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Synthetic oligodeoxynucleotides expressing CpG motifs (CpG-ODN), Toll-like receptor 9 (TLR9) 

agonists, are able to induce innate/adaptive immune responses and can enhance the antitumor 

activity of DNA-damaging chemotherapy and radiation therapy in preclinical mouse models. 

It was recently reported that peritumoral CpG-ODN treatment in preclinical models of ovarian 

cancer, activating TLR-9 expressing cells in tumor microenvironment, induces modulation of DNA 

repair genes and sensitizes cancer cells to DNA-damaging Cisplatin treatment.  

In this thesis we investigated whether this treatment induces modulation of miRNAs in tumor cells 

and their relevance to chemotherapy response. Array analysis identified 20 differentially expressed 

miRNAs (16 down- and 4 up-regulated) in human IGROV-1 ovarian tumor cells from CpG-ODN-

treated mice versus controls. Evaluation of the role of the 3 most differentially expressed miRNAs 

on sensitivity to Cisplatin of IGROV-1 cells revealed significant increased Cisplatin cytotoxicity 

upon ectopic expression of hsa-miR-302b (up-modulated in our array), but no increased effect upon 

reduced expression of hsa-miR-424 or hsa-miR-340 (down-modulated in our array). The impact of 

expression levels of all 20 differentially expressed miRNAs were associated with time to replase 

and overall survival probability in two data sets of ovarian cancer patients treated with platinum. It was 

found that hsa-miR-302b expression was significantly associated with time to relapse or overall 

survival in these patients. Use of bio-informatics tools identified 19 mRNAs potentially targeted by 

hsa-miR-302b, including HDAC4 gene, which has been reported to mediate Cisplatin sensitivity in 

ovarian cancer. Both HDAC4 mRNA and protein levels were significantly reduced in IGROV-1 

cells overexpressing hsa-miR-302b. Altogether, these findings indicate that hsa-miR-302b acts as a 

‘‘chemosensitizer’’ in human ovarian carcinoma cells and may represent a biomarker able to predict 

response to Cisplatin treatment. Moreover, the identification of miRNAs that improve sensitivity to 

chemotherapy provides the experimental underpinning for their possible future clinical use. 

In the second part of this thesis we tested the efficacy of CpG-ODN in combination with other 

possible therapeutic agents in ovarian carcinoma ascites-bearing athymic mice, to mimic clinical 

treatment situations in advanced human ovarian disease. 

Mice injected i.p. with IGROV-1 ovarian cancer cells were treated at different stages of ascites 

progression for 4 weeks with CpG-ODN alone or in combination with Bevacizumab, 

Polyinosinic:Polycytidylic acid (Poly(I):Poly(C)), Gefitinib, Cetuximab and Cisplatin.  

In mice treated when ascitic fluid began to accumulate, CpG-ODN combined with Bevacizumab, 

Poly(I): Poly(C) or Gefitinib did not significantly increase Median Survival Times (MST), as 

compared with that using CpG-ODN alone, whereas MST in mice treated with CpG-ODN plus 

Cetuximab was significantly increased (>103 days for combination vs 62 days for CpG alone; P = 



7 

 

0.0008), with 4/8 mice alive at the end of the experiment. In mice showing evident and established 

ascites, evaluated with increase of abdominal volume and body weight (27.9 ± 0.8 g after vs 23 ± 

1.1 g before tumor cell injection), treatment with Cisplatin in addition to CpG-ODN/Cetuximab led 

to significantly increased MST (105.5 days; P = 0.001), with all mice still alive at 85 days, over that 

using CpG ODN/Cetuximab (66 days), Cetuximab/Cisplatin (18.5 days), Cisplatin (23 days) or 

saline (16 days). At a very advanced stage of disease (body weight: 31.4 ± 0.9 g), when more than 

half of control mice had to be sacrificed 6 days after starting treatments, the triple-combination 

therapy still increased MST (45 days; P = 0.0089) vs controls. 

These data indicated that CpG-ODN combination therapies that enhance the immune response in 

the tumor microenvironment and concomitantly target tumor cells are highly efficacious even in 

experimental advanced malignancies. Although differences in the distribution of TLR9 in mice and 

humans and the enrichment of this receptor on innate immune cells of athymic mice must be 

considered, our results indicate a promising strategy to treat ovarian cancer patients with bulky 

ascites. 
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1. IMMUNE SYSTEM and TOLL-LIKE RECEPTORS 

 
The immune system has the capabiliy to detect and eliminate pathogens through several 

mechanisms, and it may be broadly divided into innate and adaptive systems. For many years, 

investigations into the pathogenesis of immune diseases focused on the role of the B and T cells of 

the adaptive immune system. In recent years, it has become increasingly well accepted that the 

innate immune system plays an important role in triggering these adaptive immune responses. 

Cells of the innate immune system, represented by natural killer (NK) cells, monocytes, and 

granulocytes, rapidly detect invading pathogens and tumors in a non-specific manner. The innate 

immune system will respond to and contain the invading pathogens and prevent their spread. The 

adaptive immune system, represented by cytolytic T cells (CTL), T helper cells (TH), and 

antibodies, is activated by presentation of antigen in a cognate fashion and will develop an antigen-

specific response to eliminate the pathogen (1). 

To protect the host from succumbing to infections, the innate immune system, which is 

evolutionarily more ancient than adaptive immunity, must accomplish four fundamental tasks. First, 

it must rapidly detect any infectious agent, regardless of whether it is a virus, bacteria, fungus or 

parasite. Second, innate immune cells seem to rapidly categorize the type of invading infectious 

agent as to whether it is located extracellularly or intracellularly. Third, innate immune defences 

appropriate to the pathogen class are activated to either eradicate or at least temporarily contain the 

infection (2). Fourth, innate effectors have the ability to activate dendritic cells (DCs), which act as 

a bridge between the innate and adaptive immune responses, to express co-stimulatory molecules 

and effector cytokines. This will result in an enhanced ability to activate specific humoral and 

cellular immune responses (3). The key characteristic of innate immune cells that enables them to 

identify and classify infection seems to be their repertoire of pattern recognition receptors (PRRs), 

which bind certain general types of molecules that are expressed across broad classes of pathogens, 

but which are absent or restricted in some way in vertebrates. The best understood family of PRRs 

are the Toll-like receptors (TLRs), of which 10 are known in humans (4). Toll-like receptors 

(TLRs) are a family of evolutionarily conserved pathogen recognition receptors; they are the 

mammalian homologues of Drosophila toll protein, and belong to the interleukin-1 receptor (IL-1R) 

superfamily (5, 6). TLRs are considered sensors for microbial infections or other ‘danger signals’, 

and are critical to the linkage between innate and adaptive immune responses (7). TLRs are part of 

the innate immune system, which recognizes pathogen-associated molecular patterns through germ-

line encoded pattern-recognition receptors (PRRs). These receptors are present on different immune 
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cells, and will recognize and bind certain molecules that are restricted to microorganisms and absent 

from vertebrates, or expressed and not normally accessible to TLRs. The specificity of different 

TLRs is partially influenced by their structure and cellular location, which could be either 

intracellular or on the cell surface, depending on their specificity to intracellular or extracellular 

pathogens (Figure 1) (8,9). TLRs belong to the type I transmembrane receptor family. Their 

expression is ubiquitous, from epithelial to immune cells. The TLR family members are pattern 

recognition receptors that collectively recognize lipid, carbohydrate, peptide and nucleic acid 

structures that are broadly expressed by different groups of microorganisms. Some TLRs are 

expressed at the cell surface, whereas others are expressed on the membrane of endocytic vesicles 

or other intracellular organelles. There are at least 10 known TLRs in humans grouped in six major 

families, based on their phylogenetic background (10). Each family is attributed to a general class 

of PAMPs (Pathogen-Associated Molecular Pattern). TLRs 3, 7, 8 and 9 are located mainly in 

endosomes; double-stranded RNA are ligands for TLR3 (11), while TLRs 7 and 8 recognize single-

stranded viral RNA (12), TLR9 recognizes unmethylated CpG sequences in DNA molecules. The 

other TLRs are located on the cell surface (13); TLRs 1, 2, 5, 6 and 10 respond to bacterial, fungal 

and viral PAMPs (14-16). Lipopolysaccharides are TLR4 ligands (17). TLR engagement alerts the 

immune system and leads to the activation of innate immune cells. Two major signaling pathways 

are generally activated in response to a TLR ligand (18). One pathway involves the MyD88-

independent production of type I interferons. The second uses MyD88 to activate nuclear factor-

kappa B (NF-kB), JUN kinase (JNK) and p38, finally resulting in the production of 

proinflammatory cytokines such as TNF-α, IL-12 and IL-1 and induction of innate effector 

mechanisms (19,4). Additionally, TLR triggering induces DC maturation, which leads to the up-

regulation of costimulatory molecules such as CD40, CD80 and CD86, and secretion of immune 

modulatory cytokines and chemokines. In addition, TLRs can directly stimulate the proliferation of 

CD4+ and CD8+ T cells as well as reverse the suppressive function of Treg cells (13,20,21). Adding 

TLR 3, 4, 7 or 9 ligands was shown to activate CD8+ cytotoxic T cells with increased IFN-γ 

production and promote a stimulatory cytokine milieu at the tumor microenvironment (22,23).   
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Figure 1. Microbial ligands and association with known TLRs and adaptor molecules. Schematic 
representation of the structure of TLRs and the major TLR ligands. Most TLRs form homodimers, while TLR2 
associates with either TLR1 or TLR6. TLR signalling is mediated through adaptators such as MyD88, TIRAP, 
TRIF or TRAM. 

 

Tumor immunotherapy has evolved since William Coley used crude bacterial extracts to treat 

cancer (24). William Coley was a New York surgeon who injected bacteria into patients after 

observing that cancerous tumors could regress in the face of bacterial infection. His initial 

observations with this dangerous, but in some cases effective, therapy led to use of heat-killed 

Serratia marcescens and group A streptococci, now known as Coley’s toxins. Coley treated 

hundreds of patients over many years and reported that as many as 40% of patients achieved some 

level of clinical response (24). In the century that has followed, others have tried to duplicate his 

work, with less success. The reductionistic approach of subsequent research led to identification of 

the immunostimulatory effects of various bacterial components, including lipopolysaccharide. 

Indeed, lipopolysaccharide was thought for many years to be responsible for the antitumor effects 

of Coley’s toxins. It was not until the 1980s that a group of Japanese investigators identified 

bacterial DNA itself as a potent immunostimulatory fraction of prokaryotic cultures (25). These 

investigators suggested that the immunostimulatory effects of bacterial DNA were caused by the 

palindromic nature of the DNA sequences (26). In 1995, Krieg et al. (27) reported that the 

immunostimulatory effects of bacterial DNA were not caused by palindromes, but rather by the 

presence of motifs containing unmethylated CG dinucleotides. The identification of this motif 
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spawned a new field of research focused on identifying and characterizing the effects of so-called 

CpG-containing oligonucleotides (CpG-ODNs) and the mechanisms through which they act. At the 

time of the first report describing CpG-dependent immune stimulation by bacterial DNA, the 

receptor was not yet identified (26). An early study indicated that the catalytic subunit of the DNA-

dependent protein-kinase (DNA-PKcs), involved in the repair of DNA double-strand breaks, is the 

mediator of CpG innate immune activation (28), although these studies could not be confirmed (29). 

Gene knock down and gain of function experiments finally identified TLR9 as the receptor 

conferring CpG reactivity by directly engaging bacterial DNA or synthetic CpG-ODN in a CpG 

motif-dependent manner (25,30-33). Research over the past years suggests exploitation of these 

mechanisms holds significant promise for development of new cancer immunotherapies. 

 

EXPRESSION AND LOCALIZATION OF TLR9 

 
In humans, in bone marrow derived cells TLR9 is expressed preferentially in memory B cells (34, 

35) and plasmacytoid dendritic cells (pDC) (36-38), but is still a matter of discussion the expression 

in monocyte/macrophage cells (39-41).  In murine, TLR9 is expressed on B cells, pDC, monocytes, 

macrophages, and dendritic cells (42,43). In non-activated immune cells TLR9 is expressed in the 

endoplasmic reticulum (ER). Upon cellular activation, TLR9 traffics to endosomal and lysosomal 

compartments, where it interacts with endocytosed CpG-DNA at acidic pH, a condition that is 

thought to be necessary for DNA recognition (44-46) (Figure 2). 

It is well known that the TLR9 activation on pDCs induces secretion of type I interferon and 

increases expression levels of co-stimulatory molecules, such as CD80 and CD86; this is believed 

to initiate a range of secondary effects, including the secretion of cytokines/chemokines MCP-1, IP-

10 and IL-12, the activation of NK cells and expansion of type 1 helper T cells and cytotoxic T 

lymphocytes (47;2).  
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Figure 2. Activation of TLR9 induces secretion of proinflammatory cytokines and type I IFN dependent on ligand 
localization. CpG-A ODN or CpG-B ODN complexed to transfection agents reside in the endosome and initiate IRF-7 
activation leading to type I interferon. In contrast, CpG-B ODN itself traffics to the lysosome and activates IRF-5 and 
NF-κB. In general, expression of proinflammatory cytokines is induced via IRAK1, IRAK4, TRAF6, and TRAF3. Type 
I IFN production in plasmacytoid dendritic cells is controlled by TRAF3, TRAF6, osteopontin, and IRF-7. 

 

Compounds that interfere with endosomal acidification, such as the weak base chloroquine and 

bafilomycin A1, an inhibitor of the ATP-dependent acidification of endosomes, consequently, 

prevent CpG-DNA-driven TLR9 activation (48,49). The molecular basis for the retention of TLR9 

in the endoplasmic reticulum (ER) in quiescent cells and the subsequent trafficking to the endosome 

upon cellular stimulation is unclear. Recently the membrane portion of TLR9 has been implied in 

trafficking (50,51), although a recent report has challenged this view. Accordingly, this report 

demonstrates that a tyrosine-based (YNEL) targeting motif in the cytoplasmic domain and the 

extracellular domain per se regulates TLR9 trafficking independent of the transmembrane domain 

(45). Despite these conflicting results on the trafficking-determining domain of TLR9, it is 

important to note that TLR9 trafficking to the endosome/lysosome does not seem to involve the 

Golgi apparatus, since the mature protein retains the sensitivity to the glycosidase Endo H, a usually 

feature of ER-resident proteins. Which alternative route TLR9 uses to reach the 

endosomal/lysosomal compartment is currently unknown. The recently described ER resident 

protein unc93b may be involved in TLR9 trafficking since a dominant negative mutant of unc93b 

leads to non-responsiveness of TLR9 (together with TLR3, TLR7) accompanied by the disruption 

of TLR-unc93b interaction (52,53). To explore settings in which human and murine TLRs may play 

a role, it was found that TLR mRNAs is expressed in normal human and murine tissues and in cells 
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activated by microbial or inflammatory compounds. Indeed, TLR9 expression has been detected on 

intestinal epithelial cells, and an involvement in the maintenance of colonic homeostasis has been 

suggested (54,55). Interestingly, on epithelial cells TLR9 is expressed on the apical and basolateral 

membrane, and TLR9 signaling varies in a site-specific manner. Whereas basolateral TLR9 

stimulation leads to activation of the nuclear factor-kappa B (NF-κB) pathway, apical TLR9 

activation prevents NF-κB activation by accumulation of NF-κB inhibitory protein I kappa B-alpha 

(IκB−α). Furthermore, apical TLR9 stimulation confers tolerance to subsequent TLR challenges, 

suggesting that apical exposure to luminal microbial DNA controls intestinal inflammation (55). 

This mechanism was demonstrated for pro-inflammatory bacterial product (or pathogen-associated 

molecular pattern) flagellin, that is a potent activator of intestinal epithelial pro-inflammatory gene 

expression. Flagellin is secreted by commensal and pathogenic bacteria and promotes inflammation 

only if it crosses intestinal epithelia and contacts their basolateral membranes, apical flagellin has 

no effect. TLR5 could activate proinflammatory gene expression in response to flagellin. Further, 

TLR5 is expressed on the basolateral, but not apical, surface of model epithelia, thus providing a 

mechanism by which microbes that invade or translocate flagellin, but not commensal bacteria, 

induce intestinal epithelia to orchestrate an inflammatory response (56). 

 

TLR9 EXPRESSION ON TUMOR CELLS 

 

TLR9 expression has also been reported in non-immune cells, including pulmonary epithelial and 

endothelial cells (57,58), keratinocytes (59), and intestinal epithelium (60,61).  

Kundu et al. (62) have shown that immortalized prostate epithelial cells, expressing TLR9, exhibit 

enhanced proliferation when cultured in the presence of CpG-DNA. These stimulated cells were 

shown to be less susceptible to TNF-alpha induced apoptosis and to cell death.  

Other authors, such as Ilvesaro et al. (63), provided evidence that TLR9 agonistic unmethylated 

CpG oligonucleotides (CpG-ODN) promote matrix metalloproteinase-13 (MMP-13) activity, 

resulting in enhanced migration of human prostate cancer cells expressing TLR9. CpG-ODN is 

well-known surrogate molecule for pathogens residing in genitourinary system, such as E. coli and 

some DNA viruses (HPV for example). These data show that pathogens frequently encountered in 

this milieu may enhance malignant transformation and boost cancer cell spreading. Moreover, it has 

been found that not only natural, but also synthetic CpG-ODN may function as vaccine adjuvants 

for infectious diseases as well as for cancer (64). 
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The role of TLRs expressed on tumor cells in the evasion of immune surveillance was elegantly 

demonstrated in animal experiments (65).  

While numerous basic and clinical studies have investigated the immunostimulatory effects of 

TLR9 agonists on the innate and adaptive immune systems that could lead to the regression of 

tumors in vivo, only few studies have discussed the significance of TLR9 expression on tumor cells 

(66). It was demonstrated that TLR9 activation can lead to the proliferation of immortalized 

prostate cells (62), or to the promotion of matrix metalloproteinase (MMP)-13 activity, resulting in 

enhanced migration of human prostate cancer cells expressing TLR9 (67,63). These studies 

demonstrated how TLR9 agonists from pathogens encountered in the genitourinary system may 

enhance malignant transformation and boost cancer cell spreading through inflammation-dependent 

mechanisms (66,68). On the other hand, other research showed mixed results regarding the direct 

effects of TLR9 agonists on tumor cells expressing TLR9. While some studies have shown that 

treatment of tumor cells expressing TLR9 in vitro with TLR9 agonist, at different doses, did not 

produce any effect on tumor growth, others have shown that the expression of molecules, such as 

CD22, CD25, CD52, and HLA-DR might be enhanced on tumor cells, making them targets for 

different therapeutic approaches, such as the use of monoclonal antibodies (69,70). Others have 

reported that TLR9 signaling could enhance the metastatic potential of human lung cancer cells 

(95D) in nude mice, which might be related to the elevated proliferation and IL-10 secretion by the 

cells (71). Basically, the direct effect of TLR9 agonists on tumor cells needs to be further explored, 

and will depend, among other things, on the expression of TLR9. 

 

CELLULAR SIGNALING MEDIATED BY TLR9 

 
TLR9-mediated signaling proceeds through MyD88, an adaptor protein recruited to the TIR, which 

then activates the IRAK1-TRAF6-TAK1 pathway (72,73). Unlike TLR4-mediated signaling, the 

TIR domain-containing adaptor protein/MyD88-adapter-like (TIRAP/MAL) is not involved in 

TLR9-mediated signaling. Recently, a novel adapter molecule associated with MyD88-independent 

as well as MyD88-dependent pathways was identified (7,8). Several studies suggest that this 

molecule, TIR domain containing adapter inducing IFN-β (TRIF), is also involved in TLR9- 

mediated signaling. The TLR9 signaling cascade involves mitogen-activated protein kinases 

(MAPKs), such as p38, c-Jun NH2-terminal kinase (JNK), extracellular receptor kinase (ERK), and 

NF-kB-inducing kinase (NIK)-IKK-IkB pathways (74-76). The activation of ERK by CpG-DNA 

contributes to the production of IL-10 by macrophages, but is not active in dendritic cells (DCs) or 
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B cells (75,77). The signaling cascade culminates in the activation of several transcription factors 

including NF-kB, activating protein-1 (AP-1), CCAAT/enhancer binding protein (C/EBP), and 

cAMP-responsive element-binding protein (CREB), which directly up-regulate cytokine/chemokine 

gene expression (Figure 3) (75,78-80). 

 

 

 

Figure  3. Class III PI3K (PI3K (III)), EEA1, and Rab5 mediate the trafficking and maturation of endosomes containing 
CpG DNA and TLR9, by which TLR9 transduces intracytoplasmic signal. The signal initiates with the recruitment of 
MyD88 to the TIR, which then activates IRAKTRAF6- TAK1 complex. This leads to the activation of both MAPKs 
(JNK1/2 and P38) and IKK complex, culminating upregulation of transcription factors including NF-kB and AP-1. 
Raf1-MEK1/2-ERK1/2-AP-1 pathway is involved in CpG DNA-induced IL-10 production in macrophages. The 
alternative pathway mediated by class I PI3K (PI3K (I))- PDK1-AKT/PKB is also suggested to be involved in TLR9-
mediated cellular activation. 
 
 
In macrophages, CpG-DNA also induces IFN-β production, which then up-regulates STAT1 

phosphorylation and IP-10 production through IFN-α/β receptor in an autocrine manner (81). 

Studies using chloroquine (CQ) or wortmannin (WM) showed that these agents could block CpG- 

DNA/TLR9 signaling but not LPS/TLR4 signaling (29,78,82). Since cell surface binding and 

uptake of an ODN is not influenced by the presence of a CpG motif, endosomal maturation, which 

is the target of CQ, is believed to be an essential step in signaling (29,78). Taken together with the 

data on the subcellular distribution of CpG-DNA described above, co-localization of CpG-DNA 
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with TLR9 in endosomal vesicles, and the accompanying maturation and movement of those 

vesicles, seems to be involved in signaling initiation. Although one group reported that the 

suppression of CpG-DNA signaling by WM reflected the inhibition of DNA-dependent protein 

kinase (DNA-PK) (18), others find that DNA-PK KO mice and SCID mice respond normally to 

CpG-DNA (82,83). It was observed that WM treatment led to a reduction in the size and number of 

endosomes containing both TLR9 and CpG-ODN, suggesting that phosphatidylinositol 3 kinases 

(PI3K), which are also targets of WM, are involved in vesicular trafficking of CpG-DNA (82). 

Indeed, Rab5-mediated recruitment of class III PI3K (PI3K (III)) leads to the production of PI(3)P 

in the endosomal membrane, which binds to the FYVE domain of early endosome antigen 1 

(EEA1), recruiting it on to the membrane. The recruited EEA1 also associates with Rab5 and 

regulates homotypic fusion and trafficking of early endosomes (84-86). The PI(3,4, 5)P3, product of 

class I PI3K (PI3K (I)), has been demonstrated to activate a signaling cascade consisting of 3- 

phosphoinositide-dependent kinase-1 (PDK1) and the protein kinase Akt/protein kinase B 

(AKT/PKB) (87,88). Ligand-induced association of TLR2 ICD and PI3K (I) was reported to 

activate the AKT/PKB-NF-kB pathway (89). CpG-DNA also induces phosphorylation of 

AKT/PKB thereby inhibiting apoptosis in DCs, an effect that is reversed by a PI3K inhibitor, 

LY294002 (90). However, recent data demonstrate that DN-p85a, which specifically blocks the 

function of PI3K (I), but neither DN-PDK1 nor DN-AKT/PKB, inhibits TLR9-mediated NF-kB 

activation in HEK293 cells. This suggests that: 1) PI3K(I) also regulate vesicular trafficking of 

CpG-DNA and TLR9 and/or 2) another pathway mediated by PI3K(I) but not through the PDK1- 

AKT/PKB pathway is involved in TLR9-mediated NF-kB activation in HEK293. PI3Ks and their 

second messengers therefore seem to play pivotal roles at distinct steps (i.e. vesicular trafficking for 

the association between CpG-DNA and TLR9 and the signaling pathway directing AKT/PKB 

activation) in CpG-DNA/TLR9-mediated cellular activation. 

 

CLASSES OF SYNTHETIC CpG OLIGODEOXYNUCLEOTIDES 

 

The immune stimulatory effects of CpG-DNA are explained at least in part by differences inherent 

to genomic DNA of vertebrates and pathogens: vertebrate CpG dinucleotides are methylated and 

their frequency is suppressed, while viral and bacterial CpG dinucleotides are non-methylated and 

occur with a much higher frequency (27). Synthetic CpG-ODN can be generated containing specific 

CpG sequence motifs, sugar, base or backbone modifications as well as secondary and tertiary 

structures that all affect the immune modulatory effects of CpG-ODN TLR9 ligands to different 
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degrees (Figure 4). B-Class ODN with one or more 6mer CpG motif with the general formula 

“purine-pyrimidine-C-G-pyrimidine-pyrimidine” (27) are strong stimulators of human B cell 

responses, and induce maturation of human pDCs. The 6mer motif 5′-GTCGTT-3′ represents the 

optimal human CpG motif (76), whereas 5′-GACGTT-3′ is the optimal murine CpG motif (27,91). 

The length, the number of CpG motifs, their spacing, position and the surrounding bases also 

determine the activity of B-Class ODN. The most potent ODN for activating human cells usually 

have three CpG motifs and are between 18 and 26 nucleotides in length (91), additional CpG motifs 

do not much further enhance activity. Chemical modifications of the backbone, the heterocyclic 

nucleobase or the sugar moiety further may enhance the activity of B-Class CpG-ODN. 

Phosphorothioate (PS) modifications of CpG-ODN stabilize them against nuclease degradation and 

enhance their activity by about 10 to 100 fold compared to phosphodiester (PO)-ODN that either 

have to be added repeatedly or to be combined with an uptake enhancer to result in similar activity 

(92,93). 

 

Figure 4. PS ODN differ from native phosphodiester (PO) DNA ODN only in the substitution of a sulfur for one of the 
non-bridging oxygen atoms. This change improves the in vivo stability of the ODN from a half-life of a few minutes to 
about two days for the PS ODN. 
 

 

In contrast to the charged phosphodiester and phosphorothioate backbones, replacement with non 

charged backbones results in decreased immune stimulatory activity (94). CpG-ODN with 2′-

Omethyl or 2′-O-methoxyethyl sugar modifications induce decreased immune stimulation (95,96), 

substitutions with a RNA derivative, locked nucleic acid (LNA) and even can eliminate the immune 

stimulatory effects of CpG-containing phosphorothioate ODN (97). In principle, any modification 

of cytosine at the CpG motifs is usually not well tolerated, while TLR9 appears to be more 

forgiving to modifications at the guanosine position (96,98).  
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A-Class CpG-ODN is defined by G runs with PS linkages at the 5′ and 3′ ends surrounding a 

phosphodiester palindromic CpG-containing sequence (99,100). Intermolecular tetrad and high 

molecular weight aggregates are formed via the G residues that enhance stability, increase 

endosomal uptake and ligand concentrations (96,101), resulting in strong pDC IFN-α production by 

these CpG A-Class ODN. Albeit strong IFN-α and IFN-β stimulators, A-Class CpG-ODN are 

relatively weak in inducing other TLR9-dependent effects such as pDC maturation or B cell 

proliferation (102). Similar to the B-Class, the activity of A-Class ODN is influenced by length, 

modifications of the base, sugar or backbone. A-Class ODN require a chimeric backbone, the 

stimulatory effect is lost when the entire length of the backbone is PS modified (99,100). The CpG 

C-Class has some sequence requirements similar to the B-Class and combines the modulatory 

characteristics of the A- and B-Classes, stimulating strong B cell and pDC type I interferon 

production. C-Class ODN consist of a stimulatory hexameric CpG motif positioned at or near the 5′ 

end and linked by a T spacer to a GC-rich palindromic sequence (102). The full immune activity 

requires physical linkage between the two domains, and a wide range of modifications that maintain 

the GC-rich palindrome are well tolerated, although destroying the palindrome abrogates IFN-alpha 

production (102). The formation of secondary and tertiary structures appears to control 

compartmental retention and intracellular distribution. The A- and C-Classes localize to different 

endolysosomal compartments than the B-Class CpG-ODN (103). The A- and C-Classes trigger 

IRF-7- mediated intracellular signaling pathways from early endosomes leading to strong IFN-α 

induction, whereas the B-Classes mainly stimulate NFkB-mediated signaling from late endosomes 

resulting in strong B cell activation. Palindromic sequences are involved in the formation of higher 

ordered structures and immediately affect stability, uptake characteristics and intracellular 

localization. Introducing a palindrome and increasing its length in a B-Class CpG-ODN result in a 

stepwise increase of type I IFN production. It is also possible to combine the 3′ GC-rich palindrome 

of C-Class ODN with a non-GC-rich 5′ palindrome. Such double palindromic or P-Class CpG-ODN 

do not only form hairpins at their GC-rich 3′ ends, but also form concatamers due to the presence of 

the 5′ palindrome. These highly ordered structures appear to be responsible for the strongest type I 

IFN induction observed with CpG-ODN. Similar to the A-Classes, P-Class ODN may enter early 

endolysosomal compartments preferentially inducing the IRF7 signaling pathway (104). 
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Figure 5. Three major classes of CpG-ODN that are structurally and phenotypically distinct have been described. 
Examples of each class are shown in the figure, using the ID numbers from the published reports (PF-3512676 formerly 
was also known as ODN 2006 and CpG 7909), together with the immune effects and structural characteristics that are 
specific to the class. The A-class CpG-ODN (also referred to as type D) are potent inducers of interferon-α (IFN-α) 
secretion (from plasmacytoid dendritic cells), but only weakly stimulate B cells. The structures of A-class ODN include 
poly-G motifs (three or more consecutive guanines) at the 5′ and/or 3′ ends that are capable of forming very stable but 
complex higher-ordered structures known as G-tetrads, and a central phosphodiester region containing one or more 
CpG motifs in a self complementary palindrome. These motifs cause A-class ODN to self-assemble into nanoparticles. 
B-class ODN (also referred to as type K) have a completely phosphorothioate backbone, do not typically form higher-
ordered structures, and are strong B-cell stimulators but weaker inducers of IFNα secretion. However, if B class CpG-
ODN are artificially forced into higher-ordered structures on beads or microparticles, in dendrimers or with cationic 
lipid transfection, they exert the same immune profile as the A-class CpG-ODN, thereby linking the formation of 
higher-ordered structures to biological activity. The C-class CpG-ODN has immune properties intermediate between the 
A and B classes, inducing both B-cell activation and IFN-α secretion. These properties seem to result from the unique 
structure of these ODN, with one or more 5′ CpG motifs, and a 3′ palindrome, which is thought to allow duplex 
formation within the endosomal environment. 
 

CpG-ODN STIMULATE TH1-LIKE INNATE AND ADAPTIVE IMMUNITY 

 
The immune effects of administering CpG-ODN to humans seem to result directly from activation 

of the immune cells that constitutively express TLR9, B cells, and pDCs. CpG-ODN require no 

delivery system in vitro or in vivo, they can simply be administered in saline and are spontaneously 

taken up by most immune cells, in particular B cells and DCs (ODN uptake is not restricted to 

TLR9-expressing cells). ODN uptake by lymphocytes is energy and temperature dependent and 

greatly increased by cell activation; it also seems to be receptor mediated, although the specific 

receptors remain largely obscure (2). Immune responses can be broadly divided into two types: TH1 

and TH2. TH1 immune activation is optimized for fighting intracellular infections such as viruses and 

involves the activation of CTLs and NK cells that can lyse infected cells. This type of immune 

activation is the most highly desired for cancer therapy, as the same defenses can be directed to kill 

tumor cells. In contrast, TH2 immune responses are directed more at the secretion of specific 
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antibodies and are relatively less important for tumor therapy. One of the most notable features of 

TLR9 activation is the remarkably strong TH1 responses that are triggered. The immune response to 

infection or TLR stimulation occurs in two phases: the first to be activated is antigen-nonspecific 

innate immunity, followed by antigen-specific adaptive immunity (Figure 6). TLR9 stimulation 

with any class of CpG-ODN activates innate immunity with a predominantly TH1 pattern of 

cytokine and chemokine secretion by B cells and pDCs (and by other immune cells that are 

activated secondarily). In response to TLR9 stimulation, B cells and pDCs also express increased 

levels of co-stimulatory molecules (such as CD80 and CD86), TNF-related apoptosis-inducing 

ligand (TRAIL), which can induce tumor cell death, and CC chemokine receptor 7 (CCR7), 

activation of which causes cell trafficking to the T cell zone of the lymph nodes, and show 

increased resistance to apoptosis (4). TLR9-mediated innate immune activation and pDC and B cell 

maturation are followed by the generation of antigen-specific antibody and T cell immune 

responses (4). The pDCs activated through TLR9 become competent to induce effective CD4+ and 

CD8+ T cell responses (105-109). Both A-class and B-class CpG-ODN increase the ability of pDCs 

to induce antigen-specific CD8+ T cells with a memory phenotype; the B-class CpG-ODN also 

increase the frequency of CD8+ T cells with a naive phenotype (110). B cells are strongly 

costimulated if they bind specific antigen at the same time as TLR9 stimulation (Figure 6). This 

selectively enhances the development of antigen specific antibodies, suggesting that CpG-ODN 

might be useful as vaccine adjuvants, especially for the induction of strong TH1-biased immunity. 
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Figure 6. Among human immune cells, B cells and pDCs constitutively express TLR9. These cells endocytose DNA 
into an endosomal compartment where it binds to TLR9, forming a signaling complex. If the DNA contains 
unmethylated CpG motifs, TLR9 is stimulated, and the cell becomes activated. In pDCs, this results in type I IFN 
secretion, which activates NK cells, monocytes, and other APCs, and in the pDC maturation into a more effective APC 
able to activate naive T cells. Opposing these immuneboosting effects, pDCs activated through TLR9 also mediate 
immune-suppressive effects through counter-regulatory factors such as indoleamine 2,3-dioxygenase and the generation 
of Tregs. In B cells, TLR9 stimulation results in the secretion of proinflammatory cytokines, such as IL-6, and in the 
release of immune regulatory cytokines that might limit the intensity of the inflammatory response, such as IL-10. 
TLR9 activation of B cells confers a greatly increased sensitivity to antigen stimulation and enhances their 
differentiation into antibody-secreting plasma cells. On balance, these immune effects of CpG DNA generally promote 
strong TH1 CD4+ and CD8+ T cell responses. However, the concurrent activation of counter-regulatory pathways such as 
the induction of Tregs limit TLR9-induced immune activation, offering a potential for enhancing the therapeutic efficacy 
of TLR9 agonists by co-administration of antagonists of one or more of these inhibitory pathways. 
 

 

 

DRUG-LIKE PROPERTIES OF SYNTHETIC CpG-ODN 

 
Some of the characteristics of synthetic ODN are quite attractive for drug development, whereas 

others are less favourable. The technology for commercial-scale (multi-kilogram) ODN synthesis 

and purification, carried out according to Good Manufacturing Practices, has been well developed 

during the past decade of antisense and aptamer drug development. Antisense and aptamer 

oligonucleotide drugs have been approved by the US FDA, establishing a regulatory pathway for 

this general class of drugs. The absorption, distribution, metabolism and elimination (ADME), 

properties of synthetic phosphorothioate (PS)-ODN with and without CpG motifs, have been well 

characterized and reported in the extensive literature on antisense ODN, which has shown these 

characteristics to be essentially sequence-independent (111,112). ODNs given subcutaneously are 

slowly absorbed from injection sites (with the highest concentration in the draining lymph nodes for 

the first several days after injection), and then enter the systemic circulation, where they 

demonstrate high-capacity, low affinity binding to plasma proteins, principally albumin. ODN are 

rapidly cleared into tissues, especially the liver, kidneys and spleen, but do not seem to cross the 

blood–brain or blood–testes barriers. Catabolism of ODN typically occurs by exonuclease digestion 

and base clipping, primarily at the 3′ end, resulting in natural DNA bases and thiophosphate 

metabolites that are excreted in the urine. The immune effects of CpG-ODN administration through 

different routes result from their ADME characteristics. In studies with TLR9 knock-out mice, 

TLR9 was found to be the receptor for CpG-ODNs, and proved that CpG-ODN exerted its effect 

through the activation of TLR9 (43,113). Also subcutaneous administration of CPG 7909 (Coley), 

which results in high levels of the compound in the draining lymph node (which would contain a 
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relatively high concentration of TLR9-expressing cells), induces high levels of serum cytokines and 

chemokines (114). On the other hand, even relatively high-dose intravenous administration of CPG 

7909, which is rapidly diluted in the blood and is approximately 95% protein bound, fails to induce 

measurable serum cytokine responses in humans (115). Because the pharmacodynamics of 

subcutaneous CpG-ODN results from the local ODN concentration in the draining lymph nodes, 

they do not match the systemic pharmacokinetics. 

 
 

 
 

Table 1. Characteristics of CpG oligodeoxynucleotides 
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PRECLINICAL STUDIES OF TLR9 AGONISTS 

 
CpG-ODN has been tested in several mouse tumor models (116) and has shown moderate success 

in inducing rejection of established tumors when used alone. On the other hand, CpG-ODN induced 

the rejection of larger tumors when it was combined with other antitumor treatments, such as 

radiation and monoclonal antibodies (116). Thus, there is some problem to extrapolate the positive 

effects seen in mouse models to humans. 

The effects of CpG-ODN monotherapy can vary widely, depending on the tumor type. Moreover, 

its mechanism of action varies depending on several factors, such as MHC expression of the tumor, 

the susceptibility of the tumor to several immune effectors, such as NK cells, T cells, or even TLR9 

expression on the tumor cells (117-119). CpG-ODNs used as monotherapy could be effective in 

inducing regression in C3 model of cervical cancer, when it was injected subcutaneusly (120). 

However, the injection site was critical, since injection of CpG-ODN at distant sites was ineffective 

or less effective, in the treatment of other tumor models, compared with peritumoral or intratumoral 

injection. Mice with two bilateral C26 tumors rejected both tumors upon peritumoral injection of 

one tumor, indicating the development of a systemic immune response. Mice that rejected a tumor 

upon peritumoral CpG treatment remained tumor free and were protected against rechallenge with 

the same tumor cells, but not with the other tumor, demonstrating long term memory (121,122). 

Peritumoral administration of CpG-ODN was also effective in impeding the progression of tumors 

in BALB/c mice transgenic for the rat/neu transforming oncogene (123). 

When CpG-ODN was combined with chemotherapy, it was more effective than chemotherapy 

alone (116). Mouse tumor models treated with CpG-ODN in combination with fluorouracil, 

topotecan (topoisomerase I inhibitor) (124), cyclophosphamide (125), or paclitaxel (126) showed 

substantial improvements in survival. The increased efficacy of these combinations in mouse 

models led to several clinical trials, where CpG-ODN (agatolimod) was used in combination with 

standard taxane/platinum chemotherapy in phase II and III trials in patients with non-small cell lung 

cancer (NSCLC). CpG-ODN was also combined effectively with chemotherapy (fluorouracil plus 

leucovorin or irinotecan) and DC-based immunotherapy in the C26 mouse model of colon 

carcinoma 

(127). 
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VACCINES 

 
CpG-ODNs have also been used in vaccination studies as adjuvants, and have induced a good TH1- 

type immune response (128,129). The efficiency of CpG-ODNs in inducing a TH1 based response is 

thought to be due to synergy between TLR9 and the B-cell receptor, which results in antigen-

specific B-cell stimulation, inhibition of B-cell apoptosis, enhanced IgG class switching and DC 

maturation and differentiation (2,27,130,131). The co-injection of antigen-pulsed, mature DCs and 

CpG ODNs with a peritumoral injection of CpG-ODNs elicited a CD8+ T-cell response resulting in 

tumor rejection and long-term protection in the C26 model of colon carcinoma (127). Moreover, in 

a preclinical model of colon cancer, a vaccine combining CpG-ODN with GM-CSF and class I and 

class II restricted mucin (MUC) 1 peptides was successful in breaking MUC1 self-tolerance, and in 

eliciting a robust antitumor response in MUCI transgenic mice (132). The immune response caused 

complete rejection of tumor cells in the prophylactic setting, while in the therapeutic setting, tumor 

burden was significantly reduced (132). When a DC-tumor cell fusion vaccine was used in mice, 

along with the TLR9 agonist ODN 1826 and the TLR3 agonist PolyICLC, a synergistic effect was 

shown, which was enough to achieve tumor rejection that could not be achieved by the vaccine 

alone. This effect was shown to be mediated by IL-12 (133). Moreover, the use of CpG-ODN in 

mice as a vaccine adjuvant allowed to decrease the antigen dose by half, while maintaining the 

same level of antibody response, when compared with those mice receiving the full dose of antigen 

without the CpG-ODN adjuvant (134). Also, when CpG-ODN was used with the recombinant 

hepatitis B virus surface antigen vaccine in mice, the titers of antibodies against hepatitis B surface 

antigen (HbsAg; anti- Hbs) were 5-fold higher than in mice immunized with HbsAg and the 

standard adjuvant, aluminum hydroxide (135). The activity of CpG-ODN to induce humoral 

immune responses has also been confirmed in non-human primates and in humans (136-138). 

 
 

CpG-ODNs IN CANCER CLINICAL TRIALS  

NON-HODGKIN’S LYMPHOMA 

Non-Hodgkin’s lymphoma (NHL) normally responds to immune-modulating treatments, such as 

IFN, IL-2, and monoclonal antibodies (139-141). Agatolimod (CpG 7909) has been used in a phase 

I trial, to test its efficacy as monotherapy in previously treated NHL patients. Twenty-three patients 

were treated with 67 three weekly IV infusions of Agatolimod at doses ranging from 0.01 to 0.64 
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mg/kg/w. Patients were evaluated for several immunologic parameters and clinical endpoints 

before, during, and after treatment with Agatolimod. These included a blood count, urinalysis, 

serum chemistries (including glucose, renal, and hepatic profiles), coagulation proteins (including 

prothrombin time, activated partial thromboplastin time, and fibrinogen levels), ECG recordings, 

and immunologic assays (including erythrocyte sedimentation rate, antinuclear antibodies, anti-

double-stranded DNA, C3, C4, and CH50 activity). Tumor measurements were obtained by CT. 

Twenty-three patients completed therapy, and the treatment was well tolerated with infrequent 

transient grade 1 and 2 adverse events, including hyperglycemia, nausea, chills/rigors, hypotension, 

and fever. Serious adverse hematologic events, observed more than once, included anemia (n = 2), 

thrombocytopenia (n = 4), and neutropenia (n = 2), and were largely judged to be related to disease 

progression. Beginning day 2, there was an increase in the absolute numbers of NK cells and the 

mean ratio of NK cell concentrations when compared with pretreatment levels was 1.44 (95% CI 

0.94, 1.94) on day 2 and was 1.53 (95%CI 1.14, 1.91) on day 42. NK activity also increased in 

patients, along with antibody-dependent cellular cytotoxic activity, which increased in select 

cohorts. There were no biologically significant changes in the levels of serum cytokines (IL-12, IL-

18, TNF-α), chemokines (IP-10, MCP-1, MIP-1b), or markers of immune activation (IgM, IgG, C-

reactive protein) at any of the dose levels tested; serum IL-6 levels rose transiently after the first 

injection, then returned to baseline within 48 hours. In general, immunomodulatory effects of 

agatolimod were greater at lower rather than at higher dose levels. No clinical responses were 

documented at day 42. A partial radiographic response was observed in two patients at 3 months, 

without further NHL therapy. This study concluded that Agatolimod can be given safely to 

previously treated NHL patients, with evidence for immunomodulatory effects primarily in the 

dosage range of 0.04–0.16 mg/kg (142,143).  

A phase I trial was designed to investigate the safety, tolerability, and preliminary antitumor activity 

of Agatolimod in combination with monoclonal antibody. 

A promising treatment of various B-cell lymphomas, as demonstrated in murine models, is the 

combination of CpG-ODN with rituximab, an antibody against CD20, a cell surface marker that is 

widely expressed on B cells. CpG-ODN was found to enhance the expression of CD20, the target 

antigen for rituximab, on various types of B-cell lymphoma (144).  

Patients with relapsed/refractory CD20+ B-cell NHL received Agatolimod through IV or SC routes, 

in combination with standard-dose Rituximab (145). Patients with relapsed or refractory NHL, who 

were candidates for Rituximab as a single agent, were enrolled in one of three cohorts. All patients 

received IV Rituximab 375mg/m2/week for 4 weeks followed by Agatolimod weekly for 4 weeks 

administered SC (0.01, 0.04, 0.08, or 0.16mg/kg; cohort 1; n = 19) or IV (0.04, 0.16, 0.32, or 
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0.48mg/kg; cohort 2; n = 19). Cohort 3 (n = 12) received Agatolimod 0.24mg/kg administered SC 

weekly for 20 weeks. Patients were monitored for toxicity and tumor response. The combination of 

Agatolimod with Rituximab was well tolerated, and across all groups, 38 of 50 patients had one or 

more adverse events. The most frequent adverse events were mild or moderate flu-like symptoms 

(e.g. fever, fatigue, headache), and local injection-site reactions, including erythema, pain, and 

edema. Grade 3/4 adverse events, which included lymphopenia, neutropenia, diarrhea, and 

dehydration, rarely occurred in more than one patient or at >1 dose level. Among patients enrolled 

in the 4-week dosing cohorts, 4 of 19 (21%) in the IV arm and 2 of 19 (10.5%) in the SC arm had a 

complete response (CR) or partial response (PR), and there were 11 (57.9%) and 10 (52.6%) 

patients, respectively, with stable disease as best response. A total of 6 of 12 (50%) patients in 

cohort 3 had a CR or PR, and there were three (25%) patients with stable disease. Cytokine and 

chemokine measurements demonstrated biological activity in cohort 3. It was concluded from this 

study that Agatolimod can be given safely in combination with Rituximab to NHL patients by both 

the IV and SC routes, without apparent exacerbation of Rituximab-related infusion toxicity (146).  

In another phase I trial, 1018 ISS, also this CpG-ODN, in combination with Rituximab was used to 

treat relapsed NHL patients. Twenty patients were treated with four weekly Rituximab infusions 

and 1018 ISS was administered SC once a week for 4 weeks, starting after the second dose of 

Rituximab (147). Patients were assigned to one of four doses of 1018 ISS (0.01, 0.05, 0.2, or 

0.5mg/kg). As expected, 50% of patients had infusion reactions associated with the initial dose of 

Rituximab; there was no exacerbation of Rituximab toxicity after initiation of therapy with 1018 

ISS. Nineteen patients were evaluable for clinical responses. Six patients showed objective 

responses (one unconfirmed CR, five PR) for an overall response rate of 32%. Additionally, 13 

patients had stable disease after therapy. Median progression-free survival in responding patients 

was 12 months (range 5–23.5 months). Four patients remained alive without progression at a 

median of 10 months follow-up (range 3.2–23.4 months). Quantitative PCR analysis was done, to 

evaluate changes in mRNA expression in a panel of IFN inducible genes, on PBMCs isolated before 

and 24 hours after the second and fourth doses of 1018 ISS. There was no evidence of gene 

induction in vivo with the 0.01mg/kg dose, but in the three higher-dose groups a dose-related 

increase in the induction of several IFN-/--inducible genes was observed 24 hours after the injection 

of 1018 ISS.  
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RENAL CELL CARCINOMA 

 

In a phase I, multicenter, dose-escalation trial, the effect of weekly SC doses of Agatolimod (0.08 to 

0.81 mg/kg) was evaluated for 24 weeks or until disease progression in patients with advanced renal 

cell carcinoma (148). Thirty-one patients were enrolled; 18 males and 13 females, aged 35–79 

years. One patient had a durable PR (8 months), nine had stable disease and 17 patients progressed 

despite treatment with Agatolimod. Four patients continued to receive treatment. Median time to 

progression was 112 days. No drug-related serious adverse events were reported, and Agatolimod 

was well tolerated up to weekly doses of 0.54 mg/kg. Pro-inflammatory or cytokine effects 

(erythematous injection-site reactions, chills, myalgias, arthralgias, and fatigue) were dose-related 

and reversible. Biologic responses were consistent with the mechanism of action of CpG TLR9 and 

the most consistent effects observed were increased levels of plasma IP-10 and 2’-5’ oligoadenylate 

synthetase (OAS). This study concluded that Agatolimod can be safely administered at doses up to 

0.54 mg/kg weekly. In another trial involving patients with progressive metastatic renal cell 

carcinoma, patients were vaccinated with autologous tumor cells (ATC) derived from the primary 

tumor or metastases (149). Vaccines consisted of irradiated ATC, Agatolimod, and GM-CSF. The 

first three induction vaccinations were given weekly followed by SC administration of IFN-α (6 

MIU, three times weekly) and Agatolimod 8 mg bi-weekly. Tumor evaluation was performed after 

3 months. In case of a remission or stable disease, patients continued with 3-monthly vaccinations 

and treatment with SC Agatolimod and IFN-α. Blood was collected for immunomonitoring and 

delayed-type hypersensitivity responses (DTH) against ATC were measured before and after 

vaccination. The treatment was well tolerated. Twelve patients were included and treated according 

to the protocol. Three patients (25%) achieved a PR (durations 6, 4+, 4+ months) and two patients 

(17%) remained stable. Adverse effects experienced by some patients included flu-like symptoms, 

fever, fatigue, and erythema, and induration at the vaccination site. A DTH response (>10mm) was 

observed after vaccination in all patients, suggestive of a specific antitumor response (149). 

 

MELANOMA 

 

The limitations of immunotherapy for melanoma, like other cancers, arise from tumor-induced 

mechanisms of immune evasion that render the host tolerant of tumor antigens. For example, 

melanoma inhibits the maturation of APCs, preventing full T-cell activation and down-regulating 

the effector antitumor immune response (150). Of the new immunotherapies targeting critical 
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regulatory elements of the immune system that may overcome tolerance, CpG-ODNs have been 

used in melanoma treatment protocols, either as monotherapy or in combination with other 

treatments. An open-label, multicenter, phase II clinical trial was carried out to assess the clinical 

and immunologic effects of TLR9 activation with weekly SC administration of Agatolimod in 

melanoma patients (151,152). Twenty patients from six centers, with histologically confirmed non-

ocular unresectable clinical stage IIIb/c or IV melanoma, were enrolled. Patients received treatment 

with Agatolimod 6mg weekly by SC injection for 24 weeks or until disease progression and clinical 

and immunologic activity as well as safety were evaluated (151,152). Clinical examination and 

laboratory safety assessments including hematology, blood chemistry, and baseline coagulation 

were performed weekly. Laboratory and clinical adverse events were limited, transient, and did not 

result in any withdrawals. Two patients experienced a confirmed partial response and three patients 

achieved stable disease. Immunologic measurements revealed a moderate but consistent increase in 

the proportions of CD86+ blood pDCs, and an elevation of the mean fluorescence intensity for 

HLA-DR on blood pDCs, both features indicating pDC activation. Serum levels of 20,50-

oligoadenylate, a surrogate marker of type I IFN production, which remains elevated in serum for 

more than 1 week after induction, indirectly confirming sustained induction of type I IFN 

expression. Also, Agatolimod induced a decrease in CD56+CD16+ NK cell numbers, presumably 

reflecting NK cell recruitment into tissues. Stimulation of NK cell cytotoxicity (NKC), however, 

was less consistent with some patients showing an increase and others showing a decrease in NKC; 

a sustained increase in NKC was associated with clinical benefit. The authors concluded that TLR9-

targeted therapy can stimulate innate immune responses in cancer patients and enabled the 

identification of biomarkers that may be associated with TLR9-induced tumor regression (151,152). 

In another randomized phase II trial, 184 patients with the diagnosis of metastatic melanoma were 

enrolled in 48 sites. Patients were randomized into four arms: Agatolimod 10 or 40 mg, Agatolimod 

40 mg in combination with DTIC (dacarbazine), or DTIC alone. DTIC 850 mg/ml was administered 

IV every 21 days, and Agatolimod was administered by weekly SC injection into multiple sites. 

Treatment was continued until disease progression. A preliminary response assessment in 92 

patients showed four PRs in the combination arm compared with two PRs in the DTIC arm, one PR 

in the Agatolimod 10 mg arm and no responses with Agatolimod 40 mg. Fifty-seven patients had 

disease progression at or before the ninth week (third cycle). The authors concluded that a 

combination of DTIC with Agatolimod may give a better response than DTIC alone in patients with 

metastatic melanoma (153). CpG-ODNs have been used also in vaccination protocols as an 

adjuvant. A pilot trial was designed to study the immunogenicity of the analog peptide NY-ESO-1 

157-165V, human leukocyte antigen (HLA)-A2 epitope, in combination with Agatolimod and 
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Montanide ISA 720 in eight patients with stage III/IV NY-ESO-1-expressing melanoma. Patients 

were immunized with Montanide and Agatolimod (arm 1, three patients); Montanide and peptide 

NY-ESO-1 157-165V (arm 2, two patients); or with Montanide, agatolimod, and peptide NY-ESO-

1 157-165V (arm 3, three patients) (154). Data from this study showed that the peptide vaccine, in 

combination with Agatolimod and Montanide promoted the expansion of NY-ESO-1-specific CD8+ 

T cells in patients with advanced cancer. The data also suggest that the presence of tumor-induced 

NY-ESO-1-specific T cells of well defined clonotypes is critical for the expansion of tumor-reactive 

NY-ESO-1-specific CD8+ T cells after peptide-based vaccine strategies (154). In a phase I trial 

conducted at the Ludwig Institute for Cancer Research (Lausanne, Switzerland), eight HLA-A2+ 

melanoma patients received four monthly vaccinations of low-dose Agatolimod mixed with 

melanoma antigen A (Melan-A, identical to MART-1) analog peptide and incomplete Freund’s 

adjuvant. All patients exhibited rapid and strong antigen-specific T-cell responses; the frequency of 

Melan-A-specific T cells reached over 3% of circulating CD8+ T cells. This was one order of 

magnitude higher than the frequency seen in eight control patients treated similarly but without 

Agatolimod and one to three orders of magnitude higher than that seen in previous studies with 

synthetic vaccines (155). The enhanced T cell populations consisted primarily of effector memory 

cells, which in part secreted IFN-α and expressed granzyme B and perforin ex vivo. In vitro, T-cell 

clones recognized and killed melanoma cells in an antigen-specific manner. The authors concluded 

that Agatolimod is an efficient vaccine adjuvant that promotes strong antigen-specific CD8+ T-cell 

responses in humans (155). Finally, a phase I study investigated the safety, serum cytokine levels, 

cellular immune responses, and clinical activity of intralesional Agatolimod in patients with basal 

cell carcinoma (BCC) or cutaneous or subcutaneous melanoma metastases (156). Five patients with 

BCC and five patients with melanoma and cutaneous and subcutaneous metastases received 

treatment with escalating doses of agatolimod (up to 10 mg) injected intralesionally every 14 days. 

Local tumor regressions were observed in patients with BCC (one complete regression, four partial 

regressions) and metastatic melanoma (one complete regression). After treatment with Agatolimod, 

IL-6 was increased in all patients, IFN-γ IP-10 in eight of ten patients, interleukin 12p40 in seven of 

ten patients, and TNF-α levels in six of ten patients (156). 
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NON-SMALL CELL LUNG CANCER 

 

The combination of a TLR9 agonist and chemotherapy has been shown to improve survival over 

chemotherapy alone in several mouse tumor models, suggesting a possible therapeutic synergy 

between these two approaches (124,125,157,158). It was also shown that the immunomodulatory 

oligonucleotide had potent antitumor effects as monotherapy and in combination with conventional 

chemotherapeutic agents, and may act directly on NSCLC cells via TLR9 (159). A randomized 

phase II study was carried out to assess the antitumor activity and safety of the combination of 

Agatolimod with taxane plus platinum chemotherapy in chemotherapy-naïve patients with stage 

IIIB to IV NSCLC (160). In this trial, 112 patients with stage IIIb/IV NSCLC were enrolled, and 

they received four to six 3-week cycles of chemotherapy alone or in combination with Agatolimod 

0.2 mg/kg, administered SC. The response rate improved from 19% in patients receiving 

chemotherapy alone to 37% in patients receiving chemotherapy plus Agatolimod. The median 

survival was 6.8 versus 12.8 months, and the 1-year survival 33% versus 50% in patients receiving 

chemotherapy alone versus chemotherapy plus Agatolimod. The authors concluded that a TLR9- 

activating ODN may enhance the clinical activity of chemotherapy in the treatment of NSCLC. 

Pfizer has also disclosed its intention to investigate Agatolimod for use in breast cancer patients, 

and to initiate three randomized phase II clinical studies of Agatolimod in advanced NSCLC. Each 

study will combine Agatolimod with either Bevacizumab (Avastin) (160), Erlotinib (Tarceva) (161) 

or Pemetrexed (Alimta) (162). Coley Pharmaceuticals (Wellesley, MA, USA) initiated two 

randomized, international, multicenter, phase III trials to assess the efficacy and safety of Agatolimod 

administered in combination with Paclitaxel/Carboplatin or Gemcitabine/Cisplatin chemotherapy as first-line 

treatment in patients with locally advanced or metastatic Non-Small-Cell Lung Cancer (NSCLC) (164,165). 

Over 800 patients were enrolled in these trials. These trials were stopped in 2007, after analysis of 

the phase III clinical trial results showed no evidence of any additional efficacy over standard 

chemotherapy alone.  
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Table 2. A summary of some clinical trials using CpG oligodeoxynucleotides (ODNs) for the treatment of patients with 
cancer. 
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2. OVARIAN CANCER 

Ovarian cancer causes more deaths in the United States than any other type of female reproductive 

tract cancer, with an estimated 22,430 new cases and 15,280 deaths in 2007 (166). Approximately 

70% of ovarian cancers are diagnosed at advanced stage and only 30% of women with such cancers 

can expect to survive 5 years. Analysis of trends in overall five-year survival rates for women with 

ovarian cancer indicates some recent improvement for those diagnosed between 1996 and 2002, 

compared to the 1970’s and 1980’s (166). Nonetheless, these gains are rather modest and there 

clearly remains a need to better understand the molecular pathogenesis of ovarian cancer so new 

drug targets and biomarkers that facilitate early detection can be identified. Approximately 90% of 

primary malignant ovarian tumors are epithelial (carcinomas), and are thought by most investigators 

to arise from the ovarian surface epithelium (OSE) or more likely from surface epithelial inclusion 

cysts (167,168). Some investigators have suggested they may develop from the secondary Müllerian 

system, which includes paraovarian and paratubal cysts, the rete ovarii, endosalpingiosis, and 

endometriosis (169). The classification of ovarian epithelial tumors currently used by pathologists is 

based entirely on tumor cell morphology. The four major types of epithelial tumors (serous, 

endometrioid, clear cell, and mucinous) bear strong resemblance to the normal cells lining different 

organs in the female genital tract. For example, serous, endometrioid, and mucinous tumor cells 

exhibit morphological features similar to non-neoplastic epithelial cells in the fallopian tube, 

endometrium, and endocervix, respectively.  Representative examples of serous, endometrioid, 

clear cell, and mucinous ovarian carcinomas are shown in Figure 10.  



 

Figure 7. Pictures of the four most common histologic types of ovarian cancer, stained with hematoxylin and eosin. A, 
Ovarian serous carcinoma showing papillae formation. B, Ovarian serous carcinoma with predominant solid growth 
pattern. C, Ovarian endometrioid tumor of low malignant potential showing glands similar to the complex hyperplasia 
of the uterine endometrium. D, High-power view of ovarian endometrioid carcinoma that is morphologically similar to 
endometrial carcinoma of the uterus. E, Ovarian clear carcino
High-power view of ovarian clear cell carcinoma with hobnail growth pattern. G, Ovarian mucinous tumor of low 
malignant potential. H, Well-differentiated ovarian mucinous carcinoma.

 

The histological similarity of ovarian epithelial tumors to epithelia in other portions of the female 

genital tract is not surprising, given that all of these epithelia, as well as the cells lining the 

peritoneal cavity, are thought to be derived from a common

mesothelium (170). Of note, provocative recent studies suggest the distal fallopian tube may 

actually be the site of origin of at least some serous carcinomas previously thought to arise in the 

ovary or pelvic peritoneum (171,172

into those that are clearly benign (cystadenomas), those that are frankly malignant (carcinomas), 

and those that have features intermediate between these two (variably called “atypi

tumors, tumors of “low malignant potential” or tumors of “borderline” malignancy). The present 
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clinical management of ovarian carcinoma patients is not significantly influenced by the 

histological subtype of the tumor, although accumulating clinical pathological and molecular data 

suggest the major subtypes likely represent distinct disease. In addition to type of differentiation, 

ovarian carcinomas can be sub-classified based on degree of differentiation (tumor grade). 

Historically, the most commonly used grading systems have been those proposed by the 

International Federation of Gynecology and Obstetrics (FIGO), the World Health Organization 

(WHO), and the Gynecologic Oncology Group (GOG) (173). The FIGO system uses 3 grades based 

on architectural criteria, i.e., the proportion of glandular or papillary structures relative to areas of 

solid tumor growth. Grades 1, 2, and 3 correspond to <5%, 5–50%, and >50% solid growth, 

respectively. The WHO system incorporates both architectural and cytological features, but these 

are not assigned based on quantitative criteria and as a consequence, this system can be considered 

rather subjective. In the GOG system, the grading method varies depending on the histological type 

of the tumor. For example, endometrioid adenocarcinomas are graded using FIGO criteria, while 

clear cell carcinomas are not assigned a grade at all. More recently, a 3 grade system has been 

proposed that can be applied to all ovarian carcinomas (174), and two binary grading systems have 

been proposed for ovarian serous carcinomas, the most common type (175,176). Review of both 

clinicopathological and molecular studies to date has led to a model in which ovarian carcinomas 

can be generally divided into two broad categories designated Type I and Type II tumors, akin to 

the division of endometrial carcinomas into two major types as recently reviewed by Di Cristofano 

and Ellenson (177). Tumor grade is an important, albeit not sole factor, distinguishing Type I from 

Type II tumors. 

 

PHARMACEUTICAL MANAGEMENT OF OVARIAN CANCER 

HISTORY OF THE ADMINISTRATION OF ANTINEOPLASTIC AGE NTS IN THE 

MANAGEMENT OF OVARIAN CANCER  

 

For more than 50 years, epithelial ovarian cancer has been recognized to be one of the most 

biologically sensitive solid tumours to cytotoxic chemotherapeutic agents (178). During the earliest 

days of the modern chemotherapeutic era, the newly identified alkylating agents were examined as 

therapeutic strategies in this malignancy (178,179). Although the definitions of clinical activity 

were not as clearly delineated during this time period as they are today, it was evident that palliation 
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of distressing symptoms (e.g. abdominal pain resulting from malignant ascites accumulation) was 

achieved in a substantial percentage of individuals treated with several drugs (melphalan, thiotepa, 

cyclophosphamide) in this therapeutic class (180). Unfortunately, most of these responses were 

relatively short lived. Moreover, long-term follow-up revealed that a subset of ovarian cancer 

patients who received alkylating agents for extended periods of time as a result of impressive 

control of the malignant process, ultimately died as a direct result of developing treatment-induced 

secondary acute myelogenous leukaemia (181,182). Not surprisingly, this profoundly disturbing 

experience has appropriately tempered enthusiasm for any form of ‘maintenance therapy’ in ovarian 

cancer. Additional cytotoxic agents developed during this era, including doxorubicin, methotrexate, 

altretamine and fluorouracil (5-FU), were subsequently shown to possess at least a modest degree of 

biological activity in ovarian cancer (180,183). As a result, single-agent treatment of ovarian cancer 

(e.g. oral melphalan) was largely replaced with combination chemotherapy regimens, such as Hexa-

CAF (altretamine, cyclophosphamide, doxorubicin and 5-FU) and AC (doxorubicin and 

cyclophosphamide) (183-185). Limited phase III trial data confirmed that combination therapy 

could improve objective response rates compared with single alkylating agents, but the overall 

impact on survival was more modest. 

 

THE CISPLATIN ERA 

 

In the 1970s, cisplatin, one of the most toxic pharmaceutical agents ever delivered to any patient 

(neurotoxicity, emesis, nephrotoxicity, ototoxicity), was introduced into the clinic (186-189). 

However, this drug, with its impressive list of distressing adverse effects, was reluctantly accepted 

(by patients and oncologists) because of the recognized remarkable level of both biological and 

clinically relevant activity of the agent in multiple tumour types, including ovarian cancer (190-

192). Cisplatin was initially revealed to produce objective responses in women with ovarian cancer, 

whose disease was shown to be resistant to alkylating agent therapy (191,192). Of note, during this 

era, the definition of ‘resistance’ varied, and essentially included all patients whose cancers recurred 

or progressed following initial therapy. Following this experience, cisplatin was quickly moved to 

the front-line setting (193-196) and the agent subsequently became established as the cornerstone of 

the chemotherapeutic management of ovarian cancer. Both individual phase III randomized trials 

and several meta-analyses involving the results of multiple studies, have revealed the platinum 

agents to be the single most active class of antineoplastic drugs in this malignancy (193-197). 
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CISPLATIN-BASED COMBINATION CHEMOTHERAPY 

 

For a period of time there existed considerable controversy regarding the ‘optimal’ Cisplatin-based, 

multi-agent regimen, with individual phase III trial data supporting the two-drug combination of 

Cyclophosphamide plus Cisplatin, (198-200) but with several meta-analyses suggesting the 

superiority of a three-drug regimen of Cyclophosphamide, Doxorubicin and Cisplatin (201-203). 

Ultimately, most investigators became convinced that any possible small benefit resulting from the 

addition of an anthracycline to the two-drug Cisplatin plus Cyclophosphamide regimen was 

outweighed by the well recognized additional toxicity associated with such a strategy (204). 

 

CARBOPLATIN-BASED CHEMOTHERAPY 

 

Initially proposed as a more active platinum drug, Carboplatin has been shown in multiple phase III 

randomized ovarian cancer trials to be equivalent in efficacy to Cisplatin, but to possess a 

substantially superior adverse effect profile, particularly a lower risk of severe emesis, 

nephrotoxicity and neurotoxicity (205-209). A specific highly appealing feature of Carboplatin 

compared with Cisplatin, is the ability to easily deliver the drug in the outpatient setting, without 

the requirement for extensive hydration to prevent the nephrotoxic effects of the parent drug. Also, 

in general, the well recognized dose-limiting haematological toxicity of Carboplatin produces less 

severe clinically relevant consequences to patients and is easier to manage (e.g. dose reduction, use 

of bone marrow colony-stimulating factors) than are the adverse effects associated with Cisplatin. 

Furthermore, compared with Cisplatin, it has proven easier to combine other active antineoplastic 

agents in ovarian cancer with Carboplatin (e.g. Paclitaxel) (207-210). However, it is important to 

again note that the almost universal choice of Carboplatin for intravenous administration in the 

management of ovarian cancer, rather than Cisplatin, is based on a more favourable toxicity profile 

and ease of delivery, and not on any evidence of superior efficacy (207-210). 
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Initially, small phase I and II clinical trials confirmed the feasibility of this approach and observed 

that higher concentrations of drug could be achieved in the peritoneal space with IP than with IV 
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achieve clinically active systemic concentrations of the drug (223). Lastly, they observed clinical 
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DATA FROM CLINICAL TRIALS  

 

In the Southwest Oncology Group (SWOG) 8501/ Gynecologic Oncology Group (GOG) 104 trial, 

Alberts et al compared IP Cisplatin and intravenous (IV) Cyclophosphamide to IV Cisplatin and IV 

Cyclophosphamide in women with stage III epithelial ovarian cancer after exploratory laparotomy 

and removal of all tumor masses larger than 2 cm (224). Six hundred fifty-four patients were 

randomly assigned and 546 were eligible for the study. The patients received six cycles of IV 

Cyclophosphamide 600 mg/m2 plus either IP Cisplatin 100 mg/m2 or IV Cisplatin 100 mg/m2 at 3-

week intervals. At the completion of therapy, patients with a complete clinical response underwent 

a second-look laparotomy to determine pathologic response. During accrual, and without 

knowledge of the therapeutic results, the sample size was increased in order to stratify response 

according to size of residual tumor after surgery. This was done because of the hypothesis that 

patients with the smallest residual tumor — ≤ 0.5 cm in greatest dimension — would be the group 

most likely to benefit from IP chemotherapy. In both the IP and IV groups, 58% of patients received 

all six cycles of cisplatin chemotherapy. Two hundred ninety-seven patients underwent second-look 

laparotomy. The rate of complete pathologic response was 47% in the IP group and 36% in the IV 

group. Statistical comparison was not performed due to the small percentage of patients that 

underwent second-look laparotomy. All eligible patients were included in survival analysis, regard-

less of whether they completed their assigned treatment or not. The median survival was 41 months 

in the IV group and 49 months in the IP group. The hazard ratio for risk of death in the IP group, as 

compared with the IV group, was 0.76 (95% CI, 0.61 to 0.96; P = .02). The effect of the treatment, 

IV or IP, was not influenced by the extent of residual disease. Two treatment related deaths 

occurred in the IP group and none occurred in the IV group. Granulocytopenia and leukopenia ≥ 

grade 3 was significantly higher in the IP group as was abdominal pain ≥ grade 2 and transient 

dyspnea. Tinnitus, hearing loss, and grade 2 or 3 neuromuscular toxic effects at the end of treatment 

were significantly higher in the IV group. This study was published in 1996. At this time it was also 

shown that IV Paclitaxel and Cisplatin was superior to IV Cyclophosphamide and Cisplatin. 

Therefore, interest was turned to combining IV Paclitaxel and IP Cisplatin. In the GOG 114/SWOG 

9227 trial, Markman et al (225) compared a control arm of IV Paclitaxel and Cisplatin for six cycles 

with an experimental arm of two doses of high-dose Carboplatin followed by IV Paclitaxel and IP 

Cisplatin for six cycles in patients with optimally debulked (largest residual tumor nodule ≤ 1 cm in 

maximum diameter) stage III epithelial ovarian cancer. Initially, a third arm consisting of IV 

Cyclophosphamide and Cisplatin was included, but this was discontinued due to evidence of the 
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superiority of IV Paclitaxel over Cyclophosphamide. Five hundred twenty-three patients were 

enrolled and 462 were eligible. Six point eight percent of patients randomly assigned to the IP arm 

received no IP therapy and 18.3% received two or fewer cycles. Two patients from each group died 

from chemotherapy-related causes. Grade 4 neutropenia, grade 3 to 4 thrombocytopenia, grade 3 to 

4 gastrointestinal and metabolic toxicity were all higher in the IP arm. Progression-free survival was 

longer in the IP arm, with median time to tumor recurrence of 27.9 months compared with 22.2 

months in the IV arm. The relative risk estimate in the IP arm compared with the IV arm was 0.78 

(90% CI, 0.66 to 0.94). Overall survival was also longer in the IP arm, 63.2 months versus 52.2 

months (P = .05). The estimated relative risk for death of a patient treated on the IP arm compared 

with the IV arm was 0.81 (90% CI, 0.65 to 1.00). The results of this trial coupled with promising 

results of a phase II trial exploring the combined use of IP Cisplatin and IP/IV Paclitaxel (226) led 

to the GOG 172 trial, which compared the standard arm of IV Paclitaxel over 24 hours followed by 

IV Cisplatin on day 2 to IV Paclitaxel over 24 hours following by IP Cisplatin on day 2 and IP 

Paclitaxel on day 8 in women with stage III ovarian carcinoma with largest residual mass less than 

or equal to 1.0 cm (227). Four hundred twenty-nine patients were randomly assigned and 415 were 

eligible. Ninety percent of patients in the IV group received six cycles of chemotherapy and 83% 

received six cycles of the assigned treatment. Eighty-three percent of patients in the IP group 

received six cycles o chemotherapy and 42% received six cycles of the assigned IP treatment. The 

primary reason for discontinuing IP therapy was catheter-related complications. There were 

significantly more patients in the IP group with severe (grade 3 or 4) fatigue, pain, and hematologic, 

gastrointestinal, metabolic, and neurologic toxicity. The median progression-free survival was 23.8 

months in the IP group versus 18.3 months in the IV group (P = .05). The median overall survival 

was 65.6 months in the IP group versus 49.7 months in the IV group (P = .03). Second-look 

laparotomy was optional. Com- plete pathologic response was noted in 57% of the IP group (46 of 

81 patients) and 41% of the IV group (35 of 85 patients). Although fewer than one half of patients 

in the IP group received six cycles of IP therapy, the group had superior survival to the IV group. 

The results of GOG 172, combined with the consistent results in the two previous trials, led the 

National Cancer Institute to issue a clinical announcement in January 2006, recommending that 

women with stage III ovarian cancer that undergo optimal surgical cyto-reduction be considered for 

IP chemotherapy (228). The clinical announcement mentions that a significant improvement in 

overall survival is associated with IP chemotherapy with an increase in toxicity, although this is 

short-term and manageable. The data confirm biologic and pharmacologic hypotheses. The 

peritoneal route of spread for ovarian cancer coupled with the pharmacologic advantage for 

platinums and taxanes administered via the IP route suggest that IP administration should result in 
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results were not relevant to clinical practice and, therefore, should not lead to a change in patient 

ad of Carboplatin plus 

GOG 172 could have inflated the benefit of the IP/IV arm. Although a prior GOG 
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study (GOG 158) demonstrated no statistically significant difference between these regimens, there 

was a trend for improved progression-free and overall survival for the Carboplatin plus Paclitaxel 

arm (207,230). Therefore, the superiority of IP/IV therapy has not been firmly established and the 

Carboplatin IV plus Paclitaxel IV combination remains a viable option in 2007 for women with 

optimally debulked epithelial ovarian cancer (230,231). IP therapy could not be administered as 

planned due to intolerance and toxicities. In these three trials, only 42% to 71% of women could 

receive all six cycles of IP/IV therapy as planned. The most common reasons for discontinuation of 

IP treatment were catheter-related complications, pain, fatigue, myelosuppression, gastrointestinal 

or metabolic toxicities. Substantial concerns about quality of life, technical difficulties associated 

with IP administration, and lack of reimbursement for the additional treatment time involved in 

delivering IP therapy continue to limit the adoption of this as standard of care. These are considered 

to be substantial contributing causes to the lack of more widespread adoption of IP therapy in the 

community.  

 

IMMUNOTHERAPY OF OVARIAN CANCER 

 

Although the cancer cell remains the main target of oncologic therapy, it is becoming progressively 

clear that the tumor microenvironment provides critical support to tumor growth and therefore 

opportunities for therapy. Inhibition of tumor angiogenesis is an obvious example of effective 

biological therapy that has produced clinical results. Importantly, complex mechanisms regulating 

immune response and inflammation interface with angiogenesis at the tumor microenvironment, 

and their balance can greatly affect the fate of tumors. The overall balance of tumor inflammatory 

mechanisms is polarized to promote angiogenesis, tumor cell survival and immune escape, all 

contributing to tumor growth. However, it is becoming clear that many patients with gynecologic 

malignancies mount a spontaneous antitumor immune response. Although ineffective to reject 

tumor, this can be potentially harnessed therapeutically. The use of immunomodulatory therapy is 

predicated on the notion that gynaecologic cancers are potentially immunogenic tumors, i.e., they 

can be recognized and attacked by cell-based immune mechanisms. Cervical and lower genital tract 

cancers induced by human papillomavirus (HPV) are the prototype of potentially immunogenic 

tumors that can elicit a spontaneous immune response. HPV xenoantigens expressed by tumor cells 

are readily recognized by the immune system. Cell-mediated immune responses are important in 

controlling HPV infections as well as HPV-associated neoplasms (232). The prevalence of HPV-
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related diseases is increased in patients with impaired cell-mediated immunity, including transplant 

recipients (233) and HIV-infected patients (234,235). Infiltrating CD4+ (T helper cells) and CD8+ 

(cytotoxic) T cells have been observed in spontaneously regressing warts (236), and warts often 

disappear in patients who are on immunosuppressive therapy when treatment is discontinued (237). 

In addition, animals immunized with viral proteins are protected from HPV infection or the 

development of neoplasia and experience regression of existing lesions (238,239). Nevertheless, 

patients with invasive cervical cancer exhibit exhausted and tolerized T cells that recognize antigen 

in vitro but are unable to reject tumors in vivo (240,241). The emergence of immunomodulatory 

therapies revives opportunities to activate and invigorate such T-cell immunity and warrants clinical 

testing. Although tumor-associated antigens have not undergone rigorous scrutiny in other 

gynaecologic malignancies (242), similar mechanisms of spontaneous antitumor immune response 

have been convincingly demonstrated. Tumor-reactive T cells and antibodies have been detected in 

peripheral blood of patients with advanced stage ovarian cancer at diagnosis (243,244), while 

oligoclonal tumor reactive T cells have been isolated from tumors or ascites (245-253). Importantly, 

the detection of intratumoral or intraepithelial tumor infiltrating lymphocytes (TIL), i.e., T cells 

infiltrating tumor islets predicts significantly improved progression survival and overall survival in 

ovarian cancer. It has been reported in an Italian cohort that patients whose tumors had 

intraepithelial T cells experienced 3.8-fold longer median progression-free survival and 2.8-fold 

longer overall survival as compared to patients whose tumors lacked intraepithelial T cells, 

remarkably, survival rate at 5 years was 38% in patients whose tumors had intraepithelial T cells (n 

= 102) and 4.5% in patients lacking them (n = 72). The impact of intraepithelial T cells was 

confirmed by multiple independent studies on ethnically diverse populations (254-260). Similar 

observations were made in endometrial cancer (261-263) and other solid tumors (264). 

Retrospective studies showing that the incidence of many non-virally induced solid tumor types is 

in fact 4- to 30-fold increased in immunosuppressed transplant recipients (265-269) provide 

evidence that immune recognition is probably a universal mechanism in tumors. 
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CHEMOTHERAPY AS AN IMMUNE MODULATOR 

 

Although it has been traditionally thought that chemotherapy antagonizes immune mechanisms 

altogether, recent evidence has challenged this view. Indeed, agents such as Cyclophosphamide, 

Doxorubicin and Paclitaxel increase the number and function of antigen-specific T cells and thus 

may enhance cancer immunity (270). It is becoming progressively clear that conventional 

chemotherapy has important “off-target” immunologic effects and, in fact, may depend on 

activation of immune mechanisms to achieve its full efficacy. In mouse models of solid tumors, 

increased tumor inflammation following administration of chemotherapy predicts better prognosis 

(271), while tumors grown in immunodeficient mice fail to respond to chemotherapy (272), clearly 

highlighting a role for the immune system in cancer clearance in the context of cytotoxic therapy. 

Similar events may occur in humans; tumor-infiltrating lymphocytes predicted complete pathologic 

response in breast cancer patients after neoadjuvant chemotherapy (273). Furthermore, neoadjuvant 

taxol therapy was found to increase TIL (274). Interestingly, breast cancer patients bearing a loss-of 

function Asp299Gly polymorphism of the Toll-like receptor (TLR) 4 receptor exhibit a higher risk 

of relapse after treatment with chemotherapy and radiation therapy (275). The immunomodulatory 

effects of chemotherapy can be broadly grouped in three mechanisms: (a) induction of 

immunogenic cancer cell death, which facilitates tumor antigen presentation (in situ vaccination); 

(b) direct activation of antigen presenting or effector mechanisms; and (c) suppression of immune 

inhibitory cells, thereby releasing regulatory breaks on antitumor immune response (Figure 11). 

These mechanisms are quite complex and our understanding are still in its infancy, but effects 

appear to be dependent on drug type, dose and schedule, as well as the immune cell type. 



 

Figure 8. Immunomodulation by chemotherapy (schematic representation) 

 

NON-SPECIFIC IMMUNE ACTIVATION

Multifaceted, pleiotropic immune activation can be achieved with cytokines and Toll

agonist therapy and is suitable for combination with immunomodulatory chemotherapy. 

 

INTERFERONS 

 

Interferons were first described as antiviral cytokines, but have since been shown to be secreted in 

response to a vast number of stimulatory factors other than viruses. They are divided into two broad 

categories: type I and type II interferons. Type I int

known as alpha and beta. Interestingly, 12 forms of IFN

Immunomodulation by chemotherapy (schematic representation)  

SPECIFIC IMMUNE ACTIVATION  

Multifaceted, pleiotropic immune activation can be achieved with cytokines and Toll

agonist therapy and is suitable for combination with immunomodulatory chemotherapy. 

Interferons were first described as antiviral cytokines, but have since been shown to be secreted in 

response to a vast number of stimulatory factors other than viruses. They are divided into two broad 

categories: type I and type II interferons. Type I interferons are subdivided into two main classes, 
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Multifaceted, pleiotropic immune activation can be achieved with cytokines and Toll-like receptor 

agonist therapy and is suitable for combination with immunomodulatory chemotherapy.  

Interferons were first described as antiviral cytokines, but have since been shown to be secreted in 

response to a vast number of stimulatory factors other than viruses. They are divided into two broad 
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form of IFN-β has been isolated. Signalling through their corresponding receptors on target cells is 

mediated by a series of Jak/STAT proteins and results in several antiviral activities. Additionally, 

they have potent effects on cell proliferation. Mouse models have demonstrated that gene therapy 

with IFN-β can greatly enhance tumor cell death in the context of several different malignancies 

(276). Many clinical trials have demonstrated the effacacy of type I interferon therapy in the 

treatment of hematologic malignancies (277-279), melanoma (279-284) and renal cell carcinoma 

(285-287). Phase I/II clinical studies have examined the therapeutic value of type I IFNs in ovarian 

cancer. Intraperitoneal recombinant IFN-α alone or combined with Cisplatin as salvage therapy for 

persistent ovarian cancer after primary chemotherapy has shown clinical efficacy in small volume 

disease (288,289), but there was no significant effect in a cohort of patients with recurrent, 

platinum-resistant disease (290). Although encouraging, these results did not support additional 

clinical development of type I interferon in ovarian cancer. One of the limitations of interferon 

therapy relates to the high intratumoral cytokine levels required to induce antitumor responses, 

which cannot be achieved without eliciting systemic toxicity and cannot be sustained owing to the 

short half-life of recombinant proteins. Cytokine gene therapy using recombinant viral vectors can 

achieve much higher and sustained cytokine levels at the tumor site than those resulting from 

systemic or regional administration of recombinant cytokine proteins without engendering systemic 

toxicity (291). A trial of intrapleural adenovirus delivering human IFN-β was recently completed at 

the University of Pennsylvania. Toxicity was minimal. One patient with recurrent, platinum-

resistant low-grade ovarian carcinoma achieved complete objective and cytologic response of both 

pleural and intraperitoneal disease following a single intrapleural injection of adenovirus vector in 

this trial (292). Disease stability or objective responses were also observed in patients with 

malignant pleural mesothelioma enrolled in the study (293). These data present promising evidence 

that IFN-β can serve as a potent anticancer agent, and its use in combination with other forms of 

chemo and immunotherapy certainly warrants further consideration. Structurally unrelated to type I 

interferons, IFN-γ is secreted by activated effector T cells and NK cells in response to target 

recognition. IFN-γ has been shown to have direct anti proliferative activity on ovarian cancer cells 

in vitro, which proved to be synergistic with Cisplatin and doxorubicin (294-296). In vitro and in 

vivo, IFN-γ upregulates HLA class I and class II molecules and antigen presentation in ovarian 

tumor cells (297), a requisite for recognition by T cells. In fact, HLA class I expression by the 

tumor correlates with the intensity of T cell infiltration (298), a predictor of longer survival. 

Furthermore, IFN-γ has antiangiogenic effects (299). Encouraging results have been reported with 

recombinant human (rh)IFN-γ either as intraperitoneal monotherapy or in combinations in early 
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phase trials (303-305). Theoretically, the effects are likely to be greatest in women who are also 

receiving chemotherapy because of IFN-γ's non-specific immunomodulatory effects (145). 

Confirming expectations, a three-fold prolongation of progression-free survival was observed in a 

phase III multi-center study from Europe with subcutaneous administration of rhIFN-combined 

with MTD Cisplatin and Cyclophosphamide chemotherapy, with minimal added toxicity. However, 

in a subsequent randomized phase-III trial conducted in the United States, addition of subcutaneous 

rhIFN-γ to Carboplatin and Paclitaxel did not improve survival (304). Although one cannot exclude 

that racial and other demographic differences may account for opposite results, these data may 

indicate that the choice of chemotherapy drugs is in fact critical in combinatorial approaches with 

immune therapy. Indeed, whereas Cyclophosphamide has potent immunomodulatory effects on 

many cell subsets including suppressing T regulatory (Treg) cells, high dose steroids, which are 

necessarily given with Paclitaxel to prevent acute hypersensitivity reactions, are 

immunosuppressive and induce Treg in the setting of antigen presentation. 

 

INTERLEUKINS 

 

Interleukin-2 (IL-2) promotes expansion and enhances the cytotoxicity of effector immune cells 

(305). In addition, IL-2 can restore T-cell function following suppression by negative regulatory 

receptors such as PD-1. IL-2 represents the most widely investigated cytokine for use in cancer 

therapy, having shown clinical efficacy in malignant melanoma and renal cell carcinoma (306,307), 

for which it is now FDA approved. Additionally, it has been used to enhance the efficacy of 

immunotherapy including vaccines and adoptive T-cell therapy (308). However, its use has several 

limitations. In monotherapy and in the context of adoptive immunotherapy, IL-2 is used at MTD, 

which induces a systemic inflammatory response, with significant morbidity including multiple 

organ toxicities, most significantly the heart, lungs, kidneys, and central nervous system. Other 

manifestation of IL-2 toxicity is capillary leak syndrome, resulting in a hypovolemic state and fluid 

accumulation in the extravascular space (309). Because ovarian cancer patients exhibit spontaneous 

antitumor immune response, IL-2 therapy may be a rational approach to activate pre-existing 

immunity or enhance immunomodulatory therapy. Intraperitoneal IL-2 was used in a phase I/II 

study in 41 patients with laparotomy-confirmed persistent or recurrent ovarian cancer. Weekly IL-2 

infusion was relatively well tolerated and demonstrated evidence of long-term efficacy in a modest 

number of patients. Twenty percent of patients had a negative third look, i.e., exhibited pathologic 
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evidence of complete response and no residual disease at repeat abdominal exploration (310). 

Rejecting pre-therapy T-cell activity, low expression of the CD3-zeta chain in peripheral blood T 

cells prior to therapy, a biomarker of T-cell functional suppression by tumor derived factors, 

predicted poor of response to IL-2 therapy (311). Importantly, IL-2 is essential for the peripheral 

homeostasis of CD4+CD25+Foxp3+ Treg cells, and it is now known that IL-2 is also an important 

activator of Treg suppressive activity in vivo (312). After IL- 2 cessation, the number of Treg cells 

more efficiently dropped in patients who experienced a clinical response than in non responders 

(313). Together, these data indicate that patients with pre-existing tumor-reactive, functional T cells 

and low prevalence of Treg are those likely to benefit from IL-2 monotherapy. In another phase II 

study, 44 patients with EOC responding to primary chemotherapy were treated with subcutaneous 

low dose IL-2 and oral retinoic acid for 1 year and with intermittent schedules for up to 5 years. 

Patients experienced significantly improved progression-free and overall survival relative to 82 

well-matched controls treated with standard therapy (314). Alternate cytokines that selectively 

support activation of effector cells without promoting Treg cells may prove even more effective. IL-

7, IL-15, IL-18 and IL-21 provide possible alternatives to IL-2; however, their function and clinical 

use are still under investigation. The function of IL-7 has not been completely appreciated until 

recently. It serves an essential role not only in lymphopoeisis but also in T-cell activity and 

maintenance and can promote antitumor immunity (315,316). A recent study using a mouse model 

of lung cancer examined the effects of IL-7 administration and found significant reduction in tumor 

burden, with a correlating increase in CD4+ and CD8+ T cells (317,318). IL-15 has similar functions 

to IL-2 in its effects of T cells, but also potentiates NK cell maturation and activity (319). IL-21 is a 

promising cytokine as it enhances the cytolytic activity of CD8+ T cells and NK cells but also 

modulates the activity of CD4+ T cells and B cells and suppresses Treg cells (320). A recent phase II 

trial demonstrated that administration of IL-21 was associated with antitumor activity in patients 

with unresectable metastatic melanoma (321). IL-18 is a novel cytokine that has been shown to 

have very potent immunostimulatory effects, including induction if IFN-, TNF-, IL-1, and 

GM-CSF, augmentation of NK cell cytotoxicity, activation of effector T cells, and promotion of TH1 

responses, which are critical for tumor rejection. In a recent study, rhIL-18 was found to expand 

human effector T cells and reduce human Treg in a mouse model transplanted with human peripheral 

blood lymphocytes (322). Clearly this biology points to a strong potential for the use of IL-18 in 

cancer immunotherapy. The immunostimulatory activity of IL-18 in vivo has been demonstrated in 

non-human primates (323) and humans (324). In phase I clinical evaluation, recombinant human 

(rh)IL-18 was safely administered as monotherapy to 28 patients with solid tumors, with minimal 

dose- limiting toxicities and two partial tumor responses (324). Toxicity has generally been mild to 
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moderate even with repeat administration and a maximum tolerated dose has not been reached to 

date (325). IL-18 enhanced activation of peripheral blood CD8+ T cells, NK cells and monocytes 

and induced a transient increase in the frequency and expression level of Fas ligand (FasL) in 

peripheral blood CD8+ T cells and NK cells (325). The relatively minor toxicity of rhIL-18, 

compared with other immunostimulatory cytokines that have undergone clinical development, is 

remarkable and renders IL- 18 a well-suited drug for combinatorial approaches with chemo- 

therapy. In mice with established ovarian carcinoma, administration of IL-18 alone was shown to 

have modest effects on anti-tumor immunity, but when combined with pegylated liposomal 

doxorubicin chemotherapy, its effects were greatly enhanced. Clearly the use of IL-18 therapy with 

other immunogenic chemotherapy warrants further investigation. A phase I study is currently under 

way to test this hypothesis. 

 

TOLL-LIKE RECEPTOR AGONISTS 

 

One of the most basic mechanisms for activation of the immune system is through the Toll-like 

receptors (TLRs). Antitumor immunity requires robust enhancement of the effector T-cell response 

induced by tumor antigenic peptides and control or elimination of Treg suppressive function. Thus, 

the combination of peptide-based vaccines with TLR agonists, in particular a TLR8 agonist, may 

greatly improve the therapeutic potential of cancer vaccines. Several clinical trials have 

demonstrated that administration of agonists for TLRs 3,4,7 and 9 can enhance activity of cancer 

vaccines in the context of non-small cell lung cancer (326), non-Hodgkins lymphoma (142,143), 

glioblastoma (327), and superficial basal cell carcinoma (328). Multiple TLR agonists have also 

been explored in melanoma. TLR 7 or 9 agonists were used in combination with melanoma antigen 

vaccine in advanced melanoma (262,329,330). In addition, the TLR ligand Ribomunyl has been 

used in conjunction with a dendritic cell vaccine in a phase I/II trial, which reported a median 

survival of 10.5 months in patients with advanced melanoma (331). The use of TLR agonists in the 

clinic requires careful preclinical evaluation. For example, in the absence of specific cell-mediated 

antitumor immunity, non-specific activation of inflammation could in fact promote tumor growth 

rather than reducing it, because of the potent tumor-promoting effects of inflammation (332). Thus, 

combinations with active immunization or adoptive immunotherapy seem ideal, as these approaches 

greatly benefit from concomitant activation of innate immune response. If combination with 

chemotherapy is designed, it seems rational to combine TLR agonists with chemotherapy drugs that 
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DC ACTIVATION VIA CD40  

 

The CD40 receptor is a member of the TNF receptor family expressed by antigen-presenting cells 

and B cells. Its ligand, CD40L, is transiently upregulated on activated T cells, activated B cells and 

platelets; and under inflammatory conditions is also induced on monocytes and other innate 

immune cells. CD40 is a potent stimulator of antigen presenting cells and cellular immunity, and 

CD40/CD40L interaction is critical in the development of protective anti-tumor immunity. Mice 

deficient in CD40 fail to mount a protective anti- tumor immune response following vaccination. In 

addition, neutralizing anti-CD40L monoclonal antibody can abrogate the therapeutic value of potent 

tumor vaccines (336). Vice versa, a CD40 agonistic antibody was shown to be able to overcome 

peripheral tolerance and generate antitumor immunity able to reject tumors (337). The main 

mechanism of immune stimulation by CD40 ligands is activation of DCs resulting in increased 

survival, up-regulation of costimulatory molecules, and secretion of critical cytokines for T cell 

priming such as IL-12. This promotes antigen presentation, priming and cross-priming of CD4+ and 

CD8+ effector T cells (338). However, agonistic anti CD40 antibody alone can have adverse effects 

on antitumor immunity as in the mouse it can ultimately impair the development of tumor-specific 

T cells (339) or accelerate the deletion of tumor-specfic cytotoxic lymphocytes in the absence of 

antigen vaccination (340). CD40 ligation could thus be best used in combinatorial approaches 

including vaccines and TLR agonists (338,341). Based on the immunomodulatory effects of select 

chemotherapy agents, the combination of CD40 ligands with chemotherapy is also a rational 

approach that warrants thorough investigation. For example, in mice with established solid tumors, 

the administration of gemcitabine with CD40L triggered potent antitumor immune response that 

eliminated tumor burden, and these mice became also resistant to repeated tumor challenge (342). 

Interestingly, the CD40 receptor is expressed on a variety of tumors including melanoma, lung, 

bladder and prostate cancers, but also cervix (343) and the majority of ovarian cancers (344-348). 

Because tumor cells also express the CD40L, it is likely that low-level constitutive engagement of 

CD40 facilitates malignant cell growth. However, transient potent activation of CD40 on 

carcinomas with ligand results in direct anti-proliferative effects and apoptosis. CD40 agonists 

promoted apoptosis and resulted in growth inhibition of ovarian carcinoma lines expressing CD40. 

CD40 ligation also induced NF-kB activation and TNF-α, IL-6 and IL-8 production in most EOC 

cell lines (344,349). In vivo, administration of rhuCD40L inhibited the growth of several ovarian 

adenocarcinoma xenografts in severe combined immunodeficient mice through a direct effect 

causing apoptosis, fibrosis and tumor destruction. The antitumor effect of rhuCD40L was further 
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increased by Cisplatin (350). Interestingly, rIFN-g enhanced expression of CD40 on tumor cells and 

the efficacy of on EOC cell lines (345). Thus, CD40 agonists can have direct cytotoxic effects on 

tumors, even in the absence of any additional immune responses and cells. Early clinical experience 

with monoclonal IgG agonistic antibodies is encouraging. In a recent phase I study, patients with 

advanced solid tumors received single doses of CD40 agonistic antibody CP-870,893 intravenously. 

CP-870,893 was well tolerated; the most common adverse event being cytokine release syndrome 

including chills, rigors, and fever; 14% of all patients and 27% of melanoma patients had objective 

partial responses (351).  

 

ACTIVATION OF T EFFECTOR CELLS VIA BLOCKADE OF 

INHIBITORY CHECKPOINTS  

 

T-cell activation is triggered through the T-cell receptor by recognition of the cognate antigen 

complexed with MHC. T-cell activation is regulated by complex signals downstream of the diverse 

family of CD28 family immune receptors, which includes costimulatory (CD28 and ICOS) and 

inhibitory receptors (CTLA-4, PD-1 and BTLA). CD28 and CTLA-4 share the same ligands, B7-1 

(CD80) and B7- 2 (CD86), whereas PD-1 interacts with PD ligand 1 (PD-L1), also named B7-H1, 

and PD-L2, also named B7-DC. Simultaneous recognition of the cognate MHC–peptide complex 

by the TCR (signal 1) and CD80 or CD86 by CD28 (signal 2) results in T-cell activation, 

proliferation, and differentiation, as well as effector cytokine production. PD-1 and CTLA-4 are 

induced on T cells following a TCR signal and result in cell cycle arrest and termination of T-cell 

activation. The importance of the PD-1 and CTLA-4 pathways in the physiologic regulation of T-

cell activation is demonstrated by the autoimmune diseases occurring in CTLA-4 and PD-1 

knockout mice (352) and further illustrated by the inflammatory side effects that can result from a 

therapeutic blockade of CTLA-4 in vivo, both in animal models and in humans (353-356). The use 

of blocking CTLA-4 or PD-1 mAbs can sustain the activation and proliferation of tumor-specific T 

cells, preventing anergy or exhaustion and thereby allowing the development of an effective tumor-

specific immune response 
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3. miRNAs: NEW PLAYERS IN CANCER BIOLOGY 

 
After the initial discovery in 1993, when a small RNA encoded by the lin-4 locus was associated 

with the developmental timing of the nematode Caenorhabditis elegans by modulating the protein 

lin-14 (357), the miRNA field had undergone a long period of silence. It took several more years to 

appreciate that these small (19-22 nt) RNA molecules are expressed in several organisms, including 

Homo sapiens, are highly conserved across different species, highly specific for tissue and 

developmental stage, and that they play crucial functions in the regulation of important processes, 

such as development, proliferation, differentiation, apoptosis and stress response (Figure 13). 

 

 
 

Figure 10. miRNAs are small RNA molecules, about 19-25 nucleotides long, that are highly conserved in the genomes 
of different species. The mature form (in red) derives from a partially double stranded precursor characterised by a 
hairpin structure. 

 
In the last few years, miRNAs have taken their place in the complex circuitry of cell biology, 

revealing themselves as key regulators of gene expression. miRNA genes represent approximately 

1% of the genome of different species, and each can bind to and regulate hundreds of different 

conserved or non-conserved targets: it has been estimated that about 30% of an organism’s genes 

are regulated by at least one miRNA (358). 
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miRNAs are transcribed for the most part by RNA Polymerase II as long primary transcripts 

characterised by hairpin structures (pri-miRNAs), which are processed in the nucleus by the RNAse 

III Drosha into 70-100 nt long pre-miRNAs. These precursor molecules are exported by an Exportin 

5-mediated mechanism to the cytoplasm, where an additional step mediated by the RNAse III Dicer 

generates a dsRNA of approximately 22 nucleotides, named miRNA/miRNA*. The mature single 

stranded miRNA product is then incorporated into the complex known as miRNP (miRNA-

containing ribonucleoprotein complex), miRgonaute or miRISC (miRNA-containing RNA-induced 

silencing complex), whereas the other strand is usually subjected to degradation. In this complex, 

the mature miRNA is able to regulate gene expression at post-transcriptional level, binding through 

partial sequence complementarily for the most part to the 3’UTR of target mRNAs, and leading at 

the same time to some degree of mRNA degradation and/or translation inhibition (359) (Figure 14). 

 

 

 
 

Figure 11. Biogenesis, processing, and maturation of miRNAs. miRNAs are transcribed mainly by RNA polymerase II 
as long primary transcripts characterised by hairpin structures (primiRNAs) and processed in the nucleus by RNAse III 
Drosha in a 70-nucleotide-long pre-miRNA. This precursor molecule is exported by the Exportin 5 to the cytoplasm, 
where RNAse III Dicer generates a dsRNA of approximately 22 nucleotides, named miRNA/miRNA*. The mature 
miRNA product is then incorporated in the complex known as miRISC, whereas the other strand is usually subjected to 
degradation. As part of this complex, the mature miRNA is able to regulate gene expression binding through partial 
homology the 3’UTR of target mRNAs and leading to mRNA degradation in case of perfect matching or translation 
inhibition when there is partial complementarity. RISC, RNA-induced silencing complex. 
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Croce at al. identified putative tumour suppressors at chromosome 13q14 that were involved in the 

pathogenesis of Chronic Lymphocytic Leukaemia (CLL), the most common human leukaemia in 

the Western world. Deletions of chromosome 13 at band q14 are detected by cytogenetic studies in 

approximately 50% of CLL, while loss of heterozygosity (LOH) studies identified deletions at 

13q14 in approximately 70% of CLLs. They took advantage of chromosome translocations and 

small deletions to define a minimal critical region of deletion. However, they found that this critical 

region on 13q14 does not contain the expected protein coding tumour suppressor gene. Instead two 

non-protein coding miRNA genes, miR-15a and miR-16-1, that are expressed in the same 

polycistronic RNA were detected. This result indicated that the deletion of chromosome 13q14 

caused the loss of these two miRNAs, providing the first evidence that miRNAs could be involved 

in the pathogenesis of human cancer (360). Study of a large series of primary CLL showed knock 

down or knock out of miR-15a and miR-16-1 in approximately 69% of CLL. Since such alteration is 

present in most indolent CLL, they speculated that loss of miR-15a and miR-16-1 could be the 

initiating or a very early event in the pathogenesis of the indolent form of this disease (360). 

Immediately after these initial observations, Croce et al. mapped all the known miRNA genes and 

found that many of them are located in regions of the genome involved in chromosomal alterations, 

such as deletion or amplification, in many different human tumors. In several instances the 

presumed tumor suppressor genes or oncogenes, respectively, had failed to be discovered after 

many years of investigation (361). A rapidly increasing body of experimental evidence has 

subsequently demonstrated that this was not just a random association, but that miRNAs can have a 

causal role in tumourigenesis, acting as oncogenes or tumor suppressor genes depending on the 

target molecules they regulate and on the cellular context (Figure 15). 
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Figure 12. miRNAs as oncogenes or tumour suppressor genes. miRNAs can have oncogenic effects (oncomiRNA) 
when they target tumour suppressor genes. When an oncomiRNA is overexpressed, for example because the encoding 
gene is located in an amplified region of the genome, this will lead to down-regulation of the targets and to tumour 
formation (upper panel). Conversely, a miRNA can be characterised by tumour suppressor properties if the main target 
in that specific cellular context is an oncogene; in this case, if the miRNA expression is lost, for example because the 
encoding gene is located in a deleted region of the genome, the resulting effect will be tumourigenic (lower panel). In 
summary, what usually happens in a tumour is the overexpression of an oncogenic miRNA, and/or the loss of a miRNA 
with oncosuppressive properties. 

 
 
 
Examples of tumor suppressor miRNAs are miR-15 and miR-16-1 or let-7a, able to target 

respectively oncogenes as BCL2 (362) and RAS (363), HMGA2 (363,364) and MYC itself (365), 

whereas a well known oncomiRNA is miR-21, overexpressed in several human tumors and able to 

induce proliferation, invasion and metastasis by repressing the expression of oncosuppressor 

molecules, as TPM1 (366) and PDCD4 (367). Alterations in miRNAs expression are not isolated 

but rather appear to be the rule in human cancer. After the early studies indicating the role of 

miRNA genes in the pathogenesis of human cancer, different platforms have been developed to 

assess the global expression of miRNA genes in normal and diseased tissues, and profiling studies 

have been carried out to assess miRNA dysregulation in human cancer. This was an attempt to 

establish whether miRNA profiling could be used for tumor classification, diagnosis and prognosis. 



 

miRNA PROFILING IN CANCER DIAGNOSIS AND PROGNOSIS

 
Profiling of different cell types and tissues indicated that the pattern of miRNA expression is cell 

type and tissue specific, suggesting that the program regulating expression of miRNAs is 

exquisitely cell type dependent, and tightly associated with cellu

development. Some of the most important miRNAs which are 

listed in Table 6. 

 

 

 

Table 6. miRNAs aberrantly expressed in tumours. 
leukemia; MM, multiple myeloma; HCC, hepatocellular carcinoma.
 
 
 
The possible use of miRNA as biomarkers of diagnosis and prognosis is also strengthened by the 

relative stability of these small molecules, which enables them to be extracted and visualized not 

only from fresh or frozen samples, but also from archival paraffin embedded tissues (

which larger numbers of samples from diagnostic archives a

data are generally available. Moreover, it has been recently shown that

detected in biological fluids, as blood (

expression profile of circulating miRNAs from cancer patients in comparison with healthy subjects 

often reflects the pattern observed 
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type and tissue specific, suggesting that the program regulating expression of miRNAs is 

exquisitely cell type dependent, and tightly associated with cellular differentiation and 

development. Some of the most important miRNAs which are aberrantly expressed in tumo

 

miRNAs aberrantly expressed in tumours. CLL, chronic lymphocytic leukemia; AML, acute myelocytic 
multiple myeloma; HCC, hepatocellular carcinoma. 

The possible use of miRNA as biomarkers of diagnosis and prognosis is also strengthened by the 

relative stability of these small molecules, which enables them to be extracted and visualized not 

rom fresh or frozen samples, but also from archival paraffin embedded tissues (

which larger numbers of samples from diagnostic archives and more clinic-pathological follow up 

data are generally available. Moreover, it has been recently shown that 

detected in biological fluids, as blood (369,370,371), or in circulating exosomes (

expression profile of circulating miRNAs from cancer patients in comparison with healthy subjects 

observed in the tumor versus normal tissue (370). These reports
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evidence of a possible future use of circulating miRNAs as useful biomarkers for less invasive 

diagnostics. 

 

miRNA IN OVARIAN CANCER 

 
The first report of a putative involvement of miRNAs in the biology of human ovarian cancer was the 

genomic study performed by Zhang et al., who used an array comparative genomic hybridisation 

(aCGH) approach to identify miRNA loci gained/lost in ovarian cancer, breast cancer and melanoma 

(373). After this initial evidence, several groups have investigated the role of miRNAs in the 

pathogenesis of ovarian cancer, either as biomarkers, potential research tools or targets for specific 

therapies. miRNA let-7i was recently found to be a tumor suppressor significantly down-regulated in 

platinum resistant ovarian tumors, and let-7i gain-of-function restored drug sensitivity of chemoresistant 

ovarian cancer cells, thus representing a candidate biomarker and therapeutic target (374). An 

oncosuppressive role for miR-15/-16 has been described also in ovarian cancer, where these two miRNA 

regulate the expression of the oncogenic protein Bmi1 (375). In another study, 27 miRNAs significantly 

associated with chemotherapy response, showing that (similar to DNA methylation) miRNAs represent 

possible prognostic and diagnostic biomarkers for ovarian cancer (376). miR-214 has been reported to 

target PTEN thus contributing to cisplatin resistance (377). Interestingly, levels of Dicer and Drosha 

mRNA in ovarian-cancer cells have been recently associated with outcomes in patients with ovarian 

cancer (378). 

 

 

miRNAs/ANTI-miRNAs IN CANCER TREATMENT 

 
The evidence collected to demonstrate that miRNAs may represent valid diagnostic, prognostic and 

predictive markers in cancer. Indeed, aberrant miRNA expression correlates with specific bio-

pathological features, disease outcome and response to specific therapies in different tumor types. 

Considering the importance of miRNAs in development, progression and treatment of cancer, the 

potential usefulness of a miRNA-based therapy in cancer is now being exploited, with the attempt to 

modulate their expression, reintroducing miRNAs lost in cancer, or inhibiting oncogenic miRNAs by 

using anti-miR oligonucleotides (Figure 16). 
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Figure 13. miRNAs as therapeutic tools. The reintroduction by transfection of synthetic miRNAs lost during cancer 
development or progression or the inhibition of oncogenic miRs by using anti-miRNA oligonucleotides could help 
counteract tumour proliferation, extended survival, and the acquisition of a metastatic potential, thus representing 
potential therapeutic tools. 

 
For example, transfection of miR-15a/16-1 induces apoptosis in leukaemic MEG01 cells and 

inhibits tumour growth in vivo in a xenograft model (379), while the inhibition of miR-21 with 

antisense oligonucleotides generates a pro-apoptotic and antiproliferative response in vitro in 

different cellular models, and reduces tumor development and metastatic potential in vivo (380). 

Moreover, miRNAs involved in specific networks, as the apoptotic, proliferation or receptor-driven 

pathways, could likely influence the response to targeted therapies or to chemotherapy: inhibition of 

miR-21 and miR-200b enhances sensitivity to gemcitabine in cholangiocytes, probably by 

modulation of CLOCK, PTEN and PTPN12 (381). Beside targeted therapies and chemotherapy, 

miRNAs could also alter the sensitivity to radiotherapy, as recently reported by Slack’s group 

(382): in lung cancer cells, let-7 family of miRNAs can suppress the resistance to anticancer 

radiation therapy, probably through RAS regulation. Evidence described to date represents the 

experimental basis for the use of miRNAs as both targets and tools in anti-cancer therapy, but there 

are at least two primary issues to address to translate these fundamental research advances into 

medical practice: the development of engineered animal models to study cancer-associated 

miRNAs, and the improvement of the efficiency of miRNA/anti-miRNA delivery in vivo. Towards 

this aim, modified miRNA molecules with longer half-lives and efficiency have been developed, 

such as anti-miR oligonucleotides (AMOs) (383), locked nucleic acid (LNA)-modified 

oligonucleotides (384), and cholesterol-conjugated antagomirs (385). Interestingly, Ebert and 

colleagues (386) have recently described a new approach to inhibit miRNAs function: synthetic 
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mRNAs containing multiple binding site for a specific miRNA, called miRNA sponges, are able to 

mop up the miRNA preventing its association with endogenous targets. 

To improve the in vivo delivery of either miRNAs or anti-miRNAs, the methods that have been 

tested in pre-clinical studies over the last decades for short-interfering RNAs (siRNA) or short 

heteroduplex RNA (shRNA) (387) could be applied also to miRNAs. Moreover, the advantage of 

miRNAs over siRNA/shRNA is their ability to affect multiple targets with a single hit, thus 

regulating a whole network of interacting molecules. 
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4. PREVIOUS RESULTS 

 
The group where I conducted the thesis showed that intraperitoneally IGROV-1 tumor-bearing 

athymic mice treated weekly i.p. with CpG-ODN showed a significantly increased life span as 

compared to controls; however, all mice died with ascites (388). Interestingly, treatment of mice 

when they had developed ascites showed a reduced body weight (BW) the day after CpG-ODN 

administration. To further investigate this observation, IGROV-1-bearing mice with established 

ascites, i.e., increased abdominal volume and BW, were treated i.p. with a single injection of CpG-

ODN (20 µg/mouse) or saline, sacrificed in groups of 3 at different time points, and ascetic fluid 

removed for volume quantization and cell collection. Ascitic volumes continued to increase in 

control mice, whereas the volumes in treated mice declined shortly after treatment and accumulated 

thereafter at a slower rate than in controls (Figure 17A). At 96 h after CpG-ODN injection, the 

mean volume was increased up to 5-fold in controls and 2.5-fold in treated mice (from 1.7 ml to 8.7 

ml and 4.3 ml, respectively). Total number of live peritoneal cells collected from the ascitic fluid 

was rapidly and dramatically reduced in treated mice compared to control mice, with the reduction 

still detectable at 96 h after CpG-ODN treatment (Figure 17B, P<0.001). 

 

Figure 14. Effect of CpG-ODN treatment on ascites volume and cellularity. Ascites-bearing mice, treated i.p. with 
CpG-ODN or saline, were sacrificed at selected time points (3-6 mice/point), and ascitic fluid and cells collected. A) 
Ascites volume, plotted based on linear regression analysis and "best-fit" linear regression. Slopes of curves were 
compared using an unpaired t-test (p< 0.001); B) Number of live cells (mean ± SD) (* P<0.001); Open symbols: control 
mice; closed symbols: CpG-ODN-treated mice. 

 

It was also recently investigated the effects of CpG-ODN administered using different schedules on 

survival times of ascites-bearing mice. In two separate experiments, mice were i.p. treated with 

CpG-ODN or saline every 7th day for 4 weeks. Saline-treated mice became moribund for tumor 
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burden and were euthanized between days 18 and 24 after tumor cell injection (MST of 19.5 and 

20.5 days, in the two experiments, respectively), whereas CpG-ODN-treated mice were euthanized 

between days 21 and 130 (MST of 21 and 22.5 days and a T/C% =108 and 110 in the two 

respective experiments) (Figure 18A). When ascites-bearing mice were treated with CpG-ODN 

according to a more frequent schedule, i.e., 5 times/week for 3 or 4 weeks, survival was 

significantly increased compared with saline-treated groups (MST of 21 and 20.5 days for control 

mice in the two experiments, and 30.5 and 34 days for CpG-ODN-treated mice; T/C% of 145 and 

166 for 3 or 4 weeks of treatment, P=0.0023 and =0.0014, respectively) (Figure 18B).  

 

 

Figure 15. Effect of CpG-ODN treatment on survival and body weight. Kaplan-Meier plot of the percentage of 
survivors over time among IGROV-1 ascites-bearing mice treated with CpG-ODN (20 µg/mouse) or saline for 4 week 
severy 7th day (A) or 5 times/week (B). Open symbols: control mice; closed symbols: CpG-ODN-treated mice. 

 

In light of a reported direct effect of CpG-ODN on tumor cell death (389), IGROV-1 cells were 

tested for expression of TLR9 and for their response to CpG-ODN. Low-level expression of TLR9 

was detected both at the RNA (by reverse transcription-PCR) and protein (by FACScan analysis) 

levels, but neither viability nor proliferation was modified after CpG treatment at doses up to 10 

µg/ml, and levels of pro-inflammatory mediators (IL-8, TNF-α, and IL-1β) in the supernatant of 

CpG-ODN treated IGROV-1 cells were comparable to those of control cells. 
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Markedly elevated peritoneal VEGF levels can be present in malignant ascites of ovarian cancer 

patients (390), and blocking of VEGF has been reported to strongly reduce ascites volume (391). 

The peritoneum is now recognized as a dynamic cellular membrane with important functions, 

including secretion of cytokines and growth factors, such as IL-1, IL-6, KC, GM-CSF, and TNF. 

Moreover, the activation of different immune cells in the peritoneal cavity by CpG-ODN may 

trigger release of other cytokines, such as IL-10, IFN-γ or IL-12, in the peritoneal fluid. 

Bio-Plex assay of cytokines and growth factors in peritoneal fluid 24 h after CpG-ODN injection (3 

mice/group) indicated increased levels of IL-6, IL-10, IL-12 and IFN-γ over those in control mice 

but reduced levels of all of these cytokines in peritoneal fluids 48-96 h after CpG-ODN treatment 

similar to levels in control mice (Figure 19). 

 

 

 

 

Figure 16. Effect of CpG-ODN treatments on ascitic fluid concentrations of angiogenic factors and cytokines Ascites-
bearing mice were treated i.p. with CpG-ODN (T) or saline (C). At selected time points, CpG-ODN- and saline-treated 
mice (3 mice/point) were sacrificed, ascites fluids were recovered, and cytokine and angiogenic factor concentrations 
were determined by Bio-Plex assay.  
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CpG-ODN and DNA REPAIR 

 

It was recently demonstrated that CpG-ODN modulate genes involved in DNA repair, increasing 

their expression in TLR9-expressing immune cells, but down-regulating their expression in tumor 

cells and thereby increasing sensitivity to DNA-damaging chemotherapeutic agents.  

In silico analysis were conducted on tumor and immune cells from mice treated or not i.p. with 

CpG-ODN. 

In immune spleen cells from a list of 209 genes retrieved according to the “DNA repair” term from 

GeneOntology (www.geneontology.org, GO:0006281mouse), 189 were present in the GSE11202 

and 49 genes were found to be significantly modulated (FDR<0.05) during the course of CpG-ODN 

treatment, 43 of which were up-regulated (Figure 20). 

 

 

 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Microarray analysis of DNA repair pathway 
genes in spleen cells from CpG-ODN-treated mice. 
Mice were treated i.p. with CpG-ODN. RNA was 
extracted from spleen cells 1, 3, 9, 24 and 72 h after 
treatment and analyzed in-house-assembled 
oligonucleotide microarray platform. Of 209 genes 
involved in the DNA repair pathway
(GO:0006281mouse), 189 were present in the 
GSE11202 dataset and 49 of these genes showed 
significant modulation (FDR<0.05) compared to that in 
untreated control mice (0 h). Color coding for each 
gene is normalized to the mean of the arrays for 
untreated controls (0 h). Black represents no change 
compared to controls; green and red represent down 
and up-regulation with respect to the first time point, 
respectively. Changes from green to red to green 
indicate initialdownregulation, increased expression, 
and final downregulation, respectively. Each column 
represents a sample and each row, a gene. 
 



66 

 

In human IGROV-1 ovarian carcinoma cells among the 232 genes belonging to 

GO:0006281human, 227 genes available in our microarray platform clustered tumors according to 

saline or CpG-ODN treatment (Figure 21A) (accession number GSE23441), and the pattern of this 

gene modulation in CpG-ODN-treated mice reflected an increased susceptibility to DNA damage 

(75 of 114 genes modulated at a threshold of p<0.05, were down-regulated) (Figure 21B). 

 

 
 

Figure 18.  Microarray analysis of DNA repair pathway genes in IGROV-1 ovarian tumors from CpG-ODN-treated 
athymic mice. IGROV-1-bearing mice with established ascites, i.e., increased abdominal volume and body weight, were 
treated i.p. daily for 3 days with CpG-ODN or saline (control group) and sacrificed 24 h later. RNA, extracted from 
tumors was analyzed on Illumina human whole-genome beads chips; 227 genes in the DNA repair pathway 
(GO:0006281human) were detected in our microarray experiment (accession number GSE23441). (A) Unsupervised 
hierarchical clustering of tumors according to expression levels of 227 DNA repair genes. (B) Heat-map of modulated 
genes, 75 down- and 39 up-modulated (threshold p<0.05), in CpG-ODN-treated mice; (red: up-regulated genes; green: 
down-modulated genes). Each column represents a sample and each row, a gene. 
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Thus, microarray analyses indicate that locally administered TLR9 agonists regulate DNA repair 

genes in tumor cells in the opposite way than in immune cells. 

Results of microarray analyses were validated by examining on tumors from CpG-ODN-treated and 

control mice the expression of the gene products RAD51, a key protein in the homologous 

recombination DNA repair pathway (392), and SIRT1, whose activity promotes homologous 

recombination (393). RAD51 and SIRT1 proteins decreased their expression in treated mice as 

compared to controls (Figure 22). 

 

 
 

Figure 19. Western blot analysis of DNA repair proteins in IGROV-1 tumor cells adhering to the peritoneal wall after 
i.p. injection of CpG-ODN. Protein expression level of SIRT-1 (A), Rad51 (B) in IGROV-1 ovarian cancer cells from 
athymic mice treated daily for 3 days with CpG-ODN or saline (4 mice/group). Vinculin was used to normalize protein 
loading per lane. 
 
 

To evaluate whether CpG-ODN-induced DNA repair gene modulations, observed in IGROV-1 

microarray analysis, were relevant to increase the cell sensitivity to DNA damages, among the 

genes found differentially modulated between the CpG-ODN-treated and untreated IGROV-1 

tumors, a set of 27 gene with a level of FDR less than 0.01 and a fold difference of more than 1.5 

was selected (Figure 23) and the average expression of both CpG-ODN-treated and untreated 

tumors was calculated for each gene. 
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Figure 23. Heat-map of the 27 modulated genes in the DNA repair pathway obtained in IGROV-1 ovarian tumors from 
CpG-ODN-treated athymic mice. 

 
 

The effect of CpG-ODN treatment on the antitumor activity of Cisplatin was evaluated to test for 

correlation between DNA repair gene down-modulation and sensitivity to DNA-damage-inducing 

drugs. 

IGROV-1 ovarian tumor–bearing athymic mice were used in these experiments, as IGROV-1 cells 

are sensitive to Cisplatin (394) and as CpG-ODN in this model has been shown to prolong survival 

of mice with bulky disease, inducing an activation of different effector cells and cytokines of innate 

immunity at the site of tumor growth (388, 395). Mice were treated i.p. with CpG-ODN, Cisplatin, 

or both 8 days after tumor cell injection, when ascites start to form. Analysis of the effect of the 

combined treatment revealed a significant (P < 0.0001) increase in life span compared with the use 

of either reagent alone (Figure 24).  
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Figure 24. Kaplan-Meier plot of percent survivors over time among IGROV-1 ovarian tumor-bearing athymic mice. 
Mice were treated i.p., starting from 8 days after tumor cell injection, with CpG-ODN (20 µg/mouse, 5 days/week for 4 
weeks), cis-platinum (DDP, 3 mg/Kg i.p., once per week for 4 weeks) or both. Control mice received saline. Saline-
treated mice (○); CpG-ODN-treated mice (◊), cisplatin-treated mice (▲); CpG-ODN plus cisplatin-treated mice (■). 
Experimental groups consisted of 8-10 mice group. 
 

 

 
It should be noted that the modulation of DNA repair genes in human ovarian IGROV-1 tumors and 

the increase in the antitumor effect of Cisplatin and CpG-ODN against IGROV-1 human ovarian 

tumor xenografts in mice were observed in mice injected with a CpG-ODN sequence specific for 

murine TLR9, making unlikely the possibility that the modulation was related to a direct interaction 

of CpG-ODN with tumor cells, as different DNA motifs are required for stimulation of mouse and 

human cells by CpG-ODN (76, 396). 

Down-modulation in DNA repair genes in tumor cells in the analyses thus far involved the 

administration of CpG-ODN at or near the tumor site. 

These findings provide the first evidence that the tumor microenvironment can sensitize cancer cells 

to DNA-damaging chemotherapy, thereby expanding the benefits of CpG-ODN therapy beyond 

induction of a strong immune response, underscoring the need for further investigation of the 

mechanisms and of the synergistic effect of CpG-ODN in combination with DNA-damaging drugs 

in cancer treatment. 
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MATERIALS AND METHODS  
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CELLS 

 

Human IGROV-1 ovarian tumor cells (gift from Dr. J. Benard, Institute Gustave Roussy, Villejuif, 

France) were adapted to growth i.p. and maintained by serial i.p. passage of ascitic cells into healthy 

mice as described (397,398). Every 6 months, cells were authenticated by morphologic inspection 

and by FACS analysis for the presence of specific markers. For in vitro experiments, IGROV-1 

cells were maintained in RPMI medium 1640 supplemented with 10% FCS (Sigma) and 2 mM 

glutamine (Cambrex, East Rutherford, NJ, USA) at 37uC in a 5% CO2 air atmosphere. Mouse 

leukemic monocyte/macrophage RAW 264.7 cells (American Type Culture Collection) were 

cultured in DMEM (Sigma) supplemented with 10% FCS (Sigma) and 2 mM glutamine (Cambrex). 

 

 

MICE 

 

Eight- to 12-week-old female Swiss nude (athymic) mice (Charles River, Calco, Italy) were 

maintained in laminarflow rooms at constant temperature and humidity, with food and water given 

ad libitum. Experiments were approved by the Ethics Committee for Animal Experimentation of the 

Fondazione IRCCS Istituto Nazionale Tumori of Milan according to institutional guidelines. 

 

 

DRUGS AND ANTIBODIES 

 

Purified phosphorothioated ODN1826 (59-TCCATGACGTTCCTGACGTT-39) containing CpG 

motifs was synthesized by TriLink Biotechnologies (San Diego, CA, USA). Phosphorothioate 

modification was used to reduce susceptibility of the ODN to DNase digestion, thereby significantly 

prolonging its in vivo half-life. Cisplatin was purchased from Teva Italia (Milan, Italy). Anti-

HDAC4 (D15C3), anti-p21 (sc-397) and anti-GAPDH (GAPDH-71.1) antibodies were purchased 

from Cell Signaling Technology (Danvers, MA, USA), Santa Cruz Biotechnology (Santa Cruz, CA, 

USA) and Sigma (St. Louis, MO, USA), respectively. 

The following drugs were used: Bevacizumab (Roche, Basel, Switzerland); Poly(I)Poly(C) 

(Amersham Biosciences, Piscataway, NJ, USA); Cetuximab (ErbituxW, Merck Serono, Darmstadt, 

Germany); Gefitinib (LC Laboratories, Woburn, MA, USA). Lyophilized ODN1826 and 

Poly(I):Poly(C) were dissolved in sterile water at a concentration of 10 mg/ml and 2 mg/ml, 

respectively, and stored at −20°C until use. Gefitinib was dissolved in DMSO (10% v/v final 
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concentration) and diluted in carboxymethylcellulose (0.25% w/v) to a final concentration of 10 

mg/ml. Bevacizumab, Cetuximab and Cisplatin (purchased in their commercial formulation) were 

diluted in 200 µl of sterile saline at the indicated concentrations just before administration. 

 

 

miRNA EXTRACTION FROM TUMOR SAMPLES 

 

miRNAs were extracted from the IGROV-1 xenograft tumors used for gene expression analysis or 

from a replica of the in vivo experiment (397). Briefly, solid i.p. masses were mechanically 

disrupted and homogenized in the presence of QIAzol Lysis reagent (Qiagen, Valencia, CA, USA) 

using a Mikrodismembrator (Braun Biotech International, Melsungen, Germany). RNA was 

extracted using the miRNeasy Mini kit (Qiagen) according to the manufacturer’s instructions. RNA 

concentrations were measured with the NanoDrop ND-100 Spectrophotometer (NanoDrop 

Technologies, Wilmington, DE, USA), while RNA quality was assessed with the Agilent 2100 

Bioanalyzer (Agilent Technologies, Palo Alto, CA USA) using the RNA 6000 Nano kit (Agilent). 

Samples included in the present analysis had a RIN (RNA Integrity Number) score > 7 and a 

28S:18S rRNA ratio ~ 2:1. 

 

 

miRNA EXPRESSION PROFILING 

 

Mature miRNAs were detected with the Illumina Human_v2 MicroRNA expression profiling kit, 

based on the DASL (cDNAmediated Annealing, Selection, Extension, and Ligation) assay, 

according to the manufacturer’s instructions (Illumina Inc., San Diego, CA, USA). Briefly, 600 

ng/sample total RNA was converted to cDNA followed by annealing of a miRNA-specific 

oligonucleotide pool consisting of: i) a universal PCR priming site at the 59 end; ii) an address 

sequence complementary to a capture sequence on the BeadArray; and iii) a miRNA-specific 

sequence at the 39 end. After PCR amplification and fluorescent labeling, probes were hybridized 

on Illumina miRNA BeadChips, washed, and fluorescent signals were detected by the Illumina 

BeadArrayTM Reader. Data were collected using BeadStudio V3.0 software. Raw and normalized 

data are available on the Gene Expression Omnibus website with accession numbers GSE41783 and 

GSE23441 for miRNA and gene expression profiling, respectively. 
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REAL-TIME QUANTITATIVE PCR (RT-qPCR) 

 

RT-qPCR microRNA assays specific for hsa-miR-18a, hsamiR- 18b, hsa-miR-140-5p, hsa-miR-

101, hsa-miR-556-3p, hsamiR-424, hsa-miR-136, hsa-miR-340, hsa-miR-302b were purchased 

from Exiqon (Vedbaek, Denmark). RT-qPCR was performed using the miRCURY LNA Universal 

RT microRNA PCR system (Exiqon) according to the manufacturer’s instructions. Total RNA (20 

ng) was polyadenylated and reverse-transcribed at 42uC (60 min), followed by heat-inactivation at 

85uC (5 min) using a poly-T primer containing a 59 universal tag. The resulting cDNA was diluted 

80-fold and 8 ml used in 20-ml PCR amplification reactions at 95uC for 10 min, 40 cycles of 95uC 

for 10 sec, and 60uC for 60 sec. Results were normalized with snord48 (Assay ID:203903). P-

values were calculated using two-tailed Student’s t-test. 

 

 

BIOINFORMATICS ANALYSIS 

 

Analyses were performed using BRB-Array Tools v4.0 stable release developed by Dr. Richard 

Simon (NCI) and the BRBArray Tools development team (EMMES Corp.) and the R package 

(http://www.bioconductor.org/). The same data-processing was used in both miRNA and gene 

expression profiling to improve data integration. Quantile normalization was used to correct 

experimental distortions. A detection threshold of p,0.05 was set for each gene and miRNA. Probes 

detected in less than 50% of the samples were eliminated from the analysis. Genes and miRNAs 

differentially expressed were identified using a randomvariance t-test, which allows computation of 

a t-test statistic for each detected miRNA and genes between the classes of samples under 

investigation without assuming that all miRNAs have the same variance (399). To limit the number 

of false-positive findings, miRNAs and genes were considered statistically significant at a false-

discovery rate (FDR) < 0.1. To identify the most likely targets, mRNA and miRNA expression data 

were integrated using the MAGIA web tool (400). A parametric linear correlation measure 

(Pearson’s correlation coefficient, recommended for normally distributed data and a sample size > 

5) was used to assess the degree of anti-correlation between miRNA and gene expression data. 
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IN SILICO BIOINFORMATICS ANALYSES 

 

Two publicly available datasets GSE27290 (401) and GSE25204 (402) reporting miRNA 

expression and clinical annotated data were downloaded from the Gene Expression Omnibus (GEO) 

database. The former dataset consists of 62 diagnosed patients with stage III or IV serous ovarian 

cancer profiled on a precommercial version of miRNA chips (GPL7341) designed on miRBase 9.1. 

Raw array data were processed using GeneSpring software (Agilent) and quantile-normalized. The 

latter dataset reports profiling of 85 stage III or IV epithelial ovarian cancers, divided into a training 

set (55 cases) and test set (30 cases), profiled with Illumina human_v2 MicroRNA chips. Raw data 

were processed and quantile-normalized using BeadStudio V3.0 software. Non-biological 

experimental variations between training and test sets were adjusted using ComBat (403). 

 

 

miRNA TRANSFECTION AND CELL VIABILITY ANALYSIS 

 

IGROV-1 cells seeded in 6-well plates at 26105 cells/well were transfected with miRCURY LNA 

inhibitors of hsa-miR-424 or hsa-miR-340 or negative control A (Exiqon; final concentration, 100 

nmol/L) using SiPort Neo-FX (Ambion) according to the manufacturer’s instructions, or with hsa-

miR-302b precursor or negative control #1 pre-miR (Ambion; final concentration, 50 nmol/l). 

Transfections were verified by qRT-PCR as described above. Cell viability after cisplatin treatment 

was assessed by propidium iodide staining and flow cytometry (397). 

 

 

CELL GROWTH ASSAY 

 

IGROV-1 cells were transfected with 50 nmol/l pre-hsa-miR-302b or scrambled oligonucleotide 

using SiPort Neo-FX transfection reagent according to the manufacturer’s protocol (Ambion) and 

seeded in a 96-well plate at a density of 103, 1.5x103, and 2x103 cells/well. After 72 h of culture, 

cells were fixed with 10% trichloroacetic acid for 1 h at 4uC, washed 5 times with distilled and de-

ionized water, air-dried, and incubated with 100 ml sulforodamine (SRB) 0.4% (w/v) for 30 min. 

Cells were then washed 4 times with 1% acetic acid, air-dried, and 10 mM Tris solution (pH 10.5) 

added to dissolve the bound dye. Cell growth was assessed based on optical density (OD) at 550 nm 

using an ELISA microplate reader (Bio-Rad Lab, Inc., Hercules, CA, USA). 
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IMMUNOBLOTTING 

 

Transfected cells were lysed in lysis buffer containing 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 

1% Triton X-100 (Sigma), 10% (vol/vol) glycerol, 2 mM Na-orthovanadate, 10 mM leupeptin, 10 

mM aprotinin, 1 mM phenylmethylsulfonyl-fluoride, 100 mM Na-fluoride, and 10 mM Na-

pyrophosphate for 30 min at 4uC. Insoluble material was removed by 10-min centrifugation at 

15,500 6 g at 4uC. Protein concentrations were determined using the Coomassie technique. Equal 

amounts of total lysates (20 mg) were loaded and separated on 10% precast NuPage SDS Bis-Tris 

gels (Invitrogen) and transferred to PVDF membranes (Millipore, Billerica, MA, USA). Western 

blots were performed with the indicated antibodies, and binding was detected with peroxidase-

conjugated secondary antibodies and chemiluminescence ECL (GE Healthcare, Little Chalfont, 

UK) according to the manufacturer’s instructions.  

 

PLASMID CONSTRUCTION 

 

For luciferase reporter experiments, a 1017-bp region of the HDAC4 39 untranslated region 

including the binding site for hsamiR- 302b was amplified from IGROV-1 cells. The PCR product 

was digested with XbaI and cloned into the reporter plasmid pGL3 control (Promega, Madison, WI, 

USA) downstream of the luciferase gene. Mutations into the hsa-miR-302b binding site of the 

HDAC4-39UTR were introduced using Quik-Change II Site-Directed Mutagenesis kit (Agilent 

Technologies, Santa Clara, CA). 

Primers for plasmid construction were: 

HDAC4-wt-Fw: 5’-AATTTCTAGAGGGGGACTTAATTCTAATCTCATT-3’. 

HDAC4-wt-Rw: 5’-AATTTCTAGATTTTGTGTCAGACCATTACGAA-3’. 

HDAC4-Mut- 

Fw:5’GCACTGGCTGGGAGTCAGCAAGCGCCGCGGGTATATCCCTTTGACGGAAACCCTG

-3’. 

HDAC4-Mut-Rw: 5’-

CAGGGTTTCCCTCAAAGGGATATACCCGCGGCGCTTGCTGACTCCCAGCCAGTGC-3’. 
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LUCIFERASE ASSAYS FOR TARGET AND PROMOTER IDENTIFIC ATION 

 

pGL3 reporter vector (200 ng) containing the hsa-miR-302b binding site, 40 ng of the phRL-SV40 

control vector (Promega), and 50 nmol/l miRNA precursors or scrambled sequence miRNA control 

(Ambion Inc, Austin, TX. USA) were co-transfected into IGROV 1 cells in 48-well plates. Cells 

were transfected with Lipofectamine 2000 (Invitrogen) according to the manufacturer’s 

instructions. Firefly luciferase activity was measured with a Dual Luciferase Assay Kit (Promega) 

48 h after transfection and normalized with a Renilla luciferase reference plasmid. Reporter assays 

were carried out in quadruplicate. Data (mean6S.E.M.) were analyzed using unpaired Student’s t-

test. 

 

 

ANTIBODY-DEPENDENT CELLULAR CYTOTOXICITY (ADCC) ASS AY 

 

IGROV-1 cells were treated or not (controls) with Cetuximab (5 µg/ml for 72 h) and labeled with 

100 µCi 51Cr (PerkinElmer, Waltham, Massachusetts) for 1 h at 37°C. After 3 washes with PBS-5% 

FCS, cells were co-incubated for 4 h at 37°C with PBMC from 12 healthy donors (effector:target 

ratio 50:1) in 200 µl RPMI 1640 complete medium in triplicate 96-well U-bottomed plates in the 

presence of saturating concentrations of Cetuximab (10 µg/ml). Radioactivity of the supernatant (80 

µl) was measured with a Trilux Beta Scintillation Counter (PerkinElmer). 

Percent specific lysis was calculated as: 100 × (experimental cpm - spontaneous cpm)/ (maximum 

cpm - spontaneous cpm). 

 

 

FLOW CYTOMETRY 

 

IGROV-1 cells were exposed to Cetuximab (5 µg/m) for 72 h or left untreated, collected and 

incubated for 30 min at 4°C with anti-MICA, -MICB, -ULBP1, -ULBP2, ULBP4, -CD112, -

CD155, -ICAM-1, and HLA-E antibodies (R&D Systems; Minneapolis, MN. USA), followed by 

incubation with anti-mouse Alexa Fluor 448- conjugated reagent (Invitrogen). Samples were 

analyzed by gating on live cells using FACSCanto II system (Becton-Dickinson, San Jose, CA) and 

BD FACSDiva™ software (Becton-Dickinson). EGFR expression levels on IGROV-1 cells were 

determined after incubation for 30 min at 4°C with Cetuximab (10 µg/ml), followed by incubation 

with anti mouse Alexa Fluor 448-conjugated antibody (Invitrogen). 
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PHAGOCYTOSIS ASSAY 

 

Macrophage antibody-dependent cell-mediated phagocytosis (ADCP) was assessed by flow 

cytometry (404). Murine RAW264.7 effector cells were labeled with PKH26 (Red Fluorescent Cell 

Linker Mini Kit), while IGROV-1 target cells were labeled with PKH67 (Green Fluorescent Cell 

Linker Mini Kit) according to the manufacturer’s instructions (Sigma). IGROV-1 cells were then 

seeded in tissue culture flasks and exposed to Cetuximab (5 µg/ml for 72 h) or left untreated. At the 

end of treatment, target and effector cells were mixed at E:T ratio of 3:1 in complete medium and 

incubated for 12 h at 37°C in overload conditions of monoclonal antibody (10 µg/ml). Cells were 

collected, washed, resuspended in cold Ca2+ - and Mg2+ -free Dulbecco’s PBS and analyzed by flow 

cytometry (FACSCanto II, Becton- Dickinson). Phagocytosis of IGROV-1 cells by RAW264.7 

cells was evaluated in triplicate as percentage and intensity of macrophages positive for green 

fluorescence in at least three separate experiments. 

 
THERAPY STUDIES 

 

IGROV-1 human ovarian carcinoma cells were adapted to growth i.p. and maintained by serial i.p. 

passages of ascitic cells into healthy mice as described (2). Mice were injected i.p. with 2.5 × 106 

ascitic cells in 0.2 ml of  saline and treated 7 days later, when ascitic fluid began to accumulate, 

with CpG-ODN i.p. daily for 4 weeks (20 µg/ mouse) in combination with: Bevacizumab (5 mg/kg 

i.p. at 3–4 day intervals); Poly(I):Poly(C) (20 µg/mouse i.p. at 2–3 day intervals); Gefitinib (100 

mg/kg per os, 5 days/ week); or Cetuximab (1 mg/mouse i.p. at 3–4 day intervals). Single agents 

were also included and control mice received saline. In other experiments, mice with evident and 

established ascites were selected on the basis of a similar body weight (mean 27.9 ± 0.84 g, 31.4 ± 

0.9 g, first and second experiment, respectively) from large groups of mice injected i.p. 11–12 days 

before IGROV-1 cell injection and randomly divided into saline-treated (controls) and groups 

treated with CpG-ODN, Cetuximab (both with the schedules reported above) and Cisplatin (3 

mg/Kg i.p., once weekly for 4 weeks) or their combinations. Experimental groups (5–12 

mice/group) were inspected daily for ascites formation and weighed three times weekly. Mice were 

individually sacrificed by cervical dislocation prior to impending death. Day of sacrifice was 

considered day of death, and the median day of death (median survival time; MST) was calculated 

for each group. Anti-tumor activity was assessed as the ratio of MST in treated vs. control mice × 

100 (T/C%). 
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STATISTICAL ANALYSIS 

 

The clinical impact on overall survival (OS) and time to relapse (TTR) in GSE27290 and 

GSE25204, respectively, was assessed by the Kaplan-Meier method, and differences between 

curves were compared using a non-parametric (log-rank) test, with hazard ratios and 95% 

confidence intervals also computed. GraphPadPrism v5 (GraphPad software, La Jolla, CA, USA) 

was used for statistical analyses. Percent survivorship was estimated by the Kaplan-Meier product 

limit method and compared with the log-rank test. 
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1. miRNAs MEDIATE THE INCREASE OF SENSITIVITY TO 

CHEMOTHERAPY AFTER TREATMENT WITH CpG-ODN 

 
The results shown in this thesis represent the continuation of the studies on the anti-tumor activity 

and mechanism of action of oligonucleotides containing CpG-ODN sequences, which are TLR9 

agonists. 

As previously reported, in laboratory where I conducted my thesis, Sommariva et al. showed in a 

mouse model of human IGROV-1 ovarian cancer that treatment with a CpG-ODN down-modulated 

DNA repair genes in the tumor cells. Human IGROV-1 cells cannot interact direct manner with 

CpG-ODN due to the oligonucleotide’s species specificity and to the lack of TLR9 expression in 

this cell line, raising the possibility that peritumoral TLR9-expressing cells, such as innate immune 

cells, and/or endothelial cells, fibroblasts and epithelial cells, induce down-regulation of DNA 

repair genes in tumor cells through a direct cell-cell interaction and/or by secreting soluble factors.  

Based on these findings, one could assume that, as reported in Figure 21, CpG-ODN induced 

down-modulation of DNA repair genes in tumor cells might represent a physiologic phenomenon 

that occurs locally in the presence of an infectious event (Figure 25). When was detected an 

infectious agent via endosomal TLRs, immune cells might induce modulation of DNA repair genes 

in infected (or transformed) cells to facilitate their death (405). 

 



 

 

Figure 25. Hypothesized mechanisms of action of TLR9
infections. (A) TLR9-positive cells upon detecting an infectious agent regulate DNA repair genes to decrease their 
susceptibility to proapoptotic signals and 
their death. 

 

Among the most relevant regulators of gene expression, microRNAs have been recently described 

as crucial players in most physiological and pathologic

More than 1,200 human miRNAs have been identified and validated to date (

miRNAs can regulate about one-

progression of many diseases (4

implicated miRNAs in the response to chemotherapy 

modulation of genes involved in DNA repair 

Presumably, miRNAs evolved to allow organisms and cells to effectively deal with stress 

Identification of miRNAs that are used ‘‘physiologically’’ to modulate DNA repair genes may have 

therapeutic implications. To this aim, using 

of CpG-ODN on modulation of miRNAs in tumor cells, the integration of miRNA with mRNA 

expression modulation induced by CpG

response to chemotherapy.  

Hypothesized mechanisms of action of TLR9-expressing cells in modulating DNA repair genes during 
positive cells upon detecting an infectious agent regulate DNA repair genes to decrease their 

susceptibility to proapoptotic signals and (B) induce modulation of DNA repair genes in infected cells (C) to facilitate 

Among the most relevant regulators of gene expression, microRNAs have been recently described 

as crucial players in most physiological and pathological conditions. 

More than 1,200 human miRNAs have been identified and validated to date (

-third of the human genome, with involvement in development and 

406–409), indeed several experimental and clinical findings have

implicated miRNAs in the response to chemotherapy (409), demonstrating a role for miRNAs in

genes involved in DNA repair (410,411).  

Presumably, miRNAs evolved to allow organisms and cells to effectively deal with stress 

Identification of miRNAs that are used ‘‘physiologically’’ to modulate DNA repair genes may have 

therapeutic implications. To this aim, using our preclinical model IGROV-1, we analyzed the effect 

ODN on modulation of miRNAs in tumor cells, the integration of miRNA with mRNA 

expression modulation induced by CpG-ODN, and the importance of the identified miRNAs for the 
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expressing cells in modulating DNA repair genes during 
positive cells upon detecting an infectious agent regulate DNA repair genes to decrease their 

(B) induce modulation of DNA repair genes in infected cells (C) to facilitate 

Among the most relevant regulators of gene expression, microRNAs have been recently described 

More than 1,200 human miRNAs have been identified and validated to date (www.mirbase.org). 

third of the human genome, with involvement in development and 

and clinical findings have 

trating a role for miRNAs in 

Presumably, miRNAs evolved to allow organisms and cells to effectively deal with stress (412). 

Identification of miRNAs that are used ‘‘physiologically’’ to modulate DNA repair genes may have 

we analyzed the effect 

ODN on modulation of miRNAs in tumor cells, the integration of miRNA with mRNA 

of the identified miRNAs for the 
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2. miRNAs EXPRESSION  IN IGROV-1 OVARIAN TUMORS 

FROM CpG-ODN-TREATED MICE 

 
 
miRNA expression, using Illumina human miRNA_v2 array, was conducted with  RNA extracted 

24 hours after the final treatment from omentum-adherent tumors of human IGROV-1 ovarian 

carcinoma-bearing mice treated i.p. with CpG-ODN or saline beginning 3 days after evidence of 

ascites. Among the 1145 miRNAs represented on the Illumina chips, 567 mature miRNAs 

annotated on miRBase12.0, along with 150 putative miRNAs, were detected. Class comparison 

identified 23 miRNAs showing a FDR< 0.1 and a fold-change > 1.8 between CpG-ODN- and 

control-treated mice (Figure 26). 

 

 
 

 

Figure 26.  miRNA expression profiling in IGROV-1 ovarian tumors from CpG-ODN-treated athymic mice. Heat-map 
of 23 modulated miRNAs with FDR< 0.1 and fold change> 1.8 in CpG-ODN versus saline-treated mice. Among the 20 
miRNAs belonging to miRBase12.0, 16 were down- and 4 up-modulated in CpG-ODN-treated mice (red: up-regulated 
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miRNAs; green: down-modulated miRNAs). Columns and rows represent samples and miRNAs, respectively. 
doi:10.1371/journal.pone.0058849.g001 

 

Among the 23 miRNAs, 20 (16 up-regulated in saline- and 4 in CpG-ODN-treated mice) were 

annotated on miRBase12.0. The other three miRNAs were putative miRNA sequences derived from 

deep-sequencing approaches and were excluded from further analysis due to the lack of 

information. 

Results of microarray analyses were validate by quantitative Real-Time PCR (RT-qPCR) 

examining the expression of the 9 miRNAs on the RNA profiled in microarray analysis and on the 

RNA extracted from tumor samples obtained from a replica of the IGROV-1 tumor-bearing mice 

treated as above described. Two miRNAs, the hsa-miR-18a and hsa-miR-18b, were selected based 

on their reported role in the pathogenesis of ovarian cancer (413,414), and two, the hsa-miR-101 

and has-miR-302b for their described involvement in DNA repair processes and sensitivity to 

chemotherapy (401). The remaining 5 miRNAs were randomly selected. While RT-qPCR using the 

RNA profiled in microarray analysis validated all 9 miRNAs (Figure 27), RT-qPCR using the RNA 

of the replica confirmed 6 of 9 miRNAs (p<0.05). A trend was observed for hsa-miR-18b and hsa-

miR-101 but not for hsa-miR-136 (Figure 28). 
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Figure 27.  qRT-PCR validation of CpG-ODN miRNA profile. Comparison of hsa-miR-18a, hsa-miR-18b, hsa-miR-
140-5p, hsa-miR-101, hsa-miR-556-3p, hsa-miR-424, hsa-miR-136, hsa-miR-340, hsa-miR-302b expression obtained 
by miRNA expression profile and qRT-PCR on tumors collected from human IGROV-1 ovarian tumor-bearing mice 
treated daily i.p. with CpG-ODN or saline (control group). P values of differential expression between control and 
CpG-ODN-treated IGROV-1 xenografts are reported. qRT-PCR data are plotted as -∆Ct and array data are plotted as 
log2 (expression). 
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Figure 28. Independent biological validation of CpG-ODN miRNA profile. miRNA expression was assessed by RT-
qPCR on IGROV-1 xenografts collected from a replica of a previous experiment (397). RT-qPCR data are plotted as 2-
∆Ct. P-values were calculated using two-tailed Student’s t-test. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

3. UP-MODULATION OF hsa

ENHANCED CISPLATIN ACTIVITY

 

As previously reported, TLR9-expressing cells in the tumor microenvironment can sensitiz

cells to DNA-damaging Cisplatin treatment by down

whether miRNAs modulated by CpG

damaging agents, the 3 most significantly differentially expressed miRNAs in tumor samples 

obtained from the replica of the in vivo experiment (hsa

were examined. Hsa-miR-424 and hsa

treatment in our mRNA expression profile, while hsa

of-function phenotype was applied

miRNA profiling (see Figure 26).

To down-regulate the expression of

transfected with the respective LNA inhibitors or with a LNA negative control, whereas

cells were transfected with hsa-miR

control, to increase expression of hsa

treated with 50 mM of Cisplatin for 1 h. A

cell death, was analyzed by FACS

Evaluation of the effect of hsa

Cisplatin of IGROV-1 cells revealed 

 

Figure 29. Down-regulation of expression of hsa
in IGROV-1. Hsa-miR-340 LNA/hsa-miR
shown an increase of percent cell death. IGROV

MODULATION OF hsa -miR-302b IN IGROV

CISPLATIN ACTIVITY  

expressing cells in the tumor microenvironment can sensitiz

isplatin treatment by down-modulating DNA repair genes

whether miRNAs modulated by CpG-ODN treatment are involved in the sensitivity to DNA 

damaging agents, the 3 most significantly differentially expressed miRNAs in tumor samples 

m the replica of the in vivo experiment (hsa-miR-424, hsa-miR-340 and hsa

424 and hsa-miR-340 were found down-regulated

NA expression profile, while hsa-miR-302b was up-regulated.

was applied in order to mimic the up- or down-modulation observe

). 

expression of hsa-miR-340 and hsa-miR-424, IGROV-1 cells were tran

with the respective LNA inhibitors or with a LNA negative control, whereas

miR-302b precursor molecule or a scrambled oligonucleotide

to increase expression of hsa-miR-302b. After 72 hours to transfecti

isplatin for 1 h. After 24 h the percentage of sub-G1 cells, an indicator of 

analyzed by FACS. 

hsa-miR-340 and hsa-miR-424 down-regulation 

1 cells revealed no increase of cell death (Figures 29A and 

regulation of expression of hsa-miR-340 (A) and hsa-miR-424 (B) not enhance
miR-424 LNA - and scrambled transfected cells after C

shown an increase of percent cell death. IGROV-1 cells were transfected with 50 nmol/l hsa
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302b IN IGROV-1 CELLS 

expressing cells in the tumor microenvironment can sensitize cancer 

DNA repair genes. To evaluate 

the sensitivity to DNA 

damaging agents, the 3 most significantly differentially expressed miRNAs in tumor samples 

340 and hsa-miR-302b) 

regulated by CpG-ODN 

regulated. A gain- or loss-

modulation observed in 

1 cells were transiently 

with the respective LNA inhibitors or with a LNA negative control, whereas IGROV-1 

302b precursor molecule or a scrambled oligonucleotide, as 

After 72 hours to transfection, cells were then 

G1 cells, an indicator of 

regulation on sensitivity to 

A and 29B).  

 
enhance Cisplatin sensitivity 

transfected cells after Cisplatin treatment not 
1 cells were transfected with 50 nmol/l hsa-miR-340 LNA/hsa-miR-
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424 LNA or LNA control, and 72 h later, exposed to cisplatin (50 mM) for 1 h. Cell viability was assessed 24 h after 
cisplatin treatment by propidium iodide staining and flow cytometry. 

 

the increased expression of hsa-miR-302b significantly enhanced Cisplatin cytotoxicity, with an 

increase of cell death ranging from 26.5 to 43.9% as compared to negative scrambled-transfected 

cells (p>0.0001; Figure 30A), these experiments were repeated 6 time in independent manner. The 

transient transfection with hsa-miR-302b precursor molecule and control in IGROV-1 cells has not 

shown significant differences in cell growth (Figure 30B). This result excludes the possibility that 

hsa-miR-302b sensitized cancer cells to Cisplatin by stimulating cell proliferation. 

 

 

Figure 30. Forced expression of hsa-miR-302b increased Cisplatin sensitivity in IGROV-1 cells without affecting cell 
proliferation. (A) Percent cell death of hsa-miR-302b- and scrambled transfected cells after Cisplatin treatment. 
IGROV-1 cells were transfected with 50 nmol/l hsa-miR-302b precursor molecule or scrambled control, and 72 h later, 
exposed to Cisplatin (50 mM) for 1 h. Cell viability was assessed 24 h after Cisplatin treatment by propidium iodide 
staining and flow cytometry. Data represent mean 6 SEM of 6 independent experiments. ***p,0.0001 by paired t-test. 
(B) Evaluation of cell proliferation by SRB assay. Transfected cells were seeded in a 96-well plate at a density of 103, 
1.5x103, and 2x103 cells/well. Cell growth was assessed by optical density (OD) determination 72 h after transfection. 
Data represent mean 6 SEM of 3 independent experiments 
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4. HDAC4 IS DIRECTLY TARGETED BY hsa-miR-302b IN 

IGROV-1 CELLS 

 
Because miRNAs might play important regulatory roles modulating the expression of their 

predicted target genes, we searched for expression patterns regulated following CpG-ODN 

treatment by integrating the miRNA and mRNA expression profiles. Class comparison of whole 

gene expression, identified by Illumina HumanHT12_v3 beadchips using the same tumor extracted 

RNA assessed for miRNA profile, revealed 215 genes differentially expressed; 141 up-regulated in 

saline- and 74 in CpG-ODN treated mice (FDR< 0.1 and fold change> 1.8). We used freely 

available tool MAGIA (400) to identify functional miRNA-mRNA relationships. Specifically, the 

20 miRBase-annotated miRNAs were altogether compared to the whole-expression profile dataset 

using the union of three prediction target algorithms (Pita, miRanda and TargetScan) available on 

MAGIA. The Pearson’s correlation between each miRNA and its predicted target was then 

computed. Using Cytoscope the first 250 most significantly negatively correlated miRNA-mRNA 

interactions were identified, as a network. As shown in Figure 31, evidence of the concerted 

interplay of miRNAs regulated by CpG-ODN and their potential target mRNAs was observed for 

hsa-miR-302b and hsa-miR-374b, which are up-regulated in CpG-ODN-treated mice, and for 13 

miRNAs up-regulated in saline-treated mice (hsa-miR-135a, hsa-miR-136, hsa-miR-340, hsa-miR-

445-5p, hsa-miR-424, hsa-miR-96, hsa-miR-142-3p, hsa-miR-140-5p, hsa-miR-542-3p, hsa-miR-

18a, hsa-miR-18b, hsa-miR-101, and hsa-miR-99a). The latter 13 form a highly interconnected 

cluster where different miRNAs exert their biological functions targeting the same genes. 
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Figure 31. Computational integration of miRNA and gene expression profiles of tumor samples from CpG-ODN- and 
saline-treated mice. Network between 15 of 20 differentially expressed miRNAs and their anti-correlated target genes. 
The top 250 interactions were used to generate the network using the MAGIA tool. 

 
 
Among the 19 genes potentially targeted by hsa-miR-302b as determined using MAGIA (q value< 

0.1, Table 7), HDAC4, one of the top anti-correlated mRNAs, was evaluated as a potential 

molecular target of hsa-miR-302b associated with response to chemotherapy. 
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Table 7 
 
Entrez ID Gene Symbol miR Pearson correl q value 

2817 GPC1 hsa-mir-96 -0.989906 0.007708444 

26052 DNM3 hsa-mir-455-5p -0.985952 0.013812435 

92370 ACPL2 hsa-mir-18b -0.983891 0.013814912 

7756 ZNF207 hsa-mir-18a -0.982795 0.013814912 

23328 SASH1 hsa-mir-101 -0.982131 0.013814912 

9759 HDAC4 hsa-mir-302b -0.928993 0.024311363 
3908 LAMA2 hsa-mir-542-3p -0.928964 0.024311363 

87 ACTN1 hsa-mir-374b -0.928388 0.024400169 

1525 CXADR hsa-mir-18a -0.92831 0.024400169 

401548 SNX30 hsa-mir-96 -0.92819 0.024407453 

57695 USP37 hsa-mir-302b -0.927045 0.024727786 

58476 TP53INP2 hsa-mir-142-3p -0.926939 0.024727786 

51218 GLRX5 hsa-mir-140-5p -0.925766 0.025173524 

90441 ZNF622 hsa-mir-424 -0.925513 0.025216943 
 
 
 

We focused on HDAC4, gene that belongs of the histone deacetylase family, since it encodes a 

protein that reportedly mediates Cisplatin sensitivity in ovarian cancer. Resistance to platinum 

chemotherapy continues to be a major complication in the treatment of ovarian cancer. HDAC4 was 

found over-expressed in clinically resistant cells and considerably potentiated Cisplatin response 

when it was silenced. Indeed, following knockdown of HDAC4, apoptotic response to platinum 

treatment in resistant cells was significantly enhanced (415). Forced hsa-miR-302b expression in 

IGROV-1 cells decreased HDAC4 mRNA and protein levels (Figures 32 A and 32B), supporting 

the interaction analysis data. Luciferase reported assay was than performed to determine if the 

down-modulation of HDAC4 after miR-302b over-expression was a consequence of a direct 

interaction between the miRNA and the mRNA of HDAC4. To this aim, the target site of miR-302b 

was identified within the HDAC4 3’UTR according to Target Scan database (Figure 32C) and the 

matching site was cloned into pGL3 reporter plasmid (Promega) downstream the luciferase gene, 

and the activity detected by a renilla/firefly dual-luciferase assay. When the reporter vector 

containing the HDAC4 3’UTR was co-transfected in IGROV-1 cells with miR-302b precursor or a 

scrambled oligonucleotide as control, enforced miR-302b over-expression was found to decrease 

luciferase activity as compared to scrambled transfected cells (~50% reduction, p=0.0088, Figure 



 

32D), whereas mutated HDAC4-

the direct effect of hsa-miR-302b on HDAC4 gene expression.

Figure 32. Targeting of HDAC4 in IGROV
hsa-miR-302b or a scrambled oligonucleotide and RNA and proteins were collected after 72 h. HDAC4 mRNA levels 
were evaluated by RT-qPCR (A) and protein expr
normalize protein loading per lane. Data are representative of 6 independent experiments with superimposable results. 
(C) Schematic representation of the interaction between hsa
3’UTR and the mutated control. (D) Relative luciferase activi
with reporter vector and with hsa-miR-
luciferase activity in IGROV-1 cells for HDAC4
302b precursor molecule or negative scrambled control for 48 h.

 
Since IGROV-1 lack TLR9 expression, the effect of CpG

indirect, likely to be exerted on components of the immune system. 

underlines how miRNAs can be released in body fluids, especially associated to microvescicles 

(MVs) as exosomes (416), probably

types and tissue districts in the organism

302b have identical sequences, mature miR

CpG-ODN treatment might be of murin origin. 

CpG-ODN might act on TLR9 positive

could be released in ascitic fluid associated to MVs, ente

IGROV1 cells, where it induces increased response to C

-3’UTR escaped this inhibition (Figure 32E

302b on HDAC4 gene expression. 

 

Targeting of HDAC4 in IGROV-1 cells by hsa-miR-302b. IGROV-1 cells were transfected with 50 nmol/l 
302b or a scrambled oligonucleotide and RNA and proteins were collected after 72 h. HDAC4 mRNA levels 

qPCR (A) and protein expression was evaluated by Western blot (B). GAPDH was used to 
normalize protein loading per lane. Data are representative of 6 independent experiments with superimposable results. 
(C) Schematic representation of the interaction between hsa-miR-302b and the binding site on the wild

UTR and the mutated control. (D) Relative luciferase activity in IGROV-1 cells for HDAC4
-302b precursor molecule or negative scrambled control for 48 h. (E) 

1 cells for HDAC4-3’UTR-mut co-transfected with reporter vector and with hsa
302b precursor molecule or negative scrambled control for 48 h. 

1 lack TLR9 expression, the effect of CpG-ODN on tumor cells is necessarily 

indirect, likely to be exerted on components of the immune system. An increasing body of evidence 

underlines how miRNAs can be released in body fluids, especially associated to microvescicles 

, probably as a mechanism of information exchange between different cell 

types and tissue districts in the organism (417). Moreover, since mature human and murine miR

mature miRNA detected as increased in IGROV1 xenograft upon 

be of murin origin. This observation raised the intriguing

might act on TLR9 positive immune cells inducing up-regulation of miR

released in ascitic fluid associated to MVs, enter probably through 

induces increased response to Cisplatin by HDAC4 modulation.
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E). These data indicate 

 

1 cells were transfected with 50 nmol/l 
302b or a scrambled oligonucleotide and RNA and proteins were collected after 72 h. HDAC4 mRNA levels 

ession was evaluated by Western blot (B). GAPDH was used to 
normalize protein loading per lane. Data are representative of 6 independent experiments with superimposable results. 
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as a mechanism of information exchange between different cell 

e human and murine miR-

detected as increased in IGROV1 xenograft upon 

raised the intriguing idea that 

regulation of miR-302b, which 

probably through endocytosis into 

modulation. To explore 



 

this hypothesis we have analyzed 

the microRNA both in spleens a

increase of murine pre-miRNA (p=6.92 E

paralleled only by a moderate increase

IGROV-1 was undetectable, despite the increase of 

for human pre-miR-302b probe,

increased levels of pre-miR-302b

whereas the murine form is induced in spleen upon CpG

revealed in tumors that the mature form has ectopic origin.

Figure 33. Analysis of precursor (pre-miR
from CpG-treated and untreated mice by RT
detected in spleens (p=6.92 E-05), while was observed a modest increase of mm
are plotted as 2-∆Ct. P-values were calculated using two

 
 
 
 
 
 
 

e have analyzed precursor (pre-miR-302b) and mature (mm

in spleens and tumors from CpG-ODN treated mice. 

p=6.92 E-05) upon treatment was observed in spleens

moderate increase of mm-miRNA (p=0.0336), whereas 

was undetectable, despite the increase of mm-miRNA (Figure 33)

robe, human PBMC were treated with human CpG

302b. The fact that human pre-miRNA seems undetectable in IGROV

whereas the murine form is induced in spleen upon CpG-ODN treatment supports the hypothesis

that the mature form has ectopic origin.  

miR-302b) (A) and mature (mm-miR-302b) (B) forms
by RT-qPCR. A significant increase of murine pre-miRNA upon treatment was 

, while was observed a modest increase of mm-miRNA (p=0.0336)
values were calculated using two-tailed Student’s t-test. 
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5. CpG-ODN-MODULATED miRNAs AND OVARIAN CANCER 

PATIENTS’ CLINICAL COURSE 

 

The impact of expression levels of all 20 differentially expressed miRNAs, including those for 

which validation was not carried out on the clinical course of ovarian cancer patients undergoing 

chemotherapy, was evaluated in silico. The time to relapse (TTR) and overall survival (OS) with 

respect to each miRNA on two public datasets (GSE25204 and GSE27290) (402,403) were 

analyzed. Patients were stratified according to miRNA expression below (low expression) or above 

(high expression) the median expression value. In Bagnoli’s dataset (403), Kaplan-Meier analysis 

showed that patients with low expression of hsa-miR-302b or with high expression of hsa-miR-340 

had a shorter TTR (log-rank, P= 0.037; HR=1.75, 95% CI: 1.03–2.95 and P= 0.047; HR=1.7, 95% 

CI: 1.01–2.86, respectively) (Figures 34A and 34B). Median TTR was 11 and 25 months for low 

and high expression of hsa-miR-302b (Figure 34A), and 26 and 12 months for low and high 

expression of hsa-miR-340, respectively (Figure 34B). In Shih’s dataset (401), only the expression 

of hsa-miR-302b was significantly associated to OS (log-rank, P = 0.034; HR= 2.02, 95%CI: 1.05– 

3.88), with a median OS of 33.7 and 101.2 months for low and high expression, respectively 

(Figure 34C). In both datasets, the impact of the other 18 miRNAs expression was not significantly 

associated to TTR or OS. 

 



 

 

 

Figure 34. In silico evaluation of ovarian cancer patients’ clinical course according to hsa
expression levels. Kaplan-Meier survival curves of patients stratified according to hsa
has-miR-340 expression (B) on GSE25204 and referred to TTR. (C) Kaplan
expression on GSE27290 and referred to OS. Patients were dichotomized using median expression as threshold.

 
 
 
 
 
 
 
 
 
 
 
 
 

In silico evaluation of ovarian cancer patients’ clinical course according to hsa-miR
Meier survival curves of patients stratified according to hsa-miR

ion (B) on GSE25204 and referred to TTR. (C) Kaplan-Meier survival curves for hsa
expression on GSE27290 and referred to OS. Patients were dichotomized using median expression as threshold.
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miR-302b and hsa-miR-340 
miR-302b expression (A) and 

Meier survival curves for hsa-miR-302b 
expression on GSE27290 and referred to OS. Patients were dichotomized using median expression as threshold. 
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6. EFFICACY OF CpG-ODN IN COMBINATION WITH 

DIFFERENT AGENTS 

 

TLR agonists, alerting the host to invading pathogens, are included in the National Cancer Institute 

list of immunotherapeutic agents with the highest potential to cure cancer in light of their 

immunostimulatory activity (418,168). However, while extensive preclinical and clinical data 

indicate the ability of TLR agonists to promote antitumor immunity in vivo, their low efficacy in 

some Phase III studies has delayed further development of several TLR agonists for cancer therapy 

(169). With the exception of Imiquimod, a synthetic TLR7 agonist topically applied to treat basal 

cell carcinoma, most clinical trials have involved subcutaneous (s.c.) administration of TLR 

agonists since this route was reported to effectively activate adaptive immunity (170).  

Several immunoadjuvants, including RNA and DNA analogs, have been developed as anti-cancer 

drugs, one of which is Poly(I):Poly(C). This synthetic analog of double-strand RNA (dsRNA), 

displays antitumor functions and is currently used as an immune adjuvant in clinical trials. 

Poly(I):Poly(C) has been confirmed as an agonist of Toll-like receptor-3 (TLR-3) and retinoic acid-

inducible gene I-like receptors (RLRs). Poly(I):Poly(C) initiates multiple signal pathways in 

different tumor cells by triggering TLR3, RIG-I, or MDA-5, including NF-κB and IRF3/7 

pathways, and generates effectors, such as pro-inflammatory factors and type I IFN. Furthermore, 

Poly(I):Poly(C) directly induces apoptosis in tumor cells via intrinsic and extrinsic apoptotic 

pathways. An additional important effect in many types of cancers is the synergistic effect of 

Poly(I):Poly(C) in combination with other cytokines or  chemotherapeutics (419). 

A therapeutic effect on bulky disease appears to require locoregional treatment and also frequent 

multiple administrations. However daily i.p. administration of CpG-ODN induced a significant 

increase of survival-time but no cure of a single mouse, in our preclinical model (see Figures 18A 

and 18B). Markedly elevated peritoneal VEGF levels can be present in malignant ascites of ovarian 

cancer patients (390), and blocking of VEGF has been reported to strongly reduce ascites volume 

(391). Bevacizumab is a recombinant humanized monoclonal IgG1 antibody that targets vascular 

endothelial growth factor (VEGF)-A, and is indicated in the treatment of metastatic colorectal 

cancer, non-small cell lung cancer, renal cell carcinoma, and glioblastoma multiforme (420-423). 

This antibody binds to and neutralizes all biologically active forms of VEGF-A, and then 

suppresses tumor growth and inhibits metastatic disease progression (424). The utility of VEGF 

antibodies in the treatment of ovarian carcinoma was initially explored in animal models, where 
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VEGF blockade was shown to inhibit ascites formation and slow tumor growth (425). In addition, 

VEGF-targeting agents are thought to enhance the effects of chemotherapy by normalization of 

primitive tumor vasculature, leading to decreased interstitial fluid pressure, increased tumor 

oxygenation, and enhanced delivery of cytotoxic drugs (426). 

It was recently demonstrated that CpG-ODN treatment induces modulation of genes involved in 

DNA repair and sensitizes cancer cells to DNA-damaging Cisplatin treatment. 

In mammalian cells repair of DNA damage appears to be controlled also by the epidermal growth 

factor receptor (EGFR). This is considered to be of especial importance for tumor cells, since 

several tumor entities are characterised by a substantial over-expression of EGFR (427,428). This 

trans-membrane tyrosine kinase receptor, which belongs to the ErbB-family, is primarily located in 

cell membrane and is activated by ligands such as epidermal growth factor (EGF), amphiregulin, 

TGF-α but also by irradiation (429,430). Ligand binding leads to dimerization, which induces 

several down-stream signal cascades. The most prominent EGFR dependent signal cascades are the 

Ras/Raf/MEK/ERK dependent MAPK cascade, the PI3K dependent AKT kinase cascade, the 

JAK/STAT and PKC dependent signalling (429). Using these pathways, EGFR is considered to 

modulate cell proliferation, differentiation as well as apoptosis but also DNA repair (431). The 

modulation of DNA repair is suggested especially to occur for radiation-induced DNA double-

strand-breaks (DSB). There was an increase in the number of residual DSBs as detected by the 

number of γ-H2AX foci measured 24 h after irradiation, when EGFR signalling was blocked either 

by tyrosine kinase inhibitor Gefitinib or the monoclonal antibody (mAB) Cetuximab (432,433). 

Gefitinib is a selective EGFR (ErbB1) tyrosine kinase inhibitor (434) and can also inhibit the 

growth of some ErbB2-overexpressing tumor cells (e.g. breast cancer) (435). Autophosphorylation 

of EGFR was prevented in various tumor cell lines and xenograft models by Gefitinib. It is 

speculated that upregulation of p27 via EGFR kinase inhibition results into inhibited cyclin-

dependent kinase activity and arrest in the G1 cell cycle phase and it also inhibits tumor 

neoangiogenesis (436). 

Cetuximab is a chimeric IgG1 monoclonal antibody directed against the ligand-binding domain of 

the epidermal growth factor receptor. The proposed mechanisms for this monoclonal antibody 

include reducing tumor cell proliferation, angiogenesis, increasing apoptosis; cell cycle arrest and 

DNA repair capacity (437). Human ovarian carcinomas express EGFR to varying degrees (438) and 

the staining of IGROV-1 with Cetuximab revealed that this monoclonal antibody is able to bind the 

membrane surface of IGROV-1 (Figure 35). 
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Figure 35.  Flow cytometric analysis of IGROV-1 surface expression of EGFR. Cells were stained with cetuximab 
(black line, panel B), and with anti-CD20 rituximab antibody as isotype control (grey histogram). 

 

Therefore it was screened the effectiveness of CpG-ODN in combination with: 

1) MAb Cetuximab, which targets the ligand-binding domain of the epidermal growth factor 

receptor (EGFR) frequently expressed in ovarian cancer cells (438); 

2) Gefitinib, a tyrosine kinase inhibitor of EGFR, 

3) the Poly(I):Poly(C) TLR3 agonist, which reportedly induces a synergistic effect when combined 

with TLR9 ligand by mediating an enhanced activation of innate immunity (444); 

4) MAb bevacizumab, which targets the vascular endothelial growth factor (VEGF). VEGF is 

reportedly overexpressed in ovarian cancer (439-441), and VEGF-regulated angiogenesis is an 

important component of ovarian cancer growth (442,443); 

 

To evaluate the efficacy of CpG-ODN in association with Poly(I):Poly(C), Bevacizumab, Gefitinib 

(Iressa) or Cetuximab, mice were injected i.p. with 2.5 x 106 IGROV-1 (which express EGFR, 

Figure 35) cells in 0.2 ml of saline and treated starting 8 days later when mice showed an increase 

of body weight without an evident and established ascites.  

Repeated i.p. CpG-ODN treatments plus Poly(I):Poly(C) was not able to induce a significant 

superior effect  on Median Survival Times (MST) (65 days with Percent of Treated/Control (T/C%) 

of 325) compared with CpG-ODN treatment alone (61 days, T/C% 305), and only 2 of 9 mice from 

the combined treatment group showed long-term survival at the 120th day  when the experiment was 

stopped (Figure 36). Those results were not in accordance to previous observations witch 

demonstrated a clear synergy between the two immune modulators (444); this could be possibly due 
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to the schedule of CpG-ODN administration. Indeed, daily CpG-ODN administration might induce 

considerable innate cell activation hardly expandable by other immune modulators.  

As also shown in Figure 36, repeated i.p. CpG-ODN treatments plus anti-VEGF Bevacizumab also 

did not improve the effect of CpG-ODN treatment alone (MST 56 days for the combination vs 62 

days for CpG-ODN alone). Of note, the therapeutic benefit versus control mice observed in mice 

treated with Bevacizumab alone, might be due, at least in part, to the ability of this monoclonal 

antibody effects to control ascites formation; infact, in mice treated with the anti-VEGF antibody as 

a single treatment, we observed an inhibition of ascites production. Those evidences are consistent 

with recent preclinical and clinical data and suggesting that targeting VEGF might suspend ascites 

production resulting from peritoneal metastasis (445).  

The addition of the EGFR tyrosine kinase inhibitor Gefitinib (Iressa) to repeated i.p CpG-ODN 

treatment induced a slight but not significant increase in lifespan versus mice treated with CpG-

ODN alone, (MST 67 days for the combination vs 52 days for CpG-ODN alone, p =0.4099). In 

contrast, a dramatic increase on survival was observed on mice treated with CpG-ODN plus 

Cetuximab versus those treated with CpG-ODN alone, (MST: 86 days combination, 29 days for 

Cetuximab alone; 62 days for CpG alone; P = 0.0008 combination versus CpG-ODN alone),  with 4 

of 8 mice still alive at the end of the experiment.  

 

 

 



 

Figure 36. Kaplan-Meier plot of percent survival over time among IGROV
after tumor cell injection, mice were treated i.p. with CpG
combination with: Poly(I):Poly(C) (20 
intervals); Gefitinib (100 mg/mouse, 5 days/week) or Cetuximab (1 mg/mouse at 3
were also tested. Control mice received saline. N = number mice/group.

 

Different factors probably agree 

to the capacity of CpG-ODN to recruit and activate immune effectors cells at the site of tumor 

growth. Specifically, we performed our experiments with nude mice models, in which 

macrophages are the predominant immunological population

much more biologically active when target cell’s antigens have been bound by specific 

exherting their cytotoxic activity t

To investigate whether treatment with C

ADCC, cells were pre-treated with C

ADCC assay, conducted with saturated concentration of C

 

Meier plot of percent survival over time among IGROV-1 ovarian tumor
after tumor cell injection, mice were treated i.p. with CpG-ODN (20 µg/mouse, 5 days/week for 4 weeks) in 
combination with: Poly(I):Poly(C) (20 µg/mouse at 2- to 3-day intervals); Bevacizumab (5 mg/Kg at 3
intervals); Gefitinib (100 mg/mouse, 5 days/week) or Cetuximab (1 mg/mouse at 3- to 4-day intervals). Single 
were also tested. Control mice received saline. N = number mice/group. 
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Not increased death in Cetuximab
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Figure 37. Comparison of ADCC activity untreated
from 12 separate donors. IGROV-1 were the targets. Effector

 

cells PBMC from 12 healthy donors (Figure 37). Additionally, as EGFR modulates a variety of 
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Figure 38. Expression levels of molecules involved in NK
cetuximab pretreatment. (p<0.05) 

etuximab treatment would make IGROV-1 cells more robustly 

phagocytosed by macrophages. To this aim we carried out cytofluorimetric analyses examining 

mouse leukemic monocyte/macrophage RAW 264.7 cells

cultured for 4 and 12 with PKH67-stained human IGROV-1 cells (
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Figure 39. Effect of Cetuximab pre-treatment on phagocytosis of IGROV
green with PKH67 (A, right lower quadrant) and RAW264.7 effector cells were stained red with PKH26 (B, left upper 
quadrant). Tumor targets were pre-incubated for 72 h with 5 
end of treatment, target and effector cells were mixed at effector/target (E/T) ratio of 3:1 in complete medium and 
incubated for an additional 12 h in overload conditions of monoclonal antibody (10 
positive cells present in the upper right quadrant (quadrant Q2) of the dot plots represents the percentage of RAW264.7 
cells phagocytosing green-stained tumor cells. Data were obtained in triplicate and are representative of one of three 
experiments with similar results. 
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treatment 8 days after tumor cell injection when mice showed an increase of body weight without 

an evident and established ascites. Unfortunately, advanced tumor disease in humans is often much 

less responsive than limited disease to most anti
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which ascitic fluid formed 11 days after tumor cell injection and mice showed evident abdominal 
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EGFR inhibitors are reported to interact with Cisplatin 

sensitivity to this drug remains undefined; also, we recently reported the synergistic antitumor effect 

between CpG-ODN and Cisplatin 
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green with PKH67 (A, right lower quadrant) and RAW264.7 effector cells were stained red with PKH26 (B, left upper 

incubated for 72 h with 5 µg/ml Cetuximab (F,G,H) or left untreated
end of treatment, target and effector cells were mixed at effector/target (E/T) ratio of 3:1 in complete medium and 
incubated for an additional 12 h in overload conditions of monoclonal antibody (10 µg/ml). The percentage of 
positive cells present in the upper right quadrant (quadrant Q2) of the dot plots represents the percentage of RAW264.7 

stained tumor cells. Data were obtained in triplicate and are representative of one of three 

experiments reported above have been conducted in mice with an early tumor stage, starting 

treatment 8 days after tumor cell injection when mice showed an increase of body weight without 

an evident and established ascites. Unfortunately, advanced tumor disease in humans is often much 

ss responsive than limited disease to most anti-cancer therapies. To this aim, we then evaluated 

the double combination of CpG-ODN and Cetuximab added to another molecular agents could 

further increase it’s therapeutic effect in advanced-stage human ovarian tumor bearing mouse, in 

ascitic fluid formed 11 days after tumor cell injection and mice showed evident abdominal 

ed to interact with Cisplatin (451-454), although their effect on 

drug remains undefined; also, we recently reported the synergistic antitumor effect 

d Cisplatin (397). Keeping those evidences in mind
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therapeutic effect of the combination of CpG

evident and established ascites from a large group of mice injected i.p. 11 days before with IGROV

1 cells (mean body weight ± SEM 27.9 ± 0.84 g vs 23.00 ± 1.08 g before tumor cell injection; 

increased body weight = 4.9 g). Mice were randomly 

saline, Cisplatin, CpG-ODN plus Cetuximab, CpG

and CpG-ODN plus Cetuximab and Cisplatin. Saline

mice were euthanized on days 13 to 36 after tumor cell injection (MST 16, 23 and 18.5 days, 

respectively), CpG-ODN/Cetuximab

days; T/C% = 412.5), while 7 mice treated with the triple combination were euthanized on days 80

109, with 3 still alive at the end of experiment. Thus, survival was significantly increased (MST 

105.5; T/C% 659.37; P = 0.001) compared with CpG

Similar analysis in mice bearing even more advanced stage ascites (

± 0.9 g vs 24.89 ± 0.68 g before tumor cell injection; increased body weight = 6.51 g) sho

the CpG-ODN/Cetuximab/Cisplatin combination still increased survival (MST 45;T/C% 250, P

0.0089 vs controls) (Figure 40B). Note

mice became moribund and were sacrificed.

 

 
Figure 40. Kaplan-Meier plot of percent survival over time in advanced
(A) Mice selected for the presence of evident and established ascites from a large group of mice injected i.p. 11 days 
before with IGROV-1 cells (mean body weight ± SEM 27.89 ± 0.84 g vs 23.00 ± 1.08 g before tumor cell injection) 
were treated with saline, Cisplatin (3 mg/kg, once per week), CpG
Cetuximab (1 mg/mouse at 3- to 4-day intervals), CpG
plus Cetuximab and Cisplatin. (B) Mice selected for mo
g vs 24.89 ± 0.68 g before tumor cell injection) were treated with saline or CpG
= number mice/group. 
 

therapeutic effect of the combination of CpG-ODN, Cetuximab and Cisplatin in mice 

evident and established ascites from a large group of mice injected i.p. 11 days before with IGROV

1 cells (mean body weight ± SEM 27.9 ± 0.84 g vs 23.00 ± 1.08 g before tumor cell injection; 

increased body weight = 4.9 g). Mice were randomly divided into different groups and treated with 

ODN plus Cetuximab, CpG-ODN plus Cisplatin, Cetuximab plus Cisplatin, 

ODN plus Cetuximab and Cisplatin. Saline-, Cisplatin-, or Cetuximab/Cisplatin

n days 13 to 36 after tumor cell injection (MST 16, 23 and 18.5 days, 

ODN/Cetuximab-treated mice were euthanized between days 16

days; T/C% = 412.5), while 7 mice treated with the triple combination were euthanized on days 80

109, with 3 still alive at the end of experiment. Thus, survival was significantly increased (MST 

105.5; T/C% 659.37; P = 0.001) compared with CpG-ODN/Cetuximab-treated mice (

Similar analysis in mice bearing even more advanced stage ascites (mean body weight ± SEM 31.4 

± 0.9 g vs 24.89 ± 0.68 g before tumor cell injection; increased body weight = 6.51 g) sho

Cisplatin combination still increased survival (MST 45;T/C% 250, P

). Note that 6 days after the start of treatment, 6 of 9 saline

mice became moribund and were sacrificed. 

Meier plot of percent survival over time in advanced-stage IGROV-1 ovarian tumor
(A) Mice selected for the presence of evident and established ascites from a large group of mice injected i.p. 11 days 

1 cells (mean body weight ± SEM 27.89 ± 0.84 g vs 23.00 ± 1.08 g before tumor cell injection) 
, Cisplatin (3 mg/kg, once per week), CpG-ODN (20 µg/ mouse, 5 days/week for 4 weeks) plus 

day intervals), CpG-ODN plus Cisplatin, Cetuximab plus Cisplatin, and CpG
plus Cetuximab and Cisplatin. (B) Mice selected for more advanced-stage disease (mean body weight ± SEM 31.4 ± 0.9 
g vs 24.89 ± 0.68 g before tumor cell injection) were treated with saline or CpG-ODN plus Cetuximab and Cisplatin. N 
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ODN, Cetuximab and Cisplatin in mice selected for 

evident and established ascites from a large group of mice injected i.p. 11 days before with IGROV-

1 cells (mean body weight ± SEM 27.9 ± 0.84 g vs 23.00 ± 1.08 g before tumor cell injection; 

divided into different groups and treated with 

ODN plus Cisplatin, Cetuximab plus Cisplatin, 

, or Cetuximab/Cisplatin-treated 

n days 13 to 36 after tumor cell injection (MST 16, 23 and 18.5 days, 

treated mice were euthanized between days 16–104 (MST 66 

days; T/C% = 412.5), while 7 mice treated with the triple combination were euthanized on days 80–

109, with 3 still alive at the end of experiment. Thus, survival was significantly increased (MST 

treated mice (Figure 40A). 

mean body weight ± SEM 31.4 

± 0.9 g vs 24.89 ± 0.68 g before tumor cell injection; increased body weight = 6.51 g) showed that 

Cisplatin combination still increased survival (MST 45;T/C% 250, P = 

that 6 days after the start of treatment, 6 of 9 saline-treated 

 

1 ovarian tumor-bearing mice. 
(A) Mice selected for the presence of evident and established ascites from a large group of mice injected i.p. 11 days 

1 cells (mean body weight ± SEM 27.89 ± 0.84 g vs 23.00 ± 1.08 g before tumor cell injection) 
g/ mouse, 5 days/week for 4 weeks) plus 

ODN plus Cisplatin, Cetuximab plus Cisplatin, and CpG-ODN 
stage disease (mean body weight ± SEM 31.4 ± 0.9 

ODN plus Cetuximab and Cisplatin. N 
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Oligodeoxynucleotides (ODN) containing dinucleotides with unmethylated CpG motifs (CpG-

ODN) are strong activators of both the innate and adaptive immune systems (456,457). Recognition 

of CpG-ODN is promoted by Toll-like receptor 9 (TLR9), a member of the TLR family, which is 

necessary to detect microbial pathogens. TLRs, preferentially expressed by immune system cells, 

are also identified on non-professional immune cells such as endothelial cells, fibroblasts, and 

epithelial cells (158,458). Both bone marrow and non-bone marrow-derived cells are thought to be 

involved in the response induced by TLR agonists. Successes in preclinical studies using CpG-

ODN and early indications of its safe use in humans have led to extensive interest in the clinical 

development of these agents in the treatment of cancer patients (118,456,459). Recently in the 

laboratory where I conducted my thesis it has been reported the critical role of the administration 

route in the treatment of human ovarian cancer xenografts in nude mice, with intraperitoneal (i.p.) 

injection of CpG-ODN leading to an impressive increase in survival time and in tumor-free rate as 

compared to the slight effect of treatment administered intravenously or subcutaneously (388).  

However, it should be noted that these results were observed in mice before the appearance of 

ascites and therefore with a relatively low tumor burden.  

It was also demonstrated that TLR9 ligand CpG-ODN treatment induces down-modulation of DNA 

repair genes in tumor cells of both murine and human origins. Expression-level analysis of proteins, 

RAD51, a key protein in the homologous recombination DNA repair pathway (460), and SIRT1, 

whose activity promotes homologous recombination (461), in human tumor cells confirmed 

microarray results. These proteins are involved in homologous recombination and, consequently, 

are relevant for the repair of interstrand cross-links, which are the most cytotoxic lesions induced by 

Cisplatin. Accordingly, the combination of Cisplatin and CpG-ODN against IGROV-1 human 

ovarian tumor xenografts in athymic mice was found to induce a remarkable increase in life span 

compared with that using either reagent alone (P < 0.0001). 

Down-modulation of DNA repair genes induced by CpG-ODN treatment in tumor cells and up-

modulation in immune cells might represent a physiologic phenomenon that occurs locally in the 

presence of an infectious event. Thus, upon detecting the presence of an infectious agent via 

endosomal TLRs, immune cells might regulate DNA repair genes to decrease their susceptibility to 

possible pro-apoptotic signals during infections and, at the same time, directly and/or indirectly 

induce modulation of DNA repair genes in infected (or transformed) cells to facilitate their death. 

The first aim of this thesis was to highlight the mechanisms used by the TLR9 ligand to increase the 

sensitivity to Cisplatin, inducing in this way also the increase of survival in our in vivo experimental 

models. It has been speculated that miRNA can collaborate in this mechanism.  
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Emerging evidence suggests that miRNAs play important roles in the regulation of immunological 

functions, including innate immune responses of macrophages and the development, differentiation, 

and function of T and B cells (462;463). miRNAs are a ubiquitous feature of all cells, and 

functional studies prompted by the growing number of miRNA targets identified have demonstrated 

the involvement of miRNAs in the regulation of cellular process (464). 

Changes in miRNA expression induced by TLR ligand stimulation have been broadly investigated 

for their impact on development and function of innate immune cells, the primary expressors of 

TLRs (465). 

In this thesis we show that in vivo treatment with CpG-ODN, the TLR9 agonist, also induces 

modulation of several miRNAs in tumor cells.  

Our analysis of 3 miRNAs (hsa-miR-424, hsa-miR-340 and hsamiR-302b) for their significance to 

chemotherapy response showed that the enforced expression of hsa-miR-302b on IGROV-1 cells 

significantly enhanced Cisplatin cytotoxicity. 

Members of the hsa-miR-302 cluster (hsa-miR-302a, hsa-miR-302b, has-miR-302c, has-miR-302d, 

and has-miR-367) regulate self renewal and pluripotency processes in human embryonic stem cells 

(hESCs) (466). Has-miR-302b is poorly expressed in gastric tumor and it could be considered a 

better marker of pluripotency. Has-miR-302 expression is positive correlated with induction of 

pluripotency (ips) genes, including OCT4 variants, in gastric adenocarcinoma (467). Recently bio-

informatic analysis showed that EGFR might be a target of has-miR-302b. Has-miR-302b was 

frequently down regulated, whereas EGFR was up-regulated in 27 pairs of clinical HCC and non-

tumors counterparts. Hsa-miR-302b suppression of HCC growth may due to targeting the 

EGFR/AKT2/CCND1 pathway (468). Consistently with our in vitro data, we found that hsa-miR-

302b expression was significantly associated to TTR (time to relapse) or OS (overall survival) in 

two datasets of ovarian cancer patients treated with platinum-based therapy. These findings indicate 

that has-miR-302b enhanced chemosensibility of human ovarian carcinoma cells and may represent 

a biomarker able to predict response to Cisplatin treatment, leading to a more accurate selection of 

patients potentially responsive to a specific therapy. Moreover, the correlation between miRNA 

expression and response to specific therapies also suggests the potential usefulness of miRNAs as 

therapeutic adjuvants. Our study starts using an in vivo model to select a candidate miRNA, then 

validated in vitro as adjuvant tool and in human samples as predictive biomarker. The integration of 

miRNA and mRNA expression profiles upon CpG-ODN treatment revealed a broad concerted 

interplay of miRNAs with their predicted target mRNAs, suggesting a relevant role for miRNAs in 

CpG-ODN-induced expression of genes involved in different cellular pathways. Concerning genes 

involved in DNA repair, miRNA-mRNA interaction analysis identified HDAC4 as a gene 
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potentially targeted by hsa-miR-302b, as then validated by the decreased HDAC4 mRNA and 

protein levels upon enforced hsa-miR-302b expression in IGROV-1 cells. Inhibition of HDAC has 

been reported to induce hyperacetylation of core histones and consequent relaxation of chromatin 

structure; such an open chromatin configuration would be expected to enhance accessibility of 

genomic DNA to drugs targeting DNA (470;471). These data have led to clinical studies using 

HDAC inhibitors in combination with current DNA damaging agents, such as topoisomerase 

inhibitors, DNA synthesis inhibitors, DNA intercalators and agents that covalently modify DNA, as 

treatment of several types of cancer (471;472). However, whereas clinical studies have shown 

efficacy against human hematologic malignancies, results in solid tumor trials have been 

insufficient because of some HDAC inhibitor limitations such as cardiac toxicity (473;474). The 

observation that over-expression of miR-302b increased the sensitivity of ovarian tumor cells to 

Cisplatin, together with the reported tissue specificity of miRNAs (475), raises the possibility of 

using this miRNA to modulate DNA-damaging drug sensitivity and avoiding HDAC inhibitor 

toxicity.  

A very recent study reports direct regulation of p21 protein by members of the miR-302 family 

activated following DNA damage in human embryonic stem cells (401), further suggesting that 

miR-302 can impact the response to DNA-damaging agents by modulating different target 

molecules.  

Notably, the human IGROV-1 cells, model used for our project, are negative for TLR9 and do not 

respond to murine CpG-ODN, therefore the activity of CpG-ODN is not mediated by direct contact 

between the cells of the immune system and the tumor, instead is likely mediated by TLR9-positive 

cells in the tumor microenvironment directly and/or through soluble factors. Several studies 

indicating that miRNAs can also be transferred between cells, e.g., through exosomes (417), as a 

mechanism to interact and exchange information raising the intriguing possibility that the immune 

system responds to CpG-ODN treatment by boosting miRNA modulation and interaction with 

tumor cells.  

Interestingly, our new preliminary data seem to support this hypothesis, since human pre-miR-302b 

is not even detectable in IGROV-1 xenograft tumors, whereas the murine precursor is significantly 

induced in spleens of CpG treated mice. Considering these encouraging results, we are now 

exploring the possibility that mature miR-302b is secreted by TLR9 positive immune cells and 

delivered to the tumor by a MV-mediated mechanism. Beside the understanding of the molecular 

mechanism behind the “gap” between activation of the immune system by CpG and biological 

effect on tumor cells, our future plan is also to exploit MVs to deliver miR-302b to the tumor, as a 

new adjuvant therapeutic tool. 



108 

 

The second propose of this thesis was to study the combination of CpG-ODN with different agents 

to improve therapy of advanced ovarian cancer. Ascites formation is a major cause of morbidity and 

mortality in advanced ovarian cancer patients. In these patients, in whom the metastatic spread of 

tumor cells outside the peritoneum is uncommon, the tumor cell deposits in the peritoneal surface 

may avoid adsorption of i.p. fluid by mechanical obstruction, inducing ascites (476). The clinical 

management of malignant ascites remains an unmet medical need because current treatments, which 

include diuretics, frequent large-volume paracentesis, i.p. or systemic chemotherapy, and a variety 

of other experimental strategies (477), are disappointing (478). None of these approaches has been 

established as standard therapy because of limited efficacy and the risk of severe side effects such 

as protein loss, bowel perforation and peritonitis (478,479). Advance tumor diseases are generally 

difficult to treat, in animal models and in clinical studies, in which treatment is initiated only after 

ascites become evident, generally show a small effect on survival. Our data obtained in ascites-

bearing athymic mice indicate that i.p. CpG-ODN treatments result in increased survival and 

inhibition of ascites formation, and suggest a relevant role for activation of cells and cytokines of 

innate immunity in the therapy of ovarian cancer patients with malignant ascites. Although daily i.p. 

administration of CpG-ODN induced a significant increase of survival-time, this treatment did not 

determine the cure, therefore we screened the effectiveness of CpG-ODN in combination with 

different agents, such as Bevacizumab, Poly(I):Poly(C), Gefitinib, Cetuximab and Cisplatin. 

Bevacizumab binds the vascular endothelial growth factor (VEGF) that is reportedly overexpressed 

in ovarian cancer (439-441), and VEGF-regulated angiogenesis is a key component of ovarian 

cancer growth (442,443). The Poly(I):Poly(C) TLR3 agonist induces a synergistic effect when 

combined with TLR9 ligand by mediating an enhanced activation of innate immunity (444). 

Cetuximab and Gefitinib target the epidermal growth factor receptor (EGFR) frequently expressed 

in ovarian cancer cells (438). As seen in the results, anti-VEGF Bevacizumab did not enhance the 

effect of CpG-ODN treatment alone on survival. Recent preclinical and clinical data (438) suggest 

that targeting VEGF might suspend ascites formation, indeed in mice treated with the anti-VEGF 

antibody as a single treatment, it was observed an inhibition of ascites production. Altought 

Bevacizumab is able to control ascites formation, the combination with CpG-ODN does not 

improve mice survival already induced by CpG-ODN alone. Also the combination with 

Poly(I):Poly(C) did not induced a significant superior effect on median survival times compared 

with CpG-ODN treatment alone. This result was not in accordance with observations which 

demonstrated a clear synergy between the two immune modulators (444). This could be possibly 

due to the schedule of CpG-ODN administration, daily CpG-ODN administration might induce 

considerable innate cell activation hardly expandable by other immune modulators. The addition of 
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the EGFR tyrosine kinase inhibitor Gefitinib (Iressa) to repeated i.p. CpG-ODN treatment induced a 

small but not significant increase in lifespan versus mice treated with CpG-ODN alone, but a strong 

increase of median survival time was observed when Cetuximab, a monoclonal antibody anti-

EGFR, were administrated to the mice. IGROV-1 cells express EGFR, but their growth has been 

showed to be independent from this receptor; indeed treatment with Cetuximab alone was able to 

induce only a slight increase of mice lifespan compared to control mice. Since EGFR inhibitors 

interact with Cisplatin (449-452) and recently it was reported that CpG-ODN has a synergistic 

antitumor effect in combination with Cisplatin (453), we have also investigated the therapeutic 

effect of the combination of CpG-ODN, Cetuximab and Cisplatin in mice selected for evident and 

established ascites. The association of CpG-ODN plus Cetuximab and Cisplatin revealed a 

significant increase in lifespan compared to the use of either reagent alone. Note that 70% of control 

mice became moribund 6 days after the start of treatment. Since the nude mice models, used for 

performing our experiments, have NK cells and macrophages as predominant immunological 

population, we hypothesize that CpG-ODN recruit and activate immune effectors cells at the site of 

tumor growth through ADCC. An increased death in Cetuximab-pretreated tumor cells compared to 

untreated cells was not observed; indeed the increase of the susceptibility of IGROV-1 cells after 

treatment with Cetuximab is not mediated by antibody–dependent cell cytotoxicity. Therefore we 

suppose that Cetuximab treatment would make IGROV-1 cells more robustly phagocytosed by 

macrophages. Performing a phagocytosis assay we have demonstrated that the tumor cells after 12 

hours were completely incorporated by macrophages, clarifying that Cetuximab active the innate 

immune system that kill tumor cells by phagocytosis. Together these results point to a promising 

clinical strategy for treatment of ovarian cancer patients with bulky ascites using TLR9 agonists as 

immune-modulator in combination with approved drugs. These findings may contribute also to 

understanding the implication of immune cells in tumor microenvironment, and the involvement of 

miRNAs as alternative mechanism in enhancing sensitivity to chemotherapy after 

immunostimulation. Indeed our preliminary data, suggesting that miRNAs might be exploited by 

the activated immune system to affect gene expression in tumor cells, namely modulating DNA 

repair genes, and thus increasing sensitivity to chemotherapy agents, strongly support the 

hypothesis of a possible future clinical use of miRNAs in the management of ovarian cancer. 
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