64 (m, 2H), 

2.01 (d, J = 13.9 Hz, 1H), 1.86 – 1.30 (m, 7H), 1.28 – 1.07 (m, 1H), 1.05 – 0.89 (m, 2H). 

 

HRMS-ESI m/z [M+H]+ calcd for C23H31N2O2: 367.238005, found: 367.237119. 
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Compound 20 

 

 

Compound 20 was prepared according to general procedure by reacting (−)-

myrtenal (19.5 mg, 0.13 mmol) with B (30 mg, 0.13 mmol). Compound 20 was 

isolated as a light yellow oil (5 mg, 0.013 mmol, 10%). 

 

Rf=0.40 (DCM/MeOH 9:1). 

 

1H NMR (300 MHz, CDCl3) δ=5.34 (t, J = 4.9 Hz, 1H), 3.71 – 3.66 (m, 1H), 3.62 (s, 3H), 

3.54 – 3.47 (m, 2H), 3.12 (s, 2H), 2.61 – 2.40 (m, 2H), 2.40 – 2.31 (m, 2H), 2.29 – 2.19 (m, 

2H), 2.07 (d, J = 5.2 Hz, 1H), 1.97 – 1.81 (m, 2H), 1.76 – 1.64 (m, 3H), 1.27 (s, 2H), 1.25 

(s, 3H), 1.17 – 1.11 (m, 3H), 0.94 – 0.85 (m, 4H), 0.82 (s, 3H). 

 

HRMS-ESI m/z [M+H]+ calcd for C22H37N2O2: 361.284955, found: 361.285951. 
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Compound 21 

 

 

Compound 21 was prepared according to general procedure by reacting 2-

bromobenzaldehyde (24.0 mg, 0.13 mmol) with B (30 mg, 0.13 mmol). Compound 21 

was isolated as a orange oil (4 mg, 0.010 mmol, 3.85%). 

 

Rf=0.50 (DCM/MeOH 9:1). 

 

1H NMR (300 MHz, CDCl3) δ=7.52 (d, J = 7.9 Hz, 1H), 7.42 (d, J = 7.6 Hz, 1H), 7.31 – 

7.27 (m, 1H), 7.15 – 7.07 (m, 1H), 3.88 (d, J = 3.7 Hz, 2H), 3.70 (t, J = 4.1 Hz, 1H), 3.63 

(s, 3H), 3.52 (dd, J = 9.0, 2.9 Hz, 2H), 2.70 – 2.54 (m, 2H), 2.49 (dd, J = 13.3, 4.5 Hz, 1H), 

2.35 (t, J = 12.1 Hz, 1H), 2.06 – 1.91 (m, 1H), 1.73 – 1.51 (m, 5H), 1.41 – 1.04 (m, 4H), 

0.92 – 0.79 (m, 1H). 

 

HRMS-ESI m/z [M+H]+ calcd for C19H28BrN2O2: 395.132867, found: 395.132867. 
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Compound 22 

 

 

Compound 22 was prepared according to general procedure by reacting 3-

bromobenzaldehyde (24.0 mg, 0.13 mmol) with B (30 mg, 0.13 mmol). Compound 22 

was isolated as a orange oil (20 mg, 0.05 mmol, 38.5%). 

 

Rf=0.50 (DCM/MeOH 9:1). 

 

1H NMR (300 MHz, CDCl3) δ=7.51 (d, J = 14.3 Hz, 1H), 7.36 (d, J = 7.6 Hz, 1H), 7.23 – 

7.12 (m, 2H), 3.79 (s, 2H), 3.72 – 3.68 (m, 1H), 3.63 (s, 2H), 3.55 – 3.48 (m, 2H), 2.66 – 

2.41 (m, 2H), 2.38 – 2.25 (m, 1H), 2.06 – 1.86 (m, 3H), 1.74 – 1.49 (m, 4H), 1.38 – 1.17 

(m, 4H), 0.86 (dd, J = 14.7, 7.5 Hz, 2H). 

 

HRMS-ESI m/z [M+H]+ calcd for C19H28BrN2O2: 395.132867, found: 395.133935. 
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Compound 23 

 

 

Compound 23 was prepared according to general procedure by reacting 4-

bromobenzaldehyde (24.0 mg, 0.13 mmol) with B (30 mg, 0.13 mmol). Compound 23 

was isolated as a orange oil (5.7 mg, 0.014 mmol, 10.8%). 

 

Rf=0.33 (DCM/MeOH 9:1). 

 

1H NMR (300 MHz, CDCl3) δ=7.45 – 7.39 (m, 2H), 7.22 – 7.17 (m, 2H), 3.77 (s, 2H), 

3.71 – 3.68 (m, 1H), 3.63 (s, 3H), 3.54 – 3.48 (m, 2H), 2.67 – 2.43 (m, 2H), 2.38 – 2.25 (m, 

2H), 2.00 – 1.86 (m, 1H), 1.74 – 1.58 (m, 4H), 1.38 – 1.15 (m, 3H), 1.15 – 0.99 (m, 2H), 

0.94 – 0.79 (m, 1H). 

 

HRMS-ESI m/z [M+H]+ calcd for C19H28BrN2O2: 395.132867, found: 395.132896. 
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Compound 24 

 

 

Compound 24 was prepared according to general procedure by reacting 

isovaleraldehyde (11.2 mg, 0.13 mmol) with B (30.0 mg, 0.13 mmol). Compound 24 

was isolated as a light yellow oil (9.0 mg, 0.037 mmol, 23.1%). 

 

Rf=0.40 (DCM/MeOH 9:1). 

 

1H NMR (300 MHz, CDCl3) δ=3.69 (t, J = 4.2 Hz, 3H), 3.62 (s, 3H), 3.51 (d, J = 10.0 Hz, 

2H), 2.67 – 2.55 (m, 2H), 2.55 – 2.46 (m, 1H), 2.29 (dd, J = 26.0, 12.1 Hz, 1H), 2.09 – 1.82 

(m, 3H), 1.77 – 1.45 (m, 5H), 1.42 – 1.12 (m, 4H), 1.07 – 0.93 (m, 3H), 0.90 (s, 2H), 0.87 

(s, 3H). 

 

HRMS-ESI m/z [M+H]+ calcd for C17H33N2O2: 297.253655, found: 297.253632. 
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Compound 25 

 

 

Compound 25 was prepared according to general procedure by reacting 

benzaldehyde (13.8 mg, 0.13 mmol) with B (30.0 mg, 0.13 mmol). Compound 25 was 

isolated as a yellow oil (2 mg, 0.006 mmol, 4.9%). 

 

Rf=0.25 (DCM/MeOH 9:1). 

 

1H NMR (300 MHz, CDCl3) δ=7.32 (d, J = 5.9 Hz, 3H), 7.26 (d, J = 18.2 Hz, 2H), 3.84 (s, 

2H), 3.63 (s, 3H), 3.54 – 3.49 (m, 1H), 2.73 – 2.58 (m, 1H), 2.57 – 2.43 (m, 1H), 2.37 (t, J 

= 12.0 Hz, 1H), 1.99 (d, J = 8.5 Hz, 1H), 1.90 – 1.71 (m, 2H), 1.72 – 1.46 (m, 4H), 1.44 – 

1.20 (m, 3H), 1.18 – 1.04 (m, 2H), 0.94 – 0.79 (m, 2H). 

 

HRMS-ESI m/z [M+H]+ calcd for C19H29N2O2: 317.222355, found: 317.222198. 
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Compound 26 

 

 

Compound 26 was prepared according to general procedure by reacting adamantan-

2-one (20.0 mg, 0.13 mmol) with B (30.0 mg, 0.13 mmol). Compound 26 was isolated 

as a light yellow oil (5.5 mg, 0.015 mmol, 11.5%). 

 

Rf=0.40 (DCM/MeOH 9:1). 

 

1H NMR (300 MHz, CDCl3) δ 3.85 (s, 1H), 3.69 (d, J = 8.1 Hz, 1H), 3.63 (s, J = 10.9 Hz, 

3H), 3.52 (s, 2H), 3.09 – 2.78 (m, 2H), 2.64 (d, J = 11.8 Hz, 1H), 2.61 – 2.35 (m, 3H), 2.17 

– 1.91 (m, 4H), 1.89 – 1.76 (m, J = 22.8 Hz, 5H), 1.78 – 1.46 (m, 6H), 1.39 – 1.10 (m, 6H), 

0.92 – 0.78 (m, 2H). 

 

HRMS-ESI m/z [M+H]+ calcd for C22H37N2O2: 361.284955, found: 361.285308. 
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Compound 27 

 

 

Compound 27 was prepared according to general procedure by reacting 4-

phenoxybenzaldehyde (13.9 mg, 0.07 mmol) with B (15 mg, 0.07 mmol). Compound 

27 was isolated as a yellow oil (5.5 mg, 0.013 mmol, 18.6%). 

 

Rf=0.50 (DCM/MeOH 9:1). 

 

1H NMR (600 MHz, [D6]DMSO) δ=8.71 (s, 1H), 7.52 (d, J = 8.6 Hz, 2H), 7.44 – 7.40 (m, 

2H), 7.18 (t, J = 7.4 Hz, 1H), 7.07 (d, J = 8.6 Hz, 1H), 7.02 (dd, J = 8.6, 1.0 Hz, 1H), 4.24 

– 4.16 (m, 1H), 4.16 – 4.08 (m, 1H), 3.59 – 3.52 (m, 4H), 3.32 – 3.29 (m, 1H), 3.19 (d, J = 

10.9 Hz, 2H), 2.74 (d, J = 14.1 Hz, 1H), 2.12 (s, 1H), 1.74 – 1.59 (m, 4H), 1.52 – 1.30 (m, 

7H), 1.21 (t, J = 13.0 Hz, 1H), 0.98 (dd, J = 18.7, 8.0 Hz, 1H). 

 

LRMS-ESI m/z [M+H]+ calcd for C25H33N2O3: 409.25, found: 409.24. 
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Compound 28 

 

 

Compound 28 was prepared according to general procedure by reacting 2,4 

dimethoxybenzaldehyde (22.0 mg, 0.13 mmol) with B (30 mg, 0.13 mmol). 

Compound 28 was isolated as a yellow oil (6.4 mg, 0.017 mmol, 13.1%). 

 

Rf=0.25 (DCM/MeOH 9:1). 

 

1H NMR (300 MHz, CDCl3) δ=7.17 (d, J = 8.9 Hz, 1H), 6.43 (d, J = 5.9 Hz, 1H), 6.41 (d, 

J = 2.2 Hz, 1H), 3.81 (s, J = 3.7 Hz, 3H), 3.79 (s, J = 3.6 Hz, 3H), 3.78 – 3.73 (m, 2H), 3.73 

– 3.66 (m, 1H), 3.63 (s, 3H), 3.57 – 3.45 (m, 2H), 2.74 – 2.57 (m, 1H), 2.50 (td, J = 13.2, 

4.5 Hz, 1H), 2.41 – 2.26 (m, 1H), 2.13 – 1.77 (m, 3H), 1.74 – 1.47 (m, 4H), 1.46 – 1.02 (m, 

3H), 0.95 – 0.76 (m, 2H). 

 

HRMS-ESI m/z [M+H]+ calcd for C21H33N2O4: 377.243484, found: 377.243739. 
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Compound 29 

 

 

Compound 29 was prepared according to general procedure by reacting 2-

naphthaldehyde (20.3 mg, 0.13 mmol) with B (30 mg, 0.13 mmol). Compound 29 was 

isolated as a yellow oil (2.6 mg, 0.007 mmol, 5.4%). 

 

Rf=0.38 (DCM/MeOH 9:1). 

 

1H NMR (300 MHz, CDCl3) δ=7.87 – 7.72 (m, 4H), 7.52 – 7.38 (m, 3H), 4.00 (s, 2H), 

3.64 (s, 3H), 3.52 (t, J = 5.8 Hz, 2H), 2.68 (t, J = 11.2 Hz, 1H), 2.56 – 2.45 (m, 1H), 2.39 (t, 

J = 12.0 Hz, 1H), 2.01 (t, J = 10.5 Hz, 2H), 1.77 – 1.47 (m, 4H), 1.46 – 1.10 (m, 4H), 0.97 – 

0.74 (m, J = 7.4 Hz, 3H). 

 

HRMS-ESI m/z [M+H]+ calcd for C23H31N2O2: 367.238005, found: 367.23829. 
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Intermediate 16 

 

 

Intermediate 16 was prepared according to general procedure by reacting scaffold A 

(63 mg, 0.28 mmol) with BocArg(Cbz)2OH (170 mg, 0.31 mmol). Intermediate 16 was 

isolated as a yellow solid (130 mg, 0.17 mmol, 60.7%). 

 

Rf=0.6 (Cyclohexane/AcOEt 5:5). 

 

1H NMR (300 MHz, CDCl3) δ=7.38-7.27 (m, 10H), 5.49 (s, 2H), 5.38 (s, 2H), 4.77 (t, J = 

6.99 Hz, 1H), 4.06-3.86 (m, 3H), 3.72-3.64 (m, 1H), 3.62 (s, 3H), 3.31-3.23 (m, 1H), 2.71-

2.74 (s, 1H), 1.91 – 1.80 (m, 2H), 1.71-1.14 (m, 13H), 1.39 (s, 10H). 
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Compound 30 

 

Compound 30 was prepared according to general procedure by subjecting 

intermediate 16 (130 mg, 0.17 mmol) to Cbz- deprotection followed by Boc- 

deprotection. Compound 30 was isolated as a off-white solid (74 mg, 0.15 mmol, 

88.2%). 

 

Rf=0.12 (Cyclohexane/AcOEt 5:5). 

 

1H NMR (300 MHz, CDCl3) δ=8.19 (s, 2H), 7.46 (m, 2H), 7.21 (m, 3H), 3.88 (m, 2H), 

3.72-3.65 (m, 1H), 3.62 (s, 3H), 3.38-3.21 (m, 3H), 2.63-2.59 (m, 1H), 2.01 (dd, J = 13.0 

Hz, 7.0, 1H), 1.94-1.74 (m, 2H), 1.66-1.08 (m, 13H), 0.95 (m, 1H). 
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Compound 31 

 

Compound 31 was prepared according to general procedure by reacting scaffold A 

(64 mg, 0.28 mmol) with 6-carboxyindole (36 mg, 0.31 mmol). Compound 31 was 

isolated as a gray solid (35 mg, 0.10 mmol, 34.6%). 

 

Rf=0.48 (Cyclohexane/AcOEt 5:5). 

 

1H NMR (300 MHz, CDCl3) δ=8.09 (d, J = 7.5, 1H), 7.01 (s, 1H), 7.64 (dd, J = 7.5, 1.5 

Hz, 1H), 7.43 (d, J = 7.5 Hz, 1H), 6.64 (d, J = 7.5 Hz, 1H), 3.95-3.86 (m, 2H), 3.62 (s, 

3H), 3.39-3.32 (m, 1H), 2.61 (m, 1H), 2.19-2.16 (m, 1H), 1.97-1.88 (m, 1H), 1.67-1-39 (m, 

7H), 1.32-1.05 (m, 4H). 
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Compound 32 

 

Compound 32 was prepared according to general procedure by reacting scaffold B 

(131 mg, 0.58 mmol) with 6-carboxyindole (103 mg, 0.64 mmol). Compound 32 was 

isolated as a gray solid (40 mg, 0.11 mmol, 19%). 

 

Rf=0.48 (Cyclohexane/AcOEt 5:5). 

 

 

1H NMR (300 MHz, CDCl3) δ=8.09 (d, J = 7.5, 1H), 7.01 (s, 1H), 7.64 (dd, J = 7.5, 1.5 

Hz, 1H), 7.43 (d, J = 7.5 Hz, 1H), 6.64 (d, J = 7.5 Hz, 1H), 3.95-3.86 (m, 2H), 3.62 (s, 

3H), 3.39-3.32 (m, 1H), 2.61 (m, 1H), 2.19-2.16 (m, 1H), 1.97-1.88 (m, 1H), 1.67-1-39 (m, 

7H), 1.32-1.05 (m, 4H). 
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