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ABSTRACT  

Marijuana, also called Cannabis, is the illicit drug most frequently used by human adolescents; 

this is facilitated by the fact that users generally perceive these drugs as relatively harmless.  

Recent data estimate that cannabis use starts in the period from 12 to 18 years of age, though 

even earlier use (9–10 years) is now anecdotally reported. Among the many consequences 

related to the cannabis use, it is increasingly emerging as the Δ9-THC, as well as endogenous 

cannabinoids, are able to affect certain functions of the immune system. 

In fact, studies conducted in experimental animals indicate that cannabis impairs the immune 

response by altering the homeostasis of the immune system. 

The adolescence is a particularly vulnerable period of individual life, both for physical and 

psychological maturity; also the immune system during this development period might be 

particularly vulnerable to the effects induced by this drug. However, there aren't currently 

available studies to investigate whether the cannabis intake during adolescence period can have 

a negative impact on some immune functions such as the individual's response to infection, 

allergic and autoimmune pathologies, both during the period of drug intake and in adulthood, 

thus long time from the last direct cannabis exposure. 

The purpose of this study was to investigate whether the use of cannabis during adolescence 

may induce immediate and delayed effects on the immune system that may then persist in 

adulthood. 

As immune parameters we considered both innate and acquired immunity, measuring T-cells 

and macrophage cytokines production.  

We used Balb C/J male mice, 33 post natal days (PND) as model of adolescence age and 80 

PND as model of adult age. Δ9-THC was administerd with increasing subcutaneous (s.c.) doses, 

starting from 5 mg/kg and gradually reaching 15mg/kg in 10 days.  

Control animals were treated with the vehicle for the same duration of time.  
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Some groups of animals were sacrificed, for the immune evaluation, immediately at the end of 

the treatment, while other groups of mice were housed until 90 PND before the immune 

evaluation. 

We recently added a fourth study group consisting of adult animals treated with the drug, for 10 

days, and housed for 47 days, up to 137 PND, when the evaluation of immune parameters were 

performed. The data regarding this last study group are not completed, due to the long times 

required for the implementation of the experimental protocol and refer only to the innate and 

acquired immunity. 

In order to study acquired immunity, young and adult mice were immunized with KLH protein 

to induce an antigen-specific reaction and Th1/Th2 balance was assessed by measuring the 

production of IFN-γ, IL-4 and IL-10 by splenic lymphocytes. 

In order to assess macrophage function we used peritoneal macrophages stimulated in vitro 

with LPS endotoxin; IL-1β and TNF-α were assessed as pro-inflammatory cytokines, while IL-

10 was evaluated as anti-inflammatory cytokine. 

The cytokine production was measured by specific ELISA and Real-Time PCR. 

At the end of Δ9-THC treatment in both young and adult mice, after immunization, a significant 

reduction in the production of IFN-γ was observed, while the Th2 cytokines IL-4 and IL-10 

were significantly increased.  

When we measured immune response of adult mice treated with the drug in adolescence, we 

observed that the production of IFN-γ was still lower and that, in contrast to what observed 

immediately at the end of treatment, also the Th2 cytokine levels were decreased compared 

with vehicle mice.  

In adult animals, assessed 47 days after the end of treatment, there were no significant 

differences between Δ9-THC or vehicle groups.  
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We also evaluated the ability of the animals to develop an antibody response by measuring IgM 

anti-KLH titers in the serum; in all study groups, the antibody titers were significantly reduced 

compared to the vehicle. 

Regarding the macrophage function, the Δ9-THC treatment induced in both young and adult 

mice a significant increase of IL-10 while TNF-α and IL-1β are decreased. Particularly 

interesting were the results obtained in mice treated in adolescent age with Δ9-THC respect to 

vehicle; in fact, we observed an opposite effect since IL-1β and TNF-α levels were significantly 

increased while IL-10 production was lower, indicating a switch towards a pro-inflammatory 

phenotype of the macrophage.  

These effects on cytokines are at transcriptional level since we observed similar result by 

measuring IL-10, IL-1β and TNF-α mRNA with RT-PCR. In adult animals evaluated 47 days 

after the end of treatment, by analyzing the pro- and anti-inflammatory cytokine levels and their 

relative mRNA expression, no significant differences were found between treatments 

considered. In order to understand whether the Δ9-THC effects might be due to an alteration of 

circulating hormones, we also assessed the modulation of hypothalamic-pituitary-adrenal axis 

(HPA) axis activity, after sub-acute and chronic Δ9-THC treatment, by measuring the 

corticosterone plasma levels in the three study groups.  

The corticosterone concentrations were lower in all groups, indicating a long lasting 

dysregulation of HPA. 

Using a method HPLC/ Mass Spectrometry, we also evaluated blood levels of Δ9-THC and its 

main metabolites in the experimental groups considered, showing that at the end of 10 days 

treatment they were comparable to those that can be found in human heavy smokers. We also 

demonstrated that in animals treated as adolescents and studied as adults, plasma Δ9-THC was 

not more present, further assuring that the effects observed were due to a long lasting 

modulation of immunity     
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In addition, to understand the mechanisms underlying the observed effects, we began to 

investigate whether the Δ9-THC treatment may affect hematopoietic cells development.  

Preliminary data obtained by evaluating the number of colonies formed by hematopoietic 

precursors have not highlighted differences between the different treatment groups.  

Finally, we started to study also the Δ9-THC effects on neuroinflammation, by evaluating the 

basal production of pro- and anti-inflammatory cytokines in brain areas that are particularly rich 

in cannabinoid receptors, such as hippocampus and hypothalamus. 

Our data indicate that chronic treatment with the drug is able to reduce the basal levels of IL-1β 

and TNF-α in the brain areas considered, in adolescent and adult mice assessed immediately at 

the end of treatment.  

The basal production of IL-10 instead appears to be increased compared to relative vehicles in 

mice evaluated immediately at the end of the treatment. 

In adult animals, treated with the drug as adolescents, the basal production of pro-inflammatory 

cytokines, in hypothalamus and in hippocampus, appears to be increased with respect to 

vehicles and IL-10 decreased, indicating a predisposition to a pro-inflammatory status.  

Although these data are preliminary they indicate a parallel modulation of brain and peripheral 

cytokines by Δ9-THC. 

In conclusion, these results indicate that the immune system is profoundly altered by treatments 

with Δ9-THC, with the presence of a dysregulated response. 

In particular we can affirm that the administration of Δ9-THC in adolescent animals has 

significant effects on the immune response that last long after its intake. 
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INTRODUCTION 

HISTORY OF CANNABIS  

The cannabis plant has been known since antiquity and  grows  in  almost  all  parts  of  the  

world,  but  has  been known principally as a source of useful fibre for the manufacture  of  

textiles  and  rope. The use of the plant has origins in Asia, in particular in China, where 

archaeological and historical findings indicate that Cannabis was cultivated for fibres since 

4000 B.C. 

Kalant (Kalant, 2001) and Zuardi (Zuardi, 2006) have reported also an important use of 

cannabis in Asia for the treatment of disorders like rheumatic pain, intestinal constipation, 

disorders of the female reproductive system, malaria and others.  

In India the use of cannabis was disseminated, both as a medicine and recreational drug, 

probably around 1000 B.C. (Zuardi, 2006). From Asia, cannabis spread to the Western World 

where several references reported the use of this plant in Ancient Egypt (Figure 1). 

 

Figure 1 Map showing the countries of origin Cannabis indica and sativa. Figure taken from Hilling 2005 
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The scarce literary references regarding the use of cannabis by the Greeks and Romans suggest 

that it was little used by these populations. 

In Africa the use of cannabis began around the 15th century where it was reported useful for 

snake bite, to facilitate childbirth, malaria, fever, asthma and dysentery. In the 16th century, 

Cannabis reached the Americas, where probably African slaves brought the plant’s seeds to 

Brazil. Here, cannabis was above all used in popular religious rituals. In the middle of 19th 

century, cannabis was introduced in Western Medicine by O'Shaughnessy, an Irish physician, 

and Moreau, a French psychiatrist.  

Their contributions had a deep impact on Western medicine, especially due to the scarcity of 

therapeutic options for infectious diseases (Zuardi, 2006). 

In the 20th century, several laboratories started to market cannabis extracts or tinctures, such as 

Merk, Burroughs-Wellcome, Parke-Davis and Eli Lilly (Fankhauser, 2002). 

During this period, the medical indications of cannabis, as reported in Sajous’s Analytic 

Cyclopaedia of Practical Medicine (1924)(Aldrich, 1997), were summarized in three areas: 

sedative or hypnotic, analgesic and in appetite and digestion dysfunctions. 

After this period, the use of cannabis significantly decreased, because of the difficulty to obtain 

replicable effects, due to the varying efficacy of different samples of the plant. 

Moreover, the introduction of many legal restrictions limited the medicinal use and 

experimentation with cannabis. In the second half of 20th century, cannabis was mainly used as 

a drug for recreational use by intellectuals groups, and later spread among the younger 

generation throughout the Western World. 

In 1964, Gaoni (Gaoni, 1964) isolated and characterized the main psychoactive component of 

cannabis, Δ9-tetrahydrocannabinol, thus contributing to a proliferation of studies about the 

active components of the plant.  
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In the last 30 years three drugs have been developed from cannabis or on the basis of active 

components derived from cannabis: 

1. Nabilone, synthetic analogue of Δ9-THC; it is used for suppression of nausea and 

vomiting produced by chemotherapy. 

2. Dronabinol; it is the synthetic (-)-trans-Δ9-tetrahydrocannabinol; this drug finds 

applications as an anti-emetic and appetite stimulant. 

3. Sativex®; it contains equal amounts of Δ9-THC and the non-psychoactive plant 

cannabinoid, cannabidiol (CBD), and is prescribed for the symptomatic relief of 

spasticity and neuropathic pain in adults with multiple sclerosis, and as an adjunctive 

analgesic treatment in advanced cancer (Pertwee, 2009). 

Cannabis is currently the most recreationally used illicit substance across the globe; the 

prevalence of use has increased markedly over the past decade in young people in the Europe 

although patterns of consumption vary between different social groups.  

TAXONOMY OF CANNABIS  

Cannabis sativa is an annual, dioecious, wind-pollinated herb, with male and female flowers 

developing on separate plants. It propagates from seed, grows in open sunny environments with 

well drained soils and has an abundant need for nutrients and water. It can reach up to 5 meters 

in height in a 4-6 month growing season. 

According to current botanical classification, Cannabis belongs, with Humulus (hops), to the 

family of Cannabinaceae (also Cannabaceae or Cannabidaceae).  

As regards the exact taxonomy of the genus Cannabis (family Cannabaceae) there are different 

opinions depending on considering the polytypic or monotypic species.  

The binomial nomenclature (Linnaeus, 1735; Small, 1976) considers this genre as monotypic, 

the only species known as Cannabis sativa L. 
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In 1785 Lamarck described a second species of Cannabis, which he called Cannabis indica 

Lam.: this species, of lesser importance than the Cannabis sativa as a fiber plant, shows a more 

substantial stimolant use. With the name of Cannabis indica it joined Pharmacopoeia of many 

countries, thus indicating the species designated for medicinal preparations.  

In 1924 the Russian botanist Janichevsky described a third species, which he identified as 

Cannabis ruderalis; this species extended from the north of European Russia to Central Asia 

(Schultes, 1976). 

In 1976, Small in his taxonomic revision defined a single species of Cannabis with two 

subspecies: C. sativa L. subsp. sativa, and C. sativa L. subsp. Indica. 

 

 

 

 
Figure 2 Morphology of Cannabis species 

The hypothesis was that the two subspecies differentiated substantially as a result of selection 

by man: the Cannabis sativa subsp. Sativa was selected for the production of fiber or seeds, 

while Cannabis ativa subsp indica had been selected for medical and stimolant use. 
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Taxonomic studies conducted in the same year led the botanist Schultes to identify, on the basis 

of morphological differences, at least three species, Cannabis sativa, Cannabis indica, and 

Cannabis ruderalis so rejecting monotypic theories (Schultes, 1976).  

The traditional forms in which the substance is consumed are: Marijuana (inflorescences, dried 

leaves), in which the percentage of Δ9-THC can vary between 0.5 and 5% in seedless varieties 

and between 7 and 14% in seeded varieties, called "sinsemilla", while even higher 

concentrations are reported for the “Nederweed marijuana”; Hashish (cannabis resin and 

pressed flowers) with Δ9-THC concentrations ranging from 2 to 20%, Hashish oil at 

concentrations of 15-50%.  

Cannabis is smoked in special devices (chilum, hookah) or hand-rolled cigarettes (joints, canes, 

joint) with or without the addition of tobacco. 

CANNABIS COSTITUENS 

Cannabis is composed by a vast number of compounds (approximately 538), including mono- 

and sesquiterpenes, sugars, hydrocarbons, steroids, flavonoids, nitrogenous compounds and 

amino acids, among others. The more known and the most specific class of cannabis 

constituents is represented by cannabinoids, which are characterized by a C21 terpenophenolic 

constituent’s structure (ElSohly and Slade, 2005). There are ten main types of cannabinoids and 

fourteen different cannabinoids subtypes, based on their chemical structure (Figure 3). 

The first natural cannabinoid to be discovered was cannabinol (CBN), which was extracted in 

1899 and chemically characterized in 1940 (Adams et al., 1940).  

In 1963, Mechoulam’s group isolated cannabidiol (CBD), the main non-psychoactive 

constituent of cannabis (Mechoulam and Shvo, 1963), and one year later they isolated and 

characterized Δ9-THC, the main psychoactive component of cannabis (Gaoni, 1964). In more 

recent years, other phytocannabinoids have been isolated and characterized, but it is possible 
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that some of them may not have been discovered yet. 

Phytocannabinoids are synthesised in cannabis by glandular trichomes as carboxylic acids from 

geranyl pyrophosphate and olivetolic acid to yield the parent phytocannabinoid compound, 

cannabigerolic acid (CBGA). Subsequent reactions involving different enzymes catalyze the 

transformation of CBGA into other phytocannabinoids. The presence of these enzymes differs 

between various strains and species of cannabis, resulting in a different content of 

phytocannabinoids (Russo, 2007). 

 

 

 

Figure 3 The phytocannabinoids can be subclassified into 10 main groups depending on their chemical structure. 
Figure taken from Hanus, 2009 
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Δ9-TETRAHYDROCANNABINOL (Δ9-THC) 

Δ9-THC is the main psychoactive constituent of cannabis; chemically, Δ9-THC is a poorly 

water soluble, amorphous substance which is sticky, resin-like and highly viscous which makes 

it difficult to handle and process (Thumma et al., 2008).  

As a cannabis constituent, Δ9-THC is assumed to be involved in self-defence, perhaps against 

herbivores. Besides, Δ9-THC has been found to posses high UV-B (280-315 nm) absorption 

properties, which have been speculated to protect the plant from harmful UV radiation exposure 

(Pate, 1994). 

 

 

Figure 4 The molecur structure of Δ9-THC 

Dronabinol is the synthetic analogue of tetrahydrocannabinol, in particular the (-)-trans-Δ9-

tetrahydrocannabinol isomer that is the main isomer of as a cannabis constituent, (Pate, 1994). 

Dronabinol is sold as Marinol (a registered trademark of Saolvay Pharmaceuticals); in this 

formulation, the drug has limited stability and has to be stored at low temperatures (4°C). 

Furthermore, Δ9-THC has been reported to be unstable in acid solutions or when exposed to 

heat, air, and light. Hence, in the last few years researchers have been challenging the 

development of Δ9-THC as a prodrug, to avoid the pharmacokinetics and physico-chemical 

limitation properties of the pure drug (Thumma et al., 2008).   
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PHARMACOKINETICS OF Δ9-THC 

ABSORPTION 

Smoking is the principal route of cannabis administration and provides a rapid and higly 

efficient method of drug delivery. Approximately 30% of Δ9-THC in marijuana or hashish 

cigarettes is destroyed by pyrolysis during smoking (Abrams et al., 1985). 

Smoked drugs are highly abused in part because of the efficiency and speed of delivery of the 

drug from the lungs to the brain.  

Bioavailability of smoked Δ9-THC is reported to be 18%-50% partly as a result of the intra- and 

inter-subject variability in smoking dynamics that contribute to uncertainty in dose delivery 

(Agurell et al., 1986).  

The number, duration, and spacing of puffs, hold time, and inhalation volume greatly influence 

the degree of drug exposure (Azolorosa et al., 1992). Δ9-THC can be measured in the plasma 

within seconds after inhalation of the first puff of marijuana smoke. 

In some studies Δ9-THC was measured in blood, and expected values were found to be about 

half those of plasma. Albumin and other proteins that bind Δ9-THC and the poor penetration of 

Δ9-THC into red blood cells contribute to these higher plasma concentrations. 

If cannabis is ingested orally, absorption is slower and peak plasma Δ9-THC concentrations are 

lower (Law et al., 1984).  

Wall et al. (1983) found peak Δ9-THC concentrations approximate 4-6 hours after ingestion of 

15-20 mg of Δ9-THC in a chocolate cookie. Oral bioavaialability has been reported to be 4-

20%, in part as a result of degradation of drug in the stomach.  

Also, there is significant first-pass metabolism to active 11-hydroxy-Δ9-tetrahydrocannabinol 

(11-0H-THC) and inactive metabolites. Plasma 11-OH-THC concentrations range from 50 to 

100% of Δ9-THC concentrations following the oral route of cannabis administration compared 

to only about 10% after smoking (Wall et al., 1983).  



 

 
19 

11-OH-THC is equipotent to Δ9-THC, explaining the fact that pharmacodynamic effects after 

oral cannabis administration appear to be greater that those after smoking Δ9-THC at the same 

concentrations. 

DISTRIBUTION 

Cannabinoids rapidly penetrate into the tissues (liver, heart, lung, gut, kidney, spleen, 

mammary gland, placenta, adrenal cortex, thyroid, pituitary gland, fat and lower concentrations 

in brain, testis and foetus) because of their high lipophilicity. Therefore, the distribution volume 

is about 10 L/kg (Kelly and Jones, 1992). Δ9-THC is strongly bound to plasma proteins (~97%). 

About 60% is bound to lipoproteins (the low-density fraction), about 9% to blood cells and the 

rest to albumin. The Δ9-THC metabolite 11-hydroxy-Δ9-THC (11-OH-THC) is even more 

strongly bound (~99%). 

METABOLISM 

About 100 metabolites have been identified for Δ9-THC so far. All cannabinoids are good 

substrates of cytochrome P450. The hydroxylation sides of Δ9-THC are at C11 and C8 as well 

as at all positions of the alkyl side-chain. The preferred hydroxylation site in man is C11. It has 

been shown that cytochrome P450 isoenzyme 2C9 catalysis the formation of the psychoactive 

11-OH-THC metabolite of Δ9-THC and that cytochrome P450 3A is responsible for the 

hydroxylation at the 8β-position (Watanabe et al., 1995).  

Many of the hydroxyl groups undergo further oxidation after the hydroxylation.  

Carboxylic groups at C11 and C5’ (alkyl side-chain) are formed. 11-OH-THC is further 

oxidised, probably by alcohol dehydrogenase and of microsomal alcohol oxygenase, to the 

intermediate aldehyde 11-oxo-THC followed by oxidation to 11-nor-9-carboxy-THC catalysed 

by a microsomal aldehyde oxygenase, a member of the CYP2C subfamily (Watanabe et al., 

1995; Nadulski et al., 2005)  
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After glucuronidation of the carboxy group, the THC-COOH is the main metabolite excreted 

and found in urine (Maurer et al., 2006).  

Carbon atoms from the alkyl side-chain get lost after β-oxidation and related reactions of the 

C5’-acid. The predominant phase II metabolite of Δ9-THC is the O-ester-glucuronide of THC-

COOH. The formation of conjugates with long-chain fatty acids is another possible pathway. 

Although it is a phase II reaction, the lipophilicity is rather increased than decreased. It is 

possible that these conjugates with long-chain fatty acids may be retained within tissues for 

considerable periods of time because they are membrane constituents resembling compounds. 

 

 
Figure 5 The metabolism of Δ9-THC 

ELIMINATION  

Elimination of Δ9-THC from the plasma is rather slow because of the limited re-diffusion of Δ9-

THC from body fat and other tissues into the blood. The results of this phenomenon are low 

plasma levels. The literature describes very variable half-life periods from 1 to 4 days. The 

absolute elimination time could require up to five weeks. Δ9-THC metabolites are excreted in 

urine (~20%) and faeces (~80%). The distinctive enterohepatic cycle is another reason for the 

slow elimination (Kelly and Jones, 1992). 
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Most urinary metabolites are acids. The major metabolites found in urine are THC-COOH and 

THC-COOH-glucuronide.  

Normalised to the drug creatinine ratio, THC-COOH and its glucuronide are used for detection 

and monitoring of drug abuse (Musshoff and Madea, 2006). 
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THE ENDOCANNABINOID SYSTEM 

The endocannabinoid system refers to a group of endogenous lipid and their receptors that are 

involved in a variety of physiological process including neurotransmitter release, synaptic 

plasticity, inflammation and appetite stimulation. The endocannabinoid system is constitued by: 

• The cannabinoid receptor type 1 and 2, (CB1 and CB2), primarily located in the Central 

Nervous System (CNS) and periphery respectively 

• The endogenous lipids (endocannabinoids) that are synthesized “ on demand” as ligands 

for the cannabinoid receptors 

• Enzymes involved in the synthesis and degradation of endocannabinoids 

CANNABINOID RECEPTORS 

The two main subtypes of cannabinoid receptors (CBR) classically described (CB1 and CB2) 

are G protein coupled receptors, therefore constituted by a single polypeptides with an 

extracellular N-terminus, and intracellular C-terminus and seven transmembrane helices. Both 

mainly activate G proteins (Gi proteins) inhibitory to adenylate cyclase thus inhibiting the 

conversion of ATP to cyclic AMP (cAMP)(Howlett and Mukhopadhyay, 2000).  

However they can also activate adenylate cyclase through stimulating G proteins (Gs proteins), 

and both are positively coupled to mitogen-activated protein kinase (MAPK)(Woelkart et al., 

2008).  

CB1 is coupled with ion channels, inhibiting D-type K+, N and P/Q-type Ca 2+ currents, and 

activating inward and A-type rectifying K+ currents (Croxford and Yamamura, 2005).  

For CB2, the ion channel modulation is more variable; CB2 signaling mechanisms also involve 

the activation of phosphatidylinositol 3-kinase and Akt (PI3-Akt) pathway and increases the 

synthesis of the sphingolipid messenger ceramide, thus having a pro-survival and pro-apoptotic 

effect, respectively (Carracedo et al., 2006).  
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Besides the CB pathway, endocannabinoids also interact with other receptors, like the vanilloid 

receptor-type 1 (TRPV-1) activated by anandamide (AEA), and also K+ channels, 5-HT3 

receptors and alpha 7nicotinic receptors (Mackie, 2008; Oz, 2006).  

It is not clear which of these interactions are relevant for the physiologic effects of 

cannabinoids or just a consequences of their lipophilic character. Some effects of the classical 

cannabinoids such as anti-emesis may not be mediated only by CB1-CB2 receptor system; 

some evidence suggests the existence of additional cannabinoid receptor subtypes possibly 

responsible for these alternative mechanisms (Howlett et al., 2002).  

Recent studies focus on GPR55, suggesting that this receptor can be activated by anandamide 

and 2-arachidonoylglycerol (Ryberg et al., 2007).  

CB1 RECEPTOR 

CB1 is the most abundant G-protein–coupled receptors in brain and was cloned from rat and 

human brain specimens in 1990 and encoded a protein with 472 amino acids. 

It is highly expressed in brain tissue and to a lesser extent in the adrenal gland, reproductive 

organs, bone marrow and immune cells. 

The mouse CB1 sequence has also been cloned, and showed 99% and 97% identity to rat and 

human CB1, respectively, at amino acid level (Bosier et al., 2010). 

CB1 genes have been demonstrated in other species including the tetraodontoid fish, Fugu 

rubripes (Yamaguchi et al., 1996), suggesting the conservation and importance of the CB 

system in evolution (Klein et al., 1998). 

Regarding the receptor signalling, CB1 receptor is coupled to Gi and Go proteins, and its 

activation involves the inhibition of adenylyl cyclase with a consequent decrease in cyclic AMP 

production. Activation of the CB1 receptor is also associated with the activation of MAPK, 

which regulates many cellular functions such as cell growth, transformation and apoptosis. The 
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CB1 receptor has also been associated with the modulation of voltage-gated ion channels, in 

particular N-and P/Q-type calcium channels and inwardly rectifying A-type potassium 

channels, which are thought underlie the cannabinoid-induced inhibition of neurotransmitter 

release at presynaptic level (Howlett et al., 2002). 

CB2 RECEPTOR 

The gene encoding the human cannabinoid CB2 receptor was cloned in 1993 (Munro et al., 

1993) and has now been isolated from several diverse species including mouse (Shire et al., 

1996), rat (Brown et al., 2002), Japanese pufferfish (Elphick, 2002) and zebrafish (Rodriguez-

Martin et al., 2007). In addition this receptor was revealed to exhibit 68% identity to the CB1 

receptor within the transmembrane regions and 44% identity throughout the whole CB1 protein 

(Munro et al., 1993). Unlike the CB1 receptor nucleotide sequence, which appears to be highly 

conserved between the human, mouse and rat, the nucleotide sequence of the CB2 receptor 

exhibits less homology between these mammalian species. For example, the human and mouse 

CB2 receptor share 82% amino acid identity (Shire et al., 1996) whereas the mouse and rat 93% 

homologous (Brown et al., 2002).  

CB2 receptors are prevalently found in immune tissues, most abundantly in the spleen and 

leukocytes (Ofek et al., 2006). At the cellular level, B cells express high levels of CB2 

receptors, while moderate levels are found in natural killer cells, and low levels are found in T-

cells (Galiegue et al. 1995). The presence of CB2 in dendritic cells, potent antigen-presenting 

cells, suggests a role for cannabinoids in modulating antigen presentation (Matias et al., 2002). 

Other tissues and cells also express CB2 receptors including enterocytes, osteoclasts and 

osteoblasts, and the liver (Mackie, 2008). Initially, northern analysis, quantitative Real Time-

PCR analysis and autoradiography could not elicit the CB2 presence in the brain, but Western-

blot analysis and immunohistochemistry demonstrated its presence in astrocytes and microglia. 
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Because CB2 expression on microglia is related to the cell activation status, it was also 

suggested that it may be induced by local inflammation, infection or stress (Croxford and 

Yamamura, 2005), but further studies demonstrated that CB2 is present in astrocytes, microglia, 

neural subpopulations and oligodendroglial progenitors in healthy brains (Van Sickle et al., 

2005). Interestingly, CB2 receptor appears to be highly inducible, which makes this receptor an 

interesting tool for the treatment of diseases such as inflammation, pain, atherosclerosis, hepatic 

fibrosis, and bone remodelling, where CB2 receptors have been shown to be involved (Mackie, 

2008). 

 

Figure 6 Mouse cannabinoid receptor CB1(a) and CB2 (b). Figure taken Klein et al., 1998 

PHARMACOLOGY OF Δ9-THC AT NON-CB1, NON-CB2 RECEPTORS 

It has been found that Δ9-THC interacts with several no cannabinoid receptors, targeting the 

orthosteric or allosteric sites of other GPCRs, transmitter-gated channels, ion channels or 

nuclear receptors. For example, Δ9-THC binds the allosteric sites of opioid receptors. GPR55 is 

an additional GPCR that has been found to be activated by Δ9-THC (Pertwee, 2010). 
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Moreover Δ9-THC acts as a potent antagonist on the ionotropic receptor 5-HT3, which belongs 

to the serotoninergic receptor family. 5-HT3 receptors are located prevalently in the central and 

peripheral neurons, where they trigger rapid depolarization due to the opening of non-selective 

cation channels (Na+, Ca++ influx, K+ efflux) (Hannon and Hoyer, 2008).  

In particular, Δ9-THC has been found to modulate the 3A subunit of the human 5-HT3 receptor.   

Δ9-THC has also been shown to interact with some ion channels, in particular T-type Calcium 

(Cav3) and Potassium Voltage (Kv1.2) channels. Additional Δ9-THC-target receptors are 

Transient Receptor Potential (TRP) channels, which are a family of ion channels with relative 

non-selective permeability for cations, including sodium, calcium and magnesium. In 

particular, Δ9-THC activates both TRP Vanilloid-2 (TRPV2) and TRP Ankirin-1 (TRPA1) 

channels (Pertwee, 2010). 

Finally, Δ9-THC has been shown to interact with PPARγ (O'Sullivan et al., 2006).  

PPARγ, also known as the glitazone receptor, is a nuclear receptor which regulates fatty acid 

storage and glucose metabolism by controlling the expression of specific target genes involved 

in adipogenesis, inflammatory responses, and lipid metabolism. 
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ENDOGENOUS LIGANDS 

The discovery of the cannabinoid receptors suggested the existence of endogenous ligands, 

which could bind to these receptors and exert physiological effects.  

The first endocannabinoid to be isolated was anandamide (arachidonoyl ethanolamide, AEA), 

which is the amide between arachidonic acid and ethanolamine (Devane et al., 1992). This 

finding was soon to be followed by the identification of 2-arachidonoylglycerol (2-AG), the 

arachidonate ester of glycerol (Mechoulam et al., 1995). More recently came the discovery of 

other endocannabinoids, 2-arachidonyl-glycerol ether (noladin ether), N-arachidonoyl-

dopamine (NADA). These lipid compounds differ totally in structure from Δ9-THC, the main 

exogenous cannabinoid.  

Endocannabinoids are considered either neurotransmitters or neuromodulators: they have 

distinct synthetic pathway, are released from cells upon depolarization and calcium entry, and 

their synaptic action is rapidly terminated by reuptake and intracellular enzymatic degradation. 

AEA and 2-AG are produced from cleavage of two different phospholipid precursors present in 

the cell membranes of neurons and immune cells in particular. AEA is synthesized from the 

membrane phospholipid N-arachidonoyl phosphatidylethanolamine by a phosphodiesterase 

called phospholipase D, an enzyme stimulated by depolarization-induced increase in 

intracellular Ca2+. The synthetic pathway is also indirectly stimulated by cAMP/protein kinase 

A, indicating possible receptor-mediated mechanism. The synthesis of 2-AG is also calcium-

dependent. An interesting feature of AEA and 2-AG is the “on-demand” synthesis and release 

of these lipids, differentiating the endocannabinoids from classical neurotransmitters-hence the 

term “modulator”.  

AEA is then known to be transported into cells by carrier-mediated uptake, which does not 

depend on sodium or adenosine-5’-triphosphate (ATP), another difference from classical 

neurotransmitters, but similar to the structurally related prostaglandin E2.  
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Both AEA and 2-AG are known to be rapidly hydrolyzed by the intracellular enzyme fatty acid 

amide hydrolase (FAAH).  

Endocannabinoids may function physiologically as retrograde synaptic messengers.  

When a postsynaptic neuron is strongly depolarized, it synthesizes and releases 

endocannabinoids through a non-vesicular mechanism. These molecules, in turn, bind the 

presynaptic neuron at CB1 receptors and inhibit its neurotransmitter release. It is a form of 

negative feedback. The chemical nature of the presynaptic neuron is important. If the release of 

an inhibitory transmitter like γ-aminobutyric acid (GABA) is decreased, it is called in 

electrophysiology depolarization-induced suppression of inhibition (DSI) and would result in 

exacerbation of postsynaptic transmission.  

If the release of an excitatory neurotransmitter like glutamate is decreased, it is referred to as 

depolarization-induced suppression of excitation (DSE), and diminishes postsynaptic 

transmission (Di Marzo, 2008). Both DSI and DSE depend on rises in calcium and Gi proteins, 

which are also necessary for the synthesis and release of endogenous cannabinoids and a 

feature of their receptors. Furthermore, CB1 stimulation inhibits GABA release from 

hippocampal interneurons and glutamate from cerebellar basket cells (which synapse with 

Purkinje neurons) (Di Marzo, 2008). 
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IMMUNE SYSTEM  

The resistance to diseases, in particular infectious diseases is defined as immunity.  

The set of cells, tissues and molecules that mediate such resistance takes the name of the 

immune system and the sequence of reactions that occur as a result of the meeting of these cells 

and molecules with infectious antigens is called the immune response. 

The physiological function of the immune system is to prevent infections and eradicate once 

they are established in the body.  

The defense mechanisms of the host on which it relies include innate and acquired immunity. 

Innate immunity is involved in an initial protection against infection and is in constant 

operation in healthy subjects, while acquired immunity develops more slowly and is involved 

the most effective defense against infectious agents. The main characteristics of acquired 

immunity, that better distinguish it from that innate immunity, are represented by the fine 

specificity for antigens and structurally different from the fact of developing memory in respect 

of a previous exposure to the antigen (Parkin and Cohen, 2001). 

Innate immunity puts in place a first line of defense that consists of epithelial barriers, 

specialized cells and substances naturally equipped with power antibiotic, used as blocking the 

penetration of microbes into the tissue. If the pathogens manage to overcome the epithelia, are 

attacked by phagocytes and lymphocytes specialized cells called "natural killer" (NK), as well 

as numerous proteins present or plasma, including those of the complement system. The 

mechanisms of innate immunity are able to identify and respond to the microorganisms, but 

without reacting against foreign substances of non-infectious nature, moreover, these 

mechanisms are programmed to react against different classes of molecules produced by 

microbes and, in addition to providing a first embankment defense against infection, enhance 

immune responses acquired (MacPherson and Austyn, 2012). 

Acquired immunity includes lymphocytes and some of their products, the antibodies. 
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The cells of this class of immunity express receptors that recognize specifically the products of 

the different microbes, as well as non-infectious molecules (antigens). The answers acquired 

will not start unless the microbes or antigens, derived from them, exceed epithelial barriers and 

make contact with the lymphocytes. There are two types of acquired immunity: humoral 

immunity and cellular immunity (or cell-mediated), they are based on the intervention of 

different cells and molecules, and are members of the defense, respectively, toward microbes 

extracellular and intracellular microbes. More precisely, the humoral immunity is mediated by 

antibodies produced by B-lymphocytes. These molecules are released into the circulation and 

mucosal secretions do and work to neutralize and eliminate microbes and microbial toxins in 

the blood and into the lumen of equipment, such as the gastro-intestinal tract and the respiratory 

system (MacPherson and Austyn, 2012). 

Therefore, the antibodies are essential in preventing the penetration of foreign pathogens in the 

body and preventing the colonization of cells and connective tissues of the host. 

Cellular immunity, however, rests on the intervention of cells called T-lymphocytes. 

Some T-lymphocytes activate the phagocytes to destroy microorganisms, while others directly 

kill host cells in which there is the infectious agent. 

T AND B LYMPHOCYTES 

A key role is played, in the immune system, by the CD4 + helper T-cells, which mediate the 

immune response, both humoral and cell-mediated immunity. 

The T-lymphocyte response to microbial antigens comprises a series of successive stages, that 

induce their numerical expansion and processing of virgin T-cells in effector cells.  

The virgin T-lymphocytes express the TCR (T-cell receptor for the peptide-MHC complexes) 

and other molecules, forming the device for the recognition of the antigen, that promotes the 

differentiation of T-cells into effector cells (Abbas et al., 2003).  
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Simultaneously with the antigenic recognition, they receive further signals by microbes or 

products of the innate response, which induce the secretion of proteins called cytokines. Then, 

part of the activated lymphocytes undergoes differentiation, transforming into cells capable of 

eradicating pathogens strangers. The CD4 + T-helper lymphocytes can differentiate into 

subpopulations of effector cells, which produce a spectrum of different cytokines, equipped 

with various functions. The subpopulations of T-helper cells best characterized are called Th-1 

and Th-2. Th-1 cells potentiate the killing of microorganisms mediated by phagocytic cells, 

producing IFN-γ. This protein is a potent activator of macrophages and stimulates the 

production of antibodies of an isotype that promotes phagocytosis, in addition to stimulating the 

expression of MHC (major histocompatibility complex) class II and macrophages. They also 

produce IL-2, a cytokine essential for their activation and subsequent clonal expansion.  

Th-2 cells promote, instead, a type of immune response mediated by eosinophils and 

independently by phagocytes, producing IL-4, which stimulates the production of IgE 

antibodies (Abbas et al., 2003). 

Among the cytokines produced by lymphocytes Th-2 there is also the IL-10, which has an 

important role in inhibiting of activating macrophage and therefore in the suppression of the 

responses mediated by Th-1 cells. The differentiation in cells Th-1 and Th-2 is a process finely 

regulated by stimuli that T-lymphocytes virgin receive when they encounter microbial antigens. 

B-lymphocytes instead develop and mature in the bone marrow, where through appropriate 

rearrangements develop numerous variants of B-cell receptors (BCR). These structures 

constitute the membrane precursors of future antibodies (which are also released in soluble 

form by plasma cells) and as these recognize antigens in the native form.  

Selection mechanisms of B-lymphocytes are little known, although it is clear that it is a process 

less rigid than that of T-lymphocytes (MacPherson and Austyn, 2012). 

This phenomenon can be explained by two reasons: 
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• B-lymphocytes depend on the interaction with the CD4+ T-lymphocytes for their 

activation in plasma cells. So if a B-lymphocyte is self-reactive, but is not triggered by 

T-lymphocyte, can not be activated and give autoimmunity. 

• B-lymphocytes can recognize a much larger number of non-peptide antigens. So a rigid 

elimination of all self-reactive clones could restrict the antibody response in the event of 

aggression (Abbas et al., 2003). 

CYTOKINES 

The body's defense against foreign organisms is mediated by an innate immune response and an 

acquired immune response: the effector phase of both types of immune response is largely 

mediated by proteins called cytokines. These are a heterogeneous group of soluble proteins 

involved in intracellular transduction signal (Borish and Steinke, 2003). Although the cytokines 

are a family of proteins very different between them, these molecules have common 

characteristics:  

• they are produced during the effector phase of both the innate and the acquired  

immunity and serve to mediate and regulate immune and inflammatory responses.  In 

the Innate immunity, microbial products such as LPS directly stimulate mononuclear 

phagocytes to secrete cytokines, while cytokines derived from T-cells are above all 

produced in response to specific recognition of foreign antigen 

• the secretion of cytokines is a phenomenon of short duration and auto-limited 

• several cytokines are produced by many different cell type 

• cytokine acts on many different cell types: this characteristic is defined pleiotropism 

• often perform many different effects on the same target cells 

• their activity is often redundant 
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• cytokines often influence the synthesis of other cytokines, and their interaction can have 

an  antagonistic, additive or synergistic effect 

• the action of cytokines may be autocrine, paracrine and endocrine 

• the expression of many cytokine receptors is regulated by specific signals, constituted 

by other cytokines or from the same, which  binding  its receptor, generates 

amplification  or inhibition circuits 

On the basis of the function, the cytokines can be divided into 4 groups: 

1. mediators of innate immunity products from mononuclear phagocytes 

2. activators of growth and differentiation of lymphocyte, produced in consequence of the 

antigenic recognition by T-lymphocytes 

3. regulators of immune-mediated inflammation, which activate inflammatory cells evoked 

as a result of non-specific antigenic recognition of T-lymphocytes 

4. substances having a stimulant growth and differentiation action of immature leukocyte, 

derived from lymphocytes and other non-lymphoid cells 

CYTOKINES THAT MEDIATE AND REGULATE INNATE IMMUNITY 

TNF-α 

This proinflammatory cytokine was first isolated in 1975, and its name is misleading in that it 

does not cause the necrosis of all tumors.  

As a matter of fact, it may stimulate the growth of some tumors.  

TNF-α is a 185-amino-acid glycoprotein, which is cleaved from a 212-amino-acid peptide, and 

the cleavage occurs on the cell surface of mononuclear phagocytes. The major cell source of 

TNF-α is the macrophage, specifically the endotoxin-activated mononuclear phagocyte. Other 

sources include endothelium after tissue damage, antigen-stimulated T-cells, activated NK cells 

and activated mast cells. IFN-γ augments TNF-α synthesis.  
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TNF-α is a mediator of both natural and acquired immunity (Borish and Steinke, 2003).  

TNF-α induces the production of IL-1, IL-6, TNF-α itself and chemokines via stimulation of 

macrophages. It exerts an IFN-like protective effect against viruses and augments expression of 

MHC class I molecules. TNF-α is an endogenous pyrogen that acts on cells in hypothalamic 

regulatory regions of the brain to induce fever. It suppresses appetite.  

The hypothalamic–pituitary–adrenal axis (HPA) is stimulated via the release of corticotrophin-

releasing hormone by TNF-α.  

TNF-α suppresses bone marrow stem cell division and reduces tissue perfusion by depressing 

myocardial contractility (Borish and Steinke, 2003). 

IL-1 

Interleukin-1 (IL-1) was originally discovered as a factor that induced fever, caused damage to 

joints and regulated bone marrow cells and lymphocytes, it was given several different names 

by various investigators.  

Later, the presence of two distinct proteins, IL-1α and IL-1β, was confirmed, which belong to a 

family of cytokines, the IL-1 superfamily (Borish and Steinke, 2003).  

IL-1 plays an important role in both innate and adaptive immunity and is a crucial mediator of 

the host inflammatory response in natural immunity. The major cell source of IL-1 is the 

activated mononuclear phagocyte. Other sources include dendritic cells, epithelial cells, 

endothelial cells, B-cells, astrocytes, fibroblasts and Large Granular Lymphocytes (LGL). 

Endotoxins, macrophage-derived cytokines such as TNF-α or IL-1 itself, and contact with 

CD4+ cells trigger IL-1 production.  

IL-1 can be found in circulation following Gram-negative bacterial sepsis. It produces the 

acute-phase response in response to infection. IL-1 induces fever as a result of bacterial and 

viral infections (Dinarello and Wolff, 1993).  

Activation of T-helper cells, resulting in IL-2 secretion, and B-cell activation are mediated by 
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IL-1. It is a stimulator of fibroblast proliferation, which causes wound healing. Autoimmune 

diseases exhibit increased IL-1 concentrations. It suppresses further IL-1 production via an 

increase in the synthesis of PGE2. 

IL-10 

First identified as an inhibitor of IFN-γ synthesis in Th1 cells, IL-10 is an important 

immunoregulatory cytokine. It is an anti-inflammatory cytokine that was first called human 

cytokine synthesis inhibitory factor (Del Prete et al., 1993).  

IL-10 is secreted by macrophages, Th2 cells and mast cells.  

Cytotoxic T cells also release IL-10 to inhibit viral infection- stimulated NK cell activity.  

IL-10 is a 36-kDa dimer composed of two 160-aminoacid residue long chains. Its gene is 

located on chromosome 1 in humans and consists of five exons.  

IL-10 inhibits the synthesis of a number of cytokines involved in the inflammatory process 

including IL-2, IL-3, GM-CSF, TNF-α and IFN-γ.  Based on its cytokine-suppressing profile, it 

also functions as an inhibitor of Th1 cells and by virtue of inhibiting macrophages, it functions 

as an inhibitor of antigen presentation. Interestingly, IL-10 can promote the activity of mast 

cells, B-cells and certain T-cells.  The major immunobiological effect of IL-10 is the regulation 

of the Th1/Th2 balance.  Th1 cells are involved in cytotoxic T-cell responses whereas Th2 cells 

regulate B-cell activity and function. IL-10 is a promoter of Th2 response by inhibiting IFN-γ 

production from Th1 cells. This effect is mediated via the suppression of IL-12 synthesis in 

accessory cells. IL-10 is involved in assisting against intestinal parasitic infection, local 

mucosal infection by costimulating the proliferation and differentiation of B-cells. Its indirect 

effects also include the neutralization of bacterial toxins (Borish and Steinke, 2003). IL-10 is a 

potent inhibitor of IL-1, IL-6, IL-10 itself, IL-12, IL-18, CSF and TNF-α. It not only inhibits 

the production of proinflammatory mediators but also augments the production of anti-

inflammatory factors including soluble TNF-α receptors and IL-1ra. 
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CYTOKINES THAT MEDIATE AND REGULATE ACQUIRED IMMUNITY 

IL-4 

In addition to T-helper lymphocytes, IL- 4 is derived from eosinophils, basophils, and possibly 

mast cells. In both eosinophils and mast cells, IL-4 exists as a preformed, granule-associated 

peptide and can be rapidly released in allergic inflammatory responses.  

IL-4 stimulates MHC class II molecules, B7, CD40, surface IgM, and low-affinity IgE receptor 

(CD23) expression by B-cells, thereby enhancing the antigen-presenting capacity of B-cells.  

IL-4 induces the immunoglobulin isotype switch from IgM to IgE (Romagnani, 1990).  

Other B-cell–activating cytokines, such as IL-2, IL-5, IL-6, and IL-9, synergize with IL-4 to 

increase the secretion of IgE. IL-4 has been identified in the serum, bronchoalveolar lavage 

fluid, and lung tissue of asthmatic subjects, in nasal polyp tissue, and in the nasal mucosa of 

subjects with allergic rhinitis.  

In addition to these effects on B-cells, IL-4 has important influences on T-lymphocyte growth, 

differentiation, and survival, producing important influences on allergic inflammation. As will 

be discussed later, IL-4 drives the initial differentiation of naïve T-helper type 0 (TH0) 

lymphocytes toward a Th2 phenotype.  

IL-4 is also important in maintaining allergic immune responses by preventing apoptosis of T-

lymphocytes (Borish and Steinke, 2003). The production of IL-4 by Th2 lymphocytes renders 

these cells refractory to the anti-inflammatory influences of corticosteroids.  

Other activities of IL-4 include enhancing the expression of MHC molecules and low-affinity 

IgE receptors (CD23) on macrophages. In contrast to these proinflammatory effects on 

monocytes, IL-4 downregulates antibody-dependent cellular cytotoxicity (ADCC), inhibits 

expression of Fc receptors, inhibits their differentiation into macrophages, and downregulates 

production of nitric oxide, IL-1, IL-6, and TNF-α while stimulating production of IL-1ra.   
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IFN-γ 

The most important cytokine responsible for cell-mediated immunity is IFN-γ.  

It is primarily produced by T-helper lymphocytes but is also derived from cytotoxic T cells and 

NK cells. IFN-γ mediates increased MHC class I and II molecule expression.  

IFN-γ stimulates antigen presentation and cytokine production by monocytes and also 

stimulates monocyte effector functions, including adherence, phagocytosis, secretion, the 

respiratory burst, and nitric oxide production. The net result is the accumulation of 

macrophages at the site of cellular immune responses, with their activation into macrophages 

capable of killing intracellular pathogens (Borish and Steinke, 2003). In addition to its effects 

on mononuclear phagocytes, IFN-γ stimulates killing by NK cells and neutrophils. It stimulates 

adherence of granulocytes to endothelial cells through the induction of ICAM-1, an activity 

shared with IL-1 and TNF-α. As with other interferons, IFN-γ inhibits viral replication. As 

discussed later, IFN-γ is an inhibitor of allergic responses through its capacity to inhibit IL-4–

mediated effects (Farrar and Schreiber, 1993). 

TH1/TH2 BALANCE 

Th1 and Th2 cells differ from the virgin T-helper CD4, their profile is influenced by the stimuli 

present in the microenvironment, during the early stages of the immune response. Each of the 

two subpopulations are self-amplifying, blocking the differentiation of the other (Romagnani et 

al., 1994). The differentiation in Th1 is stimulated by intracellular parasites and is characterized 

by the production of IFN-γ; the principal effector function is the defense mediated by 

phagocytes. 

The differentiation in Th2 occurs in response to allergens and to helminths and is characterized 

by the production of IL-4 and IL-5, the main effector function is the response mediated by IgE, 

mast cells and eosinophilis.  
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Th2 cells can behave as suppressor cells, through the production of IL-4 and IL-13, which act 

as antagonists of IFN-γ and block the macrophage activation induced by T-lymphocytes.  

The cytokines produced also limit the possible tissue damage caused by cell-mediated 

responses.  

Th2 cells also mediate certain inflammatory reactions in which predominate eosinophils and 

mast cells, contributing to the elimination of helminths (Borish and Steinke, 2003). 
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CANNABIS EFFECTS ON THE IMMUNE SYSTEM 

The immune system comprises several components, including lymphoid tissue, such as the 

spleen and lymph nodes, the bone marrow and the thymus where lymphocytes and other 

immune cells are made, and circulating lymphocytes. 

Immunity is either innate or acquired. Innate immunity involves immune responses that do not 

require previous sensitization and exposure to foreign substances whereas acquired immunity 

does. 

Actions of macrophages are part of the host’s innate immunity while the responses mediated by 

B- and T-cells are part of the acquired immunity (Berdyshev, 2000). 

Generally, Δ9-THC has a deleterious effect on a variety of immune parameters. 

Many studies in the literature suggested that cannabis use is associated with an increase in the 

incidence of viral infections and allergic symptoms.  

More specific studies were subsequently designed to clarify the Δ9-THC’s action after in vivo 

and in vitro exposure in various human and animal cells. 

MACROPHAGES 

Cannabis use and effects on innate macrophage functions were initially studied in pulmonary 

models by Berdyshev et al. (1998) Alveoli macrophages are the principal immune-effector cells 

in the lung and are primarily responsible for protecting the lung against infectious 

microorganisms, inhaled foreign substances, and tumour cells. Cannabis smoking reduced the 

ability of alveoli macrophages to kills fungi, pathogenic bacteria, and tumour target cells. 

Furthermore, cannabis smoking depressed production of pro-inflammatory cytokines, which are 

important regulators of macrophage function. This cannabis-related decrease in inflammatory 

cytokine production might be a mechanism whereby cannabis smokers are less able to destroy 

fungal and bacteria organisms, as well as tumour cells.  
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The inability of alveolar macrophages from habitual cannabis smokers without apparent disease 

to destroy fungi, bacteria, and tumour cells, and to release pro-inflammatory cytokines, 

suggests that cannabis might be an immunosuppressant with clinically significant effects on 

host defense. 

Studies by Tashkin et al. (1997) suggested that regular cannabis consumption reduces the 

respiratory immune response to invading organisms. Further, serious invasive fungal infections 

as a result of cannabis contamination have been reported among individuals who are 

immunocompromised, including patients who were infected by AIDS. 

There are reports of effects of cannabinoids in vitro on various macrophage functions including 

cell spreading and phagocytosis, protein expression, cytolysis and antigen presentation 

(Berdyshev, 2000). 

McCoy et al., (1995; 1999) demonstrated that Δ9-THC influenced the ability of macrophages to 

process antigens necessary for the activation of CD4+ T-lymphocytes. 

Sacerdote et al., (2000a) reported that in vivo and in vitro treatment with the synhetic 

cannabinoid CP-55, 940 reduced the spontaneous and stimulated chemotaxis of macrophages in 

the rat and this effect involved both CB1 and CB2 receptors. 

NO generation by macrophages is an obligatory element of cellular attack on bacterial 

pathogens. Δ9-THC suppresses NO production in mouse peritoneal macrophages, but the 

cannabinoid ligand may increase NO production in human monocytic culture (Klein, 1999). 

Chang et al., (2001) also found that Δ9-THC, AEA and 2-AG reduced LPS- induced NO, PGE2 

and IL-6 production in a concentration-dependent manner through CB2 activation.  
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LYMPHOCYTES  

T-cells and B-cells are the major cellular componentes of the adaptative immune response. 

Marijuana is able to suppress immune function, changing the number and function of T-cells 

(Massi et al., 2006). Finding regarding the proliferation response of peripheral blood T-cells 

from marijuana smokers were generally inhibitory although the evidence is sometimes 

conflicting, with T-cell proliferation responses either suppressed or unaffected (Klein, 1999). 

It is seen in fact a measurable inhibitory effect on leukocytes after acute and chronic treatment 

of relatively high doses of cannabinoids in experimental animals, and high concentrations in 

vitro. 

It is also seen that the cell proliferation is not always suppressed, but rather appears to be 

enhanced by low concentrations of cannabinoids or in response to anti CD3 antigen used as a 

mitogen.  

Massi et al. (1998) reported that, following acute treatment of Δ9-THC, in mice in vivo, and 

with doses that induce analgesic effect, there was no alteration in the proliferative response of 

spleen cells to ConA, but after 7 days of treatment, proliferation was found to be markedly 

reduced.  

Furthermore, a few studies have evaluated the Δ9-THC effect on cytotoxic T-lymphocytes 

(CTL), which can lyse and destroy potentially harmful cellular elements in the body. 

Klein and colleagues (1991) demonstrated that after incubation with Δ9-THC the cytolilytic 

activity of murine splenocyte CTL was depressed by about 60%.  

Δ9-THC did not inhibit CTL binding to the target cell but lowered the cytolytic activity 

subsequent to binding. McKallip et al., (2002), based on studies of Klein et al., (1991), 

demonstrated that Δ9-THC administration in vivo in animals, lowered the cytolytic activity 

subsequent to binding on lymphocytes, mediated by a rapid clearance of dead cells by 

phagocytic cells. After exposing C57BL/ 6 mice to 10 mg/kg body-weight Δ9-THC, he isolated 
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lymphocytes from the thymus and spleen, and he detected that levels of Δ9-THC-induced 

apoptosis in T-cells, B-cells and macrophages. 

He has also demonstrated that Δ9-THC induced higher levels of apoptosis in naive 

lymphocytes, when compared with mitogen-activated lymphocytes, because activated cells 

down-regulated the levels of CB2 on their cell surface. Another major function of immune cells 

examined in the context of cannabinoid treatment is antibody formation. Studies in humans and 

animals have examined the levels of serum immunoglobulins after treatment with cannabinoids. 

In chronic marijuana smokers given cigarettes for two months, the levels of IgG and A were not 

different from those of controls, but the IgE appeared significantly increased (Massi et al., 

2006). Still, very little is known about the Δ9-THC effect of prenatal exposure on the 

developing immune system; Lombard et al. (2011) has recently demonstrated that perinatal 

exposition to Δ9-THC, in animals, negatively affects the immune system of offspring, 

potentially compromising its response to infections. In particular, her study has demonstrated 

that animals that have been exposed to Δ9-THC in utero have a lower immune response to HIV 

at 5 weeks of age, with a decreased proliferative response to HIV restimulation in vitro and 

lower HIV-specific antibody titer in the serum.  

Δ9-TETRAHYDROCANNABINOL‘S ACTION ON CYTOKINES 

The regulation of the concerted work of different types of immune cells is controlled by 

cytokines-signalling proteins synthesized and secreted by immune cells upon stimulation. 

Cytokines, together with their membrane-associated and soluble receptors, constitute a complex 

network with positive and negative regulatory roles, which plays a role in the development of 

Th1 and Th2 dependent immune responses (Borish and Steinke, 2003). 

As previously reported, cytokines of acute phase such as IL-1, TNF-α, and IL-6 produced by 

macrophages and other cells are an important part of natural immunity and help to control 
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resistance to microbes during the early phases of an infection. 

Immune cytokines, on the other hand, such as IL-2, IL-4 and IFN-γ, are produced by activated 

Th cells and help to eliminate microbes from the body by regulating powerful cell-mediated 

and antibody-mediated immune mechanism (Borish and Steinke, 2003). 

An increasing number of publications confirm that Δ9-THC can alter the cytokine production in 

immune cells. 

 The first work on the modulation of cytokine production belongs to Blanchard et al., (1986), 

who demonstrated that cannabinoids caused an inhibition of the production of IFN-γ in 

splenocytes isolated from animals chronically treated with Δ9-THC, after in vitro stimulation 

with the mitogen PHA, ConA and LPS.  

Moreover Δ9-THC and other non-psychotropic drugs as cannabidiol, have been shown to 

induce both a decrease and an increase of the IFN-γ production, according to the concentrations 

used. Low concentrations (e.g, <0,1 µM) of cannabinoids increase the production of IFN-γ, 

whereas high concentrations diminish the production (e.g, 30 µM) (Watzl et al., 1991). 

The Δ9-THC is also able to induce an inhibition on the production of TNF-α in cultures of 

murine peritoneal macrophages as shown by Zheng et al., in 1992. 

Moreover Klein and Friedman (1990) reported that Δ9-THC in the range of 10-30 µM increased 

IL-1 bioactivity in the supernatant of cultured mouse peritoneal macrophages. 

Zhu et al., (1994) showed that this occurred because Δ9-THC alters the processing and release 

of IL-1 rather than cellular production of the protein.  

Also lymphocytes are limited in their proliferation by cannabinoids. Proliferation of these cells 

is regulated, at least in part, by the system IL-2/IL-2 receptor.  

Nakamo et al., (1992) showed that the secretion of IL-2 secretion by lymphocytes was 

modulated by cannabinoids, thus accounting for some of the inhibitory drug effects on the cell 

growth.  
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Using a chronic treatment in vivo, it is confirmed the thesis that Δ9-THC lower in mice levels of 

IFN-γ and IL-2 in splenocytes, and can steer away from the cytokine network in cell-mediated 

immunity, causing a shift towards Th2 humoral response (Massi et al., 1998). 

This reduces host resistance to pathogens such as viruses, bacteria and parasites. 

The unbalance of Th1/Th2 pattern caused by the exposure to cannabinoids is also confirmed in 

human leukocytes, where the Δ9-THC causes a decrease in production of IL-2 and IFN-γ 

accompanied by a decrease in basal levels of mRNA coding for Th1 cytokines while those for 

Th2 cytokines increase (Kertscher and Cohen B, 2002). 

Zhu et al., (2000) examining the effects of Δ9-THC on the host response to a lung tumor 

challenge, found that animals receiving Δ9-THC experienced a more rapid rate of tumor 

growth. Since they found that Δ9-THC augmented the immunosuppressive cytokines IL-10 and 

TGF-β, while IFN-γ was down-regulated at both the tumor site and in the spleens, they 

suggested that Δ9-THC promotes tumor growth by inhibiting anti-tumor activity by a cytokine-

dependent pathway. 

The effects of Δ9-THC and other cannabinoid compounds such as cannabidiol could be 

considered of benefit for some autoimmune and inflammatory diseases, but they seem to be at 

the basis of a worse tumorigenesis, metastasis, and some infections such as HIV besides 

exacerbating allergic responses. 

Whereas the animal and cellular models do not always predict human responses, 

epidemiological studies have been aimed at clarifying the real impact of marijuana smoking on 

the development of opportunistic infections and cancer. In many studies it has been observed a 

more rapid progression from HIV infection to AIDS in marijuana users and, more recently, its 

use was found to be a risk factor for the development of cancer.  

Roth et al., (2002) in order to evaluate whether human immune responses are similar to animal 

and cellular studies, collected T-cells from healthy volunteers.  
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It was found that in in vitro Δ9-THC down-regulated the expression and release of Th1 

cytokines, and altered normal Th1/Th2 balance in a dose-dependent manner.  

The normal host response to an immunologic challenge involves dendritic cells, specialized 

antigen-presenting cells that activate and expand antigen-specific T-cell clones.  

The relative production of IL-12 (Th1) versus IL-10 (Th2) by dendritic cells and relative 

balance of other Th1 Th2 cytokines in the local environment results in differentiation of the 

activated T-cells towards either a Th1 and Th2 phenotype (Massi et al., 2006). 

Roth et al., (2002) studied the effects of an in vitro exposure of dendritic cells to Δ9-THC, and 

found concentrations of IFN-γ reduced of about 50% while IL-4 levels were increased on 

average by 110%, resulting in a shift in Th1/Th2 cytokine balance.  

The shift Th1/Th2 balance seems to be the cause of susceptibility of laboratory animals against 

many pathogens such as viruses, bacteria and parasites, against which normally the response of 

body is supported by Th1 cytokines (Roth et al., 2002). 
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CANNABINOIDS AND HYPOTHALAMIC-PITUITARY-ADRENAL AXIS 

The hypothalamic-pituitary-adrenal (HPA) axis is a complex neuroendocrine system involved 

in an important number of central and peripheral physiological functions, most of them related 

to appropriate adaptation to stressful situation. The corticotrophin-releasing factor (CRF), 

which is produced in the paraventricular nucleus (PVN) of the hypothalamus, represents the 

main driving force controlling HPA axis activation.  

CRF induces the release of adrenocorticotrophic hormone (ACTH) from the anterior pituitary, 

which in turn regulates glucocorticoid production from the adrenal gland. Then, the 

glucocorticoids negatively regulate the release of both CRF and ACTH trough a feedback 

mechanism (Figure 7). 

 

Figure 7 General organisation of the hypotalamic-pituitary-adrenal (HPA) axis and feedback inhibition of HPA axis 
fucntion by glucocorticoids (CORT), ACTH, adrenalcorticotrophic hormone.  
Figure taken from Lightman and Heyman, 2009 
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Activation of the HPA axis is generally beneficial for the organism; however, when the stress 

response is inadeguate or excessive and prolonged, the cost of maintaining homeostasis 

becomes too high and might thus put an individual at the risk of developing illness, including, 

depression, abdonimal obesity, affective disorders and immune diseases. 

The smoking marijuana or administration of Δ9-THC are both known to stimulate ACTH and 

glucocorticoid secretion in humans and experimental animals model. Several studies have 

actually demostrated that the action of exogenous cannabinoids on the HPA axis is dose-

dependent and involves modulation of CB1 receptors.  

In multiple animal studies, acute administration of cannabinoids increased both ACTH and 

glucocorticoids (GC) in a dose-related fashion, an effect that is likely mediated by an increase 

in CRH (Rodriguez de Fonseca et al., 1992).  

Rodents administered potent CB1 agonist HU-210 had marked activation of the HPA axis, but 

at the highest doses, ACTH decreased while GC increased, suggestive of rapid negative feed-

back by GC (Martin-Calderon et al., 1998). However, tolerance to these effects develops 

quickly with chronic administration (Rodriguez de Fonseca et al., 1992). 

Human studies have shown variable effects of marijuana and component cannabinoids on the 

HPA axis. Similar to the effects in animals, increased cortisol levels have been reported after 

acute administration of marijuana (Brown and Dobs, 2002); conflict results were observed in 

human users of Δ9-THC, after chronic oral administration for example abusing foods like 

cookies rich in marjiuana. 

In their review, Brown and Dobs (2002) related that prolonged activation of the HPA axis, for 

marijuana consumption, may induce to a reduction in adrenocortical reserve. 
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OTHER CANNABIS PHYSIOLOGICAL EFFECTS 

CARDIOVASCULAR EFFECTS 

The use of marijuana is associated with serious cardiovascular consequences; Δ9-THC can 

induce tachycardia (Perez-Reyes, 1999) and increase cardiac output with increased cardiac 

work and oxygen demand. 

It can also produce peripheral vasodilation, orthostatic hypotension and reduced platelet 

aggregation. There was no change of mean global cerebral blood flow after smoking cannabis, 

but increases and decreases in several regions (O’Leary et al., 2002). 

Due to the development of tolerance, long-term use can lead to bradycardia.  

Moreover, postural hypotension and fainting may occur. These and other cardiovascular effects 

may carry a risk for individuals with preexisting cardiac disease, and several cases of acute and 

sometimes fatal cardiac incidents have been reported in young cannabis smokers. 

RESPIRATORY EFFECTS 

The smoke from herbal cannabis preparations contains all the same constituents, excluding 

nicotine, as tobacco smoke, including carbon monoxide, bronchial irritants, tumour initiators 

(mutagens), tumour promoters and carcinogens. A single cannabis cigarette contains higher 

concentrations of benzanthracenes and benzpyrenes, both of which are carcinogens, than 

tobacco smoke. It has been estimated that smoking a cannabis cigarette results in approximately 

a five-fold greater increase in carboxyhaemoglobin concentration, a three-fold greater amount 

of tar inhaled and retention in the respiratory tract of one-third more tar than smoking a tobacco 

cigarette (Benson and Bentley 1995; Khalsa, 2007). This is mainly due to the way a cannabis 

joint is smoked, with deep and prolonged inhalation and no filter.  

In addition, cannabis has a higher combustion temperature than tobacco.  

Chronic heavy smoking of marijuana is associated with increased symptoms of chronic 
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bronchitis, coughing, and with impairment of pulmonary function, pulmonary responsiveness 

and bronchial cell characteristics in marijuana-only smokers (Tashkin et al., 1990).  

It has been calculated that smoking 3-4 cannabis cigarettes a day is associated with the same 

evidence of acute and chronic bronchitis and the same degree of damage to the bronchial 

mucosa as 20 or more tobacco cigarettes a day (Khalsa, 2007).  

Tashking and colleagues (1997) reported that marijuana smoking may predispose individuals to 

pulmonary infection, especially patients whose immune system is already compromised by HIV 

infection and/or cancer and related chemoterapy. 

ENDOCRINE EFFECTS 

Marijuana use affects endocrine and reproductive functions as well, since it inhibits the 

secretion of gonadotropins from the pituitary gland and may act directly on the ovary or testis. 

Cannabinoids affect multiple reproductive functions, from hormone secretion to birth of 

offspring (Schuel et al., 2002). Schuel and colleagues (2002) reported that endocannabinoid 

anandamide signaling regulates sperm functions required for fertilization in the human 

reproductive tract and the abuse of marijuana could affect these processes. Chronic 

administration of high doses of Δ9-THC lowers testosterone secretions; impairs semen 

production, motility, viability and disrupts the ovulatory cycle in animals (Bloch, 1983). 

Furthermore, according to Harclerode (1984) Δ9-THC lowers testosterone levels by lowering 

luteinizing hormone and follicle-stimulating hormone.  

Marijuana depresses the levels of prolactin, thyroid function and growth hormone while 

elevating adrenal cortical steroids.  

Chronic exposure of laboratory animals (rats, mice and monkeys) to marijuana altered the 

function of several accessory reproductive organs: reduced testosterone levels leads to reduced 

testicular function and reduced prostate and seminal vesicle weights. 
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Chronic administration of marijuana also produces testicular degeneration and necrosis in dogs 

(Khalsa, 2007). 

EFFECTS ON CENTRAL NERVOUS SYSTEM 

Numerous studies show that the phytocannabinoids can induce different degrees of damage to 

the cells of CNS. Recent discoveries have shown that just the Δ9-THC is capable of inducing 

the death of the cells with DNA fragmentation in the hippocampus.  

The areas of the brain primarily involved in cognitive functioning include the frontal cortex, 

hippocampus and cerebellum; it was demonstrated by Herkenham and colleagues (1990) that 

the use of cannabis alters the functioning of these brain areas rich in cannabinoid receptors.  

Finally, changes in the activity of the endocannabinoid system during the phases of high 

neuronal plasticity, as the perinatal and adolescence period, can have behavioral consequences 

for long time. 

IMPAIRMENT OF COGNITIVE BEHAVIOUR 

Through studies of performance evaluation and neuropsychological testing in man, the 

cognitive functions found to be more affected by cannabis use are attention, learning and 

memory. Moreover, the executive functions, processing speed and psychomotor speed are also 

impaired. It has also been described that individuals who start using cannabis in early age may 

be more vulnerable to lasting neuropsychological deficits than those who have started to use it 

later (Chadwick et al., 2013). 

Some studies show the appearance of deficit in sustained attention, in the memory, mental 

flexibility and speed of information processing (Wegener and Koch, 2009). 
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CANNABIS AND SCHIZOPHRENIA 

A recent study showed that the use of cannabis represents an important risk factor for the 

development of psychotic disorders especially in adolescence (Chadwick et al., 2013; Rubino 

and Parolaro, 2013). Although a small fraction of teens that use cannabis develop 

schizoaffective disorders, a number of epidemiological studies repeatedly demonstrate elevated 

risk to develop these psychiatric disorders in association with early-life cannabis use. 

Longitudinal studies assessing the relationship between early-life cannabis exposure and 

schizotypal personality disorder demonstrated that early adolescent use increases adulthood 

symptomatology (Page et al., 2007).  

Although it is challenging to model schizophrenia in animals, phenotypes related to this 

disorder may be studied; rats exposed to cannabinoids during adolescence demonstrate 

increased schizoaffective-like phenotypes, such as impaired sensorimotor gating, which, similar 

to humans, results in decreased prepulse inhibition (Wegener and Koch, 2009).  

Since not all cannabis users develop schizophrenia, early cannabis use likely interacts with 

other factors to facilitate the emergence of this disease (Casadio et al., 2011).  

Recent data have shown that the association between early cannabis exposure and vulnerability 

to schizophrenia is related to individual genetics.  

Caspi et al. (2005) demonstrated that the relationship between adolescent cannabis use and 

schizophreniform disorder, as well as the presence of various psychotic symptoms, was 

attributable to the presence of a functional polymorphism in the catechol-O-methyltransferase 

(COMT) gene.  

This enzyme degrades catecholamines, such as dopamine, and this functional variant 

(COMTvaline158) catabolizes this neurotransmitter more rapidly than the methionine allele 

(Lachman et al., 1996).  
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In cannabis users, schizophreniform disorder is predominantly observed in persons with at least 

one copy of the polymorphic COMT gene (Costas et al., 2011). Moreover, clinical laboratory 

experiments show that Δ9-THC’s acute psychotomimetic effects are moderated by this COMT 

SNP with Δ9-THC-induced psychotic-like experiences and cognitive impairments being more 

pronounced in individuals with the valine158 allele. Animal models also confirm a link 

between the genetic disturbance of COMT and developmental cannabis such that adolescent Δ9-

THC exposure in transgenic mice lacking endogenous COMT synergistically impacts behaviors 

relevant to schizophrenia (Henquet et al., 2006).  
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Δ9-THC AND NEUROINFLAMMATION  

The CNS is a complex organ that consists of a diverse group of cell type, including neurons, 

oligodendrocytes, microglia and astrocytes. While astrocytes are the predominant cell type of 

the CNS, microglia are the resident macrophages of the brain and provide the first line of 

defence against injury, assault and /or infection. These myeloid lineage cells play an import role 

also in CNS remodelling and regeneration. The combined cellular functions of astrocytes and 

microglia form the innate immune system of the CNS (Carlisle and Cabral, 2002). 

In the healthy adult brain, resting microglial cells are characterized by a small soma with fine, 

highly ramified branches and low expression of surface antigens. Following brain stress or 

injury, local changes in the extracellular milieu promote a change in the microglial phenotype, 

referred to as microglial activation. 

Once activated, they produce various cytokines including IL-1, IL-6, TNF-α, and express major 

histocompatibility complex classes I and II antigens and the complement receptor, CR3 (Roche 

et al., 2006). 

Several studies have shown that microglia and microglia-derived cells are the major cell types 

responsible for chronic inflammation that participates in Alzheimer’s disease, Parkinson’s 

disease and amyotrophic lateral sclerosis.  Microglial cells also express both the CB1 and CB2 

cannabinoid receptor; using in vitro model, Carlisle and Cabral (2002) have shown that levels 

of CB2 mRNA and protein are modulated differentially in relation to cell activation state. 

The CB2 is not detected in “resting” cells, is present at high levels in “responsive” and 

”primed” cells, and is identified at greatly diminished levels in “fully” activated cells. 

In contrast, CB1 is present in microglia at relatively low levels and is expressed constitutively 

in relation to the cell activation state. 

Recently, it has been proposed that the role of CB2 in immunity in the CNS is primarily anti-

inflammatory (Carrier et al., 2005); this receptor has the potential to serve as a therapeutic 
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target for appropriately designed CB2-specific ligands that could act as anti-inflammatory 

agents in neuropathological processes such as multiple sclerosis (MS). 

Numerous studies are investigating the effects of cannabinoids in neuroinflammation: for 

example, in Theiler’s virus infection of mouse CNS, an animal model for human MS, it was 

showed that the synthetic cannabinoids WIN55, 212-2 and JWH-015 improved neurological 

deficits and reduced microglial activation, MHC class II expression and T-lymphocyte 

infiltration (Arevalo-Martin et al., 2003). Moreover, Roche and colleagues (2006) have recently 

showed, with in vivo treatment in mice, that the cannabinoid receptor agonist, HU210 

attenuated lipopolysaccharide (LPS)-induced increases in IL-1β and TNF-α in rat brain and IL-

1β, TNF-α, IL-6 and IFN-γ in plasma and the involvement of CB1 was suggested as the CB1 

receptor antagonist, SR141716A, attenuates the immunosuppressive effects of HU210 on IL-1β 

(Roche et al., 2006). 

In the present study, we have started to investigate the effects of Δ9-THC chronic treatment on 

the neuroinflammatory component of CNS in animal models of adolescence and adulthood, 

analyzing the basal production of pro and anti-inflammatory cytokines in the hypothalamus and 

in the hippocampus.The hypothalamus is the ventral portion of the diencephalon and includes 

numerous nuclei that activate, control and integrate peripheral autonomic mechanisms, 

endocrine activity, somatic functions such as thermoregulation, sleep, water-salt balance and 

food intake. Moreover, hypothalamus constitutes together with pituitary and adrenal glands, the 

neuroendocrine axis hypothalamic-pituitary-adrenal (HPA), actively involved in the stress 

response. The hippocampus plays an important role in the regulation of the processes of 

learning and memory and also has a lot of importance in the regulation of emotional behavior. 

Furthermore hippocampus participates in relation to HPA axis feedback, inhibiting the release 

of CRH and the subsequent release of ACTH when the corticosterone level in the circulation 

becomes too high.  
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ADOLESCENCE  

Adolescence is the transition period from childhood to adulthood, characterized by increases in 

peer social behavior, risk-taking and novelty-seeking, and develop of many other functions, for 

example cognitive function and immune maturation. Adolescence in humans spans the age of 

10-12 years old to approximately age 24. It includes, but is not defined by puberty. There is no 

specific endpoint of adolescence and adolescent behaviors may persist into the mid twenties 

(Spears, 2000). 

During this time in humans, adolescents obtain the skills and knowledge they need to operate as 

functional adults in society. Animal models such as the rodent also have a defined adolescent 

period. The adolescence period in mouse is generally considered to be at post natal days 28 

(PND 28). Like in humans, the transition to adulthood is not strictly defined. Some adolescent 

traits may remain until PND 55-60. 

However, mice are generally characterized as early adults by PND 65 (Spears, 2000). 

For the purpose of the present studies, adolescents were defined as PND33, and adults were 

defined as PND 80. 

The educational, social and developmental demands upon adolescents are considerable; illicit 

drug use can acutely interfere with the progression of development, and therefore impose limits 

on how well adolescents transit into adulthood. 

In adolesence age increased involvement in social situations, exposure to peer pressure and 

greater risk-taking and novelty-seeking behaviors all contribute to an increased likelihood of 

adolescent drug-taking. Adolescents are more sensitive to the impairing effects of many drugs, 

but less sensitive to the aversive effects. As such, adolescents are more likely to experiment 

with and escalate drug use at a more rapid rate than adults. 
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The purpose of the present thesis is to characterize the differences in adolescent and adult 

immune parameters after exposure to Δ9-THC, the main psychoactive component of the 

commonly used illicit drug marijuana. 

MARIJUANA USE DURING ADOLESCENCE 

Marijuana is the most commonly used illicit drug in the world, third most used overall after the 

legal drugs alchool and tobacco. This use is especially prevalent among adolescents. 

Adolescent use of marijuana may have long-lasting biological consequences.  

Early-onset cannabis use increases the risk of developing schizophrenia (Arseneault et al., 

2002; Fergusson et al., 2003). 

It has been shown that subclinical positive and negative symptoms were more strongly 

associated with first time use before age 16 than after, and was independent of lifetime 

frequency of use (Stefanis et al., 2004). Adolescent cannabis exposure has been shown to also 

affect cognition, in terms of impaired attentional functions (Ehrenreich et al., 1999) and lower 

verbal IQ (Pope et al., 2003).  

In addition, animal studies demonstrated that chronic exposure to cannabinoid in adolescent but 

not in adult rats produce long-lasting memory impairment and increased anxiety (O’Shea et al., 

2004), impaired spatial and non-spatial learning (Cha et al., 2006) as well as impaired prepulse 

inhibition (Schneider and Koch, 2003; Hall, 2006). 

These studies indicate an influence of cannabis exposure in adolescence age on 

neuropsychiatric functioning. Furthermore, adolescence cannabis use has been hypothesized to 

influence the subsequent abuse of other drugs; indeed, several epidemiological studies report 

that early regular use of cannabis increases the risk of initiation of use of other illicit drugs 

(Agrawal et al., 2004), supporting the cannabis gateway hypothesis (see below) of cannabis as a 

steppingstone towards abuse of other drugs. 
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THE CANNABIS GATEWAY HYPOTHESIS 

A very delicate and controversial issue is the discussion whether cannabis may act as a gateway 

drug, and subsequently lead to increase intake of other illicit drug, and subsequently lead to 

increased intake of other illicit drugs. 

The gateway hypothesis, introduced by Kandel in the 1975, proposes the thesis that 

developmental stages can be observed in drug use.  

The sequence normally begins with the use of legal drugs, such as beer and wine, subsequently 

followed by hard liquor and cigarettes and proceeds in some adolescents progressively through 

the use of cannabis products (marijuana or hashish) to other illicit drugs such as 

psychostimulants and heroin (Hall, 2006). 

There is consistent evidence that the use of cannabis almost invariably precedes the use of other 

illicit drugs. Additionally, there seems to be a strong association between early cannabis use 

and other illicit drug use, because cannabis users are more likely to use psychostimulants, 

hallucinogens or opiods than those who have never used cannabis. 

Many population surveys in western societies show that those who started using cannabis at age 

14 or younger had a higher percentage of present illicit drug abuse or dependence than those 

starting at an older age (SAMHSA 2004). It has been argued that the observed associations may 

simply reflect a combination of a genetic predisposition to substance use in general and levels 

of avaibility and access to different drug classes by contact to peer-groups or a social 

environment encouraging drug use and abuse. Therefore, whether or not there is a casual 

relationship between cannabis use and a progression to other illicit drug use is still heavily 

debated and clarification of this contentious issue definitely requires further research. Evidence 

from animal studies indicates that cannabinoids might induce lasting neuronal modulations that 

could alter the perception and/or reinforcing values of other drugs of abuse, independent of 

genetic, social or cultural factors. A recent study demonstrated that chronic Δ9-THC 
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administration during early puberty of male rats enhanced heroin self-administration in 

adulthood and increased pre-proenkephalin mRNA exclusively in the nucleus accumbes shell 

(Ellgren et al., 2007). This study indicates that there is a link between pubertal cannabis 

experience and further drug intake.  

Cannabis exposure during young ages might have a priming effect on the brain and render 

cannabis users more susceptible to the effects of other illicit drugs; although strong evidence 

suggests that cannabinoids induce neurobiological alterations in common reward pathways 

during this critical period, these findings do not exclude the possibility that other factors such as 

genetic predisposition, social structure and environment might influence these 

neurodevelopmental cannabinoid effects and either enhance or attenuate further progression 

into illicit drugs use (Rubino et al., 2012). 
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AIMS OF THE PROJECT  

The main aim of this study is to investigate whether the use of cannabis in adolescent age may 

have effects on the immune system that can persist over time, even in adulthood, altering the 

susceptibility of the individual to infections, allergic and autoimmune diseases. 

The project is conducted using Balb C/J male mice as an experimental model. 

The use of experimental models allows a better control of the study variables and to investigate 

the effects of the interaction between the consumption of cannabis in adolescent age and the 

immune system, independently of external factors (cultural, social and moral) that would be 

instead be present in a study conducted in human subjects. 

Adolescent and adult mice are treated with increasing doses of Δ9-THC for 10 days. 

Some study groups are sacrificed immediately at the end of treatment, while other study groups 

treated with Δ9-THC in adolescence or in adulthood are left undisturbed for 47 days and 

sacrificed respectively at 90 PND and 137 PND. 

In order to study the long-term effects of Δ9-THC on the immune system the following 

parameters are investigated: 

• The macrophage activation analyzing the profile of pro and anti-inflammatory cytokines 

• The ability of lymphocytes to produce Th1/Th2cytokines  

• The ability to develop an antibody response to a protein antigen 

In order to understand whether the Δ9-THC effects might be due to an alteration of circulating 

hormones, we also assessed the alteration of HPA axis activity, after subacute and chronic Δ9-

THC treatment, by measuring the corticosterone plasma levels in the three study groups. 

In order to identify the mechanisms underlying the long lasting immune effects observed, we 

started to investigate whether they were mediated through modulation of hematopoietic cells. 

We are aware that it is often difficult to translate animal studies to human.  
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This is particularly true for drug of abuse studies, where the route of administration of 

substances in the animals is different from the ones used by humans.  

Therefore we wanted to be certain that Δ9-THC plasma concentrations achieved in mice with 

our experimental protocol would be comparable to those that can be detected in human heavy 

smokers.  

Therefore the blood concentrations of Δ9-THC are verified analyzing the samples with Liquid 

Chromatography-Mass Spectrometry method (LC-MS/MS). 

Since it is now recognized that pro and antinflammatory cytokines play a pivotal role also in 

neuroinflammation, and a few recent evidences seem to indicate that cannabinoids can 

modulate it, we started to study also the effects of Δ9-THC administration in our experimental 

protocol on neuroinflammation, by evaluating the basal production of pro- and anti-

inflammatory cytokines in brain areas that are particularly rich in cannabinoid receptors, such 

as hippocampus and hypotalamus.   
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METHODS 

DRUGS 

Δ9-Tetrahydrocannabinol (Δ9-THC) was obtained from Sigma Aldrich (Milan, Italy) and was 

dissolved in ethanol, cremophor and saline (1:1:18).  

Lipopolysaccaride (LPS) from Escherichia coli and Keyhole Limpet Hemocyanin (KLH) were 

purchased respectively from Sigma-Aldrich (Milan, Italy) and Calbiochem (La Jolla, CA, 

USA). For the Liquid Chromatography/Mass Spectrometry (LC-MS/MS) analysis, methanolic 

stock solutions of Δ9-THC (0.1mg/mL), THC-OH (0.1mg/mL), THC-COOH (1mg/mL) and 

their deuterated analogues THC-D3 (0.1mg/mL), THC-OH-D3 (0.1mg/mL), THC-COOH-D3 

(1mg/mL), used as the internal standards, were purchased from Cerilliant Corporation (Round 

Rock, TX, USA). 

ANIMALS  

Male mice Balb C/J, Post natal days 33 (PND 33) were used as model of adolescence age and 

80 PND were used as model of adult age. The animals were obtained from Charles River 

(Calco, Italy).  All animal experiments were conducted following the guidelines released by the 

Italian Ministry of Health (DL 116/92 and DL111/94-B), and the European Community 

directives regulating animal research (86/609/EEC). All efforts were made to minimize the 

number of animals used and their suffering. 

TREATMENTS 

Animals were housed in a room with controlled temperature (22±1°C), humidity (60±10%) and 

light (12h/day) for at least 1 week before being used. Food and water were available ad libitum. 

The treatment began at 33 PND, for the adolescent model and lasted until 42 PND.  
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During this period, mice received increasing subcutaneous (s.c) doses of Δ9-THC once a day, 

for the following 10 days (5mg/kg 33-35 PND; 10mg/kg 36-38 PND; 15 mg/kg 39-42 PND) or 

its vehicle. For the adult model the treatment began at PND 80, and lasted until PND 89.  

During this period, mice received increasing s.c. doses of Δ9-THC once a day, for the following 

10 days (5mg/kg 80-82 PND; 10mg/kg 83-85 PND; 15 mg/kg 86-89PND) or its vehicle.  

The dose protocol was chosen on the basis of previous experiments from our and other group, 

and the dosage was increased over the ten days in order to counteract a possible development of 

tolerance (Massi et al., 1998; Lombard et al., 2011).  

The treatment schedule is depicted in Figure 8.  

For this study, the mice were divided into 3 main experimental groups: 

1. Adolescent animals  

• Group A mice were treated with subcutaneous injection of vehicle once a day starting 

from 33 PND until 42 PND; at the end of treatment (43 PND) mice were sacrificed to 

assess immune parameters. 

• Group B mice were treated with subcutaneous injection with increasing doses of Δ9-

THC once a day starting from 33 PND until 42 PND; at the end of treatment (43 PND) 

mice were sacrificed to assess immune parameters. 

2. Adult animals  

• Group C mice were treated with subcutaneous injection of vehicle once a day starting 

from 80 PND until 89 PND; at the end of treatment (90 PND) mice were sacrificed to 

assess immune parameters. 

• Group D mice were treated with increasing subcutaneous injections of Δ9-THC once a 

day starting from 80 PND until 89 PND; at the end of treatment (90 PND) mice were 

sacrificed to assess immune parameters.  
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3. Adult animals treated when adolescents  

• Group E mice were treated with subcutaneous injection of vehicle once a day starting 

from 33 PND until 42 PND; at the end of treatment, the mice were housed for 47 days, 

until they reached adulthood (90 PND). At this time, animals were sacrificed to assess 

immune parameters. 

• Group F mice were treated with subcutaneous injection with increasing doses of Δ9-

THC once a day starting from 33 PND until 42 PND; at the end of treatment, the mice 

were housed for 47 days, until they reached adulthood (90 PND). At this time, animals 

were sacrificed to assess immune parameters. 

 

Figure 8 - Treatment schema of three study groups 
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Moreover in order to assess the sub-acute effect of Δ9-THC treatment on corticosterone serum 

levels, a group of adult (83-84 PND) and adolescent  (36-37 PND) mice were treated with 10 

mg/Kg Δ9-THC once daily for two days, and serum obtained 2 hours later the last dose of Δ9-

THC. 

Recently, it has been added a fourth study group, where we started to assess the immune 

parameters, consisting of:  

• Group G mice were treated with subcutaneous injection of vehicle once a day starting 

from 80 PND until 89 PND; at the end of treatment, the mice were housed for 47 days, 

until they reached 137 PND. At this time, animals were sacrificed to assess immune 

parameters. 

• Group H mice were treated with subcutaneous injection with increasing doses of Δ9-

THC once a day starting from 80 PND until 89 PND; at the end of treatment, the mice 

were housed for 47 days, until they reached 137 PND. At this time, animals were 

sacrificed to assess immune parameters. 

 

Figure 9 - Treatment schema of the recent study group 
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MACROPHAGES 

MACROPHAGES PURIFICATION AND STIMULATION 

Mice were inoculated intraperitoneally (i.p.) with 2 ml of 3% Brewer thioglycollate medium 

(Fluka, Sigma-Aldrich, Italy) for macrophage elicitation.  

Four days after thioglycollate treatment, at 43 PND in the adolescent model for the Groups A 

and B, at 90 PND in the adult models for the Groups C, D, E and F, and at 137 PND in the adult 

model for the Groups G and H, mice were sacrificed and macrophages isolated (Martucci et al., 

2007). Briefly, peritoneal elicited cells were harvested in RPMI 1640 medium (Sigma-Aldrich, 

Milan, Italy) plus 10% FCS.  

The viability of the cells was checked by the trypan blue exclusion test.  

The cells were also counted in Turk’s liquid to allow evaluation of nuclei for differential 

counting. Macrophages were resuspended at a concentration of 1 × 106/ml in the same 

harvesting medium and 1 ml/well aliquots were dispensed into 24-well culture plates. Isolation 

and purification of macrophages were carried out by 2 hours of adherence to plastic. As we 

previously demonstrated this procedure produces a population of macrophages with a 

90%purity (Martucci et al., 2007). Non-adherent cells were removed and adherent cells were 

washed twice with PBS solution and incubated with 1µg/ml of LPS for IL-1β, IL-10 and TNF-α 

stimulation. The stimulus was added to the macrophage cultures in a final volume of 1 ml/well 

with RPMI 1640 plus 10% FCS, 1% glutamine, 2% streptomycin solution and 0,1% 2 

Mercaptoethanol (2ME). After 24 hours of culturing the supernatant was removed and collected 

for cytokines evaluation. For mRNA quantification Trizol reagent was added to the adherent 

cells into the plate (see below). The samples were stored frozen at -80°C for subsequent 

analysis. 
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SPLEEN CELLS  

KLH IMMUNISATION AND COLLECTION OF SPLENOCYTES 

Mice were inoculated intraperitoneally (i.p.) with 100 µg of the protein antigen KLH in a 

volume of 0.2 ml of saline; 10 days after immunisation, the animals were sacrificed and their 

spleens were aseptically removed; 20-Gauge sterile needles were used to tease the cells through 

an incision made in the spleen cuticle (Martucci et al., 2007; Sacerdote et al., 2000b).  

The cells were plated at a concentration of 7 × 106 in 24-well plates containing a final 

concentration of 80 µg/ml KLH in a total volume of 1 ml.  

The presence of in vitro KLH restimulates the KLH-specificT-lymphocyte clones previously 

activated by in vivo KLH. This is a frequently used method for inducing cytokine production by 

specific T-lymphocyte clones. 

The plates were incubated at 37°C in 5% CO2 and 95% air, and the supernatants were collected 

after 48 hours (in the case of IFN-γ) or 72 hours (in the case of IL-10 and IL-4), which are the 

times of maximum cytokine release (Sacerdote et al., 2000b); the supernatants were stored at -

80°C for cytokine analysis.  

The KLH concentration used in vitro was chosen on the basis of previous experiments showing 

that it induces sub-maximal but easily measurable cytokine production. 

Times of in vivo immunisation with KLH correspond respectively to 33 PND and to 80 PND in 

adolescence and adult age models (Groups A, B, C and D). In the groups of adult animals 

treated when adolescent and in adult mice evaluated 47days after the end of treatment, KLH 

was administered 10 days before the animal sacrifice, corresponding respectively at 80 and 127 

PND (Figure 8; Figure 9). 
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SERUM COLLECTION FOR ANTI-KLH AB AND CORTICOSTERONE 
EVALUATION  

Ten days after KLH immunisation mice were sacrificed by decapitation at 10.30 AM. Blood 

was collected in tubes and left to clot at room temperature for 8 hours and centrifuged at 

6000×g for 10 minutes. Serum was stored at −20 °C until assayed for Anti-KLH Ab.  

In order to measure corticosterone levels, blood was collected at the end of 10 days treatment 

from adolescent and adult mice, and from adult mice treated as adolescent. Moreover in order 

to assess the sub-acute effect of Δ9-THC treatment on corticosterone serum levels, a group of 

adult (83-84 PND) and adolescent (36-37 PND) mice were treated with 10 mg/Kg Δ9-THC for 

two days, and serum obtained 2 hours after the last administration of Δ9-THC. 

anti-KLH Ab ELISA 

The anti-keyhole-limpet hemocyanin antibody titer (Anti-KLH Ab) was measured in each study 

group with Enzyme-Linked Immunosorbent Assay (ELISA). The plates were coated overnight 

with 10 KLH in a carbonate coating buffer, pH 9.6. Mice sera were diluted 1:25, 1:75 and 1:225 

in PBS/Tween containing 1M NaCl and incubated for 3 hours at 37°C. Alkaline phosphate-

conjugated goat antimouse IgM [µ-chain-specific (Sigma-Aldrich), diluted 1:6000 in 

PBS/Tween] was then added and plates were incubated overnight at 4 °C. After washing, p-

nitrophenyl-phosphate substrate at 1 mg/ml in carbonate buffer was added, and the colored 

product formed was measured at OD 405 nm. 

CORTICOSTERONE EVALUATION 

Corticosterone was measured with a commercially available ELISA kit (IBL International 

GmbH, Hamburg, and Germany) (see below).  

Sensitivity of the method for Corticosterone evaluation was 5 nmol/ L. 
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DETERMINATION OF BLOOD Δ9-THC LEVELS 

In order to estimate Δ9-THC concentrations, together with THC-COOH and THC-OH levels, 

blood was collected from adult and adolescent animals 24 hours after the last Δ9-THC 

administration and from adult mice treated in adolescent age 30, 47 and 60 days after the end of 

treatment (Groups A, B, C, D, E and F). 

The blood collected form each animal was transferred onto Whatman 903 Protein Saver Cards 

(Maidstone, UK) in order to obtain Dried Blood Spots (DBS) samples. DBS samples were 

stored at room temperature in a dark and dry place until the analysis.  

The Dried Blood Spots were then sent to the laboratory of toxico-pharmacological analysis of 

University Alma Mater Studiorum of Bologna, directed by Professor Raggi for Δ9-THC 

analysis and its major metabolites. The Δ9-THC being highly lipophilic has a rather long stay in 

the body. The THC-OH and THC-COOH are the major metabolites of Δ9-THC. The THC-OH 

has psychoactive effects and a short half-life, is quickly transformed into THC-COOH that 

instead has a long half-life and for which no known psychoactive effects have been described. 

The method of Liquid Chromatography and Mass Spectrometry (LC-MS/MS), newly 

developed by the group of Professor Raggi, has a high sensitivity and selectivity and allows to 

evaluate the presence of Δ9-THC and metabolites in the same DBS samples. 

Briefly, 10 mm of the spot are put into a vial in the presence of methanol, centrifuged and the 

supernatant dried. At this dry residue the solvents were then added and the injection of samples 

and standard solutions in HPLC-MS/MS system is performed. 

The LC-MS/MS apparatus was a Waters (Milford, MA, USA) Alliance e2695 system coupled 

to a Waters Micromass Quattro Micro triple quadrupole mass spectrometer. Tandem mass 

spectrometry acquisition was carried out in multiple-reaction-monitoring (MRM) scan mode, 

using an electrospray ionisation source (Mercolini et al., 2013; Mercolini et al., submitted). The 

concentrations of Δ9-THC and its metabolites were expressed as ng/ml. 
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CYTOKINE ELISA 

The levels of IL-1β (R&D Systems, Minneapolis, Minnesota), IL-10, TNF-α, IL-4, and IFN-γ 

(eBioscience, San Diego, California) were determined by Enzyme-Linked-Immunosorbent-

Assay (ELISA) using ultra-sensitive ELISA kit according to the manufacturer’s instruction. 

Sensitivity of the method for IL-1β evaluation was 15,625 pg/ml, for IL-10 was 30 pg/ml, 8 

pg/ml for TNF-α, for IL-4 was 4 pg/ml and 15 pg/ml for IFN-γ.  

Brieflly, a first anti-cytokine monoclonal antibody (Ab-primary) was adhered onto a 

polystyrene plate with U bottom 96 wells. The adhesion of the protein to the plastic polymer 

was favoured by a basic pH and occurs during an over-night incubation at 4 °C.  

Several washings were then carried out so as to eliminate the excess antibody that was not 

bound. The nonspecific sites of the plate were blocked with blocking buffer solution and the 

samples were added. 

The plates were incubated to ensure that any cytokine present in the sample binds to the 

antibody already immobilized to the wells. 

After several washes, the secondary anti-cytokine biotinylated monoclonal antibody is added: 

this binds the immobilized cytokine already linked to primary Ab. Therefore a sandwich was 

formed with the substance in the center and on the sides the antibodies. After another series of 

washes, avidin peroxidase was added which has the task of binding the biotinylated antibody. 

Finally, the enzyme substrate was added: a colored complex is formed of intensity proportional 

to the amount of cytokine present in the sample; the color development was stopped with the 

addition of H2SO4 (2N). 

The result was obtained by reading in a spectrophotometer the absorbance of each well at a 

specific wavelength to each cytokine studied. 
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The amount of cytokine present in each sample is assessed with a calibration curve based on the 

values obtained from the analysis of scalar known concentrations of recombinant cytokine 

together with the samples subjected to ELISA. 

 

Figure 10 - ELISA sandwich 
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RNA EXTRACTION AND REAL-TIME PCR 

Total RNA was extracted by adherent peritoneal macrophages, hypothalamus and hippocampus 

using Trizol reagent (Invitrogen Life Technologies, San Giuliano Milanese, Italy) according to 

the manufacturer’s instructions and re-suspended in 10µl of DEPC-treated water (Fluka).  

After removing DNA contaminations (DNA-free kit, Ambion, Applied Biosystems, Monza, 

Italy) mRNA was quantified and an equal amount of mRNA (1000 ng) underwent to Reverse 

Transcription (iScript Reverse Transcription Supermix, Bio-Rad, Segrate, Italy) to obtain 

cDNA.  

For the process of reverse transcription, in a new series of tubes, for each sample, were added to 

1000 ng of RNA, iScript RT Supermix and finally DEP H20 up to the final volume of 20 µl. 

The tubes were then placed in a thermocycler for 40 minutes as follows: 5 minutes at 25°C 

(Priming), 30 minutes at 42°C (Reverse Transcription) and the last 5 minutes at a temperature 

of 85°C (RT Inactivation).  

The cDNA samples obtained are used for the amplification reaction with Reverse transcriptase-

polymerase chain reaction (Real-Time PCR) using ABI PRISM 7000 (Applied Biosystems, 

Foster City, CA). The reaction was performed in a 25µl volume using Real Master Mix Probe 

Rox (Eppendorf, Milano, Italy). Specific Taqman probes for mouse interleukins IL-1β (Mm 

00434228_m1), IL-10 (Mm00439616_m1), TNF-α (Mm00443258_m1) and for glyceralde-

hydes-3-phosphate dehydrogenase GAPDH (Mm99999915_g1) were purchased from Applied 

Biosystems.  

All PCR assays were done in triplicate, and before starting, we performed a validation 

experiment to demonstrate that the efficiencies of target and reference are similar.  

The reaction conditions were as follows: 95 °C for 2 minutes (initial denaturation), followed by 

40 cycles at 95 °C for 15 seconds (cycled template denaturation) and at 60 °C for 60 seconds 

(annealing and extension); the reaction mixture without the cDNA was used as control.  
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The results were quantified using the comparative threshold method. The Ct value of the 

specific gene of interest was normalized to the Ct value of the endogenous control, GAPDH, 

and the comparative Ct method (2- ΔΔCt) was then applied using adult mice treated with vehicle 

(Group C) as calibrator. 
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EXTRACTION OF HEMATOPOIETIC CELLS 

At the time of sacrifice, the femur of each animal was collected and the bone marrow cells were 

isolated by flushing with RPMI 1640 plus 10% FCS.  

The cells thus obtained were brought to a concentration of 50*106/ml and then were plated and 

incubated for 14 days in medium MethoCult ® (STEMCELL Techonologies, Voden Medical 

Instruments spa, Peschiera Borromeo, Italy) at 37° C and 5% CO2.  

The cells of each mouse were plated in quadruplicated. After 14 days of culture, the total 

number of colonies present for each mouse, in each of 4 wells, was counted by an operator 

unaware of the treatments. It then was made the average of colonies for each group of animals. 

 

Figure 11 - Extraction and counts of hematopoietic cells 
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ASSESSMENT OF BASELINE LEVELS OF CYTOKINES IN THE 
HYPOTHALAMUS AND HIPPOCAMPUS 

At the time of sacrifice the brain of animals were rapidly removed and hypothalamus and 

hippocampus dissected out on an ice- cold plate. The hypothalamus and hippocampus were 

then rapidly frozen on dry ice and stored at -80°C until processing for RNA extraction or 

ELISA cytokine analysis.  

PREPARATION OF THE SAMPLES FOR THE ELISA ASSAY 

Hypothalamus and hippocampus of each animal were sonicated with a sonicator (UP50H 

Compact Lab Homogenizer, Hielscher ultrasonic GmbH; Teltow, Germany) in 225 µl of lysis 

buffer composed as follows: PBS, Complete Mini EDTA-free protease inhibitor cocktail 

(Roche) and EDTA (5 mg/ml). After sonication all samples were centrifuged at 13000 g for 15 

minutes at a temperature of 4 °C.  

A part of the supernatant obtained was used for the protein assay, the remaining part was used 

for the ELISA assay. 

PROTEIN ASSAY OF TOTAL PROTEIN CONTENT IN THE HYPOTHALAMUS AND 
HIPPOCAMPUS 

The protein assay is required to relate the level of cytokine measured by ELISA assay, with the 

amount of total protein present in the samples. 

The protein assay according to Lowry 's method involves the use of bovine serum albumin as 

standard. For the calibration line, bovine serum albumin was prepared at the stock 

concentration of 1 mg/ml in H20d. In each tube we added, in the following order 5, 10, 20, 40, 

60, 80, 100 µl of the stock bovine serum albumin reaching a final volume of 100 µl with 

addition of H20 d. 

200 µl of NaOH 1N and 2ml of Cooper reagent consisting of Na2CO3 2%, CuSO4 ( 5 H2O) 1% 

and Na-K- tartrate 2% ( in H20 d), respectively in the proportion 100:1:1were also added. 
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The samples were incubated avoiding the light and at room temperature for 10 minutes and then 

were added 100 µl of Folin Ciocalteau reagent. 

The tubes were then placed again in the dark for 45 minutes, to finally proceed with the reading 

of the absorbance at a wavelength of 750 nm using a spectrophotometer (Uvicon 941 PLUS, 

Kontron Instrument).  

The controls were obtained by replacing the albumin with 100 µl of H20 d. 

The samples were prepared following an analogous procedure to that used for the standard 

curve, to each tube was added a fixed quantity of sample (15 µl) to which 85 µl of H20 d were 

added to reach the final volume of 100 µl. 

EVALUATION OF BASAL CYTOKINE PRODUCTION WITH ELISA METHOD 

The levels of basal IL-1β, IL-10 and TNF-α cytokine production in hypothalamus and 

hippocampus from Δ9-THC or vehicle treated mice were determined using ultra-sensitive 

ELISA kit according to the manufacturer’s instruction (see paragraph “ CYTOKINE ELISA”). 

Cytokines content were determined by interpolation with standard curves assayed on individual 

plates and normalized to protein content in each tissue. 
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STATISTICAL ANALYSIS  

The results are presented as means ± SEM of values. Statistical analyses were performed using 

one-way ANOVA for parametric results. Follow-up analysis was performed using the Tukey’s 

test for multiple comparisons. In the antibody titers experiments TWO Way ANOVA was 

utilized, with treatment and serum dilutions as factors. Differences were considered significant 

at p < 0.05. 
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RESULTS 

MACROPHAGES 

To investigate the effects induced by Δ9-THC treatment on innate immunity, we examined the 

cytokine production by peritoneal macrophages elicitated in vivo with thioglycollate and 

stimulated in vitro with 1 mg/ml LPS. Culture media and macrophages are collected after 24 

hours. Spontaneous production of cytokines was always very low, at the limit of detection, and 

no effect of treatment was ever observed (data not shown).  

Figure 12 shows the effect of chronic Δ9-THC administration on IL-1β, TNF-α and IL-10 

production by peritoneal macrophages obtained from adult and adolescent animals evaluated 

immediately at the end of treatment, from adult mice treated with Δ9-THC when adolescent or 

from adult mice evaluated 47 days after the end of treatment.  

IL-1β, TNF-α and IL-10 are measured as protein concentrations in culture media with ELISA 

method (Figure 12, panels a, b and c).  

Panels a and b shows the results relating to the production of IL-1β and TNF-α in 4 study 

groups; in adolescents and adults mice treated with Δ9-THC, we observe a decrease of pro-

inflammatory cytokines respect to controls:  in agreement with the literature the drug 

administration induces a decrease of inflammatory responses.  

In adult animals treated with Δ9-THC during adolescent period, on the contrary we can observe 

an increase of IL-1β and TNF-α levels in comparison to vehicles, indicating a tendency towards 

a pro-inflammatory state. No significant difference was detected in adult animals evaluated 47 

days after the last administration of Δ9-THC.  

The protein levels of IL-10 after Δ9-THC chronic administration, in the 4 study groups, are 

shown in Figure 12, panel c.  
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This cytokine was increased in young and adult mice treated with Δ9-THC. However in adult 

mice treated in adolescent age and tested at the age of 90 PND, Δ9-THC induced a reversed 

effect: IL-10 concentration decreased in Δ9-THC treated mice. 

Also in this case, no significant difference was detected in adult animals evaluated 47 days after 

the last injection of Δ9-THC.   
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Figure 12 

MACROPHAGES 

 

Figure 12 Effect of chronic Δ9-THC administration on IL-1β, TNF-α and IL-10 production by peritoneal 
macrophages obtained from adult and adolescent animals immediatly at the end of treatment or from adult animals 
treated with Δ9-THC when adolescent and adult mice evaluetd 47 days after the end of treatment. IL-1β, TNF-α and 
IL-10 are measured as protein concentrations in culture media (panels a, b and c). Peritoneal macrophages, elicited 
in vivo by thioglycolate, were stimulated in vitro with 1 mg/ml LPS. Culture media and macrophages are collected 
after 24 hours. (see “ Macrophages purification and stimulation” in Method section for details). 
Values are means ± SEM of 8-10 animals /group 
* p <0.05 vs respective vehicle 
** p <0.01 vs respective vehicle 
*** p <0.001 vs respective vehicle 

a"

b"

c"
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Figure 13 reports the mRNA levels of the pro-inflammatory cytokines IL-1β and TNF-α and of 

the anti-inflammatory cytokine IL-10 (panels a, b and c). 

As shown in panel a, the treatment with Δ9-THC induced a modulation at transcriptional level, 

in fact, the levels of IL-1β mRNA expression were decreased in young and adult mice, 

evalueted immediately at the end of treatment, while they were significantly increased in adult 

animals treated when adolescents. 

In adult animals studied 47 days after the end of treatment, no significant differences were 

found between the two treatments considered. 

Panel b shows the TNF-α mRNA expression in the four study groups. 

The levels of mRNA were significantly decreased by Δ9-THC treatment in young and adult 

mice, evaluated after 10 days of chronic treatment, whereas they were significantly increased in 

adult animals treated in adolescent age with the drug and evaluated 47 days after the end of 

treatment. 

Also in this case, no significant differences were found between the two treatments considered, 

in the fourth study group. We then considered the anti-inflammatory cytokine IL-10 mRNA 

expression (Figure 13, panel c). Also the levels of mRNA expression measured by Real Time –

PCR parallel those of IL-10 protein; treatment with Δ9-THC induced an increase of mRNA 

expression in young and adult mice, while in adult mice treated in adolescent age the drug 

induced a significant decrease of mRNA expression.  

In the fourth study group, no significant differences were found between the two treatments 

considered. 
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Figure 13 

MACROPHAGES 

 

Figure 13 Effect of chronic Δ9-THC administration on IL-1β, TNF-α and IL-10 mRNA levels, determined by Real-
Time PCR, expressed in relation to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and presented as fold of 
increase/decrease relative to vehicle treated animals. 
Values are means ± SEM of 8-10 animals /group 
* p <0.05 vs respective vehicle 
** p <0.01 vs respective vehicle 

a"

b"

c"
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SPLEEN LYMPHOCYTES 

Figure 14 shows the effect of Δ9-THC chronic treatment on the production of T-helper 

cytokines IFN-γ, IL-4 and IL-10 by spleen cells obtained from mice immunized in vivo with 

100 µg of KLH and restimulated in vitro with KLH at concentration of 80 µg/ml . 

The presence of in vitro KLH stimulates the KLH-specific T-lymphocyte clones previously 

activated by in vivo KLH. This is a frequently used method to induce cytokine production by 

specific T-lymphocyte clones (Sacerdote et al., 2000b). 

We report only the data relating to the cytokines production stimulated in vitro with KLH; we 

did not find significant differences in the spontaneous production of cytokines in the four study 

groups (data not shown). The production of the Th1 cytokine IFN-γ appears significantly lower 

in mice treated with Δ9-THC respect to vehicle in all study groups (Figure 14, panel a); in fact 

the levels of this cytokine was significant reduced in adolescent and adult mice at the end of 

treatment with Δ9-THC.  

In animals treated in adolescence age and immunized as adults, the production of IFN-γ 

resulted still significantly lower 47 days after the last administration of the drug. 

We found no difference in the IFN-γ levels, in adult animals evaluated 47 days after the last 

injection of the drug. 

The effects of Δ9-THC on Th2 cytokines IL-4 and IL-10 are reported respectively in panels b 

and c. The response of these cytokines to Δ9-THC chronic treatment appears different from that 

observed with the cytokine Th1. The treatment with the drug induced a significant increase of 

IL-4 and IL-10 production in adolescent and adult mice respect to relative vehicles. However in 

the third study group, we observed a reversed effect, i.e. the production of IL-4 and IL-10 

cytokines is significantly decreased respect to relative vehicle. 

In the fourth study group, as regards the Th2 cytokine levels, no significant differences were 

found between the two treatments considered. 
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Figure 14 

SPLEEN LYMPHOCYTES 

 

Figure 14 Effect of chronic Δ9-THC administration on IFN-γ, IL-4 and IL-10 production by splenocytes obtained 
from adult and adolescent animals evalueted immediately at the end of treatment or from adult animals treated with 
Δ9-THC when adolescents and adult mice evaluated 47 days after the end of treatment. Mice were immunized in vivo 
with KLH 10 days before of the immune parameters evaluation and cells were restimulated in vitro with 80 µg/ml 
KLH for 48 or 72 h (see “ KLH immunisation and collection of splenocytes “ in Method section for details). 
Values are means ± SEM of 8-10 animals /group 
* p <0.05 vs respective vehicle 
** p <0.01 vs respective vehicle 
*** p <0.001 vs respective vehicle 

a"

b"

c"
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IgM anti–KLH 

The titers are reported in Figure 15. The mice were immunized with the antigen protein KLH 

respectively at 33 PND (adolescents) and 80 PND at the beginning of Δ9-THC treatment.  

A third group of animals had received Δ9-THC when adolescent and was immunized at 80 

PND, i.e. 47 days after the last Δ9-THC injection.  

In adolescent and adult animals (Figure 15, panels a and b) the IgM anti-KLH titers measured 

in the sera after 10 days of chronic treatment with Δ9-THC, are significantly reduced compared 

to respective controls. The decrease in the production of the IgM anti–KLH antibodies persists 

in the third study group, 47 days after the last administration of the drug (Figure 15, panel c). 

In the three Δ9-THC groups a low antibody titer than in animals treated with vehicle was 

therefore present, thus demonstrating that these animals were unable to develop an effective 

antibody response. 
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Figure 15  

IgM anti-KLH 

 

Figure 15 Effect of chronic Δ9-THC administration on IgM anti-KLH titers in sera from adult and adolescent 
animals immediately at the end of treatment or from adult animals treated with Δ9-THC as adolescents.  
Adolescents (panel a) and adults (panel b) animals were immunized in vivo with KLH together with Δ9-THC 
treatment, while the third group was treated with Δ9-THC as adolescent and immunized with KLH in adult age, 10 
days before the evaluation of immune parameters (panel c). 
Values are means ± SEM of 8-10 animals /group (Two Way ANOVA) 
** p <0.01 vs respective vehicle 
*** p <0.001 vs respective vehicle 
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CORTICOSTERONE 

In order to evaluate a possible involvement of the HPA axis in the effects that we observed, we 

measured serum corticosterone in mice treated with both acute (10mg/Kg for 2 days) and 

chronic Δ9-THC (10 days treatment).  

As reported in Figure 16, panel a, 2 hours after the last administration of Δ9-THC a significant 

increase of corticosterone levels was present both in adult and adolescent animals. In contrast 

the levels of corticosterone in adolescent and adult animals measured at the end of chronic 

treatment were significantly reduced compared to relative controls.  

The significant decrease in the serum corticosterone levels persists even in the third group of 

study, 47 days from the last administration of the drug (Figure 16, panel b).  

  



 

 
90 

Figure 16 

CORTICOSTERONE 

 

Figure 16 Effect of Δ9-THC treatment on serum corticosterone levels.  
Panel a: Δ9-THC was administered to adult and adolescent mice at the dose of 10 mg/Kg for 2 days, and serum 
obtained after 2 hours. 
Panel b: Corticosterone levels were measured in adult and adolescent animals at the end of   chronic Δ9-THC 
administration (5mg/Kg for 3 days, 10 mg/Kg for 3 days and 15 mg/Kg for 4 days), and from adult animals treated 
with Δ9-THC when adolescent. 
Values are means± SEM of 6 animals /group 
* p <0.05 vs respective vehicle 
** p <0.01 vs respective vehicle 
*** p <0.001 vs respective vehicle 
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NUMBER OF COLONIES FORMED BY HEMATOPOIETIC CELLS 

Table 1 shows the results relative to the count of the number of colonies formed by 

hematopoietic cells. The cells were obtained from bone marrow taken from the femur from 

adolescent and adult mice of the 3 study groups. The results show no significant differences in 

the number of colonies generated from animals treated with Δ9-THC compared to animals 

treated with vehicle, in none of the three experimental groups considered. 
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Table 1  

NUMBER OF COLONIES FORMED BY HEMATOPOIETIC CELLS 

THC Vehicle 

 

Adolescents 

108,3 ±  12,68 93,33 ±  7,88 

Adults 

99,33 ±  8,33 103,7 ±  1,45 

Adult animals treated whan adolescents 

109,5 ±  6,89 103,7 ±  1,45 

Table 1 Effect of chronic Δ9-THC administration (5mg/Kg for 3 days, 10 mg/Kg for 3 days and 15 mg/Kg for 4 days) 
on the number of colonies formed by hematopoietic cells in adult and adolescent mice evaluated immediately at the 
end of the treatment and adult animals treated with Δ9-TH in adolescent period. 
The bone marrow was obtained from femur of adult and adolescent mice and the isolated cells were cultured in vitro 
for 14 days, for the count of colonies formed. 
Values are means± SEM of 4 animals /group 
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DETERMINATION OF BLOOD Δ9-THC LEVELS 

In order to be sure that Δ9-THC was not present in adult animals treated with the drug during 

adolescence, we measured the levels of Δ9-THC and its major metabolites in blood.  

Table 2 shows the blood levels of Δ9-THC, THC-OH and THC-COOH in adolescent and adult 

animals 24 hours and 30,47, and 60 days after the end of treatment. This work was performed 

in collaboration with the team of Professor Raggi, Università Alma Mater Studiorum, Bologna. 

Δ9-THC is metabolised to 11-hydroxy-Δ9-75-tetrahydrocannabinol (6aR,10aR)-9-

hydroxymethyl-6,6-dimethyl-3-penthyl-6a,7,8,10a76tetrahydrobenzo[c]chromen-1-ol,THC-

OH, by cytochrome P450, subtype 2C977 (CYP2C9). THC-OH is biologically active, since it 

binds CB receptors, and is in turn metabolised by CYP2C9 to 11-nor-9-carboxy-Δ9-

tetrahydrocannabinol(6aR,10aR)-1-hydroxy-6,6-dimethyl-3-79pentyl-

6a,7,8,10atetrahydrobenzo [c]chromen-9-carboxylic acid, THC-COOH. This latter metabolite is 

not psychoactive and has a very long half-life.  

No traces of Δ9-THC or metabolites were found in the blood of mice treated with the vehicle 

(data not shown).  The results indicate that Δ9-THC and THC-COOH were detectable in the 

blood of adolescent and adult mice evaluated after 10 days of chronic treatment, 24 hours after 

the last injection; at 30 days after the end of treatment Δ9-THC was no longer present, but we 

still found  the presence of the non-psychoactive metabolite THC-COOH; 47 and 60 days after 

the end of treatment neither Δ9-THC, nor THC-COOH were detected . 

The presence of the psychoactive metabolite THC-OH was never detected in mice evaluated at 

different time after the end of chronic treatment with the drug. 
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Table 2 

DETERMINATION OF BLOOD CONCENTRATIONS OF Δ9-THC AND ITS METABOLITES LEVELS 

 Adult mice Adolescent mice Mice treated as adolescent 

Blood 
concentrations 

ng/ml 

24 hours after 
last Δ9-THC 

injection 

24 hours after 
last Δ9-THC 

injection 

30 days after 
last Δ9-THC 

injection 

47 days after 
last Δ9-THC 

injection 

60 days after 
last Δ9-THC 

injection 

Δ9-THC 18.47± 2.33 11.63 ± 5.44 <LOD <LOD <LOD 

THC-OH <LOD <LOD <LOD <LOD <LOD 

THC-COOH 15.9 ± 1.38 8.55 ± 4.52 3.7 ± 0.32 <LOD <LOD 

LOD= limit of detection  

Table 2 Presence of Δ9-THC and its metabolites, THC-OH and THC-COOH, in the blood of adult and adolescent 
animals evaluated immediately at the end of the treatment, and of adult animals treated with Δ9-THC when 
adolescent. 
The blood was collected at the end of the treatment (24 hours after the last Δ9-THC injection) and at 30, 47 and 60 
days from the last direct exposure to the drug. 
Values are means± SD of 4 animals /group 
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ASSESSMENT OF BASELINE LEVELS OF CYTOKINES IN THE 
HYPOTHALAMUS AND HIPPOCAMPUS 

We started to study the effects induced by Δ9-THC treatment on basal cytokine production, in 

hyppocampus and hypotalamus. 

Figure 17 reports the concentrations, measured in the two neuronal tissues, of the pro-

inflammatory cytokines IL-1β and TNF-α. 

As shown in panel a, in both the tissues considered, the treatment with Δ9-THC induced a 

significant decrease of IL-1β level in adolescent and adult mice, evaluated immediatly at the 

end of treatment. In contrast, a significant increase of IL-1β concentrations was present in adult 

mice treated as adolescents. 

A similar pattern of modifications is present also when considering the production of TNF-α in 

hyppocampus and hypotalamus (Figure 17, panel b). 

In adolescent and adult mice, evaluated immediatly at the end of treatment, a significant 

decrease of TNF-α concentrationsì was evident in both the neuronal area considered; as 

previously reported for IL-1β, in the third group, i.e. mice treated with Δ9-THC during 

adolescent and studied when they had reached adulthood, the drug induced a reversed effect, 

since TNF-α concentrations appear to be increased 47 days after the end of treatment. 

We then considered the basal production of the anti-inflammatory cytokine IL-10, in the two 

neuronal tissues, hippocampus and hypotalamus; this cytokine was increased in young and 

adult mice treated with Δ9-THC (Figure 18, panel a). 

However in adult mice treated in adolescent age and tested at the age of 90 PND, Δ9-THC 

induced a reversed effect: IL-10 concentration decreased in Δ9-THC treated mice. 
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Figure 17  

 

BASELINE LEVELS OF CYTOKINES  PRODUCTION IN THE HYPOTHALAMUS AND 
HIPPOCAMPUS 

 

Figure 17 Effect of chronic Δ9-THC administration on IL-1β and TNF-α levels of cytokines in the hypothalamus and 
hippocampus obtained from adult and adolescent animals immediately at the end of treatment or from adult animals 
treated with Δ9-THC when adolescent. 
IL-1β and TNF-α are measured as protein, and referred to total protein content. 
Values are means ± SEM of 6 animals /group 
* p<0.05 vs respective vehicle 
** p<0.01 vs respective vehicle 
*** p<0.001 vs respective vehicle 
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Figure 18  

 

BASELINE LEVELS OF CYTOKINES  PRODUCTION IN THE HYPOTHALAMUS AND 
HIPPOCAMPUS 

 

 
Figure 18 Effect of chronic Δ9-THC administration on IL-10 levels of cytokine in the hypothalamus and 
hippocampus obtained from adult and adolescent animals immediately at the end of treatment or from adult animals 
treated with Δ9-THC when adolescent. 
IL-10 is measured as protein, and referred to total protein content. 
Values are means ± SEM of 6 animals /group 
* p<0.05 vs respective vehicle 
** p<0.01 vs respective vehicle 
*** p<0.001 vs respective vehicle 
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DISCUSSION 

Cannabis or Marijuana is the most commonly used drug of abuse worldwide; marijuana use in 

Europe and the U.S. is increasing and the age of drug intake has very early onset and continues 

to fall. In the U.S. it is estimated that 46% of the population has tried marijuana at least once, 

while more than 5% use it continuously. 

The cannabis intake begins very early, around 12 years and the percentage of patients who take 

it gradually increases up to 19 years of age. In Europe it is estimated that more than 23 million 

people have used cannabis, with an average of 7%; in Italy, more than 11% of the population 

appears to be involved. In Italy the use is particularly high among young people between 14 and 

25 years of age (SAMSHA, 2004). 

The immunosuppressive and anti-inflammatory properties of cannabis, including, Δ9-THC have 

been well studied (Berdyshev, 2000; Klein, 2005; Massi et al., 2006); Δ9-THC is known to 

cause immune suppression by various mechanisms including induction of apoptosis in effector 

T-cells, suppressing the inflammatory cytokine production, as well as arresting cell 

proliferation (McKallip et al., 2002; Klein and Cabral, 2006). 

Furthermore, Δ9-THC has been indicated to promote a shift in T-cell differentiation from Th1 

to Th2 (Klein, 2005).  

The immune modulating ability of cannabinoids suggests that these drugs might be useful as 

therapeutics in immune diseases and indeed their efficacy has been tested in several disease 

models (Mackie, 2006).  

In contrast to these potentially beneficial properties, studies on the effects of marijuana 

smoking and cannabinoid unwanted effects, have evolved into the discovery that they can 

decrease host resistance to bacterial, protozoan and viral infection in experimental animal 

models and in vitro systems.  
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Recent immune epidemiological studies suggest that marijuana may also influence the outcome 

of viral infections in humans as well as it can increase the incidence of cancer in humans and 

mice, influencing the immune system as whole (Kaushik et al., 2011). 

Marijuana remains the most commonly used drug of abuse worldwide (Berdyshev, 2000), 

especially by adolescents who are the main consumers of this drug. 

In addition, the habit to attending large groups of peers and an attitude toward sex are often not 

aware/protected, predisposes young cannabis users to be more susceptible to bacterial and viral 

infection. Currently, in the literature there are studies indicating as Δ9-THC intake during 

adolescence is able to influence the brain maturation and may modulate the behavior, emotion, 

affectivity and the incidence of psychiatric disorders in adulthood (Rubino et al., 2008; Realini 

et al., 2009; Tomasiewick et al., 2012) however there are no studies that assess this aspect in the 

immune system. 

The aim of my thesis work was to study the effect on immune responses of Δ9-THC intake in 

adolescent mice, demonstrating both short and long term immune dysfunctions.  

The adolescence is a gradual period of transition from childhood to adulthood (Spear and 

Brake, 1983): this period in humans can be considered as the age range between 12 to 18 years. 

It is very difficult to identify in laboratory animals the period corresponding to the phase of 

human adolescence, such as some researchers have argued that adolescence is uniquely human 

and hence cannot be modeled in animals. However Spear and colleagues, (Spear and Brake, 

1983; Odell, 1990; Spear, 2000) on the basis of behavioural and biochemical specific changes, 

have spotted in the period 28-42 post natal days (PND) a phase comparable to adolescence in 

human.  

Starting from these premises, most of the works that analyzed the Δ9-THC induced 

neurobehavioral modifications in adolescent, were performed using 30-32 PND mice (Rubino 

et al., 2008; Rubino et al., 2012).  
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In our experiments we followed this indication and started the Δ9-THC treatment at 33 PND for 

10 days, in order to have a Δ9-THC exposure time covering the whole adolescence.  

Our experimental protocol included the use of s.c. Δ9-THC treatment or vehicle, for 10 days, 

with increasing doses of  drug, as low as 5 mg/kg until to 15 mg/kg.  

We previously conducted studies using a higher dose of Δ9-THC (starting from 5 mg/kg until to 

25 mg/kg) in the treatment of 10 days, getting a modulation of immune parameters similar to 

that illustrated in this work (data not shown). However, we have decided to show only the data 

related to Δ9-THC treatment with doses in the range 5-15 mg/kg, because plasma 

concentrations of Δ9-THC detectable at the end of our treatment in mice were comparable to 

those that can be found smoking in humans (Mercolini et al., 2013). 

The first result that emerges from our study is the presence of a similar immunomodulation 

induced by Δ9-THC chronic treatment in adult and adolescent mice. Both macrophage and 

spleen cytokines, evaluated 24 hours after the last Δ9-THC administration, are in fact modulated 

in the same direction in the two age groups. Consistently with what reported in the literature for 

adult animals, we observed a clear decrease of macrophage pro-inflammatory cytokines IL-1β 

and TNF-α and increase in the anti-inflammatory cytokine IL-10 (Massi et al., 2006).  

It is well known that several cytokines, and IL-1β in particular, are regulated at several post-

transcriptional and post-translational levels (Ferrari et al., 2007), and previous studies suggested 

that Δ9-THC could affect only secretion of pro-inflammatory cytokines but not transcription 

(Zheng and Specter, 1996). For these reasons, we measured both the released protein and the 

mRNA levels.  The results obtained well correlate the cytokine mRNA and protein, suggesting 

that our Δ9-THC treatment paradigm affects both gene expression and protein production.  

In agreement with the data present in literature, we also confirm the ability of Δ9-THC to alter 

the balance between the cytokines produced by T-helper subsets, Th1 and Th2, skewing it 

towards Th2 (Massi et al., 1998; Klein et al., 2000; Newton et al., 2004; Mackie, 2006).  
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Both in adult and adolescent animals in fact, at the end of 10 days treatment, we measured low 

levels of IFN-γ and high levels of IL-4. The ratio between these two cytokines is generally 

considered an affordable index of the Th1/Th2 status.  

Moreover also a relevant overexpression of IL-10 production by splenocytes is observed, 

demonstrating that this potent anti-inflammatory cytokine is similarly modulated by Δ9-THC in 

macrophages stimulated with LPS and splenocytes restimulated in vitro with the antigen KLH, 

independently on the stimulus utilized to induce its production. 

We supported the hypothesis that also in the adolescent period Δ9-THC directs the cytokine 

network away from cell-mediated immunity, provoking a shift towards Th2. This would be 

interesting, considering that it might reduce the host’s resistance to certain pathogens such as 

viruses, intracellular bacteria and parasites (Massi et al., 2006).   

In the whole the Δ9-THC exposure during adolescent age, the drug can affect both innate and 

acquired immunity, with higher risk of morbidity for infectious disease.  

This aspect is particularly important considering that adolescents often are exposed to 

dangerous habits that can increase the risk of infections such as unprotected sexual intercourses 

or attending events in very often crowded environments (Wang et al., 2012; Matkins, 2013). 

However, the most interesting and surprising results of our studies are the demonstration that 

marijuana abuse during adolescence may have long-term impact and affect the immune 

responses into adulthood, with lifelong consequences.  

In the same direction, a recent study conducted by Lombard and colleagues (2011) 

demonstrated that perinatal exposure to Δ9-THC in mice, altered the immune function not only 

in the fetus, but also during postnatal life.  

In this study, we showed that 47 days after the last Δ9-THC injection in adolescent mice, a 

profound dysregulation of macrophage and splenocytes cytokine production is still present.  
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Indeed, the alterations that are present in adult animals treated as adolescent go in a different 

direction in comparison to what we and others observed immediately at the end of treatment.  

While in adult and adolescent animals at the end of treatment an anti-inflammatory cytokine 

profile is present, in adult mice treated as adolescent a clear pro-inflammatory macrophage 

phenotype is induced. Also these modifications take place at transcriptional levels, as indicated 

by the observed parallelism between protein and mRNA cytokine concentrations.  

Moreover in the third group of study, we found that both Th1 and Th2 cytokines are now 

significantly decreased, indicating a general dysfunction, rather than a specific Th1/Th2 bias. 

Although the data are not fully completed, the absence of alterations in macrophage and 

splenocytes cytokine production measured in animals that received Δ9-THC as adults and 

evaluated 47 days after the end of treatment, would seem to suggest that the alteration observed 

in the third study group are related to fact that treatment takes place in the adolescent period. 

Several differences between adult and adolescent animals are of course present, that can 

account for the high sensibility of adolescent immune system to cannabis. For example it is 

demonstrated that the HPA endocrine axis is particularly active during this stage of 

development and particularly vulnerable to drugs or environmental stressors (van Leewen et al., 

2011). Since it is well known that an altered pro-inflammatory/anti-inflammatory balance is 

involved in many immune related diseases, in consideration of the high levels of IL-1β and 

TNF-α and low IL-10 that we measured in adult mice treated as adolescents, it can be 

speculated that individuals that abused marijuana in young age might be at higher risk of 

developing autoimmune or chronic inflammatory diseases in adulthood.  

As already reported, the main indication for therapeutic marijuana utilization is just for treating 

autoimmune and inflammatory diseases. Therefore the history of drug abuse of each individual 

should be evaluated before proposing medicinal cannabis use for pathology such as multiple 
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sclerosis or inflammatory bowel diseases (Klein, 2005; Nagarkatti et al., 2009; Pertwee, 2009). 

Moreover the constantly low IFN-γ levels can modulate the ability to fight infectious diseases. 

In our experiments we also measured the IgM anti-KLH titers after primary immunization only, 

i.e 10 days after KLH vaccination. As expected the levels of IgG anti KLH were always 

extremely low and never affected by Δ9-THC treatment (data not shown).  

A significant decrease of serum IgM levels were indeed observed in all treatment groups.  

In adult and adolescent animals, that were injected with KLH in the first day of Δ9-THC 

treatment, the low Th1 response can account for the decreased ability to mount an adequate 

IgM responses, thus confirming previous in vitro and in vivo studies (Aguledo et al., 2008; 

Springs et al., 2008).  

The profound dysfunction in cytokine balance that persists also long time after the end of Δ9-

THC treatment may be at the basis of the altered antibody response that is present when 

animals are immunized without concomitant Δ9-THC treatment.    

However, we know that a detailed analysis of other Ig isotypes would have been of interest, 

considering for example the strict dependency between IgE and IL-4 (Takeda et al., 1996).   

The objective of the Ig studies was to evaluate the impact of Δ9-THC treatment on the ability to 

mount an antibody response rather than analyze in detail the isotype switching. From these 

results we can hypothesize that the ability of the host to mount an efficacious Ig response to 

vaccination is altered both during the Δ9-THC intake as well as long time after its abuse.  

The mechanisms at the basis of the peculiar long-term effects induced by Δ9-THC treatment in 

the adolescent mice still need to be identified. Similar shaping of the immune responses after 

exposure to pollutants or other drugs have been described (Gascon et al., 2013).  

Interestingly cannabinoid receptors are expressed also by hematopoietic precursors in murine 

embryonic stem cells and CB activation can affect also hematopoietic stem cells (Lu et al., 

2006; Jiang et al., 2007).  
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Recently Hedge et al. (2010) has shown that cannabinoid receptor activation leads to massive 

mobilization of myeloid-derived suppressor cells with potent immunosuppressive properties.  

It can be hypothesized that an alteration of hematopoietic cells by Δ9-THC in adolescence 

would affect also in the long term the differentiation and maturation of immune cells.  

In this study, we began to test the hypothesis that Δ9-THC can affects hematopoietic stem cells; 

in this direction, we simply counted the number of colonies formed after plating the cells 

obtained from bone marrow of mice treated with Δ9-THC or vehicle. The preliminary results 

obtained showed no significant differences in the number of colonies formed. 

However, we are aware that further experiments, which differentiate the type of colonies, such 

as myeloid towards lymphoid, and further flow cytometric analysis on the various precursors 

will be needed before reaching a proper conclusion.  

However, a possibility is that Δ9-THC can induce epigenetic modifications on hematopoietic 

cells able to induce long-term changes on the differentiation and maturation of immune cells; 

further analysis, to identify possible epigenetic modifications induced by treatment with the 

drug, should be performed.  Morris and Tomasiewicz (Morris et al., 2011; Tomasiewicz et al., 

2012) have recently suggested, that Δ9-THC abuse in the adolescent mice induces alteration of 

neuronal circuits and to alters brain plasticity, probably through epigenetic regulation of 

neurotransmitter genes. 

The possibility of an epigenetic regulation induced by Δ9-THC for cytokine genes is an exciting 

one. Interestingly an epigenetic regulation of IL-10 gene by another drug of abuse, i.e. 

morphine, has been recently reported (Schwarz et al., 2011).   

A further possibility would be that the observed effects might not be mediated by a direct 

activation of CB receptors on cells of the immune system, but by a general dysregulation of 

neuroendocrine functions.   
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In this study, we reported as acute treatment induces an increase of corticosterone levels, while 

a more prolonged treatment, i.e. 10 days, leads to a significant reduction of corticosterone 

levels in all groups of treatments.  

Once again this effect of Δ9-THC permains for very long time after the last drug administration. 

The relationship between Δ9-THC abuse and HPA axis have been extensively studied, often 

reaching contrasting conclusion (Roche et al., 2006).  

Both stimulation and tonic inhibition of HPA have been associated to CB activation. 

In particular, while acute Δ9-THC administration has been linked to HPA stimulation 

(Schramm-Sapyta et al., 2007; Steiner and Wotjak, 2008), prolonged Δ9-THC exposure seems 

to lead to a lowered HPA responses (Roche et al., 2006; Armario, 2010).  

In agreement with our low corticosterone results, two recent studies in the human stated for 

hypo-activity of the HPA axis in adolescents with early onset of cannabis use leading to 

deficient cortisol reactivity to stressors (Huizink et al., 2006; van Leewen et al., 2011).  

The modified endocrine milieu consequent to Δ9-THC treatment could in part be responsible of 

the long-term immunomodulatory effects. 

Indeed since corticosteroid levels are consistently reduced in all chronic experimental groups of 

studies while the cytokine profile is differently affected throughout the groups, it seems 

difficult to directly correlate Δ9-THC effects on HPA and cytokines.  

The fluctuations that we observe during the 10 days treatment (early increase followed by 

decrease) can account for the effects observed immediately at the end of Δ9-THC treatment. 

However, considering the well known immunomodulating properties of steroids (Visser et al., 

1998; Miyaura and Iwata, 2002), the persistence of low corticosterone levels until adulthood are 

compatible with the pro-inflammatory cytokine pattern that we observe in adult animals treated 

as adolescents. The steroid hormones might therefore be involved in the long-term effects 

induced by Δ9-THC.  
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It is known that Δ9-THC, due to its high lipid solubility, can remain in the body for a rather 

long time. In collaboration with the group of Prof. Raggi, University of Bologna, we measured 

the levels of Δ9-THC and its main metabolites in the blood of animals; Δ9-THC and its 

metabolites measurements have been performed in order to rule out the possibility that in adult 

animals treated with Δ9-THC as adolescents some residual Δ9-THC could still be present, in 

order to be so certain that the immune effects observed were due to a long lasting modulation of 

immune responses. 

In human Δ9-THC plasma levels decrease drastically being metabolised to THC-OH, by 

cytochrome P450, subtype 2C9 (CYP2C9) (Watanabe et al., 2007).  

THC-OH is biologically active and is in turn metabolised by CYP2C9 (Hunault et al., 2008) to 

THC-COOH.  

This latter metabolite is not psychoactive and has a very long half-life (Gustafson et al., 2004). 

The relative concentrations of these three compounds can be considered together as markers of 

the time elapsed after the last cannabis intake. 

Consistently, also in mouse we measured high levels of Δ9-THC and THC-COOH 24 hours 

after the last Δ9-THC injection. Δ9-THC had completely disappeared 30 days after the last 

administration, while lower traces of the long half life metabolite were still present.  

THC-COOH does not bind the classical CB receptors and it is therefore devoid of any 

psychoactive properties (Gustafson et al., 2004). Although it is not known its potential ability to 

modulate immunity we can state that 17 days later, at the time when we evaluated all the 

immune response, neither Δ9-THC nor its metabolite were present. 

From our measurements we can also define that the intermediate metabolite THC-OH has an 

extremely short half-life in the mouse, as we never detected it. 

An other important point that is always addressed when Δ9-THC administration is performed in 

animal models, is how the dosage translates to human equivalent doses.  
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However several recent studies from the group of Nagarkatti et al., (2009), (Lombard et al., 

2001; Pandey et al., 2011), have demonstrated that dosages as high as 50 mg/Kg in mouse reach 

Δ9-THC blood concentrations in the range of pharmacological or recreational dose in humans.   

Moreover we now without doubt can affirm that the dose regimen that we utilized in the mouse 

leads to blood Δ9-THC and THC-COOH concentrations similar to the ones that are achieved in 

blood from human chronic smokers.  

Mercolini et al. (2013), in fact, assessed the presence of these cannabinoids in a cohort of 

marijuana smokers and found plasma levels ranging from 3 to 11 ng/ml for Δ9-THC and from 7 

to 20 ng/ml for THC-COOH, in line with the mean Δ9-THC and THC-COOH concentrations 

that we now detected in the mouse.  

It is now known that, in CNS, cells such as astrocytes and microglia produce pro- and anti-

inflammatory cytokines that play a role in many neurodegenerative diseases (Carrier et al., 

2005). The factors that control and modulate these cytokines are many, for example µ-opioid 

and noradrenergic receptors, and it has recently emerged as the endocannabinoid system also 

appears to be involved (Carlisle and Cabral, 2002). 

In the present study, we have started to investigate the effects of Δ9-THC chronic treatment also 

on the neuroinflammatory component of CNS in our adolescent and adult animals, analyzing 

the production of pro and anti-inflammatory cytokines in the hypothalamus and in the 

hippocampus. These areas have been chosen since they are particularly rich in CB receptors and 

primarily involved in many Δ9-THC central effects (Irving et al., 2002). 

Our data, although preliminary, indicate that chronic administration of Δ9-THC is able to 

induce an anti-inflammatory status in brain of adolescent and adult mice assessed immediately 

at the end of treatment, both in the hypothalamus and in the hippocampus.    

In adult animals, treated with the drug as adolescents, the production of pro-inflammatory 

cytokines, in hypothalamus and in hippocampus, appears to be increased with respect to 
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vehicles, indicating a predisposition to a pro-inflammatory status. It is very interesting to note 

how the modulation exerted by Δ9-THC on the peripheral cytokines is in parallel to that exerted 

on the brain. It could be then hypothesized that the factors that regulate the modulation exerted 

by the drug on the peripheral cytokines, are also able to modulate the cytokine production in the 

brain; we are aware that further studies are needed to identify the modulatory factors involved.  

Interestingly we measured basal levels of cytokines, since neither Lypopolisaccaride or other 

activating stimuli were given to the animals. Therefore the results that we have obtained 

suggest the presence of a tonic regulation of the cannabinoid system on brain cytokines. 

In the present study we did not evaluate the relative involvement of CB1/CB2 receptors in the 

observed effects. Obviously Δ9-THC targets both these receptors as an agonist and our main 

aim was to demonstrate that marijuana abuse during adolescence is endangering the immune 

system/cytokine pattern. Several studies from our and other groups have anyhow demonstrated 

that both receptors are likely to be involved in Δ9-THC induced immunomodulation (Sacerdote 

et al., 2000a; Klein et al., 2000; Lombard et al., 2011; Springs et al., 2008).  

Moreover a third cannabinoid receptor GPR55 has been reported and may account for some of 

the immune effects observed in the relative absence of CB1 or CB2 (Newton and Klein, 2012; 

Ryberg et al., 2007). Further studies in this direction will be conducted by us in the adolescent 

mouse model.  Moreover, the 10 days Δ9-THC treatment that we performed could also 

modulate the receptor sensibility, leading to either down regulation or desensitization, as 

previously observed (Massi et al. 2006; Buchweitz et al., 2007).  

Also this aspect will be taken into consideration in a future project.    

In conclusion the present study demonstrates for the first time that Δ9-THC exposure in 

adolescent can trigger immune alterations that persist into adulthood, time after the last Δ9-THC 

administration.  
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These long term modifications are different from the one observed immediately after the end of 

Δ9-THC intake, suggesting the presence of a proinflammatory cytokine pattern and a general 

blunted Th responses.  

The altered immune system may condition the susceptibility of the host to immune related 

pathologies in adulthood and our observations draw the attention on the fact the history of drug 

abuse of each individual should be evaluated before proposing any immunomodulating therapy.
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