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Summery 

 

Recessive mutations in Cul4 locus was described as causing low tillering phenotype in 

barley. The locus was previously mapped to 0.22 cM genetic interval and Candidate 

Gene (CG) was proposed. In this study, we mapped the locus into 0.09 cM interval and 

proved the correspondence between the CG and cul4 phenotype by showing the 

recombination between CG and adjacent annotated genes. Also, we isolated three 

independent mutant alleles for Cul4 in the available mutant stocks, and we showed 

their correlation to cul4 phenotype. Detailed phenotyping of cul4 mutant lines revealed 

various effects on plant vegetative, reproductive, and developmental parameters. The 

Cul4 gene was identified as encoding BTB/ANK domain protein highly related to 

Arabidopsis BOP1 and BOP2 genes. To assess the role of Cul4/BOP-like genes in other 

plant species, protein sequences similar to Cul4 were used to carry out phylogenetic 

analysis. Cul4/BOP-like proteins appear to be organised in two main clades 

corresponding to monocot and dicot divergence. Two sub-clades exist within monocot 

clade, representing relatively ancient duplication after monocot and dicot separation; 

Cul4 orthologs and paralogs. Recent duplications appear within Cul4 monocot 

paralogs, as well as for Arabidopsis BOP1 and BOP2 proteins. Publicly available 

transcriptomics data for Cul4 rice ortholog support involvement in axillary meristem 

development, leaf morphogenesis, and floral organ development. Rice mutant lines 

carrying T-DNA inserts in Cul4-like genes were identified and initially characterised. 

Screening of mutagenized TILLMore barley collection identified 12 lines with 

significant defect in tillering. Further histological characterisation of 3 lines displaying 

the most severe low tillering phenotype, showed inhibition in tiller outgrowth rather 

than axillary bud formation. Initial steps in constructing mapping populations for 

selected mutant lines were performed by crossing them to different wild-type parents.  
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1. Introduction 

 

At the global level, the most important cereal crops are maize (Zea mays), rice 

(Oryza sativa), wheat (Triticum aestivum) and barley (Hordeum vulgare spp. vulgare), with 

a total of 2.4 billion tons produced annually at a value of more than 446 billion Int. $ 

(FAOSTAT 2012). All four of these crops are members of the Poaceae family. Much 

research to increase productivity, particularly of rice and wheat, is performed both by 

publicly funded plant breeding programs and by seed companies (Shiferaw et al., 2013). 

Meanwhile, the demand for cereal grains may double by 2050 (Tilman et al., 2011), 

which will require an average yield increase of 2.4% per year for the major cereals (Ray 

et al., 2012). To achieve this, multidisciplinary approaches are needed with genetic 

improvement playing a major role. 

Tillering is a key component of yield for major cereals such as wheat, rice, barley, 

and rye (Secale cereale) (Sakamoto and Matsuoka, 2004; Sreenivasulu and Schnurbusch, 

2012). In grasses, tillers are side branches (i.e. culms) that grow at the ground level from 

nodes of non-elongated internodes, determining the overall shoot architecture of the 

plant and affecting important agronomical features like competition with weeds, 

herbicide treatment, spacing, and the ease of harvesting (Donald, 1968; Seavers and 

Wright, 1999). Although sharing some key steps in their development, tillers differ from 

lateral branches in eudicots in that they can produce adventitious roots and grow 

independently from the main plant shoot. 

While the molecular mechanisms controlling branching in dicots have been 

widely investigated (Wang and Li, 2008; Domagalska and Leyser, 2011), they are not 

thought to be completely conserved with tiller development in monocots, particularly 

in the cross-talk among hormonal pathways and other genetic networks (Kebrom et al., 

2013). For instance, TEOSINTE BRANCHED1 (TB1)-like genes in dicots and monocots 

are known to work downstream of strigolactones (SL). But while the mRNA level of 

TB1-like genes in Arabidopsis and pea was down-regulated by SL, experimental 

evidence showed no transcriptional regulation for FC1/OsTB1 by SL in rice (Aguilar-



3 
 

Martínez et al., 2007; Minakuchi et al., 2010; Kebrom et al., 2013). Another example is 

offered by the rice gene MONOCULM1 (MOC1) and its orthologs in Arabidopsis and 

tomato. Although they are all required for axillary meristem (AXM) initiation during 

the vegetative phase, MOC1 plays additional functions in bud outgrowth and control of 

plant height (Li et al., 2003). There are also examples of the genes identified in eudicots 

that have not been identified to date in monocots such as the reduced-branching 

mutations in the REGULATOR OF AXILLARY MERISTEMS1, 2, 3 and BLIND genes of 

Arabidopsis and tomato (Schmitz et al., 2002; Keller et al., 2006; Müller et al., 2006). These 

examples illustrate the importance of identifying and characterizing the genes involved 

in the control of tillering in cereals.  

Tiller development is regulated by a complex network of genetic, hormonal and 

environmental factors, making tillering a highly plastic trait that allows wild cereals to 

adapt to different environmental conditions. It is also a major target for manipulation of 

plant architecture in breeding programs (Kebrom et al., 2013). Tillers can develop 

inflorescences and contribute to grain yield, but tillers that grow late in the season will 

not produce any grain and will lower the overall harvest index (Sakamoto and 

Matsuoka, 2004; Mäkelä and Muurinen, 2011), indicating that a balance between 

number and vigour of tillers is required. A model plant with reduced height, low 

number of unproductive tillers, higher number of grains, and erect leaves has been 

proposed as the ideotype for cereal breeding (Donald, 1968; Khush, 2001). Indeed, 

reduced tillering accompanied increased productivity in the domestication of maize 

(Doebley et al., 2006). Cereal varieties grown before the Green Revolution were 

responding to nitrogen fertilizer by profuse tillering and stem elongation, thus 

increasing biomass. Ideotype breeding led to shorter plants with more productive tillers 

and improved response to nitrogen, and increased harvest index to 0.5 (Khush, 2003). In 

rice, this ideotype is associated with certain alleles of the wealthy farmer’s panicle 

(wfp)/ideal plant architecture1 (ipa1) locus, which confer low tillering coupled with 

desired inflorescence features resulting in higher yield (Jiao et al., 2010; Miura et al., 

2010). Reduced tillering has also been associated with improved kernel weight under 

terminal water deficit environments in wheat near-isogenic lines carrying the tiller 
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inhibition (tin) gene (Atsmon and Jacobs, 1977; Kebrom and Richards, 2013; Mitchell et 

al., 2013). 

In addition to being important crops, barley and rice are genetic model systems 

for the Poaceae family (Izawa and Shimamoto, 1996). Rice has a small genome (ca. 430 

Mb) with a high degree of chromosomal synteny with other major cereal crops (Bolot et 

al., 2009). Barley, with its diploid genome, represents another convenient model, 

particularly for Triticeae crops which share high genomic co-linearity, providing a basis 

for genetic and genomic analyses in polyploid wheat (Bennetzen and Freeling, 1997; 

Hayes et al., 2003; Kumlehn and Hensel, 2009). 

The conservation of synteny and integration of genomic tools among small grain 

cereals, particularly rice, barley and wheat, allows the transfer of knowledge among 

these major crops. 

  



5 
 

2. Tiller development in rice and barley 

 

Shoot apical meristem (SAM) and axillary meristems (AXMs) (Wang and Li, 

2008). Tiller development in grasses comprises three main stages: (1) establishment of 

an AXM marked by formation of stem cell population in the leaf axil (2) production of 

leaf primordia from the AXM to form an axillary bud, and (3) outgrowth of the axillary 

bud to form a tiller (Fig. 1) (Schmitz and Theres, 2005). Classically, shoot development 

is considered to occur in repeated units called phytomers, each consisting of an 

internode (stem segment), a node, a leaf and an axillary bud (Weatherwax, 1923; 

Sharman, 1942). Elaborations on this basic model have been proposed for barley to 

account for floral organs and paired structures present at branching points (e.g. 

prophyll and palea) (Bossinger et al., 1992; Forster et al., 2007). 

In barley and rice, the first AXMs are formed during embryogenesis. The mature 

barley embryo generally contains two axillary buds one each in the axils of the 

coleoptile and of the first leaf primordium (Kirby and Appleyard, 1987), while the 

mature rice embryo generally contains one axillary bud in the axil of the coleoptile 

(Saha, 1957). Upon germination, both plants continue to produce more leaves and 

AXMs in an ordered and coordinated progression, as described in detail in rice (Itoh et 

al., 2005; Oikawa and Kyozuka, 2009). Leaves derive from leaf founder cells at the 

flanks of the SAM, which undergo a developmental transition from an indeterminate to 

a determinate cell fate as they are recruited into incipient leaf primordia. The time 

interval between the formation of two successive leaf primordia is called a plastochron 

and leaf developmental stages are identified by their plastochron number (Pi) with the 

youngest visible leaf primordium indicated as P1, the next youngest as P2 and so on 

(reviewed in Itoh et al., 2005). The AXM develops in the leaf axil and stages of AXM 

formation are indicated with Pi of the subtending leaves. In rice, the first visible 

indication of AXM development is a slight protrusion on the stem surface towards the 

P2 leaf primordium (Oikawa and Kyozuka, 2009). Cell proliferation continues through 

the P3 and P4 stages when cells undergo a critical transition acquiring meristematic 
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fate. The process is completed by the P5 stage when the new AXM has initiated its own 

leaf primordia originating an axillary bud  (Oikawa and Kyozuka, 2009). 

Depending on endogenous and environmental signals, an axillary bud may 

remain dormant or grow into a tiller. Each tiller is a new axis of growth, organized like 

the main culm in phytomer units. Each tiller harbours new axillary buds that may in 

turn develop new tillers in a reiterative pattern. Tillers, therefore, develop in acropetal 

succession with primary tillers arising from axillary buds of the main culm, secondary 

tillers growing out of leaf axils of primary tillers, and so on (Kirby and Appleyard, 

1987). After the transition of the main culm SAM from a vegetative to a reproductive 

state, young tillers undergo senescence, possibly because nutrients are routed away 

from developing tillers to the elongating internodes (Mohapatra et al., 2011). The early 

developing primary tillers benefit from higher sink/source ratio, sink capacity, leaf 

area, spikelet number, and filled grain percentage (Choi and Kwon, 1985). 

AXM establishment and formation of the axillary bud are mostly under genetic 

control, while bud outgrowth is regulated by a complex network of genetic, hormonal, 

and environmental factors (Kebrom et al., 2013), making it highly responsive to 

environmental conditions, such as shading and nutrient availability (Agusti and Greb, 

2013). Being sessile, plant fitness in varied environmental conditions depends on their 

ability to translate external signals into developmental responses. Several distinct 

signals are involved in the regulation of shoot branching, with key roles played by 

auxin, cytokinins (CK), and strigolactones (SL) (Kebrom et al., 2013). 

Upon transition to the reproductive phase, the SAM of each tiller is transformed 

into an inflorescence meristem and differentiates into an inflorescence, called a panicle 

in rice and spike in barley, organized around a main axis called a rachis (Fig. 1). In rice, 

each inflorescence meristem produces several AXMs that develop into rachis branches, 

and the AXMs generated subsequently may develop into the next order of rachis 

branches or lateral spikelets, resulting in a branched structure (Fig. 1) (Itoh et al., 2005; 

Oikawa and Kyozuka, 2009). In barley, AXMs arising from the rachis differentiate into 

spikelet triplet meristems, that in turn will develop into three spikelet meristems 

(Bossinger et al., 1992), one central and two lateral. In wild barley and two-rowed 
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cultivars only the central spikelet is fertile, while the lateral spikelets are sterile and 

remain underdeveloped. In six-rowed barley cultivars and mutants all three spikelets 

mature to produce grains (Kirby and Appleyard, 1987; Komatsuda et al., 2007). 

 

 

 
Fig. 1 Tiller formation in barley and shoot architecture of barley and rice. (A) Longitudinal 

section of a barley shoot apex showing a shoot apical meristem (SAM), an axillary meristem 

(AXM, the first stage in tiller formation) and axillary buds (AXB, the second stage of tiller 

formation). (B) Barley plant showing outgrowth of primary (1°T) and secondary tillers (2°T), the 

third stage of tiller formation. (C) Barley shoot architecture showing the main culm (MC) and 

tillers (T), (D) Rice shoot architecture showing the main culm (MC) and tillers (T), (E) Barley 

two-rowed spike showing the flag leaf (FL), rachis (R), spikelet (S) and awn (AW), (F) Rice 

panicle showing the flag leaf (FL), the rachis (R), primary branch (PB), secondary branch (SB), 

and spikelet (S). 
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3. Genetic and hormonal control of tillering in rice 

 

Thanks to its importance as a crop and also as a model system for other cereals, 

the genetic basis of shoot branching in rice has received growing attention and over the 

last decade a number of genes involved in tiller development have been identified 

(Table.1). Some of these genes specifically affect tiller development, while others affect 

other agronomically-important traits such as inflorescence (panicle) architecture and 

plant height. Here we review the isolated and characterized genes involved in rice 

tillering and related hormonal pathways including auxin, cytokinins (CK), gibberellins 

(GA) and strigolactones (SL).  

 

3.1 Genes involved in AXM formation 

MOC1 was the first tillering gene to be identified in rice (Li et al., 2003). Plants 

carrying loss-of-function mutations in MOC1 have only one main culm as a result of 

failure to establish AXMs, affecting both tiller and panicle branches (Li et al., 2003). 

MOC1 encodes a GRAS (named after the first three members: GIBBERELLIC-ACID 

INSENSITIVE, REPRESSOR of GAI and SCARECROW) transcription factor 

homologous to tomato LATERAL SUPPRESSOR (LS) (Schumacher et al., 1999), and 

Arabidopsis LATERAL SUPPRESSOR (LAS) (Greb et al., 2003). However, in ls and las 

mutants, AXM defects are mainly observed in the vegetative phase, while moc1 shows 

suppression of all types of AXM, indicating that AXM control mechanisms differ at 

least in part between monocots and eudicots. MOC1 expression marks the initiation of 

the AXM and is maintained in the developing bud, consistent with a role in axillary bud 

initiation and outgrowth (Li et al., 2003). Recently, a protein mediating the degradation 

of MOC1 was identified from analysis of the allelic mutants tillering and dwarf1 (tad1; Xu 

et al., 2012) and tillering enhancer (te; (Lin et al., 2012). These mutants are characterized 

by high tillering and reduced plant height, similar to plants overexpressing MOC1 (Li et 

al., 2003). The TAD1/TE gene encodes a Cdh1-type co-activator orthologous to the dicot 
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CCS52A (Vinardell et al., 2003), which interacts with the anaphase-promoting complex 

(APC/C), a multi-subunit E3 ligase. TAD1/TE forms a complex with APC/C-

OsAPC10, targeting MOC1 for degradation via the ubiquitin-26S proteasome pathway, 

thus repressing AXM initiation (Xu et al., 2012). MOC1 Interacting Protein 1 (MIP1) may 

be another player in this circuit (Sun et al., 2010). When overexpressed, the MIP1 gene 

causes enhanced tillering and semi-dwarf stature similar to MOC1 overexpression (Li et 

al., 2003). MIP1 is a member of the Bre1 family, that includes At_HUB1, which encodes 

an E3 ligase involved in H2B (Histone 2B; a subunit of the nucleosome) mono-

ubiquitination in Arabidopsis (Fleury et al., 2007; Liu et al., 2007). 

Soon after the first visible appearance of AXM formation, the LAX PANICLE1 

(LAX1) gene plays a role in maintenance of AXM development. Plants carrying loss-of-

function mutations in LAX1 are characterized by reduced numbers of rachis branches 

and spikelets on the panicle, and reduced number of tillers (Komatsu et al., 2001; 

Oikawa and Kyozuka, 2009). LAX1 encodes a putative basic-Helix-Loop-Helix (bHLH) 

transcription factor required for formation of AXMs in both vegetative and 

reproductive phases (Komatsu et al., 2001; Oikawa and Kyozuka, 2009). LAX1 acts in a 

non-cell autonomous manner to maintain cell proliferation during AXM formation. 

Oikawa and Kyozuka, 2009 proposed a two-step regulation of spatial and temporal 

LAX1 expression and activity. Spatially, LAX1 mRNA is specifically expressed in the 

boundary region at the adaxial side of the developing AXM, and later, LAX1 protein is 

trafficked toward the AXM. Temporally, LAX1 mRNA is expressed in leaf axils from P4 

to later stages, while LAX1 protein movement is restricted to the P4 stage, 

accompanying the acquisition of meristematic fate. Plants carrying mutations in the 

LAX2 gene show similar phenotypes to lax1 mutants, with reduced branching in the 

vegetative and reproductive phases. LAX2 encodes a novel nuclear protein with a plant-

specific conserved domain and was shown to physically interact with LAX1 (Tabuchi et 

al., 2011). Double mutant analyses suggest that MOC1, LAX1, and LAX2 function in 

partially independent but overlapping pathways to regulate AXM establishment and 

maintenance (Tabuchi et al., 2011).  
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3.2 Auxin.  

The main shoot apex suppresses the outgrowth of axillary buds via auxin that is 

produced in young expanding leaves and actively transported basipetally through the 

shoot, acting indirectly on axillary buds (Agusti and Greb, 2013). The movement of 

auxin from developing leaves to stem (auxin sink) is termed Polar Auxin Transport 

(PAT) and depends on auxin efflux carriers of the ATP-Binding Cassette B (ABCB) and 

the PIN-FORMED (PIN) protein families (Zazímalová et al., 2010). PINs are integral 

membrane proteins with a topology similar to transporter proteins (Zazímalová et al., 

2010). Auxin is transported to the organ initiation sites through the outermost 

epidermal layer of the shoot apex and is directed via the developing primordia into the 

basipetal stream of the main shoot. PIN1 proteins are localized in xylem parenchyma 

cells and maintain the auxin supplement to the basipetal stream of the main shoot, 

playing a role in PAT (Petrásek and Friml, 2009). In agreement with the role of PAT in 

inhibition of bud outgrowth, rice plants underexpressing OsPIN1b (previously known 

as REH1) showed increased number of tillers (Xu et al., 2005; Chen et al., 2012). 

Conversely, increased tillering and reduced stature were caused by overexpression of 

OsPIN2, suggesting that OsPIN1b and OsPIN2 play distinct roles in the control of shoot 

architecture (Chen et al., 2012). 

Additional insight into the role of auxin comes from analysis of the ABERRANT 

SPIKELET AND PANICLE1 (ASP1 or rice RAMOSA1 ENHANCER LOCUS2, OsREL2) 

gene that encodes a transcriptional co-repressor proposed to act in auxin signalling 

(Yoshida et al., 2012). A variety of developmental alterations were described for asp1 

mutant plants, including de-repression of axillary bud outgrowth and disturbed 

phyllotaxy in the vegetative phase, disorganized panicle branching and spikelet 

morphology, indicating a general role for ASP1 in controlling meristem fate (Yoshida et 

al., 2012). 

A member of the MIR393 miRNA family known to regulate expression of auxin 

receptors also affects tillering ability in rice. Plants over-expressing OsmiR393 showed 

reduced expression of the auxin receptors OsTIR1 and OsAFB2, which sequentially 

repress the auxin transporter OsAUX1  (Xia et al., 2012). This ultimately downregulates 
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OsTB1, a tillering repressor (see below), explaining the increased outgrowth of tillers in 

OsmiR393 overexpressing plants. 

Another auxin-dependent pathway regulating rice tillering involves TLD1, an 

indole-3-acetic acid (IAA)-amido synthetase that converts active auxin (IAA) to its 

inactive form via conjugation with amino acids (Zhang et al., 2009). The associated 

reduction of IAA concentration affects developmental traits and also influences plant 

resistance to biotic and abiotic stress via the abscisic acid (ABA), and salicylic acid (SA) 

pathways. Gain-of-function tld1-D mutants show pleiotropic phenotypes including 

increased number of tillers, reduced plant height, shorter panicle and reduced number 

of spikelets (Zhang et al., 2009). 

 

3.3 Cytokinins  

Cytokinins (CKs) are key regulators of many plant developmental processes 

including: cell division, activation of axillary buds, inhibition of root growth, and delay 

of senescence (Mok, 1994). CKs are mainly synthesized in the root and transported 

upwards along the xylem (Wang and Li, 2006). CK biosynthesis and signalling are 

affected by nutrient availability and environmental stresses, such as drought and high 

salinity (Krouk et al., 2011; Ha et al., 2012). The supershoot (sps) mutants in Arabidopsis 

show massive shoot overproliferation and 3- to 9-fold increase in levels of Z-type CKs 

that indicates a role of SPS in suppression of AXM initiation and growth through the 

localized attenuation of CK levels at sites of bud initiation (Tantikanjana et al., 2001). 

The fundamentals of CK biosynthesis were originally studied in Arabidopsis 

(Sakakibara, 2004) where the central rate-limiting step is prenylation of adenosine 5‘ 

phosphates at the N6-terminus with dimethylallyldiphosphate (DMAPP), catalysed by 

adenosine phosphate ISOPENTENYL TRANSFERASE (IPT). Auxin can down-regulate 

CK levels by inhibiting the expression of IPT genes (Ferguson and Beveridge, 2009). 

Other studies showed that the Arabidopsis KNOTTED-like homeobox (KNOX) protein 

SHOOTMERISTEMLESS (STM) induces expression of AtIPT7 (Jasinski et al., 2005; 

Yanai et al., 2005) and down-regulates GA biosynthesis genes, creating low-GA and 
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high-CK status in the meristem, which may be essential for the maintenance of 

meristematic activity (Jasinski et al., 2005). Eight OsIPT genes have been identified and 

studied in the rice genome (Sakamoto et al., 2006). Transgenic rice plants over-

expressing OsIPTs have increased axillary bud activity and reduced root formation, 

which are typical of CK overexpression. Also, OsIPT3 and OsIPT2 transformants 

showed elevated content in 12 different CK species, highlighting the overall stimulation 

of de novo CK biosynthesis (Sakamoto et al., 2006). 

 

3.4 Gibberellins  

Gibberellins (GAs) interact with auxin in the regulation of stem elongation, with 

apically-derived auxin regulating GA synthesis (O‘Neill and Ross, 2002). In rice, GAs 

participate in controlling many plant developmental processes, positively regulating 

germination, stem and root elongation, and flower development, while negatively 

regulating OSH1 (a rice KNOX gene) and OsTB1 (see below) (Lo et al., 2008). The main 

catabolic pathway for GAs is the 2-β-hydroxylation reaction catalysed by C19- and C20-

GA 2-oxidases (GA2oxs), which inactivate endogenous bioactive GAs, affecting GA-

dependent developmental processes (Sakamoto et al., 2004). In total, 10 putative GA2ox 

genes were identified in the rice genome and rice lines overexpressing some  C20 

GA2oxs exhibit semi-dwarfing, early and increased tillering, and adventitious root 

growth (Lo et al., 2008).  

The ERF protein associated with tillering and panicle branching (OsEATB) gene 

belongs to the APETALA2 (AP2)/Ethylene-Responsive Element Binding Factor (ERF) 

family of transcription factors. Transformed plants over-expressing OsEATB showed 

enhanced tillering, reduced height, enhanced panicle branching, and overall higher 

grain yield (Qi et al., 2011). These phenotypes were accompanied by decreased levels of 

different GAs, confirming the negative correlation between GA and tillering. 
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3.5 Strigolactones  

Strigolactones (SLs) have been recently identified as phytohormones which 

inhibit side branching in plants (Gomez-Roldan et al., 2008; Umehara et al., 2008). SLs 

are synthesised in roots and move acropetally (Wang and Li, 2006). They interact with 

auxins in a dual-loop pathway to control axillary bud outgrowth, but the nature of this 

regulatory loop is unclear (Kebrom et al., 2013). Two hypotheses have emerged, mostly 

from studies in dicots: 1) strigolactones act downstream of auxin (Foo et al., 2005; 

Bainbridge et al., 2005; Brewer et al., 2009; Hayward et al., 2009); 2) strigolactones 

negatively regulate auxin transport in the main stem, and inhibit the establishment of 

axillary bud PAT into the stem (Bennett et al., 2006; Crawford et al., 2010; Domagalska 

and Leyser, 2011). In rice, mutations in SL biosynthesis gene Dwarf27 (D27) result in 

increased PAT (Lin et al., 2009) and exogenous auxin application can upregulate 

expression of Dwarf10 (D10) and Dwarf17 (D17) (Zou et al., 2006; Arite et al., 2007), 

indicating a complex interplay between auxin and SL. 

Genes acting in the SL pathway have been identified from analysis of rice dwarf 

mutants (d) (or htd for high tillering dwarf), and Arabidopsis more axillary growth (max) 

mutants, characterized by reduced plant height and increased branching  (Brewer et al., 

2013). Five dwarf rice mutants were initially identified and characterised to have 

reduced levels of SLs or impaired in SL response (Ishikawa et al., 2005): dwarf3 (d3), 

dwarf10 (d10), dwarf14 (d14) (also reported as d88 or htd2), dwarf17or dwarf1 (d17 or d1) 

and dwarf27 (d27) (Ishikawa et al., 2005; Zou et al., 2006; Arite et al., 2007; Lin et al., 

2009; Hamiaux et al., 2012). Studies on D genes and their homologues in other plants 

(e.g. Arabidopsis MAX2, MAX4, MAX3, and MAX1) helped to clarify their roles in SL 

biosynthesis and signal transduction (Challis et al., 2013). D17/D1 (MAX3 in 

Arabidopsis) and D10 (MAX4 in Arabidopsis) encode carotenoid cleavage deoxygenase 

(CCD) family proteins CCD7 and CCD8, respectively (Zou et al., 2006; Arite et al., 2007), 

These enzymes are capable of sequentially cleaving the carotenoid 9-cis-b-carotene to 

produce a novel compound, carlactone, a putative strigolactone intermediate (Alder et 

al., 2012) . D27 also acts in SL biosynthesis in rice (reverse genetics identified the D27 

orthologue in Arabidopsis, called AtD27; (Waters et al., 2012b; a), and encodes an iron-
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containing beta-carotene isomerase protein that converts all-trans-beta-carotene into 9-

cis-beta-carotene, which is then cleaved by D17 (CCD7) into a 9-cis-configured aldehyde 

(Alder et al., 2012). Although 5 rice homologs of Arabidopsis MAX1 cytochrome P450-

type gene were identified by sequence similarity and phylogenetic analysis, but max1 

mutant phenotype has not been identified in rice (Challis et al., 2013). 

Rice mutants d14 and d3 show insensitivity to SL application, indicating the 

corresponding genes act in SL signalling rather than biosynthesis (Ishikawa et al., 2005; 

Arite et al., 2009). D14 encodes a hydrolase/esterase that was proposed to participate in 

the perception of SL (Ishikawa et al., 2005; Beveridge and Kyozuka, 2010), and D3 

encodes an F-box protein that mediates signalling of SL and karrikins (Ishikawa et al., 

2005; Hamiaux et al., 2012). Recent findings have revealed the mechanism by which D14  

- as a catabolic enzyme and SL receptor - is involved in integrating SLs signal 

perception into signal transduction and cross-talk with the GA signalling pathway 

(Nakamura et al., 2013). In a novel finding, Jiang et al., (2013) have identified a new 

mutant of the rice dwarf family, D53, which participates in SL signalling as a promoter 

of tillering, and they have proposed a model for SL signalling that is centred around a 

D14–D3–D53 signalling axis. In this model the D53 protein was found to serve as target 

for degradation by SL through D14 and D3, that subsequently activate ubiquitin 

proteasome system to degrade D53 (Fig. 2; Smith, 2013). In turn, degradation of D53 

would release the repression of downstream target genes and suppress tillering (Jiang 

et al., 2013; Zhou et al., 2013). 

More details regarding the SL pathway can be found in some excellent reviews 

(Beveridge and Kyozuka, 2010; Domagalska and Leyser, 2011; Brewer et al., 2013). 
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Fig. 2 Strigolactones hormones inhibit the axillary buds outgrowth, and act as responsive signal 

to nutrient deficiency. This pathway is modulated through the destruction of D53 protein that 

naturally promotes side branch out-growth. D14 serves as receptor that binds and hydrolyses 

SLs, leading to D53 and D3 to be recruited to the complex. This interaction leads to breaking 

down D53, and induce downstream effect that suppress side branching (Fig from Smith, 2013).  

 

 

3.6 Brassinosteroids  

Along with GAs, brassinosteroids (BRs) are viewed as major players in the 

control of plant height. BRs are phytohormones with a structure similar to animal 

steroid hormones, and mutants defective in BR biosynthesis and signalling generally 

exhibit a dwarf phenotype and other abnormalities in leaves and branches (Clouse and 

Sasse, 1998; Bishop and Koncz, 2002; Gendron et al., 2012). In contrast to the general 

negative correlation between plant height and tiller number (Hong et al., 2003; Booker 

et al., 2004), rice mutants impaired in the BR pathway such as dwarf and low tillering (dlt) 

show reductions in both tillering and stature. The DWARF AND LOW-TILLERING (DLT 

or OsGRAS32) gene encodes a GRAS transcription factor involved in feedback 

inhibition of BR biosynthesis (Tong et al., 2009, 2012). BRs can down-regulate the 

expression of DLT, via the OsBRI1 receptor-like protein, which regulates both DLT and 
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OsBZR1, a transcription factor that in turn regulates BR-responsive genes (Tong et al., 

2009, 2012). 

OsBZR1 is also controlled by GSK3/SHAGGY-like kinase (GSK2), which is the 

ortholog of Arabidopsis GSK3/SHAGGY-like kinase BRASSINOSTEROID-INSENSITIVE2 

(BIN2). Rice GSK3/SHAGGY-like kinase (GSK2) over-expression results in dwarf plants 

with dark green leaves, compact structure and fewer tillers (Tong et al., 2012). 

 

3.7 Strigolactone pathway regulation and integration of different signals.  

Recent studies are providing insight into the regulation of the SL pathway and its 

cross-talk with other hormonal pathways.  

The rice mutant fine culm1 (fc1) exhibits thin culm and excessive tillering due to a loss-

of-function mutation of the OsTB1 gene, which encodes a TEOSINTE 

BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factor homologous to 

TEOSINTE BRANCHED1 (TB1) in maize, and Arabidopsis BRANCHED 1/TEOSINTE 

BRANCHED 1-LIKE 1 (BRC1/TBL1) (Takeda et al., 2003; Choi et al., 2012). Thus, 

FC1/OsTB1 functions as a negative regulator of lateral branching in rice, similar to 

maize TB1 (Minakuchi et al., 2010). Based on insensitivity of the fc1 mutant to 

exogenous application of SL and epistatic interaction with d17, Minakuchi et al., (2010) 

proposed that FC1/OsTB1 acts downstream of SL. Negative regulation of FC1/OsTB1 

expression by CK and GA (Lo et al., 2008) further led to the hypothesis that FC1/OsTB1 

may act as an integrator of multiple pathways controlling tillering (Minakuchi et al., 

2010). More details about the interplay between OsTB1 and SL have recently emerged. 

OsMADS57, a MADS-box domain protein was shown to interact with OsTB1 and 

repress D14, a gene involved in SL signalling and possibly encoding a SL receptor (Guo 

et al., 2013). OsmiR444a, a member of the MIR444 miRNA family, post-transcriptionally 

regulates OsMADS57 transcript accumulation (Guo et al., 2013). In contrast to the 

function of FC1/OsTB1, genetic and molecular analyses of OsMADS57 indicate that it 

functions as a repressor of SL signalling and a positive regulator of tillering. Thus, 

interaction between the two transcription factors may act to fine-tune D14 expression 
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and consequently tiller outgrowth (Guo et al., 2013). Recently, OsTB1 was shown to be 

directly regulated by OsSPL14, a member of the SQUAMOSA Promoter Binding Protein 

gene family (Lu et al., 2013) previously associated with the semidominant WEALTHY 

FARMERS PANICLE/IDEAL PLANT ARCHITECTURE1 quantitative trait locus (QTL) 

(Jiao et al., 2010; Miura et al., 2010). Increased OsSPL14 expression results in reduced 

tillering, prolonged plastochron duration, sturdier stems, increased number of primary 

branches in the panicle and, ultimately, higher grain yield, corresponding to the 

ideotype for rice breeding (Jiao et al., 2010; Miura et al., 2010). In the vegetative phase, 

OsSPL14 is specifically expressed in leaf primordia, indicating that OsSPL14 may affect 

tillering through regulation of plastochron duration, an activity shared with the highly 

related Arabidopsis genes SPL9 and SPL15 (Luo et al., 2012). A genome-wide screen for 

OsSPL14 binding sites recovered various developmental genes including OsPIN1b, 

suggesting that OsSPL14 may also be involved in regulation of PAT (Lu et al., 2013).  

Negative control of OsSPL14 expression involves cleavage by OsmiR156, whose over-

expression transformants show increased number of tillers, and reduced number of 

spikelets and grains per panicle (Luo et al., 2012). ABERRANT PANICLE 

ORGANIZATION1 (APO1) and APO2 also act upstream of OsSPL14 (Luo et al., 2012). 

APO1 encodes the ortholog of an Arabidopsis F-box protein UNUSUAL FLORAL 

ORGANS (UFO) while APO2 is homologous to the Arabidopsis LEAFY (LFY) gene, and 

the two proteins were shown to interact in vitro (Ikeda et al., 2007; Ikeda-Kawakatsu et 

al., 2012). Rice apo2 mutants have shorter plastochron duration, increased number of 

tillers, and small panicles with reduced number of primary branches (Ikeda-Kawakatsu 

et al., 2012). Together, analyses of these genes indicate that regulation of plastochron 

duration also affects the number of tillers formed by a plant as a result of the number of 

leaf/axils formed on the shoot (Wang and Li, 2011). 
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3.8 Other genes 

More genetic factors that participate in the control of tillering have been recently 

characterized (Table.1). Future work will help to better understand if and how they 

interact with the aforementioned pathways. Among them, FRIZZY PANICLE (FZP) was 

initially identified as a repressor of AXM formation in the panicle, necessary to 

establish floral meristem identity in rice spikelets (Komatsu et al., 2003). The FZP gene 

encodes an ethylene-responsive element-binding factor (ERF) transcription factor 

highly related to Branched Silkless1 (BD1) that was shown to play a similar role in maize 

inflorescence development (Chuck et al., 2002). Noteworthy is a loss-of-function allele 

of FZP that shows defects in tillering, suggesting that FZP plays additional roles in 

controlling vegetative AXM development (Kato and Horibata, 2011). 

OsTEF1 (transcription elongation factor- like 1) was identified from loss-of-function 

mutant which showed reduced tillering ability, retarded growth of seminal roots, and 

less tolerance to salt (Paul et al., 2012). More than 100 genes were differentially 

expressed compared to wild-type and may mediate control of tillering by OsTEF1, 

including a gene coding for a cytochrome P450 protein. One cytochrome P450 gene in 

Arabidopsis, MAX1, is known to be involved in the SL biosynthesis pathway, but 

further work is needed to establish whether OsTEF1 may be a regulator of SL 

biosynthesis in rice (Paul et al., 2012). 

Ascorbic acid (Asc) is an important co-factor for a number of enzymes that affect 

plant growth and development. Rice RNAi transformants down-regulated for 

expression of mitochondrial flavoenzyme l-galactono-1,4-lactonedehydrogenase (GLDH) 

show reduced tillering ability and seed set, premature senescence, reduced plant 

growth rate, and reduced plant height. GLDH catalyses the last step of Ascorbic acid 

(Abc) biosynthesis by converting l-GalL into Asc. Low Asc concentrations are known to 

activate ABA- and JA-dependent signalling pathways (Liu et al., 2013). 

reduced culm number1 (rcn1) rice mutants show low number of tillers, reduced 

panicle branching, and plant height. RCN1 encodes rice OsABCG5, an ATP-binding 

cassette protein belonging to subfamily G (ABCG subfamily), also known as the white–
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brown complex (WBC) subfamily. The Arabidopsis ortholog is TERMINAL FLOWER 1 

(TFL1), a gene assumed to be involved in transportation of lipid. While for Arabidopsis 

TFL1 an effect on leaf wax was identified, the same function was not recognised in rice 

(Yasuno et al. 2009). 

In summary, since the first gene involved in tillering in rice was identified ten 

years ago (Li et al., 2003), many genes involved in tillering have been rapidly identified 

in this species (Table.1) revealing a complex genetic and hormonal network regulating 

tiller development. The growing number of genes associated with the regulation of 

tillering in rice provides a molecular framework for this process, while opening new 

questions about the interplay of the different factors involved. 
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Table.1. List of genes/mutants involved in rice tillering with their phenotypes, homologs, 

molecular function and pathway 

Gene/mutant name- 

Protein/gene family 

Phenotype(†, ‡, §, ¶, #) Homologs Molecular 

function/Pathway 

References 

AXM establishment & maintenance 

Monoculm1 (MOC1)- 

GRAS family 

Reduced tillers 
†
. 

Increased tillers 

and reduced plant 

height
 ‡
 

Tomato Lateral 

suppressor (Ls), 

Arabidopsis 

Lateral 

Suppressor (LAS) 

Transcription factor (TF)/ 

Up-regulates OsTB1 and 

OSH1, works with LAX1 

and LAX2 in  AXM 

establishment /degraded by 

TAD1 

Li et al. 

2003, Xu et 

al. 2012, Lin 

et al. 2012 

Tillering and Dwarf 1 

(TAD1)/Tiller Enhancer 

(TE)- Cdh1-type co-

activators 

Increased tillers 

and reduced plant 

height
 †
 

Arabidopsis Cell 

Cycle Switch52A 

(CCS52A)  

Co-activator of Anaphase-

Promoting 

Complex/Cyclosome 

(APC/C), a multi-subunit 

E3 ligase /Forms a 

complex with OsAPC10, 

activates APC/C to target 

MOC1 for degradation by 

the ubiquitin–26S 

proteasome pathway 

Xu et al. 

2012, Lin et 

al. 2012 

MOC1 Interacting 

Proteins (MIP1)- 

Brefeldin A-sensitivity 

protein 1 (OsBre1A and 

OsBre1B)  

Increased tillers 

and reduced plant 

height
‡
 

Arabidopsis 

At_HUB1, Maize 

Zm_Bre1 

Bre1 protein family is E3 

ubiquitin-protein ligase 

/At_HUB1 involved in 

chromatin modification 

and gene regulation 

/Interacts with MOC1, and 

regulates downstream 

OSH1 and OsTB1 

Sun et al. 

2010 

Lax Panicle1 (LAX1)- 

containing Basic Helix-

Loop-Helix (bHLH) 

domain 

Reduced tillers 

and panicle 

branches
†
 

Arabidopsis 

AtBA1/LAX1 

Maize Barren 

Stalk1 (BA1) 

TF/Interacts with MOC1 

and LAX2 in AXM 

establishment/maintenance 

Komatsu et 

al. 2003, 

Oikawa and 

Kyozuka  

2009 

Lax Panicle2 (LAX2)- 

Novel plant nuclear 

protein  

Reduced tillers 

and panicle 

branches
†
 

Arabidopsis 

DRIP1 and 

DRIP2 (although 

lack the amino 

acid stretches) 

Potentially works as co-

activator of 

LAX1/Interacts with 

MOC1 and LAX1 in AXM 

establishment/maintenance 

Tabuchi et al. 

2011 

Auxin 

Pin-Formed1 

(OsPIN1)-PIN1 family 

Increased tillers
§
 Arabidopsis 

AtPIN1 

Auxin efflux 

carrier/Transports Auxin 

Xu et al. 

2005  

Pin-Formed2 

(OsPIN2)-PIN2 family 

Increased tillers 

and tiller angle, 

reduced plant 

height
‡
 

Arabidopsis 

AtPIN2 

Auxin efflux 

carrier/Transports Auxin, 

down-regulates OsLazy1 

(negative regulator of polar 

auxin transport) 

Chen et al. 

2012 

Increased number of 

Tillers/Enlarged Leaf 

angles/Dwarfism TLD1/  

Gretchen Hagen3 

OsGH3.13- GH3 

Increased tillers, 

leaf angle and 

drought tolerance, 

reduced  panicle 

length, plant 

height and 

spikelets no 

Arabidopsis 

WES1/GH3.5 

Multifunctional acetyl-

amino synthetase/ 

Conjugates IAA to amino 

acids, Regulates negatively 

free IAA, Arabidopsis 

homologs respond to ABA 

and salicylic acid pathways 

Zhang et al. 

2009 
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Aberrant Spikelet and 

Panicle1(ASP1)/Ramos

a1 Enhancer Locus2 

(OsREL2)-

Transcriptional co-

repressor 

Increased primary 

tillers and reduced 

secondary 

tillers/disrupted 

phyllotaxy of 

tillers 

arrangement
†
 

Arabidopsis 

Topless (TPL), 

Maize Ramosa 

Enhancer Locus2 

(REL2) 

Transcriptional co-

repressor/De-repression of 

axillary bud growth 

/Involved in Auxin 

signalling 

Kwon et al. 

2012, 

Yoshida et 

al. 2012 

OsmiR393- MIR393 

non-coding miRNA 

Increased tillers, 

early flowering, 

salt and drought 

susceptibility 
‡
 

Arabidopsis 

miR393 

Represses OsTIR1 and 

OsAFB2, that further 

represses OsAUX1, auxin 

transport to axillary buds 

and down-regulates OsTB1 

Xia et al. 

2012 

Cytokinins (CK) 

IsopentenylTransferase 

(OsIPT1,2,3,4,7)- 

Adenosine 5’ phosphate 

isopentenyl transferase 

Overproliferation 

of axillary shoots
‡
 

Arabidopsis 

Isopentenyl 

Transferase 

genes 

Catalyses prenylation of 

adenosine 5’ phosphates at 

the N6-terminus with 

dimethyl allyldiphosphate 

(DMAPP)/Involved in CK 

biosynthesis 

Sakamoto et 

al. 2006 

Gibberellin (GA) 

Gibberellin 2-

Oxidases5/6 

(OsGA2ox5/6) –

Oxidases  

Increased tillers 

and adventitious 

root growth, semi-

dwarfing 
‡
 

Arabidopsis 

Gibberellin 2-

Oxidases 

(AtGA2oxs) 

Maize  

Gibberellin 2-

Oxidases 

(ZmGA2oxs) 

Catalyse 2-β-hydroxylation 

reaction/Inactivate 

bioactive GA 

Lo et al. 

2008 

Strigolactones (SL) 

Dwarf1 (D1/D17)/ High 

Tillering Dwarf1 

(HTD1)- Carotenoid 

Cleavage Dioxygenase 

(CCD7) 

Increased tillers
†
 Arabidopsis More 

Axillary Growth3 

(MAX3) 

Cleaves β-carotene into 13-

apo-β-carotenone/ Involves 

in  SL biosynthesis/Up-

regulated by Auxin 

Ishikawa et 

al. 2005, 

Kebrom et al. 

2013, Zou et 

al. 2006 

Dwarf10 

(D10/CCD8b)- 

Carotenoid Cleavage 

Dioxygenase (CCD8) 

family 

Increased tillers
†
 Arabidopsis More 

Axillary Growth4 

(MAX4) 

Cleaves β-carotene into 13-

apo-β-carotenone /Involves 

in  SL biosynthesis/ Up-

regulates by Auxin  

Ishikawa et 

al. 2005, 

Kebrom et al. 

2013, Arite 

et al. 2007 

Dwarf27(D27)- Iron-

containing protein with 

isomerase activity 

Increased tillers
†
 Arabidopsis 

Dwarf27 (AtD27) 

Produces 9-cis-β-carotine 

from all-trans-β-carotine in 

SL biosynthesis 

pathway/Involved in  SL 

biosynthesis 

Ishikawa et 

al. 2005, Lin 

et al., 2009; 

Kebrom et al. 

2013 

Dwarf14 (D14)- 

hydrolase/esterase 

Increased tillers
†
 Arabidopsis 

Dwarf14 (AtD14) 

Regulated by OsMADS57/ 

Involved in SL signalling, 

potentially as SL receptor 

Ishikawa et 

al. 2005, 

Kebrom et al. 

2013, Guo et 

al. 2013 

Dwarf3(D3)- F-box 

leucin-rich repeat 

protein 

Increased tillers
†
 Arabidopsis 

MAX2 

Mediates signalling of SL 

and karrikins/Involved in 

SL biosynthesis 

Ishikawa et 

al. 2005, 

Kebrom et al. 

2013 
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Dwarf53 (D53) - 

substrate 

for SCF
D3

 

ubiquitination complex 

Increased tillering
¶
 Arabidopsis 

SMXL6, SMXL7 

and SMXL8 

Negative regulator for SL 

/substrate for D14 

hydrolysis 

(Jiang et al., 

2013; Zhou 

et al., 2013) 

SL pathway regulation and integration of different signals  

SQUAMOSA Promoter 

Binding Protein-Like 14 

(OsSPL14)/ rice Ideal 

Plant Architecture1 (Os 

IPA11)/ Wealthy 

Farmer’s Panicle 

(WFP) QTL – SPL 

family 

Reduced tillering, 

increased lodging 

resistance and 

higher yield
 #
 

Arabidopsis 

SQUAMOSA 

Promoter Binding 

Protein-Like 

(AtSPLs) and 

maize ZmSPLs 

TF/ regulates OsTB1 Miura et al. 

2010, Chen 

et al. 2010, 

Lu et al. 

2013 

 Teosinte Branched1 

(OsTB1)/Fine culm1 

(FC1)- class II proteins 

of TCP family 

Excessive tillers 

and thin culm
†
 

Maize Teosinte 

Branched (TB), 

Arabidopsis 

Branched 

1/Teosinte 

Branched 1-Like 

1 (BRC1/TBL1) 

TF/Regulates SL signal 

transduction by interaction 

with OsMADS57 and 

reduces its inhibition for 

Dwarf14 (D14)/ Target for 

repression by CK and 

GA/Up-regulated by Auxin 

Minakuchi et 

al. 2010, Guo 

et al. 2013, 

Takeda et al. 

2003 

OsMADS57- MADS-

box domain protein 

Increased tillers
‡
, 

Reduced tillers
§
 

 Involved in SL signalling 

by inhibiting D17/ Inhibits 

directly D14 and its 

inhibition activity reduced 

by interaction with OsTB1 

Guo et al. 

2013 

OsMIR444a- MIR444 

non-coding miRNA  

Reduced tillers
‡
  Enhances the SL 

biosynthesis by repressing 

OsMADS57  

Guo et al. 

2013 

Increased Tillering, 

Reduced Height, and 

Infertile Spikelets 

(THIS) - Class III lipase 

family 

Increased tillers, 

shorter plants, and 

less seed set
†
 

Arabidopsis 

PRLIP8 

May be involved in Auxin 

and SL signalling 

Liu et al., 

2013 

Nodulation Signaling 

Pathway1 (NSP1) and 

Nodulation Signaling 

Pathway2 (NSP2) 

Reduced tillers†  Legume NSP1 

and NSP2  

TFs/down-regulates D27 Liu et al., 

2011 

OsMIR156- non-coding 

miRNA 

Increased tillers, 

reduced spikelets 

and grains no
‡
 

Arabidopsis 

MIR156 

microRNA cleavage of 

OsSPL14 mRNA 

Luo et al. 

2012 

Brassinosteroid 

Dwarf and Low-

Tillering (DLT)/ 

OsGRAS32- GRAS 

Reduced tillers 

and plant height
†
 

Arabidopsis 

AtGRAS8 

TF/ Involved in inhibition 

of Brassinosteroid (BR) 

biosynthesis through 

interaction with  OsBZR1 

that perceives BR signal by 

OsBRI1 

Tong et al. 

2009 and 

2012 

Glycogen synthase 

kinase2 (GSK2)-  GSK 

family 

Reduced tillers, 

dark green and 

dwarf plants 
‡
 

Arabidopsis 

GSK3/SHAGGY-

like kinase 

Brassinosteroid-

Insensitive2 

(BIN2) 

 

Regulates DLT gene by 

phosphorylation  

Tong et al. 

2012 
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† Loss of function mutation, ‡ Over-expression transformation, § Down-expression, ¶ Gain-of-function, # QTL 

 

  

Other factors 

Transcription 

Elongation Factor-like 

1 (OsTEF1)- Elf1 

superfamily 

Reduced tillers, 

seminal roots 

growth and salt 

tolerance
†
 

Arabidopsis 

Transcription 

elongation factor- 

like 1 

Involved in  transcription 

elongation by RNA 

polymerase II/ Induces 

cytochrome P450, 

potentially a member of SL 

pathway in Arabidopsis  

Paul et al. 

2012 

ATP-Binding Cassette 

protein-G5 (OsABCG5) 

/reduced culm number1 

(rcn1) - ATP-Binding 

Cassette protein 

subfamily G (ABCG)/ 

White–Brown Complex 

(WBC) subfamily 

Reduced tillers, 

reduced panicle 

branches
†
 

Arabidopsis 

Terminal Flower 

1 (TFL1) 

Half-transporter/ 

Arabidopsis TFL1 

potentially involved in 

transportation of lipid 

Yasuno et al. 

2009 

Frizzy Panicle (FZP)- 

Ethylene-Responsive 

Element-binding factor 

(ERF) TFs 

Reduced tillers 

and plant height, 

increased rachis-

branches
†
 

Maize Branched 

Silkless1 BD1 

gene 

Involved in transition from 

axillary meristem identity 

to spikelet meristem 

Xing and 

Zhang 2010, 

Kato et al. 

2012 

Aberrant Panicle 

Organization 2 (APO2)/ 

OsRFL 

Increased tillers 

and leaf number, 

reduced panicle 

branching
†
 

Arabidopsis 

LEAFY (LFY) 

gene 

TF/Interacts with APO1 Ikeda-

Kawakatsu et 

al. 2012 

Aberrant Panicle 

Organization 1 

(APO1)-F-box protein 

Increased tillers 

and leaf number, 

reduced panicle 

branches
†
 

Arabidopsis 

Unusual Floral 

Organs (UFO) 

Interacts with APO2/ 

represses class-C genes 

Ikeda et al. 

2007 

Ikeda et al. 

2005 

l-Galactono-1,4-

Lactone dehydrogenase 

(GLDH)- Mitochondrial 

enzyme  with FAD 

domain 

Reduced tillers 

and plant height, 

premature 

senescence
§
 

Arabidopsis 

GLDH 

Catalyse the last step of 

Ascorbic acid (Abc) 

biosynthesis by converting 

l-GalL into Asc , 

potentially involved  in 

ABA and JA pathway  

Liu et al. 

2013 

ERF Protein Associated 

With Tillering and 

Panicle Branching 

(OsEATB)/AP2/ERF 

gene -

APETALA2(AP2)/ERF  

Increased tillers 

and  panicle 

branches, reduced 

plant height
‡
 

Arabidopsis 

AtERFs 

TF/Involves in the cross 

talk between ethylene and 

GA/ Down-regulates 

ethylene-induced 

enhancement of GA 

synthase 

Qi et al. 2011 
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4. Genetic control of tillering in barley 

 

Several barley mutants exhibiting tillering abnormalities have been identified 

and characterized providing some initial insight into the genetic and hormonal 

regulation of tillering in the Triticeae (Dabbert et al., 2010) (Table.2 and Fig. 3). These 

can be classified into four classes, according to their AXM activity. The first class 

includes mutants that fail to develop axillary buds, and consequently, develop no 

tillers. The mutant uniculm2 (cul2) is the best characterized example of this class with a 

phenotype similar to that of moc1 mutant in rice (Babb and Muehlbauer, 2003). The 

second class of mutants exhibit lower number of tillers due to compromised axillary 

bud outgrowth including low number of tillers1 (lnt1; Dabbert et al., 2010), absent lower 

laterals1 (als1; Dabbert et al., 2010) and uniculme4 (cul4) (Babb and Muehlbauer, 2003). 

The third group comprises mutants with modestly reduced tillering, such as the 

intermedium-b (int-b) and semi-brachytic (uzu) mutants (Babb and Muehlbauer, 2003). The 

fourth class of mutants exhibits enhanced tillering, suggesting a defect in controlling 

tiller bud outgrowth. The mutants granum-a (gra-a), grassy tillers (grassy), intermedium-c 

(int-c), many noded dwarf1 (mnd1), and many noded dwarf6 (mnd6) represent the high 

tillering class (Babb and Muehlbauer, 2003; Druka et al., 2011). Additional loci altering 

inflorescence architecture may also affect tillering, although such defects have not been 

explored in detail in barley. One example is the barley INT-C gene, the ortholog of 

maize and rice TB1 genes which acts in controlling spike row-type and also has an effect 

on seedling tiller number (Ramsay et al., 2011). 

Uniculm2 (cul2) mutants possess one main culm without any tiller outgrowth 

(Babb and Muehlbauer, 2003). The cul2 mutation appears to be epistatic to low tillering 

mutations (lnt1, als1, cul4, int-b and uzu) and high tillering mutations (mnd1, mnd6, and 

gra). Barley cul2 mutants also show disorganization in the distal end of the developing 

inflorescence, and deviation from wild-type timing of reproductive developmental 

steps (Babb and Muehlbauer, 2003). Overall similarities between cul2 and the rice moc1 

mutant include failure to develop axillary buds, reduced plant height, reduced 
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inflorescence branching, and the epistatic effects to mutations in other loci. However, in 

contrast to moc1 where AXMs are not initiated, AXMs are present in cul2 leaf axils but 

do not progress to axillary buds, indicating that Cul2 acts at the stage of bud 

development. The cul2 locus was positioned on chromosome 6H near the centromeric 

region, but no candidate genes have been identified (Okagaki et al., 2013). 

Transcriptome analysis of cul2 mutants and corresponding wild-type plants using the 

Affymetrix Barley1 GeneChip (Close et al., 2004) indicated that CUL2 is necessary for 

coordinating signalling pathways and stress response and integrating them into AXM 

development (Okagaki et al., 2013). 

The als1, lnt1, and cul4 mutants typically develop only 1 to 3 tillers compared to 

their wild-type background (Babb and Muehlbauer, 2003; Dabbert et al., 2009). These 

loci, mapped at different positions on chromosome 3H, are epistatic to the high tillering 

mutants, based on the low tillering phenotype of the double mutants (Dabbert et al., 

2009, 2010; Muehlbauer, unpublished data). Transcriptomics studies showed that stress-

related genes are up-regulated in the als1, but not in the lnt1 mutant. Gene expression, 

mapping, and sequence analyses supported the JuBel2 gene as a candidate for the Lnt1 

locus (Dabbert et al., 2010). The JuBEL2 protein is a member of BELL-family of 

homeodomain transcription factors (Müller et al., 2001), sharing high similarity with 

qSH1, a rice QTL for seed shattering on chromosome 1 (Konishi et al., 2006) and the 

transcription factor Arabidopsis BELLRINGER (BLR) in Arabidopsis (Smith and Hake, 

2003; Byrne, 2003; Roeder et al., 2003). The mutant qSH1 allele in cultivated rice is a 

regulatory mutation that prevents qSH1 expression in the pedicle at the base of the rice 

seed, resulting in resistance to shattering (Konishi et al., 2006). No effect of this 

mutation was detected on expression of qSH1 in other tissues and no phenotypic effect 

on tillering was reported. However, a qSH1 loss-of-function allele has not been isolated 

in rice, and the qSH1 locus may control other traits in addition to shattering (Konishi et 

al., 2006). In Arabidopsis, blr mutants show reduced plant height, additional axillary 

branches and leaves, and disrupted phyllotaxy in vegetative and inflorescence units 

(Smith and Hake, 2003; Byrne, 2003; Roeder et al., 2003). A two-hybrid protein-protein 

interaction experiment showed that barley JuBEL2 can bind to class I KNOX proteins 

including Hooded/BKN3, which is a barley homolog of Arabidopsis STM (Müller et al., 
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2001). Similar results were obtained in Arabidopsis where BLR interacts with the STM 

protein, assisting in its transportation to the nucleus (Cole et al., 2006; Rutjens et al., 

2009). STM is required to maintain the meristematic identity of cells in both the SAM 

and AXM (Long and Barton, 2000). Plants mutated in BLR and two other related BELL-

like genes, POUND-FOOLISH and ARABIDOPSIS THALIANA HOMEOBOX GENE 1, 

lack a SAM, indicating that BELL-like proteins are essential for normal STM function 

(Rutjens et al., 2009). Together, these results suggest that interactions between JuBel2 

and class I KNOX genes may promote AXM developmentand tiller development in 

barley. 

Recessive mutations in the Int-b (located on chromosome 5H) and Uzu (located 

on chromosome 3H) genes also reduce tiller number, but to a lesser extent compared to 

the mutants of the previous class (Babb and Muehlbauer, 2003). The Uzu gene encodes a 

putative BR receptor HvBRI1 (Chono et al., 2003) and its use as a dwarfing gene has 

become widespread in Asian breeding programs (Hoskins and PoehlmaN, 1971; 

Tsuchiya, 1976; Zhang, 1994, 2000; Saisho, D, Tanno, K, Chono, M, Honda, I, Kitano, H, 

Takeda, 2004). A similar correlation between tiller number and plant height has been 

associated with altered BR responses in rice dwarf and low tillering (dlt) mutants (Tong et 

al., 2009, 2012), indicating BR plays a role in tillering and plant height in both barley 

and rice. Rice d61 is a mutant of the BRASSINOSTERD-INSENSITIVE1 (OsBRI1) gene, 

the ortholog of barley HvBRI1.Reduced plant height in uzu and d61 mutants indicate 

that these BR-receptor genes play similar roles in regulation of stem elongation in 

barley and rice (Chono et al., 2003). However, no effect on tillering was reported for 

OsBRI1-defective mutants and severe alleles cause complete loss of fertility and 

malformed dark green leaves (Nakamura et al., 2006), pointing to diverse 

developmental roles of BRI genes in the two species. 

In barley, a different link between hormones, plant stature and tillering is 

supported by semidwarf1 (sdw1)/denso (mapped on chromosome 3H), an agronomically 

important dwarfing gene with pleiotropic effects on tillering (Jia et al., 2011). Although 

sdw1 and denso are known to be allelic, the two alleles exhibit different phenotypic 

effects. A barley GA 20-oxidase gene (Hv20ox2) has been proposed as a candidate for 
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sdw1/denso (Jia et al., 2009). Compared to wild-type, Hv20ox2 expression is reduced four 

and 60-fold in the denso and sdw1 mutants, respectively. These data indicate that low 

expression decreased plant height while increasing tillering (Jia et al., 2009) and are 

consistent with a negative correlation between GA and tillering observed in rice (see 

above). The rice genomic region collinear to the denso/sdw1 locus hosts the rice 

sd1/Os20ox2 gene, the likely ortholog of Hv20ox2 (Jia et al., 2009). While denso/sdw1 and 

sd1 have similar phenotypic effects on plant height  (Sasaki et al., 2002; Spielmeyer et al., 

2002), we could not find information about the involvement of the rice gene in tillering.   

Semi-dwarf phenotypes and excessive development of tillers also characterize 

plants carrying recessive mutations in the Gra-a (3H), Mnd1 (7HL) and Mnd6 (5HL) 

genes (Druka et al., 2011). In histological studies, gra-a mutants exhibit increased 

numbers of AXMs and axillary buds, with occasional appearance of two shoot apical 

meristems (Babb and Muehlbauer, 2003), while the mnd6 mutant is characterized by the 

development of side branches from aerial nodes (Babb and Muehlbauer, 2003). 

Although the genes that correspond to gra-a and mnd mutations have not been 

identified, their phenotypes resemble those of rice mutants defective in SL biosynthesis 

and signal transduction pathways (Ishikawa et al., 2005; Zou et al., 2006; Arite et al., 

2007). Characterization of these mutants may thus offer a foundation for the study of 

the SL pathway in barley. 

Abnormal formation of lateral shoots from aerial nodes was also observed upon 

Virus Induced Gene Silencing of the P23k gene, involved in synthesis of (1,3;1,4)-β-D-

glucan (Oikawa et al., 2009), suggesting a link between cell wall polysaccharide 

synthesis and branch development. 

Beside these classical mutants, screening of novel mutagenized populations (see 

below) may uncover new loci and alleles conditioning tiller development. Screening of 

TILLMore - a population obtained from sodium azide mutagenesis of the reference 

genotype Morex (IBSC, 2012; Talamè et al., 2008, 

http://www.dista.unibo.it/TILLMore/) - identified a set of lines exhibiting decreased 

tillering that our group is currently characterizing.  
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In addition to mutants, QTLs involved in barley tillering have also been 

identified. Three QTLs for tiller number were mapped on chromosomes 1H bin 6-8, 2H 

bin 3 and 6H bin 10-11, each explaining 10.3-15.7% of the phenotypic variation in a cross 

between cultivated and wild barley (Gyenis et al., 2007) and also four QTLs for tiller 

number were detected on 1H, 2H, 3H and 4H in a cross of a Syrian barley line, ―Arta‖, 

with a wild barley (Hordeum vulgare ssp. spontaneum) (Baum et al., 2003).  

 

 

 
Fig. 3. Phenotypes of barley tillering mutants. The first row contains the wild-type cv. Bowman 

(wt), and the low-tillering mutants uniculm2 (cul2) and uniculme4 (cul4). The second row 

represents the high-tillering mutants inter-medium spike-m (int-m), granum-a (gra-a), many 

noded dwarf6 (mnd6), many noded dwarf1 (mnd1). The last row contains the low-tillering 

mutants absent lower laterals (als), low number of tillers1 (lnt1), intermedium spike-b (int-b) and 

semi rachitic (uzu). (Photo: courtesy of M. Munoz-Amatriain, Department of Agronomy and 

Plant Genetics, University of Minnesota (USA)) 
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Table.2. List of barley tillering mutants. For each mutant, the chromosomal position and relevant 

references are indicated, along with the corresponding (candidate) gene and rice ortholog when 

known. ND, not determined; INF, inflorescence. 

Barley mutant Map 

position 

Mutant phenotype Gene 

(rice ortholog) 

References 

uniculm2 (cul2) 6HL No tiller, irregular 

INF 

ND Babb and Muehlbauer, 

2003; Okagaki et al., 2013 

low number of tillers1 

(lnt1) 

3HL Few tillers, 

irregular INF 

JuBel2 

(qSH1) 

Dabbert et al., 2010 

absent lower laterals1 

(als1) 

3HL Few tillers, 

irregular INF 

ND Dabbert et al., 2009 

uniculme4 (cul4) 3HL Few tillers ND Babb and Muehlbauer, 

2003; Rossini et al., 2006 

intermedium spike-b 

(int-b) 

5HL Reduced tillering, 

irregular INF 

ND Babb and Muehlbauer, 

2003; Okagaki and 

Muehlbauer, unpublished 

data 

semi-brachytic (uzu) 3HL Reduced tillering 

and plant height, 

shorten spike 

HvBRI1  

(OsBRI1) 

Babb and Muehlbauer, 

2003; Chono et al., 2003; 

Nakamura et al., 2006 

granum-a (gra-a) 3HL High tillering, 

dwarf, shorten 

spike 

ND Babb and Muehlbauer, 

2003 

intermedium -c (int-c) 4HS High tillering, 

Reduced lateral 

spikelet 

development 

 HvTB1 

(OsTB1) 

Ramsay et al., 2011 

many noded dwarf1.a 

(mnd1.a) 

7HL High tillering, 

dwarf, irregular 

INF 

ND Babb and Muehlbauer, 

2003; Nice and 

Muehlbauer, unpublished 

data 

many noded dwarf6 

(mnd6)/densinodosum6 

(den6) 

5HL High tillering, short 

spike 

ND Babb and Muehlbauer, 

2003; Druka et al., 2011; 

Nice and Muehlbauer, 

unpublished data 

semidwarf1 

(sdw1)/denso 

3H High tillering, 

reduced plant 

height 

SD1 Jia et al., 2011 

intermedium spike-m 

(int-m) 

ND High tillering, 

irregular INF 

ND Babb and Muehlbauer, 

2003 
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5. Concluding remarks  

 

In this chapter, we aimed to review recent advances in the molecular and 

hormonal control of tillering in barley and rice, as being two important crops and 

model plants. We also tried to show the similarities and differences between the two 

systems, in order to allow for explore the likelihood of transferring knowledge between 

the two experimental systems, and the opportunities offered by studying the rice 

genetic and genomic system. 
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6. Scope of the thesis 

 

Tillering is an important trait for cereal crops and directly affects their productivity. It 

also represents a model trait to study developmental plasticity in the Poaceae.  For these 

reasons, tillering in cereals has received increasing attention recently While significant 

progress was achieved in rice (Chapter 1), the complexity and size of the barley genome 

have delayed the scientific progression of studying genetic components controlling 

tillering in barley. However, recent genomic advancements have provided novel tools, 

established numerous databases with billions of entries, creating new opportunities in 

genetics and genomics. Worth to mention, comparative genomics and synteny studies 

(Bolot et al., 2009; Jaiswal, 2011) provide researchers with powerful tools to transfer 

information between related genetic systems.  

The overall goal of this PhD project is to contribute to our understanding of the genetic 

mechanisms controlling tillering in cereal crops like barley and rice, identifying genetic 

factors involved in regulation of tiller development, and producing a starting point and 

basic materials for further dissection of tillering in barley and rice.  

Among the described tillering mutants in barley, cul4 was identified as producing very 

few tillers with pleitropic effects on other morphological traits (Franckowiak and 

Lundqvist, 2012). Initial efforts mapped the Cul4 locus on the proximal end of the long 

arm on chromosome 3 (Pozzi et al., 2003), and defined flanking AFLP markers within 

5.5 cM interval. In another study an introgression line of the cul4 mutation into 

Bowman background (cul4-Bowman) was obtained (Druka et al., 2011). Before the start 

of this PhD project, our group was able to map the locus between 2 SNP markers 0.22 

cM apart, and to identify Candidate Gene (CG) that co-segregated with locus Cul4 in a 

fine mapping population (Tavakol et al. unpublished Data,). 

Based on this starting point, this PhD project deployed a combination of forward, 

reverse and comparative genetic approaches to address the following specific 

objectives: 
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1) Validation of the aforementioned Cul4 candidate gene and characterization of its 

function by analysis of different cul4 mutant alleles (Chapter 2); 

2) Identification and initial characterization of Cul4 homologues in rice (Chapter 3); 

3) Characterization of a novel set of tillering defective lines identified from the 

TILLMore mutagenized collection (Talamè et al., 2008) as a basis to identify new 

tillering genes in barley (Chapter 4). 
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1. Introduction 

 

As sessile organisms challenged by different environmental conditions, plants 

have to develop the ability to fit within changing natural habitats. Side branching is an 

important trait that shapes plant architecture and affects multiple aspects of plant 

development and productivity. For small grain cereals, tillering– a particular type of 

side branching – is a key component in plant yield and developmental plasticity under 

different growing conditions. While, tillering in the Poaceae has received increasing 

attention, progress in understanding the mechanisms that control this trait came mainly 

from studies on rice (See chapter 1). Although genetic analyses in rice are facilitated by 

genomic size and available resources, integrating genetic information from other 

important crops, like barley and wheat, will provide a broader view of the how cereals 

incorporate multiple endogenous and environmental signals to control tiller 

development. A number of barley tillering mutants have been identified and their 

characterisation has provided insight into the genetic mechanism of vegetative axillary 

development and tillering in this important crop plant (See chapter 1). However, 

despite recent progress in genetic and genomic technologies, most genes underlying 

tillering in the Triticeae tribe still await identification. 

Tiller development can be divided into three main stages: i) establishment of 

the axillary meristem (AXM) in the leaf axil; ii) development of the axillary bud; iii) and 

outgrowth of the bud to form a tiller (Schmitz and Theres, 2005). The first two stages are 

mainly controlled by genetic factors, while tiller bud outgrowth is under control of 

complex network of genetic, hormonal and environmental factors (Kebrom et al., 2013). 

Development of the AXM follows a precise progression in parallel to the development 

of the subtending leaf (Oikawa and Kyozuka, 2009), although little is known about the 

mechanisms coordinating these processes in grasses. A typical grass leaf is organised in 

three distinct regions along the proximal-distal axis: 1) the proximal sheath is off-set 

from the 2) distal blade, which are separated by 3) a hinge-like structure comprising 
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two wedge-shaped auricles, whereas a fringe-like epidermal outgrowth called ligule 

occurs on the adaxial leaf surface at the base of the auricle (Sylvester et al., 1990).  

In leaf development, primordia are first established at specific sites on the 

periphery of the meristem. Then local patterning occurs along the three main axes: 

abaxial-adaxial, proximal-distal, and central-lateral (Fig.4). Asymmetrical development 

along organ axes is a central element of organ patterning. The development of 

asymmetry is divided into discrete phases. First, an axis is specified by long-range 

signals or unequal partitioning of a determinant within a cell before division. Second, 

specification of different identities occurs in domains along the axis. This usually results 

from activation of different transcription factors that may interact to re-establish the 

distinctions between domains. Third, short-range interactions can then elaborate the 

pattern, a process that may be coupled with growth (Hudson, 2000). For leaf particular 

case, during the vegetative development, primordia are first established at specific sites 

on the periphery of the meristem. Then local patterning occurs along the three main 

axes; abaxial-adaxial, proximal-distal, and central-lateral. From that patterning, the cells 

acquire divergent developmental identities. Finally, cell division and expansion guide 

organ growth, promoting leaf to obtain its size and shape (Byrne et al., 2000). 

 

 
Fig.4. Illustration showing the 3 main developmental axes of dicot leaf: abaxial-adaxial; 

proximal-distal; and central-lateral axes. 
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Barley plants carrying recessive mutations in the barley Uniculme4 (Cul4) gene 

show reduced tillering and characteristic defects in proximal-distal leaf patterning 

(Franckowiak and Lundqvist, 2012). Objective of the work described in this chapter was 

the validation and functional characterization of a Candidate Gene (CG) for the barley 

uniculme4 (cul4) mutant. 

In a previous project, low-resolution mapping based on AFLP (Amplified 

Fragment Length Polymorphism) markers positioned the Cul4 locus at the distal end of 

chromosome 3HL (Pozzi et al., 2003). Before the start of this PhD project, our group had 

developed a segregating population comprising 9,949 plants from a cross between a 

cul4.5 Nearly Isogenic Line (NIL, Bowman background) and the wild-type parent 

Morex, delimiting the position of Cul4 between two SNP markers (Close et al., 2009) 

0.22 cM apart. In addition, synteny analysis between the barley genetic region and the 

collinear Brachypodium, rice and sorghum genomic regions (Mayer et al., 2011) was 

used to identify one co-segregating Candidate Gene (CG), encoding a protein with 

BTB/POZ domain (for Broad complex, Tramtrack, Bric à brac, Pox virus and Zinc 

finger) (Bardwell and Treisman, 1994) and ankyrin repeat (ANK), sharing high 

similarity with Arabidopsis BLADE-ON-PETIOLE1 (BOP1) and BOP2  (Ha et al., 2003), 

pea COCHLEATA (COCH), and Medicago truncatula NODULE ROOT (NOOT) 

(Couzigou et al., 2012). BTB domain proteins are evolutionarily conserved from 

Drosophila to mammals and are involved in transcriptional regulation (Bardwell and 

Treisman, 1994; Albagli et al., 1995; Ahmad et al., 1998). Although the BTB/POZ 

domain is known as DNA-binding motif, but in Drosophila, the BTB domain was 

proposed not to be directly involved in DNA binding, but rather modulate DNA 

binding through protein-protein interaction with other BTB domain or other family of 

proteins (Zollman et al., 1994). Some BTB-domain containing proteins are also known to 

modulate chromatin condensation (Bardwell and Treisman, 1994). In Drosophila BTB 

proteins affect pattern formation along the proximal-distal axis of the leg and antenna, 

and are also required during the morphogenesis of the ovary (Zollman et al., 1994). In 

Arabidopsis, BOP1 and BOP2 proteins which carry BTB domain were proved to be 
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involved in leaf formation along proximal-distal axis by repressing the expression of 

knotted-like homeobox (KNOX) genes (Ha et al., 2003, 2007). In addition to the BTB 

domain, Arabidopsis BOP1 and BOP2 proteins contain ankyrin domain, making them 

similar to NPR proteins (NONEXPRESSOR OF PATHOGENICITY-RELATED GENES) 

that are required for Systemic Acquired Resistance (SAR) to many pathogens (Ha et al., 

2004; Hepworth et al., 2005; Canet et al., 2012).  

Arabidopsis bop1 bop2 double mutant shows defects in leaf patterning and 

produces ectopic, lobed blades along the adaxial side of petioles of the cotyledon and 

rosette leaves, indicating that the corresponding genes are required for correct leaf 

patterning along the proximal-distal axis (Ha et al., 2003). The Arabidopsis BTB-ankyrin 

BOP proteins were proved to be involved in leaf formation along proximal-distal axis 

through the repression of the expression of three class I knotted-like homeobox genes; 

BREVIPEDICELLUS (BP), KNAT2 (for KNOTTED-like from Arabidopsis thaliana 2), and 

KNAT6 (for KNOTTED-like from Arabidopsis thaliana 6) (Ha et al., 2007).   

BOP1 and BOP2 genes showed regulatory effect on cell proliferation and 

differentiation by up-regulating ASYMMETRIC LEAVES2 (AS2) (Jun et al., 2010). AS2 

encodes a Lateral Organ Boundary (LOB) protein that interacts with AS1 to form a 

chromatin-remodelling complex required to repress expression of class I KNOX genes  

(Jun et al., 2010). The AS1-AS2 complex acts in silencing of three class I KNOX genes in 

developing leaf primordia: BREVIPEDICELLUS (BP), KNOTTED-like from Arabidopsis 

thaliana2 (KNAT2), and KNAT6 (Jun et al., 2010). Suppression of KNOX genes in the leaf 

primordium is required for proper organ differentiation and formation (Ha et al., 2010). 

Conversely, another class I KNOX gene, SHOOT MERISTEM LESS (STM), is known to 

negatively regulate AS1, AS2, BOP1, and BOP2 in the SAM to maintain meristem cells 

in a proliferative state (Fig. 5; Jun et al., 2010; Ha et al., 2010). Additional players in the 

BOP1 and BOP2 network are two members of the YABBY (YAB) family of transcription 

factors, FILAMENTOUS FLOWER (FIL) and YAB3, which are down-regulated by BOP1 

and BOP2 (Ha et al., 2010). FIL and YAB3 are known for their role in establishment of 

organ abaxial identity and leaf lamina expansion (Ha et al., 2010). 
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Fig. 5. Model for molecular function of Arabidopsis BOP1 and BOP2 genes. BOP1 and BOP2 

directly up-regulate AS2, that interact with AS1 to down-regulate class I KNOX genes (BP, 

KNAT2, and KNAT6), that are also direct target for suppression by BOP1 and BOP2. Members 

of YAB family, FIL and YAB3, showed to be down-regulated by BOP1 and BOP2,in addition to 

directly or indirectly repression of JAG and NUB expression in the proximal domain to pattern 

the proximal-distal axis (Jun et al., 2010; Ha et al., 2010). 
 

Although BOP1 and BOP2 share significant similarity with wider class of NPR 

proteins that are involved in salicylic acid (SA)-dependent plant systematic acquired 

resistance, but phylogenetically, BOP1 and BOP2 are clearly separated and form 

monophyletic well-supported group. Recently, an additional role of BOP1 and BOP2 in 

plant defence system against pathogens was revealed (Canet et al., 2012). When 

inoculated with Pseudomonas spp., Arabidopsis plants carrying mutant alleles bop1 bop2 

did not show any deviation from wild-type susceptibility (Hepworth et al., 2005), in 

addition to normal perception of Salicylic Acid (SA) (Canet et al., 2010). Canet et al., 

(2012) showed that BOP1 and BOP2 take part in plant resistance-inducing ability of 

methyl Jasmonate MeJA (called RIM). Beside affecting leaf development, pea (Pisum 

sativum) and Medicago truncatula BOP genes COCHLEATA (COCH) and NODULE 

ROOT (NOOT), play a role in nodule meristem identity and maintenance, which is 

essential process in the establishment of nitrogen-fixing nodules (Couzigou et al., 2012). 

Together, available data from dicot species indicate that BOP genes are involved in 

diverse processes and some functional diversification has occurred in this gene family.  
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2. Scope of the chapter 

 

In order to map the locus at higher resolution, and validate the CG affiliation to cul4 

phenotype, our group planned to use the physical map data provided from partners in 

FP7 EU project TriticeaeGenome (Schulte et al., 2011), to develop new tight markers, 

and to design for amplification and sequencing the CG in different mutant stock 

available for us. The CG was identified as a BTB/ANK gene; homolog to Arabidopsis 

BOP genes, and our attempts in this chapter was to describe - for the first time - the 

functional characterization of a monocot BOP-like gene. 

Proving the co-segragation of CG with Cul4 locus, in addition to showing the 

recombination between locus Cul4 and the putative genes in proximity of the CG, 

would provide mapping-based validation of the CG. Moreover, identifying 

polymorphism in CG sequence among different mutant and wild-type alleles that 

corresponds to variation in phenotype will provide additional validation approach for 

the responsibility of CG for cul4 phenotype. To carry out those validation plans, we set 

the following objectives: (1) developing new tight markers based on the physical map 

and contig sequence provided by partners. Markers would allow mapping the gene at 

higher resolution, and proving co-segregation of cul4 with the CG, in addition to 

estimation of physical-map distance ration; (2) amplifying the CG sequences from 

different genetic stocks (mutants and wild-type) through genomic PCR, and sequence 

the reaction product to identify polymorphism, and possible mutations explaining the 

deviation in phenotype; (3) detailed quantitative and qualitative phenotyping for cul4 

mutant lines  in comparison to their respective wild-type backgrounds, to identify the 

different traits affected by mutation in locus Cul4. 
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3. Materials and Methods 

 

3.1 Phenotyping analysis 

Plant materials and growth conditions  

For phenotyping, different cul4 mutants and their respective wild-type 

backgrounds were planted in greenhouse in Tavazzano (Lodi, Italy) over two growing 

seasons; first of February 2011 till end of June 2011, and end of January 2012 till end of 

June 2012, in randomised complete block experiment.  

Year 2011 

The genotypes investigated during year 2011 are listed in (Table. 3a,b). 

Table. 3a. Mutant genotypes investigated in the phenotypic analysis year 2011  

Mutant name Background Mutagen Collection Accession 

number 

Author 

uniculm4.5 

(cul4.5/cul5) 

Bonus x-ray Nordic Genetic 

Resource Center 

NGB115063 Udda 

Lundqvist 

unicum4.5-

Bowman 

5 backcrosses of cul4.5 into Bowman background to obtain near isogenic line 

uniculm4.15 

(cul4.15/cul15) 

Foma N-ethyl-N-

nitrosourethane 

Nordic Genetic 

Resource Center 

NGB115064 Udda 

Lundqvist 

uniculm4.16 

(cul4.16/cul16) 

Bonus Neutrons Nordic Genetic 

Resource Center 

NGB115065 Udda 

Lundqvist 

 

 

Table. 3b. Wild-type genotypes investigated in the phenotypic analysis year 2011 

Cultivar Row type Growth habit 

    Bonus 2-rows spring 

Bowman 2-rows spring 

 

Around 30 seeds were sown for each genotype in 2011 experiment. A single seed 

was sown in each plastic pot (13.5 × 13.5 × 15 cm, ca. 2 L) filled with normal field soil 

from Tavazzano, Lodi (Italy). The environmental conditions were the natural conditions 
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of temperature and photoperiod in Lodi (Italy) between first of February and end of 

June 2011 in the first experiment, and end of January 2012 to the end of June 2012 in the 

second experiment. Irrigation was carried out 2-3 times a week to keep soil wet at 60% 

field holding capacity. The fertilization programme was performed to keep favourable 

nutritional conditions for seeds germination and growth, and was applied as following: 

post-emergence (3-4 weeks after sowing), Urea solution (200 g/100 L); during tillering 

stage (5-6 weeks after emergence), Ammonium Nitrate (50 g/100 L), Calcium Nitrate 

(50 g /100 L), Magnesium Sulphate (50 g/100 L) Potassium Phosphate (50 g/100 L), Fe 

and microelements (10 g/100 L); during ear emergence (16-20 weeks after emergence), 

the same fertilizers and doses as during tillering application. During the ear emergence 

(16-20 weeks after emergence), plants were sprayed with Folicur® Bayer (active 

ingredient: Tebuconazole 4.3 %) fungicide at rate of 150 ml/ha (plant spacing was 30 

plant per m2). 

Year 2012 

The genotypes investigated during year 2012 are listed in (Table. 4a,b). Around 

20 seeds were sown for each genotype in 2011/2012 experiment. The same experimental 

design, soil mixture, programme of irrigation, fertilization, and pesticide treatment 

were used as described in Year 2011 experiment settings. 

Table. 4a. Mutant genotypes investigated in the phenotypic analysis year 2012 

Mutant 

genotype 

Background Mutagen Collection Accession 

number 

Author 

uniculm4.3 

(cul4.3/cul3) 

Bonus Ethylene oxide Nordic Genetic 

Resource Center 

NGB115062 Udda 

Lundqvist 

uniculm4.5 

(cul4.5/cul5) 

Bonus x-ray Nordic Genetic 

Resource Center 

NGB115063 Udda 

Lundqvist 

uniculm4.15 

(cul4.15/cul15) 

Foma N-ethyl-N-

nitrosourethane 

Nordic Genetic 

Resource Center 

NGB115064 Udda 

Lundqvist 

uniculm4.16 

(cul4.16/cul16) 

Bonus Neutrons Nordic Genetic 

Resource Center 

NGB115065 Udda 

Lundqvist 

uniculm4.24 

(cul4.24/cul24) 

Flare Neutrons Nordic Genetic 

Resource Center 

NGB119360 Udda 

Lundqvist 
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Table.4b. Wild-type genotypes investigated in the phenotypic analysis year 2012 

Cultivar Row type Growth habit 

Bonus 2-rows spring 

Flare 2-rows spring 

 

 

Quantitative and qualitative measurements 

Year 2011 

At the end of the flowering stage phase (end-May, 5 months after sowing) in 

2011, 25 parameters were measured (see Table. 5 and Fig. 6), and developmental phases 

were recorded on 3 dates. 

Year 2012 

At the end of the flowering stage phase (end-May, 5 months after sowing) in 

2012, 22 parameters were measured (see Table. 6 and Fig. 6), and developmental phases 

were recorded on 8 dates. 
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Table. 5. Parameters measured in year 2011 

no Parameter Description 

Vegetative parameters 

1 height 
The distance from the ground level to spike collar of the main culm (the 

highest culm) 

2 no nodes 
Considering ground nodes of the main culm as one node, and counting 

upward till spike collar (not counted as node) 

3 1
st
 lowest internode 

Counting the ground nodes in the main culm as the 1
st
 lower node, and the 

upward internodes as the 1
st
 lowest internode and moving upward counting the 

next as 2
nd

 lowest, then 3
rd

 lowest. 

4 2
nd

 lowest internode 

5 3
rd

 lowest internode 

6 
1

st
 highest 

internode Counting the internode between spike collar and the downward node (1
st
 

highest node) in the main culm as the 1
st
 highest internode, then the successive 

as the 2
st
 highest internode and moving downward counting the next as 3

nd
 

highest internode. 

7 
2

nd
 highest 

internode 

8 
3

rd
 highest 

internode 

9 
leaf blade 2

nd
 upper 

length 

Counting the flag leaf as the 1
st
 upper leaf in the main culm of the plant, then 

moving downward counting 2
nd

 upper leaf, then 3
rd

 upper, … 

The length of the leaf blade was measured from tip of leaf blade till ligule, 

Leaf blade width was measured in the middle one-third of the leaf  

10 
leaf blade 2

nd
 upper 

width 

11 
leaf blade 4

th
 upper 

width 

12 
leaf blade 4

th
 upper 

length 

13 
leaf blade 6

th
 upper 

length 

14 
leaf blade 6

th
 upper 

width 

15 max tiller The tiller with the greatest culm height 

16 min tiller The tiller with the lowest culm height 

17 no tiller Total number of side branches 

18 
leaf with auricle-

like ectopic growth 

Number of leaves showing ectopic auricle-like growth along the leaf sheath in 

the main culm 

Spike parameters 

19 Spike length The length between spike collar and spike tip in the main culm 

20 
Spike with awns 

length 
The length between spike collar to the awns tip in the main culm 

21 no spikelets 
Total number of spikelets with floral organs (not counting infertile lateral 

spikelets in 2-rows cultivars 

22 spike weight 
The weight of the whole spike (include grains, infertile spikelets, awns, and 

rachis) 

23 fertility 
The number of grains was subtracted from the total number of spikelets, and 

the result was calculated as percentage to the total number of spikelets 

24 No grains Number of grains was counted in the main culm spike 

25 Total grain weight All grains were detached from the spike and were weighed  
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Calculated parameters 

26 One grain weight Total grain weight/no of grains 

 

Table. 6. Parameters measured in year 2012 

no Parameter Description 

Vegetative parameters 

1 height 
The distance from the ground level to spike collar of the main culm (the 

highest culm) 

2 no nodes 
Considering ground nodes of the main culm as one node, and counting 

upward till spike collar (not counted as node) 

3 1
st
 lowest internode 

Counting the ground nodes in the main culm as the 1
st
 lower node, and the 

upward internodes as the 1
st
 lowest internode and moving upward counting 

the next as 2
nd

 lowest, then 3
rd

 lowest. 

4 
2

nd
 lowest 

internode 

5 3
rd

 lowest internode 

6 
1

st
 highest 

internode Counting the internode between spike collar and the downward node (1
st
 

highest node) in the main culm as the 1
st
 highest internode, then the 

successive as the 2
st
 highest internode and moving downward counting the 

next as 3
nd

 highest internode. 

7 
2

nd
 highest 

internode 

8 
3

rd
 highest 

internode 

9 
1

st
 upper (flag) leaf 

blade lenght 

Counting the flag leaf as the 1
st
 upper leaf in the main culm of the plant, then 

moving downward counting 2
nd

 upper leaf, then 3
rd

 upper, … 

The length of the leaf blade was measured from tip of leaf blade till ligule, 

Leaf blade width was measured in the middle one-third of the leaf on 

proximodistal axis 

10 
1

st
 upper (flag) leaf 

blade width 

11 
2

nd
 upper leaf 

length 

12 2
nd

 upper leaf width 

13 
3

rd
 upper leaf 

length 

14 3
rd

 upper leaf width 

15 
4

th
 upper leaf 

length 

16 4
th
 upper leaf width 

17 max tiller The tiller with the greatest culm height 

18 min tiller The tiller with the lowest culm height 

19 no tiller Total number of side branches 

20 
leaf with auricle-

like ectopic growth 

Number of leaves showing ectopic auricle-like growth along the leaf sheath 

in the main culm 

Spike parameters 

21 Spike length The length between spike collar and spike tip in the main culm 

22 
Spike with awns 

length 
The length between spike collar to the awns tip in the main culm 
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Fig. 6. Schematic diagram representing the main parts of the barley plant, and highlight the 

morphological position of parameters measured in the phenotypic analysis experiment. 
 

The measurements were analysed statistically using XL Toolbox add-in Excel 

sheet. Test for outliers were made to exclude all data point with extreme values by 

Grubbs' test (on-line calculator; http://www.graphpad.com/quickcalcs/Grubbs1.cfm), 

ANOVA was run, and post-hoc Bonferroni-Holm test carried out. Normality of data 

was tested graphically to ensure the eligibility of data to run ANOVA test.  

 

http://www.graphpad.com/quickcalcs/Grubbs1.cfm
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3.2  Candidate gene validation: high-resolution mapping  

Previous work (before the start of this PhD project) using markers developed 

based on synteny with Brachypodium chromosome 2 and rice chromosome 1 genomic 

regions, resulted in mapping of the Cul4 locus to an interval of 0.22 cM and 

identification of a Candidate Gene (CG) co-segregating with the locus (Bradi2g608710), 

and two flanking genes (Bradi2g60705 and Bradi2g60720). The mapping population 

consisted of 4,949 F3 individuals from a cross between cul4.5-Bowman and Morex, 

which yielded the most polymorphic markers. Fine mapping was based on analysis of 

55 plants carrying recombination events around the cul4 locus. To further define the 

position of the cul4 locus, Bacterial Artificial Chromosome (BAC) contig (FPcontig_460) 

of the barley physical map (Schulte et al., 2011) was identified by sequence homologous 

search of the candidate gene (Bradi2g60710) and one of the flanking genes in 

Brachypodium (Bradi2g60705) sequences on the barley genomic sequence information 

(IBSC, 2012). A BAC clone (HVVMRXALLeA0131P08) (ca. 170 kb) was fully sequenced 

using a 454/Roche GS FLX platform (courtesy of IPK, Gatersleben, Germany) and 

sequence reads were assembled into contigs after trimming adaptors and vector 

sequences, and excluding short reads that may cause ambiguity, following the 

methodology described by Steuernagel et al. (2009). Contigs sequences were annotated 

to identify additional genes using Triannot pipline gene prediction programme (Leroy 

et al., 2012; http://wheat-urgi.versailles.inra.fr/Tools/Triannot-Pipeline) in the Cul4 

region. The new markers were developed by designing specific genomic PCR primers 

on the contigs sequences that will amplify the target region in the two parents Morex 

and cul4.5-Bowman. The PCR amplicons were Sanger sequenced at the Genomic 

Platform (Parco Tecnologico Padano), and sequences from the parents were compared 

to identify polymorphism (Single Nucleotide Polymorphism ‗SNP‘). Polymorphic 

markers were then mapped on 55 recombinants (F4 heterozygous individual carry 

recombination event between 2825-1609 and 3_1500 markers that were developed in 

previous work before this PhD project was initiated). Primers that were used to amplify 

the polymorphic markers are stated in Table. 7. 

http://wheat-urgi.versailles.inra.fr/Tools/Triannot-Pipeline
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Table. 7. Primers used to identify SNP markers on the sequence of the two parents (cul4.5-

Bowman and Morex) and genotype the mapping population (55 individuals showing 

recombination around the CG location (cul4.5-Bowman x Morex) 

Marker  

name 

Brachypodium 

ortholog/ 

primer 

Forward primer Reverse primer 

ET_umil0110 Bradi2g60720 TTTCATGGCTGTGCTTTCAG GGCAGCCAGTAATTTCGTGT 

ET_umil0106 Bradi2g60705 AACCCTGGCGATTACTTGTG GTACCGTACGTCGGTCTCGT 

ET_umil0108 Bradi2g60710 AGCATGAACCTGAGCTTGGA TGAATGTAGAGCCTAACGAACA 

EP_umil0107 ISBP1 TTTCCTTTCTTGCCAGCCTA ACATCACGGGCATCACCTAA 

EP_umil0109 ISBP2 TTTATTCCGTTTGGACTCCG AGGAGCCCAAGAAAATCGTT 

 

 

3.3 Candidate gene validation: allelic comparison 

The candidate gene was re-sequenced in the three available allelic mutant stocks 

cul4.5 (KF151193), cul4.16 (KF151195) and cul4.24 (KF151196) and the respective 

backgrounds Bonus (KF151192) and Flare (KF151194) using primers described in Table. 

8, and the amino acids substitution impact on the protein function was evaluated using 

http://sift.bii.a-star.edu.sg/www/SIFT_seq_submit2.html 

Table. 8. Primers used to amplify the CG in different genetic stocks for allelic comparison 

Primer name Forward primer Reverse primer 

Exon 1 ACGGCTTCTTCCACTCCTCT GGTTGGTTATGTTGGGATCG 

Exon2 CGGTCTCTCCATGCCATATT GAGATCGGTCGACGAGAATG 

Intron GTGCTCCAGTTCCTGTACA GAGGACGTGATGAAGGTGCT 

5’upstream-1 TTTGAGGTTGCAATGGCTCT ATCAAAAGAGATCGGGCGAT 

5’ustream-2 CAGTCAAAGCATGGCACACT GGTTGGTTATGTTGGGATCG 

5’upstream-3 CAGTGAAGTCACGGCAAGAA GGTTGGTTATGTTGGGATCG 

 

DNA extraction 

 Leaf tissue samples were lyophilised under vacuum at -50oC (Christ ALPHA 1-2 

LD plus) for a minimum of 3 days, then stored at -20oC in vacuum bags. For DNA 

extraction, 20 mg of lyophilized tissue were initially ground with a QIAGEN 

Tissuelyser Retsch®MM300 Mixer Mill with metal tungsten carbide beads in QIAGEN 

Collection Microtubes (1.2 ml) capped with Collection Microtube Caps in TissueLyser 

http://sift.bii.a-star.edu.sg/www/SIFT_seq_submit2.html
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Adapter Sets, shaking at 30 rps for 3 min. The tissue powder was then supplemented 

with 600l MATAB solution  (20 mM EDTA pH 8.0, 100 mM Tris-HCl pH 8.0, NaCl 1.5 

M, 0.5% (W/V) Na2SO3, 2% (W/V) hexadecyltrimethylammonium bromide (MATAB), 

Polyethylene glycol (PEG) solution 1% (W/V) pre-heated at 65oC. The suspension was 

incubated at 65oC for 15 min, then 10l of RNase RNasiA (20mg/ml Invitrogen) were 

added to each sample, and the sample was incubated for 30 min at 65oC. The sample 

was then centrifuged at 4500 xg for 10 min. The supernatant was taken by pipetting to 

new tube, and precipitation of tissue debris was discarded. Mixture of 

chloroform/isoamyl (24/1) is added by 450 l rate for each sample. The sample was 

mixed by inverting gently and then centrifuged at 6,200 xg for 10 min. The supernatant 

was pipetted into new tube (1.5 ml), and 150l of isopropanol (pre-chilled to -20oC) 

were added to each sample. The sample was incubated at -20oC to allow precipitation of 

nucleic acids for 30 min, and then centrifuged to collect them at 4,500 xg for 10 min at 

4oC. The isopropanol phase is discarded, while paying attention not to disturb the pellet 

of the nucleic acids. After addition of 800l of ethanol 70%, each sample was mixed well 

and centrifuged again at 4,500 xg. This washing step was repeated twice. The pellet of 

nucleic acids was left to dry in a Vacufuge® vacuum concentrator (Eppendorf) at 35oC 

and 35 xg for 20 min., and finally resuspended in 40-50 l of sterilised water. DNA 

quantity and quality was measured on NanoDrop 1000 Spectrophotometer (Thermo 

Scientific). 

Genomic PCR 

The purified DNA extracted from plant seedlings were adjusted to the 

concentration of 50ng/l, and were used as a template to amplify the CG in different 

genetic stocks. Also the same Genomic PCR protocol was used to amplify genomic 

regions in parents (Morex and cul4.5-Bowamn) to develop new markers, and later to 

map them on the mapping population. The PCR reaction mixture was combined as 

presented in Table. 9 
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Table. 9. Genomic PCR cocktail  

Reagent Vol. per reaction 

(total vol 25l) 

Final concentration 

ReadyMix™ Taq PCR 

Reaction Mix 2x (Sigma) 
12.5l 1x (1.5 units Taq DNA polymerase, 10 mM Tris-

HCl, 50 mM KCl, 1.5mM MgCl2, 0.001% gelatin, 

0.2 mM dNTP, stabilizers 

Primer Forward 1l 0.4M 

Primer Reverse 1l 0.4M 

DNA sample (50ng/l) 1.5l 3ng/l 

Molecular Grade water 9l  

 

The thermal cycler machine (BIORAD PCR thermal cyclerTM) was programmed 

for the following: 94oC for 4 min, then 35 cycles of 94oC for 30 seconds, then annealing 

temperature between 52oC and 57oC (depend on melting temperature of the primers; 

the PCR annealing temperatures were 3-4 degrees less than the lowest melting for the 

primer pair) for 30 seconds, then 72oC for 1.5 minutes, then final extension phase at 

72oC for 10 min. The PCR products were analysed on agarose gel 1.5% in TAE buffer 1x 

run at 80 V. The agarose gel was supplemented with 4l of ethidium bromide solution 

(3%) to stain the PCR product that was visualised under UV light.  

RNA extraction 

Around 200 mg of freshly collected barley seedlings (2nd leaf not completely 

unfolded) were ground in pre-chilled mortars. The tissue powder was collected in tube, 

and 1ml of TRIzol (Invitrogen) reagent was added to each sample and mixed by 

inverting the tube gently. The mixture was incubated at room temperature for 5 min, 

then 200 l of chloroform were added to each sample, slowly on the tube wall, the tube 

was inverted repeatedly to mix, and left at room temperature for 10 min. Samples were 

centrifuged at 15,000 xg for 10 min at 4oC. The supernatant (the aqueous phase) was 

transferred by pipetting into a clean tube, and 500 l of pre-chilled isopropanol (-20oC) 

were added to each sample. Samples were left at 4oC for 10 min and centrifuged at 

15,000 xg for 10 min at 4oC to precipitate nucleic acids. The supernatant was discarded 
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by pipetting; minding not to disturb the nucleic acid pellet, then the pellet was washed 

with 1 ml of 70% ethanol and centrifuged at 15,000 xg to re-precipitate RNA. The 

washing step was repeated twice, then the RNA pellet was left to dry at room 

temperature for 10-20 min.  RNA was re-suspended by adding 40-50 l of ultrapure 

water. RNA quality and quantity were evaluated by NanoDrop 1000 

Spectrophotometer (Thermo Scientific), as well as checking RNA integrity on 1.5% 

agarose gel to ensure the typical migration pattern of two RNA bands (28s and 18s 

rRNA).  

cDNA synthesis 

The starting material for cDNA synthesis was 1 g of RNA in a 3l volume. The 

first step was to degrade any genomic DNA by adding 2l of gDNA wipeout (Qiagen) 

plus 9l of ultrapure water to each sample (to total volume of 15 l), and then samples 

were incubated at 42oC for 5 min. Quanti tech RT kit (Qiagen) was used for the reverse 

transcriptase reaction. The reaction mixture was as following: 1l of reverse 

transcriptase enzyme, 4l of the buffer solution (Mg2+ and dNTPs), 1l of primer 

mixture (containing oligo dT and random primers), and 14l of the processed sample. 

The mixture was incubated at 42oC for 30 min, and then the reaction was blocked by 

incubating at 95oC for 3 min.  

Sanger sequencing 

The DNA sample to be sequenced was treated initially with ExoSap (New 

England Biolabs) by mixing 5l of sample to 2l of the reagent, and incubated at 37oC 

for 15 min followed by 80oC for 15 min. The BigDye® Terminator Cycle Sequencing Kit 

(Applied Biosystems) was used for sequencing. The reaction mixture was as constituted 

as presented in Table. 10 

Reactions were incubated in 96 well plates, in a BIORAD PCR thermal cyclerTM 

under the following thermal conditions: 25 cycles of [96oC for 10 sec, 50oC for 10 sec, 

60oC for 4 min]. The reaction mixture then purified by ethanol precipitation as follows: 
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for each reaction, 2.5l of EDTA and 30l of absolute ethanol were added, then the 

whole 96-well plate was centrifuged for 45 min at 625 xg. The supernatant was 

discarded by inverting the plate, then 30l of pre-chilled ethanol (-20oC) were added to 

each well, and centrifugation was run again at 625 xg for 15 min. The supernatant was 

discarded, and the plate was incubated at room temperature in the dark to allow 

ethanol residues to evaporate, while protecting the reaction dye from being degraded 

by light. At the end, 10 l of formamide was added to each well, and reactions were 

submitted to the Genomic Platform at Parco Tecnologico Padano, Lodi, for capillary 

electrophoresis on an AB3730 capillary instrument DNA analyser (Applied Biosystems).  

Table. 10. Sanger sequencing reaction mixture 

Regent Initial conc. Volume added Final conc. 

BIG DYE v. 3.1 (Ready Reaction Mix) 10 × 1 1 × 

Sequence buffer 5× 2 1x 

Primer 10 µM 0.8 800 nM 

ultra-pure molecular grade water - 3.2 - 

purified DNA  3  

Total reaction mix  10  
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4. Results 

 

4.1 Detailed phenotyping of cul4 mutants  

In order to evaluate the phenotypic effects of mutations in the Cul4 gene and 

compare severity of different alleles in relation to their molecular lesions (see section 

3.3), a total of 9 different genotypes were investigated; 3 wild-type background 

varieties, and 6 different cul4 mutant lines, over two growing seasons in 2011 and 2012. 

Effects of mutations at the Cul4 locus on plant vegetative phenotypes 

Plants carrying mutations at the Cul4 locus generally have stiff thick stem, dark 

green curling leaves that rolled on their main vein axis (Fig. 7 and Fig. 9). Plants 

homozygous for the cul4.3, cul4.5 (both in the Bonus and Bowman background), cul4.15, 

and cul4.16 alleles showed ectopic outgrowths of auricle-like tissue on the sheath 

margin of some leaves (Fig. 8). Such ectopic outgrowths appear especially more 

pronounced in the flag leaf, and the 2-3 leaves below the flag leaf. All cul4 mutant lines 

were reported to have a liguleless phenotype, in contrast to wild-type backgrounds that 

develop normal ligules (Fig. 10) (Tavakol et al., unpublished data). Although all cul4 

mutant alleles show liguleless phenotype, the boundary region between the sheath and 

blade remains intact with auricle tissue grow at the normal location (Tavakol et al., 

unpublished data) (Fig. 10). Strong bending at nodes was occasionally observed in 

some mutant lines, particularly cul4.5, cul4.15, and cul4.16, and sometimes the bending 

affected also the internode showing more than 40o degrees bending angle (Fig. 7). 

Compared to their wild-type backgrounds, cul4 mutant lines showed significant 

reduction in number of tillers in both years 2011 and 2012, and often those fewer tillers 

were distorted and retarded in development (Fig. 7 and Fig. 9). Mutant lines cul4.3, 

cul4.5, cul4.5-Bowman and cul4.15 -carrying deletion mutations (see section 4.3 in this 

chapter) - showed the most severe reduction in number of tillers (Fig. 11). As for point 
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mutations (see below), cul4.16 and cul4.24 showed outgrowth of significantly less 

number of tillers, and compared to their respective wild-type background Bonus and 

Flare, respectively. 

Plant height is another important agronomic trait affected by mutations at the 

Cul4 locus (Fig. 12). Mutant line cul4.24 showed significant increase in plant height 

reaching (118±15 cm), which is double the height of the Flare wild-type background 

(61±3.5cm). A significant difference in plant height was also detected between the 

cul4.5-Bowman line and wild-type Bowman. Deletion and point mutation lines in Bonus 

and Foma e.g. cul4.3, cul4.5, cul4.15, cul4.16, showed slight increase in plant average 

height, although not consistently significant over the two years of experiments, and 

obviously is affected by the genetic background and other unknown factors. Also, in 

terms of variability in number of nodes, mutant lines did not show significant 

differences compared to wild-type varieties (Fig. 13). Each internode was measured and 

compared to other mutant and wild-type lines in order-based way, e.g. comparing 

apical stem internodes among different genotypes, and comparing basal stem 

internodes among different genotypes, considering the order rather than the internode 

number. In mutant lines that showed significant increase in plant height, it was shown 

than most of the difference in height came from elongation in the top (apical) stem 

internodes, particularly the internode below the spike: in the cul4.24 mutant length of 

this internode reached 2.5x fold the length of the respective internode in the wild-type 

background (16.5 cm). Similar differences were seen for the 2nd and 3rd upper internode. 

The same trend was seen in cul4.5-Bowman and its corresponding wild-type 

background Bowman (Fig. 14, Fig. 15, and Fig. 16).  

Leaves showed variable phenotypes depending on the type of allele and the 

genetic background. In 2011, the leaf measurements were for 2nd, 4th, and 6th upper 

leaves, while the upper 4 leaves were measured in 2012. Significant differences in flag 

leaf length and width were observed in deletion mutation cul4.3, cul4.5, and cul4.15 

compared to the Bonus and Foma backgrounds, while relatively less increase was seen 

in cul4.16 compared to the wild-type background in 2012 experiment. In contrary, flag 
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leaf dimensions did not show any change in cul4.24 compared to Flare (Fig. 17). The leaf 

directly below the flag leaf, the 2nd upper leaf, showed variability in terms of length and 

width in mutant lines compared to wild-type background, with non-consistently 

significant increase in leaf length and width over the two years experiments in case of 

cul4.5 and cul4.16 (Fig. 18), while cul4.5-Bowman and cul4.24 did not show any 

significant difference in leaf length. The 3nd upper leaf – that was measured only in 2012 

- showed increase in leaf blade length and width in cul4.3, cul4.5, cul4.15, and cul4.16 

compared to wild-type background, while no significant difference was seen in cul4.24 

in terms of leaf blade length in 2012 data (Fig. 19). In older leaf, the 4rd upper leaf, no 

significant differences were noticed in terms of leaf blade length between the mutant 

lines and the wild-type cultivars, although all mutant alleles of cul4 showed significant 

increase in 4th upper leaf width (Fig. 20). 

 

 
Fig. 7. cul4.5 mutant plant compared to wild-type Bonus. a: whole plant cul4.5, b: the ground 

nodes showing no outgrowth of tillers, c: cul4.5 spike with distorted, twisted and lax appearance, 

d: whole plant wild-type Bonus, e: the ground nodes showing multiple growth of tiller, f: spike 

of wild-type Bonus with normal architecture. 
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Fig. 8. Ectopic auricle-like growth along the leaf sheath of cul4 mutants. a: auricle-like growth in 

cul4.5, b:cul4.15, c: wild-type Bonus  
 

 
Fig. 9. Low number of tillers and bend internodes. a: cul4.5-Bowman, b: cul4.5-Bonus, c: Foma: 

d: Bonus, e: cul4.15 
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Fig. 10. Liguleless phenotype of cul4 mutant. a: Wild-type Bowman development of boundary 

region between leaf sheath and leaf blade, where the ligule position and development appear 

normal, b: scanning electron microscopy image for the boundary region in wild-type Bowman, c: 

cul4.5-Bowman mutant line showing liguleless phenotype at the boundary region, d: scanning 

electron microscopy image for the boundary region in cul4.5-Bowman mutant line (Photo: 

courtesy to Elahe Tavakol; Tavakol et al. unpublished data). 
 

 
Fig. 11. Effect of mutations in cul4 locus on the number of tillers in two experiments, 2011 and 

2012. 
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Fig. 12. Effect of mutations in cul4 locus on plant height in two experiments, 2011 and 2012. 
 

 
Fig. 13. Effect of mutations in cul4 locus on plant number of nodes in two experiments, 2011 

and 2012. 
 

 

 
Fig. 14. Effect of mutations in cul4 locus on the length of the most upper internode in two 

experiments, 2011 and 2012. 
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Fig. 15. Effect of mutations in locus cul4 on the length of the 2

nd
 upper internode in two 

experiments, 2011 and 2013. 
 

 
Fig. 16. Effect of mutations in cul4 locus on the length of 3

rd
 upper internode in two 

experiments, 2011 and 2012. 
 

 
Fig. 17. Effect of mutations in cul4 locus on flag leaf blade dimensions in 2012 experiment.  
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Fig. 18. The effect of mutations in cul4 locus on 2

nd
 upper leaf blade dimensions in two 

experiments 2011 and 2012. 
 

 
Fig. 19. Effect of mutations in cul4 locus on 3

rd
 upper leaf blade dimensions in 2012 experiment.  
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Fig. 20. Effect of mutations in cul4 locus on 4

th
 upper leaf dimensions in two experiments, 2011 

and 2012. 
 

 

Effects of mutations in Cul4 locus on overall plant development 

Mutations at the Cul4 locus affect plant development during the transition from 

vegetative to reproductive phases, particularly during booting, ear emergence, and 

flowering phases. Zadoks‘ cereal development decimal scale was used to express the 

development stage of the plants (Fig. 22, Zadoks et al., 1974), and data were collected 

on 3 dates in 2011, and on 8 dates in 2012. Mutant lines cul4.3, cul4.5-Bonus, cul4.15, and 

cul4.16, start booting (flag leaf sheath extending GS41) 11-8 days before their respective 

wild-type backgrounds, ear emergence (GS51-GS59), flowering (GS61-69), and grain 

watery ripe (GS71) stage are also anticipated compared to the respective background 

wild-types (Fig. 21). Similar trends were evident also for cul4.24 compared to Flare, 
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from booting through flowering, watery ripening, early and late dough and up to 

complete ripening stage (Fig. 21).  

 

 
Fig. 21. Effect of mutations in cul4 locus on plant development in two experiments, 2011 and 

2012.  
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Fig. 22. Zadoks’ cereal development decimal scale (Zadoks et al., 1974). 

 

 

Effects of mutations in Cul4 locus on inflorescence phenotype: 

The mature spikes of cul4 mutants generally are longer with a lax appearance 

and longer rachis internodes which appear sometimes distorted and twisted (Fig. 23). 

The spikes of severe mutations like in cul4.5-Bonus and cul4.15 often had difficulties in 

emergence and remained enclosed in the flag leaf sheath, until fully mature and dry. 

The awns of cul4.5-Bonus and cul4.15 sometimes showed twisted and disorganised 

appearance (Fig. 23). The spike length varies among cul4 mutants reflecting the severity 

of mutations. Deletion mutations in Bonus and Foma backgrounds result in longer 

spikes e.g. cul4.5 and cul4.15, and less severity in point mutation lines, e.g. cul4.16. The 
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cul4.24 mutant (substitution mutation) in Flare background showed average spike 

length significantly different from other deletion mutations. The cul4.5-Bowman line 

showed significant increase in spike length compared to the respective wild-type 

background, and also different from the same mutation in the Bonus backgrounds, 

indicating that genetic background influences the effect of this cul4 allele on spike 

length (Fig. 24). The effect of cul4 mutations on ―spike with awn‖ length was less 

consistent: longer ―spike with awns‖ were seen in mutants cul4.5, cul4.15, and cul4.16 

compared to their corresponding backgrounds Bonus and Foma statistically significant 

but more modest increase was observed for cul4.5-Bowman vs. the Bowman 

background, while for cul4.24 no significant difference with the Flare background was 

observed (Fig. 25). 

 

 
Fig. 23. Defects of spike architecture in cul4 mutant lines. a: spike of cul4.5 showing 
twisted appearance and malformation, b: spike of cul4.15 showing defect in architecture 
and failure of growing out the flag leaf sheath with disorganised awns growth, c: spike 
of cul4.5-Bowman illustrating the increase in total spike length, rachis internode 
elongation, and loose organisation of spikelets, d: spike of wild-type Bonus showing the 
normal development. 
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Fig. 24. Effect of mutations in cul4 locus on spike length in two experiments, 2011 and 2012 

 

 

 
Fig. 25. Effect of mutations in cul4 locus on “spike with awns” length in two experiments, 2011 

and 2012. 
 

 

Some of the effects of the mutations in locus cul4 on the reproductive organs 

were only investigated in one year experiment, e.g. infertility ratio, number of spikelets, 

number of grains, weight of spike, and total weight of grains. Severe mutations in locus 

cul4, e.g. cul4.5 and cul4.15, reduced the fertility in almost 99% of spikelets compared to 

40% in wild-type Bonus and Foma. The low fertility in wild-type (40%) was due to 

drought stress challenged the plants during the flowering stage. While cul4.5-Bowman 

and cul4.16 did not show significant difference in fertility compared to Bowman and 
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Bonus respectively (Fig. 26). High infertility in mutants cul4.5 and cul4.15 was also 

reflected in the reduction of the overall spike weight - ranging 0.4-0.45 g compared to 

spike weight of 0.6-0.8 g in wild-type Bonus and Foma (Fig. 27). Interestingly, for 

mutant plants with no significant difference in fertility compared to wild-type, the 

overall weight of spikes was significantly higher than wild-type, e.g. cul4.16 showed 

spike weight of almost 1 g compared to 0.6-0.8 g in the wild-type background, and 1.5 g 

for cul4.5-Bowman compared to 1 g in the wild-type Bowman background (Fig. 27). To 

gain more insight into these phenotypic effects, average grain weight was calculated by 

dividing the total grain weight by the number of grains. All investigated mutant lines 

showed significant increases in grain weight, ranging between 0.03-0.05 g in cul4.5 and 

cul4.16 compared to 0.025-0.035 g per grain in wild-type Bonus and Foma. Mutant 

cul4.5-Bowman also showed increase in grain weight, compared to Bowman (Fig. 28). 

Severe deletion mutants cul4.5 and cul4.15 also showed significant increase in number 

of spikelets ranging 32-34 spikelet per spike, compared to 26-28 spikelets in wild-type 

Bonus and Foma. However deletion mutation cul4.5-Bowman showed no difference in 

spikelet number compared to wild-type Bowman, suggesting the effect was influenced 

by the genetic background. No difference was found also in the case in less severe 

substitution mutation cul4.16 (Fig. 29). 

 

 
Fig. 26. Effect of mutations in cul4 locus on reproductive organs fertility in 2011 experiment. 
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Fig. 27. Effect of mutations in cul4 locus on spike weight in 2011 experiment.  
 

 
Fig. 28. Effect of mutations in cul4 locus on one grain weight (calculated from dividing total 

grain weight/number of grains. The data from cul4.5 was highlighted because it is based only on 

3 grain weight, which weakened the confidence in the analysis. 
 

 
Fig. 29. Effect of mutations in cul4 locus on number of spikelets per one spike of the main culm, 

in 2011 experiment. 
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4.2 Fine mapping of Cul4 

Previous work carried out by our group allowed mapping of the cul4 locus 

within a 0.22 cM interval, flanked by two genes that were identified on Brachypodium 

genome (Bradi2g60705 and Bradi2g60720), and co-segregating with the barley ortholog 

of BTB-ankyrin candidate gene Bradi2g608710 (see Fig. 30 and Fig. 31). 

To further refine the position of the cul4 locus, identify and evaluate 

recombination/cosegregation of cul4 with additional genes in the target genomic 

interval,  sequence information from the barley physical map (collaboration with Dr. 

Nils Stein, IPK, Gatersleben, Germany) was queried with the co-segregating and 

flanking genes leading to the identification of a Bacterial Artificial Chromosome (BAC) 

clone (HVVMRXALLeA0131P08) matching the candidate gene and barley ortholog of 

the proximal flanking Brachypodium gene Bradi2g60705. Data from 454 sequencing of 

the BAC clone were obtained from IPK, and sequence reads were assembled into 

contigs with 22x coverage. The sequence was used to develop new markers by 

designing specific primers for genomic PCR amplification of the target region in the 

two parents; Morex and cul4.5-Bowamn. The amplicons were Sanger sequenced and 

compared to identify SNP markers that were then mapped on the mapping population 

of 55 recombinants. Successful amplification and sequencing of the target region 

allowed identification of tightly linked two polymorphic markers ‗SNP‘. Mapping the 

newly developed 2 markers on the fine-mapping population yielding better mapping 

resolution with new flanking markers 0.02 cM distal and 0.07 cM proximal to cul4 

proving recombination events between the co-segregating candidate gene and the other 

flanking annotated genes (Fig. 31). The two predicted genes annotated from this BAC 

(encoding a pentatricopeptide repeat (PPR-like)-containing protein and a hypothetical 

protein, respectively) showed recombination with the cul4 locus, reinforcing the 

proposed correspondence between the BTB-ankyrin candidate gene and the cul4 mutant 

locus. The fine-mapping allowed the estimation of physical-genetic distance in the 

region to be 1 cM  1.1 Mb (Fig. 31). 



68 
 
 

 
Fig. 30. The step-wise progress in mapping locus Cul4. The locus was initially mapped to 3HL 

telomerase end using AFLP map. Then, by genotyping 6 different populations with 96 SNP 

markers identified in the 42.4 cM interval spanning locus Cul4, the locus was mapped to 1.7 cM 

interval. The most informative population (cul4.5-Bowman x Morex) showing the highest 

number of polymorphic markers around the target locus was propagated to F3 (4949 

individuals). The mapping population was genotyped by the closest 3 markers, which allowed to 

map the locus to 0.55 cM interval. Using synteny information with other cereal plants available 

on Genome Zipper, 8 more markers were developed and permitted the mapping resolution to 

arrive to 0.22 cM (Tavakol et al. unpublished data). In this work, the attempt to map Cul4 locus 

at higher resolution was achieved through identifying the BAC clone spanning the CG for locus 

Cul4, and the sequence data was available to develop more tight 3 markers, and finally 

accomplishing fine mapping resolution of 0.09 cM. 



69 
 
 

 

 
Fig. 31. Map-based cloning of locus Cul4. A: During previous stages (before the start of this 

PhD project), genotyping a mapping population (Morex x cul4.5-Bowman) of 4949 F3 

individuals allowed defining locus cul4 within 0.55 cM interval (markers 8919-758, 

U35_6520_551, and 2825-1609). The recombination events are indicated as numbers on the 

barley map. B: From co-linearity with Brachypodium chromosome 2, rice chromosome 1, and 

sorghum chromosome 3; seven flanking genes and one co-segregating gene were identified on 

Brachypodium chromosome 2 (the black line in the bottom Br02; flanking genes are presented as 

black square blocks and anchored to the barley genome by dashed lines; the closest are 7 = 

Bradi2g60705 and 9 = Bradi2g60720, and the co-segregating gene 8 = Bradi2g60710). The 

barley ortholog of flanking gene in Brachypodium, and the barley ortholog of the co-segregating 

gene (candidate gene) were identified on BAC clone (grey rectangle upward to the cul4 locus 

region), that was sequenced, and primers were designed to anneal and amplify the target 

sequence by genomic PCR from the parents Morex and cul4.5-Bowman. Comparing the 

sequences, 3 new markers were developed and mapped on the selected 55 recombinants, 

defining the cul4 locus on 0.09 cM interval.  
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4.3 Allelic comparison 

Comparing genomic and cDNA sequences of the Cul4 candidate gene, we could 

identify two exons and one intron in the gene (consistent with published full length 

cDNA sequences AK360734.1 and AK355716.1). The gene spans 2,632 bp, from the start 

codon to the stop codon (Fig. 32 and Fig. 33). The coding sequence is 1,542 bp in length, 

and is predicted to encode a peptide of 513 amino acids with estimated molecular 

weight of 54 kDa. The first exon is 546 bp long encoding a sequence of 182 amino acids 

that carry a conserved BTB/POZ domain of the length 114 amino acids. The intron is 

1090 bp long, and the second exon is 996 bp coding for 331 amino acids, containing 

conserved sequence for 4 ankyrin repeats (ANK, 74 amino acids long).  

Re-sequencing of candidate gene in different mutant and wild-type stocks 

revealed three independent mutations. Mutant alleles cul4.5, cul4.3 and cul4.15 turned 

out to carry an identical deletion of 3141 bp spanning most of exon 1 and 5‘upstream 

region (Fig. 33). Sequences of the BTB-ankyrin Candidate Gene in mutant alleles cul4.16 

and cul4.24 identified non-synonymous substitution mutations, compared to wild-type 

allele in Bonus and Flare (Fig. 33).  

In the cul4.16 allele, a non-synonymous substitution was identified in amino acid 

position 354, changing a leucine residue to glutamine in the ankyrin repeat region. The 

cul4.24 allele carried two non-synonymous substitutions; leucine 420 to glutamine, in 

addition to another substitution mutation at position 441 from methionine to threonine. 

Running the SIFT program to predict for any deleterious effect for those mutation, the 

two amino acid substitutions L354Q and L420Q in cul4.16 and cul4.24, respectively, 

were predicted to have a deleterious impact on the biological function of the protein at 

probability level P0.05.  

http://www.ncbi.nlm.nih.gov/nucleotide/326511594?report=genbank&log$=nuclalign&blast_rank=1&RID=FS717RYX01R
http://www.ncbi.nlm.nih.gov/nucleotide/326509082?report=genbank&log$=nuclalign&blast_rank=2&RID=FS717RYX01R
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Fig. 32. The molecular characterisation of Cul4 gene, showing the BTB domain (yellow 

highlighted) and the ANK repeats domain (green highlighted) 

 

 
Fig. 33. The structure of Cul4 gene, and the mutations identified in the independent mutant 

stocks (cul4.5, cul4.3, cul4.15, cul4.16, and cul4.24). 

 

 

In summary, recovery of three distinct mutations in independent cul4 alleles 

indicates that this BTB-ankyrin gene is responsible for the cul4 phenotype. In addition, 

we observed that severity of the cul4 mutation was consistent with the severity of the 

tillering and other phenotypes. Consistent with their similar phenotypic defects, alleles 

cul4.3, cul4.5 and cul4.15 (previously considered independent and distinct) appeared to 

carry an identical deletion spanning the first intron and upstream region of the gene. 
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5. Discussion 

 

Tillering is one of the most important traits that affect yield in Poaceae crops. 

Tillering contributes to whole plant architecture, and is controlled by different genetic, 

hormonal, and environmental factors, making it a highly plastic trait. The ability of 

plant monocot species to fit within particular environmental circumstances is greatly 

influenced by this trait, making it an important target for studies and breeding 

programmes. Many barley mutant lines have been identified to carry defect in loci 

involved in tillering, but until recently, none of them were isolated and characterised.  

 To characterize the functions of the Cul4 gene in barley development, six 

different mutant lines were initially characterised; cul4.3, cul4.5, cul4.5-Bowman NIL, 

cul4.15, cul4.16, and cul4.24. Mutations in Cul4 showed pleiotropic effects on multiple 

traits, often influenced by the genetic background. Mutations at the cul4 locus caused 

reduction in number of tillers, ectopic growth of auricle-like tissue along the leaf sheath, 

liguleless leaves, longer spikes due to elongated rachis internodes giving the spike a lax 

appearance, dark green wider and longer leaves, acceleration in floral development, 

and reduced fertility. The negative relationship between plant tillering ability and plant 

height was previously observed from many other barley mutant lines, e.g. uniculm2 

(cul2) (no tillers and increased height), and multi noded dwarf (mnd1) (enhanced tillering 

and reduced height) (Babb and Muehlbauer, 2003; Druka et al., 2011). Similar results 

were obtained for rice mutants, e.g., monoculm1 (moc1) (no tillers and increased plant 

height), and dwarf (d) mutants (enhanced tillering and reduced height) (Li et al., 2003; 

Arite et al., 2007) . A complex network of hormonal pathways were proven to be 

involved in tillering outgrowth in rice (chapter 1). Different component of hormonal 

synthesis and signalling pathways, for example auxin and gibberellin, are well known 

for their role in tillering as well as other traits like plant height in rice (Domagalska and 

Leyser, 2011; Tanaka et al., 2013). It will be interesting to explore the possible 

interactions of Cul4 with these pathways. All cul4 mutant alleles exhibited a liguleless 
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phenotype, although the boundary between the sheath and blade remained intact with 

auricles observed at the proper location. In addition, ectopic auricle tissue often 

developed on the margins of leaf sheaths in some cul4 alleles, altering the proximal-

distal development of the mutant leaf. These phenotypes demonstrate that Cul4 is 

required for ligule outgrowth and coordinating the proximal-distal patterning of the 

barley leaf.  In this respect, Cul4 has similar functions to previously characterized BOP 

genes that are required for correct morphogenesis of the proximal region of the leaf in 

Arabidopsis, pea and Medicago (Ha et al., 2003; Couzigou et al., 2012). 

Another important plant trait that is tightly correlated with tillering is 

inflorescence architecture, particularly branching. Many mutants in barley and rice 

show overall decreased branching in vegetative and reproductive stages, ex., lax1, lax2 

and Reduced culm number1 (rcn1) in rice, and cul2 and low number of tillers1 (lnt1) show 

reduced branching vegetatively and reproductively (Komatsu et al., 2001; Nakagawa et 

al., 2002; Babb and Muehlbauer, 2003; Dabbert et al., 2010), while for other mutants, ex., 

frizzy panicle (fzp)and Ideal Plant Architecture (IPA1) QTL in rice, and intermedium-b (int-b) 

and semi-brachytic (uzu) in barley, they show reduced tillering and enhanced 

inflorescence fertility and branching (Komatsu et al., 2001; Chono et al., 2003; Miura et 

al., 2010; Dabbert et al., 2010). Here, we found that cul4 mutations impact spike length, 

fertility and grain weight indicating that the BTB-ankyrin gene is required for normal 

inflorescence development. 

Starting from the map position of Cul4 in an genetic interval of 0.22 cM, work 

carried out during this PhD project contributed to attain a final mapping resolution of 

0.09 cM, delimiting the target locus within a single BAC clone. This was considerably 

facilitated by the physical map (Schulte et al., 2011) that was built to guide barley 

genome sequencing in the framework on Triticeae Genome and other international 

projects (IBSC, 2012). 

The map-based barley genome sequencing project yielded invaluable resources 

for researchers and breeders (IBSC, 2012) and will further simplify positional 

identification of important agronomic genes in the future, although this will also 
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depends on the ratio between physical and genetic distances in different parts of the 

genome. In our case, the physical distance to genetic distance ratio was estimated to be 

1 cM  1.1 Mbp  

Identification of distinct mutations in the Candidate Gene (CG) in the three 

independent cul4 mutant lines proves that the proposed CG is responsible for the cul4 

phenotype. In addition, we observed, as was shown in phenotyping characterisation of 

number of tillers, spike length and other phenotypes, that severity of cul4 mutations 

was consistent with the severity of cul4 phenotypes. 

In summary, this work contributed to show that Cul4 is required for correct 

development of tillers, leaves and other plant organs in barley. Together with other 

results produced in our group, conclusive evidence was obtained showing that Cul4 

encodes a BTB-ankyrin protein highly related to Arabidopsis BOP1 and BOP2: 1) 

physical mapping and recombination with adjacent genes identified within the BAC 

clone spanning the Cul4 locus; 3) identification of three independent mutant alleles 

confirming that Cul4 mutations account for recessive cul4 phenotypes of different 

severity. This is the first indication of the involvement of a BTB-ankyrin-type gene in 

shoot branching in plants. Noteworthy, the role of Cul4 in proper proximal-distal leaf 

patterning is functionally similar to the role of Arabidopsis BOP genes in the proximal 

domain of the leaf, indicating that this aspect of leaf development is conserved between 

monocots and dicots. 
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1. Introduction 

 

1.1 Rice as important crop and model plant 

Cereal crops represent more than 60% of total worldwide agricultural production 

(Harlan, 1995), and rice is one of the most important cereal crops with total world 

production of 718 million tonnes (FAOSTAT 2012). Rice provides over 50% of the 

caloric diet for one third of the human population. (Khush, 1997)  

Rice is also considered as a model species for cereal genetics and genomics 

because of its relatively small genome (Izawa and Shimamoto, 1996). Along with 

efficient tools for plant transformation (Kim et al., 2003; Yang et al., 2004; Chen et al., 

2008), plentiful genetic and genomic resources have been developed for rice including 

physical and genetic maps (Chen et al., 2002; Yu et al., 2004; Fekih et al., 2013), large-

scale collections of expressed sequence tags (ESTs) and full length cDNAs (Yamamoto 

and Sasaki, 1997; Wu et al., 2002) and a high quality sequence of the genome 

(International Rice Genome Sequencing Project, 2005; Kawahara et al., 2013). 

 

1.2 Rice genetics and genomics  

The small genome and predicted high gene density of rice make it an attractive 

target for cereal gene discovery efforts and genome sequence analysis. The international 

efforts for rice genome sequencing resulted in valuable draft genomic information 

(Chen et al., 2002; Goff et al., 2002; Yu et al., 2002), concluded by the complete high-

quality rice genome sequence (International Rice Genome Sequencing Project, 2005), 

and the annotation of the genome sequence is an active growing field of study (Sakai et 

al., 2013). In addition, more than 1.2 million rice ESTs from rice are deposited in 

GenBank (http://www.ncbi.nhm.nih.gov/dbEST/), providing verified and valuable 

information about gene structure and gene density in the genome (Yamamoto and 
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Sasaki, 1997; Wu et al., 2002; Yu et al., 2004). These ESTs have also been used for gene 

identification, developing molecular markers, and designing probes in microarrays 

(Yang et al., 2013). All these resources allowed for large scale projects of gene and QTL 

identification (Han and Huang, 2013). Despite this progress, the functions of large 

numbers of genes remain unknown. Inducing loss-of-function mutations and studying 

the resulting phenotypes is an efficient way to obtain information on the function of a 

gene. 

 

1.3 Reverse genetics approach 

Two main approaches are used in genetic analysis, forward and reverse genetics. 

Forward genetics begins with a mutant phenotype and tries to move forward into the 

genomic locus to ask the question ―which gene is responsible for the altered phenotype 

and what is the nature of the mutation at the DNA level?‖. Conversely, reverse genetics 

starts from the gene sequence and attempts to link it to a biological function by 

generating a mutation or altering the expression of the gene and examining the 

resulting phenotypic changes. Forward genetics has been a classical strategy for more 

than a century employing classical and novel mutagenized populations. In this PhD 

thesis, applications of the forward genetics approach are presented in Chapters 2 and 4, 

while work reported in this Chapter illustrates the reverse genetics approach. Recently, 

advances in genomics methodology, including the Next Generation Sequencing (NGS) 

technology, have resulted in massive expansion in genomics and sequences 

information, which created new opportunities for novel strategies in both reverse 

genetics (An et al., 2005; Mieulet et al., 2013) and forward genetics (Schneeberger and 

Weigel, 2011; del Viso et al., 2012; Hartwig et al., 2012). 

The first application of reverse genetics in plants was based on the use of the 

antisense method to down-regulate a ribulose bisphosphate carboxylase small subunit 

gene expression in tobacco plants (Rodermel et al., 1988). Currently, various methods 

are applied in plant reverse genetics including antisense and RNA interference (RNAi) 
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technologies (Chuang and Meyerowitz, 2000) that degrade gene transcripts and lead to 

decreased levels of available mRNA for translation. Another well-established method is 

based on random insertional mutagenesis, for example using T-DNA or transposons 

(Feldmann, 1991; Jeon et al., 2000). Classical insertional mutagenesis is often used for 

producing knockout mutants, or null mutations, providing a basis for the direct study 

of gene function. Modified methods of insertional mutagenesis have been developed for 

promoter/gene trapping and activation tagging (Jeong et al., 2002; Wu et al., 2003; Yang 

et al., 2004; Chen et al., 2008). In a promoter/gene trapping system, insertional 

mutations are generated randomly across the genome using a vector (e.g. T-DNA) 

carrying a gene trapping cassette: this consists of a promoterless reporter gene; β-

glucuronidase  (GUS) or Green Fluorescent Protein (GFP), and a selectable marker –usually 

antibiotic/herbicide resistance – used for selecting successfully transformed lines. The 

promoterless reporter gene flanked by an upstream 3‘ splice site (splice acceptor and 

donor) and a downstream transcriptional termination sequence (polyadenylation 

sequence). When the gene trapping cassette inserts into either exon or intron of an 

expressed gene, the reporter gene is transcribed by the endogenous promoter of that 

gene in the form of a chimeric fusion transcript between the gene exons upstream of the 

insertion site with the reporter gene. The host gene transcript is terminated prematurely 

at the inserted terminator sequence, therefore the chimeric transcript encodes a 

truncated and non-functional version of the endogenous protein. Accordingly, gene 

traps simultaneously inactivate and report the expression of the trapped gene, and also 

provide a sequence tag for the rapid identification of the disrupted gene (Springer, 

2000). Activation tagging is a powerful gain-of-function approach to study the functions 

of genes, especially those with high sequence similarity to other members in the gene 

family, that cause genetic function redundancy, and usually problematic to pursue by 

loss-of-function mutant analyses. Activation tagging involves randomly insertion of a 

T-DNA construct containing four copies of an enhancer element – e.g. multimerized 

transcriptional enhancers from the Cauliflower Mosaic Virus (CaMV) gene promoter - 

into a plant genome to activate transcription of flanking genes, followed by selection for 

the desired phenotype (Weigel et al., 2000; Gou and Li, 2012). 
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1.4 Insertional mutagenesis in rice 

In rice, insertional mutagenesis has involved the use of either transposable 

elements (Piffanelli et al., 2007) or T-DNA (An et al., 2005). The DNA insert will disrupt 

the normal expression of the target gene, as well as serving as a tag for identifying the 

location of the insertion. The effectiveness of this system comes from the simplicity of 

detecting the insertion within the target gene among large populations of mutagenized 

plants, just by PCR using oligonucleotide primers from the insertional element and the 

gene of interest (Jeon et al., 2000). The number of T-DNA-tagged lines that would be 

required for saturating the rice genome can be estimated using the formula suggested 

by Krysan et al. (1999). Three main factors affect the number: (1) the mean size of rice 

genes, which is estimated  to be 3.0 kb (Jeon et al., 2000); (2) the mean number of T-DNA 

inserts in one line, which is estimated to be 1.4; (3) and the haploid genome size of rice 

which is estimated to be 420 Mb with estimated number of 32,000-50,000 genes (Goff et 

al., 2002). Depending on these factors, and if the desired probability of locating a T-

DNA within a gene is 99%, 660,000 insertions or 471,000 tagging lines are required (Jeon 

et al., 2000). As can be deduced from the figures, and given that the probability of 

insertion within a genetic region is lower than 99%, one can appreciate the difficulty of 

creating a mutagenized population to cover all the generic regions. The mutagenized 

rice collection generated by Jeon et al., 2000 approaching 18,358 fertile lines, is estimated 

to provide a 20% probability of finding a T-DNA insertion within a given gene of size 3 

kb.  

 

1.5 T-DNA mutagenized populations in rice 

Efforts in developing novel tools for rice reverse genetics have led to important 

advances, particularly in building insertional mutagenized populations utilizing T-

DNA constructs (Jeon et al., 2000; Sallaud et al., 2003), including promoter traps, 

enhancer traps, and activation tags (Jeong et al., 2002; Wu et al., 2003; Yang et al., 2004; 

Ayliffe and Pryor, 2007; Chen et al., 2008). Studies of transgene structure, distribution 
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and characterization of rice T-DNA transformed lines (Kim et al., 2003; Chen et al., 

2003) improved transformation procedures (Sallaud et al., 2003), development of 

bidirectional gene trap vectors (Ryu et al., 2004), identification the flanking sequences 

and establishment of databases for insertions location (An et al., 2003; Sha et al., 2004; 

Ryu et al., 2004; Sallaud et al., 2004; Jeong et al., 2006) permit the ambitious call to 

identify the function of all rice genes by 2020 through the international project 

RICE2020 (Zhang et al., 2008).  

In this context, the Plant Functional Genomics Laboratory at Kyung Hee 

University, Korea, has become a leader in the production of T-DNA insertional and 

activation tagging lines, using different vectors for transformation of japonica rice [O. 

sativa cv. Dongjin (DJ) or Hwayoung (HY)]. The vectors used to transform rice plants 

include pGA2707 (GUS trapping vector), pGA2717 (GUS and GFP trapping vector), and 

activation tagging vectors pGA2715 and pGA2772 (Jeon et al., 2000; Jeong et al., 2002). 

Vector pGA2707 (GUS trapping vector) contains the hygromycin phosphotransferase 

gene (hph) - conferring hygromycin resistance - expressed by the rice -tubulin 

(OsTubA1-1) promoter, and a promoterless reporter gene β-glucuronidase (GUS) with an 

OsTubA1 intron 2 (I2) and multiple splicing donors and acceptors in each of the three 

reading frames immediately next to the T-DNA right border, allowing GUS expression 

when the insertion occurs in either an exon or intron (Jeong et al., 2002) (see Fig. 34). 

Vector pGA2717 contains the same selection marker (hph), and the GUS reporter gene 

with I2 and multiple splicing donors and acceptors, in addition to Green Fluorescence 

Protein (GFP) reporter gene with OsTubA1 intron 3 (I3) next to the left border. Therefore, 

inserting T-DNA into a gene, in any orientation, can result in the activation of either 

GUS or GFP (Ryu et al., 2004), resulting in the formation of a chimeric transcript with 

the mutagenized gene (see Fig. 35). Vector pGA2715 and pGA2772 carry the same major 

elements of vector pGA2707, in addition to tetramerized transcriptional enhancers from 

the Cauliflower Mosaic Virus 35S (CaMV 35S) gene promoter next to the left border 

(Jeong et al., 2002, 2006) (see Fig. 36 and Fig. 37). The enhancer elements function both 

upstream and downstream of the insertional mutagenized gene, and in either 
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orientation, and at a considerable distance from the coding regions (1.5kb to 4.3kb). The 

CaMV 35S enhancer can cause enhanced expression of the endogenous gene without 

affecting the expression pattern (Jeong et al., 2006).  

 
Fig. 34. Map of the T-DNA region of tagging vector pGA2707. RB and LB in the gray bar 

represent the right and left borders of T-DNA, respectively. I2, OsTubA1, rice -tubulin intron 2 

carrying three putative splicing acceptor and donor sites; GUS, β-glucuronidase gene; Tn, nos 

terminator; Tt, OsTubA1 terminator; hph, hygromycin phosphotransferase gene; OsTubA1-1, the 

first intron of OsTubA1; pOsTubA1, rice OsTubA1-1 gene promoter (Ryu et al., 2004). 

 

 
Fig. 35. Map of the T-DNA region of tagging vector pGA2717. RB and LB in the gray bar 

represent the right and left borders of T-DNA, respectively. I2, rice -tubulin OsTubA1 intron 2 

carrying three putative splicing acceptor and donor sites; GUS, β-glucuronidase gene; Tn, nos 

terminator; Tt, OsTubA1 terminator; hph, hygromycin phosphotransferase gene; OsTubA1-1, the 

first intron of OsTubA1; pOsTubA1, rice OsTubA1-1 gene promoter; sGFP, modified form of 

Green Fluorescence Protein gene; I3, OsTubA1 intron 3 carrying three putative splicing acceptor 

and donor sites (Ryu et al., 2004). 

 

 

 
Fig. 36. Map of the T-DNA region of tagging vector pGA2715. RB and LB in the gray bar 

represent the right and left borders of T-DNA, respectively. I, rice -tubulin OsTubA1intron 2 

carrying three putative splicing acceptor and donor sites; GUS, β-glucuronidase gene; Tn, nos 

terminator; Tt, OsTubA1 terminator; hph, hygromycin phosphotransferase gene; OsTubA1-1, the 

first intron of OsTubA1; pOsTubA1, rice OsTubA1-1 gene promoter; E, transcriptional enhancers 

from the Cauliflower Mosaic Virus 35S (CaMV 35S) gene promoter  (Jeong et al., 2002). 
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Fig. 37. Map of the T-DNA region of tagging vector pGA2715. RB and LB in the gray bar 

represent the right and left borders of T-DNA, respectively. I, rice -tubulin OsTubA1 intron 2 

carrying three putative splicing acceptor and donor sites; GUS, β-glucuronidase gene; Tn, nos 

terminator; Tt, OsTubA1 terminator; hph, hygromycin phosphotransferase gene; OsTubA1-1, the 

first intron of OsTubA1; pOsTubA1, rice OsTubA1-1 gene promoter; E, transcriptional enhancers 

from the Cauliflower Mosaic Virus 35S (CaMV 35S) gene promoter; pUC18, fragment of pUC18 

vector used to retrieve flanking sequences by inverse PCR (Jeong et al., 2006). 

 

 

To facilitate the identification of lines carrying insertions in genes of interest, the 

Korean group has determined the locations of 27,621 T-DNA inserts by amplifying the 

flanking sequences by inverse-PCR or Thermal Asymmetric Interlaced (TAIL) PCR (see 

Fig. 38 and Fig. 39) and Sanger sequencing of the amplification products; these 

sequences (called Flanking Sequence Tags ―FST‖) are collected into a database (An et 

al., 2003; Jeong et al., 2006) that can be queried at http://signal.salk.edu/cgi-

bin/RiceGE, using sequence similarity  searching tools.  

 

http://signal.salk.edu/cgi-bin/RiceGE
http://signal.salk.edu/cgi-bin/RiceGE
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Fig. 38. Schematic diagram of the inverse-PCR procedure. The core region is depicted as a 

jagged line. Filled and open boxes represent upstream and downstream flanking regions, 

respectively. DNA is digested with a restriction enzyme (restriction sites denoted by triangles), 

circularized under conditions that favour the formation of monomeric circles, and enzymatically 

amplified using PCR. Oligonucleotide primers (constructed to anneal to the core region) and the 

direction of DNA synthesis are shown by arrows (Ochman et al., 1988). 
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Fig. 39. TAIL-PCR procedure for amplification of flanking sequence of T-DNA insert. Three 

PCR are carried out to amplify target sequence using nested T-DNA-specific primers (bold 

segments) on one side and a short arbitrary degenerated primer (AD9) (small open rectangles) on 

the other. One or more sites within the flanking sequence are adapted for annealing to the AD 

primer through a low-stringency cycle. Even after creation of sites adapted for the AD primer, 

however, high temperature annealing still favours the specific primer, resulting in a linear 

amplification of target molecules. To achieve adequate thermal asymmetry, the specific and AD 

primers are designed to have tm of 57
o
-62

o
C and 44

o
-46

o
C, respectively. By interspersing 

reduced-stringency cycles to allow AD priming, double-strand molecules can be formed, and the 

preferential linear amplification of target molecules becomes logarithmic. In the secondary and 

tertiary reactions, non-specific product fails to be re-amplified and thus is not shown (Liu et al., 

1995).  
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1.6 Central role of rice in comparative genetics of cereals 

The two major groups of flowering plants, monocots and dicots, diverged 200 

million years ago (Wolfe et al., 1989), and the cereals have been evolving independently 

from a common ancestral species for 50 to 70 million years (Kellogg, 1998). Many 

studies that compared the physical and the genetic maps of the grass genomes have 

revealed strong synteny, i.e. conservation of gene order and orientation along 

chromosomes (Chandler and Wessler, 2001; Freeling, 2001; Yu et al., 2004; Bolot et al., 

2009; Galvão et al., 2012; Feuillet et al., 2012). Despite gene similarity and genome 

synteny, cereal genome sizes and organization vary greatly, e.g. the genomes of 

sorghum, maize, barley, and wheat are estimated at 1,000, 3,000, 5,000, and 16,000 Mb, 

respectively, while rice has a much smaller genome, estimated at 420 Mb (Goff et al., 

2002). The relative ease of manipulating rice genetic and genomic tools, in addition to 

the significant synteny between rice genomic regions and other cereals make rice an 

important ―hub‖ for many studies on cereal crops (Devos, 2005; Bolot et al., 2009). 

Twenty years ago, the genetic information generated on one certain cereal species was 

limitedly applied to improve genetic studies in other cereal species, until pioneer 

research achievements in 1993/1994 demonstrated high synteny between rice,  maize 

and wheat genomic regions (Ahn and Tanksley, 1993; Kurata et al., 1994). Recently, the 

rice genome has become extensively used as a source of information for positional 

cloning and for studying gene family organization in other crop plants, while 

divergence from the micro-colinearity is helping to study the mechanisms of grass 

genome evolution (Raghuvanshi et al., 2010). 
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2. Scope of the chapter 

 

Most of the knowledge available on genetic and hormonal control of tillering in 

Poaceae come from studies on rice and maize (Kebrom et al., 2013). Rice represents a 

particular model plant for small grains crops because of its simple and small genome, in 

addition to availability of various genetic and genomic resources (Izawa and 

Shimamoto, 1996). Extending the studies of tillering genetic elements to comprise 

additional homolog components in different plant systems will provide bases to 

understand the conserved and flexible elements in tillering pathways, which is useful 

for basic sciences and also applied breeding. Studying barley Cul4 homolog genes in 

rice will provide additional data and allow insight assessment of conserved pathway 

elements among cereal plants. BOP genes encode a group of proteins that function as 

transcription factors with diverse biological roles, e.g. leaf morphogenesis (Ha et al., 

2003), and root nodule development (Couzigou et al., 2012) in dicots, leaf patterning, 

tillering and other developmental traits in barley (Chapter 2). While BOP genes have 

been extensively studied in Arabidopsis (Ha et al., 2003, 2004, 2007, 2010; Norberg et al., 

2005; Hepworth et al., 2005; Jun et al., 2010; Xu et al., 2010; Saleh et al., 2011; Canet et al., 

2012) no BOP-like gene was functionally characterized in rice. Analysis of rice BOP 

genes is expected to provide valuable information on the evolution and diversification 

of this gene family, allowing comparison with information obtained in barley and 

dicots, and providing a basis for further work on rice, barley and other cereal crops. 

To extend our vision, and gain comprehensive view of Cul4 functions in other cereal 

crops, we planned to follow reverse genetic approach to identify mutant lines in 

homolog genes in rice, and to investigate possible effects on similar or different 

functions. Rice T-DNA insertional mutational libraries provide researchers with 

excellent starting point for reverse genetics (Jeon et al., 2000; Sallaud et al., 2003; Wu et 

al., 2003; Ryu et al., 2004; An et al., 2005; Piffanelli et al., 2007; Larmande et al., 2008; 

Chen et al., 2008) , given that searching for mutant lines made easy by simple sequence 
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homologous search on databases that contain the flanking sequences to the insert, 

which allow identify the location/gene where insertion exist (Hirochika et al., 2004; Sha 

et al., 2004; Jeong et al., 2006; Zhang et al., 2006). Our work was organised into the 

following steps: (1) identifying Cul4 ortholog genes in different plant species and study 

the phylogenetic relationships among them; (2) performing data mining in publicly 

available data for Cul4 homolog genes in rice including information on gene annotation, 

transcriptomics or phenotyping data; (3) identifying the insertion lines carrying 

mutation in the Cul4 homolog genes in rice; (4) order plant material and grow them for 

propagation and phenotyping; (5) screen the mutant lines with simple genomic PCR 

experiments to exclude wild-type homozygotes alleles for Cul4-like gene. 
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3. Materials and Methods 

 

3.1 Phylogenetic analysis of BOP genes 

A phylogenetic tree was built from aligned protein sequences retrieved from 

publicly available genome sequences databases. The Cul4 peptide sequence (513 

aminoacids, Chapter 2) was used as a query in BLASTP 2.2.22+ (Altschul et al., 1990) 

searches versus Phytozome v9.1 http://www.phytozome.net/ (Goodstein et al., 2012) 

for the following species: Arabidopsis thaliana, Brachypodium distachyon, Glycine max, 

Mimulus guttatus, Oryza sativa, Sorghum bicolor, Vitis vinifera, Zea mays. For Hordeum 

vulgare, blastp was used on IPK barley blast server, on HC_genes_AA_Seq database 

http://webblast.ipk-gatersleben.de/barley/viroblast.php (IBSC, 2012). And for Pisum 

sativum, the sequence JN180860 was retrieved from the Genbank 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch

&LINK_LOC=blasthome (Benson et al., 2013). For genes with alternative splicing forms, 

the form best supported by EST sequences was considered. EST sequences are 

searchable through Genebank searching tool (Boguski et al., 1993). ScanProsite tool 

http://prosite.expasy.org/prosite.html (de Castro et al., 2006) was used to scan each 

polypeptide against Prosite database (Sigrist et al., 2013) to ensure the presence of BTB 

and Ankyrin domains. 

The evolutionary history was inferred using the Neighbour-Joining method 

(Saitou and Nei, 1987). The optimal tree with sum of branch length = 0.94055521 was 

achieved. A bootstrap test with 1000 replicates was run (Efron et al., 1996). The tree is 

drawn to scale, with branch lengths in the same units as those of the evolutionary 

distances used to infer the phylogenetic tree. The evolutionary distances were 

computed using the Poisson correction method (Zuckerkandl and Pauling, 1965) and 

are in the units of the number of amino acid substitutions per site. The analysis 

involved 21 amino acid sequences from 10 species. All ambiguous positions were 

http://www.phytozome.net/
http://webblast.ipk-gatersleben.de/barley/viroblast.php
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
http://prosite.expasy.org/prosite.html
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removed manually for each sequence. There were a total of 440 positions in the final 

dataset. Evolutionary analyses were conducted in MEGA5 (Tamura et al., 2011). 

 

3.2 Transcription data 

The Genevestigator database https://www.genevestigator.com/gv/ allows to 

search by gene name on expression analysis experiments submitted to the database. In 

order to explore the expression patterns of rice BOP genes and evaluate their 

compatibility with a possible role in shoot development as is the case for Cul4, publicly 

available rice transcriptomics data  produced by Affymetrix GeneChip®Rice Genome 

Array 51K, were searched through the Genevestigator database (Hruz et al., 2008). The 

rice genome array (Affymetrix) contains probe sets designed from approximately 51,279 

transcripts; 48,564 japonica and 1,260 indica sequences 

(http://www.affymetrix.com/estore/browse/products.jsp?productId=131497#1_1). 

Sequence information for this array was derived from the National Center for 

Biotechnology Information (NCBI) UniGene Build number 52 

(http://www.ncbi.nlm.nih.gov/UniGene), GenBank mRNAs, and 59,712 gene 

predictions from TIGR's osa1 version 2.0. 

 

3.3 Identification of rice lines carrying insertions in Cul4-like BOP genes 

The Cul4 protein sequence (513 aa) was used as query in a tBLASTn search 

(Altschul et al., 1997) on http://signal.salk.edu/cgi-bin/RiceGE (An et al., 2003; Jeong 

et al., 2006) . 

The most similar Flanking Sequences Tags (FSTs) deriving from this search were 

used to identify the corresponding genes in the rice genome, and to identify the 

mutagenized lines carrying the insertion. Seeds of selected lines were ordered from the 

T-DNA insertion mutagenized rice collection curated by the group of Dr. Gynheung 

An, Kyung Hee University, Crop Biotech Institute, Korea (Jeon et al., 2000; Jeong et al., 

https://www.genevestigator.com/gv/
http://www.affymetrix.com/estore/browse/products.jsp?productId=131497#1_1
http://signal.salk.edu/cgi-bin/RiceGE
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2002). These insertional T-DNA lines were generated in two O. sativa spp. japonica 

Korean cultivars, Dongjin and Hwayoung (mid- to late-flowering photoperiod sensitive 

cultivars, flower 100-110 days after germination under field conditions, 85-90 days 

under long-day conditions, 55-65 days under short-day conditions). Seeds of these 

cultivars were ordered along with the insertional mutant lines, and grown for 

comparison and as control group. 

Information regarding the type of T-DNA constructs and the position of the 

insertions were recovered from the FST database: schematic representations of the 

inserts, their locations, and orientation are presented in Fig. 43, Fig. 44, and Fig. 45 in 

the Results section of this chapter.  

 

3.4 Validation of T-DNA insertion in line 1B-17402 

Plant materials 

Seeds for insertional mutagenized rice lines and their corresponding wild-type 

backgrounds were surface sterilised by soaking in bleach solution (1:1) for 3 min, then 

rinsing with sterilised distilled water for 5 times, each for 3 min. The seeds were left to 

dry under biosafety cabinet and 6 seeds for each genotype were sown initially on 

Mourashige and Skoog (MS30) media (Murashige and Skoog, 1962).  

The basic medium contains macro-elements (N, P, K, Ca, and Mg), micro-

elements (B, Co, Cu, S, Fe, Mn, I, Mo, Zn, and Na), and some vitamins and organic 

materials (Inositol, Niacin, Pyridoxine, Thiamine, IAA, Kinetin, Glycine, and Edamine). 

A commercialised form (Murashige & Skoog Medium -Micro and Macro elements 

including Vitamins-, Duchefa Biochemie) was used at recommended rate of 4.4 g per 

litre, supplemented with 3% sucrose and 1% agar to obtain semi-solid medium. The 

medium was sterilized by autoclaving (121oC for 20min), and poured into plastic boxes 

dedicated for in vitro culture (ECO2box white filter, Micropoli).  
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For germination, seeds were incubated at room temperature (24-28oC) under 

dark conditions for 10 days. Rice seedlings were then transplanted into peat-moss 

media in seedlings plastic tray (well vol.20ml), at room conditions (natural 

photoperiod of 15 hours day/ 9 hrs night and temperature 24-28oC) for 2 days. The 

seedlings were then transplanted into growing media (peat-moss: volcanic stones 3:1), 

filled into plastic pots (vol. 1L), and moved to a growth chamber under controlled 

conditions (24-28oC, humidity 80%, 16hr day) at University of Milan. Iron solution (1% 

chelate) was supplied to each pot – after transplantation – at rate of 10 ml per pot, and 

pots were then covered with plastic cover for 6 days. Rice plants were irrigated day 

after day to keep favourable conditions for rice as a semi-aquatic plant, and a fertilizer 

solution (ALGOFLASH ®; NPK + B, Cu, Fe, Mn, Mo, Zn; 0.4% solution in water) was 

added every two weeks at rate of 5-8 ml to each pot. Plants were kept in the same 

growth chamber conditions (long-day photoperiod) through tillering and stem 

elongation phase, to encourage the maximum production of tillers, and accordingly 

panicles. When plants reached the 6th/7th leaf stage (60 days after emergence), they 

were transferred to the greenhouse under short day conditions to induce flowering (26-

32oC, 12hrs day, RH: 70-85%) at University of Milan, Botanic Garden.  

Plant samples and DNA extraction  

Plant leaf samples were collected 60 days after emergence of seedlings. Leaf 

tissue samples were frozen on dry ice then kept at -20oC till DNA extraction was carried 

out. 

For DNA extraction from fresh plant material, 200-250 mg of fresh leaf tissue 

were homogenized with a mortar and pestle using liquid nitrogen. The tissues were 

ground to a fine powder then collected in 2 ml eppendorf tubes. Each ground sample 

yielded between 150-200 mg of fine powder. Each sample was supplemented with 600 

l of pre-heated (65oC) MATAB (20 mM EDTA pH 8.0, 100 mM Tris-HCl pH 8.0, NaCl 

1.5 M, 0.5% (W/V) Na2SO3, 2% (W/V) hexadecyltrimethylammonium bromide 

(MATAB), Polyethylene glycol (PEG) solution 1% (W/V)) and mixed well by vortexing 
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for 3 min, then incubated at 65oC for 15 min. RNase (20 mg/ml) was added at rate of 

10l to each sample, and then incubated at 65oC. Samples were then centrifuged at 4,500 

xg for 10 min. The supernatant was taken by pipetting into new tube, and 

supplemented with 450 l chloroform/isoamyl alcohol (24/1). The sample was mixed 

by inverting gently then centrifuged at 6,200 xg for 10 min. The supernatant was taken 

by pipetting into a new tube, and supplemented with 150l of isopropanol (pre-chilled 

to -20oC) and 100µl of a high-salt precipitation solution (0.8M sodium citrate and 1.2M 

NaCl). The sample was incubated at -20oC to allow precipitation of nucleic acids, and 

then centrifuged to collect them at 6,200 xg for 10 min at 4oC. The isopropanol was 

discarded, and the pellet was rinsed with 800l of 70% ethanol and re-collected by 

centrifugation at 4,500 xg for 10 min. This step of washing the pellet was repeated twice. 

The pellet of nucleic acids was left to dry in a Vacufuge® vacuum concentrator 

(Eppendorf) at 35oC and 35 xg for 20 min., and finally resuspended in 40-50 l of 

sterilised water. DNA quantity and quality was measured on NanoDrop 1000 

Spectrophotometer (Thermo Scientific). 

Primer design for screening for T-DNA insertion 

The public available reference sequence of rice japonica cv. Nipponbare was used 

to design the primers to work either on the wild-type allele of the gene or on the insert 

and the gene flanking sequences. Schematic diagrams were constructed based on 

available data of (FST) to aid in designing the primers and hypothesised the expected 

size of the amplicons for either the presence or the absence of the inserts (Fig. 43, Fig. 

44, and Fig. 45).  Specific primers for the wild-type form of the gene (no insert) anneal to 

the target gene sequences across the point of insertion. Therefore, if the insert present, 

the distance between the forward and reverse primer is too long to be amplified under 

the PCR conditions used. To detect the presence of the insert, a primer designed on the 

insert sequence was used in combination with a primer designed on the adjacent gene 

sequence. In multiplex PCR, three pattern could be observed: a single fragment from 

the wild-type allele (homozygous wild-type), a single fragment from the insert 
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(homozygous for the insertion), or both fragments in case of heterozygosity of the 

insertion mutation. 

The Primer-BLAST tool (Ye et al., 2012) was used for designing the primers and 

testing any non-specific amplification. The Primer-Blast tool on NCBI website 

http://www.ncbi.nlm.nih.gov/tools/primer-blast uses PRIMERS3 (Koressaar and 

Remm, 2007; Untergasser et al., 2012) for designing the primers, and uses BLAST and 

global alignment algorithm against Genbank DNA sequence database of O. sativa to test 

for non-specific amplification. Primers are listed in Table. 11.  

 

Table. 11. Primers used to screen the mutant lines for the presence of the T-DNA insert 

Primer Melting 

temp. 

(
o
C) 

Sequence Mutant line 

pGA2717_LB-F 60.25 GGCGGACTGGGTGCTCAGGTA 

1B-17402 Os01g72020_int_1118-R 57.99 ATATTCCCCCACCTCCATGCTCG 

Os01g72020_3UTR_89_F 55.74 GCCCAAAAGGATCATTCTCATCTCC 

Os12g04410_int_536-R 57.04 ACGTCGTGTTCCTGAATTTTTCGC 

2D-10109 pGA2772_RB-F 57.35 GCCACGTAAGTCCGCATCTTCA 

Os12g04410_5’UTR_833-F 58.50 GCCCATTCACTTCGTTCCTCGC 

Os11g04600_int_823-F 58.08 GCGAGCTGAGCTGCACGATT 

1D-04839 
pGA2707_22_RB-R 57.52 TGGTACCTCGGATCCGTGTTTGA 

Os11g04600_int_1356-F 51.08 CAGAACTGAAGAAAGTACTACTACTAC 

Os11g04600_3’UTR_281_R 55.74 TGCTCATCTCCTGGTGGATCG 

pGA2715_1195_RB-F 58.23 GCCATGTTCATCTGCCCAGTCG 

3A-50737 
Os11g04600_int_1143-R 58.36 AGCAAGCATGGGGATGGATGTGA 

Os11g04600_5’UTR_21_F 55.99 CCGGCGCTTTTATCTGGTGG 

Os11g04600_int_1356-R 51.08 GTAGTAGTAGTACTTTCTTCAGTTCTG 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/tools/primer-blast
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Genomic PCR 

The DNA samples extracted from rice mutant lines were adjusted to the 

concentration of 50 ng/l and used in genomic PCR. The reaction mixture is described 

in Table. 12. 

 

Table. 12. Reaction mixture used in PCR to screen the rice mutant lines.  

Reagent/stock Vol per reaction 

(total vol 25l) 

Final concentration 

ReadyMix™ Taq PCR 

Reaction Mix 2X 

(Sigma) 

12.5l 1X (1.5 units Taq DNA polymerase, 10 mM Tris-

HCl, 50 mM KCl, 1.5mM MgCl2, 0.001% gelatin, 

0.2 mM dNTP, stabilizers. 

Primer Forward (10M) 1l 0.4M 

Primer Reverse (10M) 1l 0.4M 

DNA sample (50ng/l) 1.5l 3ng/l 
Molecular Grade water 9l  

 

PCR was carried out in a (BIORAD PCR thermal cyclerTM) following the 

following thermal protocol: 

Initial denaturation at 95oC for 4min 
Denaturation 95oC for 30sec 
Annealing (2-3oC less than the lower primer Tm) for 30sec  
Elongation 72oC for 1 min 
Terminal elongation 72oC for 4min 

The PCR products were separated on 1.5% Agarose gel in TAE buffer at 70 volt 

for 1hr. 

DNA extraction from gel 

PCR products were gel-purified using the QIAquick Gel Extraction Kit following 

the manufacturer‘s protocol (Qiagen).  

The DNA band was excised with sharp and sterilized scalpel and put into a 2 ml 

eppendorf tube. The weight of the gel bands was measured to be between 150-300mg. 

Accordingly, 3 volumes of buffer QG were added and the sample was incubate at 50°C 

35 cycles 
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for around 10 min (until the gel slice has completely dissolved), periodically mixing by 

vortexing. One volume of isopropanol (150-300 l) was added to each tube, then the 

solution was loaded onto QIAquick column inside a 2 ml collection tube, and 

centrifuged for 1 min at 11,000 xg. The flow-through was discarded, and 0.5 ml QG 

buffer was added to the spin column. To wash out any residues of the gel, 0.75 ml of PE 

Buffer was loaded into the column and centrifuged for 1 min at 11,000 xg. The flow-

through was discarded, and the centrifugation step was repeated to ensure dryness of 

the column. After adding 30 μl of molecular grade water, the QIAquick column was 

centrifuged for 1 min at 11,000 xg. The DNA is collected at the bottom of the tube in the 

elution solution. The purified PCR products were cloned and sequenced to investigate 

the flanking sequence and exact location and orientation of insertion.  

Cloning - Ligation 

Gel-purified PCR products were ligated into the pGEM®-T Easy Vector Systems 

(Promega), following the manufacturer‘s protocol. The ligation cocktail was composed 

as indicated in Table. 13.  

Table. 13. The ligation mixture components 

Reagent Volume added Final conc. 

2X Rapid Ligation Buffer, T4 DNA Ligase (Promega) 5l 1x 

pGEM®-T Easy Vector (50ng) 1l 5ng/l 

T4 DNA Ligase (3 Weiss units/μl) 1l 0.33U/l 

PCR product 1.5l  

Mol.grad. water 1.5l  

Total vol. 10l  

 

Ligation reaction mixture was incubated at 4oC for 3-4 hours, then at room 

temperature for another 1-2 hours. 

Cloning – Preparation of chemically competent E. coli cells  

Bacterial suspension (5 l) of E. coli (TOP10 strain) with concentration 108–107 

Colony Forming Units (CFUs) was used to inoculate 3 ml Luria Broth (LB) broth, and 



96 
 
 

incubated at 37oC overnight to allow bacterial growth. Luria Broth (LB) broth was 

prepared by adding 20 g from readymade LB substrate mixture (Lennox) (Sigma-

Aldrich) in 1 L of distilled water. One litre of LB liquid medium contains: 10 g/L 

Tryptone, 5 g/L Yeast Extract, and 5 g/L NaCl. The 3 ml of bacterial culture – that was 

incubated overnight - were used to inoculate 15 ml of LB liquid medium. The bacterial 

cells were incubated at 37°C for 3-5 hours under agitation at 150 rpm, and then the 

bacterial suspension turbidity was measured with a spectrophotometer (at wavelength 

= 600 nm, the optical density was 0.45). The bacterial cells were harvested by 

centrifugation at 990 xg for 15 min at 4oC, supernatant was discarded and bacterial 

pellet was suspended in 16.7 ml of sterilised RF1 solution (100 mM Potassium Chloride, 

50 mM Manganese Chloride, 30 mM Potassium Acetate, 10 mM Calcium Chloride, and 

15% glycerol; pH 5.8); all further steps of preparing E. coli competent cells were 

performed on ice. The bacterial suspension was mixed well with RF1, and incubated on 

ice for 30 min with repeated mixing by pipetting. The bacterial cells were harvested 

again at 990 xg for 15 min at 4oC, the supernatant was discarded, and the bacterial pellet 

was re-suspended in 4 ml of sterilised RF2 solution (10 mM 3-(N-morpholino) 

propanesulfonic acid ―MOPS‖, 75 mM Calcium Chloride, mM Potassium Chloride, 15% 

glycerol; pH 6.8). The bacterial suspension was aliquoted in 50 l and snap-frozen in 

liquid nitrogen, and then stored at -80oC. 

Cloning - Transformation of competent E. coli cells  

For transformation, 10l of ligation mixture (see preparation of ligation mixture 

above) was mixed with competent cells (50l), then incubated on ice for 30 min, and 

mixed by inverting every 5 min. Next, the mixture was incubated at 42oC for 1.5 min, 

and put back on ice for 2 min. Following addition of 1 ml LB broth, the tube was 

incubated at 37oC for 1.5 hour under agitation at 150 rpm. After the incubation, 500l of 

the bacterial culture in LB broth were spread on LB Agar plates for screening. The LB 

Agar substrate for screening contains: 80 mg/l IPTG, 100 mg/l Ampicillin, and 100 

mg/l X-Gal, and 20 g/l Agar. Plates were left to dry under the hood then incubated up-

side-down at 37oC overnight. 
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The transformed bacterial cells carrying the insert appeared as white colonies. 

These colonies were picked and inoculated into LB broth supplemented with ampicillin 

100 mg/l and incubated at 37oC under agitation at 150 rpm overnight. The transformed 

bacterial colonies, in parallel with inoculation into the LB broth, were checked with 

colony-PCR using primers targeting the insert before proceeding to miniprep extraction 

protocol (see PCR protocol above) to ensure the presence of the target insert.  

Miniprep protocol 

The bacterial cultures that were positive for the presence of the insert in the 

transformation (see above) were collected by centrifugation at 990 xg for 10 min and 

plasmid DNA was extracted using the Wizard®Plus SV Minipreps DNA purification 

System (Promega). 

After resuspension of bacterial pellets in 250 l of Cell Re-Suspension Solution 

provided by the commercial supplier (Promega), 250l of Cell Lysis Solution were 

added to each tube, and the tubes were mixed well by inverting 5 times and incubated 

at room tempreture for 5 min. Then 10 l of Alkaline Protease Solution were added to 

each tube, and the tubes were mixed by inverting 5 times and incubated for 5 minutes 

at room temperature. Then 350 l of the Neutralization Solution were added and the 

tubes were mixed by inverting 5 times. Bacterial lysates were centrifuged for 10 minutes 

at 11,000 xg, and the clear lysates were transferred to spin columns, centrifuged for 1 

minute at 11,000 xg. The flow-through was removed, and the spin columns were 

washed twice, first with 750 l and then with 250 l of Column Wash Solution and 

finally centrifuged for 2 minutes at 11,000 xg. Spin columns were transferred to a new 

tubes and DNA was eluted by adding 50 l of molecular grade water and centrifuging 

for 1 minute at 11,000 xg. 

Sanger Sequencing 

The DNA samples that resulted from miniprep extraction procedure were 

sequenced using the Sanger method to investigate the exact location of T-DNA insert, 

and the integration pattern of T-DNA insert. The BigDye® Terminator Cycle 
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Sequencing Kit (Applied Biosystems) was used for sequencing. The reaction mixture 

was constituted as in Table. 14. 

   

Table. 14. Sanger sequencing reaction mixture 

Reagent Initial conc. Volume added Final conc. 

BIG DYE v. 3.1 (Ready Reaction Mix) 10 × 1 1 × 

Sequence buffer 5× 2 1x 

Primer 10 µM 0.8 800 nM 

Ultra-pure molecular grade water - 5.2 - 

purified DNA vector with insert  1  

Total reaction mix  10  

 

 

Reactions were incubated in 96 well plates, in a BIORAD PCR thermal cyclerTM 

under the following thermal conditions: 25 cycles of [96oC for 10 sec, 50oC for 10 sec, 

60oC for 4 min]. The reaction mixture then purified by ethanol precipitation as follows: 

for each reaction, 2.5l of EDTA and 30l of absolute ethanol were added, then the 

whole 96-well plate was centrifuged for 45 min at 625 xg. The supernatant was 

discarded by inverting the plate, then 30 l of pre-chilled ethanol (-20oC) were added to 

each well, and centrifugation was run again at 625 xg for 15 min. The supernatant was 

discarded, and the plate was incubated at room temperature in the dark to allow 

ethanol residues to evaporate, while protecting the reaction dye from being degraded 

by light. At the end, 10 l of formamide were added to each well, and reactions were 

submitted to the Genomics Platform at Parco Tecnologico Padano, Lodi, for capillary 

electrophoresis on an AB3730 capillary instrument DNA analyser (Applied Biosystems).  

Chromatogram *.ab1 files were aligned by ClustalW (Larkin et al., 2007) in 

MEGA 5.1 programme (Tamura et al., 2011). For comparison with the reference,  the 

Os01g72020 sequence was retrieved from Rice Genome Annotation Project database (O. 

sativa sp japonica cv. Nipponbare) http://rice.plantbiology.msu.edu/cgi-

bin/gbrowse/rice/ (Kawahara et al., 2013) and the insert left border obtained from the 

http://rice.plantbiology.msu.edu/cgi-bin/gbrowse/rice/
http://rice.plantbiology.msu.edu/cgi-bin/gbrowse/rice/
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vector sequence available on http://signal.salk.edu/rice/PosTech_Vector_T-

DNA_Sequence.htm#2717 . 

 

3.5 Phenotyping measurements 

Phenotypic measurements were taken when plants reached the end of the 

flowering stage at the beginning of the milk grain filling stage (110 days after 

emergence). The parameters measured were: plant height (from ground level to panicle 

base); stem thickness (the internode below the flag leaf was measured); leaf blade length 

(the leaf below the flag leaf was measured); leaf blade width (the leaf below the flag leaf 

was measured); and number of tillers. Plants were also evaluated for any defects in leaf 

patterning, such as disruptions of the boundary between leaf blade and leaf sheath, 

ligule or auricles. 

  

http://signal.salk.edu/rice/PosTech_Vector_T-DNA_Sequence.htm#2717
http://signal.salk.edu/rice/PosTech_Vector_T-DNA_Sequence.htm#2717
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4. Results 

 

4.1 The Phylogenetic analysis of BOP genes 

In order to study the evolutionary relationships of Cul4 and other BOP genes, a 

phylogenetic analysis was conducted considering functionally characterized genes from 

Arabidopsis, pea COCH and Medicago truncatula NOOT, along with sequences from 

monocots and dicots genomes. The phylogeny was initially targeting all BTB/ANK 

proteins in 12 different species; Sorghum bicolor, Brachypodium distachyon, Oryza sativa, 

Zea mays, Hordeum vulgaris, Musa, Arabidopsis thaliana, Glycine max, Mimulus guttatus, 

Vitis vinifera, Solanum lycopersicum and Pisum sativum. The resulting phylogenetic tree 

contained 64 protein sequences, that were organised in major dichotomy between 

BTB/ANK proteins, and BTB/ANK/NPR protein (data not shown; see Annexes). Based 

on this initial analysis, we decided to focus further analysis on the division of 

BTB/ANK that contain the characterised genes for our interest; BOP1, BOP2, COCH, 

and Cul4, in a subset of 10 plant species. The phylogeny of BOP proteins (Fig. 40) 

showed two distinct clades corresponding to monocot and dicot sequences, indicating 

divergent evolution of this gene family after the split between the monocot and dicot 

lineages 200 million years ago (Wolfe et al., 1989). Monocot BOP genes appear to be 

grouped in two monophyletic groups that may represent an early duplication event 

after the separation from dicots. Besides Cul4, a close paralog was identified in the 

barley genome (MLOC_61451.6). In agreement with the close evolutionary relationship 

with barley, a similar situation is found in Brachypodium with Bradi2g60710 and 

Bradi4g43150 representing putative orthologs of Cul4 and MLOC_61451.6, respectively. 

Orthology between Cul4 and Bradi2g60710 is also supported by chromosomal synteny 

as described in Chapter 2. In rice, maize, and sorghum, the situation appears more 

complex due to the presence of additional genes, possibly deriving from recent 

duplication events, as is the case for Arabidopsis BOP1 and BOP2 (Shi et al., 2012). In 

particular for rice, gene Os01g72020 has the most similar sequence to Cul4 and is 
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located in a syntenic block in rice chromosome 1 with barley chromosome 3. While rice 

paralogs Os12g04410 and Os11g04600 cluster with the barley Cul4 paralog 

MLOC_61451 in one group separated from the Cul4 group by a well-supported node. 

The high sequence similarity between rice Os12g04410 and Os11g04600 and their 

position within recently duplicated chromosomal blocks between chromosomes 11 and 

12 (Bolot et al., 2009) suggest possible functional redundancy as in BOP1 and BOP2 

genes. The BOP proteins phylogeny reflects also the general evolutionary relationships 

between species, placing –for example- barley BOP genes closer to Brachypodium 

sequences, with both barley and Brachypodium closer to rice than to maize and 

sorghum. 

 

 

Fig. 40. Evolutionary relationships among BOP-like (NBCL clade of BTB/ANK) proteins. 

Phytozome v9.1 database was used to retrieve BOP-like protein sequences 

http://www.phytozome.net/; HC_genes_AA_Seq database http://webblast.ipk-

gatersleben.de/barley/viroblast.php was used to retrieve barley sequences; Genbank 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_

LOC=blasthome. Barley (Hordeum vulgare) CUL4 = AK360734, Pea (Pisum sativum) Ps-

 Barley CUL4

  Brachypodium Bradi2g60710.1

 Rice Os01g72020.1

 Maize GRMZM2G060723 T01

  Sorghum Sb03g045730.1
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 Maize GRMZM2G022606 T02

 Sorghum Sb08g001180.1
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http://www.phytozome.net/
http://webblast.ipk-gatersleben.de/barley/viroblast.php
http://webblast.ipk-gatersleben.de/barley/viroblast.php
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
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COCH = JN180860, Arabidopsis thaliana BOP1 = AT3G57130, Arabidopsis thaliana BOP2 = 

AT2G41370. 

 

4.2 Expression profiles of rice BOP gene Os01g72020 

For LOC_Os01g72020, the rice ortholog of barley Cul4, two probes were found: 

Os.49276.1.S1_at and OsAffx.24010.1.S1_x_at (Walia et al., 2005). The gene appears to 

have two maximum expression peaks: the first during early seedling emergence (before 

first leaf completely unfolded stage), and the second during the flowering (Fig. 41). 

According to the anatomical classification, the gene shows highest expression in stigma, 

followed by the collar of the flag leaf, leaf sheath, and stem crown (Fig. 42). For the 

other two rice BOP-like genes, Os11g04600 and Os12g04410, no probes were found in 

the Genevestigator database. 

 
Fig. 41. The expression profile for LOC_Os01g72020 gene during different plant developmental 

stages.  
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Fig. 42. The expression profile for LOC_Os01g72020 gene according to the anatomical classes. 

 

 

4.3 Identification of rice line carrying insertions in Cul4-like BOP genes  

In order to explore the biological functions of rice BOP genes and compare them 

with the role of Cul4 in barley, we undertook a reverse genetics strategy taking 

advantage of available collections of rice insertional mutants. Similarity searches were 

conducted on the flanking sequence tags (FSTs) database http://signal.salk.edu/cgi-

bin/RiceGE  and lines carrying insertions in rice BOP genes were identified (Table. 15). 

Analysis of FST information allowed to predict the insertion structure and to draw a 

schematic representation for each line (Fig. 43, Fig. 44, and Fig. 45) .  

 

 

 

http://signal.salk.edu/cgi-bin/RiceGE
http://signal.salk.edu/cgi-bin/RiceGE
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Table. 15. The results of homologous search using Cul4 protein sequence as query against rice 

database.  

Chrom gene score e-values Max 

similar 

Gene 

function 

Insertion 

lines 

Type of 

cassette 

location 

Chr1 Os01g72020 463 e-129 75% BTB/ 

Ankyrin 

1B-17402 GUS and 

GFP 

trapping 

exon 

Chr11 Os11g04600 343 3e-93 66% BTB/ 

Ankyrin  

2D-10109 activation 

tagging 

and GUS 

trapping  

exon 

3A-52261 promoter 

3A-50737 intron 

1D-04839 GUS 

trapping  

intron 

Chr12 Os12g04410 343 3e-93 66% BTB/ 

Ankyrin 

2D-10109 

 

Activation 

tagging  

exon 

 

For line 1B-17402, the FST database showed that the T-DNA left border is 

adjacent to exon 2 of gene Os01g71010 and the downstream sequence, indicating that 

the insert is in inverted orientation; thus the transcription from the gene promoter 

through the gene trap construct is expected to result in expression of the GFP reporter 

gene, forming chimeric fusion with exon 2 of gene Os01g71010. 

For insertion line 2D-10109, FST information points to a possible insertion in 

exon 1 in gene Os12g04410 or Os11g04600. As indicated by phylogenetic analysis 

(Chapter III paragraph 4.1: The Phylogenetic analysis of BOP genes), these two genes 

are very highly related making it difficult to discriminate between these two 

possibilities.  In either case, the orientation of the insertion would be inverted, and the 

GUS marker gene would not be expressed. 

In the case of line 1D-04839, FST information indicates the T-DNA right border 

flanks an intron sequence in gene Os11g04600, with inverted orientation of the 

insertion. In this case the GUS reporter gene is in the transcription direction, therefore it 

could be expressed.  

In insertion line 3A-50737 the insert right border is adjacent to the intron 

sequence of gene Os11g04600, and the insertion appears to be in forward orientation.  
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In summary, database searches resulted in the identification of 6 rice lines 

putatively carrying insertions in Cul4-like BOP genes.  

 

 
Fig. 43. Schematic diagram for GUS and GFP trapping cassette in insertion line 1B-17402 in 

gene Os01g72020. The blue rectangular blocks represent gene transcribed sequences, while red 

rectangular blocks are untranslated sequence (UTR). The numbers on diagram represent the 

physical positions and distances on rice genome. The inverted blue triangle represents the 

location of insertion, and the name of the mutant line is reported above the location of insertion 

with the orientation of insertion (forward or inverted). The blue arrow beside the mutant line 

name represents the sequence information available on FST database. The transformation 

cassette is illustrated below the gene diagram.  
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Fig. 44. Schematic diagram for activation tagging and GUS trapping cassette in insertion line 

2D-10109 in gene Os12g04410. The blue rectangular blocks represent gene transcribed 

sequences, while red rectangular blocks are untranslated sequences (UTR). The numbers on 

diagram represent the physical positions and distances on rice genome.  The inverted blue 

triangle represents the location of insertion, and the name of the mutant line is reported above the 

location of insertion with the orientation of insertion (forward or inverted). The blue arrow 

beside the mutant line name represents the sequence information available on FST database. The 

transformation cassette is illustrated below the gene diagram.  
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Fig. 45. Schematic diagram for GUS trapping cassette in line 1D-04839, and activation tagging 

and GUS trapping cassettes in lines 2D-10109, 3A-50737, and 3A-52261, in gene Os11g04600. 

The blue rectangular blocks represent gene transcribed sequences, while red rectangular blocks 

are untranslated sequences (UTR). The green rectangular block represents promoter region.  The 

inverted blue triangles represent the locations of insertion, and the name of the mutant lines are 

reported above the location of insertion with the orientation of insertion (forward or inverted). 

The arrow beside the mutant line name represents the sequence information available on FST 

database. The transformation cassettes are illustrated below the gene diagram. 

 

4.4 Validation of T-DNA insertion in line 1B-17402 

Phylogenetic reconstruction supports orthology between Os01g71010 and Cul4, 

while indicating that the paralogous genes Os11g04600 and Os12g04410 may have 

arisen from a recent duplication, a situation which is often associated with functional 

redundancy. The sequence information on FST database concerning line 2D-10109 does 

not allow to discriminate the location of the insert in either of the paralog genes 

Os11g04600 and Os12g04410. Experimental attempts to resolve this by genomic PCR 

gave non-reproducible results (data not shown). For these reasons, we decided to 

proceed to the molecular characterization of mutant line 1B-17402. 

1D-04839 

3A-50737 

2D-10109 

3A-52261 
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Four plants of the line 1B-17402 putatively carrying a T-DNA insertion in gene 

Os01g71010 were screened with primers pGA2717_LB-F, Os01g72020_int_1118-R, and 

Os01g72020_3UTR_89_F. Genomic PCR results are shown in Fig. 46. Plants carrying the 

insert yielded a band with primers pGA2717_LB-F and Os01g72020_int_1118-R. In case 

of primers Os01g72020_3UTR_89_F and Os01g72020_int_1118-R, a band indicates 

presence of the wild-type sequence. Multiplex PCR results indicate this insertion line is 

heterozygous for the presence of the T-DNA in Os01g72020. The wild-type amplicon 

from primers Os01g72020_3UTR_89_F and Os01g72020_int_1118-R was compatible 

with the expected size of 1209 bp. In contrast, the ca. 1100 bp amplicon obtained with 

primers pGA2717_LB-F and Os01g72020_int_1118-R was smaller than the expected size 

[1369 bp = 894 bp from the T-DNA insert (including 156 bp from intron 3 of β-tubulin, 

and 692 bp from the GFP gene) + 452 from the exon 2 sequence of gene Os01g71010]. In 

order to better characterize the insertion, the 1100 bp fragments obtained from 3 plants 

of line 1B-17402 were extracted from the gel and cloned into the pGEM-Teasy vector 

(Promega). Purified plasmid DNAs were subjected to restriction enzyme digestion and 

sequencing. The restriction patterns along with sequence analyses showed the existence 

of a 320 bp deletion spanning the left border of the insert and the flanking sequence of 

the gene. 

 

 
Fig. 46. Electrophoresis of genomic PCR products amplified from line 1B-17402, expected to 

carry T-DNA insert in gene Os01g72020.   
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4.5 Phenotypic analysis 

Comparison of 1B-17402 plants with their respective background showed that 

this line did not have any of the defects in leaf patterning or the boundary between leaf 

blade and leaf sheath seen in barley cul4 mutants. Leaf polarity and development 

appeared normal in all plants. Quantitative measurements showed no significant 

difference between lines 1B-17402 and 3A-50737 and their wild-type background cv. 

Dongjin, while line 2D-10109 showed shorter plants, shorter leaves, normal stem 

thickness and normal number of tillers compared to Dongjin, (Fig. 47 and Fig. 48). The 

activation-tagging vector used to transform plant line 2D-10109 carries CaMV 35S 

enhancer elements that could activate gene transcription up to 4 kb downstream or 

upstream. Investigating up to 5 kb upstream and downstream the point of insertion in 

the MSU Rice Genome Annotation database (Kawahara et al., 2013), using Genome 

Browser tool, no genes have been annotated in that range. On the other hand, line 1D-

04839 that carries insertional mutation in rice gene Os11g04600, showed shorter plant 

stature, thicker stems, and more tillering ability compared to the respective wild-type 

background Hwayoung. 

 
Fig. 47. The number of tillers (left graph) and plant height (right graph) measurements recorded 

for T-DNA insertional mutant lines in growth chamber experiment, and compared to wild-type 

background cultivars DJ and HY. The significance group are based on ANOVA and post-hoc 

Bonferroni-Holm analysis at p0.05. 
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Fig. 48. The stem thickness (left graph) and leaf blade length (right graph) measurements 

recorded for T-DNA insertional mutant lines in growth chamber experiment, and compared to 

wild-type background cultivars DJ and HY. The significance group are based on ANOVA and 

post-hoc Bonferroni-Holm analysis at p0.05. 
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5. Discussion 

 

The Phylogenetic analysis of BTB/ANK genes supports the hypothesis that an 

ancient duplication resulted in the divergence of the two main clades, NPR and BOP 

(Shi et al., 2012). The phylogenetic reconstruction presented in this chapter showed that 

all dicot BOP genes cluster in one group, while monocot BOP genes assembled into two 

main clades that appear to have separated relatively early. The barley Cul4 gene clade 

includes also a single BOP gene from Brachypodium, rice, maize and sorghum 

supporting orthology among these genes. The other monocot cluster includes, in some 

cases, pairs of close paralogs, e.g. rice (Os11g04600 and Os12g04410), maize 

(GRMZM2G022606 and GRMZM2G026556), and sorghum (Sb05g002500 and 

Sb08g001180). In the case of rice, genes Os11g04600 and Os12g04410 are located within 

duplicated chromosomal blocks in rice chromosomes 11 and 12 (Bolot et al., 2009). A 

similar situation applies to Zea mays genes GRMZM2G022606 and GRMZM2G026556 

located on duplicated segments of chromosomes 2 and 10 (Wei et al., 2007), and 

sorghum Sb05g002500 and Sb08g001180 on chromosomes 5 and 8 (Paterson et al., 2009).  

Mostly, dicot plant species tested carry one BOP gene, but for Arabidopsis and 

soybean, the genome carries two copies that appear to have diverged recently (Shi et al., 

2012). In agreement with a recent duplication event, Arabidopsis BOP1 and BOP2 are 

highly related and play redundant functions (Norberg et al., 2005). The pea BOP gene 

COCH acts in root architecture, particularly nodule identity during symbiotic 

relationship with nitrogen-fixing bacteria (Couzigou et al., 2012). 

Together, the phylogenetic relatedness of barley Cul4, and rice Os01g72020, in 

addition to the synteny relationship of their chromosomal positions, may suggest 

molecular function similarity for rice Os01g72020 and Cul4 as transcriptional repressor 

involved in axillary meristem development and lateral organ fate (Tavakol et al. 

unpublished Data; Ha et al., 2003, 2007; Jun et al., 2010; Xu et al., 2010; Couzigou et al., 

2012). Possible functional redundancy of the rice genes Os11g04600 and Os12g04410 
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may be also supported by paralogous sequence similarity and recent chromosomal 

block duplication on rice chromosomes 11 and 12, as seen for the recent duplication and 

function redundancy in Arabidopsis BOP1 and BOP2 (Norberg et al., 2005; Hepworth et 

al., 2005). 

In order to gain further insight into the possible involvement of rice BOP genes 

in shoot developmental processes, we searched publicly available transcriptomic data 

generated from Affymetrix Rice Genome 51K microarray comparing two indica rice 

genotypes, FL47 and IR29, under salinity stress conditions (Walia et al., 2005). Out of 

the three rice BOP-like genes, data only existed for Os01g72020 – the ortholog of Cul4. 

Transcripts accumulation was variable among the different developmental stages, with 

highest expression during the early germination stage, and later during the flowering 

stage. Plants as sessile organisms produce embryos that have to cope with diverse 

environmental conditions, and therefore, and in contrast to animal embryos, they 

establish only the basic body plan and the main axes, while further development is left 

to be responsive to the post-embryonic inconstant environment (Leyser, 2009). 

Accordingly, two transitional stages in plant development represent signposts in terms 

of genetic regulation; the transitions from embryonic to germinative growth and from 

vegetative to reproductive growth (Finkelstein et al., 2002). Many hormonal and genetic 

factors are involved in those two transition stages including: ABA, gibberellic acid 

(GA), cytokinins, or auxin, with interactions between ABA and ethylene signalling, 

brassinosteroid, light, and sugars (Holdsworth et al., 2001, 2008; Finkelstein et al., 2002). 

Many of these genetic and hormonal factors are known to contribute to the plasticity of 

lateral organs development, particularly side branching and leaf formation. Expression 

of the Os01g72020 gene during germination and flowering, are in agreement with its 

putative involvement in early development of vegetative organs, and also the 

establishment and early development of reproductive organs as verified by the second 

peak in expression during flowering. A role in flowering is also played by Arabidopsis 

BOP genes (Ha et al., 2003, 2007; Hepworth et al., 2005; Xu et al., 2010). BOP genes are 

known to act in floral meristem identity maintenance, and regulation of flowering-time 
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genes (e.g., AGL24, SOC1, and SVP). Functional similarly can be assumed between rice 

Os01g72020 and Arabidopsis BOP genes depending on temporal transcription pattern, 

in addition to sequence similarity.  

Further analysis of Os01g72020 expression showed that the organ with highest 

transcripts accumulation is the stigma in the floret, followed by other organs such as the 

collar of flag leaf, leaf sheath, and stem crown. The anatomical expression pattern of rice 

Os01g7202 can be attributed to three main anatomical classes: reproductive organs 

(stigma), leaf organs (collar of flag leaf and leaf sheath), and meristem tissues (stem 

crown at early stages). The transcriptomic data support the role of  Os01g72020 in floral 

meristem fate and development, leaf morphogenesis, and meristem maintenance and 

development as in Arabidopsis BOP genes (Ha et al., 2003, 2004, 2007; Hepworth et al., 

2005; Xu et al., 2010).  

Similar expression patterns were seen in barley Cul4 expression analysis by qRT-

PCR (Tavakol et al. unpublished data). Cul4 transcripts accumulation was detected in 

the crown of young seedlings, where axillary buds and leaf primordia are developing. 

Also, Cul4 higher expression was identified in leaf organs during later stages (4th leaf 

stage), the expression was intensified in the ligular region of fully expanded leaves. The 

expression experiments showed comparable results between BOP genes, Cul4, and 

Os01g72020, which indicate possible function similarities between these genes. 

However, microarray ―Affymetrix‖ data for rice Os01g72020 only provide an initial 

indication and need to be validated by further analysis, particularly with qRT-PCR, 

RNAseq or in situ expression analyses. 

Molecular characterization of 1B-17402 insertion showed the T-DNA construct is 

located in exon 2 and that a deletion exists spanning 320 bp of the left border (LB) of 

the insert, and the flanking part of the gene exon 2. This is not an uncommon event as 

Kim et al. (2003) reported that the LB junction point was not conserved in all tested 

lines. Such events were also reported in Arabidopsis and tobacco T-DNA lines (Tinland, 

1996) where up to 1500 bp could be deleted at the left border integration site.  
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Phenotypic characterization of insertion line 1B-17402 did not uncover any 

alterations in leaf patterning and tillering, as seen in cul4 barley mutants (chapter 2). 

However, this is expected as phenotyped plants were heterozygote for the T-DNA 

insertion. Screening of the segregating progenies of these plants is necessary to identify 

homozygous plants and evaluate their phenotypes. BOP genes form a diverse family in 

terms of biological functions, e.g. Cul4 affects side branching in barley (Tavakol et al. 

unpublished Data,), while in pea and Medicago truncatula, they affect root architecture, 

particularly nodule formation (Couzigou et al., 2012), which was not identified in either 

Cul4 in barley, or BOP1 and BOP2 in Arabidopsis. Also, BOP1 and BOP2 have been 

proposed to act in some plant resistance mechanisms that are mediated by methyl 

jasmonate (Canet et al., 2012). Such a function has not been proven/studied for Cul4, 

COCH, or NOOT On the other hand, BOP-like genes form a conserved clade, 

structurally and functionally, and share some common functions in leaf morphogenesis 

(Tavakol et al. unpublished Data, Ha et al., 2003, 2004, 2007; Hepworth et al., 2005; Xu et 

al., 2010; Couzigou et al., 2012). Future work will allow to explore and compare more 

comprehensively BOP gene functions in different species to gain a better understanding 

of the evolution of this gene family. 

Insertion lines identified in this work offer a basis for functional characterization 

of rice BOP genes. Although, some insertion lines showed interesting phenotype, the 

current lack of molecular data on these lines does not allow classifying the type of 

mutation. Of particular interest, line 1D-04839, that putatively carries insertional 

mutation in rice gene Os11g04600, showed shorter plant stature with excessive tillering. 

The produced seeds for that line represent a good starting material for molecular 

screening and further characterisation.  

In addition, the progeny of the heterozygote 1B-17402 can be screened to identify 

homozygote mutants in the rice Cul4 ortholog Os01g72020, and identify their 

phenotype. Line 1B-17402 carries bi-directionally gene trap system that is assumed to 

express GFP. Although, initial efforts were carried out to detect GFP expression and the 

localisation of the chimeric protein (data not shown; see Annexes), no conclusive results 
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could be presented, given the time limitation imposed by the long growth cycle of rice, 

and difficulties in growing the target cultivars (long life cycle and photo-period 

sensitivity) under growth chamber conditions, a problem that has been reported from 

different laboratories (Kim et al., 2013). The primary work carried out in this PhD 

project is ideally to be followed by further analysis of the mutant lines and exploiting 

the numerous and useful genetic and genomic resources that exist for rice.  
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1. Introduction 

 

1.1 Classical mutant collections in barley 

 Mutagenesis has been a main driving force in basic and applied genetic research 

for over 80 years (Jiang and Ramachandran, 2010) and has resulted in thousands of 

improved crop varieties cultivated worldwide.  

Since the pioneering work of Stadler on ionizing radiation mutagenesis in barley 

(Stadler, 1928), plant genetic research has extensively used mutagenesis to identify 

mutants to study the fundamental processes of plant physiology and development. 

Mutagenized collections were produced for a number of plant species (Perry et al., 2003; 

Wu et al., 2005; Martin et al., 2009; Saito et al., 2011; Meinke, 2013). Barley mutant 

collections grew to contain thousands of accessions; some with detailed phenotypic 

descriptions (Franckowiak and Lundqvist, 2012), but most are not yet characterised. 

The Scandinavian mutation research program established by the Swedish geneticists H. 

Nilsson-Ehle and A. Gustafsson provided a collection of more than 10,000 different 

characterized mutants stored in the NordGen genebank (http:// www.nordgen.org/) 

(Lundqvist, 2009). Among these, a few barley mutants altered in tillering have been 

identified and characterized (reviewed in chapter 1). Classically, barley tillering 

mutants are categorised based on the type of deviation from normal development i.e. 

for producing less tillers or more tillers (Schmitz and Theres, 2005; Bennett and Leyser, 

2006; Dabbert et al., 2010). The mutation could disturb either axillary meristem 

establishment and bud development, or the tiller bud outgrowth. Axillary meristem 

establishment and bud development are mainly controlled by intrinsic genetic factors. 

Axillary bud outgrowth to form a tiller is largely controlled by genetic and hormonal 

factors resulting in a highly plastic and responsive trait (Kebrom et al., 2013).  

The genetic and hormonal elements controlling branching among dicots and 

monocots have shown many similarities and relatedness, but also diverted and 

http://www.nordgen.org/
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particularized pathways exist (see chapter 1), which impose scientific quests to identify 

the evolutionary conserved components of branching in monocots and dicot, and also 

to understand the particular plasticity of developmental programme for each species 

under its unique environmental habitat. Given the importance of Poaceae family as 

economic crops, and the direct effect of tillering on their yield, comprehensive account 

for identifying the main conserved and flexible elements of tillering mechanisms in 

cereals is a crucial need for both applied and basic science research (Sakamoto and 

Matsuoka, 2004; Sreenivasulu and Schnurbusch, 2012). Although, rice as a model plant 

for Poaceae has received increasing importance for studying tillering (Izawa and 

Shimamoto, 1996; Wang and Li, 2011), but extensive comparison of genes molecular 

and functional characteristics identified among other cereals is essential. In this context, 

barley represents a valuable model system to study tillering, due to both, importance as 

cereal crop and model plant for Triticeae tribe, and also for the cumulative knowledge 

of genetic and genomic data (Sreenivasulu and Schnurbusch, 2012; Feuillet et al., 2012). 

Although several conserved genomic and developmental features are common between 

rice and barley (Mayer et al., 2011), fewer barley genes/loci were identified to be 

involved in tillering, in comparison to the more number of genes/loci identified and 

characterised rice. Therefore, many genetic components governing tillering in barley 

presumably exist and await for identification and characterisation. Screening of barley 

mutagenized populations, particularly newly developed populations, is expected to 

result in isolating new mutant lines, and consequently new genes/loci that control 

tillering in barley. In a classical forward genetics approach (Peters et al., 2003), new 

mutants are isolated by screening phenotype in mutagenized population, followed by 

detailed description of the mutant phenotype, identifying the mode of inheritance (e.g. 

dominant or recessive), ensuring novelty of the locus by performing complementary 

test against known loci, constructing mapping population by crossing to wild-type 

parents and propagation of mapping materials, and ultimately, mapping the locus and 

identifying the molecular components underling the phenotype.  
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Barley mutants were originally induced or discovered in different backgrounds; 

which may retard the comparisons between mutant lines, and in order to ―standardise‖ 

the approach repeated backcross-based transfer of the mutant locus into the common 

recurrent genetic background was performed. That approach resulted in Near Isogenic 

Lines (NILs) that carry a relatively small genetic interval from the donor mutant parent 

which contains the mutated locus, inserted in the genomic background of the recurrent 

parent (Druka et al., 2011). Extensive backcrossing program in barley was initiated in 

the mid-1980s to introgress mutated loci from the worldwide collection of barley 

mutants into a common genetic background; cv. Bowman (Franckowiak et al., 1985). 

Druka and co-workers developed more than 800 NILs in barley cv. Bowman 

background (Druka et al., 2011), and the NIL collection includes 17 mutant independent 

lines indicated as defect in bud development represent 10 different loci. 

As has been stated above, the starting point for forward genetics is a screen for a 

desired phenotype within a mutagenized population, which can be the result of natural 

or induced mutagenesis. Where possible, some approaches used for mutagenesis can 

facilitate the subsequent identification of the mutation position, as in the case of T-DNA 

or transposon mutagenesis in various plant species (Yoder et al., 1988; Ishida et al., 

1996; Cheng et al., 1997; Jeon et al., 2000; Alonso et al., 2003; Tadege et al., 2005). Despite 

some success (Ramachandran and Sundaresan, 2001; May and Martienssen, 2003), such 

approaches have proven impractical in the case of barley due to difficulties in plant 

transformation and the lack of efficient transposon systems (Harwood, 2012; Wang et 

al., 2012). Thus most barley mutants have been identified from chemical or radiation-

mutagenesis. In order to isolate the underlying genes, map-based cloning (Muller et al., 

1995; Chono et al., 2003; Komatsuda et al., 2007; Tonooka et al., 2009; Taketa et al., 2011; 

Ramsay et al., 2011; Houston et al., 2012; Yuo et al., 2012) and comparative-

genomics/candidate gene approaches (Rossini et al., 2006) are then used. Chemical and 

radiation mutagenesis can be applied to basically any plant species easily and the 

spectrum of induced mutants is broader than with tagging approaches (Peters et al., 

2003).  
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1.2 A new take on mutagenesis: TILLING  

  Besides being exploited in forward genetics, chemical mutagenesis is also a 

powerful tool for reverse genetic analyses: new high throughput screening methods for 

the discovery of sequence variants have been applied to identify mutations in genes of 

interest from mutagenized populations - an approach called TILLING (Targeting 

Induced Local Lesions IN Genomes (McCallum et al., 2000) – which has been applied in 

animals and plants, e.g. zebrafish, Arabidopsis, rice, wheat and barley (Rawat et al., 

2012) where next generation sequencing allows fast and efficient recovery of desired 

mutations (Tsai et al., 2011). To this end, different mutagens have been used e.g. Ethyl 

Methane Sulfonate (EMS) induces 99% C-to-T changes resulting in GC-AT substitution; 

treatment with N-Nitroso-N-methylurea (MNU) usually resulted in 90% GC-AT 

transition changes, and when combined with sodium azid resulted in 20% AT-GC 

changes; Gamma irradiation produces 30% small indels of only a few base pairs, which 

is effecting for generating knockouts of single genes; fast neutrons produces mainly big 

deletions ranging in size from hundreds to thousands of base pairs (Wang et al., 2012). 

 In a classical TILLING protocol (see Fig. 49), after chemical mutagenesis, plants 

are self-fertilized, and DNA samples are collected from M2 or M3 individual plants, 

pooled and subjected to PCR using primers that hybridize to a region of interest. To 

detect mutations, PCR reaction products are subjected to digestion by CEL I, then 

separated by gel-based denaturing electrophoresis and sequenced (Mejlhede et al., 2006; 

Wang et al., 2012).  
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Fig. 49. A summary of the TILLING process embracing forward genetic screening. The pure 

seed line (a) is treated with EMS at an appropriate concentration (determined by testing small 

batches of seed with a range of concentrations), then (b) seeds are sown, grown (M1 plant 

generation) and harvested as individuals for M2 seed. This seed is then re-sown as families (12 

seed usually) and the plants screened for segregating phenotypes. A single fertile plant from each 

family (c) is used to collect leaves for DNA extraction and (d) the seed harvested and stored 

appropriately. Siblings can be screened for a variety of phenotypes by eye or by high-throughput 

(bio)chemical screens, e.g. (Takos et al., 2010; Vriet et al., 2010). Seeds from sibling plants 

bearing useful phenotypes are also stored. Individual DNAs are pooled (e) in microtitre plates 

and pools used for PCR amplification using a mixture of labelled and unlabelled primers. 

Products are heated, cooled and (f) the annealed products cut (g) with CEL1 enzyme. The 

resultant products are purified and run on gels (h) or capillaries to detect the mismatched 

products. Individuals are then selected from the pools (i) by re-sequencing and their seed sown to 

identify mutant plants (Wang et al., 2012; reproduced in that article with the permission of Jillian 

Perry). 
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 In barley, a few TILLING collections have been produced. For example, a 

TILLING population was generated using ethylmethanesulphonate (EMS) as chemical 

mutagenesis in variety ‗Optic‘, producing 9,216 M2 lines, 1152 eight-plant DNA pools 

and estimated mutation rate of 1 mutation per 1 Mb. For phenotypic data, 12–16 M3 

progeny from each of the M2 plants were evaluated visually for phenotypes, and the 

data made available on (http://bioinf.scri.sari.ac.uk/distilling/distilling.html). A 

visible phenotype abnormality was recorded for over 20% of the M3 families (Caldwell 

et al., 2004). Another mutagenized population in the Danish variety ‗Lux‘ induced by 

sodium azide producing 9,575 lines of M3 plants with estimated mutation rate 1 

mutation per 2.5 Mb. The M3 were scored for 4 phenotypes: no growth, chlorophyll 

defects, dwarfs and necrotic spots on leaves. The phenotype scoring revealed rate of 

3.5% abnormal plants (Lababidi et al., 2009). Mutagenized population using EMS was 

also build in cv. ‗Barke‘ producing 10,279 M2 lines. In this population, mutation rate 

was estimated to be one mutation per 0.5 Mb, and 20% of the plants of M2 displayed 

visible phenotype (Gottwald et al., 2009). Additional population was developed in cv. 

‗Sebastian‘ using MNU in combined with sodium azide as mutagens to produce 10,000 

lines of M2 plants with estimated high frequency of 1 mutation per 0.235 Mb 

(Kurowska et al., 2011). A good review for the recently developed TILLING populations 

in barley could be accessed from Kurowska et al., 2011. 

 The University of Bologna, Department of Agro-Environmental Sciences and 

Technology (DiSTA) (Italy) produced another TILLING population by treating seeds of 

cv. ‗Morex‘ with sodium azide (NaN) causes single nucleotide G/C-to-A/T transitions 

producing 4,906  M2 lines of at high frequency of 1 mutation per 0.374 kb (Talamè et al., 

2008). DNA extraction resulted in 4,906 DNA samples, and the morphological 

alterations are scored regularly and organized in the main following categories: habitus, 

tillering, plant colour, glossy/waxy, plant height, plant morphology, leaf appearance 

and heading data. The M3 population show high frequency of morphological defects; 

spike morphology mutants show 28% of the total number of morphological variants. 

This population is especially attractive as it is based on ‗Morex‘, a Manchurian six-row 

http://bioinf.scri.sari.ac.uk/distilling/distilling.html


123 
 
 

barley cultivar chosen for genome sequencing by the IBSC (IBSC, 2012). Using TILLING 

approach to screen the TILLMore population, 29 mutations in five starch-related barley 

genes were identified (Bovina et al., 2011b), and 4 barley genes involved in root 

development were analysed revealing average of total 20 mutations (6 alleles per gene). 

Alternatively, forward genetics approaches could be applied to screen TILLMore 

mutagenized population to identify mutants and follow map-based cloning to isolate 

genes. The TILLMore population was used to identify desired root morphology for 

drought tolerance; screening ca. 1000 M4 families allowed to identify ca. 70 lines with 

altered root phenotypes, and more detailed phenotyping at the histological level is in 

progress (Bovina et al., 2011a). 
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2. The scope of the chapter  

 

 In order to identify new mutants potentially representing additional genes 

controlling shoot branching in barley, we searched available phenotypic information for 

the TILLMore collection (http://www.dista.unibo.it/TILLMore/) for low tillering 

phenotypes. Lines of interest were obtained from the University of Bologna (courtesy of 

Dr Silvio Salvi and Dr. Valentine Talamè) phenotyped and propagated by single-seed 

descent to purify the mutation. In addition to scoring the number of tillers, histological 

characterisation was carried out for some mutant lines to identify the stage at which the 

mutation affects tiller development. The initial steps of construction mapping 

population were performed by crossing the mutant lines to wild-type parents in two 

growing seasons.  
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3. Materials and Methods 

 

3.1 Phenotyping 

 The TILLMore collection was developed at University of Bologna  (Talamè et al., 

2008) where lines were screened visually and a list of mutant families that showed 

defects in tillering was published via http://www.dista.unibo.it/TILLMore/. Thirty 

three mutant lines (listed in Table. 16) were ordered and propagated in 2011 in the 

growth chamber at Parco Tecnologico Padano (Lodi, Italy). The conditions of the 

growth room were for temperature 22oC/18oC, day/night, and for photo-period 18/6 

hrs, and relative humidity RH: 60%. The seeds were sown in planting medium contains 

4:4:1 sand : peat-moss : clay, one seeds per each pot (13.5 × 13.5 × 15 cm, ca. 2 L), and 

were irrigated 3 times per week. After 5 months of sowing the seeds, the plants were 

screening for number of tillers, leaf blade-sheath boundary, plant stature, leaf 

appearance, and any obvious abnormality (e.g., retarded development). At the end of 

plant development cycle – 6 months after sowing – the spikes were collected and 

threshed.  

 

 

 

 

 

 

 

 

http://www.dista.unibo.it/TILLMore/
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Table. 16. Mutant lines from TILLMore collection that were ordered and grown for propagation 

and initial phenotyping. For the phenotyping in 2012 and 2013, the actually analysed number of 

individuals is indicated between brackets in the last two columns.  

Mutant 

code 

(UNIBO) 

Genotype 

code 

(UNIMI) 

Phenotype UNIBO 

(from the online 

database) 

Phenotype UNIMI 

(growth chamber 

2011) 

no of seeds 

harvested 

2011 

Sown in 2012 for 

characterisation 

(analysed) 

Sown in 2013 for 

characterisation 

(analysed) 

45 GM1126 Poor tillering, very 

rich surface wax 

coating, very early 

heading 

no tillers, normal 

height 

100 15 (14) - 

217 GM1127 Albino seedling, 

poor tillering, 

necrotic leaf spots. 

no tillers 77 15 (10) 58 (8) 

516 GM1128 Single stem 

(Uniculm) 

no tillers 171 20 (13) - 

663 GM1129 Poor tillering 1-3 tilers 106 20 (14) - 

734 GM1130 Erect growth habit, 

poor tillering, Short 

leaf, Late heading 

Erect growth, few 

distorted tillers, short 

plants, late maturity 

26 15 (11) - 

948 GM1131 Single stem 

(Uniculm) 

no tillers, shorter than 

normal 

57 20 (14) 27 (7) 

1176 GM1132 Semi-dwarf, Poor 

tillering, Late 

heading 

no tillers, normal 

height 

80 20 (15) - 

1712 GM1133 Single stem 

(Uniculm) 

no tillers, leaf 

necrosis 

133 20 (12) 42 (2+15) 

1720 GM1134 Semi-dwarf, Poor 

tillering, Late 

heading, Long basal 

rachis internode 

0-3 distorted tillers, 

plant are shorter than 

normal, leaf necrosis 

56 15 (12) 48 (2) 

1798 GM1135 Dwarf, Poor 

tillering 

no tillers, shorter than 

normal 

58 20 (10) 10 (4) 

2039 GM1136 Single stem 

(Uniculm) 

NO GERMINATED 

PLANTS 

0 - - 

2083 GM1137 Single stem 

(Uniculm) 

NO GERMINATED 

PLANTS 

0 - - 

2406 GM1138 Albino seedling, 

Single stem 

(Uniculm) 

weak vegetative 

tillers, abnormal 

branching from above 

ground nodes, plant 

are very short and late 

maturity 

0 - - 

2793 GM1139 Poor tillering, Long 

basal rachis 

internode 

no tillers 74 20 (14) 15 (2) 

2866 GM1140 Poor tillering, Long 

basal rachis 

internode 

NO GERMINATED 

PLANTS 

0 2 (original stock; 

not considered in 

analysis) 

- 

3125 GM1141 Single stem no tiller 33 20 (14) 20 (10) 
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(Uniculm), 

Collapsing leaf 

blade 

3226 GM1142 Poor tillering 0-1 tillers 190 15 (15) - 

3253 GM1143 Semi-dwarf,Single 

stem (Uniculm), 

Narrow leaf 

no tillers, narrow 

leaves, short plants 

5 3 (3) 10 (0) 

3565 GM1144 Semi-dwarf, Single 

stem (Uniculm) 

NO GERMINATED 

PLANTS 

0 - - 

3617 GM1145 Albino seedling, 

Poor tillering 

NO GERMINATED 

PLANTS 

0 - - 

3621 GM1146 Multinoded, 

Branched tillers, 

Irregular spike 

no tillers 50 15 (13) - 

3833 GM1147 Poor tillering no tillers 153 20 (15) - 

4054 GM1148 Albino seedling, 

Poor tillering 

0-1 tillers 58 20 (10) - 

4174 GM1149 Single stem 

(Uniculm) 

NO GERMINATED 

PLANTS 

0 - - 

4188 GM1150 Albino seedling, 

Poor tillering 

very weak plant, slow 

growing, no tillers 

4 - - 

4216 GM1151 Dwarf, Poor 

tillering 

one tiller with spike 

well developed 

74 15 (11) - 

4267 GM1152 Single stem 

(Uniculm) 

no tillers 55 20 (15) - 

4308 GM1153 Short culm, Poor 

tillering, Necrotic 

leaf spots 

0-1 tillers, short tiller 

if present 

82 15 (11) - 

4401 GM1154 Single stem 

(Uniculm) 

NO GERMINATED 

PLANTS 

0 - - 

5109 GM1155 Single stem 

(Uniculm) 

no tillers, shorter than 

normal, leaf necrosis 

97 20 (14) - 

5166 GM1156 Semi-dwarf, Poor 

tillering, Short spike 

NO GERMINATED 

PLANTS 

0 - - 

5361 GM1157 Narrow culm and 

leaves, Poor 

tillering 

NO GERMINATED 

PLANTS 

0 - - 

5943 GM1158 Poor tillering, 

Necrotic leaf spots 

no tillers, leaf 

necrosis 

43 15 (14) - 

Morex   1-3 tillers >100 20 (19) 50 (23) 

 

 Lines that had produced sufficient seeds were used for further phenotyping 

experiments. Around 15-20 seeds from each line were sown in mid-December 2011  in 

Milan University greenhouse in Tavazzano (Lodi, Italy) for a total of 23 mutant lines 

and the wild-type background Morex. A single seed was sown in each plastic pot (13.5 
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× 13.5 × 15 cm, ca. 2 L) filled with normal field soil from Tavazzano, Lodi, Italy. The 

environmental conditions were the natural conditions of temperature and photoperiod 

in Lodi, Italy, between December 2011 and June 2012. Irrigation was carried out 2-3 

times a week to keep soil wet at 60% of the field holding capacity. The fertilization 

programme was performed to keep favourable nutritional conditions for seeds 

germination and growth, and was applied as following:  post-emergence (3-4 weeks 

after sowing), urea solution (200 g/100 L); during tillering stage (5-6 weeks after 

emergence), Ammonium Nitrate (50 g/100 L), Calcium Nitrate (50 g/100 L), 

Magnesium Sulphate (50 g/100 L) Potassium Phosphate (50 g/100 L), Fe and 

microelements (10 g /100 L); during ear emergence (16-20 weeks after emergence), the 

same fertilizers and doses as during tillering application. During the ear emergence (16-

20 weeks after emergence), plants were sprayed with Folicur® Bayer (active ingredient: 

Tebuconazole 4.3 %) fungicide at rate of 150 ml/ha (plant spacing was 30 plant per m2). 

The number of tillers per each plant was recorded at the end of May 2012 when 

flowering was completed. 

 The same experiment was repeated in 2012/2013, sowing seeds in mid-December 

and plants were harvested in June, but only 8 mutants lines with the background wild-

type Morex were planted. The selected 8 lines were chosen based on the strength of the 

reduction in tillering, and the availability of seeds. 

 Statistical analyses were carried out using XL Toolbox add-in in Excel 

environment. Test for outliers was used to exclude data points with extreme values by 

Grubbs' test (on-line calculator; http://www.graphpad.com/quickcalcs/Grubbs1.cfm), 

ANOVA was run, and post-hoc Tukey test carried out. Normality of data was tested 

graphically to ensure the eligibility of data to run ANOVA test. 

 

3.2 Histological analyses 

 Based on results of low tillering phenotyping in 2012 and 2013, 3 mutant lines 

were selected for further histological phenotyping. Seeds were sown in small pots (50 
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ml) in perlite medium, and put in tank filled with nutrient solution to cover plantlet 

roots (hydroponic system). Liquid fertilizers (ALGOFLASH ®; NPK + B, Cu, Fe, Mn, 

Mo, Zn) were added to distilled water at rate of 10 ml per 2L and filled the tank, and 

were changed once a week. Seedlings were grown in the growth chamber at Parco 

Tecnologico Padano. The conditions of the growth room were for temperature 

22oC/18oC, day/night, photo-period 18/6 hrs, relative humidity RH: 60%. One and two 

weeks after germination, plant samples were collected for histological dissection. For 1-

week old seedlings, the first leaf was completely unfolded (developmental stage; 

GRO:0007060), while in 2-weeks old seedlings the 2nd leaf completely unfolded, and the 

tip of 3nd leaf was starting to grow out (GRO:0007061). The roots and leaves were cut 

off, and a 2 cm sample corresponding to the crown was kept in the fixation solution. 

Fixation solution (100 ml) was composed of: Ethanol (final conc. 50%), Acetic acid (final 

conc. 5%), Formaldehyde (final conc. 3.7-3.8%). Crown samples were kept in the 

fixation solution at 4oC overnight, then dehydrated in  alcohol series as follows: 2 steps 

in Ethanol 85%(30 min), two steps with Ethanol 90%, (30 min) then with Ethanol 95% 

(30 min), then with Ethanol absolute. The sample was further processed to expose the 

coleoptile bud by properly hand-cut with a blade. This step was performed to mark the 

position of coleoptile bud, and to allow the specimen to stay on the cut side into the 

embedding mould (Fig. 50) 
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Fig. 50 Diagram illustrating marking the crown sample by hand-cut. The samples for histology 

were initially processed by peeling off the coleoptile leaf, and mark the position of the coleoptile 

bud by longitudinal hand-cut with blade. 

 

 Embedding was carried out using cold-polymerizing resin Technovit 7100 kit 

(Hetaeus Kulzer)) following the manufacturer protocol that consists of 3 steps: pre-

infiltration, infiltration, and polymerisation. For pre-infiltration, samples were 

immersed in the mix of 50% Base Solution (Technovit 7100) and 50% ethanol (96%) for 2 

hours. In the infiltration step, samples were immersed in preparation solution (1g 

hardener I in 100 ml base solution) overnight; For embedding and polymerisation, 1 ml 

of hardener II was added to 15 ml of preparation solution, then about 1 ml of this 

mixture was poured inside each well of the Teflon embedding mould (Histoform, 

Fisher scientific), and the plant specimens were positioned so that the coleoptile bud 

had a chosen orientation to facilitate later dissection. After some hours, the cured 

samples were mounted by Technovit 3040 (quickly hardening 2-component plastic) that 

tightly bond the specimen with the plastic holder Histobloc; and after about 10 min., the 

Histobloc and the fixed specimens were removed from the Histoform. 

 The embedded specimens were cut by Leica RM2245 microtome to 8 l thick 

longitudinal serial sections through the apical meristem region. Sections were spread on 

water film on glass slides, and then inspected under a light microscope to ensure the 
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correct cut. The selected slides were incubated in oven at 50°C for 15 min, then stained 

by Toluidine blue (0.05%; Fisher scientific) for 5 min. After repeated washes with water 

to wash-off all excess of stain, slides were left to dry and coverslips were mounted over 

the stained tissue sections and examined using light microscopy. For each specimen 

serial sections were analysed and the number of axillary buds were recorded.  

 

3.3 Crossing 

 In order to evaluate the inheritance of the phenotype and start constructing a 

mapping population, the lines that showed most significantly reduced tillering ability 

were used in crossing with wild-type parents. In 2012, twelve lines were crossed to four 

wild-type varieties, Harrington, Barke, Dicktoo, and Steptoe, performing 24 crosses, in 

which 58 spikes were used (see Table. 17). While in 2013, work focused on seven lines 

for the crossing with wild-type varieties Barke, Steptoe, Dicktoo, and Harrington, 

performing 17 crosses in which 50 spikes were used (see Table. 18). Those seven mutant 

lines showed the most significant and evident reduction in tillering in 2012 

phenotyping. The progeny of 2012 crosses (F1) were sown in the greenhouse in 

Tavazzano in December 2012, phenotyped for tillering and number of rows in the end 

of May, and harvested in July 2013.  

Table. 17. List for crosses in 2012 stating the parents: the mutant “code” and the wild-type 

cultivars, and indicating the male and female parents 

Mutant genotype  code X Wild-type 

GM1126 ♀ X Harrington ♂ 

GM1126 ♀ X Barke ♂ 

GM1128 ♀ X Harrington ♂ 

GM1130 ♂ X Harrington ♀ 

GM1130 ♂ X Barke ♀ 

GM1134 ♂ X Harrington ♀ 

GM1135 ♂ X Harrington ♀ 

GM1135 ♂ X Barke ♀ 

GM1135 ♂ X Dicktoo ♀ 

GM1141 ♀ X Harrington ♂ 

GM1141 ♀ X Diktoo ♂ 
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GM1141 ♀ X Barke ♂ 

GM1143 ♀ X Harrington ♂ 

GM1147 ♀ X Diktoo ♂ 

GM1148 ♀ X Diktoo ♂ 

GM1151 ♀ X Harrington ♂ 

GM1151 ♀ X Barke ♂ 

GM1152 ♀ X Diktoo ♂ 

GM1152 ♀ X Barke ♂ 

GM1152 ♀ X Harrington ♂ 

GM1152 ♀ X Steptoe ♂ 

GM1153 ♀ X Barke ♂ 

GM1153 ♀ X Harrington ♂ 

GM1153 ♀ X Steptoe ♂ 

 

 

Table. 18. List for crosses in 2013 stating the parents: the mutant “code” and the wild-type 

cultivars, and indicating the male and female parents 

Mutant genotype code X Wild-type 

GM1127 ♀ X Barke ♂ 

GM1127 ♀ X Steptoe ♂ 

GM1130 ♀ X Barke ♂ 

GM1130 ♀ X Steptoe ♂ 

GM1130 ♀ X Harrington ♂ 

GM1131 ♀ X Barke ♂ 

GM1131 ♀ X Steptoe ♂ 

GM1131 ♀ X Harrington ♂ 

GM1131 ♀ X Dicktoo ♂ 

GM1133 ♀ X Steptoe ♂ 

GM1134 ♀ X Barke ♂ 

GM1134 ♀ X Barke ♂ 

GM1134 ♀ X Steptoe ♂ 

GM1135 ♀ X Steptoe ♂ 

GM1135 ♀ X Dicktoo ♂ 

GM1141 ♀ X Barke ♂ 

GM1141 ♀ X Steptoe ♂ 
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4. Results 

 

4.1 Phenotyping 

 In end of January 2012, 23 mutant lines (TILLMore lines) were sown under 

greenhouse conditions. For one line (GM1140) only one seeds germinated, and therefore 

was excluded from the phenotyping analysis. Out of the remaining 22 lines 

investigated, 12 lines showed significant reduction in tillering (avg. 3.6±1) compared to 

Morex wild-type background (avg. 7±2.5) (Fig. 51). In particular, 6 lines showed the 

most pronounced reduction in tillering (avg. 2.7±1), with line GM1135 showed the most 

severe effect (avg. 1.2±1.6). 

 

 
Fig. 51. Number of tillers scored for 22 mutant lines and Morex wild-type background in 2012. 

The significance indicated as: *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001. The error 

bars show ±standard deviation. The wild-type Morex (background) is highlighted in red. 

 

 In December 2012, 8 mutants lines with the background wild-type Morex were 

planted, and number of tillers were recorded. According to some uncontrolled 

problems in the greenhouse (rat attacks), most of the barley seedlings were lost, and in 

order to compromise for the losses, re-sowing some seeds was carried out in March 

2013. Sowing date is known factor affecting number of tiller (late sowing date, less 
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tillering) (Hay, 1986), and accordingly, it was not possible to compare number of 

tillering for late-sown plants to the early-sown plants. Moreover, comparing to last year 

data, although TILLMore lines have comparable measurements for the number of 

tillers, the wild-type Morex tillered dramatically less than in the previous season (Fig. 

52). Together, this second experiment helped to propagate the lines but phenotypic data 

are not considered as they are not reliable due to uncontrolled problems. 

 

 
Fig. 52. Number of tillers scored for 8 mutants lines and Morex wild-type background in 2013. 

Only plants grew from seeds that were sown in December 2012 are presented in this figure. 

Plants that were sown later were analysed separately (indicated by “late”).  

 

 

4.2 Histological phenotyping 

 Three mutant lines showing clear reductions in tiller number compared to the 

wild-type parent Morex, and with sufficient production of seeds (GM1127, GM1130, 

and GM1131) were further investigated at the histological level to identify at which 

stage the axillary development is affected. Number of axillary buds were counted for 

each genotype using light microscopy (Fig. 53). 
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Fig. 53. Histological longitudinal sections (10m thickness) through apical meristem in mutants 

and wild-type Morex, showing number of axillary buds. a: GM1127 mutant 1-week-old (3 tiller 

buds), b: GM1131 mutant 1-week-old (2 tiller buds) c: wild-type  Morex 1-week-old (3 tiller 

buds) d: GM1127 mutant 2-weeks-old (4 tiller bud) e: wild-type Morex 2-weeks-old (3 tiller 

buds), f: GM1130 mutant 2-weeks-old (3 tiller buds). Red asterisks indicate the tiller buds.  

 

 As shown in Table. 19, no differences were noticed in number of axillary buds 

between mutant lines and their background wild-type Morex. Barley seedlings of 

Morex showed development of 2-3 axillary buds by the end of the first week after 

germination. The axillary buds grew in the axil of the coleoptile, first leaf, and second 

leaf. The same number and location of axillary buds were seen in the 3 mutant lines 

specimens. While in the 2nd week age, axillary meristem developed to form visually 

distinguishable bud in the 3rd leaf axil. 

Table. 19. Number of axillary tillers in 3 mutant lines and the wild-type Morex in one and two 

weeks old plants. 

 GENOTYPE 

STAGE Morex GM1127 GM1130 GM1131 
1-week old 2-3 2-3 2-3 2-3 
2-weeks old 3-4 3-4 3-4 3-4 
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4.3 Crossing 

 The TILLMore lines have been generated in the six-rows Morex background. In 

barley, the 2/6-rows trait is controlled by a single Mendelian locus with six-rows 

recessive (vrs1) vs. two-rows (Vrs1) (Komatsuda et al., 2007). We used two-rows wild-

type genotypes (Vrs1 Vrs1) as pollen parents for crosses (Harrington and Barke), in 

order to discriminate between seeds deriving from true crosses (i.e. Morex x two-rows 

F1, vrs1 Vrs1, two-rows phenotype) vs. self-fertilization of TILLMore lines (vrs1 vrs1, 

six-rows phenotype). An additional advantage of using two-rows parents is that they 

represent a distinct genetic pool compared to six-row barleys, maximizing polymorphic 

marker diversity for future mapping. For example the cv. Barke has been crossed to 

Morex to produce a dense SNP map to anchor the barley gene space (Comadran et al., 

2012). On the other hand, to circumvent possible epistatic effects of the 2/6-row locus 

on tiller number (Ramsay et al., 2011), the tillering mutants were also crossed with six-

row parents Dicktoo and Steptoe, that was used for construction of the Steptoe x Morex 

SNP map (Muñoz-Amatriaín et al., 2011). A total of 58 spikes were crossed in 2012, but 

only 28 spikes produced seeds. The produced seeds were sown in the greenhouse in 

December 2012: scoring for row type indicated that only 4 spikes produced true F1 

hybrids Table. 20. In order to identify true crosses derived from crosses of six-rows 

parents screening by molecular marker is necessary. In 2012/2013, 50 spikes were 

crossed, in which 22 set seeds. The resulted seeds will be planted in 2013/2014 to 

evaluate true F1s.  
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Table. 20. List of results of performed crosses in 2012, indicating no of produced seeds, resulted 

plants, and true F1 hybrids based on 2/6-rows marker. na= not applicable to use row-type as 

marker, because the two parents are six-rows. 

Mutant 

genotype 

code 

X Wild-type  Produced seeds  No. of grown 

plants 

No. of true F1 hybrids 

GM1126 X Harrington 11 6 1 

GM1126 X Barke 3 2 0 

GM1128 X Harrington 33 15 10 

GM1130 X Harrington 5 4 0 

GM1130 X Barke 13 3 0 

GM1134 X Harrington 4 0 - 

GM1135 X Harrington 0 - - 

GM1135 X Barke 0 - - 

GM1135 X Dicktoo 0 - - 

GM1141 X Harrington 35 8 4 

GM1141 X Diktoo 6 1 na 

GM1141 X Barke 12 4 1 

GM1143 X Harrington 0 - - 

GM1147 X Diktoo 8 1 na 

GM1148 X Diktoo 16 1 na 

GM1151 X Harrington 0 - - 

GM1151 X Barke 0 - - 

GM1152 X Diktoo 20 14 na 

GM1152 X Barke 11 1 0 

GM1152 X Harrington 21 13 0 

GM1152 X Steptoe 10 2 na 

GM1153 X Barke 3 2 0 

GM1153 X Harrington 2 2 0 

GM1153 X Steptoe 0 - - 
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5. Discussion 

 

 For many years mutant collections have propelled barley genetics leading to the 

identification of many loci controlling a wide range of phenotypic traits (Peters et al., 

2003). However, classical mutant collections may have not represented all possible loci 

for certain traits. Comparison between rice and barley tillering loci (Chapter 1) suggests 

that so far only a subset of tillering loci have been identified in barley. The TILLMore 

collection hosted by Bologna University, Italy (Talamè et al., 2008) represents an 

attractive resource for forward genetics approaches in identification of novel barley 

tillering loci, as preliminary phenotypic information is available 

(http://www.dista.unibo.it/TILLMore/) and the Morex background was targeted for 

genome sequencing by the International Barley Sequencing Consortium (2012). In the 

present research, TILLMore families previously indicated as low tillering or monoculm, 

were re-evaluated allowing to confirm low tillering phenotypes for 12 out of 23 lines. 

The seeds were M3 or M4; but due to the growing plan used (bulked mutant family), 

the mutation may still segregate in the progenies. In order to stabilise the low tillering 

phenotype and purify sub-lines for further genetic analyses, we propagated materials 

by single-seed descent. During the two seasons 2011/2012 and 2012/2013, we could see 

comparable figures for the number of tillers, except for the wild-type Morex, which is 

more probably caused by uncontrolled environmental effects in the growing season 

2012/2013. 

 The 3 mutant lines (GM1127, GM1130, and GM1131) with the most significant 

and evident defect in tiller development, and that also produced enough seeds were 

selected for further histological characterisation. Line GM1127 indicated as producing 

albino seedlings, poor tillering, and necrotic leaf spots in TILLMore database, and 

showed reduced tillering produce only 2.8±0.6 tillers in 2012, and 3±1.8 tillers in 2013. 

While the number of tillers were significantly less than the corresponding wild-type 

background ‗Morex‘, which produced 7±2.5, the histological dissection of axillary buds 
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at 1-week and 2-weeks old seedlings showed no differences to the wild-type tiller 

number. Similar results were obtained for GM1130 with 2.9±1 tillers in 2012, and 2.2±1.7 

tillers in 2012, and line GM1131 with 3±1.4 tillers in 2012, and 2.2±1.3 tillers in 2013, but 

both showed the same number of axillary buds like Morex at 1-week and 2-weeks old 

seedlings.  

 Low tillering or monoculm mutants identified in barley and rice were either 

lacking axillary meristems/buds, or the axillary buds were suppressed from growing 

out to form tiller (Bennett and Leyser, 2006). In rice, moc1, lax1, and lax2 mutants 

showed defect in axillary meristem establishment and development, therefore, no 

axillary buds were formed (Li et al., 2003; Oikawa and Kyozuka, 2009; Tabuchi et al., 

2011). While other mutants, particularly those have impaired biosynthesis or signalling 

in hormonal pathways, showed defect in axillary bud out-growth rather than axillary 

meristem establishment or development (Jain et al., 2006; Arite et al., 2007; Lo et al., 

2008; Tong and Chu, 2009; Lin et al., 2009; Beveridge and Kyozuka, 2010; Qi et al., 2011; 

Chen et al., 2012). The function homologous of rice moc1, lax1, and lax2 mutants have 

not been identified in barley yet (Babb and Muehlbauer, 2003; Dabbert et al., 2009, 

2010). In barley, the characterised tillering mutants have defect either in lower number 

of axillary buds, e.g. als and lnt (Dabbert et al., 2009, 2010) , delayed developmental, e.g. 

als and lnt (Dabbert et al., 2009, 2010) or the outgrowth of axillary buds, e.g. als, lnt, cul2, 

and cul4 (Tavakol et al. unpublished Data; Dabbert et al., 2009, 2010; Druka et al., 2011; 

Ramsay et al., 2011), as those steps are widely controlled by various complex genetic 

and hormonal networks (Kebrom et al., 2013). Our results showed that the 3 

investigated lines have the same number of developed axillary buds as the wild-type, 

indicating the bud outgrowth defect in these mutants is in tiller outgrowth rather than 

axillary bud formation.  

 In order to select lines of interest for further analyses, in parallel to 

characterization of phenotypic effects, the inheritance of the phenotype needs to be 

verified by crossing with wild-type parents. To this end, we crossed total of 12 mutant 

lines to 4 wild-type varieties. The wild-type varieties Barke and Harrington were used 
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as two-rows parents and row-type was used as visual marker for successful crosses. In 

addition, six-rows parents Dicktoo and Steptoe were used because the loci controlling 

row type are also known to affect number of tillers (Ramsay et al., 2011). A total of 108 

spikes were used during the crossing work in 2012 and 2013, but only 50 spikes were 

productive. In 2012 crossing work produced total of 213 seeds, but only 79 were 

successfully grown, 16 plants of them are proved to be true F1 hybrids, and 29 await to 

be confirmed by molecular genotyping and 44 proved to be failed cross. The seeds 

produced from crosses in 2012 and 2013 will be propagated and screened in the coming 

year. 

 Together this work produced useful materials and information for further 

characterization of tillering in the TILLMore mutant lines. Constructing adequate 

mapping populations is the most important and crucial step in forward genetics. The 

crosses obtained can be used in the future to genetically map the corresponding tillering 

loci in barley. However, allelism tests with known classical mutants are needed first to 

be performed in order to verify new tillering loci. 

 

 

 

 

 

 

 

 

 

 



141 
 
 

Conclusions 

 

Since the first rice gene involved in tillering was isolated (Li et al., 2003), a number of 

genetic and hormonal factors were identified as regulators of tillering in grasses 

(Kebrom et al., 2013). The overall objective of this PhD project was to contribute to the 

understanding of the genetic bases of tillering in barley and rice, as model species for 

cereal crops. The recessive cul4 locus had previously been described as causing a low 

tillering phenotype in barley (Franckowiak and Lundqvist, 2012)and mapped within a 

0.22 cM genetic interval on chromosome 3HL, where a Candidate Gene (CG) was 

identified as cosegregating with the trait in a population of 4949 F3 plants (Tavakol et 

al. unpublished Data). In this PhD project, the correspondence between this CG and the 

cul4 phenotype was validated by: 1) mapping of the cul4 locus at higher resolution (0.09 

cM) within a single BAC clone and showing recombination with adjacent genes ; 2) 

identification of three independent mutant alleles confirming that mutations in the Cul4 

gene account for recessive cul4 phenotypes of varying severity The Cul4 gene was thus 

shown to encode a BTB/ANK domain protein highly related to Arabidopsis BOP1 and 

BOP2 (Ha et al., 2003; Norberg et al., 2005), providing the first proof that BOP-like genes 

are involved in tillering in monocots. In addition, mutations of the Cul4 gene resulted in 

perturbations of leaf morphology (absence of ligules, ectopic outgrowth of auricle tissue 

on proximal leaf sheath), longer spikes, high infertility, increase in grain weight and 

acceleration of floral development, indicating that Cul4 controls multiple aspects of 

vegetative and reproductive development, as well as sharing with dicot homologs a 

role in leaf patterning.  

To evaluate the role of Cul4/BOP-like genes in other cereals, Cul4 homologs were 

identified in rice and a phylogenetic analysis was carried out using protein sequences 

from 5 monocot and 5 dicot plant species. BOP-like proteins organised in two main 

clades, corresponding to the partition between monocots and dicots. Within monocots, 

BOP-like proteins are grouped in two clades, possibly reflecting an ancient duplication. 
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The Cul4 sub-clade contains the rice ortholog Os01g72020, while rice paralogs 

Os12g04410 and Os11g04600 belong to the other monocot sub-clade and may have 

arisen from a recent duplication, as also in the case of Arabidopsis BOP1 and BOP2 

(Norberg et al., 2005). Publicly available transcriptomics data from the Genevestigator 

database (Hruz et al., 2008) provided an initial indication that gene expression patterns 

of the rice Cul4 ortholog Os01g72020 are compatible with a possible role in axillary 

meristem development, leaf morphogenesis, and floral organ development. In silico 

searches of rice FST information (Jeong et al., 2006), allowed the identification of 

mutagenized lines carrying T-DNA insertions within rice BOP-like genes. The lines 

were ordered and grown for propagation and phenotyping. Molecular screening of line 

1B-17402 revealed that it is heterozygous for the insertional mutation, and that a 

deletion of 320 bp occurred in the left border of the insert and the upstream sequence 

of the gene. Molecular data and materials resulting from this work form the bases for 

further studies on rice BOP-like genes.  

In the attempt of identifying novel genes involved in tillering in barley, we took 

advantage of the barley mutagenized collection TILLMore, developed and hosted by 

University of Bologna (Talamè et al., 2008). This TILLING population is especially 

attractive for barley genetic studies it was developed in cv. ―Morex‖ the reference 

sequenced cultivar. Phenotypic data on TILLMore mutant families were searched 

online and thirty three lines classified as exhibiting tillering defects were ordered to be 

propagated and phenotyped. Out of the 33 lines, 12 showed significant reduction in 

number of tillers, and were subjected to further phenotyping analyses. Among them, 

three lines showed the most evident and consistent low tillering phenotype and were 

thus selected for histological analyses. Histological sections through apical and axillary 

meristems demonstrated normal early development of axillary buds, which indicate 

that the mutant lines are impaired in tiller bud outgrowth rather than axillary bud 

development. Selected lines, based on obvious low tillering phenotype, were crossed to 

4 wild-type parents, in order to study the inheritance of the tillering trait and build 

mapping populations for further forward genetics studies. 



143 
 
 

In summary, this PhD project contributed to improve our knowledge on genetic factors 

controlling tillering in barley, and offered starting information and material for further 

analysis of this important trait in rice and barley.  
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Annexes 

Evolutionary relationships of BTB/ANK/NPR1 proteins 

The tree was built from aligned protein sequences retrieved from publicly available 

genome sequences databases. The cul4 peptide sequence (513 aa) was used as enquiry 

in program BLASTP 2.2.22+. searching tool on Phytozome v9.1 for the following 

species: Arabidopsis thaliana, Brachypodium distachyon, Glycine max, Mimulus guttatus, 

Oryza sativa, Sorghum bicolor, Vitis vinifera, Zea mays, solanum lycopersicum, Musa spp.. For 

Hordeum vulgare, blastp was used on IPK barley blast server, on HC_genes_AA_Seq 

database. All  alternative splicing forms of genes are pesented. ScanProsite tool was 

used to scan each polypeptide against Prosite database to ensure the presence of BTB, 

NRP1, MATH and Ankyrin domains. BOP proteins are indicated with green arrows.  

The evolutionary history was inferred using the Neighbour-Joining method. The 

percentage of replicate trees in which the associated taxa clustered together in the 

bootstrap test (1000 replicates) is shown next to each branch. The tree is drawn to scale, 

with branch lengths in the same units as those of the evolutionary distances used to 

infer the phylogenetic tree. The evolutionary distances were computed using the 

Poisson correction method and are in the units of the number of amino acid 

substitutions per site. The analysis involved 71 amino acid sequences from 11 species. 

All ambiguous positions were removed for each sequence. There were a total of 375 

positions in the final dataset. Evolutionary analyses were conducted in MEGA5. All 

splicing formed are marked with U-turn arrows. Splicing forms can carry different 

protein domains as indicated in the tree. The BTB proteins are organised in two main 

clades, BTB/ANK (13 proteins) and BTB/NPR1 (16 proteins) in one clade, and 

BTB/MATH (5 proteins) in another clade. BTB/ANK and BTB/NPR1 diverted later 

forming two speared well supported groups. Proteins represented in BTB/MATH clade 

appear as non-comprehensive list, as they are presented only in Sorghum. For detailed 

discussion on BTB/ANK clade see Chapter 2. 
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Fig. Annex 1. Phylogenetic relationships of BTB proteins from 11 plant species.  
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Fig. Annex 2. Phylogenetic relationships of BTB/ANK proteins from 11 plant species.  
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 GFP expression analysis 

  
Fig. Annex 3. Epi-flourcence microscopy images for A: transverse hand section of leaf 
blade of GFP transformed rice plant. B: transverse hand section of leaf blade wild-typ 
rice plant. The plant sections were subjected to DAPI staining. The cell nuclei show blue 
emission of DAPI (red arrows), and presumed GFP expression appear in green emission 
(white arrows).  
 
Microscopy image for T-DNA transformed rice plant leaf blade in comparison to wild-

type DJ rice plant leaf. The T-DNA cassette contains GFP in frame with endogenous 

gene Os01g72020 expression. GFP assumed to form chimeric protein with truncated 

host protein (exon 2). The plant specimen was hand-cut, stained with DAPI (staining 

cell nuclei with blue), and examined under epi- fluorescence microscope. A: 

transformed plant line 1B-17402, the white arrows indicates possible GFP expression, 

while red arrows represent cell nuclei. B: Wild-type cv. DJ rice plant with cell nuclei in 

blue, and non-specific emission of green fluoresce from auto-fluoresce components of 

cell. 

A 
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