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Introduction

0.1 Magnetic confinement nuclear fusion and the ITER project

If two light nuclei are put together overcoming the Coulomb repulsion between them,
they fuse and during this reaction an amount of energy is released. This process is called
“nuclear fusion”. Amongst all the possible reactions (cf. Fig. 1 for some example), the
one that has been chosen for the actual fusion experiments is the deuterium-tritium:

D + T → α(3.5 MeV) + n(14.1 MeV) . (1)

This reaction releases 17.6 MeV, in the form of kinetic energy of the reaction products,
one α particle and a neutron.
To overcome the Coulomb force, the reacting particles have to collide with sufficient
initial kinetic energy. The most promising way to supply this energy is to heat the
deuterium-tritium mixture until the thermal energy is sufficient to produce the fusion
reaction. This method is called “thermonuclear fusion”. Unless the maximum of the
reaction cross section is at about 60 − 70 keV (cf. Fig. 1) of centre-of-mass energy of the
reagents, it is sufficient to reach the much lower energy of about 10 keV (corresponding
to about 100 millions K), because the required reactions occur in the high energy tail of
the Maxwellian velocity distribution. At this temperature the fuel is completely ionized,
being in the neutral plasma state, in which the nuclei charge is globally neutralized by
the electron charge.

In order to reach “ignition” (self-susteined fusion process) the product of the plasma
density n and the energy confinement time τE must exceed a value that depends on the
temperature, on the efficiency η of reconversion of a fraction of the fusion energy into
thermal energy of the fuel and on the particular reaction. This relation is called “Lawson
criterion” and takes the form:

nτE ≥ f(η, T ) , (2)

where f depends principally on η and T , but also on some parameters related to the
specific fusion reaction. For the deuterium-tritium reaction, in the 10 keV < T < 20 keV
temperature range of interest, it can be written in the following simple form:

nTτE ≥ 3× 1021m−3 keV s , (3)

In order to obtain so high values of the triple product nTτE there are two main strategies,
based principally on density increase or energy confinement time increase respectively.

vii
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Figure 1: Fusion cross sections versus centre-of-mass energy for reactions of interest to controlled
fusion energy. The curve labelled DD represents the sum of the cross sections of the various
branches of the reaction.

The first way, followed by the “inertial fusion” experiments, aims to reach fusion condi-
tions by heating and compressing with laser beams a small fuel target, typically in the
form of a pellet that usually contains a dense mixture of deuterium and tritium. The sec-
ond way, called “magnetic confinement fusion”, adopts particular magnetic field config-
urations to contain for a sufficient time a warm plasma with low density (n ∼ 1020m−3).
In this thesis I will deal with this second approach.
In present experiments the ignition condition can not be achieved and some power must
be supplied from outside the plasma to maintain the energy balance. Even if they can
not make the plasma work in self-sustained conditions, researchers try to maximize the
efficiency of the reactors. The efficiency of a fusion reactor is measured by the gain factor
Q, defined by

Q =
net thermal power out

heating power in
=
Pout − Pin

Pin
. (4)

If the fusion process is self sustained (“ignition” condition, i.e. Pin = 0), the gain factor
tends to infinity.

The present most promising project about magnetic confinement fusion is ITER (Inter-
national Thermonuclear Experimental Reactor), that involves the construction of a ma-
chine which should be able to reach values of Q greater than 10. ITER is an international
project that aims to demonstrate in the following years that it is possible to produce en-
ergy on a large scale by the process of controlled nuclear fusion.
ITER machine will be a tokamak, that is one of the most promising and most studied
devices with toroidal magnetic field configuration. This axisymmetric device, whose
acronym comes form the russian “TOroidal’naya KAmera s MAgnitnymi Katushkami”
(Toroidal chamber with magnetic coils), developed around 1970 in Moscow, is practi-
cally a toroidal electrical transformer, in which the primary winding is made by the
“poloidal field coils”, twisted around the axis of the torus, and the secondary wind-
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Figure 2: (Left) ITER machine; (Right) tokamak structure.

ing is constituted by a deuterium-tritium mixture, contained in a vacuum chamber, in
which a toroidal magnetic field is generated by azimutally equally distributed “toroidal
field coils”. The plasma is made up by the electric discharge due to the high toroidal
electric field generated by the transformer in the deuterium-tritium mixture. Moreover,
the toroidal current so produced (“plasma current”) builds up a poloidal magnetic field
component, that results in a total helical magnetic field twisted around almost-concentric
nested toroidal surfaces (cf. Fig. 2). Finally, some toroidal coils generate an additional
magnetic field, needed for the plasma ring equilibrium. During the plasma discharge,
the plasma current is forced to have a ramp up and a ramp down, separated by a plateau
region where the plasma temperature reaches its maximum value.

The total magnetic field B satisfies the balance equation

J ×B = ∇p , (5)

between the magnetic force and the force due to the plasma pressure p, where J is the
total current 1. Equation (5) implies: B · ∇p = 0, so that the magnetic surfaces are sur-
faces of constant pressure. A magnetic surface can be labeled by a function that like the
plasma pressure is constant on that surface, as for example the poloidal magnetic field
flux ψ per radian in the toroidal angle (called “poloidal magnetic flux function”). These
functions are called “flux functions” 2.

In order to reach the temperatures needed for fusion reactions to take place, in a tokamak
a part of the required heating comes from the plasma current itself, via Joule heating. Un-
fortunately, this is not sufficient. In fact, the plasma resistivity scales with temperature as

1Along all this thesis, in order to have a light notation and to match with the notation used in the published
paper that includes the major results of my PhD (cf. Maj et al. [1]), I will not use any bold character or
particular superscript/subscript to distinguish between scalars, vectors and tensors. The identification relies
on the context.

2For a detailed list of these functions with a rigorous introduction, we refer to the book by D’haeseleer et
al. [2].
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T−3/2 and therefore this method is not efficient at high temperatures. Moreover, there is
an upper limit to the current that can be carried by the plasma, related to magnetoidro-
dinamic (MHD) instabilities. The collection of the different methods of external heating
adopted to overcome this drawback, is called “additional heating”, and it divides be-
tween methods based on the injection of neutral particles and methods based on the
injection of radio frequency waves. Within the second group, I will discuss the Electron
Cyclotron Resonance Heating (ECRH), based on the injection of waves with a frequency
equal to the cyclotron frequency of the plasma electrons (the electron cyclotron angular
frequency is defined in the S.I. by Ωe = e|B|/me, where e is the electron charge, |B| is the
module of the magnetic field and me is the electron mass), heating the plasma by means
of a resonant interaction.

In a tokamak the energy confinement time τE can be considerably shortened by many
kinds of plasma instabilities, leading eventually to the total loss of plasma confinement
and the consequent particles collision with the wall of the vacuum chamber (this event
is called “disruption”). Many methods have been proposed to avoid the formation and
growing of this instabilities, and for the particular case of the Neoclassical Tearing Modes
(NTM), a particularly dangerous kind, the injection of EC beams can play a fundamental
role, through the method called Electron Cyclotron Current Drive (ECCD), that consists
in the generation of localized strips of current that neutralize the mechanism that makes
the instability grow up.

In the following section ECRH and ECCD methods will be introduced in some more
detail.

0.2 Heating and plasma instability control: electron cyclotron reso-
nance heating and current drive

Electron cyclotron resonant interaction

The electron cyclotron resonant interaction is the process by which a wave with fre-
quency close to the local cyclotron frequency of the plasma electrons interchanges en-
ergy and momentum with the plasma particles. The resonance condition for a plane
wave propagating in a homogeneous infinite plasma with uniform background mag-
netic field, is given by

ω − k‖v‖ − nΩe/γ = 0 , (6)

where ω is the wave angular frequency, k‖ and v‖ are the parallel components of the wave
vector and the electron velocity respectively with respect to the equilibrium magnetic
field B, n is a positive integer, Ωe is the electron cyclotron angular frequency and γ is the
Lorentz factor

γ =
1√

1− v2

c2

, (7)

where c is the speed of light. The principal resonance occurs with n = 1, while the n ≥ 2
resonances are the high order harmonics. Condition (6) is satisfied when an electron,
with parallel velocity v‖, “sees” the wave angular frequency ω, modified by the Doppler
shift term k‖v‖, as an integer multiple of the realtivistically-corrected electron cyclotron
angular frequency Ωe/γ. As a consequence, the wave interacts with the plasma in a
neighborhood of the surface ω = Ωe(x) (cold resonance surface), with the width of the
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interaction region depending on the electrons velocity distribution. In a tokamak de-
vice, the frequency fEC = ω/2π of the EC beam is chosen so that the cold resonance
surface Ωe(x)/2π = fEC intersects the plasma volume (in ITER the EC system will have
fEC = 170 Ghz, with vacuum wavelenght of almost λ ' 1.8 mm). It is worth noting
that the cold electron cyclotron resonance surfaces in a tokamak are almost cylindric,
with the cylinder axis coinciding with the torus axis. This is a consequence of the fact
that the B field in a tokamak is almost completely toroidal and its toroidal component is
inversely proportional to the major radius R of the torus, while it is independent from
the azimuthal (the tokamak is an axisymmetric device) and vertical coordinates. As a
consequence, since Ωe is proportional to B, the Ωe(x) = ω surfaces are almost cylindric.

If we restrict ourselves to the usual case of |N‖| < 1, the resonance condition describes a
semi-ellipse in the space of the parallel and perpendicular components of the normalized
relativistic momentum u = p/mc = γv/c:

(u‖ − u‖0)2

δ2
‖

+
u2
⊥
δ2
⊥

= 1 , (8)

where the expressions for the centre of the ellipse and its semi-axis are given by

u‖0 =
N‖

1−N2
‖
Yn , (9)

δ‖ =

√
Y 2
n − (1−N2

‖ )

1−N2
‖

,

δ⊥ =
√

1−N2
‖ δ‖ ,

where Yn ≡ nY and Y ≡ Ωe/ω (cf. Fig. 3).

n=1

n=2

n=3

-4 -2  0  2  4
u||

 0

 1

 2

 3

 4

u �

Figure 3: Resonance curves in the (u‖, u⊥) space, with parameters Y = 1, N‖ = 0.3, consistent
with EC beam propagation at the cold resonance for a beam launch from the top of the tokamak
vacuum chamber. The curve with n = 1 represents the principal resonance, while n = 2, 3 are the
first two harmonics.

The wave-plasma interaction results in a energy transfer to the electrons (in a plasma
close to the equilibrium). As a consequence a general plasma heating is achieved through
electron-electron and electron-ion collisions. This process is called Electron Cyclotron
Resonance Heating (ECRH).
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If a wave is injected with a non-vanishing wave vector parallel component k‖, it can
transfer a net parallel momentum to the electrons, resulting in the generation of current
in theB direction, and therefore approximately in the toroidal direction (since the B field
in a tokamak is almost completely toroidal). This process is called Electron Cyclotron
Current Drive (ECCD). The mechanism underlying the current drive is a superposition
of two principal effects. The Fisch-Boozer process, which generates a net current in the
direction opposite to B, and the Ohkawa process, which generates a net current in the B
direction. The Fisch-Boozer process can be summarized as follows: if there is a strong
damping so that the waves are fully absorbed by electrons with a single sign of v‖, a
group of electrons with positive v‖ is accelerated to higher energy and hence to a less
collisional location in velocity space, since the collision rate declines as v−3. As a con-
sequence the collisional relaxation process symmetrizes the high energy electrons more
slowly than it fills the lower energy location they came from resulting, in the limit of
a steady-state process, in the formation of an excess of electrons with positive v‖ , and
hence a current in the direction opposite to B. For the Ohkawa process explanation we
refer to [3]. The description of the ECCD has to balance correctly the two contributions.

Neoclassical tearing modes and their control with electron cyclotron current drive

Amongst the various causes of deterioration of plasma confinement, one of the worst
is constituted by the Neoclassical Tearing Modes (NTM). They are a particular type of
MHD plasma instabilities that manifest themselves as tearing of nearby magnetic sur-
faces that reconnect changing their topology resulting in magnetic islands that grow,
leading to a decrease of the energy confinement time and eventually to disruptions.

In order to characterize this instability, it is needed to introduce the safety factor q. Con-
sidering a magnetic field line that starts at a given position in the poloidal plane and
after a toroidal angle ∆φ, m toroidal rotations and n poloidal rotations recovers the ini-
tial position, q is defined by

q ≡ ∆φ

2π
=
m

n
. (10)

The safety factor is a flux function, i.e. it is a quantity that is constant over a magnetic
flux surface. In Fig. 4, the variation of q with the flux coordinate ρ (normalized toroidal
radius defined as the square root of the toroidal flux normalized to its edge value) in
a typical ITER scenario at the end of the plasma current flat-top is shown. Around the
magnetic surfaces with rational values of q (“rational surfaces”), magnetic reconnection
occurs, resulting in magnetic islands formation (Tearing Modes). Magnetic islands can
be stable if there is not a deficiency in the local bootstrap current, an additional toroidal
current due to the effects related with passing and trapped particles (toroidal effects re-
lated to passing and trapped particles are referred to as “neoclassical” effects). The NTM
are the magnetic islands whose instability is driven by a helical perturbation of the boot-
strap current.

It is possible to control these instabilities by restoring the unperturbed bootstrap current.
This can be done by the interaction of narrow focalized EC beams with non-vanishing
toroidal component of the wave vector, with small volume regions around the intersec-
tion of the considered magnetic surface and the cold cyclotron resonance “cylindrical”
surface. By means of the Electron Cyclotron Current Drive (ECCD) process, an helical
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Figure 4: (Left) q profile of a typical ITER scenario at the end of the flat top. The q = 3/2 and q = 2
rational surfaces are traced in green and red respectively; (Right) formation of magnetic islands
by magnetic reconnection around rational surfaces in the DIII-D tokamak, currently operating
(poloidal plane view).

strip of current is generated that balances the “neoclassical” perturbation of the boot-
strap current. Power deposition can be performed by continuous wave injection or by
modulated injection. The modulated injection may overcome the drawback caused by
the fact that a magnetic island position varies periodically with time, and consists in
making the wave launcher operate in finite time intervals, in order to deposit power
only in the inner region of the islands improving the stabilization efficiency.

The description of the propagation of these focalized EC beams in the tokamak anisotropic
magnetized plasma and their EC resonant interaction resulting in the required current
generation is the main topic of this PhD thesis.

0.3 The ITER Electron Cyclotron Power System

In order to perform heating and current drive (H&CD), in the ITER tokamak it will be
provided a system capable to deliver 24 MW of power to the plasma by Electron Cy-
clotron wave injection, 20 MW by Ion Cyclotron wave injection and 33 MW by neutral
beam injection.

The ITER EC H&CD system interface with the tokamak vacuum chamber will be con-
stituted by an Equatorial Launcher (EL, cf. Fig. 5), placed near the equatorial plane of
the torus, which will be able to inject beams toward the axis of the plasma, principally
with ECRH&CD purposes (central heating and current profile tailoring), and four Up-
per Launchers (UL, cf. Fig. 6), placed at different toroidal angles, that will be able to
inject beams from the upper region of the vacuum vessel toward the rational surfaces of
interest in a region close to the cold electron cyclotron resonance surface, principally for
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Figure 5: (Left) Equatorial Launcher scheme; (Right) Equatorial Launcher beams directed toward
the plasma axis for central heating purposes (poloidal plane view).

ECCD purposes.

During the ITER discharge, the EC power will be used for different purposes at various
time stages. In Fig. 7 the total EC power time variation planned in the actual design is
shown, compared to the time variation of the plasma current. The central heating, prin-
cipal purpose of the EL, will be carried during the current ramp-up and flat-top, while
the MHD instabilities control, principal purpose of the UL, will be performed mainly
during the flat-top (“burn” phase). Moreover, the EC system will be active also for other
tasks, like for example the assisted startup of the plasma discharge, and during current
ramp-up and ramp-down in order to assist the transitions between the Low confinement
mode (L-mode) and the High confinement mode (H-mode), that is is a particular high-
confinement regime that can be achieved in most of the present tokamaks.

The EC power will be generated by the Gyrotrons, that are a particular kind of masers
capable of delivering high power at millimeter wavelengths. 24 Gyrotrons will be hosted
in a dedicated building (Radio Frequency building, cf. Fig. 8 for a top view of the whole
ITER EC system). The waves will be transmitted to the tokamak interface by a power
distribution system made of 24 transmission waveguides. 24 Beams of 1 MW power
each will be produced by the gyrotrons in the RF building and be switched among the
launchers by the waveguides. The output from the waveguides will consist in almost
pure Gaussian beams.
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Figure 6: (Left) Upper Launcher scheme; (Right) Upper Launcher beams directed toward the q = 2
rational surface for ECCD purposes (poloidal plane view).

Figure 7: Distribution of the EC H&CD during an ITER plasma discharge. EC power versus time
(bottom), compared with the plasma current time variation (top).
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Figure 8: ITER EC system scheme (top view).
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The Upper Launcher

Now a brief introduction to the ITER Upper Launcher is given. For a detailed descrip-
tion, we refer to Henderson et al. [4].

In Fig. 9 an Upper Launcher cross-section is presented, showing its inner optical sys-
tem. Inside each one of the four launchers, eight Gaussian beams of 1 MW power each
coming from the transmission waveguides can be reflected and focalized on two final
mirrors, the Upper Steering Mirror (USM) and the Lower Steering Mirror (LSM). From
either USM or LSM four beams are reflected toward the plasma, aiming to the selected
rational surface.

Figure 9: cross-section of the Upper Launcher, showing how the eight incoming beams are re-
flected on the two final mirrors, the Upper Steering Mirror (USM) and the Lower Steering Mirror
(LSM).

The beams can be launched with different poloidal angles, with a non-vanishing toroidal
angle, thanks to a steering system that allows the USM and LSM to rotate about an axis.
The poloidal and toroidal injection angles α and β are defined as the angle between
the launching wave vector and the horizontal plane and the angle between the launch-
ing wave vector and the toroidal direction respectively, that is N0R tanα = N0z and
Noϕ = sinβ, where (N0R, Noϕ, N0z) are the cylindrical coordinates of the launching in-
dex of refraction vector N0 = k0c/ω. As a result the beams can cross the cold electron
cyclotron resonance surface in a wide range of flux coordinate ρ (cf. section 0.2), aiming
at the q = 2 and q = 3/2 rational surfaces, around which the NTM modes develop, down
to the q = 1 surface, where the sawtooth MHD instability occurs.

In order to achieve narrow power deposition profiles, needed for NTM stabilization,
the present optical layout of the UL focuses each of the four beams (being w ∼ 5 cm the
beam size, that is the radius of the beam where the E field is 1/e times the peak value,
at the final mirror surface) to a small beam waist w0 ∼ 2 cm at a distance of almost 1.6 m
into the plasma (LSM parameters; USM parameters are similiar). Moreover, for each
steering mirror (USM or LSM), in order to obtain a high peak in the total power deposi-
tion profile, sum of the power profiles of the the four beams reflected by the mirror, the
beams have to superpose with high precision in the plasma absorption zone. To obtain
this result it is needed to do in parallel a set up of the inner optical system and a work
consisting in performing numerical simulations of propagation and absorption of beams
starting from either the USM or the LSM. In this thesis we will focus on the propagation
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and absorption of single beams starting from the center of either the USM or the LSM
(“virtual beams”), instead of describing the four beams superposition.

The UL design is actually in progress, and I worked on this subject during the PhD.

0.4 Numerical simulations of EC H&CD and complex geometrical op-
tics

To optimize the design of EC devices like ITER UL and EL or to prepare experimental
campaigns on existing machines, it is needed to make predictions of the propagation and
interaction of the EC beams with the anisotropic plasmas under consideration. The beam
propagation and resonant interaction has to be correctly described in order to develop
simulation codes capable of making predictions on trajectories and absorption profiles.
Because of the complexity of the 3D propagation and H&CD calculation, it is in general
impossible to recover analytical solutions. For low frequency waves it is possible to solve
the full wave equation numerically, discretizing space coordinates with a grid which step
width is of the order of the wavelength. On the contrary, for EC waves in large magnetic
confinement devices the wavelength to plasma size ratio λ/L is extremely small, thus
hampering the direct numerical solution of the relevant wave equation (in ITER λ ∼ 2
mm, L ∼ 2 m). In fact, since the computational time increases with the number of nodes
of the space grid, if the ratio λ/L is too small, it is needed an huge amount of time to
perform a full-wave simulation of the wave propagation.

Therefore, the description of high-frequency waves in inhomogeneous media is usu-
ally dealt with by means of asymptotic methods that greatly simplify the computational
problem. One such method is geometrical optics (GO), that relies on the approximation
λ/L→ 0, giving a description of the wave in terms of rays tangent in every point to the
wave energy flux vector field. Geometrical optics, thanks to the λ/L→ 0 approximation,
has the useful feature of transforming a difficult non-linear problem in a simple integra-
tion of a system of ordinary differential equations.

This description, however, fails to take into account the diffraction effects that become
important in the caustic regions, where the GO rays intersect. The correct description of
the wave field in these regions is required to make predictions on applications that in-
volve focused beams, like ITER UL beam injection. In order to overcome this drawback,
a series of alternative asymptotic methods that take into account diffraction effects was
developed. Among them, I will focus on the “complex geometrical optics” (CGO) meth-
ods. These methods share the same ansatz for the electric field, which is built upon the
standard WKB ansatz of GO by replacing the real-valued eikonal with a complex-valued
function referred to as complex eikonal. Moreover, while the GO method is based on the
smallness of the ratio λ/L, in CGO a new intermediate length scale w0 appears, given by
the waist size of the beam, satisfying λ� w0 � L (Quasi-Optical approximation).
The two main CGO branches are the “complex ray theory” and the “complex eikonal
theory”. The first method relies on the complexification of GO rays, while the second is
based on the construction of a new set of rays in the real space, obtained as perturbation
of the GO rays due to diffraction effects. When we will write “CGO” in this thesis, we
will refer to “complex eikonal theory” CGO method.

The “complex eikonal theory” , first applied to fusion plasmas by Mazzucato [5] and
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then exploited by some other authors, was used to implement the beam tracing code
GRAY (cf. Farina [6]), employed to make predictions on beam propagation and H&CD
performances for many fusion devices, ITER included.

In addition to CGO methods, other theoretical approaches were developed. The “parax-
ial WKB method”, in particular, led to the implementation of the beam tracing code
TORBEAM (cf. Poli et al. [7]).

All the numerical results shown in this thesis are obtained with the GRAY code, except
for the comparison between GRAY and TORBEAM results contained in section 2.2.

0.5 Thesis overview

I spent the PhD period working at the “Istituto di Fisica del Plasma” (IFP) of the “Con-
siglio Nazionale delle Ricerche” (CNR), in Milan. This Thesis is the result of the work
done in collaboration with my PhD supervisor Daniela Farina and Lorenzo Figini, within
a research group that studies the propagation and the absorption of high power Gaus-
sian beams in plasmas of magnetic nuclear fusion interest. Part of the work was done
in collaboration with Omar Maj (Max Planck Institut für Plasmaphysik, Garching, Ger-
many), with a two week collaboration on site in Garching.

The work done is divided in two principal branches: a theoretical one concerning the
description of the propagation and absorption of high frequency beams in anisotropic
media, with original results obtained in collaboration with Omar Maj that led to the pub-
lication of a paper on an international scientific journal [1], and a numerical-applicative
one consisting in doing simulations of the propagation and absorption of Electron Cy-
clotron beams in conditions of interest for the ITER project by using and optimizing
the beam tracing code GRAY, including the optimizations resulting from the theoretical
work.

Within the theoretical work, the main part is constituted by the analysis of the propa-
gation of high frequency Gaussian beams in anisotropic media, within the CGO frame-
work. While the CGO solution of the wave equation for the electric field at the dominant
order in the λ/L parameter is well known (cf. Mazzucato [5], for example), leading to
a description of the wave by a bundle of rays that take into account the diffraction ef-
fects due to the beam finite width, the rigorous solution of the first order wave equation
and the consequent derivation of the wave energy flux can not be found in literature.
This gap has been filled developing a new approach at the CGO ordering of the wave
equation that simplifies significantly the analysis of the transport equation for the wave
field amplitude and leads to the wave energy flux derivation. Moreover, we obtained
as additional results the mathematical derivation of the GRAY code ray equations and
the demonstration that GRAY rays correctly describe the wave energy flow in the CGO
approximation. This results, together with two numerical tests made with GRAY and
TORBEAM codes in order to have an estimate of the theory in ITER-like conditions, are
published on Physics of Plasmas [1], and presented in chapters 1 and 2 of this thesis.

Besides the description of EC beams propagation in CGO framework, leading to the
described results, the related problem of the EC beam resonant interaction with the
plasma has been dealt with. This process, well described for plane waves interacting
with a infinite homogeneous plasma with uniform equilibrium magnetic field, has not a
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full solution for the more complicated case of the propagation of finite width beams in
anisotropic plasmas with non-uniform equilibrium magnetic field, like fusion plasmas.
The effects related to the spatial finiteness of both the wave and the plasma, resulting
in a finite time wave-plasma interaction, together with the effects due to the anisotropy
of the plasma and the non-uniformty of the equilibrium magnetic field, lead to a broad-
ening of the interaction region and a subsequent broader and less-peaked deposition
of power by the beams. The papers actually present in literature on the subject (cf.
Demeio-Engelmann [8] , for example) give a global solution of the problem, that has
to be matched with the ray description of the wave adopted in the beam tracing codes
like GRAY. In order to develop an approximate model that describes the wave absorption
along the single ray, the effects of the finite width of the beam and the non-uniformity
of the equilibrium magnetic field have been treated separately, leading to the implemen-
tation of a new version of the GRAY code that takes into account these corrections. The
foregoing results are presented in chapter 3.

Finally, in chapter 4, the results of the analysis of the propagation and absorption of
EC beams in a typical ITER scenario using the GRAY code are presented, in order to
give an example of the numerical work performed during the PhD. These results are of
interest for the ITER Upper Launcher design.



Part I

Beam propagation





CHAPTER 1

High frequency diffracting beams propagation in a
magnetized plasma in complex geometrical optics

This chapter contains the main theoretical results obtained during my PhD. It is com-
posed almost completely of the results published in [1]. Sections 1.4 and 1.5 show the
theoretical core of the work, which mainly consists in a new rigorous derivation of the
wave energy flux in the complex geometrical optics framework, that up to now was not
obtained in the literature.

In the first two introductory sections 1.1 and 1.2 we fix the notation and review basic
results and ideas, upon which the geometrical optics and the complex geometrical optics
methods rely. In section 1.3 some results concerning the paraxial character of the beams,
obtained independently by Pereverzev [9] and Maslov [10], are reviewed, because they
are pivotal in the wave energy flux derivation. In section 1.4 the solution of the wave
equation at the dominant orders in the GO parameter λ/L is presented, leading eventu-
ally to the rigorous derivation of the ray equations used in the GRAY beam tracing code
[6]. Finally, in section 1.5 the wave energy flux derivation within the complex eikonal
theory is shown, with the additional result that the ray description of a EC beam made
by the GRAY code correctly describes the wave energy flow in the CGO framework.

For sake of simplicity, we consider spatially non-dispersive media for which the con-
stitutive relation between the electric displacement D and the electric field E is local,
namely, D = εE, where ε is a matrix referred to as the dielectric tensor (see Appendix
A).

1.1 Review of standard geometrical optics

In this section it is presented the review material about standard geometrical optics. The
focus is pointed on the rigorous presentation of the ansatz and the main results of this
method, instead of dwelling on the details of the derivation, which can be inferred by
specializing the complex eikonal theory described in section 1.4.

Every arbitrary wave such that the λ/L ratio is sufficiently small can be regarded as a
plane wave in every sufficiently small region of space. In this approximation the “phase
surfaces” can be introduced and in every little portion of space the direction of propa-
gation is defined as the normal unit vector to the phase surface. Moreover, the “rays”
can be introduced as the lines whose tangent in every point coincide with the direction
of propagation of the wave. The study of the wave propagation in this context is the
subject of the geometrical optics.

3



4 1.1 Review of standard geometrical optics

1.1.1 Wave equation and electric field ansatz

The equation for the electric field of a monochromatic electromagnetic wave beam in a
stationary spatially non-dispersive medium is

∇× (∇× E(κ, x))− κ2ε(κ, x)E(κ, x) = 0 . (1.1)

Equation (1.1) is written in the dimensionless form adopted by Pereverzev, where the
coordinates [x]i , i = 1, 2, 3 are normalized to the scale L of typical spatial variations of
the medium, and the large parameter

κ = k0L , (1.2)

where k0 = ω/c is the vacuum wavenumber, appears naturally. In addition, [∇]i = ∂/∂xi

and c is the speed of light in free space. The dependence of the solution E(κ, x) on
the parameter κ is explicitly indicated, whereas the additional dependence on the beam
frequency ω is implied in the dielectric tensor ε of the medium and

E(κ, x, t) = E(κ, x)e−iωt . (1.3)

Asymptotic solutions of (1.1) in the limit κ→∞ can be constructed by modest computa-
tional means, and yet provide excellent approximations of the exact wave field for many
applications as far as the parameter κ is large. Asymptotic solutions offer an effective
alternative to the major computational problem of direct numerical integration of (1.1)
for very high frequencies in large three-dimensional domains.

In geometrical optics, a solution of Eq. (1.1) is sought in the form (eikonal ansatz)

EGO(κ, x) = a(κ, x)eiκS(x) , (1.4)

with a(κ, x) defined in the limit κ→∞ by the asymptotic sum

a(κ, x) ∼
∞∑
j=0

κ−jaj(x) , (1.5)

where S(x) is a real-valued smooth function representing the short-scale oscillations of
the field and referred to as the eikonal, while aj(x) are vector-valued complex smooth
functions that will be generically referred to as amplitudes.
It is assumed that the amplitudes are bounded, that is there exist a sequence of real
numbers Cj so that |aj(x)| ≤ Cj ∀ j, and as a consequence it is easy to prove that the
asymptotic sum a(κ, x) is bounded too, that is there exist two constants C0 > 0 and
κ0 > 0 so that

|a(κ, x)| ≤ C0 for κ ≥ κ0 . (1.6)

The dielectric tensor is assumed to be smooth and have the asymptotic expansion

ε(κ, x) = ε0(x) + κ−1ε1(x) +O(κ−2) . (1.7)

The medium is considered weakly dissipative. As a consequence the dominant order
term ε0 of the dielectric tensor is Hermitian, i.e. , ε0 = ε∗0, where ε∗0 is the Hermitian
conjugate of ε0, i.e., the transpose of the complex-conjugate of ε0 ([ε∗0]ij = [ε0]∗ji). The
absorption coefficient, related to the anti-Hermitian part εa = κ−1εa1 + O(κ−2), is van-
ishingly small as κ → ∞. Moreover, we will disregard the possible κ−1 order residual
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Hermitian part, that is εh = ε0+O(κ−2). Here and in throughout the thesis the Hermitian
part and the anti-Hermitian part of a matrix M are denoted respectively by

Mh =
M +M∗

2
, (1.8)

Ma =
M −M∗

2i
,

and M = Mh + iMa.

After substituting the electric field ansatz (1.4) into the wave equation (1.1), we obtain
as a result some terms multiplied to different integer powers of κ−1. This fact leads to
separate equations that can be solved individually.

1.1.2 Solution of the dominant order wave equation: ray tracing equations

In order to solve the dominant order wave equation, it is needed to introduce the disper-
sion tensor of the medium, that is the matrix-valued smooth function defined by

D0,ij(x,N) = N2δij −NiNj − ε0,ij(x) . (1.9)

This tensor appears naturally testing the wave operator, i.e., the left-hand side of Eq.
(1.1), with a plane wave eiκN ·x and separating the leading order in κ. This is defined on
a domain in the x − N space, which is referred to as the wave phase space. In view of
the definition of κ and the normalization of spatial coordinates x, the conjugate variable
N has the physical meaning of the refractive index vector.

The real eigenvalues λi of D0 give the local dispersion functions of wave modes sup-
ported by the medium. Here it is assumed that the eigenvalues λi are well separated,
namely, there exists a strictly positive constant C > 0 such that |λi(x,N)−λj(x,N)| ≥ C
for i 6= j and for (x,N) in the relevant domain in the wave phase-space. This implies
that the dispersion surface of one mode does not get close to that of the other modes, and
linear mode conversion is excluded, that is, no energy exchange can take place among
different modes. Hence under such hypothesis, each mode is independent of the oth-
ers and the wave equation (1.1) in the limit κ → ∞ can be reduced to decoupled scalar
equations describing the various modes. Let us denote by H(x,N) the eigenvalue of
D0(x,N) relevant to the considered mode, and let e(x,N) be the corresponding unit
eigenvector. For simplicity, we consider the case of simple eigenvalues, i.e., the corre-
sponding eigenspace is assumed to be one-dimensional. Upon substituting (1.4) into
(1.1) and performing the asymptotic expansion in the limit κ → ∞, one finds that mul-
tiple solutions exist, one for each propagation mode supported by the medium. Under
the conditions stated above, each mode is independent. We consider the one which cor-
responds to the eigenvalue-eigenvector pair H(x,N), e(x,N).

The dominant order amplitude a0 is found proportional to e(x,∇S(x)), namely

a0(x) = A(x)e(x,∇S(x)) , (1.10)

where A(x) is a scalar complex amplitude. Therefore the polarization of the leading or-
der term in the geometrical optics solution is determined by the eigenvector e(x,N) for
N = ∇S.
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The eikonal S(x) is determined by the standard eikonal equation

H(x,∇S(x)) = 0 . (1.11)

This equation can be solved by the method of the characteristics, leading to the pair of
Hamiltonian-like equations

dx(τ)

dτ
=
∂H(x,N)

∂N

∣∣∣∣
H(x,N)=0

, (1.12)

dN(τ)

dτ
= −∂H(x,N)

∂x

∣∣∣∣
H(x,N)=0

.

where the parameter τ plays the role of time. The projection of a solution (x(τ), N(τ)),
satisfying the local dispersion relation H(x,N) = 0, into the physical space is called a
geometrical optics ray. The construction of a solution of (1.11) using rays is obtained as
follows. Let us assume, as boundary conditions, that the wave field is prescribed in the
form E0(κ, y) ∝ eiκS0(y) on a 2-dimensional surface

Σ0 = {x; x = x0(y)} , (1.13)

parametrized by the variables y = (y1, y2). One can think of Σ0 as the surface of either
a mirror or an antenna, where the launched wave field is known. The initial conditions
(x0(y), N0(y)) for the Hamilton’s Eqs. (1.12) are determined by the gradient of the initial
phase S0(y), together with the local dispersion relationH(x0(y), N0(y)) = 0. Meaningful
data must be such that the lifted surface,

Λ0 = {(x,N); x = x0(y), N = N0(y)} , (1.14)

is non-characteristic, i.e., the Hamiltonian orbits of the system (1.12) originating from
points of Λ0 are transversal (not necessarily orthogonal) to Λ0 itself, so that orbits move
away from the surface, and ∇NH|Λ0

6= 0. Then, the solution of Hamilton’s Eqs. (1.12)
can be readily found in the form (x(τ, y), N(τ, y)) depending on the initial point y on the
launching surface Λ0. This defines a 3-dimensional surface

Λ = {(x,N); x = x(τ, y), N = N(τ, y)} , (1.15)

immersed into the 6-dimensional wave phase space, and parametrized by coordinates
(τ, y1, y2). Indeed, Λ is the flow out of Λ0 by the Hamiltonian flow. As a consequence
of the non-characteristic hypothesis on Λ0 , the relationship x = x(τ, y) defines a change
of coordinates, at least locally near Λ0. The new coordinates (τ, y) establish a one-to-one
correspondence between a neighborhood of Σ0 in the physical space and a neighborhood
of Λ0 in the surface Λ. it is possible to proof that, at least near Σ0, there exists a real
function S(x) such that N(τ, y) = ∇S(x(τ, y)) and S|Σ0

= S0(y). It follows that S(x)
solves Eq. (1.11) with the appropriate boundary condition. Despite its rather abstract
definition, the construction of S in Lagrangian coordinates is actually straightforward.
Specifically, one has

∂S

∂τ
= ∇S · dx

dτ
= N · ∂H

∂N
. (1.16)

After solving the dominant order wave equation, A(x) is still unknown.
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1.1.3 Solution of the first order wave equation: amplitude transport equation

After solving the first order wave equation, it is found that A(x) is determined by the
amplitude transport equation

V (x) · ∇A(x) = [−γ1(x) + iδ1(x)− 1

2
∇ · V (x)]A(x) , (1.17)

where the vector field

V (x) =
∂H(x,∇S(x))

∂N
(1.18)

plays the role of the group velocity,

γ1 = e∗ · εa1e (1.19)

accounts for wave damping, and

δ1 = ie∗ · {H, e} − i

2

∑
i,j

D0,ij {e∗i , ej} (1.20)

accounts for a lower order shift in the phase, due to the effects of polarization transport.
In both Eqs. (1.19) and (1.20), all phase space functions are evaluated at N = ∇S(x), ei
are the components of e, and Poisson brackets are defined by

{f, g} =
∂f

∂Ni

∂g

∂xi
− ∂f

∂xi
∂g

∂Ni
. (1.21)

From (1.12) and (1.18) it follows that the amplitude is transported along the rays by the
amplitude transport equation (1.17), and (1.17) can be rewritten in the following form

∂A

∂τ
=

[
−γ1 + iδ1 −

1

2
∇ · V

]
A . (1.22)

Eqs. (1.16) and (1.22) form a system of ordinary differential equations that can be con-
veniently integrated together with Hamilton’s Eqs. (1.12) by standard numerical tech-
niques, like for example Runge-Kutta methods.

1.1.4 Geometrical optics estimate of the residual

The geometrical optics estimate of the residual can now be stated: given a (sufficiently
regular) classical solution S(x) and A(x) of Eqs. (1.11) and (1.17) in a bounded domain,
and setting a0(x) = A(x)e(x,∇S(x)), there exists a corrector a1(x), such that the geomet-
rical optics solution,

EGO,1(κ, x) = (a0(x) + κ−1a1(x))eiκS(x) , (1.23)

solves (1.1) with a residual∣∣κ−2∇×∇× EGO,1(κ, x)− ε(κ, x)EGO,1(κ, x)
∣∣ ≤ Cκ−2 , (1.24)

uniformly for x in the considered domain, C > 0 being a constant. The leading order
term in (1.1) is O(κ2), hence the whole equation has been multiplied by κ−2. The correc-
tor a1(x) however is never evaluated in practice.
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1.1.5 Wave energy flux

In addition to its computational advantages, geometrical optics allows us to extract rel-
evant physical information. Within the limits of applicability, i.e., when the one-to-one
correspondence between physical space and the Lagrangian manifold Λ makes possible
to recover solutions S(x) and A(x), Eq. (1.17) implies that the wave energy density is
transported along geometrical optics rays. More specifically, Eq. (1.17) can be recast in
the form (after some algebra and restoring dimensional quantities)

∇r · [vgW ] = −γW , (1.25)

where ∇r denotes the gradient in physical (dimensional) coordinates,

vg = − ∂H/∂k
∂H/∂ω

= c

∣∣∣∣∂(ωH)

∂ω

∣∣∣∣−1

V (1.26)

is the group velocity, and

W =

∣∣∣∣∂(ωH)

∂ω

∣∣∣∣ |A|216π
=

1

ω

[
e∗ · ∂(ω2ε0)

∂ω
e

]
|A|2

16π
(1.27)

is the total wave energy density, comprising the electric, magnetic, and sloshing energy
(related to the movement of the particles related to the wave transit). At last,

γ =
c

L

∣∣∣∣∂(ωH)

∂ω

∣∣∣∣−1

2γ1 =
2c

L

∣∣∣∣∂(ωH)

∂ω

∣∣∣∣−1

e∗ · εa1e (1.28)

is the energy absorption coefficient. Here, all derivatives with respect to the frequency
are taken at constant wave vector k = ωN/c, and phase-space functions are evaluated at
N = ∇S.

1.2 Introduction to complex geometrical optics

The construction of the rays solution of Eqs. (1.11) however relies on the one-to-one
correspondence between physical space and the manifold Λ, and this can be established
only locally. Away from the surface Σ0 geometrical optics rays can cross each other. Cor-
respondingly, Λ turns vertical and fold onto itself so that, over a given point x in the
physical space, multiple branches of Λ can exist. At such points, the value of S(x) and
A(x) is not uniquely defined. This points are called “Caustics”.
Caustics generated by light can be noticed in everyday life. A typical example is con-
stituted by the bright stripes visible on the pool floor, generated by the light that shines
through the waves on the water surface, being focused on the pool floor, but there are
more complicated patterns resulting from light reflection or refraction by common items
(cf. Fig. 1.1).

In order to correctly describe a focused Gaussian EC beam in the neighborhood of the
waist, we have to deal with a focal caustic. In this region the GO ray description of the
beam fails to describe it properly, because the rays obtained integrating (1.12) cross each
other (cf. Fig. 1.2, left panel) and the value of S(x) and A(x) is not uniquely defined. In
fact, if one tries to compute the amplitude integrating (1.22), the result diverges at the
focus. This behavior is a consequence of the fact that the finite energy of the beam in
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Figure 1.1: Caustic situation where light rays reflected by a metallic cylinder intersect showing a
pattern with a cardioid envelope.

Figure 1.2: Gaussian beam near the focus, two alternative ray description: (Left) GO rays; (Right)
CGO “extended rays”.
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this model is concentrated in a region of vanishing volume at the focus, with consequent
blow up of the energy density, proportional to |A|2. In reality, the plasma propagation
introduces a deformation of the beam with the result that the rays do not intersect per-
fectly, but in the GO framework the energy is still concentrated in a region narrower that
the real physical region in which it is seen experimentally, with consequent values of the
energy density higher than the real physical values.
This fact is not an inconsistency of the GO model, because at the focus the GO approx-
imation stops to apply. In fact, let us consider a beam propagating in vacuum in the z
direction. At the focus the beam is transversally constricted in a null spatial region, and
as a consequence the spread in the x and y components of the wave vector spectrum
tends to infinity. Therefore the wavelength spread tends to infinity too:

∆λ =

∣∣∣∣ ∂λ∂kx
∣∣∣∣∆kx +

∣∣∣∣ ∂λ∂ky
∣∣∣∣∆ky =

2π

|k|2
(kx∆kx + ky∆ky)→∞ . (1.29)

It follows that at the focus there are spectral components that violate the condition
λ/L� 1.

In order to overcome this drawback the complex geometrical optics (CGO) method can
be used. It is based on the introduction of a imaginary part in the eikonal function, to
take into account the finite transversal extension of the beam. The CGO electric field
form, substituted in the wave equation, gives at the dominant order an equation that
can be solved with the method of characteristics obtaining a ray description different
from GO in the focal region. The new rays, called “extended rays”, do not intersect at
the focus (cf. Fig. 1.2, right panel) and correctly describe the wave energy flow, as it will
be demonstrated in this chapter. The CGO wave electric field ansatz is:

ECGO(κ, x, t) = ECGO(κ, x)e−iωt , (1.30)

with

ECGO(κ, x) = a(κ, x)eiκψ(x) , (1.31)

and

ψ(x) = S(x) + iφ(x) , (1.32)

where, with a slight abuse of notation, it is customary to denote by S(x) both the GO
eikonal and the CGO real part of the complex eikonal, although those are two different
functions. The condition φ(x) ≥ 0 on the imaginary part of the eikonal is required by the
boundedness of the wave field for κ→ +∞.

This form of the electric field is suitable to describe Gaussian beams. Consider for sim-
plicity the electric field expression of a non-astigmatic Gaussian beam propagating in
free space in the z direction (cf. Appendix B for a review of the Gaussian beam E field
form and a description of the relation between the QO approximation and the paraxial
character of the beam):

E(x, y, z, t) = E(z)e−iφGouy(z)e
− x

2+y2

w(z)2 e
ik0

[
x2+y2

2R(z)

]
eik0z−iωt . (1.33)
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wherew(z) andR(z) represent the beam size and the curvature radius of the phase fronts
respectively, with z variation given by

w(z) = w0

√
1 +

(
z

zR

)2

, (1.34)

R(z) = z

[
1 +

(zR
z

)2
]
, (1.35)

and φGouy is the Gouy phase shift

φGouy = arctan
z

zR
, (1.36)

entirely due to diffraction effects, where

zR =
πw2

0

λ
(1.37)

is the Rayleigh length, that is the length at which the beam size is
√

2 times w0, the beam
size at the waist, and λ is the wavelength.
The Gouy phase indicates that as a Gaussian beam passes through a focus, it acquires
an additional phase shift of π, in addition to the usual k0z phase shift that would be ex-
pected from a plane wave.

Comparing (1.30) and (1.33) and including the Gouy term in the amplitude a(κ, x), the
real and imaginary part of the eikonal are given by

S(x, y, z) =

[
z +

x2 + y2

2R(z)

]
, (1.38)

φ(x, y, z) = κ−1x
2 + y2

w(z)2
,

where also the curvature radius R and the beam size w are normalized respect to L like
the spatial coordinates, that is w = wL/L and R = RL/L.

The customary procedure in CGO consists in substituting the electric field ansatz (1.30)
into the wave equation (1.1) and then separate the terms according to:

|∇φ| � |∇S| . (1.39)

This procedure can be justified and made precise taking into account the QO ordering

λ� wL � L (or equivalently 1� κw � κ) , (1.40)
λ

wL
∼ wL

L
∼ κ−1/2 .

Estimate (1.39) can be readily justified considering for simplicity the non-astigmatic
Gaussian beam expression (1.33) for which, neglecting the R and w dependence on the
z coordinate, the |∇φ|/|∇S| ratio takes the form

|∇φ|
|∇S|

' κ−1 2r

w2

[
1 +

r2

R2

]−1/2

, (1.41)
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where r =
√
x2 + y2. If we consider the space region around the axis of the beam for

which r is equal at most to w, we can obtain an upper boundary for the |∇φ|/|∇S| ratio
taking r ∼ w, obtaining

|∇φ|
|∇S|

∼ 1

κw
=

1

k0wL
' λ

wL
∼ κ−1/2 � 1 . (1.42)

As a consequence the results obtained with this method are valid only in a neighborhood
of the beam axis. Moreover, this heuristic approach fails to give a rigorous estimate of
the CGO residual of the wave equation.

In this PhD thesis a more rigorous way to take into account the paraxial character of
the beam is presented, based on some inequalities obtained by Pereverzev and Maslov,
exploited in order to give a rigorous estimate of the CGO residual of the wave equation
and to greatly simplify the derivation of the wave energy flux. The obtained results are
valid not only in a neighborhood of the beam axis, but in every compact region K in
which the electric field has to be reconstructed.

In the next section, the Maslov-Pereverzev inequalities derivation is summarized, prop-
erly reformulating them in order to apply to our framework.

1.3 Maslov-Pereverzev estimates

In this section the pivotal inequalities derived by Pereverzev and Maslov in order to take
into account the paraxial character of the beam are presented, giving only a sketch of the
derivation. For the details of the derivation, we refer to Appendix C.

The module of the electric field, in the CGO framework, is proportional to e−κφ, as fol-
lows from Eq. (1.31), that is

|ECGO(κ, x)| ∝ e−κφ(x) . (1.43)

This fact, coupled with the Imψ(x) = φ(x) ≥ 0 condition on the imaginary part of the
eikonal, results, in the κ → ∞ limit, in the collapse of the wave on the zero-level set of
φ(x), namely,

R = {x; φ(x) = 0} . (1.44)

We consider the simple case where this set is constituted by a curve given parametrically
by x = x̄(τ). This curve is named “reference ray” in the paraxial WKB theory.
Moreover, we make a further assumption on the form of φ(x), that is:

w ·D2φ
(
x̄(τ)

)
w > 0, (1.45)

where [D2φ(x)]ij = ∂2φ(x)/∂xi∂xj is the Hessian matrix of φ, for every vector w linearly
independent of the tangent vector et(τ), i.e., the Hessian matrix of the imaginary part of
the eikonal function is positive definite for vectors transversal to the reference rayR.
Using this last condition, it is possible to show that in a neighborhood U of R a vector
valued function ξ(x) exists such that φ(x) can be put in the form

φ(x) =
1

2
ξ(x)2 =

1

2
δijξ

i(x)ξj(x) . (1.46)
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From the fact that Eq. (1.43) holds in all space and Eq. (1.46) holds in a neighborhood
U of the reference ray, it is possible to demonstrate that in every compact region K in
which the electric field has to be reconstructed, the following inequalities are valid, if φ
is a sufficiently smooth function:

|(∇φ(x))αeiκψ(x)| ≤ Cακ−|α|/2 , (1.47)

where α is a three dimensional multiindex and Cα is a constant.

Roughly speaking, Eq. (1.47) implies that every time one multiplies the exponential
eiκψ(x) by any component of ∇φ, the order is reduced by a factor 1/

√
κ. As a conse-

quence, in the wave equation, where eiκψ(x) is a common factor, the order of every term
of the wave equation proportional to (∇φ)α, with |α| 6= 0, is reduced by a factor κ−|α|/2.

Eq. (1.47), obtained independently by Pereverzev and Maslov, constitutes the major tool
adopted in the energy flux derivation presented in this PhD thesis.

1.4 Complex geometrical optics equations and their solution

In this section, the Maslov-Pereverzev inequalities, reviewed in the previous section, are
exploited to estimate rigorously the dominant orders of the wave equation expansion in
the GO parameter κ, allowing to neglect terms in the κ−1 order equation that in the stan-
dard formulation of the complex eikonal theory lead to difficulties in the wave energy
flux derivation.

The κ0 and κ−1 order equations, thus obtained, are then solved and the GRAY code
equations are rigorously derived.

In the following sections only the results are given, together with a summary of the
main steps in their derivation. For a detailed presentation of the ordering of the wave
equation and its solution at the dominant orders, we refer to Appendix D.

1.4.1 Wave equation ordering

After substituting the electric field ansatz (1.30), Maxwell’s wave Eq. (1.1) takes the form

eiκψ
[
A(x,∇ψ)κ2 + B(x,∇ψ)κ

]
+O(1) = 0 , (1.48)

with

A(x,∇ψ) ≡ D0(x,∇ψ)a0(x) , (1.49)

B(x,∇ψ) ≡ D0(x,∇ψ)a1(x)− i
[∂D0

∂Ni
(x,∇ψ)

∂a0

∂xi
(x)

+
1

2

∂2ψ

∂xi∂xj
(x)

∂2D0

∂Ni∂Nj
(x,∇ψ)a0(x)− iε1(x)a0(x)

]
, (1.50)

where Eq. (1.7) has been accounted for and D0(x,∇ψ) is the extension of the dispersion
tensor D0, defined in Eq. (1.9), to complex values of the refractive index Ñ = N + iN

′
,

evaluated at Ñ = ∇ψ. The same argument applies to the derivatives of D0.
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Equation (1.48) can be simplified taking into account the paraxial character of the beam,
using the Pereverzev-Maslov estimates (1.47), reducing it to the form

eiκψ
[
A(x,∇ψ)κ2 + B(x,∇S)κ

]
+O(

√
κ) = 0 , (1.51)

where B(x, Ñ) is now evaluated at N = ∇S. The asymptotic expansion (1.51) of the
wave equation is solved within an O(

√
κ) residual, which corresponds to an error of

κ−3/2 as the leading terms in the wave equation are quadratic in κ.
It is important to note that the imaginary part of the complex phase enters theO(κ)-term
through the Hessian matrix ∂2ψ/∂xi∂xj only, fact that will simplify substantially the
derivation of the energy flux.

Since (1.51) has to be valid ∀κ sufficiently large, the independence of the powers κn
is now exploited to separate the coefficients of κ2 and κ that is, dividing Eq. (1.51) by κ2,
the wave equation at the dominant and first order in κ−1 becomes:

D0(x,∇ψ)a0(x) = ρ0(x,∇φ) , (1.52)

D0(x,∇S)a1(x)− i
[
∂D0

∂Ni
(x,∇S)

∂a0

∂xi
(x) (1.53)

+
1

2

∂2ψ

∂xi∂xj
∂2D0

∂Ni∂Nj
a0(x)− iε1(x)a0(x)

]
= ρ1(x,∇φ) ,

where ρ0 and ρ1 are allowed remainders in order to solve eq. (1.51) with the correct
O(
√
κ) residual. ρ0 and ρ1 must be at least cubic and linear in∇φ, respectively, so that at

least:

e−κφρ0(x,∇φ) = O(κ−3/2) , (1.54)

e−κφρ1(x,∇φ) = O(κ−1/2) .

Let us remark that this is not a perturbative argument in∇φ: In general, the remainders
are by no means small, except in a narrow strip around the reference ray, where the beam
is localized.

1.4.2 Solution of the wave equation at the dominant order: extended rays and rigor-
ous derivation of GRAY equations

Let us consider the dominant order of the wave equation (Eq. (1.52)).

Given a mode relative to the D0(x,∇S) eigenvalue H(x,∇S) (and relative eigenvector
e(x,∇S)), eq. (1.52) is solved by a complex eikonal ψ(x) and an amplitude a0(x) such
that

H̃(x,∇ψ) = σ0(x,∇φ) , (1.55)
a0(x) = A(x)ẽ(x,∇ψ) , (1.56)
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where H̃(x, Ñ) and ẽ(x, Ñ) are the extensions of the eigenvalue and eigenvector to com-
plex values Ñ = N + iN

′
of the refractive index, defined by

H̃(x, Ñ) = H(x,N) + i
∂H(x,N)

∂Nk
N
′

k −
1

2

∂2H(x,N)

∂Nk∂Nl
N
′

kN
′

l , (1.57)

ẽ(x, Ñ) = e(x,N) + i
∂e(x,N)

∂Nk
N
′

k −
1

2

∂2e(x,N)

∂Nk∂Nl
N
′

kN
′

l ,

where σ0(x,∇φ) is an arbitrary remainder, cubic in∇φ, andA(x) is an arbitrary complex
scalar amplitude.

Eq. (1.55) depends on the arbitrary cubic remainder σ0, and therefore it does not de-
termine uniquely the complex eikonal ψ. The natural choice σ0 = 0 (simplest possible
choice) leads to the following set of equations:

Re(H̃)(x,∇S) ≡ Hφ(x,∇S) = H(x,∇S)− 1

2

∂2H(x,∇S)

∂Nk∂Nl

∂φ

∂xk
∂φ

∂xl
= 0 , (1.58)

Im(H̃)(x,∇S) =
∂H(x,∇S)

∂Nk

∂φ

∂xk
= 0 . (1.59)

These equations, called “extended rays equations”, were derived by Mazzucato [5].
Hence, we have recovered the standard equations for extended rays, but without the
need for the condition |∇φ| � |∇S|. Eq. (1.58) can be solved with the method of charac-
teristics leading to the Hamiltonian equations

dx(τ)

dτ
=
∂Hφ(x,∇S)

∂N

∣∣∣∣
Hφ(x,∇S)=0

, (1.60)

dN(τ)

dτ
= −∂Hφ(x,∇S)

∂x

∣∣∣∣
Hφ(x,∇S)=0

. (1.61)

From (1.59) we see that φ is constant along the vector field

V (x) =
∂H

∂N
(x,∇S(x)) , (1.62)

while (1.60) implies that the extended rays have the tangent vector

Vφ(x) =
∂Hφ

∂N
(x,∇S(x)) = V (x)− 1

2

∂φ

∂xk
∂φ

∂xl
∂3H

∂N∂Nk∂Nl
(x,∇S) . (1.63)

Equations (1.58) and (1.59) can be summarized:

Hφ(x,∇S) = 0 , (1.64)
V (x) · ∇φ = 0 .

A special case of particular interest is that of Hamiltonians depending quadratically
on momenta. Since the third derivatives ∂3H/∂Ni∂Nj∂Nk vanish identically, one has
V (x) = Vφ(x) and φ is constant along extended rays. As an example, this is the case for
vacuum and isotropic spatially non-dispersive media. Eq. (1.60), (1.61) and (1.59) take
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the form

dx

dτ
= Vφ

∣∣∣∣
Hφ=0

, (1.65)

dN

dτ
= −∂Hφ

∂x

∣∣∣∣
Hφ=0

, (1.66)

V · ∇φ = 0 . (1.67)

In general, ∇φ is small near the zero-level set R where the field is localized and the two
vector fields are close one to the other, although differences can be present away fromR.

For an efficient numerical implementation of extended ray equations, the conservation
of φ along rays is a major simplification. Fortunately, properly choosing the remainder
σ0 in eq. (1.55) an alternative set of equation can be derived, in which the imaginary part
of the phase φ is conserved along Vφ, that is along the extended rays. Specifically, we can
set

σ0(x,∇φ) =
i

2

∂3H(x,∇S)

∂Ni∂Nj∂Nk

∂φ

∂xi
∂φ

∂xj
∂φ

∂xk
, (1.68)

which is cubic in ∇φ as required. Then, after the separation of the real and imaginary
parts, Eq. (1.55) takes the form

Hφ(x,∇S) = 0 , (1.69)
Vφ(x) · ∇φ = 0 . (1.70)

In this form, extended rays are still determined by the Hamiltonian Hφ but now φ is
exactly conserved by the extended ray flow. This provides a rigorous justification of the
algorithm used in GRAY, which actually solves system (1.69)-(1.70).

1.4.3 Solution of the first order wave equation: amplitude transport

Let us consider the κ−1 order wave equation (Eq. (1.53)).

It can be shown, after a lengthy but straightforward derivation (cf. Appendix D.1.3),
that Eq. (1.53) can be manipulated obtaining the CGO amplitude transport equation in
the form

V (x) · ∇A(x)− [−γ1(x) + i(δ1(x)− δGouy(x))− 1

2
∇ · V (x)]A(x) = σ1(x,∇φ) , (1.71)

where γ1 and δ1 are formally given by (1.19) and (1.20), respectively. Equation (1.71)
is formally equivalent to GO equation (1.17). In complex eikonal theory, however, an
additional phase shift is found, namely,

δGouy =
1

2

∂2H(x,∇S)

∂Nk∂Nl

∂2φ

∂xk∂xl
, (1.72)

which is the generalization of the classical Gouy shift (1.36) and it is entirely due to
diffraction effects. Again, an arbitrary remainder σ1(x,∇φ) is allowed, which must be at
least linear in ∇φ. Equation (1.71) describes the transport of the amplitude A that was
left unspecified in Eqs. (1.56).
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As for Eq. (1.55), the actual calculation of the amplitude depends on the choice of the
remainder σ1.
The natural choice σ1 = 0 gives the amplitude transport equation

V · ∇A = [−γ1 + i(δ1 − δGouy)− 1

2
∇ · V ]A , (1.73)

describing the transport of the amplitude along the field lines of the vector V (x). This
is formally the same as the standard geometrical optics transport Eq. (1.17), the only
difference coming from the function S. In this case, the amplitude is not transported
along extended rays.
The transport equation of the amplitude along the extended rays can be easily obtained
with the following choice of the remainder:

σ1 = (V − Vφ) · ∇A+
1

2
∇ · (V − Vφ)A . (1.74)

This is at least linear in∇φ as required, as one can see by direct calculation:

σ1 =
1

2

∂3H

∂Nk∂Nl∂Nn

∂φ

∂xl
∂φ

∂xn
∂A

∂xk︸ ︷︷ ︸
O(|∇φ|2)

+
1

4

∂

∂xk

[
∂2H

∂Nl∂Nn

]
∂φ

∂xl
∂φ

∂xn
A︸ ︷︷ ︸

O(|∇φ|2)

(1.75)

+
1

2

∂2H

∂Nl∂Nn

∂φ

∂xk∂xl
∂φ

∂xn
A︸ ︷︷ ︸

O(|∇φ|)

,

where the symmetry of ∂2H/∂Nl∂Nn was taken into account and it was recalled that
φ = φ(x), A = A(x) and H = H(x,∇S). With the choice (1.74) of the remainder, the
amplitude transport equation along the extended rays (along Vφ) is obtained:

Vφ · ∇A = [−γ1 + i(δ1 − δGouy)− 1

2
∇ · Vφ]A , (1.76)

that is the same as (1.73) with the substitution V → Vφ.

We shall see in section 1.5 that the energy fluxes obtained from Eqs. (1.73) and (1.76)
tend to the same limit κ→∞, but they are different for finite values of κ.

1.4.4 Complex geometrical optics estimate of the residual

It can now be formulated the main result of the foregoing asymptotic construction as an
estimate of the residual in the wave equation.

Once Eq. (1.71) has been solved for the amplitude A(x), it can be proven that the al-
gebraic equation for a1 has a solution. As usual, such solution is never computed in
practice, but its existence is important because it will be used in the following important
statement.

Let ψ = S + iφ be a regular solution of Eq. (1.55), and let a0 be given in (1.56), with
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A(x) a regular solution of the complex geometrical optics transport Eq. (1.71). Then, it is
possible to find a corrector a1 such that the complex eikonal wave

ECGO,1(κ, x) = (a0(x) + κ−1a1(x))eiκψ(x) (1.77)

solves the wave Eq. (1.1) for the electric field within an error,

|κ−2∇×∇× ECGO,1(κ, x)− ε(κ, x)ECGO,1(κ, x)| ≤ κ−3/2 . (1.78)

Eq. (1.78) is the explicit form of the big O notation implicit in Eq. (1.51) (divided by κ2).
This estimate relies on the existence of regular solutions for the complex eikonal ψ and
the amplitude A. On the other end, the coupling of the real phase S to the imaginary
part φ successfully removes caustic singularities, at least, for the case of focalized beams.
At last, the residual estimate (1.78) does not depend on the choice of the remainders σi,
i = 0, 1, in Eqs. (1.55) and (1.71).

1.5 Wave energy flux

In this section our principal goal is described, that is the derivation of the approximated
wave energy flux in the CGO framework. Moreover, it will be shown that the extended
rays computed in the GRAY code represent the energy flow within the CGO approxima-
tion.

The details of the derivation of the presented results for the standard CGO formula-
tion (σ0 = σ1 = 0) are available in Appedix D.2.

It can be shown that the time-averaged Poynting vector

〈S〉 =
c

8π
(E∗ ×B) , (1.79)

after eliminating B (Faraday Maxwell Eq.) and substituting the CGO electric filed ansatz
(1.31), becomes

〈S〉(κ, x) = vg(x)WCGO(x) +O(1/
√
κ) , (1.80)

with WCGO(x) formally given by

WCGO(x) = e−2κφ(x)WGO(x) , (1.81)

where vg is formally equivalent to (1.26) and the WGO expression is given in (1.27).
As a consequence, at the dominant order, the only difference between the CGO wave
energy flux and the GO one is a factor e−2κφ(x), that in CGO controls the localization of
the beam around the reference ray.

Let us consider for simplicity the natural formulation of CGO (σ0 = σ1 = 0).
The energy transport equation can be obtained multiplying Eq. (1.73) by A∗ and taking
the real part of the result, taking into account Eq. (1.67), resulting in

∇r · [vgWCGO] = −γWCGO , (1.82)

where the dimensional units have been restored, with an energy absorption coefficient
γ formally equivalent to GO expression (1.28). As was expected, the argument of the
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divergence at the LHS of Eq. (1.82) is the dominant order term of Eq. (1.80).
By noting that vg ∝ V , one can conclude that, with the natural choice of both remain-
ders σi, the wave energy density flow is approximated by the flow of the vector field
V = ∂H(x,∇S)/∂N , and this can deviate from the corresponding geometrical optics
quantity, due to diffraction effects. In general, the vector field V is not tangent to ex-
tended rays.

The mismatch between the approximated wave energy flow and the extended ray flow
is removed in the optimized form of extended ray Eqs. (1.69)-(1.70) complemented with
the transport Eq. (1.76). One can check that the above calculation holds true for the op-
timized formulation as well, yielding the energy transport equation in the form (1.82)
with the substitution vg → vgφ, with the group velocity vgφ given by

vgφ = c

∣∣∣∣∂(ωH)

∂ω

∣∣∣∣−1

Vφ , (1.83)

that is the same as vg with V substituted by Vφ. In this formulation the energy flow
is directed along the extended rays. This result shows that extended rays computed
according to (1.69) provide an approximation of the energy flow of the complex geo-
metrical optics solution. Let us remark that the energy continuity equation with either
(1.26) or (1.83) is proven by making use of the condition V · ∇φ = 0 and Vφ · ∇φ = 0,
respectively. Therefore, the form (1.26) of the group velocity is appropriate to the stan-
dard formulation (Eq. (1.58) and Eq. (1.59)), while the form (1.83) is appropriate to the
optimized formulation (Eq. (1.69) and Eq. (1.70)) and they cannot be exchanged.

In order to complete our analysis, we shall now show that, in both formulations, the
quantity Wvg converges to the same limit for κ→∞, as it should be, despite the vector
field vg is independent on κ. Then, we shall see that in both cases, Wvg approximates
the Poynting flux corresponding to the complex eikonal wave field.
The first claim is readily proven. In fact, in the κ → ∞ limit, the energy density is non
vanishing only on the reference ray, where V (x) and Vφ coincide, because φ(x) = 0.
More precisely, given a complex eikonal ψ = S + iφ, computed by either of the two for-
mulations, let us consider the vector fields V (x) and Vφ(x) computed via Eqs. (1.62) and
(1.63) with the same complex eikonal ψ. Then estimate (1.47) implies that

|(V (x)− Vφ(x))e−2κφ| ≤ C/κ , (1.84)

where C > 0 is a generic constant. In fact, from (1.63), it follows that

|(V − Vφ)e−2κφ| =

∣∣∣∣∣∣
∑
k,l

(
1

2

∂3

∂N∂Nk∂Nl

)(
∂φ

∂xk
e−κφ

)(
∂φ

∂xl
e−κφ

)∣∣∣∣∣∣ (1.85)

≤
∑
k,l

∣∣∣∣12 ∂3

∂N∂Nk∂Nl

∣∣∣∣︸ ︷︷ ︸
O(1)

∣∣∣∣ ∂φ∂xk e−κφ
∣∣∣∣︸ ︷︷ ︸

a

∣∣∣∣ ∂φ∂xl e−κφ
∣∣∣∣︸ ︷︷ ︸

b

.

where for clarity the summation notation is written explicitly, and the a,b terms can be
evaluated using the Pereverzev-Maslov estimate (a = O(κ−1/2), b = O(κ−1/2)), leading
to (1.84).
Now the second claim, that is the fact that in the two formulations Wvg approximates
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the Poynting flux, follows from a comparison between Eq. (1.80) and Eq. (1.84). In Eq.
(1.80) we notice that the order of the error term is larger than the order of the difference
(V − Vφ)e−2κφ. Therefore, Eq. (1.80) holds true for vg given by (1.83) as well.

Concluding, both formulations give an approximation of the wave energy flux of the
same order in the limit κ → ∞. The optimized formulation used in GRAY has the com-
putational advantage that extended rays represent the approximated energy flow.

These new results, that constitute the major goal of my PhD, fill the gap in literature
about the CGO derivation of the wave energy flux, showing as a corollary that the opti-
mized extended rays (GRAY rays) describe the energy flow within the CGO approxima-
tion.



CHAPTER 2

The wave energy flux in CGO: numerical results

In this section the theoretical results about the wave energy flux in complex geometrical
optics framework, reported in the previous chapter, are illustrated numerically for the
case of electron cyclotron beams propagation in tokamak plasmas by using the GRAY
code [6], which is based upon the complex eikonal theory. The results are compared to
those of the paraxial beam tracing code TORBEAM [7], which provides an independent
calculation of the energy flow.

Two numerical tests are reported in order to illustrate the theoretical results. The first
consists in comparing the fields V and Vφ, defined in Eqs. (1.62) and (1.63) respectively,
along the extended rays (Vφ rays), using the GRAY code, while the second consists in
comparing the extended rays, generated by GRAY code, with the wave energy flux rays
(V rays), generated by the paraxial WKB code TORBEAM. In section 1.5 it was pointed
out that the difference V − Vφ weighted with the exponential e−2κφ vanishes for κ→∞.
This formal result just means, for large but finite values of κ, that the two vector fields
are close to each other near the reference ray R where the field is localized. These two
numerical experiments allow us to estimate their difference for realistic values of physi-
cal parameters.

Henceforth for brevity we will turn to dimensional quantities without adding subscripts,
that is the notation will change respect to the previous chapter according to: Lx→ x and
∇/L→ ∇. Similarly the eikonal ψ = S + iφ will have the dimensions of a length, that is
the electric field will be in the form

E ∝ eik0ψ−iωt (2.1)

instead of
E ∝ eiκψ−iωt , (2.2)

where we recall that κ = k0L. As a consequence Lψ → ψ.

2.1 Comparison of extended rays and wave energy flux direction in
GRAY

The GRAY code solves the set of equations (1.65), (1.66), (1.70), with effective Hamilto-
nian Hφ given by the real part of the complex extension of

H(x,N) = N2 − n2(x,N‖) , (2.3)

21
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Figure 2.1: Angular deviation 1 − cos θ of extended rays, cf. Eq. (2.4), as computed by the GRAY
code. The left panel shows the initial positions of extended rays, projected on the y-z plane. The
gray level of each point encodes the maximum deviation observed along the corresponding ray,
and the approximate direction of the equilibrium magnetic field is indicated by an arrow. The
right panel shows the profile of the deviation for the “worst ray”, compared to both the real and
imaginary parts of the parallel refractive index, as well as to the two beam widths (defined as the
widths of the elliptical e−2-intensity contour in the beam cross-section). In this case, the equivalent
focal length in free space is d0 = 200 cm and the equivalent width at the waist in free space is
w0 = 2 cm. The poloidal and toroidal injection angles, defined on page xvii of the introduction,
are α = 0◦ and β = 0◦, respectively. The discontinuity in the parallel refractive index is due to the
way the equilibrium magnetic field has been extended outside the numerical grid, in the vacuum
region (we set b = eφ outside the grid, eφ being the unit vector in the toroidal direction). The
Cartesian components of the refractive index are actually continuous. The initial positions of rays
are given on a plane orthogonal to the injection direction, thus their projections on the x-y plane
depend on the angle β.

where n2(x,N‖) is obtained solving the Altar-Appleton-Hartree dispersion relation for
high-frequency waves in cold magnetized plasmas and N‖ is the real parallel refractive
index component in the direction of the local equilibrium magnetic field.
For details on the GRAY code we refer to Appendix E.

In this simulation the GRAY code was slightly modified in order to compute the val-
ues of the V (x) field at all the iterated points of the extended rays, and in particular the
angle θ between V (x), in the energy flux direction in the natural CGO formulation, and
Vφ(x), tangent to the extended rays, defined by

cos θ = v(x) · vφ(x) , (2.4)

where v(x) = V (x)/|V (x)| and vφ(x) = Vφ(x)/|Vφ(x)|.

Figures 2.1-2.4 show the results for four cases of non-astigmatic electron cyclotron beams,
launched from the equatorial plane in ITER considering a typical ITER scenario at the
end of the plasma current flat-top phase. Two types of beam are considered: the first
with a mild focalization similar to ITER operational parameters, i.e., with an equivalent
waist in free space w0 = 2 cm and an equivalent waist distance from the antenna d0 = 2
m; the second with a very high focalization (w0 = 0.5 cm, d0 = 1.5 m). Such a highly fo-
cused beam largely exceeds ITER parameters, but it has been considered as an example
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Figure 2.2: The same as in Fig. 2.1,but for zf = 200 cm, w0 = 2 cm, α = 0◦, and β = 20◦.
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Figure 2.3: The same as in Fig. 2.1,but for zf = 200 cm, w0 = 2 cm, α = 0◦, and β = 40◦.
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Figure 2.4: The same as in Fig. 2.1,but for zf = 150 cm, w0 = 0.5 cm, α = 0◦, and β = 0◦.
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Type of beam x(m) y(m) z(m) w0(m) d0(m) w(m) Rc(m)
ITER-like 9.3 0 0.7 0.02 2 0.05959 -2.25389
Super-focalised 9.3 0 0.7 0.005 1.5 0.168475 -1.50132

Table 2.1: Launching coordinates and beam parameters for the two types of beam used in the
simulations. x, y, z are the mirror coordinates in the laboratory frame, w0 is the vacuum-equivalent
waist size, d0 is the vacuum-equivalent waist distance from the mirror, w is the beam size at the
mirror and Rc is the curvature radius at the mirror.

in which the effects of diffraction are emphasized. The launching coordinates and the
beam parameters are summarized in table 2.1.

The results for three Toroidal injection angles are shown for the mild-focused beam
(β = 0◦, 20◦, 40◦, Figures 2.1 to 2.3), while only the β = 0◦ propagation is illustrated
for the super-focused beam (Figure 2.4). Both the mild-focused and the super-focused
beam are injected with null poloidal injection angle α. The poloidal and toroidal injec-
tion angles α and β are defined on page xvii of the introduction.
The left panels of Figures 2.1-2.4 show the initial positions of extended rays projected in
the y-z plane. For this test, a large number of rays are considered, so that the beam is
covered up to the e−4-level of its amplitude, a much larger beam section than usually
needed. Each point is represented in a gray scale, which encodes the maximum value
of the angular deviation 1 − cos θ, with θ given in (2.4), observed along the ray issued
from that point. The approximate direction of the local magnetic field in the low-field
side projected onto the y-z plane is indicated by an arrow (this is approximated by the
value of the numerical equilibrium magnetic field at the nearest grid node to the launch-
ing point, specifically, at major radius coordinate R = 850 cm and vertical coordinate
z = 70.3125 cm of the numerical grid). For each case of Figures 2.1-2.4, we have selected
the “worst ray”, i.e., the ray for which the maximum angular deviation is observed, and
the corresponding profile of 1 − cos θ is plotted (right panels) as a function of the arc-
length s along the central ray, which is used as a common parameter for all rays. The
profiles of both the real and imaginary parts of the parallel refractive index (for conve-
nience we have introduced the notation N

′
= ∇φ for the imaginary part of the refractive

index, so that N
′

‖ = b · ∇φ), as well as the profiles of the two beam widths are also re-
ported for a comparison. It is worth noting that, even if we considered beams that are
non-astigmatic at the antenna, the plasma anisotropy makes them astigmatic and also
introduces a slight rotation. The beam widths in particular are computed according to
the standard definition for Gaussian beams, for which the intensity contours in the beam
cross-section are ellipses. The widths are then defined as the length of the semi-axis of
the e−2-intensity contour.

The distribution of angular deviations (left panels of Figures 2.1-2.4) allows us to ap-
preciate geometric effects. In all considered cases, rays for which the angular deviation
attains its minimum are those with initial displacement with the beam axis in the di-
rection perpendicular to the local magnetic field direction. This can be understood by
inspection of the effective Hamiltonian Hφ (E.2). Let us consider the Appleton-Hartree
expression solution for the refractive index, that is

n2(x,N‖) = 1−X(x)2 −X(x)Y (x)2
1 +N2

‖ ±∆(x,N‖)

2(1−X(x)− Y (x)2)
, (2.5)
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with

∆(x,N‖) =

√
(1−N2

‖ )2 + 4N2
‖

1−X(x)

Y (x)2
, (2.6)

where X(x) = ωp(x)2/ω2 is the square of the ratio between the electron plasma fre-
quency and the wave frequency, Y (x) = Ωe(x)/ω is the ratio between the electron cy-
clotron frequency and the wave frequency. The +,− signs refer to the extraordinary
(XM) and ordinary (OM) mode, respectively.
From (E.2) it is worth noting that the difference Hφ − H depends only on the parallel
part of the refractive index, and so the difference between Vφ and V can be computed as

Vφ − V =
∂(Hφ −H)

∂N
=
∂(Hφ −H)

∂N‖
b =

[
1

2
(N
′

‖)
2 ∂

3n2

∂N3
‖

]
b , (2.7)

with
∂3n2

∂N3
‖

(x,N‖) = ±24N‖(1−N4
‖ )
X(x)(1−X(x))

Y (x)2∆(x,N‖)5
, (2.8)

where b is the magnetic field unit vector. In our simulations we considered ordinary
mode propagation, and therefore the plus sign has to be taken in (2.5). First of all we
notice that, since |Vφ−V | ∝ (N

′

‖)
2 and the imaginary part of the refractive index assumes

its maximum values around the waists, then the deviations take their peak values near
the waists too, as can be seen in the right panels of Figures 2.1-2.4 for the rays with
maximum deviation within each beam. This fact was expected, because near the waists
the diffraction effects are more important.
Let us now turn to the N‖ dependence. The asymptotic behavior of Vφ − V for N‖ → 0
is given by

Vφ − V ∼
[
fN‖(N

′

‖)
2
]
b , (2.9)

where f depends only on the space coordinates:

f(x) = 12
X(x)(1−X(x))

Y (x)2
. (2.10)

In the launching cases with null toroidal angle (Figures 2.1 and 2.4), the beams are in-
jected toward the axis of the torus, intersecting the magnetic field surfaces nearly per-
pendicularly (“perpendicular propagation”). Since the beams are paraxial, the parallel
refractive indexes of the rays are very small, so that the Vφ−V difference is in good agree-
ment with (2.9) (The rays with the larger 1−cos θ deviation satisfyN‖ ∈ [−0.02, 0.04] and
N‖ ∈ [−0.1, 0.15] for the mild-focalized and super-focalized beam respectively). As a
consequence, rays with a large N‖(N

′

‖)
2 product show larger deviations. Since the over-

all rotation of the beam can be neglected and the direction of the magnetic field does
not vary too much during the propagation, from the left panel of Figures 2.1 and 2.4 it
can be noticed that rays with initial displacement from the beam axis in the direction
of the magnetic field (indicated by a blue arrow) show larger deviations. It is a conse-
quence of the fact that during the focalization, apart from the region near the waists,
they have a non vanishing parallel component of the refractive index. The rays that ini-
tially have a displacement from the beam axis that lies in the plane perpendicular to the
local direction of the magnetic field have almost null parallel refractive index during the
propagation and show negligible deviations.
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Moreover, for perpendicular propagation, all the beam rays have a vanishing parallel
component of the refractive index in the region near the waists, and this fact is reflected
in a double-peak structure of the 1 − cos θ deviation profile, as can be seen in the right
panels of Figures 2.1 and 2.4. The local minimum is found near the waists, where N‖ is
zero.

The geometrical interpretation of the results is more difficult for propagation with non-
null toroidal launching angle (β 6= 0). While it continues to be true that rays with initial
displacement orthogonal to the magnetic field direction show negligible deviations, rays
with initial displacement with non vanishing component in the direction of B access a
region of the N‖ range distinct from the neighborhood of zero (the rays with the larger
1 − cos θ deviation satisfy N‖ ∈ [−0.55, 0.30] and N‖ ∈ [−0.95, 0.60] for the β = 20◦ and
β = 40◦ case respectively), in which the approximation (2.9) no longer applies. In those
N‖ parameter regions the difference Vφ − V is no more simply proportional to N‖, as
it can be seen in Fig. 2.5, where the behavior of g(N‖, X)|Y ≡ ∂3n2/∂N3

‖ (N‖, X)|Y (cf.
(2.7) and (2.8)) in the β = 40◦ case is shown for four values of Y extracted in the typical
range [0.5, 1.5], with X in the typical range [0.3, 0.6]. Nonetheless, the “worst rays” re-
main those initially displaced in the magnetic field direction, as it can be seen in the left
panels of Figures 2.2 and 2.3. Moreover, the double-peak in the 1−cos θ deviation profile
is removed, because the N‖ = 0 neighborhood is never reached.

In passing, let us mention that the slight discontinuity in the profiles of both the real and
imaginary parallel refractive indices is due to the way the equilibrium magnetic field has
been extended outside the numerical grid. There, the propagation happens in free space,
and the ray trajectories do not depend on the magnetic field. We have set b = eφ for the
calculation of parallel refractive indices outside the grid, where eφ is the unit vector in
the toroidal direction. This choice does not match continuously to the numerical equilib-
rium at the boundary of the grid. The Cartesian components of the refractive index are
actually continuous.

The overall conclusion from Figures 2.1-2.3 is that, under ITER-relevant conditions, the
angular deviation of the two vector fields V and Vφ in the region of space spanned by
the rays is small, i.e., of the order comparable to

√
εmach where εmach is the machine pre-

cision. Similar results are found for the highly focused beam of Figure 2.4, for which
diffraction effects are stronger.
The good agreement of velocity fields as computed by GRAY confirms the theoretical
estimate of the difference (1.84) for finite values of κ. This result alone however does not
allow us to draw any conclusion on the approximation of the energy flow. In fact, the
GRAY code uses the optimized form (1.69) of extended ray equations, hence the vector
V, computed here formally as V (x) = ∂H/∂N(x,∇S(x)), does not correspond exactly to
V shown in (1.26), because in this numerical experiment ∇S(x) is calculated using S(x)
obtained solving (1.69)-(1.70), while the energy flux (1.26) is written considering S(x)
obtained solving (1.64). Moreover, the integral lines of two vector fields might exhibit
differences even when the vector fields themselves are very similar.

In section 2.2 a more quantitative estimate of the difference between the approximations
of the wave energy flow will be supplied.
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Figure 2.5: g(N‖, X)|Y ≡ ∂3n2/∂N3
‖ (N‖, X)|Y graphs versus N‖ and X = ω2

p/ω
2, relative to four

values of Y = Ωe/ω.
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2.2 GRAY extended rays versus TORBEAM paraxial WKB energy flux

This simulation has been performed in order to have an account of the global differences
between the field lines of Vφ and V . The paraxial WKB code TORBEAM has been used
to compute the V rays. This is made possible by a recently added module, which solves
the set of ordinary differential equations

dx

dτ
= V (x) , (2.11)

where V (x) is defined by (1.62), with the real phase S being here computed in the parax-
ial WKB framework. In this framework, Eq. (1.55), Taylor-expanded around the refer-
ence ray, yields the matrix Riccati equation for the Hessian of the phase of the paraxial
WKB method. This shows that the paraxial WKB solution for both the real part S(x)
and the imaginary part φ(x) of the complex eikonal is a good approximation of the cor-
responding quantities computed directly via the standard extended ray Eqs. (1.64). This
argument is referred to as Gaussian limit of complex geometrical optics. In this limit, the
paraxial WKB calculation of flow of V yields a good approximation of the energy flow
obtained in the standard extended ray theory from the group velocity (1.26). We refer to
the TORBEAM solution of Eq. (2.11) as TORBEAM rays, for simplicity.

Figure 2.6 (top) shows a qualitative comparison between the extended rays computed
by GRAY and TORBEAM, with initial conditions given by the initial position of GRAY
rays. The case considered is the same as that of Figure 2.1, with focusing typical for ITER
parameters. The beams are described by bundles of rays up to the e−2-level of the ampli-
tude only, and the projection of the outer rays of both GRAY and TORBEAM beams into
the x-z poloidal plane (left) and into the y-z plane (right) are shown. The common initial
positions of rays are marked by dots. GRAY and TORBEAM rays propagate following
each other with high precision up to the waist of the beam, where the diffraction effects
become no more negligible. From here they start to slightly deviate from each other, but
even after a long propagation length however (in 2.6 (top-left) figure the x-axis scale is
very different from that of the z-axis), the cumulative effects of such differences are much
smaller than the beam width. In Figure 2.6 (bottom) this comparison has been repeated
for the highly focused case of Figure 2.4. In this case the beam width at the beginning
and the end of the propagation is one order of magnitude larger that in the previous case
and the waist is much smaller due to the strong focusing. Therefore the diffraction ef-
fects are stronger and the deviations between the GRAY and TORBEAM rays are larger.
Nonetheless, the deviations of the rays are still smaller than the beam width.

The distances between GRAY rays and TORBEAM rays can be computed as follows.
For each GRAY-TORBEAM couple of corresponding rays (that is rays with the same ini-
tial conditions), the distance is computed as the maximum distance between points on
the rays at the same value of the archlength s, that is

d = max
s

[dist(xGRAY(s), xTORBEAM(s))] . (2.12)

Fig. 2.7 shows the distance between points at the same archlength s versus s, for the
two GRAY-TORBEAM couples of rays with largest deviations. The left picture refers to
the mildly focused beam, while the right picture to the highly focused beam. It is worth
noting that in the highly focused case the diffraction effects are important in a narrow
neighborhood of the waists, so that the distance (2.12) grows nearly linearly once the
rays are moved away from the waists. In order to estimate the maximum deviation, for
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Figure 2.6: Visualization of extended rays for the cases d0 = 2 m, w0 = 2 cm (top) and d0 = 1.5 m,
w0 = 0.5 cm (bottom), with α = β = 0 of Figure 2.1 and 2.4 respectively. The projection of rays on
the x-z plane (left panels) and on the y-z plane (right panels) shows the differences between GRAY
rays (dashed, red, curves) and TORBEAM rays (solid, blue, curves). The central ray is also shown
(thick, black, curve) at the center of the beam.
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Figure 2.7: The distance between points at the same archlength s versus s is shown for the two
GRAY-TORBEAM couples of rays with largest deviations. The left plot refers to the mildly focused
beam, while the right plot to the highly focused beam.

the mildly focused beam we chose s = 380 cm and we found that the distance in the
worst case is 0.86 cm, while for the highly focused beam we chose s = 390 cm with a
relative distance in the worst case of 6.91 cm. These distances can be compared with
the final beam sizes (' 6 cm for the mildly focused beam and ' 30 cm for the highly fo-
cused beam), giving as a result that the deviations are 14, 4% and 23% of the beam width,
respectively, but this results are only an overestimate of the percentage deviations, be-
cause the three-dimensional positions along the GRAY-TORBEAM couples of rays used
to compute the maximum distances do not lie on the same beam cross section.
Moreover, from the right panels of Fig. 2.6 one can see that the final transversal sections
of the GRAY-TORBEAM couples of beams almost completely overlap, and as a conse-
quence, if the ray description of the beams is thick enough (that is if there are enough
rays in order to describe the beam densely), the GRAY and the TORBEAM bundles of
rays are equivalent to describe the beam absorption, because all the quantities related to
the absorption are integrated over the cross-section of the beam.

The results of sections 2.1 and 2.2 give an estimate of the difference between the two
independent approximations of the wave energy flux obtained from the standard and
optimized formulations of extended ray theory, cf. section 1.5, and show that they are
equivalent for practical purposes of beam absorption description in ITER-like condi-
tions.



Part II

Beam absorption





CHAPTER 3

Finite beam width effects on the EC resonant interaction

For a plane wave propagating in a homogeneous infinite plasma with uniform back-
ground magnetic field, the EC resonance condition is given by

ω − k‖v‖ − nΩe/γ = 0 , (3.1)

as it was pointed out in the introduction (see section 0.2). The resonance condition is
thus represented by a Dirac delta function of argument ω−k‖v‖−nΩe/γ. Using the well
known relation

δ
(
f(x)

)
=
δ(x− x0)

|f ′(x0)|
, (3.2)

where x0 is the only zero of the f function, and recalling that δ(x) = δ(−x), the resonance
Dirac delta can be rewritten in the form

δ(ω − k‖v‖ − nΩe/γ) =
1

|v‖|
δ(k‖ − k‖,res) , (3.3)

with

k‖,res =
1

v‖

[
ω − nΩe

γ

]
. (3.4)

that is, the resonance may be represented by a Dirac delta function of argument (k‖ −
k‖,res). This last form can be interpreted in the following way: at a fixed point (x, y, z)
in space, an electron with velocity (vx, vy, vz) interacts with a plane wave with a fixed
frequency ω if the wave vector component in the B field direction is equal to (3.4).

However, in a tokamak the plasma is finite, non-homogeneous and immersed in a non-
uniform magnetic field. Moreover, the wave injected in ECRH&CD applications are
finite width Gaussian beams. All these factors play a role in the resonance condition (cf.
[8]). Nevertheless, a full rigorous description of these effects on the resonance condition
can not be found in literature, and it is beyond the scope of this thesis work. Therefore, in
most of the GO based simulation codes, the beam absorption is computed using the sim-
ple “plane wave” model. In particular, the GRAY code describes the absorption along
each extended ray using the “plane wave” model, without taking into account these cor-
rections to the resonance condition. In order to fill this gap a modified version of the
GRAY code was developed in the past that takes into account the corrections of the res-
onance condition due to the finite beam width. Starting from this work, a revision and
refinement has been done in order to include also the effects due to the non-uniformity
of the equilibrium magnetic field.

33
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In section 3.1 the resonance broadening due to the finite beam width effect is introduced.
In section 3.2 the absorption model currently used in the GRAY code is summarized and
a introduction of the broadening in the resonance condition is argued.

It will be shown that the broadened resonance function depends on the width of the N‖
spectrum, where N = kc/ω is the refractive index. As a consequence the beam transver-
sal spectrum has to be known in order to describe the resonance broadening. In section
3.3 a local Gaussian model for the evaluation of the transversal spectrum is presented,
while in section 3.3.1 it is validated numerically with a modified version of the GRAY
code in ITER-like conditions. In section 3.4 the details on the computation of the N‖
spectrum width are presented.

Finally, in section 3.5 some numerical results obtained with the modified version of
the GRAY code that contains the corrections due to the broadened resonance model are
shown, giving an estimate of the entity of such corrections.

3.1 EC resonance broadening due to finite beam width

We will focus on the effect due to the finite width of the beams. Let us consider for
simplicity a non-astigmatic Gaussian beam propagating in vacuum in the z direction of
a cartesian system. At a fixed value z̄ of the z coordinate, the transversal behavior of the
E field is given by

E(x, y; z̄) ∝ eiA(z̄)(x2+y2) , (3.5)

with the complex valued function A(z) defined by

A(z) =
k0

2R(z)
+ i

1

w(z)2
, (3.6)

where w(z) and R(z), defined in (1.34) and (1.35) respectively, represent the beam size
and the curvature radius along the propagation. The Fourier Transform of (3.5), that is
the “transversal spectrum”, takes the form

Ẽ(kx, ky; z̄) ∝ eiÃ(z̄)(k2x+k2y) , (3.7)

with Ã = −1/4A. It follows that the modulus of the spectrum has a 2D Gaussian shape

|Ẽ| ∝ e−(k2x+k2y)/(∆k)2 , (3.8)

with spectrum width ∆k = ∆kx = ∆ky given by

∆k = 1/

√
Im(Ã) = 2/w0 , (3.9)

where w0 is the waist size. As a consequence, the spectrum has a finite width, and this is
larger for focalized beams, like those used for ECCD applications.

As it will be shown in the next section a Gaussian beam, injected from vacuum in a
tokamak plasma configuration with ITER parameters, retains during plasma propaga-
tion a local Gaussian behavior, that is, it can be locally approximated by a vacuum astig-
matic Gaussian beam with suitable parameters. The Gaussian beam finite transversal
spectrum width results in a finite width in the k‖ spectrum, that assumes the form

Ẽ(k‖; z̄) ∝ e(k‖−k‖c(z̄))2/(∆k‖(z̄))2 , (3.10)
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where k‖c is the central value of the spectrum and ∆k‖ is the spectrum width.
The finite width of the k‖ spectrum leads to a broadening of the resonance condition (3.1).
The Dirac delta resonance function δ(k‖ − k‖,res) is replaced by a broadened function

∆(k‖c − k‖,res; ∆k‖) (3.11)

of the central “parallel spectrum” value k‖c, parametrically dependent on the spectrum
width ∆k‖. In momentum space (u‖, u⊥), the resonance curves (cf. Fig. 3) become 2D
regions. A rigorous description of the broadening of the resonance condition due to the
finite size of the beam can not be found in literature.

3.2 Resonance broadening model

3.2.1 GRAY EC absorption model and resonance broadening

Let us consider an extended ray computed by the GRAY code, integrating the ray equa-
tions (E.3). The EC power P evolves along the ray trajectory obeying to the equation

dP

ds
= −αP , (3.12)

that is a consequence of the optimized form (vg → vgφ) of the energy transport equation
(1.82), major result of the first part of this thesis, according to Appendix E.6. In Eq. (3.12),
α = γ/|vgφ| is the absorption coefficient, with γ being the CGO analogous of (1.28) and
vgφ being the optimized version of the group velocity defined in (1.83), and s is the arc
length along the ray. From Eq. (1.28) it follows that

α ∝ e∗ · εa1e , (3.13)

where e is the κ0 order polarization vector of the wave electric field and εa1 is the (κ order)
anti-Hermitian part of the dielectric tensor.

While the extended rays are computed using the cold plasma non-relativistic dispersion
relation for high-frequency waves propagating in a magnetized plasma, the absorption
has to be computed taking into account the temperature effects. As a consequence the
absorption coefficient has to be estimated using the relativistic dielectric tensor instead
of the cold plasma dispersion tensor considered in chapter 1.

It can be shown that integrals of the Landau type appear in the relativistic dielectric
tensor elements:

I =

∫ ∞
−∞

dγ
f(γ)

γ − γres + ic1ω
′ , (3.14)

where f is a function of the relativistic gamma factor, c1 is a positive real constant,
γres = N‖n‖ + nΩe/ω and ω

′
is a vanishing positive imaginary part introduced in the

wave angular frequency in order to describe the absorption. The solution of this type of
integrals in the limit ω

′ → 0 is well known and is obtained operating the formal substi-
tution

lim
c1ω
′→0+

1

γ − γres + ic1ω
′ = P 1

γ − γres
− iπδ(γ − γres) , (3.15)

that is the Plemelj identity, where P indicate the principle part integral.
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The second term in the RHS of (3.15), proportional to the resonance function δ(γ − γres),
is related to the anti-Hermitian part εa1 of the dielectric tensor. In order to take into ac-
count the finite beam size effect on the resonance, this function has to be substituted by

∆(γ − γc,res,∆N‖) =

√
2

π

1

|∆N‖u‖|
e−2(γ−γc,res)2/(∆N2

‖u
2
‖) , (3.16)

where
γc,res = Nc‖u‖ − nΩ/ω . (3.17)

This fact can be easily understood considering that the resonance function δ(N‖−N‖,res),
where N‖,res = (γ − nΩe/ω)/u‖, has to be weighted by the spectral distribution of the
squared modulus of the electric field, that is, it has to be substituted by

∆(Nc‖ −N‖,res; ∆N‖) ∝
∫

dN‖e
−2(N‖−Nc‖)2/∆N2

‖ δ(N‖ −N‖,res) = e−2(Nc‖−N‖,res)2/∆N2
‖ .

(3.18)
Noting that (γ − γc,res)

2 = u2
‖(Nc‖ − N‖,res)

2 and introducing the correct Gaussian nor-
malization 1/

√
2πσGaussian, with σGaussian = |∆N‖u‖|/2, Eq. (3.16) is justified.

3.2.2 Wave global description ad ray description: estimation of the broadened reso-
nance function parameters

The central value γc,res and the width ∆N‖u‖/2 of the broadened resonance function
(3.16) depend on the central value Nc‖ and the width ∆N‖ of (3.18) respectively, and
have to be estimated to compute the beam absorption.

In the GRAY code the absorption is computed along each extended ray. Each ray is
weighted to transfer a power proportional to the fraction of the beam cross section area
around it, weighted by the Gaussian distribution of the field. In this manner, the effect
of a finite width Gaussian beam is partially taken into account. Therefore, the global
description of the model presented in the previous section has to be matched with the
ray description of the beam.

The GRAY code has the special property of being able to reconstruct the phase fronts
along the beam propagation. This result is achieved integrating the extended rays equa-
tions (1.65), (1.66), (1.70) using the real part S of the eikonal function as integration vari-
able, that is integrating the system:

dx

dS
=

∂Hφ/∂N

N · ∂Hφ/∂N

∣∣∣∣
Hφ=0

, (3.19)

dN

dS
= − ∂Hφ/∂x

N · ∂Hφ/∂N

∣∣∣∣
Hφ=0

,

∂Hφ

∂N
· ∇φ = 0 ,

that follows from dividing the Hamiltonian equations (1.65), (1.66) by (1.16) (with H →
Hφ). Integrating Eqs. (3.19) with suitable initial conditions on an initial phase front, at
each step of integration the iterated points lie on a phase front.
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This description ceases to be applicable in the regions where the denominator Vφ · N
vanishes, such as cut-offs. In ITER conditions the density is well below the cut-off value
for EC waves around all the plasma volume, so that this method of integration of the
ray equations is always exploitable. Moreover, in low density plasmas, the refraction is
low and the beam retains the Gaussianity along the propagation, so that at each step of
integration in S the beam can be well approximated by a Gaussian beam also inside the
plasma.

The spectrum is a global property of the Gaussian beam that locally approximates the
actual beam along the plasma propagation, so that across the wave front, at a fixed value
of S, the spectrum is the same. Therefore, the transversal spectrum is computed at each
integration step. Moreover, the ray description allows us to include the resonance mod-
ification effect due to the non-uniformity of the equilibrium magnetic field, as it will be
shown below.

On the other hand, the matching between the global and the ray description leaves a
certain degree of arbitrariness in the estimate of Nc‖ and ∆N‖. The choices made will be
shown in the following, specifying the details of the model.

Global description

Let us focus first on the Nc‖ estimate. Consider a fixed point along the beam propaga-
tion and a local coordinate system with the z axis pointed in the direction of propagation.
The beam refractive index has a fixed z component Nz and a (Nx, Ny) spectrum. If θ is
the angle between a refractive index spectral component (Nx, Ny, Nz) and the z axis, one

has: Nz = |N | cos θ,Nr = |N | sin θ, where |N | =
√
N2
x +N2

y +N2
z and Nr =

√
N2
x +N2

y .
The paraxial character of the wave can be taken into account as follows. Since only the
spectrum components with small θ are weighted with a non-vanishing coefficient, one
has Nz ' |N |(1 − θ2/2), Nr ' |N |θ, with the result, for small θ: Nz/N − r ' 1/θ, that
is Nr at the dominant order can be neglected compared to Nz . As a consequence, Nc‖
can be estimated locally by bzNz with a good approximation, where b is the equilibrium
magnetic field unit vector.

In the ∆N‖ estimation there is a certain arbitrariness in the choice of the plane on which
the spectrum has to be computed. A good choice would be the plane locally tangent
to the magnetic surface passing for the selected point, so that the spectral width in the
B field direction can be obtained directly. We made a different choice, better suited for
numerical implementation. First, the local transversal spectrum is computed, that is the
spectrum is computed on the plane perpendicular to the local direction of propagation.
If we consider the local reference frame adopted in the Nc‖ estimate, it is the xy plane.
As a second step, the spectrum is integrated in the direction perpendicular to the pro-
jection of the equilibrium magnetic field on the xy plane, and the width of the obtained
1D spectrum is computed. Finally, the result is multiplied by | sinϑ|, where theta is the
angle betweenB and the direction of propagation, in order to be consistent with the case
of parallel (to B) propagation, in which the result ∆N‖ = 0 is expected.
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Ray description and effects due to the non-uniformity of the equilibrium magnetic
field

At each step of integration of the ray equations in the S parameter, the reference ray
wave vector N11 = k11/k0 modulus estimates the Nz of the previous section (the (x, y, z)
a coordinate system is chosen as in Appendix E.2). Consider an iterate point xjk of the
jk-th ray on the selected phase front (where here xjk indicates with a slightly mislead-
ing notation the vector (x, y, z)ij instead of its first component, with j and k are the radial
and angular indices related to the distribution of the points on the initial phase front, cf.
Appendix E.3). TheNc‖ is computed asNc‖ ' b(xjk) ·Nz instead ofNc‖ ' b(x11) ·Nz (x11

being the reference ray point on the selected phase front), in order to take into account
the non-uniformity of the equilibrium magnetic field across the beam phase front.

Turning to the ∆N‖ estimation, it is done as follows. If a phase front relative to a fixed
value of the real part of the eikonal S is considered, the transversal spectrum of the elec-
tric field is computed on the plane perpendicular to k11 passing through x11, that is the
xy plane (this task is described in the following section 3.3). Then, considering the iter-
ate xjk of the jk-th ray on the selected phase front and restricting to the xy plane, the E
field spectrum is integrated in the direction perpendicular to the projection of the local
equilibrium magnetic field B(xjk) on that plane, in order to take into account the B non-
uniformity effects. Then the width of the obtained 1D spectrum is computed and finally
the result is multiplied by the sine of the angle between B(xjk) and k11 as was explained
in the previous section. the details of ∆N‖ estimation are given in section 3.4.

3.3 Computation of the beam transversal spectrum

The GRAY code describes the propagation of general astigmatic Gaussian beams (cf.
Appendix E and [11]). Considering firstly the propagation in free space and restrict-
ing to a plane perpendicular to the direction of propagation, the constant-phase and the
constant-amplitude contours are ellipses with non coinciding principal axes, instead of
the concentric circumferences of the non-astigmatic beams. The phase fronts are elliptic
paraboloids.

During the plasma propagation the refraction enhances the astigmatism and the anisotropy
of the medium decouples the wave vector direction from the group velocity direction.
Moreover, due to the plasma anisotropy, the beam axis is no more a straight line. Never-
theless, even during plasma propagation, if the density is not so high that the anisotropic
refraction effect is too prominent, a beam retains its Gaussianity at least locally along the
propagation with a good approximation. The phase fronts maintain the parabolic shape,
with axis in the local direction of the wave vector. This fact has been investigated in
ITER-like conditions with the GRAY code, obtaining the phase fronts integrating the ray
equations using the real part S of the eikonal as integration variable and plotting the
phase fronts points in a local frame with axis either in the direction of the reference ray
wave vector or in the group velocity direction. An example is shown in fig. 3.1, relative
to a simulation of the propagation of a beam in a ITER standard H-mode scenario at the
end of the plasma current flat-top. As one can see, the front shows an elliptic paraboloid
shape in the system with z in the k11 direction. Nevertheless, the curvature radii of the
paraboloid are large compared to the beam width, so that the front is almost flat, as it
can be seen in the representation of the front in the system with z in the vg direction.
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Figure 3.1: Phase front in the local (x, y, z) reference frame, at the fixed value S = 160 cm of the
real part of the eikonal. The beam is launched from the UL with poloidal and toroidal launching
angles α = 40◦, β = 20◦, with free space equivalent waists w0x = w0y = 2.9 cm, equivalent waist
distances d0x = d0y = 1 m, and it is described by a bundle of rays up to 1/e of the central E field
value: (Left) z axis in k11 direction; (Right) z axis in vg11 direction; k11 and vg11 being the reference
ray’s wave vector and group velocity respectively.

The conservation of the beam Gaussianity along plasma propagation suggests that the
spectrum can be computed locally as the analytic spectrum of a Gaussian beam with
parameters that vary along the propagation. A routine devoted to this computation was
recently added to the GRAY code.

In order to test the deviation of the real spectrum from the Gaussian spectrum com-
puted with this routine and to allow the calculation of the transversal spectrum in ex-
treme cases in which the loss of Gaussianity is no more negligible (for example high
density propagation close to cut-off density), we developed an additional routine, able
to compute the spectrum numerically, without imposing the Gaussian ansatz on the E
field.

As it will be shown in section 3.3.2, we recovered that in ITER conditions the spectrum
is well approximated by a Gaussian spectrum and as a consequence the first routine can
be used to compute it with a very good approximation.

3.3.1 Computation of the spectrum assuming a local Gaussian model

As it was anticipated, in low density plasmas it can be shown that a Gaussian beam re-
tains locally its Gaussianity during plasma propagation. The GRAY code routine that
computes the beam transversal spectrum approximates the beam locally by a general
astigmatic Gaussian beam. At each iterated phase front (at each fixed value of the inte-
gration variable S), the local Gaussian beam parameters are computed and the transver-
sal spectrum is obtained analytically.

The analytical derivation of the transversal spectrum of a general astigmatic Gaussian
beam is reviewed, and then the local determination of the Gaussian beam parameters is
described.
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Analytic spectrum computation for a general astigmatic Gaussian beam

The electric field of a general astigmatic beam propagating in the z direction of a carte-
sian system can be put in the form

E(x, y, z, t) = E0(z)e−iφGouy(z)ee
iM(z):rr

eik0z−iωt , (3.20)

where r = (x, y), M is the matrix

M =

(
A C/2
C/2 B

)
, (3.21)

with complex elements, where both M , A, B, C depend on z̄, and the M : rr notation
means

M : rr =

2∑
i,j=1

riMijrj . (3.22)

The non-astigmatic beam case is recovered if C = 0 and A = B, so that Mij = Aδij .
The transversal behavior at a fixed value z̄ of the z coordinate is given by

E(x, y; z̄) ∝ eiM(z̄):rr , (3.23)

similar to (3.5).
In parallel with Eq. (3.7), the Fourier transform of (3.23) takes the form

Ẽ(kx, ky; z̄) ∝ eiM̃(z̄):krkr , (3.24)

where kr = (kx, ky) and M̃ = (−1/4)M−1, where M−1 indicate the inverse matrix.

Determination of the local Gaussian beam parameters

The elements of the matrix M (cf. (3.21)) are obtained at each step of integration taking
into account the eikonal ansatz

E(x, y, z, t) ∝ eik0[S(x,y,z)+iφ(x,y,z)]−iωt (3.25)

of the wave electric field. From Eqs. (3.25), (3.20) and (3.21) it follows that

S = z + (ARx
2 +BRy

2 + CRxy) , (3.26)

k0φ = Awx
2 +Bwy

2 + Cwxy . (3.27)

where
(A,B,C) = k0(AR, BR, CR) + i(Aw, Bw, Cw) . (3.28)

with (AR, BR, CR) and (Aw, Bw, Cw) real vectors. The subscripts R,w indicate that (AR,
BR, CR) are related to the local radii of curvature Rξ, Rη of the phase front and (Aw, Bw,
Cw) are related to the local beam sizes wξ, wη (cf. Appendix E.2).

The key point in the (AR, BR, CR) coefficients determination is the fact that the real part
of the eikonal function S is constant by definition on a phase surface so that, disregarding
the slow z dependence of the coefficients, from Eq. (3.26) it follows that they can be ob-
tained by a least square fit of the phase front surface. The (Aw, Bw, Cw) coefficients can be
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estimated in a similar way. The value of the imaginary part of the eikonal function φ de-
pends on the (x, y) coordinates, but it is constant along each extended ray (cf. Eq. (1.70)),
so that on a given phase front the φ value of each ray is known from the initial condi-
tions. Each φ value, known on the phase front, is transferred on the plane z = 0 by a first
order Taylor expansion. As a consequence, the function k0φ(x, y) = Awx

2+Bwy
2+Cwxy

plays the role that the function z(x, y) = ARx
2 + BRy

2 + CRxy had in the (AR, BR, CR)
estimate, and the coefficients can be estimated by a least square fit.

Let us show this procedure in detail. The phase front is composed of the points at a
given step of integration in the S parameter, with local coordinates {(xi, yi, zi) , i =
1, . . . , Ntot}, where Ntot = (Nr−1)Nθ + 1 is the total number of rays, with Nr rays in the
radial direction and Nθ rays in the angular direction (cf. Appendix E.3).

The (AR, BR, CR) least square fit is performed minimizing the function

f(AR, BR, CR) =

Ntot∑
i=1

[
zi(x, y) +

(
ARx

2
i +BRy

2
i + CRxiyi

)]2
. (3.29)

The result is given by the following expressions of the coefficients AR, BR, CR:

AR =
(
−〈x2z〉〈xy3〉2 + 〈x2y2〉〈xy3〉〈xyz〉 − 〈x2y2〉2〈y2z〉− (3.30)

+〈x3y〉〈xy3〉〈y2z〉+ 〈x2y2〉〈x2z〉〈y4〉 − 〈x3y〉〈xyz〉〈y4〉
)
/∆

BR =
(
−〈x2y2〉2〈x2z〉+ 〈x2z〉〈x3y〉〈xy3〉+ 〈x2y2〉〈x3y〉〈xyz〉−

−〈x4〉〈xy3〉〈xyz〉 − 〈x3y〉2〈y2z〉+ 〈x2y2〉〈x4〉〈y2z〉
)
/∆

CR =
(
+〈x2y2〉〈x2z〉〈xy3〉 − 〈x2y2〉2〈xyz〉+ 〈x2y2〉〈x3y〉〈y2z〉−

−〈x4〉〈xy3〉〈y2z〉 − 〈x2z〉〈x3y〉〈y4〉+ 〈x4〉〈xyz〉〈y4〉
)
/∆

where

∆ = 〈x2y2〉3 − 2〈x2y2〉〈x3y〉〈xy3〉+ 〈x4〉〈xy3〉2+ (3.31)

+ 〈x3y〉2〈y4〉 − 〈x2y2〉〈x4〉〈y4〉

and

〈xαyβzγ〉 =
1

N

N∑
i=1

xαi y
β
i z

γ
i . (3.32)

The (Aw, Bw, Cw) fit is performed in the same way, by simply replacing zi(x, y) →
k0φi(x, y) where, for every iterate point (x, y, z)i on the phase front, φi(x, y) is the value
of the imaginary part of the eikonal evaluated at the projection of the point on the (x, y)
plane, obtained with a Taylor expansion at the first order, that is

φi(x, y) ≡ φi(x, y, 0) = φi(x, y, z)−
∂φi(x, y, z)

∂z
z . (3.33)

Finally, the (A,B,C) coefficients of matrix (3.21) are reconstructed using Eq. (3.28).

All the procedure described in this section is based on the assumption that the beam
is locally well approximated by a general astigmatic Gaussian beam. This assumption is
verified numerically in ITER-like conditions in the following section.
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3.3.2 Numerical computation of the transversal spectrum via 2D Fast Fourier Trans-
form

In order to test the validity of the Gaussian model we developed a routine devoted to
the direct numerical computation of the transversal spectrum. At each iterate of the ex-
tended rays equation integration in the S variable, constituted by Ntot = (Nr − 1)Nθ + 1
points xjk (j = 1, . . . , Nr; k = 1, . . . , Nθ), lying on the same phase front, the electric field
eikonal is reconstructed on the plane perpendicular to the reference ray wave vector
passing through the reference ray point x11. Then, the 2D Fourier transform of the field
is computed on that plane by numerical means, obtaining a result that does not rely on
the local Gaussian field assumption.

A summary of the routine is reported, while afterwards the numerical results obtained
with this routine are compared with those obtained with the local Gaussian beam ap-
proximation, showing that in ITER-like conditions the difference between the Gaussian
approximated spectrum and the actual spectrum is negligible.

Firstly, the eikonal values are obtained on the plane xy of the local system (cf. page
38) by first order Taylor expansions from the values on the phase front, that is ψ(x, y) =
S(x, y) + iφ(x, y), with real and imaginary parts given by

Si(x, y) ≡ Si(x, y, 0) = Si(x, y, z)−Nzi(x, y, z)z , (3.34)

φi(x, y) ≡ φi(x, y, 0) = φi(x, y, z)−
∂φi(x, y, z)

∂z
z ,

with i = 1, . . . , Ntot. The electric field has a transversal behavior given by

E(x, y) ∝ eik0[S(x,y)+iφ(x,y)] , (3.35)

This function is evaluated on a regular grid and its Fourier transform is computed by
a 2D Fast Fourier Transform (FFT) routine. For a detailed description of the routine we
refer to Appendix F.1.

Comparison between Gaussian approximated spectrum and actual spectrum: numer-
ical results

Using a modified version of the GRAY code that includes a new routine able to com-
pute the E field spectra both with the local Gaussian model and by direct numerical FFT,
the difference between the two results is computed at each step of integration of the
ray equations as follows. Firstly the outputs of the two methods of computation, eval-
uated on the regular grid on which the 2D FFT output is given, are normalized to the
central value. Let us call ẼGauss,i and ẼFFT,i these normalized values respectively, with
i = 1, . . . , Ngrid, where Ngrid is the total number of grid points. Then the difference is
evaluated by the mean squared error D, computed taking into account only the central
Ñ points of the grid, defined by

D =

√√√√ 1

Ñ

Ñ∑
i=1

[
|ẼGauss,i| − |ẼFFT,i|

]2
. (3.36)

For a more detailed description of this procedure we refer to Appendix F.1.
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A standard ITER scenario at the end of the flat-top is chosen and for simplicity a beam
that is non-astigmatic at the launch. The launch conditions and beam parameters are
as follows. An equatorial injection is considered with the antenna placed at xlab =
930 cm, ylab = 0 cm, zlab = 70 cm. A mildly-focused beam is chosen with a free
space equivalent waist size w0 = 3 cm and waist equivalent distance from the antenna
d0 = 2 m. The beam is modeled with (Nr − 1)Nθ + 1 rays, with Nr = 15 and Nθ = 16,
up to e−1.96 of the central value of E field module (ρmax = 1.4, with ρmax defined in Ap-
pendix E.3). In the simulation we described the beam with a broadened bundle of rays
with external rays beyond the 1/e surface to improve the resolution of the spectrum near
the waist.

In order to test the variation of the spectrum with plasma density, we analyzed two cases,
relative to two different values of the plasma central density: the standard value of this
ITER scenario (n0 = 1×1020m−3) and the double value n0 = 2×1020m−3. Both these val-
ues of the density are allowed from the point of view of wave propagation because they
are well below the cutoff density, that in this case is given by ncutoff ∼ 3.6×1020m−3 (the
beam frequency is fEC = 170 GHz and the plasma frequency fp = ωp/2π is expressed in
function of the density by fp[Hz] ∼ 8980

√
ne[cm−3]) .

In the mean squared error D computation we put Ñ = 121. In Fig. 3.2 and Fig. 3.3 the
projection of the trajectory of the beam rays in the poloidal plane and the mean squared
error D versus the reference ray’s arc length s11 are shown with plasma central density
given by n0 = 1×1020m−3 and n0 = 2×1020m−3 respectively. It is worth noting that the
error D starts to be non vanishing at the plasma boundary (s11 ∼ 1 m) and grows nearly
following the beam width profile. The D values are greater in the double density case
but they are still very low. In Fig. 3.4 the transversal spectra of the beam in three different
regions along the propagation (near the antenna, near the waist and near the resonance)
are shown for the two density cases, comparing the Gaussian model computation with
the numerical computation via 2D Fast Fourier Transform. In Fig. 3.5 the contour plots
of the spectra in the resonance region are shown in the two density cases. From these
two plots it is easy to see that in the double density case the beam is more rotated and
stretched than in the normal density case, as it was expected, and the difference between
the Gaussian spectrum and the numerical spectrum is more evident, in agreement with
Fig. 3.2 and Fig. 3.3, but still small. Similar behavior was observed varying the launch
positions (USM and LSM of Upper Launcher). The agreement between these two ways
of calculating the spectrum ceases to be satisfactory increasing the central density up to
values close to cutoff density.

It is possible to conclude that in ITER conditions the beam spectrum remains approx-
imately Gaussian during the propagation and in particular in the absorption region. As
a consequence it is possible to compute it with the Gaussian model instead that via 2D
Fast Fourier Transform, with a very good approximation.



44 3.3 Computation of the beam transversal spectrum

-6

-4

-2

 0

 2

 4

 6

 4  5  6  7  8  9  10

z
 (

m
)

R (m)

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0  0.5  1  1.5  2  2.5  3  3.5  4
 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

m
ea

n 
sq

ua
re

d 
er

ro
r D

on
e 

of
 th

e 
tw

o 
be

am
 s

iz
es

(c
m

)

arc length s11 along the reference ray(m)

deviation D
one of the two beam sizes

mean%squared%error%D%
beam%size%

be
am

%s
iz
e%
(c
m
)%

m
ea
n%
sq
ua
re
d%
er
ro
r%
D
%

Reference%ray%arc%length%s11%reference	  ray	  arc	  length	  s11	  (m)	  

Figure 3.2: Equatorial launch with central electron density n0 = 1× 1020m−3. (Left) Beam trajec-
tory in the poloidal plane (up to 1/e of the central E value, with 13x16 rays); (Right) Mean squared
error D and one of the two beam widths versus the arc length s11 of the reference ray.
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Figure 3.3: The same as Fig. 3.2 with double central electron density n0 = 2× 1020m−3.
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Near the antenna:
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(a) n0 = 1× 1020m−3, s11 ∼ 0.2m.
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(b) n0 = 2× 1020m−3, s11 ∼ 0.2m.

Near the waist:
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(c) n0 = 1× 1020m−3, s11 ∼ 2.2m.
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(d) n0 = 2× 1020m−3, s11 ∼ 2.1m.

Near the electron cyclotron resonance:
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Figure 3.4: Comparison between the beam transversal spectrum obtained with the Gaussian
model and the one obtained numerically by using 2D FFT. (Left) Electron density n0 = 1 ×
1020m−3. (Right) Electron density n0 = 2× 1020m−3.
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Figure 3.5: Comparison between the beam transversal spectrum obtained with the Gaussian fit
and the one obtained numerically by using 2D fft. (Left) Electron density n0 = 1 × 1020m−3.
(Right) Electron density n0 = 2× 1020m−3. Contour plots of the final steps.
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3.4 Computation of the parallel refractive index spectrum width

The transversal spectrum, computed according to the local Gaussian approximation, can
be used to compute the parallel refractive index spectrum width ∆N‖.

We proceed as follows. First, the equilibrium magnetic field unit vector b ≡ B/|B|
is projected on the plane (x, y) of the local system (x, y, z) introduced at page 38, by
b̄ = b − cos θẑ, where θ is the angle between B and the z axis and ẑ demotes the z axis
unit vector. Then, a new coordinate system (ζ‖, ζ⊥) is introduced in the (x, y) plane, with
axes in the directions of b̄ and ẑ × b̄, rotated with respect to the (x, y) axes by the angle ι.
It follows that the two couples of coordinates r = (x, y) and r

′
= (ζ‖, ζ⊥) are related by

r = Rr
′
, where the rotation matrix R has components

R =

(
cos ι − sin ι
sin ι cos ι

)
=

(
bx −by
by bx

)
. (3.37)

Now the transversal spectrum (3.24) can be expressed in the rotated system as follows:

Ẽ(k‖, k⊥; z̄) ∝ eiM̃
′
(z̄):k

r
′ k
r
′ , (3.38)

with M̃
′

= tRM̃R and kr′ = (k‖, k⊥), where tR denotes the transpose of the matrix R.
This fact is easily shown considering Eq. (3.23). It can be expressed in the r

′
= (ζ‖, ζ⊥)

system as follows:

E ∝ eir·Mr = eir
′
·(tRMR)r

′

, (3.39)

Therefore, the spectrum is given by

Ẽ ∝ eikr′ ·M̃
′
k
r
′ , (3.40)

with
M̃
′

= −1

4
(tRMR)−1 = −1

4
R−1M−1(tR)−1 . (3.41)

Equation (3.38) follows from Eq. (3.41), recalling that R is a rotation matrix, so that it is
orthogonal (R−1 = tR), and M̃ = −(1/4)M−1.

Disregarding the phase, Eq. (3.38) implies

|Ẽ| ∝ e−kr′ ·[Im(M̃
′
)]k

r
′ , (3.42)

where Im(M̃
′
) indicates the matrix that has components given by the imaginary part of

M̃
′

components. This expression has to be integrated in the k⊥ direction, in order to
estimate the width ∆k‖ of the obtained 1D spectrum, that is

|Ẽ(k‖; z̄)| =
∫ ∞
−∞
|Ẽ(k‖, k⊥; z̄)| dk⊥ . (3.43)

The integral can be readily done taking into account the following result. Given a real
2 × 2 matrix T and a coordinate system (x, y) with position vector r = (x, y), it can be
shown that ∫ ∞

−∞
e−r·Trdy =

√
π

Tyy
e
− det(T )

Tyy
x2

. (3.44)
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As a consequence, implying the z̄ dependence, one has

|Ẽ(k‖)| ∝ e−γk
2
‖ , (3.45)

with

γ =
det[Im(M̃

′
)]

[Im(M̃ ′)]⊥⊥
. (3.46)

The ∆k‖ width is computed by (∆k‖)
2 = 1/γ.

Moreover, the result is multiplied by the absolute value of the sine of the angle θ that
the equilibrium magnetic field B makes with the z direction, so that actually ∆k‖ is de-
fined by | sin θ|/√γ. Finally, the result is divided by ko = ω/c in order to obtain the
refractive index parallel spectrum width ∆N‖ = ∆k‖/k0.

3.5 Power absorption profile’s broadening due to finite beam width:
numerical results

The broadening model described so far has been implemented in a new version of the
GRAY code, able to compute the power absorption profiles with the broadened reso-
nance effects. In this section some examples of power absorption profiles obtained with
this new version of the GRAY code in reference plasma scenarios for the ITER project are
presented, showing the entity of the corrections introduced including the finite beam
width effects in the absorption computation.

In Figures 3.6 and 3.7 a scansion in the poloidal launching angle α is presented, with
fixed toroidal launching angle β = 20◦ (reference value of the Upper Launcher design,
cf. chapter 4), for beams injected from the Upper Steering Mirror or the Lower Steering
Mirror of the ITER Upper Launcher respectively. An ITER standard H-mode scenario
at the end of the plasma current flat top is considered. This scenario, the same used to
perform the simulations of section 3.3.2, is referred to as “Scenario 1” and it will be an-
alyzed in detail in chapter 4. In the figures the power density dP/dV deposited by the
wave is represented in function of the toroidal flux coordinate ρ. The absorption profiles
represented by red dotted lines are obtained taking into account the finite beam width
effects on the resonance condition in the wave absorption computation, while the black
solid lines are relative to the “plane wave” absorption model.

In Fig. 3.8 the x-axis zoom of four profiles extracted from the LSM α-scan is presented,
with peak and width parameters summarized in Table 3.1. From that table it can be seen
that the absolute value of the percentage differences between the peaks of the profiles
obtained using the normal and broadened absorption model respectively are at most of
the order of 10 percent, and the same holds for the percentage differences between the
power density profiles widths ∆ρ, computed according to (E.30).

In Fig. 3.9 the same analysis is presented considering four beams launched aiming at the
q = 3/2 and q = 2 from the LSM and USM. In this simulations we used the same ITER
scenario and beam parameters as in Ramponi et al. ([12] and [13]), summarized in Table
3.2. A ITER H-mode old scenario denoted “scenario 2” at the end of the plasma cur-
rent flat-top is considered (it is a different version of the actual reference “scenario 2”),
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Figure 3.6: Upper Steering Mirror scanning in the poloidal launching angle α, at fixed toroidal
launching angle β = 20◦. Five power density profiles are presented in function of the toroidal flux
coordinate ρ, for α ranging from α = 30◦ to α = 33◦, with spacing ∆α = 5◦. The black solid lines
represent the profiles obtained without the effects due to the finite beam width, while the dashed
red lines show the results of the broadened EC resonance model. The green and red vertical dated
lines represent the q = 3/2 and q = 2 rational surfaces respectively.

δ resonance ∆ resonance percentage differences

mirror
α

[deg]
(dP/dV )max

[MW/m3]
∆ρ

(dP/dV )max

[MW/m3]
∆ρ

(dP/dV )max

[MW/m3]
∆ρ

LSM 35◦ 0.0735 0.0117 0.0676 0.0130 8 % 11.1 %
LSM 40◦ 0.0665 0.0134 0.0613 0.0149 7.8 % 11.1 %
LSM 45◦ 0.0587 0.0160 0.0552 0.0174 6 % 8.7 %
LSM 50◦ 0.0502 0.0200 0.0490 0.0211 2.4 % 5.5 %

Table 3.1: Power density profiles parameters relative to the cases of Fig. 3.8. The peak values
(dP/dV )max and the widths ∆ρ, computed according to (E.30), are shown for the four injection
cases, for the profiles obtained without the finite beam width effects (δ resonance) and for the
broadened ones (∆ resonance). Moreover, the absolute value of the percentage differences be-
tween the peaks and widths of the δ and ∆ model are shown.
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Figure 3.7: The same as Fig. 3.6 for the Lower Steering Mirror.
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Figure 3.8: x axis zoom for a selection of four poloidal launching angles from the LSM scan.
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mirror x [cm] y [cm] z [cm] w0 [cm] d0 [cm] β [deg] α(q = 3/2)
[deg]

α(q = 2)
[deg]

USM 684.6 0 439.3 2.9 213.4 20 57.2 48.2
LSM 690 0 418 2.1 162 18 52 41.4

Table 3.2: Launch parameters and beam parameters relative to the simulations of propagation in
the old version of ITER reference “scenario 2”, for four beams launched from the USM and LSM of
the Upper Launcher aiming to the q = 3/2 and q = 2 rational surfaces. Here, for brevity, (x, y, z)
stand for the laboratory frame coordinates (xlab, ylab, zlab).

δ resonance ∆ resonance percentage differences

mirror q
(dP/dV )max

[MW/m3]
∆ρ

(dP/dV )max

[MW/m3]
∆ρ

(dP/dV )max

[MW/m3]
∆ρ

LSM 3/2 0.0568 0.0168 0.0556 0.0176 2.1 % 4.8 %
LSM 2 0.0778 0.0108 0.0718 0.0119 7.7 % 10.2 %
USM 3/2 0.0427 0.0229 0.0388 0.0256 9.1 % 11.8 %
USM 2 0.0446 0.0190 0.0417 0.0206 6.5 % 8.4 %

Table 3.3: The same as Table 3.1, for the cases of Fig. 3.9.

and the USM and LSM positions are relative to the 2010 status of the Upper Launcher
design. The profiles parameters are summarized in Table 3.3. The percentage differ-
ences between the peaks and the widths of the profiles computed with normal and the
broadened absorption models are in agreement with those obtained in the previous sim-
ulations, being at most of the 10 percent.

Beam parameters along the propagation

For completeness, in Fig. 3.10 the principal beam parameters related to the transver-
sal spectrum computation and the ∆k‖ are represented in function of the arc length s11

along the reference ray, in order to appreciate the actual values of the spectrum widths
that result in the differences between the δ resonance model and the broadened model.
Differently from previous works (cf. for example Farina-Ramponi [14]) the spectrum
widths in the plasma are computed taking into account the effects of the plasma prop-
agation, as it was shown in the previous sections, instead of approximating them with
the free-space value 2/w0, w0 being the equivalent free-space waist size of the beam. As
it was expected, the plasma introduces an astigmatism and the free-space curvature ra-
dius and beam size split into two branches in the plasma, relative to the directions of
the constant phase and constant amplitude ellipses axes respectively. As a consequence
also the transversal spectrum width, equal to 2/w0 in free-space, splits into two branches
after the plasma entrance.

A spike is observed in one of the two inverse curvature radius branches, in correspon-
dence of the vacuum-plasma interface (the reference ray plasma entrance is represented
by a red vertical line). Therefore a spike is present also in the spectrum widths, because



Finite beam width effects on the EC resonant interaction 53

 0

 0.02

 0.04

 0.06

 0.08

 0.74  0.75  0.76  0.77  0.78  0.79

dP
/d

V
[M

W
/m

3 ]

lp

(a) USM, q = 3/2.

 0

 0.02

 0.04

 0.06

 0.08

 0.84  0.85  0.86  0.87  0.88  0.89  0.9

dP
/d

V
[M

W
/m

3 ]

lp

(b) USM, q = 2.

 0

 0.02

 0.04

 0.06

 0.08

 0.74  0.75  0.76  0.77  0.78  0.79

dP
/d

V
[M

W
/m

3 ]

lp

(c) LSM, q = 3/2.

 0

 0.02

 0.04

 0.06

 0.08

 0.84  0.85  0.86  0.87  0.88  0.89  0.9

dP
/d

V
[M

W
/m

3 ]

lp

(d) LSM, q = 2.

Figure 3.9: The same as Fig. 3.8, for the simulations performed considering the old version of ITER
reference “scenario 2”, with launch parameters and beam parameters contained in Table 3.2. The
power density profiles are represented in function of the poloidal flux coordinate ρp instead of the
toroidal flux coordinate ρ.
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Figure 3.10: Principal beam parameters involved in the resonance broadening. The beam widths
(a) and the inverse phase front curvature radii (b) as a function of the reference ray arc length
s11. The spectrum widths in the directions defined by the principal axes of the elliptic contours of
(3.24) in the (kx, ky) plane (c) and the parallel width ∆k‖|, as defined in section 3.4 (d). The red
vertical lines indicate the intersection between the reference ray and the vacuum-plasma interface.

they are related to the curvature radii by the components of the M matrix (3.21). The
origin of the peak in the inverse curvature radius graph is a consequence of the fact that
at the plasma boundary the beam front is partly inside and partly outside the plasma. As
a consequence the inner part of the front is refracted while the outer part in free space
continues propagating in the same direction. Therefore the phase front is distorted in
the direction perpendicular to the intersection of the front with the plasma boundary.
However, once the beam has propagated for ∆s11 ∼ 30 cm into the plasma, the inverse
curvature radius recovers normal values, that are not affected by the border effect. As
a consequence, this feature does not affect the absorption computation, because the ab-
sorption is computed far inside the plasma, where these border effects do not play any
role.

In order to explain this behavior, a simulation has been made considering the simpler
geometry of an equatorial injection. Three beams have been considered, aiming at the
same point x̄ = (824 cm, 0 cm, 70 cm) on the intersection between the plasma boundary
and the equatorial plane at a fixed toroidal angle. The three beams are launched from
the same distance δ = 57.7 cm with different launching angles. “beam 1” is injected
with null poloidal and toroidal launching angles, “beam 2”, with launch point displaced
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beam x [cm] y [cm] z [cm] α [deg] β [deg] w0ξ [cm] w0η [cm] d0 [cm]
1 881.7 0 70 0 0 2.1 2 101.7
2 874 0 98.8 30 0 2.1 2 101.7
3 874 -28.8 70 0 30 2.1 2 101.7

Table 3.4: The launching parameters and the beam parameters of the three simulations performed
in order to show the meaning of the peak in the inverse phase front curvature radii graph of Fig.
3.10 (b) are displayed.

vertically, is injected with α = 30◦, β = 0◦, while “beam 3”, with launch point displaced
horizontally, is injected with α = 0◦, β = 30◦. The launching parameters and the beams
parameters are summarized in Table 3.4.

From the results it appears that for “beam 1” the spike is negligible compared to those
of “beam 2” and “beam 3”, because it enters the plasma perpendicularly. Focusing on
the latter beams, the spike occurs in the horizontal direction for “beam 3”, which crosses
the vacuum-plasma interface from the side, while it occurs in the orthogonal direction
for “beam 2” coming from above. In both cases the spikes occur in the directions per-
pendicular to the intersection between the beam phase front and the vacuum-plasma
surface, indicating that the effect is well explained by the fact that at this interface the
curvature in that direction has an anomaly related to the fact that the front is partly in-
side and partly outside the plasma, with different index of refractions in the two regions.

Let us now show these results in detail, looking at the data. In Fig. 3.11 (a) the inverse
curvature radii are represented in function of the reference ray arc length for the “beam
1”. As in Fig. 3.10, the red vertical line represents the reference ray plasma entrance.
In Fig. 3.11 (b), (c), (d) a zoom around the vacuum-plasma is shown for the “beam 1”,
“beam 2” and “beam 3” respectively, with the superposed ϕR graph, where ϕR repre-
sents the angle between the ξ axis and the local x axis (that lies in the horizontal plane
by definition) in the plane perpendicular to the reference ray wave vector (cf. Appendix
E.2). As it can be seen in Figures 3.11 (b), (c), (d), this angle is small in both the three
cases, and therefore the ξ axis lies approximately in the horizontal plane. By inspecting
Figures 3.11 (c) and (d) it follows that for “beam 2” the peak is related to the η axis, while
for “beam 3” it is related to the ξ axis, lying in the horizontal plane. Since the ξ and η
axes are perpendicular to each other, it follows that the phase front deformation is in the
horizontal direction for the “beam 3” , injected with non vanishing toroidal angle, while
it is in the direction perpendicular to the local x axis in the plane perpendicular to k11

for the “beam 2”, injected with non vanishing poloidal angle.

Conclusions

The obtained results are in qualitative agreement with those shown in the work by
Farina-Ramponi [14], obtained with a version of the same code (GRAY), implemented
with a different EC resonance broadening model, that does not take into account the
plasma propagation effects on the transversal spectrum widths (the free space value
2/w0 is fixed along the plasma propagation), and a different way to include the B non-
uniformity. Moreover, the results are also in qualitative agreement with those obtained
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Figure 3.11: In (a) the inverse phase front curvature radii behavior is shown versus s11 for the
“beam 1”, along all the propagation. The red vertical dotted line indicates the intersection between
the reference ray and the vacuum-plasma interface. In (b) a x-axis zoom of (a) is presented, with
the additional ϕR graph. The blue line is relative to the inverse curvature radius in ξ direction,
while the red one is relative to the η direction. (c) and (d) are the analogous of (b) for “beam 2”
and “beam 3” respectively.
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by Bertelli et al. in [15], using a different Quasi-Optical code [16], that is based on a
model that generalizes the parabolic wave equation for wave propagating in isotropic
media (Fock and Leontovic) to anisotropic media with spatial dispersion, describing
both the beam propagation and absorption using the weakly relativistic dispersion ten-
sor.

From the above analysis it follows that the finite beam width effects on the power den-
sity profiles are small (< 10%) but not negligible. Nevertheless, they do not affect sub-
stantially the results obtained without taking them into account. As a consequence, the
simulations relative to the ITER Upper Launcher design presented in the following chap-
ter have been made with the current reference version of the GRAY code, that uses the
simpler δ resonance model to compute the beam absorption.

Finally, as future work, in order to have a precise estimate of the finite beam width
effects on the ECCD process, these effects should be included also in the current drive
computation.





CHAPTER 4

The ITER Upper Launcher Design: ECRH&CD
simulations with the GRAY code

In the introduction (cf. section 0.3) it was pointed out that the ITER Upper Launcher de-
sign is still in progress. The work presented in this chapter is setted into this framework,
and has been done under contract with Fusion For Energy (F4E), that is the European
Union’s Joint Undertaking for ITER and the Development of Fusion Energy. This or-
ganization, created by a decision of the Council of the European Union, is primarily
responsible for providing Europe’s contribution to the ITER project.

The UL will be devoted primarily to the control of NTM instabilities, therefore the total
injected EC power and the launching angles have to be chosen in order to guarantee the
modes stabilization around the q = 3/2 and q = 2 rational surfaces. In the present design
of the UL system four beams of 1 MW each are reflected on either the USM or the LSM
in each of the four launchers, and as a consequence 16 MW can be launched by either the
USM or the LSM globally. In reality there are losses in the waveguides and in the optical
system, so that the final available value is lowered to PEC,max = 13.3 MW.
Each beam will be injected with almost fixed toroidal angle β (the actual reference value
is β = 20◦), varying the poloidal angle α with a steering mechanism. The optimal β an-
gle has to be chosen in order to maximize the NTM stabilization efficiency, ensuring that
the 13.3 MW of available EC power are sufficient to control the NTM modes evolution
around the rational surfaces. This task, that presupposes a detailed analysis of the con-
sidered ITER scenario, has to be done taking into account the constraints on the toroidal
and poloidal launching angles imposed by the geometry of the mirror steering system.

Part of the thesis work has been devoted to this task. Here it is presented the analysis
of the new ITER H-mode plasma discharge scenario denoted “Scenario 1” (considered
as the reference ITER baseline scenario), with the determination of the minimum total
EC power required to stabilize the NTM modes at the rational surfaces in function of the
angle β at a fixed time and, once fixed β, along the discharge. This work has been done
by means of numerical simulations performed with the GRAY beam-tracing code.

The minimum EC power required to stabilize the NTM modes can be computed using
two stabilization criteria (cf. Zohm et al. [17] and Sauter et al. [18]). As an introduction,
a review is presented of the derivation of these criteria, according to Poli et al. [19] .

4.1 Criteria for NTM stabilization

In order to obtain a stabilization criterion for a NTM mode, it is needed to know the
time evolution equation for the width of the associated magnetic island. Let us consider
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the full width w of a magnetic island whose evolution is due to a Neoclassic Tearing
Mode and undergoing a ECCD process. Its time variation is governed by the modified
Rutherford equation, written here in a simplified form (cf. Poli et al. [19]):

τR
ρ2
s|∆

′ |
dw

dt
∼ −1 +

wsat
w
− 5.05

wCDwsat
w2

JCD
Jbs

ηCD , (4.1)

where the saturated island width wsat expresses the balance between the neoclassical
(bootstrap) drive and the stabilization due to the equilibrium current profile in the ab-
sence of ECCD, wCD is the width of the ECCD current profile (defined as a0×∇ρ, where
a0 is the mid plane minor radius and ∇ρ the full ECCD current density profile width
at 1/e), ηCD is the current drive stabilization efficiency, JCD is the peak of the ECCD
deposited current density, Jbs is the bootstrap current density at the surface of interest,
ρs is the minor radius of the resonant surface, τR is the resistive time and ∆

′
is the “tear-

ing stability index”. The first term on the right-hand side is the stabilizing contribution
from the equilibrium current density at large island size, the second term is the driving
term from the perturbed bootstrap current, while the third term is the stabilizing ECCD
contribution. The right hand side can be made negative for all w, requiring that no roots
of the equation

w2 − wsat + 5.05wCDwsat
JCD
Jbs

ηCD = 0 (4.2)

exist (unconditional stability), i.e. that its discriminant is negative. This results in the
following criterion:

wCD
wsat

JCD
Jbs

ηCD >
1

20
. (4.3)

This is a sufficient (but not necessary) condition of stability. It is useful to distinguish
between the two limiting cases in which the ECCD profile is broader or narrower than
the typical island width wmarg at which stabilization occurs.

Let us consider the case wCD > wmarg . In this limit the stabilization efficiency for mod-
ulated injection can be approximated by

ηCD ' 0.15w/wCD (4.4)

and instead of using (4.3) it is more practical to exploit the fact that in ITER it can be
assumed that wmarg is much smaller than wsat, so that the first term on the right hand
side of Eq. (4.1) can be dropped near marginal stability. Substituting (4.4) into (4.1),
dropping the −1 term and forcing the right hand side to be negative, it follows that
approximately ηNTM > 4/3. Including the reduction of the neoclassical drive due to
geodesic-curvature effects, it follows the criterion

ηNTM ≡
JCD
Jbs

> 1.2 , (4.5)

that is the first requirement for a complete stabilization of NTMs used to assess the per-
formance of the ITER upper launcher, where ηNTM is called “NTM efficiency”.
For continuous injection ηCD ' 0.1w2/w2

CD and the previous criterion should be re-
placed by

ηNTM > 2
wCD

w
(4.6)
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i.e. complete stabilization (w → 0) can be achieved in this model only with an infinite
ECCD current (no effects leading to stability of small islands are considered in the above
derivation) so that modulation is essential.

Now let us consider the opposite case wCD < wmarg . In this limit the stabilization ef-
ficiency is approximately ηCD ' 1/3 for both continuous and modulated injection. It
follows that Eq. (4.3) becomes

wCD
wsat

JCD
Jbs

>
3

20
. (4.7)

For a saturated island width of the order of 30 cm, this condition yields

ηNTMwCD > 4.5 cm , (4.8)

which is in quite good agreement with the stabilization criterion

ηNTMwCD > 5 cm (4.9)

known from literature. From the physical point of view, the difference in the criteria to
be adopted depending on the width of EC deposition profile compared to the marginal
island width reflects the fact that once the EC power is deposited inside the island there
is little gain from further narrowing the profile, as the driven current already possesses
the correct helicity to stabilize the mode, so that the total driven current becomes the
figure to be optimized. Now, considering that the peak in the current density profile is
proportional to the injected power, that is

JCD ∝ Pin , (4.10)

it follows that the two criteria (4.5) and (4.9) can be rewritten as follows

Pin > Peta[MW ] =
1.2

ηNTM(1MW )
, (4.11)

Pin > Petaw[MW ] =
0.05

ηNTM(1MW )wCD[m]
, (4.12)

where ηNTM(1MW ) refers to 1 MW of injected power.

The first criterion is valid in the limit of large wCD while the second considering small
wCD. However, we note that wCD values larger than 0.03 m are desirable to reduce
aiming and/or misalignment problems.
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4.2 ITER scenario analysis with NTM stabilization power determina-
tion

The main results of the EC performance analysis done on the ITER H-mode scenario
denoted as “Scenario 1” are presented here. The available data relative to this Scenario
contain all the physical informations about the discharge, such as the magnetic field
equilibrium configuration and electron density, electron temperature, plasma current,
safety factor, bootstrap current profiles at discretized values of the time (in the range
0 s < t < 700 s). Calculations have been performed with the EC beam-tracing code
GRAY. The reference value for the injected power is PEC = 1 MW in the analysis pre-
sented here. Note that linear codes are used for ECRH&CD simulations, so that all the
results scale linearly with the injected power.

The analysis can be divided into three main sections: 1) the presentation of the time
variation of the most important physical variables of the scenario and the specification
of the beams parameters; 2) the detailed study of the time slice t = 520 s, relative to the
end of the flat top of the plasma current, with characterization of the ECCD current den-
sity peak JCD and the total driven current ICD over a wide range of steering angles α
and β, in order to establish the minimum EC power required to stabilize NTM modes on
the q = 2 and q = 3/2 rational surfaces using the two criteria given in section 4.1; 3) de-
termination of the NTM stabilization power time variation, slightly varying the toroidal
steering angle β around the reference design value β = 20◦.

I will present in detail the results for the injection from the Upper Steering Mirror (USM),
while I will give only a few comments on the Lower Steering Mirror (LSM) results, that
are similar.

4.2.1 Scenario assessment and beams parameters

The assessment of Scenario 1 has been performed with the goal to revise the radial range
of occurrence of the resonant surfaces and to select a set of time slices to be used for
H&CD calculations.
The 0D parameters of the scenario are the following: plasma major radius R0 = 6.2 m;
plasma minor radius a0 = 2 m; toroidal field strength at R0 = 5.3 T; plasma fuel: 1:1
deuterium-tritium mixture; flat-top plasma current = 15 MA.

In Fig. 4.1 the time evolutions of peak electron density and temperature, of the safety
factor and of the plasma current are shown. The current flat-top is reached at t = 80 s
and lasts till t = 530 s (H-mode phase). For 50 s after the L-H transition (t = 80 s) the
electron density varies up to its maximum peak value of about 1.1× 1020 m−3, while the
central temperature shows a sharp peak up to 38 keV and then decreases to about 25 keV.

The time evolution of the radial position of the rational surfaces q = 2 and q=3/2, where
the NTM stabilization has to be done, and of the relative value of the bootstrap current,
is shown in Fig. 4.2. The radial position of the rational surfaces is indicated by the flux
coordinate ρ (i.e. the square root of the toroidal flux, normalized to 1 at the plasma edge,
cf. section 0.2). It is important to know at every time the values {ρ(q) , q = 2, 3/2} be-
cause, since ρ(α, β) is given as output from the code after every simulation, this allows
to find, for every fixed value of β, the α value such that the power deposition occurs
around the considered rational surface.
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Figure 4.1: Time evolution of peak electron density, temperature, safety factor q0 (q(ρ = 0)) and
q95 (q(ρ = 0.95)), and plasma current for Scenario 1.

The simulations are performed with a “virtual beam” starting from the center of either
the USM or LSM. Table 4.1 shows the complete list of the beam parameters given in in-
put to the GRAY code. For sake of simplicity, all the GRAY simulations have been made
rotating the laboratory coordinate system such that the launching point is located in
the poloidal plane (ylab = 0). Due to tokamak approximate axisymmetry, disregarding
magnetic ripple effects, this does not affect any of the obtained results.

Mirror x(m) y(m) R(m) z(m) w0(m) d0(m) w(m) Rc(m)
USM 6.998 -0.123 6.999 4.414 0.029 2.134 0.05047 -3.186
LSM 7.053 -0.082 7.054 4.178 0.021 1.620 0.04813 -2.010

Table 4.1: Coordinates of the launching point of the virtual beams from the two mirrors and beam
parameters. x, y, z are the mirror coordinate in the laboratory frame, R =

√
x2 + y2, w0 is the

vacuum-equivalent waist size, d0 is the vacuum-equivalent waist distance from the mirror, w is
the beam size at the mirror and Rc is the curvature radius at the mirror.



64 4.2 ITER scenario analysis with NTM stabilization power determination

Figure 4.2: Time evolution of ρ and Jbs on the q = 2 (pink) and q = 3/2 (green) surfaces of Scenario
1.

resonant surface ρ ne(1019 m−3) Te(keV) Jbs(MA/m2)
q = 2 0.759 9.58 7.24 0.0745
q = 3/2 0.638 9.73 8.91 0.0816

Table 4.2: Plasma parameters at q = 2 and q = 3/2 for t = 520 s.

4.2.2 Fixed time analysis at the end of the current flat-top and NTM stabilization
power determination

The ECCD performance of the plasma scenario at the end of the current flat-top (t =
520 s), i.e. close to the end of the burning phase, has been evaluated by means of beam
tracing calculations using the data reported in Table 4.1.
The density, temperature, safety factor and bootstrap current profiles are presented in
Fig. 4.3 for t = 520 s. The violet and green lines in the q profile indicate the q = 2 and
q = 3/2 rational surfaces respectively, located at ρ(q = 2) = 0.759 and ρ(q = 3/2) =
0.638. The complete list of the plasma parameters on the rational surfaces is given in
Table 4.2.

The ECCD results obtained from a wide scan in the poloidal and toroidal injection angles
(25◦ ≤ α ≤ 65◦ , 15◦ ≤ β ≤ 25◦ , with ∆α = ∆β = 1◦ ) are summarized in Figure 4.4 and
4.5. The upper graphics show a contour plot of the peak current density (left) or the total
driven current (right) in the (α, β) plane, with a superposed contour plot of the ρ values.
These plots characterize the overall behavior of Jcd and Icd versus (α, β). The same data
are shown versus ρ at various β (lower graphics).
The current density shows a weak dependence on β with an quite broad “maximum” for
18◦ ≤ β ≤ 20◦, with 25◦ ≤ α ≤ 65◦. In order to apply the stabilization criterion (4.12) it is
important to consider Icd versus (α, β) too, because Icd ∝ Jcd wcd at fixed radial position
ρ. As it can be seen from the top-right graphic in Fig. 4.4, the EC current Icd increases
globally both with α and β, and in particular the EC current driven at a given “radius”
ρ increases with increasing the toroidal launching angle for 15◦ ≤ β ≤ 25◦ as expected,
because the parallel component k‖ of the wave vector increases with increasing β and
the current drive process becomes more and more efficient.
The LSM presents overall similar results, with higher values of Jcd for a given β, due to
the smaller size of the beam with respect to that of USM (see Table 4.1). In Fig. 4.5 the
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Figure 4.3: Radial profiles of electron density (a), temperature (b), safety factor (c), and bootstrap
current (d) at t=520 s.
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Figure 4.4: Contours of EC driven current density per unit injected power (left) or EC driven cur-
rent per unit injected power (right), and of radial location ρ (black) versus toroidal β and poloidal
α injection angles from USM, at t = 520 s.

radial profile of the normalized EC current density profile width ∆ρ, for different values
of β, is presented. This graphic shows a behavior similar to Icd(ρ) (Fig. 4.5, center).

Now the NTM stabilization powers Peta and Petaw computed according to the two crite-
ria (4.11) and (4.12) respectively, obtained using the Jcd(α, β) and Jbs(ρ) values reported
in Figures 4.4 (left) and 4.3 (d), is shown as a function of β on the q = 2 and q = 3/2
surfaces, where the two criteria apply. In order to compute Petaw, the current density
profile width is taken as wcd = ∆ρ a0, where we assume that a0 = 2 m is the mid plane
minor radius, with ∆ρ(α, β) as reported in Fig 4.5 (bottom). Figure 4.6 shows the su-
perimposed Peta(β) and Petaw(β) graphics at fixed ρ for ρ = ρ(q = 2) = 0.759 and
ρ = ρ(q = 3/2) = 0.638. The required power Peta from criterium (4.11) is minimum at
β ∼ 18◦ and increases with β, while the required power Petaw estimated using (4.12)
decreases with increasing β.

The NTM stabilization power Pstab is estimated as the maximum of Peta and Petaw. The
two criteria cross when wcd = 0.05/1.2 m = 0.042 m and, for the cases shown in Fig. 4.6,
the corresponding stabilization power Pstab is minimum. The β values relative to the
Pstab minimum are β ∼ 19◦ for q = 3/2 and β ∼ 21◦ for q = 2, in agreement with the
actual reference value β = 20◦.

From the simple analysis summarized in the plots and in the tables reported in this sec-
tion, we may conclude that, on the basis of the considered criteria, the power required
for NTM stabilization is much less than the maximum EC power available from each
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Figure 4.5: Radial variation of the ECCD current density peak per unit injected power (top), total
driven current per unit injected power (center), and ECCD current density normalized full width
(bottom), at t = 520 s, for injection from USM. Colored lines refer to different toroidal injection
angles β, black dots to different poloidal injection angles α. The two vertical dotted lines indicate
the radial location of the q = 2 and 3/2 surfaces.
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Figure 4.6: Power required for stabilization Peta and Petaw on the q = 2 (left) and q = 3/2 (right)
surfaces given by the two criteria ηNTM > 1.2 (red) and ηNTMwcd > 0.05 m (blue), and full width
wcd at 1/e of the current density profile (dotted green) for injection from USM. The light blue
region highlighted is the parameter region for which wcd < 0.03 m.

mirror (PEC = 13.3 MW). However, we recall that the ECCD results refer to the case
of a single “ideal” beam (the “virtual beam”), and so far no effects on profile broad-
ening have been taken into account (e.g., four beams superposition, finite width of the
k-spectrum, perpendicular diffusion, etc.). In addition, all the simulations are based on
the launching conditions in Table 4.1, that do not correspond to the final UL design, still
in progress. Further investigation based on the Rutherford equation taking into account
the details of the physics of NTM stabilization is required to get more reliable values for
the required power.
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4.2.3 NTM stabilization power time variation

The NTM stabilization power has been computed for all the times, in order to estimate
the Upper Launcher capability to control the instabilities during the various phases of
the plasma discharge. In fact, being the total available power equal to PEC = 13.3 MW,
the Launcher is able to stabilize the NTM modes only when Pstab < PEC .

The values of Peta and Petaw have been evaluated on the q = 2, 3/2 surfaces for all
the times, for three fixed values of the toroidal steering angle around the reference value
β = 20◦. The behavior of Peta, Petaw and wcd with β = 18◦, 20◦, 22◦ as a function of
time is shown in Fig. 4.7 for injection from USM aiming at the q = 2, 3/2 surfaces. In
the plasma current flat-top region the stabilization power is almost constant both for the
q = 2 and the q = 3/2 case. The behavior is different in the plasma current ramp-up
and ramp-down regions. In fact the stabilization power in the case q = 2 shows two
large peaks before the L-H transition (“Low confinement mode” to “High confinement
mode” transition) and after the H-L transition, where it exceeds the maximum nominal
available power PEC = 13.3 MW. The observed behavior is related to the correspond-
ing sharp variation of the electron temperature (that affects the ECCD efficiency). At the
contrary, no large spikes are observed in the q = 3/2 case, even in the ramp-down phase.
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Figure 4.7: Power required for stabilization and profile width versus time from USM at β = 18◦,
20◦, 22◦ (top to bottom) aiming at q = 2 (left) and q = 3/2 (right) rational surfaces.



Conclusions and future directions

In this work the propagation and absorption of electron cyclotron (EC) Gaussian beams
in tokamak plasmas has been considered. This topic, of interest for nuclear fusion ap-
plications, has been investigated both theoretically and numerically. In applications like
electron cyclotron resonance heating and current drive, the ratio λ/L of the beam wave-
length to the plasma equilibrium quantities spatial variation scale is small (∼ 0.001 in
ITER Upper Launcher), so that the wave propagation can be described asymptotically
in the limit λ/L → 0. The geometrical optics (GO), able to describe correctly divergent
beams far from the wave source, does not apply around the beam waists. In fact, the GO
solution is obtained in terms of a bundle of rays, that intersect giving rise to a focus near
to the beam waist. These rays, that far from the waist are found to be the streamlines of
the wave energy flux, become meaningless near the focus, where the wave energy den-
sity shows an unphysical divergence. From the mathematical point of view, this is only
a consequence of the fact that the geometrical optics rays are obtained as projections in
the configuration space of the Hamiltonian orbits in the phase space that are solution of
a set of Hamilton equations whose Hamiltonian is the wave dispersion function. Near
caustics, like foci, this projection is not feasible and gives rise to unphysical solutions.

Amongst the various methods developed to overcome this drawback, we chose the com-
plex eikonal method, within the complex geometrical optics (CGO) framework. This
method consists in searching asymptotic solutions of the wave equation in the limit
λ/L→ 0, assuming that the wave field phase function (called “eikonal”) is complex val-
ued, with the non-negative imaginary part accounting for the finite width of the beam
cross section. The CGO solution is obtained in terms of a bundle of “extended rays”, that
take into account the diffraction effects and do not intersect in the case of focused beam,
correctly describing the beam waist. Nevertheless, the eikonal imaginary part introduces
a great complexity in the transport equation for the wave field along the rays, hamper-
ing the derivation of the wave energy flux. Therefore, without the connection with the
energy flow, the physical meaning of the “extended rays” is uncertain. In order to fill
this gap, we propose an argument that simplifies the analysis of the transport equation
allowing us to derive the wave energy flux. This new result, that is not available in the
literature in the case of beam propagation in anisotropic media like magnetized plasmas,
constitutes the major goal of my PhD. This work has been done in collaboration with O.
Maj (IPP, Garching, Germany) and published on Physics of Plasmas [1]. Moreover, an
optimized version of the complex eikonal method is presented, showing that the CGO
“extended rays” correctly describe the wave energy flow. This fact has an important
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application, since it gives a rigorous basis at the GRAY code [6] equations. The theoreti-
cal derivation of these results is contained in chapter 1, while their numerical validation
with GRAY and TORBEAM [7] codes is reported in chapter 2.

Turning to the description of the beam absorption, the electron cyclotron resonance con-
dition has ben reviewed, in order to include the effects due to the finite beam width. This
topic is important in the modeling of the interaction between focused electron cyclotron
Gaussian beams and a tokamak plasma. Since the resonance condition ω−k‖v‖−nΩe/γ
is valid only for a plane wave that interacts for a infinite amount of time with a spatially
infinite, homogeneous plasma with a uniform equilibrium magnetic field, some correc-
tions have to be accounted for in the case of Gaussian beams propagating in tokamaks,
because in this case the plasma is spatially localized, inhomogeneous and immersed in a
non-uniform background magnetic field. Moreover, the beams have finite width, and in
applications like current drive they are focused in order to deliver the power in a small
region of plasma. As a consequence the interaction time between the electrons and the
wave is finite. All these factors contribute in modifying the resonance condition. The
theoretical description of this topic can be found in literature (cf. Demeio-Engelmann
[8]), showing that the resonance conditions is broadened by these effects. Nevertheless,
such descriptions have to be matched with the ray description of the beam obtained in
the CGO framework. We propose a model that accounts for the modification in the reso-
nance condition due to the finite width of the wave vector transversal spectrum caused
by the paraxial character of the wave, that allows us to compute the beam absorption
along the “extended rays” in a consistent way. Moreover, the resonance modification
due to the non-uniformity of the equilibrium magnetic field has been taken into account
by computing the absorption coefficient using the local value of the magnetic field on
each ray. This model has been implemented in a modified version of the GRAY code.
In order to compute the beam transversal spectrum, it has been assumed that the wave
field maintains its transversal Gaussian shape along the plasma propagation, in order
to apply a local Gaussian model and compute the spectrum analytically. This behav-
ior has been verified in low density conditions (like in ITER), computing the spectrum
numerically via 2D fast Fourier transform with the GRAY code. This new version of
the code can be used to compute the transversal spectrum in critical situations, where
for example the high density enhances the plasma astigmatism and the beam looses its
transversal Gaussian form. Using this absorption model, the power absorption radial
profiles have been computed, and compared with the standard “plane wave” ones. The
profiles obtained with the “broadened resonance” are broadened respect to the “delta
resonance” ones, but the differences are small, in agreement with previous works on the
subject (Farina-Ramponi [14] and Bertelli et al. [15]). As a consequence the usual “plane
wave” model can be used for practical purposes. All the theory and numerical examples
about this topic are contained in chapter 3.

The electron cyclotron current drive performances have been evaluated with the GRAY
code in the ITER reference plasma discharge scenario denoted as “Scenario 1”, using the
usual “plane wave” model. This task has been done in order to estimate the EC power
required to stabilize the neoclassical tearing modes, particularly dangerous plasma insta-
bilities, that can be controlled by injecting focused EC Gaussian beams in the plasma re-
gions where the modes develop. This analysis is of interest for the ITER Upper Launcher
(UL) design. The stabilization power, computed according to two standard criteria (cf.
section 4.1), has been evaluated all along the plasma discharge, with the result that
the available power from the UL is sufficient except in the L-H and H-L transitions in



certain cases (L indicates the “low confinement mode” and H the “high confinement
mode”). Moreover, the optimal toroidal steering angle relative to the minimum stabi-
lization power required has been estimated, with results consistent with the actual ref-
erence value β = 20◦ for both the UL mirrors. This analysis is contained in chapter 4.

Finally, let us mention some future developments. A mathematically rigorous EC res-
onance broadening model has to be substituted to the actual one. This research task
is related to the estimation of the parallel (to B) wave vector spectrum width. The ar-
bitrariness on the computation of the k‖ spectrum (described in section 3.2.2) has to be
removed by a clearer understanding of the subject. At the same time, the GRAY code will
undergo constant revisions, in order to keep it in step with the theoretical work. Numer-
ical simulations of ECRH & CD in ITER scenarios will continue in order to contribute to
the analysis of the ITER EC system.
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APPENDIX A

Ohm’s law in a cold stationary plasma and D = εE local
constitutive relation

The general non-local, causal and linear relation between current density and electric
field in a plasma slightly non-uniform spatially and temporally can be written in the
symmetrized form

J(x, t) =

∫
dx
′
∫ t

−∞
dt
′
σ̂(x− x

′
, t− t

′
,
x+ x

′

2
,
t+ t

′

2
)E(x

′
, t
′
) , (A.1)

where the tensor σ̂ is a function rapidly varying in the difference arguments and slowly
varying in the sum arguments. The difference arguments represent the spatial and tem-
poral dispersion, while the sum arguments represent the disuniformity of the medium.
In our case the medium is stationary, that is σ̂ is independent from (t + t

′
)/2, and spa-

tially non-dispersive, that is the x− x′ dependence of σ̂ is given by a Dirac δ function of
argument x− x′ . As a consequence

J(x, t) =

∫
dx
′
∫ t

−∞
dt
′
σ̂(t− t

′
,
x+ x

′

2
)δ(x− x

′
)E(x

′
, t
′
) =

∫ t

−∞
dt
′
σ̂(t− t

′
, x)E(x, t

′
) .

(A.2)
We consider a stationary plasma and a wave source with fixed angular frequency ω, and
as a consequence the temporal dependence of the field can be described by a factor e−iωt,
that is

E(x, t) = E(x)e−iωt . (A.3)

Changing integration variable from t
′

to t
′′

= t
′ − t, taking into account (A.3) and intro-

ducing the conductivity tensor as

σ(ω, x) =

∫ ∞
0

dt
′′
σ̂(t
′′
, x)eiωt

′′

, (A.4)

it follows that
J(x, t) = σ(ω, x)E(x, t) . (A.5)

Now, introducing the dielectric tensor

ε(ω, x) = I +
4πi

ω
σ(ω, x) , (A.6)

it follows that the constitutive relation between the electric displacement D and the elec-
tric field E is local, namely

D(x, t) = ε(ω, x)E(x, t) . (A.7)
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APPENDIX B

Gaussian beams and Quasi-Optical approximation

In this appendix the expression of the electric field of a non-astigmatic Gaussian beam
propagating in vacuum is reviewed and, considering it as a solution of the paraxial wave
equation, the approximation that lead to this equation is presented in detail, showing
how it is connected with the QO approximation as the beam enters the plasma.

The expression of the electric field of a non-astigmatic (with cylindrical symmetry) Gaus-
sian beam propagating in the z direction, is well known. Considering a monochromatic
beam under the so-called “scalar approximation” where the e.m. fields are uniformly
(e.g.linearly or circularly) polarized, the wave electric field can be described by a scalar
quantity E(x, y, z, t). Assuming a e−iωt time dependence, that is

E(x, y, z, t) = E(x, y, z)e−iωt , (B.1)

E(x, y, z) is given by

E(x, y, z) = E0
w0

w(z)
e−iφGouy(z)e

− x
2+y2

w(z)2 e
ik0

[
z+ x2+y2

2R(z)

]
. (B.2)

where E0 = E(0, 0, 0), w(z) and R(z) represent the beam size and the curvature radius
of the phase fronts respectively, with z variation given by

w(z) = w0

√
1 +

(
z

zR

)2

, (B.3)

R(z) = z

[
1 +

(zR
z

)2
]
, (B.4)

and φGouy is the Gouy phase shift

φGouy = arctan
z

zR
, (B.5)

entirely due to diffraction effects, where

zR =
πw2

0

λ
(B.6)

is the Rayleigh length, that is the length at which the beam size is
√

2 times w0, the beam
size at the waist, and λ is the wavelength.
The Gouy phase indicates that as a Gaussian beam passes through a focus, it acquires
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an additional phase shift of π, in addition to the usual k0z phase shift that would be ex-
pected from a plane wave.

This expression can be obtained either via the Fresnel-Kirchoff integral (c.f [20]) or via
the paraxial wave equation (cf.[21]). Considering the second approach, the focus will be
pointed on the approximations behind the paraxial wave equation.

The starting point is the electric field wave equation in vacuum

2E(x, y, z, t) = 0 , (B.7)

where 2 is the D’Alembert operator

2 := ∂α∂
α = ∇2 − 1

c2
∂2

∂t2
. (B.8)

Assuming a e−iωt time dependence, Eq. (B.7) becomes the Helmholtz equation

(∇2 + k2
0)E(x, y, z) = 0 , (B.9)

where k0 = ω/c = 2π/λ is the modulus of the vacuum wave vector for a plane wave
of angular frequency ω, c being the speed of light. To take into account the paraxial
behavior of the wave, that is the concentration of the wave energy around a little cylinder
around the axis of propagation, the following ansatz is made:

E(x, y, z) = u(x, y, z)eik0z , (B.10)

where u(x, y, z) is a function slowly varying in the direction of propagation z (on the
scale Ld of diffraction effects) and varying in the transversal direction on the waist size
w0 scale length. More precisely we have∣∣∣∣e−ik0z ∂∂z eik0z

∣∣∣∣−1

= k−1
0 ∼ λ , (B.11)∣∣∣∣ 1u ∂u∂x

∣∣∣∣−1

∼
∣∣∣∣ 1u ∂u∂y

∣∣∣∣−1

∼ w0 ,∣∣∣∣ 1u ∂u∂z
∣∣∣∣−1

∼ Ld .

We assume that w0 is an intermediate scale between λ and Ld:

λ� w0 � Ld (B.12)
λ

w0
∼ wo

L
∼ κ−1/2 ,

with κ ≡ L/λ� 1. Substituting ansatz (B.10) into Eq. (B.9) and introducing

x̄ =
x

w0
, ȳ =

y

w0
, z̄ =

z

Ld
, (B.13)

we obtain the following equation

∂2u

∂x̄2
+
∂2u

∂ȳ2︸ ︷︷ ︸
α

+ 4πi
w0

λ

w0

Ld

∂u

∂z̄︸ ︷︷ ︸
β

+
w2

0

L2
d

∂2u

∂z̄2︸ ︷︷ ︸
γ

= 0 , (B.14)
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where

α ∼ β = O(1) , (B.15)

γ = O(κ−1)� 1 .

As a consequence the third term γ can be neglected compared to the other two terms. The
result, restoring the dimensional quantities, is the well known parabolic wave equation

∇2
⊥u+ 2ik0

∂u

∂z
= 0 , (B.16)

which leads to the Gaussian beam solution.

The ordering λ � w0 � Ld is formally the same as QO approximation (in which the
diffraction scale length Ld is supposed of the order of the background plasma length
scale L). It is expected that a EC Gaussian beam during the plasma propagation remains
nearly Gaussian, and its propagation is usually described within the QO approximation
by means of the CGO asymptotic method.





APPENDIX C

Maslov-Pereverzev estimates derivation

The wave field (1.31), in the limit κ→ +∞, collapses on the zero-level set of the function
Imψ = φ, namely,

R = {x; φ(x) = 0}. (C.1)

This feature is a consequence of the fact that φ(x) > 0 for all points that do not lie on R.
In fact, the wave field is exponentially small, in the limit κ → +∞ near points x where
φ(x) > 0; indeed, one has |ECGO(κ, x)| ∝ e−κφ(x) → 0 for κ → +∞, or, more precisely,
for every integer n > 0,

κn|ECGO(κ, x)| ≤ C0

( n

eφ(x)

)n
, φ(x) > 0, (C.2)

which is tantamount to exponential decay. Equation (C.2) follows from (1.6) and from
the fact that the single variable function f(y) = yn exp(−y) has a global maximum at
ymax = n, with f(ymax) = (n/e)n. In fact, if we put y = κφ, it follows that

κNe−κφ = φ−NyNe−y ≤ 1

φN

(
N

e

)N
. (C.3)

Let the setR be a curve given parametrically by x = x̄(τ), the “reference ray”.

By definition φ
(
x̄(τ)

)
= 0, identically in τ and

0 =
d

dτ
φ
(
x̄(τ)

)
=
dx̄(τ)

dτ
· ∇φ

(
x̄(τ)

)
,

which means that the component of ∇φ
(
x̄(τ)

)
tangent to the curve R vanishes identi-

cally; the other two components must vanish as well, otherwise φ would change sign
acrossR, thus, violating the condition φ ≥ 0. It follows that

∇φ
(
x̄(τ)

)
= 0,

identically in τ . Then, the Taylor polynomial of φ around x̄ has terms of second order or
higher only. Continuing, one has

0 =
d

dτ
∇φ
(
x̄(τ)

)
= D2φ

(
x̄(τ)

)dx̄(τ)

dτ
,

where [D2φ(x)]ij = ∂2φ(x)/∂xi∂xj is the Hessian matrix of second-order derivatives of
φ. Thence, the tangent vector et(τ) ∝ dx̄(τ)/dτ is an eigenvector of D2φ

(
x̄(τ)

)
corre-

sponding to the null eigenvalue. In general, the whole matrix D2φ(x̄) can be zero, and,
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in that case, Taylor polynomial of φ would have only terms of fourth order or higher
(the third order is again excluded by the condition φ ≥ 0). For definiteness, we shall
consider the case in which, except for the tangent direction ∝ et, the matrix D2φ(x̄) is
strictly positive definite. Precisely,

w ·D2φ
(
x̄(τ)

)
w > 0, (C.4)

for every vector w linearly independent of et(τ), i.e., D2φ is positive definite for vectors
transversal to the reference curveR. The exact Taylor expansion of a function f around x̄
that involves partial derivatives up to the l+1 order is given by the following expression:

f(x) =
∑
|α|≤l

Dαf(x̄)

α!
(x− x̄)α +

∑
|α|=l+1

Rα(x)(x− x̄)α , (C.5)

where

Rα(x) =
|α|
α!

∫ 1

0

(1− s)|α|−1Dαf
(
x̄+ s(x− x̄)

)
ds , (C.6)

and the multi-index notation has been used (α = (α1, α2, α3) being a three-dimensional
multi-index) :

|α| = α1 + α2 + α3 (C.7)
α! = α1!α2!α3!

xα = xα1
1 xα2

2 xα3
3

Dαf =
∂|α|f

∂xα1
1 ∂xα2

2 ∂xα3
3

.

If we put l = 1 in this expression and drop the multi-index notation in favour of the
matrix notation, it becomes

f(x) = f(x̄) +∇f(x̄) · (x− x̄) + (x− x̄) ·R(x, x̄)(x− x̄), (C.8)

with

R(x, x̄) =

∫ 1

0

(1− s)D2f
(
x̄+ s(x− x̄)

)
ds . (C.9)

As a consequence, recalling that φ(x̄) = 0 and ∇φ(x̄) = 0, the exact Taylor expansion of
φ around x̄ involving partial derivatives up to the second order is:

φ(x) =
1

2
(x− x̄) ·Q(x, x̄)(x− x̄),

where, for |x− x̄| small enough, the matrix-valued function,

Q(x, x̄) = 2

∫ 1

0

(1− s)D2φ
(
x̄+ s(x− x̄)

)
ds ,

is positive definite for vectors transversal to the reference curveR. Now it will be proven
that for every x sufficiently close to the reference ray R, there exist a point x̄ on R and a
3× 3 matrix B(x, x̄), such that

(x− x̄) ·Q(x, x̄)(x− x̄) = (x− x̄) · tB(x, x̄)B(x, x̄)(x− x̄) . (C.10)
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The demonstration of this proposition is shown in three steps. First of all the matrix Q is
diagonalized, then the point x̄ is found and finally the matrix B is constructed.

Q can be easily diagonalized recalling that it is symmetric by definition. Hence for every
pair of points (x, x̄), there is a real eigenvector basis {v(x, x̄), w1(x, x̄), w2(x, x̄)} corre-
sponding to real eigenvalues {q0(x, x̄), q1(x, x̄), q2(x, x̄)} such that

Q = q0v
tv + q1w1

tw1 + q2w2
tw2 , (C.11)

where, exploiting the fact thatQ = D2φ for x = x̄, the eigenvectors are ordered so that q0

tends to zero for x→ x̄ and v tends to a vector proportional to the tangent vector dx̄/dτ
to the reference ray . The remaining eigenvectors {wi , i = 1, 2} are transversal to R in
the limit x → x̄, and from (C.4) it follows that qi > 0 for i 6= 0 and x in a sufficiently
small tube aroundR.

The point x̄ is found as a solution of the equation

v
(
x, x̄(τ)

)
·
(
x− x̄(τ)

)
= 0 . (C.12)

For x close to the reference ray, v tend to the tangent vector and this express the condi-
tion that x− x̄ is orthogonal to the reference ray.

Now it is possible to construct the matrix B. We restrict to a neighborhood of R where
a solution of the equation (C.12) can be found and q0 ∼ 0. Let x̄ = x̄

(
τ(x)

)
be such

solution. If needed, we restrict further, so that qi(x, x̄) > 0 for i 6= 0. Then, we have:

(x− x̄) ·Q(x, x̄)(x− x̄) =

2∑
i=1

[(x− x̄) · wi] qi
[
twi(x− x̄)

]
(C.13)

=

2∑
i,j=1

(x− x̄) · [wi
√
qi] δij

[√
qj
twj
]

(x− x̄)

= (x− x̄) ·

[
2∑
i=1

√
qiwi

twi

] 2∑
j=1

√
qjwj

twj

 (x− x̄) ,

where the orthogonality wi ·wj = twiwj = δij has been accounted for. It follows that the
3× 3 symmetric matrix

B(x, x̄) =
√
q1(x, x̄)w1(x, x̄)tw1(x, x̄) +

√
q2(x, x̄)w2(x, x̄)tw2(x, x̄) , (C.14)

satisfies (C.10).

Now that (C.10) has been demonstrated, defining the vector valued function

ξ(x) = B(x, x̄)(x− x̄) , (C.15)

the imaginary part of the complex phase becomes

φ(x) =
1

2
ξ(x)2 =

1

2
δijξ

i(x)ξj(x) . (C.16)
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This form of the imaginary part φ is valid in a neighborhood U of the reference ray R
only, but it is useful to obtain the following inequality:

|ξ(x)αeiκψ(x)| ≤ Cακ−|α|/2 , (C.17)

where α is a three dimensional multi-index. This inequality can be easily proven by
noting that, introducing the vector function z(x) = (z1(x), z2(x), z3(x)) =

√
κξ(x), it

follows that in the U space region

|ξ(x)αeiκψ(x)| = |ξαe−κφ| = |ξαe−κξ
2/2| = |zαe−z

2/2|κ−|α|/2 (C.18)

≤
[
|(z1)α1e−(z1)2/2|+ |(z2)α2e−(z2)2/2|+ |(z3)α3e−(z3)2/2|

]
κ−|α|/2 .

The terms in square brackets are bounded in all space, because the single variable func-
tion f(x) = xn exp(−x2/2) has a global maximum at xmax =

√
nwith f(xmax) = (n/e)n/2,

that depends on n. As a consequence, (C.17) is verified.

Equation (C.17), valid in a U neighborhood of the reference ray, can be used to obtain the
following inequalities (Maslov-Pereverzev estimates, Eq. (1.47)), valid in every compact
region K where the electric field has to be reconstructed, assuming that φ(x) ∈ C∞(K):

|(∇φ(x))αeiκψ(x)| ≤ Cακ−|α|/2 . (C.19)

For brevity I will now show the proof of this inequalities for the case α = (1, 0, 0):

|∂1φ(x)eiκψ(x)| ≤ Cκ−1/2 , (C.20)

where ∂1 ≡ ∂/∂x1. The proof is analogous for an arbitrary multi-index.
In the U neighborhood of the reference ray the (C.17) inequality can be exploited, com-
bined to the fact that in that region the gradient of φ can be written

∇φ(x) = δijξ
i(x)∇ξj(x) , (C.21)

while in K \U the only inequality that can be exploited is Eq. (C.2). To combine the two
regimes, let us introduce the characteristic function χ(x) defined by

χ(x) =

{
1 if x ∈ U ∩K ,
0 if x /∈ K \ U .

Henceforth we consider x ∈ K. Now it can be shown that

|χ(x)∂1φ(x)eiκψ(x)| ≤ C1κ
−1/2 , (C.22)

|(1− χ(x))∂1φ(x)eiκψ(x)| ≤ C2κ
−1 (C.23)

Let us start by proving Eq. (C.22). In the U ∩K region it can be written

|χ(x)∂1φ(x)eiκψ(x)| =
∣∣δijξi∂1ξ

jeiκψ
∣∣ ≤ δij |∂1ξ

i|
∣∣ξjeiκψ∣∣ . (C.24)

Eq. (C.22) is a consequence of the fact that |∂1ξ
i| are bounded ∀i = 1, 2, 3, because they

are continuous functions on a compact domain (consequence of the φ(x) ∈ C∞(K) hy-
pothesis), and

∣∣ξjeiκψ∣∣ terms can be estimated using Eq. (C.17) with α = (1, 0, 0).
Let us now proof Eq. (C.23). In the K \ U region it can be written

|(1− χ(x))∂1φ(x)eiκψ(x)| = |∂1φ|(κNe−κφ)κ−N , (C.25)
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for all integers N , and in particular if we put N = 1. Eq. (C.23) follows from the fact that
|∂1φ| is bounded, being a continuous function on a compact domain, and the (κe−κφ)
factor can be estimated using Eq. (C.3) with N = 1, noting that φ has a lower bound on
K \ U . The C2 constant can be computed as the product of the maximum of |∂1φ| times
the Eq. (C.3) upper bound with φ = φmin and N = 1, that is

C2 =
1

e

maxK\U (|∂1φ|)
minK\U (φ)

. (C.26)

Combining Eq. (C.22) and (C.23), it follows that

|∂1φ(x)eiκψ(x)| ≤ C1κ
−1/2 + C2κ

−1 = O(κ−1/2) , (C.27)

and so Eq. (C.20) is proven.





APPENDIX D

CGO energy flux derivation

D.1 Complex geometrical optics equations and their solution

D.1.1 Wave equation ordering

The electric field ansatz (1.30) can be substituted into Maxwell’s wave Eq. (1.1), and the
result is

eiκψ
{
κ2D0(x,∇ψ)a0(x)

+ κ

[
D0(x,∇ψ)a1(x)− i

[∂D0

∂Ni
(x,∇ψ)

∂a0

∂xi
(x)

+
1

2

∂

∂xi

[∂D0

∂Ni
(x,∇ψ)

]
a0(x)− iε1(x)a0(x)

]]}
+O(1) = 0,

(D.1)

where Eq. (1.7) has been accounted for. In writing Eq. (D.1), one should note that the
dispersion tensor D0, defined in Eq. (1.9), is a polynomial in N and it extends to an
entire function of the complex refractive index Ñ = N + iN

′
. It is possible, therefore, to

evaluate D0 at Ñ = ∇ψ. The same argument applies to the derivatives of D0. Explicitly,

D0,ij(x,∇ψ) = (∇ψ)2δij −
∂ψ

∂xi
∂ψ

∂xj
− ε0,ij(x), (D.2a)

∂D0,ij

∂Nk
(x,∇ψ) = 2

∂ψ

∂xl
δlkδij − δki

∂ψ

∂xj
− ∂ψ

∂xi
δkj , (D.2b)

∂2D0,ij

∂Nk∂Nl
(x,∇ψ) = 2δklδij − δki δlj − δliδkj , (D.2c)

while

∂

∂xk

[∂D0,ij

∂Nk
(x,∇ψ)

]
=

∂2D0,ij

∂xk∂Nk
(x,∇ψ) +

∂2ψ

∂xk∂xl
∂2D0,ij

∂Nk∂Nl
(x,∇ψ) . (D.3)

The first term on the right-hand side of (D.3) is actually zero for the dispersion tensor
(1.9) and the second-order derivative with respect to N is constant, cf. Eq. (D.2c).

Now it is needed to take into account the paraxial character of the beam, applying the
Pereverzev-Maslov estimates (1.47). When one neglects the paraxial character of the
wave field, terms of different order in κ are separated in (D.1) , yielding a hierarchy of
equations for ψ, a0, and a1. Such equations, although formally similar to the correspond-
ing equations of standard geometrical optics, are complicated by the presence of the
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imaginary part of the phase. The hierarchy thus obtained, however, is unnecessarily too
strong and it can be considerably simplified by taking into account (1.47). Pereverzev-
Maslov estimate implies that terms proportional to Im(∇ψ) = ∇φ in Eq. (D.1) can be
better estimated by half-integer powers of κ.

It follows that

eiκψD0(x,∇ψ) = eiκψD0(x,∇S)︸ ︷︷ ︸
O(1)

+ (D.4)

+ ieiκψ [2(∇S · ∇φ)I −∇S∇φ−∇φ∇S]︸ ︷︷ ︸
O(κ−

1
2 )

+

+ eiκψ
[
∇φ∇φ− (∇φ)2I

]︸ ︷︷ ︸
O(κ−1)

,

where
D0(x,∇S) = (∇S)2I −∇S∇S − ε0(x) , (D.5)

and similarly

eiκψ
∂D0,ij

∂Nk
(x,∇ψ) = eiκψ

∂D0,ij

∂Nk
(x,∇S)︸ ︷︷ ︸

O(1)

+O(κ−
1
2 ) . (D.6)

Applying this results to (D.1) and recalling that

∂2D0,ij

∂xk∂Nk
(x,∇ψ) = 0 , (D.7)

∂2D0,ij

∂Nk∂Nl
(x,∇ψ) = const ,

we obtain

eiκψ
{
κ2D0(x,∇ψ)a0(x)

+ κ

[
D0(x,∇S)a1(x)− i

[∂D0

∂Ni
(x,∇S)

∂a0

∂xi
(x)

+
1

2

∂2ψ

∂xi∂xj
(x)

∂2D0

∂Ni∂Nj
(x,∇S)a0(x)− iε1(x)a0(x)

]]}
+O(

√
κ) = 0.

(D.8)

Since (D.8) has to be valid ∀κ sufficiently large, the independence of the powers κn is
now exploited to separate the coefficients of κ2 and κ:

D0(x,∇ψ)a0(x) = ρ0(x,∇φ) , (D.9)

D0(x,∇S)a1(x)− i
[
∂D0

∂Ni
(x,∇S)

∂a0

∂xi
(x) (D.10)

+
1

2

∂2ψ

∂xi∂xj
(x)

∂2D0

∂Ni∂Nj
(x,∇S)a0(x)− iε1(x)a0(x)

]
= ρ1(x,∇φ) ,
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where ρ0 and ρ1 are allowed remainders in order to solve eq. (D.8) with the correct
O(
√
κ) remainder. ρ0 and ρ1 must be at least cubic and linear in∇φ, respectively, so that

at least:

e−κφρ0(x,∇φ) = O(κ−3/2) , (D.11)

e−κφρ1(x,∇φ) = O(κ−1/2) .

D.1.2 Solution of the wave equation at the dominant order

The matrix D0(x, Ñ), for Ñ = N + iN
′

complex, is no longer Hermitian, even though
it is Hermitian for N

′
= 0. To solve eq. (D.9) we can exploit the fact that the matrix

D0(x,∇ψ), even if it is no longer Hermitian, is still much simpler than a generic complex
matrix, being the analytical continuation of a Hermitian matrix. To exploit the properties
of the Hermitian matrix D0(x,N) we rewrite D0(x, Ñ) in the following way:

D0(x, Ñ) = D̃0(x, Ñ) , (D.12)

where

D̃0(x, Ñ) = D0(x,N) + i
∂D0(x,N)

∂Nk
N
′

k −
1

2

∂2D0(x,N)

∂Nk∂Nl
N
′

kN
′

l . (D.13)

The equality (D.12) can be easily checked taking into account that from (D.2) it follows
that

∂D0

∂Nk
N
′

k = 2(N ·N
′
)I −N

′
N −NN

′
, (D.14)

∂D0

∂Nk∂Nl
N
′

kN
′

l = 2N
′2I −N

′
N
′
.

The key point of the solution of the wave equation at the dominant order is the fact that
if ej(x,N) and λj(x,N) are the j−th eigenvector and relative eigenvalue of D0(x,N)
that solve the eigenvalue equation

D0(x,N)ej(x,N) = λj(x,N)ej(x,N) , (D.15)

the analytic continuations ẽj(x, Ñ) and λ̃j(x, Ñ) still solve the equation, apart from a
remainder cubic in |N ′ |, that is

Γ ≡ D0(x, Ñ)ẽj(x, Ñ)− λ̃j(x, Ñ)ẽj(x, Ñ) = O(|N ′|3) , (D.16)

where

ẽj(x, Ñ) = ej(x,N) + i
∂ej(x,N)

∂Nk
N ′k −

1

2

∂2ej(x,N)

∂Nk∂Nl
N ′kN

′
l , (D.17)

λ̃j(x, Ñ) = λj(x,N) + i
∂λj(x,N)

∂Nk
N ′k −

1

2

∂2λj(x,N)

∂Nk∂Nl
N ′kN

′
l . (D.18)
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In fact, substituting (D.13), (D.17) and (D.18) in the Γ expression, we obtain

Γ = D0ej − λjej (D.19)

+ i

[
∂D0

∂Nk
ej +D0

∂ej
∂Nk

− ∂λj
∂Nk

ej − λj
∂ej
∂Nk

]
N
′

k

− 1

2

[
∂2D0

∂Nk∂Nl
ej +

∂D0

∂Nk

∂ej
∂Nl

+
∂D0

∂Nl

∂ej
∂Nk

+D0
∂2ej

∂Nk∂Nl

− ∂2λj
∂Nk∂Nl

ej −
∂λj
∂Nk

∂ej
∂Nl

− ∂λj
∂Nl

∂ej
∂Nk

− λj
∂2ej

∂Nk∂Nl

]
N
′

kN
′

l

− i

2

[
∂2D0

∂Nk∂Nm

∂ej
∂Nl

+
∂D0

∂Nk

∂2ej
∂Nl∂Nm

− ∂2λj
∂Nk∂Nm

∂ej
∂Nl

− ∂λj
∂Nk

∂2ej
∂Nl∂Nm

]
N
′

kN
′

lN
′

m

+
1

4

[
∂2D0

∂Nk∂Nm

∂2ej
∂Nl∂Nn

− ∂2λj
∂Nk∂Nm

∂2ej
∂Nl∂Nn

]
N
′

kN
′

lN
′

mN
′

n

= (D0ej − λjej) + i
∂(D0ej − λjej)

∂Nk
N
′

k −
1

2

∂2(D0ej − λjej)
∂Nk∂Nl

N
′

kN
′

l +O(|N
′
|3) .

where the symmetry of N
′

iN
′

j was exploited to write

∂A

∂Ni

∂B

∂Nj
N
′

iN
′

j =
1

2

[
∂A

∂Ni

∂B

∂Nj
+

∂A

∂Nj

∂B

∂Ni

]
N
′

iN
′

j , (D.20)

with B = ej and A = D0 or A = λj . Equation (D.16) follows from (D.15).
Moreover, similarly it can be shown that the completeness and orthogonality conditions
for the D0(x,N) eigenvectors

I =
∑
j

ej(x,N)e∗j (x,N) , (D.21)

e∗i (x,N) · ej(x,N) = δij , (D.22)

are still valid for D̃0(x, Ñ) “eigenvectors”, apart from a cubic remainder:

I −
∑
j

ẽj(x, Ñ)f̃j(x, Ñ) = O(|N ′|3) , (D.23)

f̃i(x, Ñ) · ẽj(x, Ñ)− δij = O(|N ′|3) , (D.24)

where f̃j(x, Ñ) is the complex extension of the dual eigenvector e∗j (x,N):

f̃j(x, Ñ) = e∗j (x,N) + i
∂e∗j (x,N)

∂Nk
N ′k −

1

2

∂2e∗j (x,N)

∂Nk∂Nl
N ′kN

′
l . (D.25)

Now it is possible to solve (D.9). First of all (D.23) is exploited to expand the amplitude
a0(x) on the D̃0(x, Ñ) “eigenvectors”:

a0(x) = Ia0(x) =
∑
j

Aj(x)ẽj(x,∇ψ) +O(|∇φ|3) , (D.26)

where
Aj(x) = f̃j(x,∇ψ) · a0(x) . (D.27)
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After substituting (D.26) and using (D.12) and (D.16), eq. (D.9) amounts to∑
j

λ̃j(x,∇ψ)Aj(x)ẽj(x,∇ψ) +O(|∇φ|3) = ρ0(x,∇φ) . (D.28)

Taking the dot product with f̃i and using the orthogonality (D.24), the vector equation
(D.28) is splitted into three scalar equations:

λ̃i(x,∇ψ)Ai(x) +O(|∇φ|3) = f̃i(x,∇ψ) · ρ0(x,∇φ) . (D.29)

for i = 1, 2, 3. Apart from the trivial solutionAi = 0 , ∀i = 1, 2, 3, the equation is fulfilled
if and only if

λ̃i(x,∇ψ) = O(|∇φ|3) , (D.30)

because Ai = O(1), f̃i(x,∇ψ) = O(1) and ρ0(x,∇φ) is at least cubic in ∇φ. On the other
hand, only one out of the three eigenvalues can fulfill this condition for a given complex
phase ψ, otherwise the hypothesis of separability of eigenvalues λi would be violated in
points (x,∇S(x)), for x = x(τ) on the reference ray.

Summing up, given a mode relative to the D0(x,∇S) eigenvalue H(x,∇S) (and relative
eigenvector e(x,∇S)), eq. (D.9) is solved by a complex eikonal ψ(x) and an amplitude
a0(x) such that

H̃(x,∇ψ) = σ0(x,∇φ) , (D.31)
a0(x) = A(x)ẽ(x,∇ψ) , (D.32)

where σ0(x,∇φ) is an arbitrary cubic remainder and A(x) is an arbitrary complex scalar
amplitude.

Eq. (D.31) depends on the arbitrary cubic remainder σ0, and therefore it does not deter-
mine uniquely the complex eikonal ψ. The natural choice σ0 = 0 leads to the following
set of equations:

Re(H̃)(x,∇S) ≡ Hφ(x,∇S) = H(x,∇S)− 1

2

∂2H(x,∇S)

∂Nk∂Nl

∂φ

∂xk
∂φ

∂xl
= 0 , (D.33)

Im(H̃)(x,∇S) =
∂H(x,∇S)

∂Nk

∂φ

∂xk
= 0 . (D.34)

D.1.3 Solution of the first order wave equation: amplitude transport

If (D.32) is substituted into (D.10) and the obtained equation is dot multiplied with
f̃(x,∇ψ), the result is

f̃ ·D0a1︸ ︷︷ ︸
α

− if̃ ·


β1︷ ︸︸ ︷

∂D0

∂Ni

∂[Aẽ]

∂xi
+

β2︷ ︸︸ ︷
1

2

∂2ψ

∂xi∂xj
∂2D0

∂Ni∂Nj
[Aẽ]

β3︷ ︸︸ ︷
−iε1[Aẽ]


︸ ︷︷ ︸

β

= f̃ · ρ1︸ ︷︷ ︸
O(|∇φ|)

, (D.35)

where f̃ and ẽ are evaluated at (x,∇ψ), A, a1 and ε1 at x, D0 and its N derivatives at
(x,∇S) while ρ1 is evaluated at (x,∇φ). The notation ∂[· · · ]/∂xk denotes the derivative
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with respect to both the explicit and implicit dependence on x.

We will manipulate α and β terms separately. Let us start with α. From (D.12) and
(D.13) it follows that

D0(x,∇S) = D0(x,∇ψ)− i∂D0(x,∇S)

∂Nk

∂φ

∂xk︸ ︷︷ ︸
O(|∇φ|)

+
1

2

∂2D0(x,∇S)

∂Nk∂Nl

∂φ

∂xk
∂φ

∂xl︸ ︷︷ ︸
O(|∇φ|2)

(D.36)

= D0(x,∇ψ) +O(|∇φ|) .

As a consequence

α ≡ f̃(x,∇ψ) ·D0(x,∇S)a1(x) = f̃(x,∇ψ) ·D0(x,∇ψ)a1(x) +O(|∇φ|) (D.37)

Moreover, following (D.16) derivation, it is easy to recover that

f̃(x,∇ψ) ·D0(x,∇ψ) = H̃(x,∇ψ)f̃(x,∇ψ) +O(|∇φ|3) . (D.38)

Summing up it follows that

α = H̃(x,∇ψ)︸ ︷︷ ︸
O(|∇φ|3)

f̃(x,∇ψ) · a1(x)︸ ︷︷ ︸
O(1)

+O(|∇φ|) = O(|∇φ|) , (D.39)

where (D.31) was exploited in the last equivalence, with σ0 = O(|∇φ|3).

Let us consider the β term. It must be dealt with carefully. First of all we retain only
terms of zero order in∇φ, because the allowed remainder ρ1 is O(|∇ψ|):

f̃(x,∇ψ) ·
[
· · ·
]

= [e∗(x,∇S)︸ ︷︷ ︸
O(1)

+O(|∇φ|)] ·
[
· · ·
]

︸ ︷︷ ︸
O(1)

= e∗(x,∇S)
[
· · ·
]

+O(|∇φ|) . (D.40)

The terms β1, β2 and β3 are manipulated separately. We start with β1. From definition
(D.17), one gets

∂[Aẽ]

∂xk
=
∂[Ae]

∂xk
+ iA

∂2φ

∂xk∂xl
∂e

∂Nl
+O(|∇φ|) , (D.41)

hence

β1 ≡ e∗ ·
∂D0

∂Nk

∂[Aẽ]

∂xk
= e∗ · ∂D0

∂Nk

∂[Ae]

∂xk
+ iAe∗ · ∂D0

∂Nk

∂e

∂Nl

∂2φ

∂xk∂xl
+O(|∇φ|) (D.42)

= e∗ · ∂D0

∂Nk

∂[Ae]

∂xk
+
i

2
Ae∗ ·

(
∂D0

∂Nk

∂e

∂Nl
+
∂D0

∂Nl

∂e

∂Nk

)
∂2φ

∂xk∂xl
+O(|∇φ|) ,

where in the last equivalence the symmetry of ∂φ/∂xk∂xl was exploited. The term in
round brackets can be computed by making use of the identity obtained by deriving
twice the eigenvalue equation D0e = He with respect to N , evaluating the result for
N = ∇S:

e∗ ·
(
∂D0

∂Nk

∂e

∂Nl
+
∂D0

∂Nl

∂e

∂Nk

)
=

∂2H

∂Nk∂Nl
− e∗ · ∂2D0

∂Nk∂Nl
e (D.43)

+ e∗ ·
(
∂H

∂Nk

∂e

∂Nl
+
∂H

∂Nl

∂e

∂Nk

)
+He∗ · ∂2e

∂Nk∂Nl
− e∗ ·D0

∂2e

∂Nk∂Nl︸ ︷︷ ︸
ζ

.
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The ζ term vanishes, since because of the hermitianity of D0 and of the reality of H it
follows that

[e∗ ·D0]i = e∗jD0,ji = [D∗0,jiej ]
∗ = [D0,ijej ]

∗ = [Hei]
∗ = He∗i . (D.44)

After substituting into β1 and taking into account the symmetry of ∂φ/∂xi∂xj due to φ
smoothness using (D.20) with A → H , B → e and NkNl → ∂φ/∂xi∂xj , the following
expression is obtained

β1 = e∗ · ∂D0

∂Nk

∂[Ae]

∂xk
(D.45)

+
i

2
A

[
∂2H

∂Nk∂Nl
− e∗ · ∂2D0

∂Nk∂Nl
e

]
∂2φ

∂xk∂xl

+ iA
∂H

∂Nk

∂e

∂Nl

∂2φ

∂xk∂xl
+O(|∇φ|) .

The last term in β1 expression can be estimated to be O(|∇φ|). Let us show this. The
imaginary part of (D.31) is

∂H

∂Nk

∂φ

∂xk
= Im(σ0) , (D.46)

with σ0 cubic in∇φ. Deriving respect to xl one obtains

∂H

∂Nk

∂2φ

∂xl∂xk︸ ︷︷ ︸
O(1)

+
∂2H

∂xl∂Nk

∂φ

∂xk︸ ︷︷ ︸
O(|∇φ|)

=
∂
(
Im(σ0)

)
∂xl︸ ︷︷ ︸

O(|∇φ|2)

, (D.47)

because ∂
(
Im(σ0)

)
/∂xl is quadratic in∇φ. As a consequence

iA
∂H

∂Nk

∂e

∂Nl

∂2φ

∂xk∂xl
= O(|∇φ|) (D.48)

and

β1 = e∗ · ∂D0

∂Nk

∂[Ae]

∂xk
+
i

2
A

∂2φ

∂xk∂xl

[
∂2H

∂Nk∂Nl
− e∗ · ∂2D0

∂Nk∂Nl
e

]
+O(|∇φ|) . (D.49)

Let us now consider β2 and β3. They can be written in the following form:

β2 ≡ e∗ ·
1

2

∂2ψ

∂xi∂xj
∂2D0

∂Ni∂Nj
[Aẽ] = e∗ · 1

2

∂2ψ

∂xi∂xj
∂2D0

∂Ni∂Nj
[Ae] +O(|∇φ|) (D.50)

=
1

2
A

∂2S

∂xi∂xj
e∗ · ∂2D0

∂Ni∂Nj
e+

i

2
A

∂2φ

∂xi∂xj
e∗ · ∂2D0

∂Ni∂Nj
e+O(|∇φ|) ,

β3 ≡ e∗ · (−iε1[Aẽ]) = −iAe∗ · ε1e+O(|∇φ|) . (D.51)

After substituting β1, β2 and β3 into β, the result is

e∗ · ∂D0

∂Nk

∂[Ae]

∂xk
+ e∗ ·

[
1

2

∂2S

∂xk∂xl
∂2D0

∂Nk∂Nl
− iε1

]
eA︸ ︷︷ ︸

formally like GO

(D.52)

+
i

2

∂2φ

∂xk∂xl
∂2H

∂Nk∂Nl︸ ︷︷ ︸
new CGO term

+O(|∇φ|) = f̃ · ρ1 .
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One can find out that the first two terms in Eq. (D.52) are formally the same as those
in the corresponding equation of standard geometrical optics, which implies the ampli-
tude transport equation (1.17). The only difference consists in evaluating all phase space
functions at N = ∇S, with ψ = S + iφ solving (D.31). Thus, one has

H(x,∇S) = O(|∇φ|2) , (D.53)

as opposite to the exact local dispersion relation H(x,∇S) = 0 of the standard geomet-
rical optics. This fact follows from the real part of (D.31):

H(x,∇S) =
1

2

∂2H(x,∇S)

∂Nk∂Nl

∂φ

∂xk
∂φ

∂xl︸ ︷︷ ︸
O(|∇φ|2)

+σ0(x,∇φ)︸ ︷︷ ︸
O(|∇φ|3)

= O(|∇φ|2) . (D.54)

With that in mind, we can follow the lines of the standard theory (cf., for instance Little-
john and Flynn [22]). I will continue exposing all the calculation in detail.

Recalling that A = A(x) and e = e(x,∇S), we obtain

GO − like term = e∗ · ∂D0

∂Nk
e︸ ︷︷ ︸

α′

∂A

∂xk
+ e∗ · ∂D0

∂Nk

∂e

∂xk
A+ e∗ · ∂D0

∂Nk

∂e

∂Nl

∂2S

∂xk∂xl
A (D.55)

+
1

2
e∗ · ∂2D0

∂Nk∂Nl
e︸ ︷︷ ︸

β′

∂2S

∂xk∂xl
A− ie∗ · ε1eA .

β
′

can be expressed in function of ∂2H/∂Nk∂Nl by (D.43) with ζ = 0 and in a similar
way, deriving D0e = He respect to Nk and using (e∗ ·D0 = He∗), it can be shown that

α
′
≡ e∗ · ∂D0

∂Nk
e =

∂H

∂Nk
. (D.56)

As a consequence, after exploiting the symmetry of ∂2S/∂xk∂xl, it can be found

GO − like term =
∂H

∂Nk

∂A

∂xk
+

e∗ · ∂D0

∂Nk

∂e

∂xk︸ ︷︷ ︸
α′′

+
1

2

∂2H

∂Nk∂Nl

∂2S

∂xk∂xl
(D.57)

+ e∗ · ∂H
∂Nk

∂e

∂Nl

∂2S

∂xk∂xl︸ ︷︷ ︸
β′′

−ie∗ · ε1e

A .

Now we will manipulate α
′′

and β
′′

terms. Let us start with β
′′

. If the total space deriva-
tive of (D.33) is taken, from the result the following estimate can be obtained:

∂H

∂xk
+

∂2S

∂xk∂xl
∂H

∂Nl
= O(|∇ψ|) . (D.58)
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In fact

0 =
∂

∂xn
[Hφ] =

∂[H]

∂xn
− 1

2

∂

∂xn

[
∂2H

∂Nk∂Nl

]
∂φ

∂xk
∂φ

∂xl
(D.59)

− 1

2

∂2H

∂Nk∂Nl

∂2φ

∂xn∂xk
∂φ

∂xl
− 1

2

∂2H

∂Nk∂Nl

∂φ

∂xk
∂2φ

∂xn∂xl

=
∂H

∂xn
+

∂2S

∂xn∂xk
∂H

∂Nk
− 1

2

∂

∂xn

[
∂2H

∂Nk∂Nl

]
∂φ

∂xk
∂φ

∂xl︸ ︷︷ ︸
O(|∇φ|2)

− ∂2H

∂Nk∂Nl

∂2φ

∂xn∂xk
∂φ

∂xl︸ ︷︷ ︸
O(|∇φ|)

,

where in the last equality the symmetry of ∂2H/∂Nk∂Nl was exploited. From (D.58) it
follows that

β
′′

= −e∗ · ∂H
∂xk

∂e

∂Nk
+O(|∇φ|) . (D.60)

Let us consider α
′′

. Using (D.44) and (D.53), it can be rewritten as follows

α
′′

= e∗ · ∂H
∂Nk

∂e

∂xk
− ∂e∗

∂Nk
·D0

∂e

∂xk
+O(|∇φ|2) . (D.61)

Moreover, we point out that−ie∗ ·ε1e = e∗ ·εa1e, because ε1 = εh1 +iεa1 (with εh1 andεa1 being
its hermitian and anti-hermitian part respectively) and usually the first order hermitian
part of the dielectric tensor vanishes. Summing up, the GO-like term becomes

GO − like term =
∂H

∂Nk

∂A

∂xk
+

[
1

2

∂2S

∂xk∂xl
∂2H

∂Nk∂Nl
+ e∗ · {H, e} (D.62)

− ∂e∗

∂Nk
·D0

∂e

∂xk
− ie∗ · ε1e

]
A+O(|∇φ|) ,

where the poisson brackets are defined in (1.21). This term can be easily put in the more
symmetric form (1.17). In fact deriving D0e = He respect N and x, after a little of
algebra, recalling that H(x,∇S) = O(|∇φ|2) and ∂2D0/∂x

k∂Nk = 0, it follows that

1

2

∂2S

∂xk∂xl
∂2H

∂Nk∂Nl
=

1

2

∂

∂xk

[
∂H

∂Nk

]
− 1

2

∂2H

∂xk∂Nk
= (D.63)

=
1

2

∂

∂xk

[
∂H

∂Nk

]
+

1

2

(
∂e∗

∂Nk
·D0

∂e

∂xk
+
∂e∗

∂xk
·D0

∂e

∂Nk

)
+O(|∇φ|2) ,

which after substitution in (D.62) gives, with a slightly different notation, Eq. (1.17),
apart from a remainder at least linear in ∇φ and recalling that V(x)=∂H/∂N(x,∇S(x)),
where S(x) function is different from the GO namesake. Substituting the GO− like term
into (D.52), we obtain the complete amplitude transport equation

V (x) · ∇A(x)− [−γ1(x) + i(δ1(x)− δGouy(x))− 1

2
∇ · V (x)]A(x) = σ1(x,∇φ) , (D.64)
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where γ1 and δ1 are formally given by (1.19) and (1.20), respectively, and the additional
phase shift

δGouy =
1

2

∂2H(x,∇S)

∂Nk∂Nl

∂2φ

∂xk∂xl
, (D.65)

is the generalization of the classical Gouy shift (1.36). Again, an arbitrary remainder
σ1(x,∇φ) is allowed, which must be at least linear in∇φ.

D.2 Wave energy flux derivation in the standard formulation of CGO

Let us consider the standard formulation of CGO (natural choice σ0 = σ1 = 0 of the
remainders in Eqs. (1.55) and (1.71)).
The derivation of the energy density flux expression is considerably simplified by the
fact that Eq. (1.71) parallels the corresponding GO amplitude transport equation (1.17).
The only additional term in the complex geometrical optics transport equation is the
purely imaginary Gouy phase shift term, and a phase shift does not affect the transport
of |A|2. If Eq. (1.73) is multiplied by A∗ and the real part is taken, the result

∇ · [V (x)|A(x)|2] = −2γ1(x,∇S)|A(x)|2 (D.66)

is formally identical to the GO one, obtained from Eq. (1.17). Apart from this formal
equality, the interpretation of the CGO and GO result is different. In fact, in CGO, the
squared amplitude |A|2 does not account for the whole electric field amplitude as, from
(1.30) and (1.56),

|E|2 = e−2κφ|A(x)|2 +O(1/
√
κ) , (D.67)

where the Pereverzev-Maslov estimate (C.19) has been accounted for (the exponential
has double argument, so the constant Cα is different but the κ power behavior remains
unchanged). Let us now show that the factor e−2κφ is present also in the energy flux
expression.
Let us turn to physical units. The Poynting vector, that represents the energy density
flux, is defined [23] by

S =
c

4π
ReE × ReB , (D.68)

where the customary complex expression of E and B was considered and, because we
are interested in the time-averaged expression over the period 2π/ω, we have

〈S〉 =
c

8π
Re(E∗ ×B) =

c

16π
(E∗ ×B + E ×B∗) . (D.69)

The B field can be expressed in terms of the E field using the Faraday law

∇r × E = ik0B , (D.70)

with the result
〈S〉 =

c

8πk0
Im [E∗ × (∇r × E)] . (D.71)

Returning to normalized x/L units, defining F = (16π/c)〈S〉, one has

F (κ, x) =
2

κ
Im[E∗(κ, x)× (∇× E(κ, x))] . (D.72)
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For the specific case of a complex eikonal wave (1.30) with amplitude given by (1.56),
flux (D.72) becomes

FCGO(κ, x) = [2∇S − (e∗ · ∇S)e− (e · ∇S)e∗]︸ ︷︷ ︸
α

e−2κφ|A|2 +O(1/
√
κ) . (D.73)

Even if it is not used nor important in this context, it is interesting to note that the
O(1/

√
κ) term is in the form

(∇φ ·R)e−2κφ|A|2 +O(1/κ) , (D.74)

with the R matrix given by

Rij = 2Im

[
eie
∗
j + 2

(
e∗ · ∂e

∂Ni

)
Nj +

(
N · ∂e

∗

∂Ni

)
ej + (N · e)

∂e∗j
∂Ni

]
. (D.75)

Now we point out that α term in (D.73) is equal to V. In fact

V =
∂H

∂Nk
= e∗ · ∂D0

∂Nk
e (D.76)

= e∗i2
∂S

∂xl
δlkδije

j − e∗iδki
∂S

∂xj
ej − e∗i ∂S

∂xi
δkj e

j

= 2
∂S

∂xl
δlk − e∗k ∂S

∂xj
ej − e∗i ∂S

∂xi
ek = [α]k ,

where (D.56) and (D.2b) (with all quantities evaluated at (x,∇S) instead of (x,∇ψ)) were
taken into account in third and fourth equivalence respectively. It follows that

FCGO(κ, x) = V (x)e−2κφ(x)|A(x)|2 +O(1/
√
κ) . (D.77)

In physical units, the corresponding Poynting vector reads

c

16π
FCGO(κ, x) = vg(x)WCGO(x) +O(1/

√
κ) , (D.78)

with WCGO(x) formally given by

WCGO(x) = e−2κφ(x)WGO(x) , (D.79)

where vg is formally equivalent to (1.26) and WGO(x) expression given in (1.27). Sum-
ming up, in the Complex geometrical optics framework, the dominant order of the Point-
ing flux is the same as the GO one, except from an exponential decaying factor e−2κφ,
that controls the localization of the beam around the reference ray.

In order to obtain the energy transport equation, we turn back to Eq. (D.66). First of
all it is worth noting that the term in squared brackets is equal to the dominant order
of FCGO (Eq. (D.77)), apart from a factor e−2κφ. Since we are interested to estimate the
divergence of the dominant order term of the flux FCGO, we want to include the e−2κφ

factor in the brackets. This is easy to be done, using Eq. (1.67). In fact

∇ · [V e−2κφ|A|2] = e−2κφ∇ · [V |A|2]− 2κe−2κφ|A|2 V · ∇φ︸ ︷︷ ︸
=0

, (D.80)
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and hence, from Eq. (D.66) and Eq. (D.80) it follows that

∇ · [V e−2κφ|A|2] = −2γ1e
−2κφ|A|2 , (D.81)

which, restoring dimensional quantities, gives rise to

∇r · [vgWCGO] = −γWCGO , (D.82)

with group velocity vg and energy absorption coefficient γ formally equal to GO expres-
sions (1.26) and (1.28) respectively, and WCGO given in (D.79). Equation (D.82) is for-
mally equal to GO one (Eq. (1.25)), but the equivalence is purely formal, because in the
CGO framework all the phase functions (like H(x,N)) have to be evaluated at N = ∇S,
where S(x) is different from the GO namesake, taking into account all the diffraction
effects.

Just to check, let us show that Eq. (D.81) (and thus Eq. (D.82), restoring dimensional
units) can be directly obtained taking the divergence of Eq. (D.72), substituting the CGO
electric field ansatz, and retaining only the dominant order term. If the divergence of Eq.
(D.72) is taken, from (1.1), recalling that

ε(κ, x) = εh0 (x) + κ−1εa1 +O(κ−2) , (D.83)

one finds
∇ · F = −2E∗ · εa1E +O(κ−1) . (D.84)

In fact one has

∇ · F =
1

iκ
[∇ · (E∗ × (∇× E))−∇ · (E × (∇× E∗))] (D.85)

=
1

iκ
[−E∗ · ∇ × (∇× E) + E · ∇ × (∇× E∗)]

= −κ
i

[E∗i (εij − ε∗ji)Ej ] = −2κE∗i

(
εij − ε∗ji

2i

)
Ej

= −2κE∗ · εaE = −2E∗ · εa1E +O(κ−1) ,

where in the second equality it was used the vector identity

∇ ·A×B = B · ∇ ×A−A · ∇ ×B , (D.86)

and in the third equality Eq. (1.1) was taken into account. Eq. (D.84) shows that F is a
conserved flux in a non-dissipative medium (εa1 = 0).
Now it is possible to substitute the CGO electric field expression

ECGO(κ, x, t) = A(x)ẽ(x,∇ψ(x))e−κφ+iκS−iωt +O(κ−1) (D.87)

= A(x)e(x,∇S(x))e−κφ+iκS−iωt +O(κ−1/2) ,

obtaining

∇ · F = −2(e∗ · εa1e)e−2κφ|A|2 +O(κ−1/2) = −2γ1e
−2κφ|A|2 +O(κ−1/2) , (D.88)

consistently with Eq. (D.81) at the dominant order, as was expected.



APPENDIX E

Overview of the GRAY code

The beam tracing code GRAY performs the computation of the quasi-optical propagation
of a Gaussian beam of electron cyclotron waves in a general tokamak equilibrium, and of
the power absorption and driven current. The propagation of a general astigmatic Gaus-
sian beam is described within the framework of the complex eikonal approach in terms
of a set of “extended” rays that allow for diffraction effects. The absorbed power and
the driven current density are computed along each ray solving the fully relativistic dis-
persion relation for electron cyclotron wave and by means of the neoclassical response
function for the current.

E.1 Beam tracing equations

The GRAY code solves Eq. (1.65), (1.66) and (1.70), with the Hamiltonian

H(x,N) = N2 − n2(x,N‖) , (E.1)

where n2(x,N‖) is obtained from the Altar-Appleton-Hartree dispersion relation for
high-frequency waves in cold magnetized plasmas and N‖ = b(x) · N is the real par-
allel refractive index, with b(x) the unit vector of the local equilibrium magnetic field.
The complex extension, cf. Eq. (D.33), gives the effective Hamiltonian

Hφ(x,N) = N2 − n2(x,N‖)− |∇φ(x)|2 +
1

2

∂2n2(x,N‖)

∂N2
‖

(b(x) · ∇φ(x))2 . (E.2)

Three choices for the integration variable τ of the quasi-optical ray-tracing equations
(1.65), (1.66) and (1.70) are available, i.e., the arc length along the trajectory s, the “time”
ct, and the real part of the eikonal function S. The default option is the variable s and
the QO ray equations become

dx

ds
=

∂Hφ/∂N

|∂Hφ/∂N |

∣∣∣∣
Hφ=0

, (E.3)

dN

ds
= − ∂Hφ/∂x

|∂Hφ/∂N |

∣∣∣∣
Hφ=0

,

∂Hφ

∂N
· ∇φ = 0 .

The algorithm for the quasi-optical ray-tracing equations solution is described in detail
in [6].
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E.2 Coordinate systems and general astigmatic Gaussian beam descrip-
tion

A few sets of coordinate systems are used in the code:

The reference “laboratory” system is the right handed cartesian orthogonal system (xlab,
ylab, zlab) with zlab axis being the tokamak symmetry axis. For the purpose of the physics
analysis this coordinate system may be rotated around the zlab-axis so that the xlabzlab

plane contains the launching point, i.e., zlab vertical, xlab radially outward through the
port center, and ylab pointing in the counter clockwise direction when viewed from
above.

In addition to the right handed cartesian orthogonal system specified above, we in-
troduce also a right-handed cylindrical system (R,ϕ,Z) with transformation from the
cylindrical to the cartesian system given by xlab = R cosϕ, ylab = R sinϕ, zlab = Z.

Moreover, locally a reference system (x, y, z) is introduced, in which the z axis is directed
along the direction of propagation of the beam and the x axis lies in the horizontal plane
(i.e., zlab = const).

ẑ = k̂11 =
k11

|k11|
, (E.4)

x̂ =
k̂11 × ẑlab

|k̂11 × ẑlab|
,

ŷ = ẑlab × x̂ ,

where k11 is the reference ray’s wave vector, and ẑlab is the unit vector pointing in the
z direction.The (x, y, z) coordinates are obtained from the laboratory coordinates by the
following rotation:

x = xlab cos δ̄ − ylab sin δ̄ , (E.5)

y =
(
xlab sin δ̄ + ylab cos δ̄

)
cos γ − zlab sin γ ,

z =
(
xlab sin δ̄ + ylab cos δ̄

)
sin γ + zlab cos γ ,

where

γ = k̂11 · ẑlab , (E.6)

δ = arctan

(
k̂11 · ŷlab

k̂11 · x̂lab

)
,

δ̄ =
π

2
− δ .

These coordinate system is sufficient to describe a non-astigmatic Gaussian beam (cf.
Appendix B).

In general, due to the particular optical system of the wave source, we have to deal
with general astigmatic Gaussian beams, characterized by intensity and phase varying
in the plane transversal to the direction of propagation as 2D elliptic Gaussian functions,
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with a non-vanishing angle between their principal axes. The spatial dependence of the
electric field of a general astigmatic Gaussian beam can be written in the form

E ∝ exp−
(
Awx

2 +Bwy
2 + Cwxy

)
exp

[
z +

(
ARx

2 +BRy
2 + CRxy

)]
, (E.7)

with real coefficients (AR, BR, CR) and (Aw, Bw, Cw) that depend on the z variable. The
subscripts R,w depend on the fact that (AR, BR, CR) are related to the local radii of
curvature Rξ, Rη of the phase front and (Aw, Bw, Cw) are related to the local beam sizes
wξ, wη . In fact, Eq. (E.7) can be rewritten to emphasize the elliptic shape of the constant
phase and constant amplitude contours, introducing two additional coordinate systems,
(ξw, ηw) and (ξR, ηR) in the (x, y) plane, rotated by the angles ϕw and ϕR, respectively,

x = ξw cosϕw − ηw sinϕw = ξR cosϕR − ηR sinϕR (E.8)
y = ξw sinϕw + ηw cosϕw = ξR sinϕR + ηR cosϕR

In the (ξw, ηw) and (ξR, ηR) systems, the axes are aligned with the major and minor
axes of the intensity and phase ellipses respectively, and the general astigmatic Gaus-
sian beam in vacuum takes the simple form (cf. [11])

E ∝ exp

[
−

(
ξ2
w

w2
ξ

+
η2
w

w2
η

)]
exp

[
ik0

(
z +

ξ2
R

2Rξ
+

η2
R

2Rη

)]
. (E.9)

In particular, the radii of curvature Rξ, Rη and local beam sizes wξ, wη are related with
the (AR, BR, CR) and (Aw, Bw, Cw) coefficients as follows:

Rξ = 1/(2Kξ) , Rη = 1/(2Kη) (E.10)

wξ = 1/
√
Wξ , wη = 1/

√
Wη , (E.11)

where

Kξ =
1

2

[
AR +BR +

AR −BR
cos(2ϕR)

]
, Kη = AR +BR −Kξ , (E.12)

Wξ =
1

2

[
Aw +Bw +

Aw −Bw
cos(2ϕw)

]
, Wη = Aw +Bw −Wξ , (E.13)

with

ϕR =
1

2
arctan

CR
AR −BR

, (E.14)

ϕw =
1

2
arctan

Cw
Aw −Bw

.

A general astigmatic Gaussian beam is described in terms of six parameters: the beam
widths wξ,η , the phase front curvature radii Rξ,η and the intensity and phase ellipses
rotation angles ϕw,R.

Simple astigmatic beams can be described in terms of 5 parameters only, because the
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phase and intensity ellipses are aligned, i.e., ϕw = ϕR ≡ ϕ: wξ,η , Rcξ,η , ϕ or alterna-
tively by the beam waists w0ξ,η , the waists z coordinates d0ξ,η , and ϕ, where Rξ,η , wξ,η
are related to d0ξ,η , w0ξ,η by equations formally equal to (1.34) and (1.35):

wj(z) = w0j

√
1 +

(
z − d0j

zRj

)2

, (E.15)

Rj(z) = (z − d0j)

[
1 +

(
zRj

z − d0j

)2
]
, (E.16)

where j = ξ, η and zRj = k0w
2
0j/2 are the Rayleigh lengths. According to Eq. (E.16), a

convergent beam (z < d0j) has Rj < 0, while a divergent beam has Rj > 0.

E.3 Ray initial conditions

The QO ray equations (E.3) are solved for NT = (Nr − 1) × Nθ + 1 rays distributed in
order to simulate the Gaussian pattern of an actual antenna, with initial position on a
suitable surface at the antenna centered on the beam axis.
The Nr rays are distributed radially up to a “cut-off” “radius” ρmax defined as ρmax =
κφmax such that the beam carries a fraction of the input power equal to [1−exp(−2ρ2

max)].
In fact, defining the adimensional radial coordinate ρ = κφ, it follows that

Pin(up to ρmax)

Pin
=

∫ ρmax

0
|E(ρ)|22πρ dρ∫∞

0
|E(ρ)|22πρ dρ

(E.17)

=

∫ ρmax

0
e−2ρ2 2πρ dρ∫∞

0
e−2ρ2 2πρ dρ

= 1− exp(−2ρ2
max) .

TheNθ angular rays are distributed at constant electric field amplitude (i.e. at φ = const).
For details we refer to [6].

E.4 Launching coordinates and wave vector

The launching coordinates of the central ray of the EC beam will be denoted either as
(xlab,0, ylab,0, zlab,0), or (R0, φ0, Z0), depending on the coordinate system used (cartesian
or cylindrical)

xlab,0 = R0 cosφ0, ylab,0 = R0 sinφ0, zlab,0 = Z0. (E.18)

and the launched refractive index vector N will have components (Nx0, Ny0, Nz0), and
(NR0, Nϕ0, NZ0), related by

Nx0 = NR0 cosϕ0 −Nφ0 sinϕ0, (E.19)
Ny0 = NR0 sinϕ0 +Nφ0 cosϕ0

Nz0 = NZ0
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E.5 EC Launching angles

The poloidal and toroidal launching angles α, β are defined in terms of the cylindrical
components of the refractive index vector

NR0 = − cosβ cosα, (E.20)
Nϕ0 = sinβ,

NZ0 = − cosβ sinα .

with −180◦ ≤ α ≤ 180◦, and −90◦ ≤ β ≤ 90◦, so that

tanα = NZ0/NR0, (E.21)
sinβ = Nϕ0 .

A 1-D scan of launch angle with constant toroidal component at launch (Nϕ0) is achieved
by varying only α, keeping β fixed. Injection at β = 0, α = 0 results in a ray launched
horizontally and in a poloidal plane towards the machine centre. The above choice is
quite convenient to perform physics simulations, since EC results are invariant under
toroidal rotation, due to axisymmetry. This convention is the same used for the EC in-
jection angles in ITER.

E.6 EC absorption model

The EC power P is assumed to evolve along the ray trajectory obeying to the following
equation

dP

ds
= −αP , (E.22)

where here α is the absorption coefficient. This equation is obtained integrating Eq.
(1.82) on a portion of flux tube of section δS(s) around the considered ray, between s and
s+ ds, of volume δSds = δS|vg|dt, and putting α = γ/|vg|. The absorption coefficient is
actually computed using the relativistic dispersion relation as

α = 2
ω

c

Im(Hw)

|∂H/∂N |

∣∣∣∣
H=0

' 4
ω

c
Im(N⊥w)

N⊥
|∂H/∂N |

∣∣∣∣
H=0

= 2Im(k⊥w)
vg⊥
|vg|

, (E.23)

being N⊥w (and k⊥w) the perpendicular refractive index (and wave vector) solution of
the relativistic dispersion relation for EC waves

Hw = N2 −N2
‖ −N

2
⊥w = 0 . (E.24)

The (E.23) expressions follow from the fact that the absorption coefficient can be written
in the form

α = 2Im(k) · vg
|vg|

(E.25)

(cf. Bornatici et al. [25]), that is equivalent to Eq. (1.28), as it is demonstrated in section
4.3 of Akhiezer’s book [26], and the following assumptions are made. First, the ratio
vg/|vg| is estimated using the cold dispersion relation. Secondly the Im(k) term is esti-
mated using the relativistic dispersion relation, assuming that k‖ is purely real. We refer
to [27] for details on the relativistic dispersion relation solution.
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Integrating Eq. (E.22), the power transmitted by the wave up to the archlength s can be
obtained:

P (s) = P0e
−τ(s) , (E.26)

where
τ(s) =

∫ s

0

α(s
′
)ds

′
(E.27)

is denoted “optical depth” and P0 is the injected power. As a consequence, the power
deposited up to archlength s is

Pabs(s) = P0[1− e−τ(s)] . (E.28)

E.7 ECRH&CD location and profile characterization

Implementing an appropriate ECCD model (Cohen model or momentum-conservation
model) the driven current and absorbed power density profiles, Jcd(ρ), p(ρ), is com-
puted, where here ρ denotes the normalized toroidal radius defined as in section 0.2.
This profiles can be characterized in term of suitable quantities. In GRAY, two ap-
proaches are followed. In the former case, the profiles are characterized in terms of three
quantities: the peak value, the “radius” ρ corresponding to the peak, and the full profile
width at 1/e of the peak value. In the latter case, two average quantities are computed
for each profile, namely the averaged radius 〈ρ〉f with f = p, J

〈ρ〉p =

∫
dV ρ p(ρ)∫
dV p(ρ)

, 〈ρ〉J =

∫
dA ρ|Jcd(ρ)|∫
dA|Jcd(ρ)|

, (E.29)

and average profile width ∆ρf defined in terms of the variance as

∆ρf = 2
√

2〈∆ρ〉f with 〈∆ρ〉2f = 〈ρ2〉f − (〈ρ〉f )2 . (E.30)

In the integral in 〈ρ〉p definition the volume element dV is given by the volume enclosed
between the ρ−labeled and (ρ + dρ)−labeled magnetic surfaces. Similarly, in 〈ρ〉j def-
inition the surface element dA consists in the surface enclosed by the ρ−labeled and
(ρ + dρ)−labeled magnetic surfaces intersections with the poloidal plane. The above
definitions (E.29), (E.30) apply also to the case of non monotonic profiles. Note that the
average values coincide with the peak values in case of almost Gaussian profiles. Factor√

8 is introduced to match with full profile width in case of Gaussian profile.
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Numerical computation of the beam transversal spectrum

F.1 Routine description

The first part of the routine computes the values of the real and imaginary part of the
eikonal function on the plane xy perpendicular to k11 according to Eqs. (3.34). Actually,
instead of S, the difference S−S11 is computed, where S11 is the S value on the reference
ray. For the imaginary part of the eikonal this translation is not needed because φ11 = 0.

It is possible to avoid this projection step properly choosing the integration variable of
the hamiltonian equations. This alternative is not currently present in the GRAY routine,
but it is presented in the second section of this Appendix.

The field can be written in the eikonal form

E(x, y) ∝ eik0[S(x,y)+iφ(x,y)] ≡ Enum(x, y) , (F.1)

where the subscript “num” stands for “numerical”, in order to distinguish the values
computed by this E field expression from those obtained by the local Gaussian model,
that will be denoted EGauss.

In order to compute its numeric Fourier transform, it is needed to know the values of
Enum(x, y) on a regular grid (x(i), y(j)) with i = 1, . . . , Nx and j = 1, . . . , Ny (Nx and
Ny odd integer numbers, in order to have a central point, needed by the Fourier trans-
form algorithm). For simplicity we chose a square grid with Nx = Ny ≡ Ng = 2Nr − 1,
where Nr is the number of rays in the radial direction and the subscript “g” stands for
“grid”. To obtain this result a spline fit with an external routine is performed and the
spline function is evaluated on a regular grid with an another routine. The extension of
the grid is tuned to cover the spot of the beam, with a little remainder, as follows:

∆x = ∆y = (1 + ε) max
[√

x2
jk + y2

jk ; j = 1, . . . , Nr , k = 1, . . . , Nθ

]
(F.2)

with ε ∼ 1/10. Here the notation xjk indicates the x component of the vector (x, y, z)jk,
instead of the whole vector.

With the aim to get a best outcome from the Fourier transform routine, it is better to
give as input a function that is vanishingly small at the border of the grid. Therefore
we chose to give as input the difference between (F.1) and the Gaussian model field and
in a second step to add to the result the analytic transform of the Gaussian model field.
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The difference between (F.1) and the Gaussian model field on the grid is computed as
follows:

∆E((x(i), y(j))) = Enum(x(i), y(j))− EGauss(x(i), y(j)) (F.3)

with

Enum(x(i), y(j)) = exp{ik0[S(x(i), y(j)) + iφ(x(i), y(j))]} (F.4)

EGauss(x(i), y(j)) = exp{i[Ax(i)2 +By(j)2 + Cx(i)y(j)]} ,

whereA,B,C are the components of the M matrix (3.21). In order to minimize the border
effects on the transform, a window function is multiplied to ∆E(x, y) (cf. Fig. F.1):

fw(x, y) =
1

2

{
1 + cos

[
π

max
(
ρ0,min(

√
x2 + y2, ρmax)

)
− ρ0

ρmax − ρ0

]}
, (F.5)

where ρmax is the maximum between the two local beam sizes wξ, wη (cf. Appendix E.2)
and ρ0 is chosen as ρ0 = ρmax/2.
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Figure F.1: fw(x, y) plot with ρmax = 1 and ρ0 = 0.5ρmax

In order to improve the resolution of the spectrum, ∆Ew(x, y) = ∆E(x, y)fw(x, y) is
evaluated on a larger concentric square grid {(x̄(i), ȳ(j)) , i, j = 1, . . . , N̄g} putting zero
values on the nodes outside the original grid. In particular we chose a second grid with
four times the surface of the first one (N̄g = 2Ng − 1). The ∆Ew(x, y) values on the new
grid are computed in two steps: first of all the values on the new grid are put to zero,
and then the center of the grid is filled as follows:

∆Ew

[
x̄

(
i+

Ng − 1

2

)
, ȳ

(
i+

Ng − 1

2

)]
= ∆Ew (x(i), y(j)) (F.6)

for i, j = 1, . . . , Ng .

Now the {∆Ew(x̄(i), ȳ(j)), i, j = 1, . . . , N̄g} values are given as input to an external 2D
FFT routine. The output is given on a square grid (k̄x(i), k̄y(j)) with i, j = 1, . . . , N̄g ,
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Figure F.2: The two k grids with N̄ = 10

and the k spacing between grid points is ∆k = 2π/(∆x N̄g), where ∆x is the x spacing
between the original grid points. The output points are referred to positive values of
kx and ky (0 < kx < N̄g∆k , 0 < ky < N̄g∆k) but the output function is periodic with
period N̄g∆k/2 both in kx and ky directions. Since we are interested to center the peak of
the transformed Gaussian at kx = ky = 0, we evaluate the FFT output on a smaller grid
around the origin of the axes. In particular a square grid {(kx(i), ky(j)) , i, j = 1, Ng} of
a quarter of the original surface is considered, centered in (kx = 0 , ky = 0). To do this
we exploit the periodicity of the function (cf. Fig. F.2). If we call ∆̃Ew(k̄x(i), k̄y(j)) the
output of the FFT, the part evaluated on the smaller grid can be computed as follows:

∆̃Ew(kx(i), ky(j)) = ∆̃Ew

[
k̄x

(
mod

(
i+ 3

Ng − 1

2
, N̄

)
+ 1,

)
, (F.7)

k̄y

(
mod

(
j + 3

Ng − 1

2
, N̄

)
+ 1

)]
for i, j = 1, . . . , Ng .

At this point the analytic transform of the Gaussian model electric field is added to ∆̃Ew
and the obtained function is normalized by its peak value:

Ẽ
′

num(kx(i), ky(j)) = ∆̃Ew(k(i), k(j))+ (F.8)

+
i√
∆

exp {i[Bkx(i) +Aky(j)− Ckx(i)ky(j)]/∆}

Ẽnum(kx(i), ky(j)) = Ẽ
′

num(kx(i), ky(j))/Ẽ
′

num(kx(i0), ky(j0)) (F.9)

with ∆ equal to −4 times the determinant of the M matrix (cf. 3.21). Moreover, i0 =
i(kx = 0) and j0 = j(ky = 0).

Disregarding the phase, the routine computes

|ẼGauss|(kx(i), ky(j)) = | exp {i[Bkx(i) +Aky(j)− Ckx(i)ky(j)]/∆} | , (F.10)

|Ẽnum|(kx(i), ky(j)) = |Ẽ
′

num(kx(i), ky(j))/Ẽ
′

num(kx(i0), ky(j0))|
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The mean squared error D between the modules |ẼGauss| and |Ẽnum| is obtained con-
sidering only the central (n + 1)2 points (with n < Nr) to minimize the border effects
eventually due to the spline interpolation, and it is computed as follows:

D =

√√√√√√ 1

(n+ 1)2

Ng+1

2 +n∑
i,j=

Ng+1

2 −n

[
|ẼGauss|(kx(i), ky(j))− |Ẽnum|(kx(i), ky(j))

]2
. (F.11)

F.2 An alternative way to integrate the extended ray equations

Let us consider the extended ray equations:

dx

dτ
=
∂Hφ

∂N

∣∣∣∣
Hφ=0

, (F.12)

dN

dτ
= −∂Hφ

∂N

∣∣∣∣
Hφ=0

,

dφ

dτ
= 0 .

Differentiating the equation
(x− x11) ·N11 = 0 (F.13)

which states that x lies on the plane perpendicular to N11 passing through x11, the posi-
tion of the reference ray point, and recalling that dS11 = dx11 ·N11, we obtain

dS11

dτ
= N11 ·

∂Hφ

∂N
− ∂Hφ

∂x

∣∣∣∣
11

· (x− x11) (F.14)

From (F.12) and (F.14) the following equations hold

dx
dS11

=

[
N11 ·

∂Hφ

∂N
− ∂Hφ

∂x

∣∣∣∣
11

· (x− x11)

]−1
∂Hφ

∂N

∣∣∣∣
Hφ=0

, (F.15)

dN

dS11
= −

[
N11 ·

∂Hφ

∂N
− ∂Hφ

∂x

∣∣∣∣
11

· (x− x11)

]−1
∂Hφ

∂x

∣∣∣∣∣
Hφ=0

dφ

dS11
= 0 .

Equations (F.15), with initial conditions given on a plane, give rise to iterated points that
lie on the plane perpendicular to the local N11 (that is perpendicular to the local k11)
passing through the local x11, at each fixed value of the integration variable S11.
These equations, together with

dS

dS11
=

[
N11 ·

∂Hφ

∂N
− ∂Hφ

∂x

∣∣∣∣
11

· (x− x11)

]−1

N · ∂Hφ

∂N
, (F.16)

reconstruct the S function along the propagation.



Numerical spectrum computation 111

I will now show as an example the integration of this system of equations in the sim-
pler case of ray tracing φ = 0, in a simple plasma configuration. In this section, from
now on, for brevity I will mark with the symbol “∼” the quantities relative to the ref-
erence ray instead of the subscript “11”. Moreover, for clarity sake, the vectors will be
written in bold character, in order to distinguish the x position vector from the x compo-
nent.

Let us consider a weakly non-uniform cold plasma with density linearly varying in the
x direction. The ray equations (F.15) (with φ = 0 and therefore H = Hφ) are written with
the Hamiltonian :

H = N2 −

(
1−

ω2
p

ω2

)
= N2 − 1 +

x

L
, (F.17)

with constant L, because ω is constant, n ∝ x and ωp ∝
√
n, n being the plasma density.

Equations (F.15) become

dx
dS̃

=

[
2ÑxNx −

x− x̃
L

]−1

2N

∣∣∣∣∣
H=0

(F.18)

dN
dS̃

=

[
2ÑxNx −

x− x̃
L

]−1(
− 1

L

)
x̂

∣∣∣∣∣
H=0

(F.19)

and the corresponding equations relative to the reference ray are given by

dx̃
dS̃

=
Ñ
Ñ2
x

∣∣∣∣∣
H=0

(F.20)

dÑ
dS̃

= − 1

2LÑ2
x

x̂

∣∣∣∣
H=0

(F.21)

Let us consider a beam propagating in the x direction with boundary conditions on the
vacuum-plasma surface (x = 0). The boundary conditions for the reference ray are:

x̃(0) = ỹ(0) = z̃(0) = 0 , Ñx(0) = 1 , Ñy(0) = Ñz(0) = 0 . (F.22)

The boundary conditions for the other rays are:

x(0) = 0 , y(0) = y0 , z(0) = z0 , Nx(0) = N0x , Ny(0) = N0y , Nz(0) = N0z . (F.23)

Before starting to solve the equations, it is possible to find out that the fact that x(0) =

x̃(0) implies that x(S̃) = x̃(S̃) , ∀ S̃ . It follows from (F.18) and (F.20), which state that

d(x− x̃)

dS̃
=

[
Ñx

(
2ÑxNx −

x− x̃
L

)]−1
x− x̃
L

. (F.24)

I will solve the equations in this order: (F.21)→ (F.20)→ (F.19)→ (F.18).

Consider Eq. (F.21). The y and z components have the trivial solution: Ñy(S̃) = Ñz(S̃) =

Ñy(0) = Ñz(0) = 0. The x component is a separable ordinary differential equation, and
it can be easily integrated to give

Ñx(S̃) =
3

√
1− 3

2

S̃

L
. (F.25)
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To solve (F.19) and (F.18) it is needed only to solve the x component of (F.20). Substi-
tuting (F.25) it can be easily integrated as follows (we recall that x̃(0) = 0):

x̃(S̃) =

∫ S̃

0

1

Ñx(τ)
dτ =

∫ S̃

0

3

√
1− 3

2

τ

L
dτ = (F.26)

= L

1−

(
1− 3

2

S̃

L

) 2
3

 = L
[
1− Ñ2

x(S̃)
]
.

Now it is possible to go on and solve (F.19). The y and z components have the trivial
solutions Ny = N0y and Nz = N0z .The x component is given by

dNx

dS̃
=

1

x− x̃− 2LÑxNx

∣∣∣∣
H=0

. (F.27)

The dispersion relation H = 0 is exploited in order to obtain x(N):

x = L(1−N2
x −N2

y −N2
z ) = L(1−N2

x −N2
0y −N2

0z) ≡ L(1−N2
x −N2

0r) . (F.28)

Substituting (F.28) into (F.27) and changing variable from S̃ to Ñx, the equation be-
comes:

(N2
x + 2ÑxNx − Ñ2

x +N2
0r)

dNx

dÑx
= 2Ñ2

x . (F.29)

This equation can be put in the form:

[y(x)2 + 2xy(x)− x2 + c2]y
′
(x) = 2x2 , (F.30)

with constant c. Let us solve it. Doing the change of variables (x, y) → (u = y + x , v =
y − x), the equation becomes:

du(2uv − v2 + c2) + dv(u2 + c) = 0 . (F.31)

With the restriction 0 6= v = y − x = Nx − Ñx (that is acceptable, because in the v = 0
case the solution is known, being the reference ray solution shifted by the initial position
(0, y0, z0)) the further change of variables is done: (u, v) → (α = u/c , β = c/v). The
equation becomes

β
′
+ 1 =

(β + α)2

1 + α2
, (F.32)

with β
′

= dβ/dα. Defining the function g(α) = β(α) + α, the equation takes the form:

g
′

g2
=

1

1 + α2
, (F.33)

that is separable, with the solution:

− 1

g(α)
= arctanα+ γ (F.34)

with γ being the integration constant. γ̄ = γ−1 can be easily computed at the boundary
by

γ̄ =
g(α)

g(α) arctanα− 1

∣∣∣∣
0

, (F.35)
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where, reminding that y ≡ Nx and x ≡ Ñx, we have

g(α) =
N2
x +N2

0r − Ñ2
x

N0rv(Nx, Ñx)
(F.36)

arctanα = arctan

(
Nx + Ñx
N0r

)
.

In general arctanα 6= 0 but at the boundary (recalling that v 6= 0 for hypothesis) g = 0.
As a consequence γ̄ = 0. From (F.36) it follows that

Nx(Ñx) =

√
Ñ2
x −N2

0r (F.37)

Finally it is possible to solve (F.18). To solve the x component it is sufficient to substitute
(F.37) into H = 0, from which it follows that

x(S̃) = x̃(S̃) = L[1− Ñx(S̃)2] . (F.38)

This is consistent with (F.24). Turning to y and z components, let us consider for example
y. Substituting (F.37) and (F.38) into (F.18), we have

dy

dS̃
=

N0y

Ñx(S̃)
√
Ñx(S̃)2 −N2

0r

. (F.39)

Changing variable from S̃ to Ñx, the equation becomes

dȳ

dÑx
= − N0yÑx√

Ñ2
x −N2

0r

, (F.40)

where ȳ = y/2L, that can be easily integrated obtaining:

ȳ(Ñx) = ȳ0 −N0y

[√
Ñ2
x −N2

0r −
√

1−N2
0r

]
, (F.41)

where ȳ0 = y0/2L.

The ray equations can be finally written in the following parametric form (recalling that
N2

0x = 1−N2
0r):

x(S̃) = L

1−

(
1− 3

2

S̃

L

) 2
3

 , (F.42)

y(S̃) = y0 − 2LN0y


√√√√(

1− 3

2

S̃

L

) 2
3

−N2
0y −N2

0z −N0x

 , (F.43)

z(S̃) = z0 − 2LN0z


√√√√(

1− 3

2

S̃

L

) 2
3

−N2
0y −N2

0z −N0x

 , (F.44)
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or in the computationally faster form

x(S̃) = L

1−

(
1− 3

2

S̃

L

) 2
3

 , (F.45)

y(S̃) = y0 − 2LN0y

√N2
0x −

x(S̃)

L
−N0x

 , (F.46)

z(S̃) = z0 +
N0z

N0y

[
y(S̃)− y0

]
. (F.47)

Now as a check I will derive the expression of the trajectory, that has to coincide with
the well known parabolic form:

x(y, z) =
N0x√

N2
0y +N2

0z

√
(y − y0)2 + (z − z0)2 − 1

4L

(y − y0)2 + (z − z0)2

N2
0y +N2

0z

. (F.48)

To obtain the trajectory, first of all from (F.43) and (F.44) it follows√
N2

0x − 2x̄ = N0x −
1

2

(
ȳ − ȳ0

N0y
+
z̄ − z̄0

N0z

)
, (F.49)

where the bar over the variable indicate the variable divided by 2L as before. From
(F.47), defining r =

√
(y − y0)2 + (z − z0)2, the following expressions can be obtained:

ȳ − ȳ0 =
N0y

N0r
r̄ , (F.50)

z̄ − z̄0 =
N0z

N0r
r̄ . (F.51)

Substituting (F.50) and (F.51) into (F.49), after a little algebra, we obtain

x̄(r̄) =
N0x

N0r
r̄ − 1

2N2
0r

r̄2 , (F.52)

that is equivalent to (F.48).
From (F.43) and (F.44) it follows that this solution exists only for S̃ < S̃tp, with Ñx(S̃tp) =

N0r. The geometrical meaning of this fact is that S̃ = S̃tp is the turning point (with
x̄tp = N2

0x/2) of the parabolic trajectory, and after that point do not exist values of S̃
which satisfy x(S̃) = x̃(S̃).

Finally, one example will be shown, obtained with a Fortran program that generates
this trajectories starting from the initial conditions of a divergent non-astigmatic Gaus-
sian beam propagating in the x direction. For a non-astigmatic Gaussian beam, the real
part of the eikonal function is given by

S(x, y, z) = x

(
1 +

1

2

y2 + z2

x2 + x2
R

)
(F.53)
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where xR is the Rayleigh length.

Nx =
∂S

∂x
= 1 +

1

2

x2
R − x2

(x2
R + x2)2

(y2 + z2) (F.54)

Ny =
∂S

∂y
=

yx

x2 + x2
R

Nz =
∂S

∂z
=

zx

x2 + x2
R

The plane x = 2xR is chosen as initial surface at the vacuum-plasma interface, at which
the beam is divergent. In this plane the index of refraction components are given by:

Nx = 1− 3

50

y2 + z2

x2
R

(F.55)

Ny =
2

5

y

xR

Ny =
2

5

z

xR

Moreover, the rays are intended as independent ones, and as a consequence the index
of refraction has to be normalized to 1 in vacuum, after that the initial conditions of the
refractive index are complete: N0 = N/|N|.

Figure F.3 shows some surfaces of trajectory points at equal step of integration (and
therefore at equal S̃). These are perfectly perpendicular to the x direction as was ex-
pected.



116 F.2 An alternative way to integrate the extended ray equations

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18  0.2

y/
2L

x/2L

fronts at dofferent integration steps

Figure F.3: Some S̃ = constant surfaces for S̃ = 1, 1.5, 2, 2.5, 3, 3.2, 3.4 .
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