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ABSTRACT 
 
Tissue engineering is an emerging interdisciplinary field, born with the purpose to provide an 

alternative solution for the regeneration of lesioned or lost tissues, combining cells, 

biocompatible scaffolds and bioactive factors. The cells for this approach should be non-

immunoreactive and non-tumorigenic. Moreover, they should be available in large amount 

and possess, or be able to acquire, a specific protein expression pattern similar to that of the 

damaged tissue and/or act as a pool of trophic factors for resident cells. All these reasons, 

make mesenchymal stem cells (MSCs) good candidates for applications in regenerative 

medicine. Although bone marrow is still the most common source of MSCs, these cells could 

be harvested from all vascularised tissues, and, interestingly, from tissues that are normally 

discarded, such as fat, placenta or umbilical cord. One of the most convenient source of 

MSCs, is unequivocally, the adipose tissue due to the easily accessible anatomical location 

and the abundance of subcutaneous adipose tissue. Adipose-derived stem cells (ASCs) are 

similar to MSCs isolated from bone marrow in morphology, immunophenotype, and 

differentiation ability, and own interesting features such as immunoregolatory and anti-

inflammatory properties.  

In the recent years, many strategies for the cure of musculoskeletal tissues critical lesions, 

mainly in orthopaedic, oral and maxillo-facial surgery, have been under investigations. In this 

contest, the regeneration of structures including different tissues, such as the periodontium 

and the osteochondral unit, are particularly challenging. 

Periodontal regeneration is especially demanding, as it requires regeneration of three quite 

diverse and unique tissues such as the alveolar bone, the periodontal ligament and the 

cementum, that have to interface with each other to restore their complex structure. Since 

the promising results obtained with ASCs in preclinical studies of periodontal diseases arouse 

the curiosity of maxillofacial and dental surgeons, we decided to identify a novel source of 

ASCs, i.e, the buccal fat pad, convenient for these specialists. For this purpose, we studied 

human adipose derived-stem cells from buccal fat pad (BFP-ASCs), comparing them with 

cells from the subcutaneous adipose tissue (SC-ASCs) of the same donor (n=2). In parallel, 

considering the need for preclinical studies in which the effect of allogenic cells should be 

tested, and swine as an accepted animal model in tissue engineering applications, we also 

characterized porcine cells (n=6). With preclinical and clinical application prospective, we 



 
- 5 - 

 

also investigated ASC interactions with oral tissues, natural and synthetic scaffolds and 

Amelogenin, an oral bioactive molecule. First of all, we showed that it is feasible to isolate 

ASCs even starting from very limited amounts of tissue (0,5 ml) and that the cellular yield is 

influenced by species, but not by the site of harvesting (1.1x105±1.4x104 human BFP-ASCs/ml 

and 1.15x105±7.1x103 human SC-ASCs/ml; 3.0x104±9.3x103 porcine BFP-ASCs/ml and 

5.5x104±3.3x104 porcine SC-ASCs/ml). Despite the lower yield, the pASCs great proliferation 

rate allows to obtain high number of cells (potentially, 108 - 109) after few (3, 4) passages in 

culture. After the isolation, a great amount of cells deriving from all the tissues, adhered to 

cell culture plates showing the MSC fibroblast like morphology, with only mild shape 

differences constituted by the higher elongation and dimension of human SC-ASCs. 

Moreover, all the cells are easily expandable and showed good clonogenic ability at early 

passages. Cells of the same species, from both the harvesting site, displayed the same 

surface markers profile, that, in particular for human ASCs, was the typical one of hMSC 

(CD90+, CD105+, CD73+, CD14-, CD31-, and CD34-). Human and porcine BFP-ASCs, as SC-

ASCs, are multipotent; indeed, when induced towards osteogenic and adipogenic lineages, 

they up-regulated significantly ALP activity, collagen and calcified extracellular matrix 

deposition and lipid vacuoles productions, respectively, already after 14 days of 

differentiation in vitro.  

Next, since cell/scaffold interaction is fundamental for the outcome of a tissue engineering 

approach, in sight of a preclinical study, we combined porcine BFP and SC-ASCs to both 

clinical grade (titanium) and innovative [silicon carbide–plasma-enhanced chemical vapor 

deposition (SIC-PECVD)] biomaterials, and studied cell adhesion and their differentiation 

ability. All the cells nicely grew on both scaffolds and, when osteoinduced, significantly 

increased the amount of calcified ECM compared to control cells; interestingly, titanium is 

osteoinductive even per se on pASCs (+284% and +91 for BFP- and SC-ASCs). Considering the 

importance of cell interaction with tissue of the lesion site, and with materials commonly 

used during surgical practices, we studied human BFP- and SC-ASC adherence to several 

supports. SEM analysis confirmed that both cell type nicely stick on alveolar bone, 

periodontal ligament, collagen membrane and polyglycolic acid filaments. Finally, we found 

that amelogenin, the most abundant enamel matrix protein seems to be an early 

osteoinductive factor for BFP-hASCs, whereas this effect is not manifested for SC-hASCs.  



 
- 6 - 

 

For future cellular therapy, and since the use of FBS pose the risk of xenogenic 

contaminations leading to immunological complications during transplant, we tested cells 

growth in the presence of autologous supplements. Interestingly, both hASCs adapted 

rapidly to human serum, increasing their proliferation rates compared to standard culture 

condition, while porcine autologous or heterologous sera, did not improve pASC growth. 

In conclusion, we identified a cell population derived from a tissue easily available to 

dentists and maxillofacial surgeons, whose multipotent features and interaction with clinical 

grade scaffolds make proper candidate for future uses in tissue engineering approaches of 

periodontal diseases. 

In parallel, part of my PhD project was focused on the study of a critical osteochondral 

defect regeneration performed in a large animal preclinical model.  

The main obstacles for clinicians in treating this defect arises from the disparity concerning 

anatomy, composition and, most importantly, rate of healing of the articular cartilage (AC) 

and the subchondral bone. The key points of our study are  the use of an innovative  

hydrogel of oligo(polyethylene glycol)fumarate (OPF) to fill the osteochondral defect, and  of 

either porcine, or human ASCs, to create bioconstructs to be implanted in non-immuno-

compromised minipigs. In particular, four critical osteochondral defects (diameter 9mm, 

depth 8mm) were created in the peripheral part of the trochlea of seven animals (defect 

n=28), and then treated with the different pre-made constructs. Untreated defects and 

defects filled by just scaffold were included as controls. 

No side-effects have been observed during the six-moths follow-up. At the end of this 

period, animals were sacrificed and knees explanted. Gross appearance analyses showed 

quite satisfactory filling of all the lesions, with the exception of one animal, whose joint 

appeared infected and not healed.  

MRI analyses revealed that in all the scaffold treated groups an overall improvement of the 

tissue quality at the osteochondral lesion site, was induced. More accurate evaluations 

(histological and immunohistochemistry analyses) revealed that some important tissue 

features were significantly improved by the association of OPF and ASCs. Indeed, regarding 

the subchondral bone, in all the OPF+ASCs groups, a mature bone appeared, with higher 

deposition of collagen type I compared to untreated or unseeded OPF groups. Moreover, the 

use of ASCs associated to scaffolds induced an improvement in newly formed cartilage 

features such as collagen type II deposition, and histological scores associated to these 
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samples indicated a significant increase in matrix staining, tissue morphology and formation 

of tidemark, together with a reduction in vascularisation (a positive aspect in cartilage) 

compared to unseeded scaffolds. 

However, the histology indicated that in all the samples cartilage regeneration was still 

immature, most likely due to the limited time of follow up and/or the insufficient stimuli for 

cartilage complete regeneration. Despite this, biomechanical tests revealed that the neo-

cartilage found in the cell-loaded scaffold groups possessed poroelastic behaviour, as well as 

indentation modulus and creep curves comparable to native cartilage. This important result 

suggest that the ASC presence at the lesion site, is able to enhance newly formed cartilage 

functionality. 

In conclusion, this in vivo study provides the evidence that both porcine and human adipose-

derived stem cells associated to OPF hydrogel improve osteochondral defect regeneration, 

even though, at the moment, we are not able to define if the implanted ASCs are responsible 

per se of the new tissue formation or if they help spontaneous regeneration process by 

paracrine actions. 
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INTRODUCTION 
 
Tissue engineering 

Tissue engineering has been defined by Langer and Vacanti as ”an interdisciplinary field that 

applies the principles of engineering and life sciences toward the development of biological 

substitutes that restore, maintain, or improve tissue function or a whole organ" (Langer and 

Vacanti, 1993). 

Tissue engineering aim to provide an alternative solution for the regeneration of lesioned or 

lost tissue/organ, avoiding the disadvantages associated to traditional therapy, combining 

and integrating physics, chemistry, engineering and material, cell and medical sciences  

(Langer and Vacanti, 1993). The field relies extensively on the use of porous 3D scaffolds to 

provide the appropriate environment for the regeneration of tissues and organs. These 

scaffolds essentially act as a template for tissue formation and are typically seeded with cells 

and occasionally growth factors, or subjected to biophysical stimuli by the use of 

bioreactors. These cell-seeded scaffolds are either cultured in vitro to synthesize tissues 

which can then be implanted into an injured site, or are directly implanted into the injured 

site, using the body’s own systems, where regeneration of tissues or organs is induced in 

vivo. 

 

Cell source 

Regardless the tissue to be repaired, the cells to be used in tissue engineering approaches 

should have some important features. 

First of all they should be non-immunoreactive (unable to induce rejection and graft-versus-

host disease, GvDH), and non tumorigenic. These populations should be available in large 

amount, expandable in vitro for many generations, and they should possess or be able to 

acquire a specific protein expression patterns similar to that of the tissue to be regenerated, 

and finally, have to adequately integrate within the surrounding tissues. Recently, also the 

ability to act as trophic factor pool for resident cells has been proposed to be an important 

characteristic. 

All these reasons, make mesenchymal stem cells (MSCs) good candidates for applications in 

regenerative medicine: there are no limitations to their practical use related to ethical or 

religious considerations, and techniques of isolation and culture are simple to implement. 
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Moreover, their phenotypic stability, multipotentiality and low immunogenicity give these 

cells a high therapeutic potential (Gimble, 2003).   

The presence of non-hematopoietic stem cells in bone marrow  was observed for the first 

time by Cohnheim almost 150 years ago (Cohneim et al., 1867) and has been confirmed only 

in the 1960s by McCulloch and Till (Becker et al., 1963) and  in the 1970s by Friedenstein et 

al. who named these cells the stromal cells colony forming unit-fibroblasts (Friedenstein et 

al., 1974). Caplan successively (1991) named them mesenchymal stem cells because of their 

capacity of self-renewal and differentiation (Caplan, 1991), and, three years ago, focusing on 

their secretive paracrine activities, he proposed that MSCs should be an acronym for 

“medicinal signaling cells” (Caplan, 2010). 

MSCs can be isolated simply through a series of passages in culture. In vitro they adhere to 

plastic, showing a typical fibroblast-like morphology and forming colonies. MSCs should also 

express a minimum specific set of surface antigens - CD105 (endoglin, SH2), CD73 (ecto-5’-

nucleotidase) and CD90 (Thy1) - and should not express the hematopoietic markers - CD45, 

CD19 or CD79, CD14 or CD11b, and HLA-DR. Moreover they should own multipotent 

capacity being able to differentiate  into osteoblasts, adipocytes or chondroblasts under 

standard in vitro differentiating conditions (Dominici et al., 2006). Although bone marrow is 

still the most common source of MSCs, in the last two decades there has been a continuous 

effort to identify alternative sources of MSCs, mainly driven by a constant quest for a  source 

with lower donor site morbidity. Therefore, it is particularly interesting that MSCs have been 

found in tissues that are normally discarded, such as fat from liposuction, or placenta and 

umbilical cord. Although it could appear funny that cells deriving from very different tissue 

are so similar, a possible explanation have been proposed. Indeed, Caplan et al suggested 

that MSCs are pericytes, (Caplan, 2008) basing this theory on recent evidences. First of all, 

for almost every blood vessel in the body, mesenchymal cells are observed in perivascular 

locations (on both arterial and venous vessels) (Crisan et al., 2008). Moreover, isolated 

pericytes exhibit a panel of cell surface markers that are identical to those expressed by 

isolated MSCs (Crisan et al., 2008). This intriguing hypothesis, could also explain the great 

variety of  clinical applications of MSCs, including Parkinson's and Alzheimer's disease, spinal 

cord injury, stroke, burns, arthritis, heart disease, diabetes, osteoarthritis and rheumatoid 

arthritis (ClinicalTrials.gov). Almost all these trials, utilize MSCs in a therapeutic manner that 
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is quite distinct from the differentiative capacity but based on two therapeutic activities: 

immunomodulation and trophic activities. 

One of the most convenient source of MSCs, is unequivocally, the adipose tissue due to the 

easily accessible anatomical location and the abundant existence of subcutaneous adipose 

tissue. Since leptin identification in 1994, this tissue was no longer considered as a fat store 

only,  but as a true secretory tissue (Zhang et al., 1994). About ten years later, adipose tissue 

was further dignified,  thanks to the discovery of an abundant number of mesenchymal stem 

cells (ASCs, adipose derived- stromal cells) (Zuk et al., 2002). The concentration of 

multipotent stem cells in adipose tissue is around 2% of nucleated cells (Zuk et al., 2002), 

which is approximately 100–300 times higher than that of MSCs in bone marrow. These cells 

own all the MSCs features and have been used successfully in many pre-clinical studies not 

only for musculoskeletal regeneration (de Girolamo et al., 2011) but also for experimental 

models of, for example, multiple sclerosis, lupus erythematosus (Choi et al., 2011), 

rheumatoid arthritis (Gonzalez-Rey et al., 2010), colitis model (Gonzalez-Rey et al., 2009).  

Furthermore, about hundred clinical trials are investigating the potential of ASC in the 

treatment of fistulas, vascular disease, joint disease, inflammatory bowel disease, 

osteoarthritis and many other diseases (ClinicalTrials.gov). 

Other cell types that can be appealing for tissue regeneration could be the direct progenitors 

of, or even terminally differentiated cells of the tissue to be replaced or diametrically 

opposed, pluripotent stem cells. Both approaches are interesting but present important 

drawbacks. 

Considering the physiological role of progenitors for the maintenance of tissue homeostasis, 

replacing terminally differentiated cells, and differentiated cells as the proper cells to 

populate and modify tissue from which they derive, it appears obvious their use in 

regenerative medicine. A fascinating example is that of autologous stem cells of the limbus 

(the narrow zone between the cornea and the bulbar conjunctiva) cultivated on fibrin glue 

and then used with a resulting permanent restoration of a transparent, renewing corneal 

epithelium (Rama et al., 2010). Nevertheless, must be considered that in general, 

progenitors are not present in abundant quantity, or easy available with mild donor 

discomfort.  

Finally, huge interest has developed in the scientific and clinical communities around 

pluripotent stem cells (both Embryonic Stem Cells or induced Pluripotent Stem Cells) 
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therapeutic potential, due to these cell ability to be programmed into new mature 

differentiated cells of all lineages. Particular attention has been focused on their potential 

use in cell-based therapy for diseases that are refractory to conventional treatments, such as 

neurodegenerative diseases and immunodeficiency. The list of pathologies that in theory can 

be treated using stem cells includes Alzheimer's, Parkinson's and Huntington's disease, 

stroke, diabetes, age-related disorders, haematological disorders, cardiovascular disease and 

bone and muscle regeneration.  

Nevertheless, even overlooking ethical or religious considerations related to ESCs use, the 

huge differentiative potential of pluripotent stem cells make them not so easy to be 

handled. Furthermore, their use as therapy is clouded by their potential tumorigenicity 

(Romeo et al., 2012). 

 

Biomaterials 

According to the European Society for Biomaterials (ESB) a biomaterial is a “material 

intended to interface with biological systems to evaluate, treat, augment or replace any 

tissue, organ or function of the body”. 

General features going beyond the specific tissue application have to be considered for 

proper scaffold choice.  

First of all, the scaffolds have to be biocompatible; cells must adhere, function, and migrate 

onto the surface and eventually through the scaffold pores or channels before laying down 

new matrix. After implantation, the scaffold or tissue engineered construct must elicit a 

negligible immune reaction in order to prevent severe inflammatory response that might 

reduce healing or cause rejection by the body. 

Moreover, scaffolds and constructs, are not intended as permanent implants. The scaffold 

must therefore be biodegradable and the products of degradation should also be non-toxic 

and able to be eliminated by the body without interfering with other organs. Ideally, the 

scaffold should also posses mechanical properties consistent with the anatomical site into 

which has to be implanted and, from a practical perspective, it must be stiff enough to allow 

surgical handling during implantation.  

Another key aspect of scaffold to be used for tissue engineering is its architecture. Scaffolds 

should have interconnected pores to ensure cellular infiltration and adequate diffusion of 

nutrients to cells within the construct, and of waste products out of the scaffold (Ko et al., 
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2007; Phelps and Garcia, 2009). Concerning the size of the pores, they should be large 

enough to allow cells to migrate into the structure, but small enough to allow efficient 

binding of a critical number of cells to the scaffold (O'Brien et al., 2005). Finally, the 

development of manufacturing processes to good manufacturing practice (GMP) is critically 

important in ensuring successful translation of tissue engineering strategies to the clinic 

(Hollister, 2009).  

Typically, four groups of biomaterials are used in the production of scaffolds for tissue 

engineering: natural polymers, synthetic polymers, ceramics and metals.  

Biological materials such as collagen, alginate-based substrates, fibrin and chitosan present 

similarities to the ECM, typically good biological characteristics and inherent cellular 

interactions. Unlike synthetic polymer-based scaffolds, natural polymers are biologically 

active and able to promote cell adhesion and growth. Furthermore, their biodegradability, 

bioresorbability and versatility, facilitate their use in cell delivery applications. However, 

these scaffolds generally have poor mechanical properties, which limits their use in load-

bearing orthopaedic applications and when harvested from animal or human sources they 

requires purification procedures.  

Among synthetic polymers, the most used in tissue engineering approaches are polylactic 

acid) (PLA), poly(glycolic acid) (PGA), and their copolymers (e.g., poly(lactic-co-glycolic) acid 

(PLGA). These materials can be produced with specific architecture and degradation 

characteristics (Lu et al., 2000; Rowlands et al., 2007); however, they have also drawbacks 

including the risk of rejection due to reduced bioactivity. In addition, the degradation 

process of PLA and PGA by hydrolysis, produce carbon dioxide that induces a local decrease 

of the pH resulting tissues necrosis (Liu et al., 2006).  

Ceramic scaffolds, such as hydroxyapatite (HA), tricalcium phosphate (TCP), CaPs, and 

calcium sulphates have been widespread use in bone regeneration applications because of 

their high mechanical stiffness. Furthermore, they exhibit excellent biocompatibility due to 

their chemical and structural similarity to the mineral phase of native bone. The interactions 

of osteogenic cells with ceramics are important for bone regeneration (Ambrosio et al., 

2001). Various ceramics have been used in dental and orthopaedic surgery to fill bone 

defects and to coat metallic implant surfaces to improve their integration with the host 

bone. However, their clinical applications for tissue engineering has been limited because of 

their brittleness, difficulty of shaping for implantation and the fact that new bone formed in 
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a porous HA network cannot sustain the mechanical loading needed for remodeling (Wang, 

2003). In addition, although HA is a primary constituent of bone and might seem ideal as a 

bone graft substitute, some problems exist to control its degradation rate.  

Metallic materials are also particularly suitable for the replacement of hard tissues such as 

bones and teeth and for the production of structures able to support loads. The main 

shortcoming is linked to the possible release of metal ions in situ and their accumulation in 

other body districts, following the corrosion operated by biological fluids. The metals used as 

biomaterials for the manufacture of prostheses are iron, cobalt, nickel, titanium, and 

tungsten. In particular, due to its biocompatibility, corrosion resistance and excellent 

mechanical properties, titanium is suggested in oral, maxillofacial and orthopaedic surgery. 

 

Growth factors 

Growth Factors are cytokines secreted  by various cell types, that act as signal molecules and 

are essential for tissue formation. Since the binding of the growth factors and their receptors 

is responsible for the modulation of cellular adhesion, proliferation, migration and 

differentiation related pathway, these proteins play a fundamental role in tissue 

engineering. The growth factors investigated for these applications are over all bFGF (basic  

Fibroblast  Growth Factor o FGF-2), IGF-I (Insulin-like Growth Factor),  VEGF (Vascular 

Endothelial Growth  Factor),  PDGF (Platelet Derived Growth Factor) (Jadlowiec et al., 2003) 

and the  TGF- ß  superfamily (Transforming  Growth  Factor  Beta).  

FGF-2 is a growth factor involved in the endothelial cell proliferation and in the bone 

remodelling. It also promote angiogenesis. 

IGF-I  is one of the main activator of Akt pathway, and therefore act stimulating cell 

proliferation and inhibiting apoptosis. Concerning bone, IGF-I stimulate collagen I synthesis 

and matrix deposition during fractures. 

PDGF is produced by platelets, monocytes and macrophages and it is implicated in growth 

and differentiation. Autologous PDGF from the platelet-rich-plasma (PRP) is already used in 

clinical practice in maxillofacial and vascular surgery and in orthopaedic practices for 

musculotendinous pathologies, pseudoarthrosis and prosthesis replacement (Filardo et al., 

2013; Lubkowska et al., 2012; Volpi et al., 2010). 

TGF- ß  superfamily proteins are involved in various functions such as tissue regeneration, 

cell differentiation, embryonic development and immune system modulation. In particular, 
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they regulate MSC proliferation, osteoblast, fibroblast and endothelial cell mobility, collagen 

production and secretion and the mitogenic effects of the other growth factors (Everts et al., 

2006). Bone morphogenetic proteins (BMPs) are transforming growth factor-β (TGF-β) 

superfamily members, known to be potent inducers of bone formation . More than 30 BMP-

related proteins have been identified. They are synthesized by skeletal cells, and play a 

crucial role in early embryogenesis, skeletogenesis and  in the maintenance of bone mass 

also during adulthood. They are involved in the differentiation of bone marrow stem cells 

toward osteoblasts , chondrocytes and adipocytes. Moreover, they are involved in the 

development and in diseases of a variety of tissues, in particular vascular and neural ones 

(Biver et al., 2013). Also  VEGF could be potentially useful in tissue engineering for its 

angiogenic activity. This protein is usually released at the injured site and regulate new 

vascularization through the recruiting of endothelial cells.  

 

Dynamic Culture systems 

Bioreactors can be defined as devices in which biological and/or biochemical processes 

develop under closely monitored and tightly  controlled environmental and operating 

conditions such as pressure, temperature, nutrient  supply,  and  waste  removal.   

The in vitro cultivation of 3D-constructs in bioreactors allow the media perfusion through a 

porous scaffold, providing homogenous nutrient and oxygen concentrations to cells. As 

nutrient deprivation and hypoxia often occur in static culture, this ability of bioreactor 

systems makes them a key part of an in vitro culture strategy (Yeatts AB 2013).  

Moreover, another interesting skill is the possibility to apply mechanical stimulation to direct 

cellular activity, differentiation and function, that is important for the development of 

functional grafts (Chen HC 2006). Bioreactors, extensively used in the culture of MSCs, 

include simple systems such as spinner flask and rotating wall bioreactors and more 

complicated systems including perfusion and dynamic loading bioreactors. In particular, 

perfusion and dynamic loading systems have been demonstrated to be very effective in MSC 

culture enhancing their proliferation and also chondrogenesis and osteogenesis.  
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Clinical needs and current strategies 

In the recent years, many strategies for the cure of musculoskeletal tissues critical lesions, 

mainly in orthopaedic,  oral and maxillofacial surgery, have been under investigations. 

A great challenge is represented by the repair of defects that include more kinds of tissue, as 

occurred in periodontal and osteochondral diseases. 

Periodontal regeneration is especially demanding, as it requires regeneration of three quite 

diverse and unique tissues such as  the alveolar bone, the periodontal ligament and the 

cementum, that have to interface with each other to restore their complex structure (Chen 

et al., 2010; Young et al., 2005). 

In parallel, one of the main obstacles for osteochondral defect regeneration arises from the 

disparity concerning anatomy, composition and, most importantly, rate of healing of the 

articular cartilage (AC) and the subchondral bone. Nevertheless, despite their heterogeneity, 

these two tissues together constitute a unique unit which requires the interconnected 

activity of both components to carry out the physiological function of absorbing mechanical 

stress and attenuate the loads through the joints (Brown and Vrahas, 1984; Hoshino and 

Wallace, 1987; Imhof et al., 2000; Radin et al., 1970; Radin and Rose, 1986) and in which the 

modifications of each tissue induce a remodelling of the other (Mahjoub et al., 2012). 

 

Periodontal disease 

Periodontal diseases are inherited or acquired disorders of the tissues surrounding and 

supporting the teeth (periodontium) including alveolar bone, the periodontal ligament (PDL) 

and root cementum (figure 1). These diseases are highly prevalent and can affect up to 90% 

of the worldwide population. Periodontitis results in loss of connective tissue and bone 

support which could lead to tooth loss. These diseases are mainly caused by pathogenic 

microorganisms in the biofilm; however, also genetic and environmental factors contribute 

to origin the pathology. Periodontal manifestations could also derive from dermatological, 

haematological, granulomatous, immunosuppressive, and neoplastic disorders. A part from 

tooth loss, common forms of periodontal disease have been associated with adverse 

pregnancy outcomes, cardiovascular disease, stroke, pulmonary disease, and diabetes, even 

though the causal relations have not been established. Prevention and treatment are aimed 

at controlling the bacterial biofilm and other risk factors, arresting progressive disease (tooth 

cleaning/scaling, root planning and periodontal debridement) and restoring lost tooth 
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support (Pihlstrom et al., 2005). Several procedures have been attempted to achieve 

periodontal regeneration, including bone graft placement, guided tissue/bone regeneration 

and the use of various growth factors and/ or host modulating agents such as Emdogain and 

parathyroid hormone. However, these techniques did not achieve successful results in 

restoring the interconnected structure formed by alveolar bone, PDL and cementum that is 

necessary for proper functioning of the periodontium (Chen et al., 2012). Each of the 

periodontal components has its very specialized structure and this directly define its 

function.   

Cementum is the hard, avascular connective tissue that coats the roots of teeth and that 

serves primarily to invest and attach the principal periodontal ligament fibers.  

The periodontal ligament is a soft, specialized connective tissue situated between the 

cementum covering the root of the tooth and the bone forming the socket wall (alveolo-

dental ligament). It ranges in width from 0.15 to 0.38 mm, with its thinnest portion around 

the middle third of the root, showing a progressive decrease in thickness with age. It is a 

connective tissue particularly well adapted to its principal function, supporting the teeth in 

their sockets and at the same time permitting them to withstand the considerable forces of 

mastication. In addition, the periodontal ligament has the capacity to act as a sensory 

receptor necessary for the proper positioning of the jaws during mastication and, very 

importantly, it is a cell reservoir for tissue homeostasis and repair⁄regeneration. 

The alveolar process is that bone of the jaws containing the sockets (alveoli) for the teeth. It 

consists of outer cortical plates (buccal, lingual, and palatal) of compact bone, a central 

spongiosa, and bone lining the alveolus (alveolar bone). The cortical plate and bone lining 

the alveolus meet at the alveolar crest. The bone lining the socket is specifically referred to 

as bundle bone because it provides attachment for the periodontal ligament fiber bundles 

(Nanci and Bosshardt, 2006).  
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Figure 1. Modified by Chen FM 2012 (Chen et al., 2012) 

 

Since the importance of the periodontium complex integrity, and the progresses in cell-

based therapeutics, different tissue-engineering approaches for a robust periodontium 

regeneration with efficacy and predictability are currently under investigation.  Concerning 

cell type, a possible choice consist in Dental Stem Cells, which include Dental Follicle Cells, 

Dental Pulp Stem Cells and Dental Apical Papilla Stem Cells and PDL-derived MSCs (PDLSCs) 

(Chen et al., 2012). 

Among them, PDLSCs seem to be the most proper candidate. Since their first isolation by Seo 

et al. (Seo et al., 2004), their ability to regenerate PDL tissues have been verified in rodent 

and swine models of periodontal defects (Ding et al., 2010; Liu et al., 2008; Seo et al., 2004) 

and recently, a three-patient experiments confirm their ability to improve periodontal 

disease also in humans (Feng et al., 2010). 

However, the difficulty in the generation of enough PDLSCs from one donor source due to 

the variation of stem cell potential between donors and the disease state of each patient 

represent a problem for possible autologous uses. This disadvantage, is shared by all Dental 

Stem Cells. Therefore, a valid alternative is represented by mesenchymal stem cells both 

from bone marrow (BMSCs) and from adipose tissue (ASCs). BMSCs can efficiently 

regenerate not only bone tissue but also the periodontal tissue in various animal models. 

BMSCs autologous transplantation in dogs induced periodontal (cementum, PDL and 

alveolar bone) regeneration in experimental class III furcation defects (Kawaguchi et al., 

2004). These results are consistent with that obtained in a rat model in which GFP-labelled 

BMSCs were detectable in the repaired tissue four weeks after transplantation. In particular, 
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cementoblasts, osteoblasts, and fibroblasts of the repaired tissue were positive for GFP, 

suggesting that implanted BMSCs could survive and differentiate into periodontal tissue cells 

(Hasegawa et al., 2005).  

Nonetheless, bone marrow harvest is an expensive and quite complex procedure. 

Differently, adipose tissue is easy to obtain and normally present in larger quantity. Recently, 

the ASC ability to promote periodontal regeneration have been investigated in vivo both in a 

rat and in a dog model. In particular, after 8 weeks from implantation, ASCs mixed with PRP 

induced the formation of PDL-like and alveolar bone-like structures into rat periodontal 

defects (Tobita et al., 2008) and bone formation in a canine model of dental root bifurcation 

defects (Tobita and Mizuno, 2010). 

Concerning the delivery of cells for periodontal regeneration, both scaffold mediated or 

scaffold-free approaches have been tested. The first choice is guided by the fact that 

biomaterials can maximise the beneficial effects of cellular therapies improving persistence 

and controlling cell delivery (Chen FM 2012). The scaffolds used for this purpose include 

natural biomaterials such as collagen (Grimm et al., 2011), gelatin (Kuo et al., 2008) or fibrin 

(Soffer et al., 2003). These biomaterials shown the ability to guide cells in the lesion site 

accelerating periodontal defects healing, even though the requirement of extensive 

purification protocols and potential pathogen contamination when harvested from animal or 

human sources must carefully considered before application (Chen et al., 2012). For these 

reasons, a valid alternative are synthetic polymers as poly(lactic-co-glycolic acid (Shang et al., 

2010), or ceramics (Jiang et al., 2010) that have been recently applied with promising results 

in preclinical models of periodontal defects (Jiang et al., 2010; Shang et al., 2010). Finally, 

also metals, such as titanium (a material largely used  in orthopaedic practises), have been 

shown to support and guide  autologous PDLSCs to organize periodontal tissues in a rat 

preclinical model, suggesting a possible clinically relevant methods for autologous PDL 

regeneration on titanium implants in humans (Lin et al., 2011). Scaffold-free approaches 

include cell sheets (Flores et al., 2008a; Flores et al., 2008b; Iwata et al., 2009) or cell pellet 

transplantation (Yang et al., 2009). Using both the approaches it was induced a good 

periodontal regeneration, with restoration of the cementum/periodontal-ligament complex. 

However, some doubt around their use include the delicate structure difficult to handle of 

the cell sheets and, the perplexity about the non-tumorigenicity of the cell pellet 

microtissues (Demirbag et al., 2011). 
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Osteochondral defects 

Osteochondral defects derive from traumatic injuries, osteochondritis dissecans and 

chondromalacia and are associated with the risk of developing degenerative joint diseases. 

The characteristic of this type of lesion is that two very different tissues such as the cartilage 

and the bone are affected. Articular cartilage is an aneural, avascular tissue, that consists of 

water, collagen, proteoglycans, and only a cell type, the chondrocytes. Each component of 

cartilage holds a specific role in maintaining its supportive nature. Glycosaminoglycans 

(GAGs), attached to the proteoglycans found in cartilage extracellular matrix, have a high 

density of negative charges that attracts osmotically active cations in water. The following 

excess of water causes the turgor which enables the resistance to high compressive forces. 

GAGs (mainly chondroitin and keratin sulphates) and  proteoglycans (mainly aggrecan) 

constitute a network interlaced through the structured collagen (mainly of type II), which 

fibers allow structural and elastic strength of the cartilage (Nukavarapu and Dorcemus, 

2013). According to the different concentrations of each component, articular cartilage can 

be divided into four zones (figure 2):  the superficial or tangential zone (10–20% of articular 

cartilage), the middle zone (subsequent 40–60%), the deep zone and the calcified cartilage 

(Pearle et al., 2005). The superficial zone present densely packed collagen fibers and 

flattened cells parallel to the cartilage surface, and a small amount of proteoglycans. This 

zone has low permeability but is the main responsible for the wear and frictional properties 

of the tissue. Differently, the middle zone, contains abundant  proteoglycans, that confer to 

it  high compressive modulus, but has a low number of cells, and obliquely oriented collagen 

fibers. In the deep zone, both the cells and the collagen fibrils are oriented perpendicularly 

to the articular cartilage's surface, and the fibrils are anchored in the underlying subchondral 

bone. This zone also has a high compressive modulus, even though presenting less 

proteoglycans than the middle zone. Between this zone and calcified cartilage there is a thin 

line  called “tidemark” that present few cells and the collagen fibers extending from the 

upper to the lower zone. The calcified zone has a fundamental role since it constitutes the 

transition between the pliable cartilage and the rigid subchondral bone (Nukavarapu and 

Dorcemus, 2013) (figure 2). 
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Figure 2. Schematic drawing of different layers of hyaline cartilage and subchondral bone with vessels 
(Imhof et al.,) 

 

The area underlying the calcified cartilage and composed of the bony lamella and the 

trabeculae is defined subchondral bone (Madry et al., 2011). The bony lamella (or 

subchondral bone plate) is a solid mass of bone with a varying thicknesses ranging from 0.2–

0.4 mm in humans. Differently from cartilage, the trabecula of the subchondral bone is 

highly vascularized and contains nutrients for both itself and the adjacent articular cartilage, 

and  also contains unmyelinated free nerve endings. The main functions of subchondral 

bone are the absorption of compressive stress and the maintainance of the joint shape 

(Kawcak et al., 2001).  

It appears clear that these tissues have interconnected functions and are both essentials for 

the joint health. For these reason, therapies for their contemporaneous repair in the case of  

osteochondral lesions, have been developed.   

Current procedures include mosaicplasty or autograft osteochondral transplant (Bobic, 1996; 

Matsusue et al., 1993) and osteochondral allograft placement (McDermott et al., 1985).  

Mosaicplasty involves taking osteochondral plugs from a non-load-bearing area of the 

patient’s own joint (autografts) and transplanting these plugs into the disease site. Although 

it represents a promising approach to restore the biological and mechanical functionality of 

the joint the clinical use of autologous osteochondral grafts suffers from several limitations 

such as the low amount of material available, the donor site morbidity and the difficulty to 
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match the topology of the autografts with the injured site (Martin et al., 2013). Allograft 

transplantation allow to bypass these shortcomings but it presents the possibility of disease 

transmission, rejection of allograft tissue, graft versus host disease, and potential need for 

immunosuppression (Elisseeff et al., 2005).   

For these reason, a broad variety of tissue engineering approaches for osteochondral 

regeneration are developing. Three-dimensional (3D) tissue grafts of pre-defined size and 

shape can be engineered by combining cells with 3D porous biomaterials, which provide the 

template for tissue development (Martin et al., 2013). 

As clearly reported in a recent review by Martin et al. (Martin et al., 2013) different 

approaches could be classified on the basis of different cell and scaffold types (figure 3). 

According to this classification, cells could be I) of a single source and have chondrogenic 

capacity, (II) of two cell sources and have either chondrogenic or osteogenic capacities, (III) 

of a single cell source and have both chondrogenic and osteogenic differentiation capacity, 

(IV) or could also be absent (cell-free approach). Moreover, the construct can be generated 

using: (A) a scaffold for the bone component (ceramics, poly (lactic-co-glycolic acid) or 

polylactic acid scaffolds, or devitalized bone) but a scaffold-free approach for the cartilage 

component, (B) different scaffolds for the bone (as above) and the cartilage (polylactic acid 

scaffolds, hyaluronic acid sponges or poly (glycolic acid) meshes) components combined at 

the time of implantation, (C) a single but heterogeneous composite scaffold, or (D) a single 

homogenous scaffold for both components such as poly (ethylen-glycol) hydrogels. 

 

Figure 3. Modified from Martin et al, 2013 (Martin et al., 2013). 
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Regarding the cell type to be used for the constructs generation great attention have been 

paid on chondrocytes and mesenchymal stem cells (either differentiated or not). Taking into 

account the greater healing potential of bone compared to cartilage (an avascular, aneural 

tissue) and the presence of osteoprogenitors in the blood deriving from subchondral bone 

fractures, an obvious strategy could be to favour cartilage regeneration using differentiated 

chondrocytes (Figure 3 I, II). Despite this premise, the use of chondrocytes is not always so 

effective (Kon et al., 2009). Moreover, the use of autologous chondrocytes present some  

complications; first of all, for clinical purposes, chondrocytes should be culture expanded 

before their use. This, has been proved to lead to a de-differentiation of these cells, with 

changes in morphology and down-regulation of specific genes. Although this problem seem 

to be resolvable culturing chondrocytes with specific growth factor such as FGF-2 or TGF-β1 

(Barbero et al., 2003) this technique imply a further manipulation of the cells. To avoid the 

limitations of de-differentiated chondrocytes some groups are investigating  the potential 

effect  of non-digested finely minced cartilage fragments in the repair of experimental 

cartilage defect (Frisbie, 2005; Lu et al., 2005). However, in all these approaches, the donor 

site morbidity represent an important drawback. All these reasons, pushed several groups to 

investigate the potential of MSCs for both bone and cartilage repair. Recent studies report 

the use of BMSC for osteochondral defect repair in different animal models (Gao et al., 2001; 

Oshima et al., 2004; Uematsu et al., 2005) and in a few clinical cases (Wakitani et al., 2004). 

Nonetheless, whether the regenerated cartilage does not remodel into bone in the long-

term, still has to be validated. This concern arouses from the fact that when 

chondrodifferentiated BMSCs are exposed to osteogenic stimuli, they express hypertrophic 

chondrocytes markers (Mackay et al., 1998; Winter et al., 2003) and mineralize the 

deposited matrix (Mackay et al., 1998; Muraglia et al., 1998). Among MSC, also adipose-

derived stem cells have been used in preclinical model of osteochondral defects (Nathan et 

al., 2003). Although the promising results, whether these cells are able to regenerate the 

tissue or to provide support to resident cells, still have to be established. Moreover, to 

validate these cell efficacy for osteochondral defect repair, a larger animal study, is required. 

Concerning the choice of the scaffold a possible approach is to use a biomaterial supporting 

bone repair and to seed on its top cells for cartilage regeneration (Figure 3 A). Good results 

were obtained both in vitro (Tuli et al., 2004; Wang et al., 2004) and in vivo (Kandel et al., 

2006) seeding chondrocytes (Kandel et al., 2006; Wang et al., 2004) or MSCs “committed” 
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with chondrogenic stimuli (Tuli et al., 2004), on ceramic materials. Alternative techniques 

consider that different supporting structure are required for both bone and cartilage 

regeneration (3 B, C).  One approach consists in the creation of two different bioconstruct in 

vitro and then in the suture of the two part before the in vivo implantation. Two procedures, 

both successful, included cells terminally differentiated (chondrocytes and periosteal-

derived cells) (Schaefer et al., 2000) or progenitors (MSCs) cultured before the seeding with 

either chondrogenic or osteogenic supplements (Gao et al., 2001; Schaefer et al., 2002). 

Another approach, consists in heterogeneous scaffolds composed of two distinct but 

integrated layers for the cartilage and bone regions. Various groups choose this option, 

combining the multilayer scaffolds with different kind of cells (Duan et al., 2013; Frenkel et 

al., 2005; Kim et al., 2013; Kon et al., 2011; Kon et al., 2010a; Martin et al., 2007; Niederauer 

et al., 2000; Schek et al., 2004). 

Finally, different procedures have been applied to an homogeneous scaffold approach. The 

use of two cell types having chondrogenic (rib chondrocytes) and osteogenic (MSCs) capacity 

was adopted by Xue et al. to a polycaprolactone (PCL) scaffolds  (Xue et al., 2013). Another 

strategy consist in the use of cells from a single source,  but previously in vitro differentiated. 

In the Alhadlaq et al study (Alhadlaq et al 2004) rat bone marrow-derived MPC were 

expanded, induced separately to chondrogenic or osteogenic differentiation and then 

loaded on the scaffold.  

Also undifferentiated MSCs have been used in association with homogenous scaffold in a 

porcine model (Lim et al., 2013).  Cell-free approaches in which the scaffold was either 

impregnated (Fukuda et al., 2005) or not (Hui et al., 2013) with fibroblast growth factor-2 

(FGF-2) were also described.  

In order to improve cell differentiation and tissue development many groups have 

developed bioreactors to apply mechanical stimuli to cell-seeded scaffolds, in order to 

simulate the specific physiological forces acting during joint loading. Indeed physical stimuli 

can modulate chondrocytes and osteoblasts metabolism, and upregulate the production of 

extracellular matrix components.  

A number of studies have shown that dynamic compression applied with a specific 

magnitude and frequency stimulated chondrocyte metabolism and enhanced cartilage ECM 

production (Buschmann et al., 1995; Davisson et al., 2002; Kisiday et al., 2004; Lee and 

Bader, 1997). Similarly, physiological strain magnitudes applied with a four-point bending 
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bioreactor enhanced osteogenic differentiation and mineralized matrix deposition of  human 

BMSC, pre-cultured within partially demineralized bone matrix (Mauney et al., 2004). 

 

Swine as animal models 

In vivo animal studies are essential to test biocompatibility, tissue response and mechanical 

function of a cell/scaffold construct, in order to close the gap between in vitro experiments 

and human clinical trials. 

A part from the application, desirable characteristics of an animal model include similarity 

with humans, both in terms of physiological and pathological aspects, together with the 

possibility to observe numerous subjects over a relatively short time frame (Egermann et al., 

2005; Liebschner, 2004). Other features to be considered are the costs for the animal 

purchase and housing, availability, acceptability to society, tolerance to captivity and ease of 

housing. In addition to this, the lifespan of the species chosen should be suitable for the 

duration of the study. More specifically, for studies investigating implant interactions, an 

understanding of the species specific tissue characteristics, such as microstructure and 

composition, are important for the results extrapolation to the human situation. Small 

animal models such as mice, rats and rabbits offer advantages for mechanistic study, 

evaluation of allogenic and xenogenic strategies, and initial feasibility studies. However 

considering their use for orthopaedic tissue engineering studies, these models present 

important drawbacks such as  the gross differences in the bone  anatomy between these 

animals and the human one. Moreover, the joints of small animals do not adequately mimic 

those of humans, being much smaller and having thinner cartilage, and consequently they 

do not allow the creation of defects comparable in dimension with human ones. For these 

reasons, large animal models (canine, caprine, swine, and equine models) could replicate the 

human clinical scenario in a better way. Among them, swine are reported as the subjects of 

choice in a wide variety of the dental, maxillofacial and orthopaedic tissue engineering 

studies (Ciocca et al., 2009; Wang et al., 2007). These animal bone share several features 

with the human one, such as rate of healing, morphology, anatomy (Thorwarth et al., 2005), 

mineral density and composition (Aerssens et al., 1998). Furthermore, the oral maxillo-facial 

region of these animals is similar in anatomy, development, physiology, patho-physiology, 

and disease occurrence to the human one (Wang et al., 2007). Therefore these animals 

might be considered appropriate models of oral disease and in oro- facial research, indeed 
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they have been recently used in preclinical models of dental  implantology (Gahlert et al., 

2007; Nkenke et al., 2003; Terheyden et al., 1999) and maxillo-facial surgery (Henkel et al., 

2005; Wilson et al., 2012; Wiltfang et al., 2004). Concerning the study of osteochondral 

defects treatment, swine are an appropriate model as their joint size, weight-bearing 

requirements, and cartilage thickness more closely imitate the human condition than canine 

and smaller animal models. Despite  pig  models  have  been  used  to study osteochondral  

defect treatment (Chang et al., 2011), these animals are generally considered undesirable for 

orthopaedic research due to their large growth rates and excessive final body weight. 

However, the development of minipigs has partially overcome this problem. 

Minipig have docile and gentle behaviour, and also  present similarity with adult humans in 

terms of weight (70-80 kg). Different studies have shown that, in these animal models the 

process of bone remodeling, bone structure, and cartilage thickness are quite similar to 

humans (Frisbie et al., 2006; Zelle et al., 2007). Different studies of chondral and 

osteochondral defect healing have been performed using this animal model (Harman et al., 

2006), showing promising results in the field of tissue engineering.  
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MATERIALS AND METHODS  

Patient and swine enrolment and tissues harvesting 

For the in vitro study, human adipose tissues were harvested from patients that underwent 

tooth extraction and were selected by using the clinical  criteria reported in Table 2. The 

enrolled patients (table 1) were in good health without any systemic complication. The 

informed consent and experimental protocols for this study were reviewed and approved 

after written consent by the Ethics Committee and Institutional Review Board of University 

of Milan (authorization #17/12 of April 23, 2012).  

The surgery was performed by a maxillofacial surgeon. Local anaesthesia was performed 

(carbocaine 2% and adrenaline 1:100,000) either in the oral cavity or in the  subcutaneous 

fat tissue; the surgical access for liposuction was performed at the navel using the lipofilling 

technique: fat was harvested with a sterile 10-mL BD Luer Lock syringe performing a 

constant manual negative pressure (plunger positioned between 1 and 2 mL) (Ciuci and 

Obagi, 2008; Coleman and Saboeiro, 2007) The tooth was extracted and different tissues 

were collected: alveolar bone, as a result of modelling the residual extraction socket; 

periodontal ligament; and tooth portions, coronal and root. Finally, BFP was approached, 

cutting the mucosa in proximity to the second molar teeth, 0.5 cm from the fornix. Blunt 

dissection was performed to prevent damage, to close the anatomical structures, and to 

allow the identification and exteriorization of the fat pad. BFP was stretched into the wound 

to close the residual defect and extra tissue was cut (Fig. 1). This technique is widely used 

either for aesthetic or reconstructive reasons  (Amin et al., 2005; Pelo et al., 2008). At the 

end of the procedure, Ethilon 5.0 sutures were used to close the surgical access. 

 

Figure 1. Extraction of Buccal/Bichat’s fat pad (BFP). (a) Preoperative conditions. Poor oral hygiene; 26 
compromised by periodontal disease, absence of 27, and caries infiltrating 28. (b) Exposure of BFP. (c) 

Tunnelling and positioning of the BFP to repair defect. (d) Waste material of the BFP at the end of surgery. 
 

Porcine fat tissues and blood samples were collected from 6 swine (3 pigs and 3 minipigs, 

table 1), at the end of preclinical studies approved by the Italian Ministry of Health and were 
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performed at the CRABBC (Biotech Research Centre for Cardiothoracic Applications) (Rivolta 

d’Adda - CR). All the procedures were carried out in conformity with institutional guidelines 

in compliance with national (Law 116/92, Authorization n.169/94-A issued December 19, 

1994, by the Italian Ministry of Health) and international laws and policies (EEC Council 

Directive 86/609, OJ L 358. 1, December 12, 1987). 

 

   

Gender Age n Raw adipose tissue (ml) 

A
SC

s 

human 
BFP 1 ♂, 1 ♀ 35,5± 2,7 years 2 0,8± 0,2 

SC 1 ♂, 1 ♀ 35,5± 2,7 years 2 32,5±22,9 

porcine 
BFP 3 ♂, 3 ♀ ≥5 months 6 5,7 ± 1,5 

SC 3 ♂, 3 ♀ ≥5 months 6 12,3 ± 3,6 

 

Table 1. Gender and age of human donors and animals used for the in vitro study. Amount of harvested fat 
from buccal fat pad (BFP) and subcutaneous adipose tissue (SC) is also reported (data are expressed as 

mean±SEM). 

 

Clinical 

inclusion 

criteria  

• Patients classified as ASA I - II.  

• Males and females, between 18 and 70 years of age, with 

compromised wisdom teeth and thin bone at the maxillary sinus.  

• Possibility of withdrawing subcutaneous adipose tissue from 

abdominal region at the same time.  

Clinical 

exclusion 

criteria  

• Disorders of the parotid glands.  

• Disorders affecting  fat and carbohydrate metabolism  

• Presence of adequate bone support under  remaining teeth.  

• No risk of oro-sinusal comunication after tooth extraction.  

• Medical contraindications to elective surgery.  

Table 2. Enrolment Criteria for Patients 

 

For the in vivo study, seven adult (12 months old) male Yucatan minipigs, with an average 

weight of 73.5±2.2 kg (range 71-77 Kg), were included. Animal care and surgery were 

approved by the Ethical and Technical Committee of the Italian Ministry of Health (CRABCC-

22-2011); all the animal experiments were performed at CRABCC, Italy, in accordance with 
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both policies and principles of laboratory animal care and with the European Union guide-

lines (86/609/EEC) approved by the Italian Ministry of Health (Law 116/92).  

During the first surgical procedure, upon shaving and disinfection, adipose tissue (~ 8 g) was 

harvested from the interscapular region of all the animals. General anaesthesia was induced 

by intramuscular injection of a combination of ketamine (10mg/kg) and midazolam 

(0.5mg/kg) and maintained via inhalation of a mixture of isoflurane 4% in oxygen. The small 

incision was then sutured and the animals were administered once with tramadol (1mg/kg) 

and meloxicam (0.4 mg/kg) to control pain.   

Human ASCs to be used in the in vivo study were isolated from waste adipose tissue from 

aesthetic liposuction of a female donor (age 61, BMI<30 kg/m2, no metabolic disease) after 

informed consent and Institutional Review Board (IRB) approval of Galeazzi Orthopaedic 

Institute, Milano, Italy, as previously described (de Girolamo et al., 2009). 

All the tissue harvesting procedures were carried out by maxillofacial, plastic or veterinary 

surgeons.   

 

Characterization of Adipose-derived Stem Cells (ASCs) 

Isolation 

Adipose-derived stem cells (ASCs) were isolated as previously described (de Girolamo, 

Arrigoni). Briefly, human and porcine tissues were enzymatically digested at 37°C with 0.075 

and 0.1 % type I collagenase (225 U/mg; Worthington, Lakewood, NJ) for 30 and 60 minutes, 

respectively. The stromal vascular fraction (SVF) was centrifuged, filtered and 105cells/cm2 

were plated in DMEM (Sigma-Aldrich, Milan, Italy) supplemented with 10% FBS, 50 U/ml 

penicillin, 50 μg/ml streptomycin, and 2 mM L-glutamine (Sigma-Aldrich) (control medium, 

CTRL). Cells were maintained at 37°C in a humidified atmosphere with 5% CO2. When 

human and porcine ASCs reached 70-80% confluence, they were detached with 0.5% 

trypsin/ 0.2% EDTA (Sigma-Aldrich) and plated at a density of 104  and 5 x103 cells/cm2, 

respectively. 

 

Proliferation  

Both cell types were maintained in culture for 21 days and counted every week. Doubling 

time was calculated as (ln [N/N0])/(ln 2), where N is the number of the counted cells and N0 

represents the number of plated cells. 
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MTT cell viability assay 

To test the viability of cells, 3x104 human ASCs/cm2 and 1.5x104 porcine ASCs/cm2 were 

plated in 96-well plates, and monitored at day 1 and 7. 100 μL of MTT (3-[4,5 

dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide Sigma-Aldrich) (final concentration 

0.5 mg/ml in DMEM) were added and cells were maintained for 4 additional hours at 37°C. 

Formazan precipitates were solubilized by 100% DMSO (dimethyl-sulphoxide, Sigma-Aldrich) 

and absorbance was read at 570 nm in a Wallac 

Victor II plate reader (Perkin Elmer Western Europe, Monza, Italy). 

  

Fibroblast-colony-forming unit assay (CFU-F) 

ASCs, were plated in DMEM supplemented with 20% FBS, 50 U/ml penicillin, 50 μg/ml 

streptomycin, and 2 mM L-glutamine, in 6-well plates by serial dilution starting from 1000 

cells/well. After 6 days the medium was replaced and, at day 14 and 10 for human and 

porcine cells, respectively, ASCs were washed, fixed in 100% methanol and stained with 0.5% 

crystal violet (Fluka, Buchs, Switzerland). The frequency of the CFU-F was established by 

counting individual colonies (of at least 25 cells) compared to the number of seeded cells.  

 

Flow cytometry analysis 

ASCs (3 x 105) in PBS with 1% FBS/0.1% NaN3 per sample were incubated for 30 minutes on 

ice with monoclonal antibodies raised against CD14, CD31 CD34, CD73, CD90, and CD105 

(Ancell, Bayport, MN). Specific binding was revealed by either streptavidin-PE– or fluorescein 

isothiocyanate–conjugated sheep anti-mouse antibody. Samples were acquired by FACS 

Calibur flow cytometer (BD Biosciences Europe, Erembodegem, Belgium) and data were 

analyzed using CellQuest software (BD Biosciences Europe). 

 

Osteogenic differentiation 

7,75x103 hASCs/cm2 at 4th and 7th passages and 5x103pASCs/cm2 at 3rd and 4th passages were 

maintained for 14 days in either control or osteogenic medium (OSTEO, DMEM, 10% FBS, 10 

nM dexamethasone, 10 mM glycerol-2-phosphate, 150 μM L-ascorbic acid-2- phosphate, 10 

nM cholecalciferol, Sigma-Aldrich).  

To evaluate alkaline phosphatase (ALP) enzymatic activity, both undifferentiated and 

differentiated ASCs were lysed in 50 µl of 0.1% Triton X-100 and incubated at 37°C with 
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10mM p-nitrophenylphosphate dissolved in 100 mM diethanolamine and 0.5 mM MgCl2, pH 

10.5. Samples were read at 405 nm and ALP activity  was standardized respect to the sample 

protein concentration determined by BCA Protein Assay (Pierce Biotechnology, Rockford, IL). 

To determine collagen production, cells were stained with 0.1% (w/v) Sirius Red F3BA in 

saturated picric acid (Sigma-Aldrich) for 1 hour at room temperature, and then the samples 

were extracted with 0.1 M NaOH for 5 minutes and absorbance was read at 550 nm 

(Tullberg-Reinert and Jundt, 1999). Standard curve of known concentration of calf skin type I 

collagen (Sigma-Aldrich) was used to determine the concentration of secreted collagen. 

Extracellular matrix (ECM) calcification was determined on fixed ASCs stained by 40 mM 

Alizarin Red-S (AR-S, pH 4.1; Fluka). Mineral deposition was quantified by incubating the 

stained sample with 10% w/v cetylpyridinium chloride (CPC; Sigma-Aldrich) in 0.1 M 

phosphate buffer (pH 7.0) for 15 minutes to extract AR-S. Absorbance was read at 550 nm 

with Wallac Victor II plate reader (Halvorsen et al., 2001).  

 

Adipogenic differentiation 

ASCs from both sites of harvesting were induced to differentiate towards the adipogenic 

lineage as previously described with some modifications (de Girolamo et al., 2009). Briefly 

1.5x104 ASCs /cm2 were plated and cultured in control medium supplemented with 1 μM 

dexamethasone, 10 μg/ml insulin, 500 μM 3-isobutyl-1-methylxanthine, and 200 μM 

indomethacin (Sigma-Aldrich). 14 days later, cells were fixed in 10% neutral buffered 

formalin for 1 hour and stained by fresh Oil Red O solution (20 mg/mL [w/v] Oil Red O in 60% 

isopropanol) for 15 minutes. Lipid vacuoles were quantified by extraction with 200 μl of 

100% isopropanol for 10 minutes and reading the absorbance of 50 μl at 490 nm with Wallac 

Victor II plate reader. 

 

Chondrongenic differentiation 

5x105 ASCs were cultured in micromasses in chondrogenic medium (DMEM supplemented 

with 1% FBS, 100 nM dexamethasone, 110 mg/l sodium pyruvate, 150 μM L-ascorbic acid-2- 

9 phosphate, 1x insulin-transferrin selenium (ITS) and 10 ng/ml TGF-β1) for 21 days. 

Glycosaminoglycans (GAGs) production was assessed by dimethylmethylene blue (DMMB) 

assay as previously described (Farndale et al., 1986; Wolf et al., 2008). Briefly, micromasses 

were digested at 56°C overnight by 100μl of 50 μg/ml proteinase K in 100 mM K2HPO4 (pH 
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8.0). After 10 minutes at 90°C to inactivate the enzyme, the samples were spun at 14000 g 

for 10 minutes and each supernatant was collected for GAGs. Samples were then incubated 

at room temperature in 40 mM glycine/NaCl (pH 3) with 16 mg/ml DMMB and the 

absorbance was read at 500 nm with the Wallac Victor II plate reader. The amount of GAGs 

was determined respect to known concentrations of chondroitin sulfate (Sigma-Aldrich).  

 

ASCs and biomaterials 

pASC culture and osteogenic differentiation on biomaterials 

Titanium is a material widely used in  dental surgery, due to its high mechanical and 

corrosion resistance as well as its  biocompatibility. Titanium disks were kindly provided by 

Permedica S.p.A., Merate, Italy.  

Silicon carbide (SIC), with its hardness and wear-resistance,  could be an innovative material 

suitable to coat  metallic implants  giving an adequate  protection to the material and 

decreasing the wear rate of the inserted devices. SIC used in this study was kindly provided 

by CETEV - Centro Tecnologico del Vuoto, Carsoli - AQ, Italy). 

Both BFP- and SC-pASCs were seeded at 5x103/cm2 on titanium disk and silicon carbide–

plasma-enhanced chemical vapour deposition (SIC) fragments in a 24-wells plate either in 

CTRL or OSTEO medium. In order to determine cells adhering to the biomaterials, both 

undifferentiated and differentiated ASCs for 21 days, were lysed in 0.1% Triton X-100 and 

protein concentration was determined by BCA Protein Assay. Meanwhile, in adjacent wells, 

calcified ECM deposition was determined, as described above, and compared to the one 

produced by plastic-adherent (PA) cells. 

To visualize the adhesion of ASCs on scaffolds we cultured both ScI- and BFP-ASCs on 

titanium disks for seven days. Then, cells were stained with Calcein-AM (Fluka) and Hoecst 

33258 and examined with a confocal microscope (Leica model TCS SP5; Leica Microsystems 

CMS GmbH, Mannheim, Germany) using a 20x dry objective (HC PL FLUOTAR 20.0 x 0.50 

DRY) and 40x immersion oil objective (HCX PL APO Lambda blue 40,0X 1,25 oil UV).A 488 nm 

laser line was used to excite calcein while the fluorescent emission was detected from 500 to 

540 nm. Hoechst was excited with 405 nm laser line, and its fluorescent emission was 

detected from 615 to 510 nm). Moreover, using a third laser line (633 nm) in reflection 

mode, it was possible to determine with high accuracy the titanium disk (starting acquisition 

point) reflecting surface. 
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hASCs-scaffold interaction determination by scanning electron microscopy 

ASCs (1 x 105 and 3 x 104) were grown for 4 days on natural supports (alveolar bone and 

periodontal ligament) and on synthetic scaffolds (collagen membrane; Euroresearch, Milan, 

Italy and polyglycol acid filaments; Resorb, Sweden and Martina, Padova, Italy), respectively. 

The constructs were fixed in glutaraldehyde (2% in 0.1M sodium cacodylate buffer) 

overnight at 4°C and dehydrated with a series of graded ethanol (from 75% to 100%) for 4–5 

h at room temperature and subjected to drying using critical point drying (CPD; Baltec C.P.D. 

030). Samples were mounted on aluminium stubs, sputter-coated with gold (Balzers MED 

010) and analyzed by scanning electron microscopy (SEM; Sem Quanta Feg 250 esem). 

 

hASCs and Amelogenin (AM) treatment 

Amelogenin (30mg/ml)  was provided in a propylen glycol alginate water solution 

(Emdogain, Straumann, Basel, Switzerland).  Both BFP- and SC-hASCs (1.5 x 104/well) were 

seeded in a 24-well culture plate, with wells previously spread with a drop of AM (~100µl), 

and cultured in either control or osteogenic medium for seven days. Then ALP activity and 

collagen deposition were evaluated as previously described. As control, we considered ASCs 

cultured in the absence of AM. 

 

Proliferation of ASCs in medium supplemented with autologous or 

heterologous sera 

Serum collection 

10 ml of blood from each human donor and animal were allowed to clot for 30-45 min at 

37°C and then transferred at 4°C for 30 minutes. After centrifugation (1000 g for 10 minutes) 

sera were collected under sterile conditions (Schwarz et al., 2012) and maintained at -20°C 

until their use. 

 

Cell maintenance  

ASCs (6 x 104/well) were cultured in 6-well plates in DMEM supplemented with 50 U/ml 

penicillin, 50 μg/ml streptomycin, and 2 mM L-glutamine and either 10% or 5% autologous 

serum (AS) or 5% heterologous serum (HS). ASCs were also grown in the presence of 10% 
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FBS as control. Cells were cultured for four passages; they were detached and replated every 

7 days and counted each time. 

 

In vivo experiments 

Scaffold preparation  

Oligo(polyethylene glycol) fumarate (OPF)  was synthesized by MAYO Clinic (Rochester, 

Minnesota) using polyethylene glycol (PEG) with the initial molecular weight of 10,000 as 

previously described (Jo et al., 2001). Porous negatively charged hydrogels were made by 

dissolving 1 g OPF macromer and 0.1 g sodium methacrylate in 2 ml deionized water 

containing 0.15% (w/w) Irgacure 2959 (Ciba-Specialty Chemicals, Tarrytown, NY, USA) and 

300 µl N-vinyl pyrrolidinone. To obtain hydrogels with 75% porosity, the resulting solution 

was mixed with sodium chloride (particle size, 300 µm) at a ratio of 1:3 (W/W), and 

polymerized using 365 nm UV light at the intensity of ~8 mW/cm2 (Black-Ray Model 100AP, 

Upland, CA, USA) for 30 min. Cylindrical hydrogel scaffolds were cut using a cork borer and 

placed in deionized water for 48h with 4-5 changes.  

We received OPF in a not sterile dehydrated form (figure 2A). To prepare the scaffold for its 

use, restoring its structure,  properties and  dimension (9 mm in  diameter, 8 mm in depth), 

we hydrated it with PBS1X (figure 2B). Then we sterilized it trough immersion in 70% ethanol 

for one hour. After three consecutive washing in PBS1x (30 minutes/each) the scaffolds were 

put in colture medium (figure 2C).  

 

 
Figure 2. Dehydrated hydrogel (A); hydrated hydrogel in PBS1X (B); microphotographs of the the hydrogel in 

colture medium (C, 40x magnification). 

 

Experimental design and surgical procedure 

After the removal of the medium excess from the scaffolds, laying them down on sterile lint 

for few seconds, undifferentiated porcine or human ASCs, detached at 3rd passage, (3×106 

cells/300 μl medium) were loaded on OPF. Seeded scaffolds were maintained for 30 minutes 
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in the incubator in order to allow cells-scaffold interaction. Then 4 ml of control medium 

were added to the constructs that were kept in the incubator overnight. Cell-free scaffolds 

followed identical procedure. Next day, the minipigs were surgically treated under general 

anaesthesia by veterinary surgeons. With the animals in dorsal recumbence, a medial 

parapatellar incision and arthrotomy were performed on the right hind leg to expose the 

anterior aspect of the distal femur. Using a standardized core punch, four osteochondral 

lesions (9 mm in  diameter, 8 mm in depth each) per stifle joint were created in the trochlea 

periphery (Figure 3).  

 

 

Figure 3. Images of the early phases of the study. Adipose tissue harvesting from the interscapular region (a); 
ASC expansion in vitro (b); OPF scaffold preparation (c); ASC seeding on biomaterial (d); incubation of the 

construct (e); creation of osteochondral lesions in the trochlea periphery of the knee joint of minipigs (f-g-h); 
construct preparation and  implantation (i-l-m-n). 

 

After implantation, the joint capsule was closed and the wound was sutured in layers with 

bioabsorbable stitches. After surgery the minipigs were treated at first with enrofloxacin (2 

mg/kg IV) and amoxicillin (15mg/kg IM); then, with enrofloxacin (5mg/kg die for 5 days IM) 

and meloxicam (0,4 mg/kg die for three days) to control pain. The animals were allowed to 

free movements and carefully monitored until full recovery.  

Six months later, all the animals were euthanized by IV injection of pentothal sodium (50 

mg/kg) and potassium chloride (20 mg/kg); the right hind legs were explanted and then 

analysed by magnetic resonance imaging (MRI). Then, the joints were dissected, the treated 

portions retrieved en bloc and cut into four pieces corresponding to the four osteochondral 

defects, to allow independent analyses of each defect. Each single defect was prepared for 

further analyses. The contralateral hind legs were used as controls.  
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At the same time fat from buccal fat pad and interscapular region was also removed and 

processed as described above.  

 

Macroscopic analysis 

Macroscopic signs of infection, inflammation, hypertrophy of the synovial membrane and 

tissue adhesions were assessed. The gross chondral surface was evaluated, taking into 

account the neo-formed tissue and the interface implant-host tissue. Signs of incomplete 

filling, matrix degradation, fusion between the different osteochondral defects and other 

possible features were recorded.  

 

MRI analysis 

The right hind leg of all animals and one control left leg were imaged by MRI. Examinations 

were performed using two 1,5 T magnetic field super conducting MR Systems (Avanto, 

Siemens Medical Solution, Erlangen, Germany, gradient strength 45 mT/m, slew rate 200 

T/m/ms; Espree, Siemens Medical Solution, Erlangen, Germany, gradient strength 33 mT/m, 

slew rate 170 T/m/ms), with a dedicated 8-channel knee coil (Invivo, Gainesville, FL, USA). 

The hind limb  of minipigs were positioned with the knee extended and with the joint space 

in the middle of the coil. Lesions were studied with the following sequences:  

 PD-TSE FS SPACE sequence on sagittal plane (Repetition Time [TR]/Echo Time [TE]: 

1200/35; Field of View [FOV]: 170x170 mm; Matrix: 320x320; Slice Thickness: 1 mm; Voxel 

Size: 0.5x0.5x1 mm; Number of Slice: 60; scan time: 9 min, 2 sec; 

 T2-weighted TSE sequence on sagittal plane (TR/TE: 3300/83; Flip angle: 150°; FOV: 

180x180 mm; Matrix: 320x320; Slice Thickness: 3 mm; Voxel Size: 0.6x0.6x3 mm; number 

of slice: 20; scan time: 4 min, 1 sec; 

 T1-weighted Vibe Water Excitation (WE) GE sequence on sagittal plane (TR/TE: 15.6/6.65; 

Flip angle: 12°; FOV: 200x160 mm; Matrix: 256x256; Slice Thickness: 1 mm; Voxel Size: 

0.8x0.8x1 mm; number of slice: 72; scan time: 5 min, 45 sec; 

 T1-weighted sequence on sagittal plane (TR/TE: 560/10; Flip angle: 143°; FOV: 160x160 

mm; Matrix: 384x310; Slice Thickness: 2.5 mm; Voxel Size: 0.5x0.4x2.5 mm; number of 

slice: 20; scan time: 5 min, 14 sec. 

Post-processing was performed on a dedicated workstation (Leonardo, Siemens Medical 

Solution, Forchein, Germany). Images evaluation was performed by two experienced senior 
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musculoskeletal radiologists. MRI data were analysed by a modified 2D MOCART score for 

the evaluation of ex vivo osteochondral samples (Goebel et al., 2012).  

 

Histological and immunohistochemical analysis 

The samples were dissected free of soft tissue, fixed in 10% buffered formalin for 24 hours at 

room temperature, and then decalcified in a formic acid-sodium citrate solution as described 

elsewhere (de Girolamo et al., 2011). After decalcification procedure, samples were rinsed 

for 10 min in running water, and processed for paraffin embedding through a graded ethanol 

series. Four micrometer-thick sections were obtained and stained with Safranin-O following  

a standard protocol, for the evaluation of the structural details and GAGs deposition.  

After rehydration, sections for immunohistochemical analyses were incubated in an aqueous 

solution of 1% H2O2 for 30 min at room temperature, washed 3 times in PBS and then 

incubated overnight with either mouse anti-collagen type I antibody or anti-collagen type II 

(both Chondrex Inc, Redmond, WA, USA; 1:500). Antigen retrieval was performed by treating 

the sections in citrate buffer, pH 6.0, in a microwave oven (2 times for 5 min at 500 W) for 

anti-collagen type I and with 2% hyaluronidase solution (Sigma-Aldrich) at room 

temperature for 30 min for anti-collagen type II. Antigen–antibody complexes were detected 

with a peroxidase-conjugated polymer which carries secondary antibody molecules directed 

against mouse immunoglobulins (EnVisionTM+, DakoCytomation, Milan, Italy) applied for 60 

min at room temperature. Peroxydase activity was detected with diaminobenzidine (DAB, 

DakoCytomation) as substrate. Finally, the sections were incubated with mouse anti-human 

nuclei (Millipore, Billerica, MA, USA, 1:50) and treated as described above. For all the 

immunohistochemical procedures the samples were weakly counterstained with Mayer’s 

hematoxylin, dehydrated, and permanently mounted. The specificity of anti-collagen type I 

or type II antibody was also assessed. Photomicrographs were taken with an Olympus BX51 

microscope (Olympus, Milan, Italy) equipped with a digital camera and final magnifications 

were calculated. The sections were also analyzed with a polarized light microscope (Leica 

DM LP microscope, Leica Microsystems, Wetzlar, Germany) in order to investigate the tissue 

organization, referring to collagen fibers of the newly formed structures. 
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Histological scoring 

Oriented histological specimens for each group, with the subchondral bone, and  stained 

with Safranin-O, were evaluated independently by three experienced blind researchers using 

the ICRS II scoring system (Mainil-Varlet et al., 2010).  

 

Biomechanical analysis by nanoindentation tests 

The indentation tests and the following calculations have been performed by our 

collaborators at Politecnico di Milano. Unfortunately, due to the limited number of 

implanted constructs constituted by scaffold combined with allogenic or human cells, no 

tests on these samples have been conducted. 

 

Experiments 

The experiments were performed using a NanoTest Indenter (Micro-Materials Ltd., 

Wrexham, UK) equipped with a liquid cell to keep samples in a hydrated and fully saturated 

state. The sample preparation protocol is the following: I) each sample is thawed in a 

thermal bath at 37 °C for 45 min; II) the sample is glued on a cylindrical aluminum stub 

equipped with a glass chamber and placed into the nanoindenter; III)the chamber is filled 

with physiological solution (0.90% w/v of NaCl) and kept at rest before running the tests for 

the thermal and swelling equilibrium to be achieved.  

Nanoindentation tests are carried out following a multiload schedule in load control mode. 

The maximum load is applied by a series of load steps of increment 0.1 mN with a holding 

time of 120 sec at the end of each load step. The maximum indentation force is ranging 

between 0.3 mN and 1 mN according to the sample compliance consistently with the limit of 

24 µm set on the maximum indentation depth. The loading and unloading rates are 1 

mN/sec and the tests are carried out with two spherical tips having radii R25=25 µm and R400 

= 400 µm. The indentation modulus is computed according to the Hertz theory for spherical 

indentation (Johnson et al., 1993) by fitting the force-penetration data achieved at 

equilibrium. Table 3 reports the details of the indentation tests.  
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Sample Tip Radius R [µm] Total Load Fτ [mN] Load steps Indentation sites 

Healthy control 25 0.9 0.1 8 

Healthy control 400 1 0.1 6 

OPF+mpA-ASCs 25 0.7 0.1 3 

OPF+mpA-ASCs 400 1 0.1 4 

OPF 25 1 0.1 4 

OPF 400 1 0.1 4 

UNT 25 0.3 0.1 5 

UNT 400 0.6 0.1 4 

 

 

Data Analysis 

Parameter P (poroelasticity) proportional to the product of indentation modulus and tissue 

permeability has been identified by adapting the analytical solution for the vertical 

displacement of the top surface of poroelastic layer subjected to a load-controlled 

unconfined test proposed by Biot (Biot et al., 1955) to fit the force-displacement data 

collected during the spherical indentation: to this purpose, a dimensionless time has been 

introduced by following Oyen et al. (Oyen et al., 2012). Then, a two-parameters function is 

used to best fit the creep curves (Taffetani et al., 2013) 

 

Here, the detailed data analysis description is reported.   

Consider  the index that counts the load level. The output data at each load level of the 

experimental tests are: 

1. The equilibrium (long term)  and the short term  indenter displacement or 

depth. The equilibrium depth represents the penetration depth measured at the end 

of the j-th creep phase . The short term response is that obtained at 

the end of the loading phase (i.e. at the beginning of the holding phase)  

2. The time-domain data  which is the displacement history measured for each j-th 

load level during the holding phase. 

 

Following the theory of the spherical indentation of a purely elastic half space, the load-

penetration  relationship is (Johnson et al., 1993) 

Table 3. Maximum load, load step size and total number of indentation sites for each sample type. 
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         (1) 

 

where,  is the indentation modulus of the deformable body and  is the radius of the 

indenter. Eq. (1) can be used to fit the  and  data points to identify 

equilibrium   and short term  indentation moduli. To this purpose the following 

fitting equations are introduced: 

         (2) 

         (3) 

The indenter displacements measured during the holding phase at each load level   is 

interpolated using the following functions in which the dimensionless time  has been 

introduced. 

         (4) 

        (5) 

          (6) 

The parameters P1 and P2 are two fitting parameters:   is the difference between 

the equilibrium and the short term displacements;  plays the role of 

a diffusivity parameter having the same physical units of  introduced in Oyen (Oyen et al., 

2012) and  is a permeability parameter for the indentation problem. 

From the diffusivity parameter , the indentation permenability is obtained, for each 

load level j, as  

              (7) 

To determine a permeability-strain relationship, the information on depth  is rewritten in 

terms of equivalent deformation, , as proposed by Lin (Lin D 2007)  

                          (8) 

where  is equal to  or  depending on the test. 
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A proper normalization for the indenter displacement during the creep phase can be also 

introduced for each load level j as 

                                                                                                                   (9) 

 

Statistical analysis 

Data are expressed as mean±standard error of the mean (SEM) and statistical analysis was 

performed using Student’s t-test, where not differently indicated. For the histological 

scoring, analysis of variance stratified for each item was used.  In all cases p<0.05 was 

considered statistically significant. 
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RESULTS 1. Mesenchymal Stem Cells from buccal Fat Pad as a novel 
population for periodontal regeneration: in Vitro Comparison with  
Adipose-Derived Stem Cells from Subcutaneous Tissue 

 
Characterization of human (h) and porcine (p) buccal fat pad (BFP) and 

subcutaneous tissue (SC) derived ASCs  

 
Isolation, culture, morphology, clonogenic ability and immunophenotype 

We analyzed cell populations derived from two donors enrolled for surgery for upper 

wisdom tooth extraction with sinus communication, and from 6 swine at the end of 

preclinical studies (Table 1, materials and methods). MSCs were isolated from both buccal 

fat pad (BFP-ASCs) and abdominal (for the human donors) or interscapular (for the swine) 

subcutaneous adipose tissue (SC-ASCs). Cells plated in culture dishes, nicely adhered to 

plastic assuming  a MSC typical fibroblast-like morphology with only mild differences in 

shape constituted by the more pronounced elongation of human SC-ASCs compared to both 

human BFP-ASCs and porcine cells (figure 4).   

 

                                  

Figure 4. Human (upper panels) and porcine (lower panels) BFP- (left panels) 
and SC-ASCs (right panels) morphology by optical microscopy (100X magnification, scale bar 50µm). 

 

Despite the different amount of raw tissue harvested from the two sites, we isolated a quite 

similar amount of cells per millilitre of BFP and SC, while the cellular yield was influenced by 

the species of origin, being more abundant in human compared to porcine tissues  
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(1.1x105±1.4x104 human BFP-ASCs/ml and 1.15x105±7.1x103 human SC-ASCs/ml; 

3.0x104±9.3x103 porcine BFP-ASCs/ml and 5.5x104±3.3x104 porcine SC-ASCs/ml). However, 

the lower amount of cells from porcine tissues did not hamper subsequent experiments as it 

was opposed to their high proliferation rate that was constant for both porcine cell 

populations with a mean doubling time (DT) of about 72.5±8.2 hours for BFP-pASCs and 

82.9±11.5 hours for SC-pASCs. This could have allowed us to collect 1.59x107±7.4x106 BFP- 

and 1.00x107±4.62x106 SC-pASCs starting from only  6x104 cells, in 21 days (figure 5, right 

panel). For human cells was observed a slight difference in the proliferation rate related to 

the tissue source; indeed, while SC-hASCs proliferated as fast as pASCs, the average BFP-

hASC doubling time was slightly higher (126.5±33.6 hours compared to 73.5±17.2 hours of 

SC-hASCs). Anyway, also human cells proliferated efficiently and, after 21 days, starting from 

6x104 ASCs, 1.3x106±3.0x105 SC-ASCs and 5.9x105±2.6x105 BFP-ASCs were collected (figure 5, 

left panel).  

 

 

 

 

These observations were also confirmed by viability test, indeed, MTT incorporation by SC-

hASCs was mildly higher than by BFP-hASCs (figure 6, left panel), while pASCs viability data 

were superposable  (figure 6, right panel).   

 

 

 

 

 

 

Figure 5. Proliferation trend at early passages of human (left panel, n=2) and porcine (right panel, n=6) BFP- and 
SC-ASCs assessed by cell counting once a week for 21 days (data are expressed as mean±SEM). 
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All the cell populations, held a good clonogenic ability, at early passages, and only scarce  

differences were detectable among cells; in particular, while for human cells  BFP-ASC CFU-F  

frequency was slightly superior than SC-hASC one (10.1±2.7% for BFP- and 5.0±0.9% for SC-

hASCs, figure 7A), for porcine cells the tendency was inverted (7.8±1.1 for BFP- and 11.9±1.4 

for SC-pASCs, figure 7B).   

 

 

Figure 7. Human (A, upper panel) and porcine (B, upper panel) ASC clonogenicity from passage 2 to 4 expressed 
as colony forming units (CFU-F) percentage (ratio of number of colonies/number of plated cells x 100) (data are 

expressed as mean±SEM, n=2 and 6 for human and porcine BFP- and SC-ASCs, respectively). Representative 
BFP- and SC-ASCs plates stained with crystal violet (lower panel). 

 

The BFP-ASCs were also characterized for their immunophenotype, and a representative 

cytofluorimetric analysis of BFP-ASCs compared with SC-ASCs is shown in figure 8. Cells from 

different sources appeared similar even though BFP-hASCs size and granularity were slightly 

reduced compared to SC-ASCs. Both types of ASCs isolated from human donors expressed 

Figure 6.  Viability of human (left panel, n=2) and porcine (right panel, n=6) BFP- and SC-ASCs  maintained 
for 1 week in undifferentiated condition (data are expressed as mean±SEM). 
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the specific mesenchymal stem cell markers such as CD73, CD90, and CD105, whereas they 

did not express lymphocyte or leucocyte antigens and hematopoietic markers such as CD14, 

CD31, and CD34 (table 4). Also porcine cells expressed CD90, whereas no cross-reactivity 

was found on both SC- and BFP-pASCs for lymphocyte or leucocyte antigens and, 

unfortunately, for CD73 and CD105. 

 

                                                                                              

 

 

Multi-differentiative potential 

Osteogenic potential 

After 14 days of osteogenic induction (OSTEO), both BFP-ASCs and SC-ASCs showed a 

significant up-regulation of bone specific markers such as ALP activity (figure 9A and B)and 

collagen (figure 9C and D) and calcified extracellular matrix (ECM) (figure 9E and F) 

deposition. Basal ALP activity was higher in BFP rather than SC-ASCs from human donors 

(p=0.058), but the increment during osteogenic induction was almost identical (+435% for 

BFP- and +456% for SC-hASCs) (figure 9A). In porcine cells we observed an opposite 

behaviour with increases in ALP activity of about 130% and 363% for BFP and SC-pASCs, 

respectively (figure 9B). Evaluating the collagen and the calcified extracellular matrix (ECM) 

Table 4. Specific mesenchymal stem 
cell markers expressed on human 

and porcine BFP- and SC-ASC 
populations (+ indicate a number of 

positive gated cells >98%, n=2). 
 

Figure 8. Human (left panels) and porcine (right panels) BFP- 
(upper panels) and SC-ASCs (lower panels) size and 

granularity by FACS analysis. 
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deposition of human cells (figure 9C and E), we observed a contrary tendency respect to the 

ALP activity data; indeed, SC-hASCs produced more collagen (figure 9C) and calcified ECM 

(figure 9E) compared to BFP-hASCs, even though this difference is statistically significant 

only for collagen deposition. Also porcine BFP-ASCs showed a slightly lower basal level of 

collagen deposition respect to SC-pASCs, but this difference at 14 days was not significant 

(figure 9D). Regarding calcified matrix deposition, porcine cells were almost the same with 

an increase in this marker of about 159 and 137% for BFP and SC-pASCs (figure 9F). 

No significant differences between human and porcine cells were observed. 

 

Figure 9. Quantification of alkaline phosphatase activity (A, B), collagen (C, D) and calcified Extracellular Matrix 
(E, F) deposition, in undifferentiated (CTRL, lighter bars) and osteo-differentiated (OSTEO, darker bars) human 

humans swine 
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(A, C, E) and porcine (B, D, F ) BFP- and SC-ASCs (ALP activity is normalized on protein concentration; data are 
expressed as mean±SEM, n=4 and 12 for human and porcine cells, respectively). OSTEO vs CTRL *p<.05; 

**p<.01; ***p<.001. SC- vs BFP-hASCs $<.05. Images of BFP- and SC-ASC wells stained with Sirius Red (C and D, 
lower panels) and Alizarin Red-S (E and F, lower panels)(C, control; O, osteodifferentiated). 

 

Adipogenic potential 

After 2 weeks of adipogenic induction, an important morphological change was induced. The 

fibroblast-like shape was lost, and all the populations showed intracellular accumulation of 

lipid vacuoles as shown by Oil Red O (ORO) staining (Figure 10, lower panels). ORO 

extraction and quantification showed a significant increase in the production of lipid 

vacuoles in differentiated both human (figure 10A, upper panel) and porcine (figure 10B, 

upper panel) ASCs, compared to control cells. No difference was observed in the adipogenic 

potential of ASCs derived from the two anatomical regions. 

 

Figure 10. Quantification of lipid vacuoles formation in human (A) and porcine (B) BFP- and SC-ASCs, by Oil Red 
extraction (upper panels, data are expressed as mean±SEM, n=2). Representative microphotographs of BFP-

ASCs and SC-ASCs maintained for 14 days in control (CTRL) and adipogenic medium (ADIPO), after lipid vacuoles 
staining by Oil Red O (lower panels)(optical microscopy, 200x magnification, scale bar 50μm). 
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BFP- and SC-ASCs interactions with scaffolds 

BFP- and SC-pASC on titanium disks (TIT) and  silicon carbide–plasma-enhanced chemical 

vapour deposition (SIC) fragments 

The capability of pASCs to grow and differentiate on a widely used biomaterial in dental 

practice (titanium) and on a promising candidate for the implant coatings (SIC) was assessed. 

pASCs cultured for 21 days on both biomaterials, either in the presence or in the absence of 

osteogenic stimuli, efficiently adhered to them; indeed, there were not significant 

differences between the protein concentration of either plastic adherent cells or scaffold 

associated ones (figure 12B). This observation was also confirmed by a preliminary 

experiment in which BFP- and SC-pASCs cultured for 7 days on the titanium disks appeared 

alive and tightly layed on them when observed by confocal microscopy (figure 11). 

 

 

 

 

 

 

 

 

 

 

 

Both pASC populations cultured on biomaterials, differentiated towards cells of the 

osteogenic lineage. Indeed, osteo-differentiated ASCs seeded on TIT, increased the amount 

of calcified ECM, compared to CTRL cells, of about 37% and 46% for BFP - and SC-pASCs, 

respectively; similarly, BFP- and SC-pASCs on SIC, increased ECM deposition of 200% and 

90%, respectively, compared to CTRL cells (figure 12A). 

Interestingly, TIT appears to be  osteoinductive per se for pASCs, in vitro; indeed, increases 

of calcified ECM of about 234% in CTRL BFP-pASCs, and of about 91% in CTRL SC-pASCs, 

compared to plastic-adherent cells, were  quantified (figure 12A). 

Figure 11. Representative image of pASCs adhering to titanium (SC-pASCs;  due to reflection problems 
were not possible to visualize the titanium level; 20X objective) 
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Figure 12. Calcified ECM deposition in undifferentiated (CTRL, lighter bars) and osteogenic-differentiated 
(OSTEO, darker bars) BFP- and SC-pASCs, cultured for 21 days on monolayer (plastic adherent-PA), or seeded 

on titanium disks (TIT) or on silicon carbide–plasma-enhanced chemical vapor deposition (SIC) fragments (panel 
A). Protein concentrations of pASC samples are  also shown(B). Data are expressed as mean±SEM 

 (n= 3). OSTEO vs CTRL **p<.01; TIT vs PA §p<.05; §§p<.01; §§§p<.001 

 

 

 

BFP- and SC-hASCs on natural and synthetic scaffolds 

ASCs are able to nicely adhere to and grow on several tissues and types of scaffolds routinely 

used in periodontal and oral bone regeneration; indeed, undifferentiated BFP- and SC-hASCs 

cultured on alveolar bone, periodontal ligament, collagen membrane, and polyglycolic acid 

filaments for 4 days, were found nicely stick on all the scaffolds. The only slight difference 

was observed when cells were kept on suture filaments of polyglycolic acid  where SC-ASCs 

seemed to adhere more tightly to it, compared to BFP-hASCs (figure 13). 

 

 

 

A 

B 
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Amelogenin-treated hASCs  

In a preliminary experiment,  perfomed only on cells derived from one donor,  BFP- and SC-

hASCs were cultured for 7 days in the presence of 3% Amelogenin (AM), an enamel matrix 

protein applied by dentists to promote periodontal regeneration. Its presence in vitro was 

able to induce ALP activity per se, both in undifferentiated and OSTEO-differentiated BFP-

hASCs. Amelogenin effect was primarily observed with BFP-hASCs, suggesting that cells 

derived from the oral cavity area are more sensitive to it. In particular, ALP activity was 

increased by AM of 220% in undifferentiated cells (-/ + ), and further up-regulated when 

BFP-ASCs were OSTEO-differentiated ( + / + ), showing a specific synergic effect ( + 950.4%; 

figure 14 A).  

Figure 13. Undifferentiated BFP- 
(left) and SC-hASCs (right) 
maintained on natural and synthetic 
scaffolds for 4 days. Alveolar bone 
fragment (scale bar, 10µm), 
periodontal ligament (scale bar, 20 
µm), collagen membrane (scale bar, 
50 µm), and polyglycol acid (PGA) 
filament (scale bar, 30 µm.) 
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Collagen deposition was also up-regulated about 32.5% for both OSTEO-differentiated ASCs 

(figure 14 C, D). 

 

Figure 14. ALP activity of undifferentiated and 7-day-osteodifferentiated BFP and SC-hASCs either in the 
presence ( +/- and +/+) or absence (-/- and +/-) of amelogenin (panel A and B). Quantification of collagen 

deposition is shown in C and D. Pictures and respective microphotographs of Sirius Red stained BFP- and SC-
hASCs are in panel E and F top and bottom, respectively (magnification 40 X , scale bar 300 µm). + / + vs. -/-: 

**p < 0.01. 

 

ASC culture with autologous and heterologous sera 

Considering a possible future clinical application of hASCs and the requirement of pre-clinical 

studies, we evaluated the growth in vitro of both ASCs in medium supplemented with either 

autologous or heterologous serum (AS and HS, respectively). Human and porcine cells were 

cultured in the presence of 10% or 5% AS  or 5% HS, and their proliferation rates were 

compared for 21 days to cells maintained in standard conditions (10%FBS).  
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Figure 15. Microphotographs of human (A) and porcine (B) ASCs cultured for 21 days in the presence of 
different sera (optical microscopy, 100x magnification). Cell count of human (C, n=4) and porcine (D, n=4) ASCs 

cultured in different serum condition, assessed once a week (data are expressed as mean±SEM). AS, 
autologous serum; HS, heterologous serum; FBS, fetal bovine serum. 

 

 

In all the culture conditions, the hASC maintained their fibroblast-like shape (figure 15 A), 

and the presence of 10% hAS induced a prompt increase  in cell number (already within 7 

days) compared to other sera (figure 15C, table 5), and after 3 passages, starting from 6x104, 

we have harvested 5.9x106 ASCs, while, in standard condition, we have collected just 1.5x106 

cells. Human ASCs cultured in the presence of either 5% hAS and 5% hHS or 10%FBS have a 

similar growth trend  at day 7 (figure 15C), whereas, after 14 days, human sera increased the 

cell number of 257 and 131%, respectively, compared to FBS (table 5 -standard condition set 

as 100%). In contrast, porcine cells did not show any improvement by FBS substitution. 

Indeed, already after few days, pASCs, grown in the presence of either autologous or 

heterologous serum, aggregated in small clusters and became smaller and rounder, 

compared to cells cultured in 10% FBS (figure 15B). The cells proliferated slower then cells 

maintained in standard condition (figure 15D) and, after three weeks, the number of pASCs 

collected was about 2.27±1.1% compared to cells grown in standard condition and set as 

100% (table 5).  

humans swine 



 
- 52 - 

 

 

Table 5. ASCs cultured in the presence of 
autologous and heterologous serum for 
21 days. Data are expressed as the ratio 

of number of cells grown with AS or 
HS/number of cells cultured with FBS x 

100. AS, autologous serum; HS, 
heterologous serum; FBS, fetal bovine 

serum. 
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RESULTS 2. Osteochondral regeneration of a critical size defect in a minipig 
model using Adipose-derived Stem Cells in association with an hydrogel of 
oligo(polyethylene glycol) fumarate 
 
ASCs in vitro expansion and analyses 

mpASCs were isolated from seven minipigs. The average cellular yield was 5.6×104±1.4×104 

cells/ml of subcutaneous interscapular adipose tissue, quite comparable to the one of the 

human subcutaneous adipose tissue of this study (8.5x104 cells/ml) (table 6). As described 

above (Results 1 section), ASCs isolated from swine appeared smaller and with a rounder 

shape compared to human ASCs. All the cellular features are summarized  in table 6; briefly 

they showed good proliferative and clonogenic abilities with a mild better behaviour of 

porcine cells: (doubling time: 60.3±3.68 and 101.9±22.8 hours for mp and hASCs, 

respectively; clonogenic ability: 16.1±2.7% and 10.1 ±1.4% for mp and hASCs, respectively).  

 

 

Table 6. Cellular yield (upper row) for each animal and the human donor. Proliferation rate expressed as 
doubling time (DT) (central row), and clonogenic ability expressed as the number of colonies/number of plated 

cells x100 (lower row) of mp- and h-ASCs at three passages (P2-P4). 

 

To test their multiple differentiative potential in vitro, mp- and hASCs were induced by 

osteogenic and chondrogenic stimuli and in suitable culture conditions for 2 and 3 weeks, 

respectively. In vitro osteo-differentiated ASCs, compared to control cells, significantly 

increased alkaline phosphatase enzymatic activity (figure 16A), collagen production (figure 

16B) and calcified extracellular matrix deposition (figure 16C) of about 440%, 151%, and 

110%, respectively, for mpASCs, and of about 104%, 152% and 401% respectively for human 

cells. In addition, mpASCs and hASCs both chondrodifferentiated in pellet culture for 21 
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days, deposed a significantly increased amount of GAGs compared to undifferentiated cells 

(+92 and 28%, respectively) (figure 16D). 

 

 

Surgical procedure for the osteochondral defect and its treatment 

3x106 undifferentiated ASCs, collected at passage four, from minipigs or human donor, were 

used for construct production. For the scaffold+ASCs groups, ASCs were loaded on 

rehydrated oligo(polyethylene glycol) fumarate (OPF) hydrogel, and maintained in a 

humidified incubator overnight (about 16 hours). Next day, under general anaesthesia, four 

osteochondral lesions (9 mm in  diameter, 8 mm in depth each) were created in the trochlea 

periphery of each right knee for all the minipigs. The 28 performed defects are summarized 

in table 7. Untreated defects were the negative controls (UNT group, n=7), and each scaffold 

was inserted into the lesion by press-fit technique.   

 

 

 

 

 

Figure 16. Alkaline phosphatase activity (A), collagen (B) and 
calcified extracellular matrix (C) deposition of both mp- and 
hASCs cultured for 14 days in undifferentiated (white bars) 
and osteogenic (coloured bars) conditions. GAG quantification 
of 21-day- ASCs micromasses, expressed as μg of GAGs for 
each pellet (D) (data are expressed as mean ± SEM, 
differentiated vs undifferentiated *p<0.05, **p<0.01, 
***p<0.001). CTRL, undifferentiated cells; OSTEO, osteo-
differentiated cells; CHONDRO, chondro-differentiated cells. 
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Table 7. Groups of treatment for the 28 critical osteochondral defects in the minipigs’ right knees. 

 

All the animals well tolerated the surgical treatments. After a short period of limping, lasting 

maximum 14 days from surgery, all the minipigs recovered a normal gait, without any 

functional limitations. Knee swelling was present post-operatively in all the animals for 

about 3 weeks.  

 

Radiological and macroscopical analyses 

Six months later, all the animals were sacrificed and magnetic resonance of all the treated 

joints was performed immediately after the explant of the limbs, before the arthrotomy. 

MRI data were analysed by a modified 2D MOCART scale for the evaluation of ex vivo 

osteochondral samples. The considered parameters for the analysis are reported in table 8. 

The scale ranges between 0 and 100, (0 the worst and 100 the best scoring).    

 

Treatment n 

Untreated (UNT) 7 

Unseeded scaffold (OPF) 7 

OPF + Autologous ASCs (OPF+mpA-ASCs) 7 

OPF +Heterologous ASCs (OPF-mpHe-ASCs) 3 

OPF + Human ASCs (OPF-hASCs) 4 
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Parameter Item Score 

Defect fill 

Subchondral bone exposed 0 

Incomplete < 50% 5 

Incomplete > 50% 10 

Complete 20 

Hypertrophy 15 

Cartilage 

Complete 15 

Demarcating border visible 10 

Defect visible < 50% 5 

Defect visible > 50% 0 

Surface 

Intact 10 

Damaged < 50% of depth 5 

 Damaged > 50% of depth 0 

Adhesion 
Yes 5 

No 0 

Structure 
Homogeneous 5 

Inhomogeneous or cleft formation 0 

Signal intensity 

Normal 30 

Nearly normal 10 

Abnormal 0 

Subchondral lamina 
Intact  5 

Non intact 0 

Subchondral bone 
Intact  5 

Granulation tissue, cyst, sclerosis 0 

Effusion 
No  5 

Yes 0 

Table 8. 2D MOCART scale developed by Marlovits et al. and modified by Goebel et al. 2012 
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According to 2D MOCART scale, all the treated defects showed significantly improved scores 

in comparison to untreated ones (figure 17); however, no differences among the OPF and 

OPF+cell groups were observed.  

 

 

Figure 17. Scoring associated to MRI data analysed by a modified 2D MOCART (data are expressed as mean ± 

SEM, 100 corresponding to healthy joint). mpA-ASCs, minipig autologous ASCs. 

 

Then, joints were dissected, the treated portions retrieved en bloc and then cut into four 

pieces corresponding to the four osteochondral defects, to allow independent analyses of 

each defect. Following arthrotomy, signs of local infection were observed in pig #6, and after 

joint inspection it was excluded from the study. The loss of this animal, treated with 

heterologous cells, provoked the uselessness of the data about this cell source and just 

qualitative data will be mentioned. With the exception of this animal, the joint inspection did 

not revealed any sign of inflammation, as well as adhesion, hypertrophy or fibrosis of 

synovial membrane. The surface of all the defects showed small cylindrical lacks of 

substance, sometimes combined with signs of hemorrhages (figure 18). 

 

Figure 18. Representative images of some explanted defects after 6 months of follow-up. mpA-ASCs, minipig 
autologous ASCs. 
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Histological and immunohistochemical analyses 

In both unseeded and mpA-ASC or hASC seeded scaffolds most of the tissue filling the 

superficial part of the defects, was fibrocartilage, mainly located in the central part of the 

lesions, while, in the untreated defects, the tissue was mainly fibrous tissue, with blood 

vessels and a disorganized extracellular matrix. All the samples were Safranin-O less 

intensely positive respect to native articular cartilage (figure 19, A), suggesting a lower 

content of glycosaminoglycans in the neo-formed tissues. However, in the scaffold-treated 

groups the tissue was stained slightly more intensely respect to the untreated groups, and 

the cartilage appeared at the edge of the defects (Figure 19, A2-A5). In terms of subchondral 

bone repair, in OPF+mpA-ASC and +hASCs groups, the bone formation process is 

pronounced, and osteoblasts lined the surfaces of the construct (Figure 19, B3-B5). 

Interestingly, more mature bone, characterized by  bone lamellas, was observed in 

OPF+hASC treated defects. In contrast, the restoration of the subchondral bone was 

insufficient and very immature in untreated samples, as it started with endochondral 

ossification at the borders of the defect (Figure19 B2). 

 

 

 

 

More accurately, analysis by polarized light microscopy allowed to evaluate the presence of 

the collagen components of primary and secondary bone, the differentiation between 

mature and developing osteons, and the bone lamellas and their orientation in the healthy 

joint sample (figure 20.1). In the untreated group, collagen fibers were not organized in 

Figure 19. Histological analyses of  the superficial (A2-5) and deeper (B2- B5) layers of the defects stained by 
safranin O; healthy joint is shown as control (A/B1)  (scale bar -200μm for healthy joint and cartilage layer, 

50µm for subchondral bone layer). 
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lamellar form (figure 20.2), whereas in both seeded and unseeded OPF defects, a more 

organized distribution of collagen fibers was detected. Indeed, the deposition of lamellar 

bone occurred within the pores of the scaffolds, without any relevant difference among 

unseeded and mpA-ASC or h-ASC seeded scaffolds (figure 20). 

 

Figure 20. Histological sections observed by polarized light  
(scale bars 200µm for healthy joint, 100µm for other samples ) 

 
 

 Selected cartilage and bone tissue proteins, such as collagen type II  and collagen type I, 

respectively, were also evaluated by immunohistochemical analyses. In both OPF+mpA-ASCs 

and OPF+hASCs treated defects collagen type II was nicely expressed (figure 21, A4-A5), and 

it was comparable to the one of the healthy cartilage (figure 21, A1). In contrast, a poor 

collagen II immunoreactivity was evident in both untreated and unseeded OPF groups (figure 

20, A2-A3). Unfortunately, the inner part of the neo-cartilages contained scarce collagen II 

immunopositive reparative tissue independently of the groups,  (data not shown). 

Similarly, the neo-formed bone was more positive for collagen type I in OPF+mpA-ASCs and 

OPF+hASCs groups (figure 21 B4-B5) in comparison to unseeded OPF and untreated groups 

(figure 21, B2-B3).  
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Figure 21. Expression of collagen type II (upper panels) and collagen type I (lower panels) in sections of the 

superficial and deeper layers of the joint , respectively (scale bar 100μm). 

 

Histological scoring  

In order to associate a score to histological observations, the ICRS II scoring system was 

chosen. It contains 14 parameters: an overall assessment and 13 parameters relating to both 

chondrocyte and tissue features (table 9, left columns). Each parameter was scored using a 

100 mm VAS (Visual Analog Scale), where 0 was considered as poor quality and 100 as very 

good quality. According to ICRS II scores, significant differences were found between OPF 

and OPF+mpA-ASCs for some parameters. In more details, tissue morphology, matrix 

staining, cell morphology, formation of tidemark and vascularization scored higher in the 

OPF+mpA-ASCs treated groups. On the other hand, surface assessment score was lower in 

OPF+mpA-ASCs compared to OPF (table 9, right columns). Unfortunately, these scores were 

quite distant to the ones of s healthy cartilage (used as standard reference and scoring 100 

for each parameter). For all the other features  no differences were found between the two 

groups (table 9, right columns).  
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Score Histological parameters OPF OPF+ 
mpA-ASCs 

0: full thickness collagen fibers Tissue morphology 

(polarized light) 
22.9±9.1 25.9±11.0* 

100: normal cartilage birefringence 

0: no staining Matrix staining 

(metachromasia) 
25.0±5.4 31.3±10.4** 

100: full metachromasia 

0: no round/oval cells 
Cell morphology 20.4±10.1 25.0±3.9** 

100: mostly round/oval cells 

0: no calcification front 
Formation of tidemark 22.9±22.0 28.3±18.5** 

100: tidemark 

0: present Vascularization 

(within the repaired tissue) 
38.8±28.1 51.7±13.6*** 

100: absent 

0: total loss or complete destruction Surface/superficial 

assessment 
27.5±9.7 19.3±11.9* 

100: resembles intact AC 

0: present Chondrocyte clustering 

(4 or more grouped cells) 
99.2±1.7 100±0 

100: absent 

0: delamination or major irregularity 
Surface architecture 51.7±11.3 53.7±19.7 

100: smooth surface 

0: no integration 
Basal integration 52.5±21.8 60.0±17.2 

100: complete integration 

0: abnormal Subchondral bone 

abnormalities 
54.2±27.3 51.0±19.0 

100: normal marrow 

0: present 
Inflammation 100±0 100±0 

100: absent 

0: present Abnormal 

calcification/ossification 
100±0 97.0±5.1 

100: absent 

0: fibrous tissue 
Mid/deep zone assessment 24.6±12.6 26.3±12.6 

100: normal hyaline cartilage 

0: bad (fibrous tissue) 
Overall assessment 21.3±12.0 23.3±7.3 

100: good ( hyaline cartilage) 

Table 9. ICRS II scoring system parameters OPF+mpA-ASCs vs OPF *p<0.05, **p<0.01, ***p<0.001 
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Biomechanical testing 

An important feature of healthy cartilage is its ability to conteract mechanical stimuli; for 

this reason  we decided to investigate the biomechanical features of the restored tissue 

trough nanoindentation tests. 

 The indentation modulus at equilibrium M_eq (computed by fitting the force-penetration 

data achieved at equilibrium), identified for healthy control, OPF-A, OPF and untreated 

samples are reported in figure 22 for both the R_25 and R_400  tips. R2 fitting parameter 

(referred to Eq. 2, materials and methods) was found to range between 0.85 and 0.9, the 

lower values where found for untreated samples.  In all cases, indentation moduli found 

using the small tip radius is larger than those found with the large tip radius. Healthy 

cartilage exhibits an indentation modulus (603±199 kPa) similar to that found for OPF+mpA-

ASCs samples (545±96 kPa) with R25 tip. A similar consideration holds for the large tip 

radius: healthy cartilage and OPF-A samples exhibited an indentation modulus of 238 kPa±68 

kPa and 272 ±29 kPa, respectively. Both OPF and untreated samples showed an indentation 

modulus at equilibrium significantly smaller than that found for healthy cartilage and OPF-A 

samples. In particular, M_eq for OPF sample was 268±102 kPa and 110±10 kPa for R_25 and 

R_400, respectively (both p<0.05 with respect to native cartilage); M_eq for untreated 

sample was 292±47 kPa and 81±25 kPa for R_25 and R_400, respectively (both p<0.05 with 

respect to native cartilage). No appreciable difference was found between OPF and 

untreated samples (figure 22). 
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The tissue permeability k_ind is identified as the ratio between the poroelasticity (parameter 

P) and the equilibrium indentation modulus M_eq for both indenter tips and for each load 

level (Eq. 7, materials and methods). The k_ind parameter was calculated for healthy and 

OPF+mpA-ASCs samples, since only for these, the creep response was fitted with  R2 values 

greater than 0.7. The OPF and untreated samples exhibited creep curves which were fitted 

with  R2 values lower than 0.7, therefore the poroelastic fitting model was considered 

unsuited. 

Averaged values of the tissue permeability over all the load levels are: 2.61±1.10x10-16 for 

R_400 and 1.39±0.68x10-17 for R_25 in case of healthy cartilage sample; 1.83±0.45x10-16 for 

R_400 and 1.87±1.11x10-17 for R_25 in case of OPF+mpA-ASCs sample. In figure 23 the 

decreasing trend of permeability is instead presented for both the samples (mean values are 

shown) with respect to the equivalent deformation, computed as the ratio between the 

current contact length and the indenter radius. Engineered construct appeared slightly less 

permeable at smaller deformation, compared to native cartilage (figure 23). 

Figure 22.  Indentation modulus at equilibrium  M_eq,  for the R_25 (A) and R_400 (B) tips 

(data are expressed as mean±SD) 
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Figure 23.  Mean permeability values with respect to the equivalent deformation. 

 

In Figure 24 creep curves are plotted in function of dimensionless time (Eq. 6, materials and 

methods) when, for each of them, also the depth is normalized as the ratio of the difference 

between current and instantaneous depths and the jump between equilibrium and 

instantaneous depths (Eq 9 materials and methods); only selected curves are presented for 

the healthy cartilage (figure 24A), OPF+mpA-ASCs (figure 24B) and OPF unseeded (figure 

24C) samples for both the two tips. In each graph, the selected curves are shown with 

respect to natural time (t) and dimensionless time (t normalized). As expected, a complete 

overlap between creep curves collected at different load and different tip radii is found for 

the control sample. In the case of OPF+mpA-ASCs sample the overlapping is good enough to 

consider the material governed mainly by poroelasticity, whereas OPF sample showed a 

more complex behavior. Curves collected at different depths overlap within the same tip 

when normalized time is used; between the tips, instead, the overlapping does not occur. No 

data are presented for the untreated sample since no acceptable poroelastic fitting can be 

found. 
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Figure 24. Creep curves 
presented for the healthy 

cartilage (A), OPF-A (B) and 
OPF (C) samples for both 

R_25 (dark lines) and R_400 
(light lines) tips. In each 

graph, the selected curves are 
shown with respect to natural 

time t (dotted lines) and 
dimensionless time t 

(continuous lines). 
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DISCUSSION 
 
Part of my work was dedicated to the investigation of a possible novel source of 

mesenchymal stem cells, the Buccal Fat Pad (BFP). 

Human adipose-derived stem cells from Buccal fat pad (BFP-ASCs) might be quite easily 

applied in oral tissue engineering, since this tissue is rapidly accessible by dentists and 

maxillofacial surgeons (Hwang et al., 2005). However, before moving to clinic, it is 

mandatory to perform approved pre-clinical studies to validate the safety and efficacy of 

cellular therapies. The most used large size animal models for the human oral bone defects 

repair are swine (Schwarz et al., 2012; Wilson et al., 2012) [Wilson SM, 2012; Schwarz C, 

2012], since these animals present a healing potential comparable to the human one. 

Nowadays, several studies have been conducted using stem cells in oral diseases and oro-

facial research: Wilson et al. have investigated bone regeneration in the pig mandible ramus 

by either local or systemic ASC injection, concluding that both treatments accelerate the 

healing process, without any significant difference between the two routes of administration 

(Wilson et al., 2012). In another study, similar results were obtained combining decidua stem 

cells with a β-TCP scaffold in a minipig model (Zheng et al., 2009).  

For these reason, we decided to compare the BFP-ASCs with the well characterized ASCs 

from subcutaneous tissue (Arrigoni et al., 2009; De Girolamo et al., 2008; Zuk et al., 2001) 

both from human donors and from swine, and to evaluate their behavior in vitro, also in 

association with different scaffolds, to identify a convenient source for future pre-clinical 

studies. Here, we showed that it is feasible to isolate a proper quantity of stem cells even by 

starting from a small amount of raw adipose tissue (0.5-1 ml for human samples) such as 

BFP, and that the cellular yield is not influenced by the site of harvesting. The number of 

isolated cells per ml of withdrawn human adipose tissue, was higher than the porcine one; 

anyway, thanks to the great proliferation rate of pASCs, after 30 days in culture, we could 

have obtained a homogeneous populations of about 108-109 porcine cells with still a 

pronounced clonogenic ability. All the cells nicely adhered to the tissue culture plates when 

maintained in standard culture conditions and showed fibroblast-like morphology, even 

though both porcine ASC populations and BFP-hASCs were slightly smaller and less 

elongated than SC-hASCs.  
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Human ASCs derived from both site of harvesting expressed the mesenchymal stem cell 

markers CD73, CD90, and CD105, whereas they did not express lymphocyte or leucocyte 

antigens and hematopoietic markers such as CD14, CD31, and CD34; these results are 

consistent with the minimal criteria for defining multipotent mesenchymal stromal cells 

(Dominici et al., 2006) and adipose tissue-derived stromal/stem cells (Bourin et al., 2013), 

and with data previously obtained in our lab with human SC-ASCs (de Girolamo et al., 2009). 

Also porcine cells expressed CD90, as already described on pMSCs from different tissues , 

whereas, no cross-reactivity was found on both SC- and BFP-pASCs for lymphocyte or 

leucocyte antigens. Unfortunately, the antibodies raised against human CD73 and CD105 in 

our hands did not crossreact with porcine antigens. Although incomplete, our data are 

consistent with the ones published by Noort et al. on porcine BMSCs (Noort et al., 2012). 

Moreover, BFP-ASC stemness has been confirmed by the good clonogenic ability of all the 

populations tested.  

Human and porcine BFP-ASCs are multipotent, indeed they can be induced to differentiate, 

up-regulating  ALP activity and collagen and calcified extracellular matrix deposition as well 

as lipid vacuoles productions already after 14 days of differentiation in vitro. This data are 

consistent with that described by Farre´-Guasch for human BFP-ASCs (Farre-Guasch et al., 

2010) and by us and other groups for SC-hASCs (De Girolamo et al., 2008; Zuk et al., 2001) 

and -pASCs (Arrigoni et al., 2009; Qu et al., 2007; Tang et al., 2012). In our experimental 

conditions, osteogenic differentiation was detected in the absence of bone morphogenic 

proteins, which seemed to be necessary in the study of Shiraishi et al. (Shiraishi et al., 2012). 

This could be due either to the different applied osteogenic stimuli (particularly the absence 

of vitamin D and the substitution of ascorbic acid-2- phosphate with ascorbic acid in their 

culture medium) or to the possible variability among cells derived from healthy donors of 

our study and patients with jaw deformity of their experimentation. 

Since in Tissue Engineering technology the fundamental players are cells, growth factors and 

supports that have to be colonized, and since our final future aim is to use ASCs in the clinic, 

I have decided to test their interaction with appropriate supports. We evaluated the ability 

of both pASCs to grow and differentiate onto two synthetic scaffolds: the former, a widely 

used biomaterial in dental surgery (titanium), and the latter, a promising candidate for the 

coating of some portions of implant (SiC-PECVD). Like human ASCs (Lopa et al., 2011), 

porcine pASCs adhere and differentiate on both scaffolds. Moreover, the osteoinductive 
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properties of titanium on hASCs (Lopa et al., 2011) , was maintained on both porcine 

progenitor cells, whereas SIC-PECVD did not affect their osteogenic differentiation. 

In addition, we investigated the behavior of BFP-hASCs in association either with natural 

supports, such as alveolar bone and periodontal ligament, or biocompatible materials that 

might be in contact with these cells in a clinical setting. It is known that SC-hASCs can be 

successfully seeded on demineralized and decellularized bone (Frohlich et al., 2010; Kim et 

al., 2012; Shi et al., 2012). Here, we also showed a stable interaction of SC-hASCs and BFP-

hASCs with healthy tissues such as autologous alveolar bone and periodontal ligament. 

Moreover, all the cells also efficiently adhered to collagen membrane and polyglycolic acid 

filaments, two materials chosen for their resorbable property and the widespread use in 

surgery. The observed adaptability of ASCs, to survive and grow on all the supports assayed 

and used in oral surgery, represents a prominent quality for a future regenerative medicine 

approach, not just of hard tissue, but also of soft ones. Interestingly, we also observed that 

osteo-differentiation of BFP-hASCs is specifically induced and up-regulated by Amelogenin 

(AM), as also previously reported for BMSCs (Izumikawa et al., 2012; Jingchao et al., 2011; 

Tanimoto et al., 2012). AM is the most abundant enamel matrix protein and dentists favour 

it for the repair of periodontal defects. The success of this treatment depends on which cell 

type fills the defect; in particular, it is important to promote selectively growth of 

periodontal ligament cells and reduce that of gingival and epithelial cells to allow a correct 

tissue formation next to the dental root. Indeed, it is known that AM enhances proliferation 

of periodontal MSCs that secrete cytokines and cause the synthesis of new cementum and 

periodontal fibers. Subsequently, the regeneration of the periodontium creates the 

precondition for new formation of functional attachment and for bone regeneration 

(Bosshardt et al., 2005). A review by Bosshardt et al. (Bosshardt, 2008) also sheds light on 

other biological mechanisms of this molecule that seems to affect a great variety of cells 

types included MSCs, pre-osteoblasts, and osteoblasts, influencing their proliferation, 

expression of transcription factors and cytokines, and their differentiation, showing the 

direct influence of AM also on bone regeneration. We showed a synergic effect of AM in 

vitro on human ASC osteogenic differentiation with other osteo-inductive factors. We may 

assume that this synergy, observed in vitro, could be maintained in vivo, where several 

growth and differentiation factors are released during the healing process (Dimitriou et al., 

2005). Moreover, this effect is more pronounced on BFP-hASCs than on SC-hASCs, 
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suggesting that ASC source could influence these cells making  them more responsive to 

stimuli naturally secreted in the same region. With prospective clinical applications, we have 

also cultured ASCs, without bovine serum, in media supplemented with homologous sera in 

self and non-self-conditions. We noticed that the presence of human serum improved the 

proliferation rate of both BFP- and SC-hASCs, despite the interdonor variability.  This effect 

has not been previously observed on ASCs, since in other studies the growth was not  

influenced by autologous serum (Im et al., 2011). However, the heterogeneity in the 

response to autologous supplements has been also described for bone marrow stem cells 

(Kuznetsov et al., 2000; Mizuno et al., 2006; Shahdadfar et al., 2005; Yamamoto et al., 2003) 

and could be explained by the differences of sera and ASCs from different donors. Growing 

human ASCs in the presence of autologous serum, avoiding the concerns about animal 

proteins used during cell expansion, could be a safe procedure and a must, thinking their 

future clinical application. In contrast, pASCs cultured in the presence of porcine serum, 

dramatically reduced their growth. In addition, cells  aggregated in clusters and their 

morphology is deeply affected. Our results agree with previous data by Schwarz et al., where 

equine ASCs cultured in the presence of autologous serum proliferate less compared with 

cells maintained in medium supplemented with FBS (Schwarz et al., 2012). Although we have 

observed that both pASCs behaved similarly, this issue requires further investigations. 

The originality of our study, compared to the already published ones (Farre-Guasch et al., 

2010; Shiraishi et al., 2012), consists in the comparison of ASCs derived from different body 

areas but from identical donors, and the parallel characterization of human and porcine 

cells. Furthermore, experiments performed on natural and synthetic supports, such as 

clinical grade and prototype scaffolds, allow us to suggest the use of these bioconstructs in 

preclinical studies of regenerative medicine. We think that comparing cells from the same 

donor is quite relevant since differences in the features of mesenchymal stem cells 

harvested from patient differing for gender, age or pathological conditions, such as obesity, 

have been highlighted by various groups (Buschmann et al., 2013; de Girolamo et al., 2009; 

de Girolamo et al., 2013; De Girolamo et al., 2008; Fossett et al., 2012; Mojallal et al., 2011; 

Shu et al., 2012). Moreover, all the ASCs, harvested from diverse patients, show some slight 

intrinsic physiological variation in vitro regarding proliferation rate and clonogenic or 

differentiative ability, that is unrelated to gender, age or weight of the patient.  Our choice 

avoid all these inter-donor variability. 
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In our opinion, also the study of animal cells is important, since, in pre-clinical studies it is 

often required to prove the efficacy of a cell therapy using autologous, at least allogenic, 

cells. 

In conclusion, we identified a cell population derived from a tissue easily available to 

dentists and maxillofacial surgeons, whose multipotent features and good adhesion to 

clinical grade scaffolds make proper candidate for future uses in tissue engineering 

approaches. 

 In addition, the comparison of human BFP-ASCs with porcine mesenchymal stem cells 

derived from the same body sites will allow their  allo- or xenogenic use in preclinical models 

of oral bone reconstruction and periodontal disease. 

In parallel, part of my PhD project was focused on the study of a critical osteochondral 

defect regeneration performed in a minipig preclinical model. This large animal study  which 

last, almost a year, involved several specialists (biologists, surgeons, vets, medical doctors, 

bioengineers, statisticians), whose contribution was required  to plan and perform it. In our 

opinion, the more innovative parameters of this study have been the use of an 

oligopolyetylenglycol fumarate (OPF) hydrogel to fill the osteochondral defect, and the use 

of either autologous or heterologous pASCs, or also human ASCs, to create the bioconstructs 

to be implanted in non immunocompromised minipigs. In addition, to reproduce the 

complete cartilage formation and the absence of spontaneous reparative process occurring 

in adult patients, the use of adult animals (one year old at the beginning of the study) has 

been a forced choice. The results of our preclinical study show that, at six months from 

implantation, expanded undifferentiated ASCs (autologous, heterologous or human) seeded 

on OPF hydrogel are able to promote a good subchondral bone healing and to improve the 

quality of the newly formed cartilage.  

Radiological analyses revealed that the scaffold by itself was able to induce an overall 

improvement of the tissue quality at the osteochondral lesion site, most likely due the 

resident cells which are recruited in the damaged area and then adhered to the hydrogel. In 

contrast,  the untreated lesions, were mainly filled by fibrous and unorganized tissue. 

Interestingly, more accurate evaluations revealed that some important tissue features were 

significantly improved by the association of OPF and ASCs. Indeed, regarding the 

subchondral bone, in all the OPF+ASCs groups a mature bone appeared, with higher 

expression of collagen type I compared to untreated or unseeded OPF groups. Moreover, 
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although histological observations indicated that, for all the samples, cartilage regeneration 

was still immature at the end of the follow up, the use of ASCs associated to scaffolds 

induced an improvement in collagen type II expression, matrix staining, tissue morphology 

and formation of tidemark, compared to unseeded scaffolds. 

Quite unexpectedly, since ASCs have been described for their pro-angiogenic potential both 

in vivo and in vitro (Rubina et al., 2009; Suga et al., 2013), mainly due to their secretion of 

growth factors such as VEGF, HGF and TGF-β (Rehman et al., 2004), the presence  of ASCs 

seemed to inhibit the vascularization of the newly formed cartilage. Although this have to be 

considered a positive result, we still do not have a clear answer to this phenomenon. We 

believe that ASCs could be led to release, or not, angiogenic factors, following the cross-talk 

between them and the resident cells, at the site of injury (Dimarino et al., 2013). 

However, this interesting issue requires further investigations.   

Overall, biomechanical tests shown that ASCs induced a significant increase in the cartilage 

properties compared to untreated or OPF unseeded samples; in particular, one of the most 

important results of this study is that only the neo-cartilage found in the cell-loaded scaffold 

groups possessed poroelastic behavior, as well as indentation modulus and creep curves 

comparable to native cartilage. However, these findings do not strictly correlate to the 

histological results, since in these samples, although a collagen type II expression 

comparable to that of healthy cartilage was observed, the amount of GAGs was just about 

25% if compared to healthy cartilage. Even though this discrepancy, these data are  quite 

promising since the functionality of the repaired tissue was our main goal.   

Recently, a wide variety of approaches have been under investigation for the engineering of 

osteochondral grafts, such as the use of multilayer scaffolds to provide a proper support to 

the different tissue to be repaired (Duan et al., 2013; Frenkel et al., 2005; Kim et al., 2013; 

Kon et al., 2011; Kon et al., 2010a; Martin et al., 2007; Niederauer et al., 2000; Schek et al., 

2004), the use of progenitor cells or terminally differentiated chondrocytes (Kon et al., 

2010b), and even an in vitro maturation stage of engineered  cartilage (Moretti et al., 2005; 

Rotter et al., 2002). Although these methods have shown promising results, they still have to 

be validated, and the development of an engineered graft prior to implantation to support 

an optimal repair, still have to be studied. One obstacle in understanding the most suitable 

approach to be used is the great heterogeneity among the various studies, depending for 

example, on the choice of different animal models with completely different body weight 
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and joint characteristics [rat (Gao et al., 2001), rabbit (Schaefer et al., 2002), sheep (Kandel 

et al., 2006; Kon et al., 2010b), pigs (Schek et al., 2004)]. Another factor to be considered is 

the size of the lesions, since the osteochondral defect size greatly vary among studies, both 

in term of area and depth, and thus, consequently, they cannot always be considered as 

critical (Hui et al., 2013; Lim et al., 2013).  

In this study we selected key experimental parameters, such as the use of undifferentiated 

progenitor cells and of a monophasic not-associated-to-growth-factors hydrogel. 

Our choice of the “simplest” type of graft to be implanted have been taken on the basis of 

the following rationale. We chose undifferentiated ASCs not only because their manipulation 

makes their use more difficult for future clinical application, but also basing this decision on 

the recent evidences on the mechanism of action of mesenchymal stem cells. Indeed, while 

at the beginning the attention was mainly focused on the ability of MSCs to differentiate in 

specific lineage cells, the recent opinion is that MSC therapeutic benefits are largely 

dependent on their capacity to act as a trophic factor pools (Caplan and Dennis, 2006; Xu et 

al., 2007) and as modulators of immune response (Gonzalez et al., 2009; Yanez et al., 2006). 

From this point of view, the main action of mesenchymal stem cells could be to support the 

resident cells which are thought to be the major effectors of tissue replacement. Moreover, 

the soluble mediators generated by MSCs, able to promote angiogenesis, tissue 

regeneration and remodeling, immune cell activation or suppression, and cellular 

recruitment, are released according to the requirements of the environment (Dimarino et 

al., 2013). Following this criteria we decided to implant a construct in which cells were 

undifferentiated and “free” to respond to the most proper stimuli, i.e. the ones naturally 

present at the lesion site. This issue also influenced the choice of a monophasic scaffold 

without loading it with growth factors. The use of OPF hydrogel associated to progenitor 

cells (Lim et al., 2013) or not (Hui et al., 2013) has been shown to be helpful for cartilage 

regeneration in other studies of osteochondral regeneration performed in swine models (Hui 

et al., 2013; Lim et al., 2013).  

In our experiments, in which the dimension of the defects (9 mm in  diameter, 8 mm in 

depth) were largely higher than in previous studies (Hui et al., 2013; Lim et al., 2013) 6 mm 

in diameter, 1 mm in depth), and the follow up was of six months, the chosen approach was 

sufficient to regenerate a proper subchondral bone, while the cartilage was still immature. 

This could depend on the limited time of the follow-up and/or the insufficient stimuli for 
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cartilage regeneration deriving from the microenvironment. In this view we should perform 

experiments with a longer follow up and/or loading the OPF hydrogel with chondro-

inductive molecules such as TGF-β1 or -β3. Indeed, one interesting feature of this 

biomaterial is the potentiality to absorb molecules that can be subsequently, gradually 

released (Dadsetan et al., 2010). 

Another key experimental parameter of this study was the use of human ASCs in a construct 

to be implanted in minipigs. The use of xenogenic ASCs in preclinical models is largely 

diffused, as it showed therapeutic benefits with no side effects (immune reactions raised 

against xenogenic cells) (Sacerdote et al., 2013; Zeppieri et al., 2013; Zhu et al., 2013a). This 

approach highlight the non-immunogenicity of these cells, an interesting features also for 

possible allogenic clinical use, and investigate directly the in vivo effects of human cells. 

Indeed, the slight differences between human and animal-derived ASCs could represent an 

obstacle for the translation of preclinical data into clinical application. On the other side, the 

most important criticism on this methodology is that cells could act in a different way while 

responding to xenostimuli (cytokines, growth factors, etc) and/or, at the same time, they 

could respond to injury signals differently from autologous implanted ones. In other words, 

the cross-talk between implanted and resident cells might be distorted.  

Nonetheless, studies comparing autologous and xenogenic effect in preclinical models have 

not yet been carried out.  

In our study we decided to use both approaches. Although the limited number of samples 

using hASCs did not allow any quantitative extrapolation, we can state that hASCs could be 

used safely in porcine preclinical models, and that OPF+hASCs constructs, as well as 

OPF+mpA-ASCs, are able to improve the regeneration of subchondral bone and the newly 

formed cartilage properties if compared to unseeded scaffold. Interestingly, the more 

mature bone, with the presence of bone lamellas, was observed in OPF+hASC treated 

defects. A limitation of our study concerns the cell seeding technique on OPF scaffolds; 

indeed, although a large amount of both human and porcine ASCs seeded on the OPF 

scaffolds were able to colonize and form clusters within the pores of the scaffold, as also 

previously observed by Dadsetan (Dadsetan et al., 2010) and Lim (Lim et al., 2013) for 

BMSCs, some cells were not able to adhere. For this reason, since this problem could be due 

to the big dimension of the scaffold pores, to ameliorate the cell seeding efficiency we could 

use OPF with smaller pores.       
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In our work we were unable to trace whether the new tissues were derived from the 

implanted or the resident cells. We cannot exclude that the construct served only as a 

supporting, trophic template that was later resorbed and replaced by host cells. This could 

sustain the theory described above about MSCs as supporting element at the injury site. 

From this perspective, it will be interesting to determine which are the last effectors of these 

cells mechanism of action in order to reputedly maintain the cell effect in a cell-free 

approach. 

Recently, great attention has been paid on microvesicles, that, containing specific proteins, 

mRNA and miRNA, and spreading from MSCs (Ratajczak 2006) are considered important 

effectors of their communication with other cells. Various in vivo models confirm their effect 

on several pathologies (Biancone et al., 2012; Bruno et al., 2012; Zhu et al., 2013b), and one 

of our future interest is to investigate their action in a preclinical model of osteochondral 

defect.  

In conclusion, this study provide the evidence that both porcine and human adipose-derived 

stem cells  associated to OPF hydrogel improve osteochondral defect regeneration. Various 

parameters, including  scaffold pore dimensions,  possible association with growth  factors, 

number of cells, biodynamic construct formation or also new approaches, such as the use of 

ASC-derived microvesicles combined to scaffold instead of cells, need to be considered  

before moving to phase I clinical trials. 
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PAPERS ENCLOSED 
Since their first isolation in 2002 by Zuk et al, great interest has developed around adipose-

derived stem cells. The intriguing point, that also pushed me to become fond of these cells, 

is that a tissue normally discarded (e.g. after liposuction or aesthetic surgery) could be the 

source for the repair of tissues that cannot spontaneously or completely regenerate and 

could provide therapeutic tools for the cure of a large variety of pathologies. 

During these years, we have investigated various aspects of these cells, also in collaboration 

with other Research groups.  

In this last part of my thesis I take the liberty to enclose the title-page of the papers about 

studies in which planning and performing I was involved during my PhD period.   
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