CORRIGENDUM

Corrigendum: An educational path for the magnetic vector potential and its physical implications

To cite this article: S Barbieri et al 2014 Eur. J. Phys. 35

View the article online for updates and enhancements.

Related content

- Reply to Comment on ‘An educational path for the magnetic vector potential and its physical implications’
 S Barbieri, M Cavinato and M Giliberti

- An educational path for the magnetic vector potential and its physical implications
 S Barbieri, M Cavinato and M Giliberti

- Comment on ‘An educational path for the magnetic vector potential and its physical implications’
 José A Heras
Corrigendum: An educational path for the magnetic vector potential and its physical implications

2013 Eur. J. Phys. 34 1209

S Barbieri1, M Cavinato2 and M Giliberti2

1 Dipartimento di Fisica e Tecnologie Relative, Università degli Studi di Palermo, Palermo, Italy
2 Dipartimento di Fisica, Università degli Studi di Milano, Milano, Italy

E-mail: marco.giliberti@unimi.it

Received 25 November 2013
Accepted for publication 25 November 2013
Published 17 January 2014

Equation (3) of Barbieri et al (2013 Eur. J. Phys. 34 1209) is incorrect since it has been written in terms of the retarded time t' instead of the present time t.

Therefore, in place of the following:

\[
\mathbf{B}(\mathbf{r}, t) = \frac{\mu_0}{4\pi} \int_{V'} \left[\mathbf{J}(\mathbf{r}', t') + \varepsilon_0 \frac{\partial \mathbf{E}(\mathbf{r}', t')}{\partial t} \right] \times \frac{\Delta \mathbf{r}}{(\Delta r)^3} dV',
\]

(3)

where V' is the region containing the currents and

\[
\Delta \mathbf{r} \equiv \mathbf{r} - \mathbf{r}', \quad \Delta r \equiv |\Delta \mathbf{r}|, \quad t' \equiv t - \frac{\Delta r}{c},
\]

(4)

where \(t' \) is the retarded time. If we now adopt the quasi-static approximation, that is if we consider only fields that are slowly varying in time, we can neglect all the time derivative multiplied by $1/c$ (but not time-dependent terms alone). Therefore the contribution of the displacement currents in equation (3) can be disregarded, thanks to the presence of the constant $\varepsilon_0 \mu_0 = 1/c^2$ that multiplies the time derivative of \mathbf{E}. Moreover, the retarded time t' of equation (4) also can be considered equal to t'.

please read:

\[
\mathbf{B}(\mathbf{r}, t) = \frac{\mu_0}{4\pi} \int_{V'} \left[\mathbf{J}(\mathbf{r}', t) + \varepsilon_0 \frac{\partial \mathbf{E}(\mathbf{r}', t)}{\partial t} \right] \times \frac{\Delta \mathbf{r}}{(\Delta r)^3} dV',
\]

(3)

where V' is the region containing the currents and

\[
\Delta \mathbf{r} \equiv \mathbf{r} - \mathbf{r}', \quad \Delta r \equiv |\Delta \mathbf{r}|.
\]

(4)
If we now adopt the quasi-static approximation, that is if we consider only fields that are slowly varying in time, we can neglect all the time derivatives multiplied by $\varepsilon_0\mu_0 = 1/c^2$ (but not time-dependent terms alone). The contribution of the displacement currents in equation (3) can, therefore, be disregarded.

The mistake in equation (3) of Barbieri et al (2013 *Eur. J. Phys.* 34 1209) does not influence any of the results or conclusions of the original paper.