Combined Depth Imaging Using Optical Coherence Tomography as a Novel Imaging Technique to Visualize Vitreoretinal Choroidal Structures

Spectral domain optical coherence tomography (SD-OCT) is a noninvasive technique to visualize cross-sectional images of vitreoretinal structures. Image averaging during eye tracking increases the signal-to-noise ratio and improves image quality. The point of maximum sensitivity on SD-OCT (known as the “zero-delay line”) is in the vitreous; with increasing depth, the signal is reduced and details of the choroid are reduced.1 More recently, enhanced depth imaging on spectral domain optical coherence tomography has increased the ability to visualize the choroid, capturing images with the choroid close to the zero-delay line.2 However, with this modality, details of the posterior vitreous are reduced.

A healthy volunteer was scanned with an SD-OCT device (Spectralis HRA; Heidelberg Engineering, Carlsbad, CA). On the conventional SD-OCT B-scan...
of the macula, the preretinal vitreal pocket was clear. However, the outer choroidal border was not detected (Figure 1A). The enhanced depth imaging on spectral domain optical coherence tomography scan increased the visibility of the choroid borders, but the preretinal vitreal pocket was not seen (Figure 1B).

We devised an innovative imaging technique to visualize all posterior structures in a single image, combining the conventional SD-OCT B-scan with the enhanced depth imaging on spectral domain optical coherence tomography B-scan. The same volunteer was asked to fixate on the internal fixation centered on the fovea. A 100-frame averaged conventional linear SD-OCT scan in high-resolution mode was then performed. After reaching 50% of the averaging, we manually changed to the enhanced depth imaging modality using the dedicated button and the image was captured after obtaining a good enhancement of the choroid. This allowed the device to create a high-quality combined image of all depths (Figure 1C).

This manual technique of combined depth imaging on Spectralis HRA yielded a single comprehensive image of the posterior structures without using multiple acquisition modalities. A dedicated built-in software may be useful to achieve this imaging result automatically. Further studies will evaluate the applicability and limitations of this technique.

Key words: optical coherence tomography, enhanced depth imaging, combined depth imaging.

References


RETINA® is now accepting manuscripts for consideration for publication in the Photo Essay section. For a manuscript to be considered for publication within this section, the significance of the manuscript should revolve around the photographs. The photographs should convey an important or unique clinical diagnosis, condition, or treatment. The photographs can be a combination of kodachromes, angiograms, histologic sections, or ancillary diagnostic studies (e.g., echograms, radiograms, CT or MRI studies, arteriograms), all of which are imperative in the evaluation, diagnosis, and/or treatment of the condition that is represented. Overall, the Photo Essay manuscript will be limited to 300 words, five photographs, and five references. All figures submitted in color will be published in color at the expense of the authors. Please refer to the Author Instructions for all other general requirements of manuscripts submitted to RETINA®.