An acido-triggered reversible luminescent and nonlinear optical switch based on a substituted styrylpyridine: EFISH measurements as an unusual method to reveal a protonation–deprotonation NLO contrast†

Elena Cariati,*,abc Claudia Dragonetti,abc Elena Lucenti,abc Filippo Nisic,ab Stefania Righetto,ab Dominique Robertoabc and Elisa Tordinab

Diphenyl-(4-{2-[4-(2-pyridin-4-yl-vinyl)-phenyl]-vinyl}-phenyl)-amine (DPVPA) constitutes a novel acido-triggered reversible luminescent and nonlinear optical switch. Remarkably, for the first time the Electric-Field Induced Second Harmonic generation (EFISH) technique is used to reveal a protonation–deprotonation NLO contrast.

Compounds with second-order nonlinear optical (NLO) properties are important as molecular building block materials for optical communications, optical data processing and storage, or electro-optical devices.1 Among them, molecular species with commutable NLO properties are of growing interest.2 In fact, modulating the electronic and optical properties using an external trigger has been extended to the field of nonlinear optics and, in recent years, there has been significant interest in the ability to switch the second-order NLO response at the molecular level. The quadratic hyperpolarizability of chromophores may be manipulated by reversibly modifying the properties of specific parts of active molecules. The on-off switching may involve reducing the donor capacity of the electron-rich fragment of a typical donor–acceptor species, D–linker–A, by oxidation or protonation. Conversely, the acceptor behaviour of A can be altered by reduction, or by deprotonation. Alteration of the quadratic hyperpolarizability may also involve structural or chemical modification of the bridging group, thereby interfering with the communication between D and A. Thus, NLO switches can be achieved by a pH variation, by a redox process or by interaction with electromagnetic radiation.2

Of particular interest are organic acidochromes which display substantial NLO variations due to their ability to alternate between two distinct chemical forms having different absorption spectra in response to protonation–deprotonation.

The first studies on the NLO properties of acid–base couples were reported by Das,3 who elegantly obtained the dissociation constants of weak organic acids in solution by Hyper Rayleigh Scattering (HRS) intensity measurements. Successively, different second-order NLO contrasts have been studied by the HRS technique. For instance, a series of acidochromes based on benzinidazolo[2,3-b]oxazolines,5 benzazolo-oxazolidines6 and indolinol[2,1-b]oxazolidine7 moieties show a remarkable contrast in the NLO response due to the reversible transformation of the oxazoline closed form into a colored zwitterionic open form by acidification. Also, a series of push–pull molecules containing a 4,5-dicyanoimidazole acceptor (A) unit, an N,N-dimethylamino donor (D) group, and π-conjugated linkers (π) were reported as pH-triggered NLO switches; protonation occurs at the N,N-dimethylamino function, which leads to disruption of the electronic charge-transfer delocalization: the A–π–D pattern of the neutral species with large quadratic hyperpolarizability β values, as determined by HRS, was transformed into an A–π–A’ pattern, which displayed much smaller β values.8

The high increase of the quadratic hyperpolarizability of variously substituted styryl pyridines upon coordination to a metal center9 or alkylation of the pyridine moiety10 prompted us to investigate the possibility of switching their second-order NLO response by the protonation–deprotonation reaction. In addition, since π-delocalized systems are often characterized by intense photoluminescence and in view of the recent and increasing interest in luminescent organic solids showing acidochromic switch of the emission,11 we also studied the transformation in solid state and in solution by emission spectroscopy. The molecular target chosen was the diphenyl-{4-[2-[4-(2-pyridin-4-yl-vinyl)-phenyl]-vinyl]-phenyl}-amine (DPVPA), a known luminescent π-delocalized chromophore,12,13 which second-order NLO properties had never been studied. In this communication, we present the results of this investigation that led to a new acido-triggered reversible luminescent and NLO switch. It is also shown for the first time that Electric-Field-Induced Second Harmonic generation (EFISH) measurements can be used as a convenient method to reveal a protonation–deprotonation NLO contrast.

DPVPA was easily prepared using a slightly modified version of the procedure reported in the literature (see Scheme 1).12,13
The UV-visible absorption spectrum of DPVPA in CHCl₃ shows one major band at 410 nm which can be attributed to an intramolecular charge transfer transition (ICT) emanating from the NPh₂ donor-end of the molecule. This absorption is red shifted with respect to that of dialkylamino styrylpyridine (λ_{\text{max}} at 381 nm), in agreement with a higher π-delocalisation. Upon exposure of a CHCl₃ solution of DPVPA to HCl vapours for 1 h, the absorption maximum is shifted to 485 nm, a red-shift that can be attributed to protonation of the pyridine moiety with formation of [DPVPAH]^+Cl^−, as confirmed by ¹H NMR spectroscopy (see Fig. 1 and ESI†). The reverse transformation can be induced faster (about 30 min) by treatment of the solution with NH₃ vapours, as confirmed by ¹H NMR and absorption spectroscopy.

Interestingly, the protonation–deprotonation process is accompanied by a macroscopic variation in the emissive behaviour. In fact, DPVPA in CHCl₃ displays an intense emission centred at 506 nm which is shifted to 665 nm upon exposure to HCl and restored after treatment with NH₃ vapours, as confirmed by ¹H NMR and absorption spectroscopy.

Protonation–deprotonation NLO switches in solution are commonly studied by the HRS technique which, however, suffers the limitation of possible overestimation of the value of the quadratic hyperpolarizability due to multiphoton fluorescence. To our knowledge, the EFISH method has never been applied in such investigations, being usually considered off-limits for ionic species. However, it appears that the EFISH technique can be applied for the determination of the second-order NLO response of ionic species by working in a solvent of a low dielectric constant such as CHCl₃ which favours ion-pairing. The observation of the easy interconversion between DPVPA and [DPVPAH]^+Cl^− upon exposure of CHCl₃ solutions to acid–base vapours prompted us to apply the EFISH method to study the NLO response of the DPVPA system upon protonation–deprotonation cycles.

![Scheme 1](image-url)
Scheme 1 Synthesis of diphenyl-(4-(2-[4-(2-pyridin-4-yl-vinyl)-phenyl]vinyl)-phenyl)-amine (DPVPA). (i) tBuO^−K^+, THF, RT, 16 h, 85%; (ii) vinylpyridine, bis(tri-tert-butylphosphine)palladium(0), toluene, 80 °C, 24 h, 90%.

![Fig. 1](image-url)
Fig. 1 ¹H NMR of DPVPA and [DPVPAH]^+Cl^− in CDCl₃ (inset: chemical structures of the two compounds).

![Fig. 2](image-url)
Fig. 2 Absorption (up) and emission (down) spectra of a DPVPA–PMMA thin film before (blue) and after (red) exposure to HCl vapours for 2 min. A photograph of the protonated and unprotonated thin films under UV light is shown in the inset.
It is known that the EFISH technique16 can provide direct information on the intrinsic molecular NLO properties through eqn (1):

\[
\gamma_{EFISH} = \frac{\mu_{EFISH}}{5kT} + \gamma_{-2\sigma; \omega, \omega, 0}
\]
(1)

where \(\mu_{EFISH}/5kT\) is the dipolar orientational contribution to the molecular nonlinearity, and \(\gamma_{-2\sigma; \omega, \omega, 0}\), the third order polarization ability at frequency \(\omega\) of the incident light, is a purely electronic cubic contribution to \(\gamma_{EFISH}\) which can usually be neglected when studying the second order NLO properties of dipolar compounds.

We found that DPVPA is characterized by a good value of \(\mu_{EFISH} (690 \times 10^{-48} \text{ esu})\); the positive value of \(\mu_{EFISH}\) is in agreement with an increase of the excited state dipole moment with respect to the ground state, working in CHCl\(_3\) at a concentration of \(10^{-4} \text{ M}\) with a non-resonant incident wavelength of 1.907 \(\mu\)m, obtained by Raman-shifting the fundamental 1.064 \(\mu\)m wavelength produced by a Q-switched, mode-locked Nd3+:YAG laser.

The \(\mu_{EFISH}\) of DPVPA increases by a factor of 1.5 (\(\mu_{EFISH} = 1025 \times 10^{-48} \text{ esu}\)) upon protonation in the presence of HCl vapours, in agreement with the red shift of the absorption band, whereas further exposure to NH\(_4\)Cl vapours restores (after filtration of the solution to remove NH\(_4\)Cl which muddies the solution) the original value (Scheme 2).

In conclusion, DPVPA constitutes a new acido-triggered reversible luminescent and nonlinear optical switch. The alteration of the nonlinear properties is induced by the modulation of the internal charge-transfer due to the response of the molecule to protonation–deprotonation as the external stimulus. Remarkably, this communication unveils that the EFISH technique is a convenient and novel method to reveal a protonation–deprotonation as the external stimulus. Remarkable induction of the nonlinear properties is induced by the modulation of the intrinsic molecular NLO properties through eqn (1):

\[
\gamma_{EFISH} = \frac{\mu_{EFISH}}{5kT} + \gamma_{-2\sigma; \omega, \omega, 0}
\]

Notes and references