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Abstract. We describe the finite groups whose p-Brauer character table, for

p = 2 or p = 3, does not contain any zero. This completes the analysis in [6],

where we considered the case p ≥ 5.

Introduction

In a recent paper ([6]), motivated by the study of G. Malle in [10], we considered

the problem of describing the structure of the finite groups whose p-Brauer character

table, for a fixed prime p, does not contain any zero.

As Malle shows ([10, Theorem 1.3]), the groups satisfying this condition are

solvable if p 6= 2, whereas for p = 2 nonsolvable examples occur. The nonabelian

simple composition factors of such groups are classified ([10, Theorem 1.2]) as the

simple groups in the class

L = {L2(2a), a ≥ 2; L2(q), q = 2a + 1 ≥ 5; 2B2(22a+1), a ≥ 1; S4(2a), a ≥ 2} .

While in [6] we considered characteristics p ≥ 5, here we complete the analysis by

addressing the cases p = 2 and p = 3. In the following statements, F(G) denotes

the Fitting subgroup of the group G and lp′(G) the p′-length of G (p a prime). Note

also that, as Op(G) lies in the kernel of every Brauer character, we are allowed to

assume Op(G) = 1.

Theorem A. Let G be a finite group and p ∈ {2, 3}. Assume that Op(G) = 1

and that the p-Brauer character table of G does not contain any zero. Then the

following conclusions hold.

(a) If p = 2 and G is solvable, then G/F(G) is a {2, 3}-group with elementary

abelian Sylow 3-subgroups and 2′-length at most 1.

(b) If p = 2 and G is nonsolvable, then there exist normal subgroups R,N of G,

R ≤ N , with R solvable, l2′(R) ≤ 4, N/R a direct product of simple groups

belonging to the class L and G/N a group of 2-power order.
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(c) If p = 3, then G/F(G) is a subgroup of a direct product A × B, where A is a

{2, 3}-group with elementary abelian Sylow 2-subgroups and 3′-length at most 1

and B ' (Sym(3) o Sym(3)) o P , where P is a 3-group. In particular, G/F(G)

is a {2, 3}-group of 3′-length at most 2.

Theorem B. Let G be a finite solvable group and p ∈ {2, 3}. Assume that the

p-Brauer character table of G does not contain any zero. Then the following con-

clusions hold.

(a) If p = 2, then l2′(G) ≤ 2, l2(G/O2(G)) ≤ 2 and O2(G/O2(G)) = A×B, where

A is a {2, 3}-group and B is a nilpotent {2, 3}′-group.

(b) If p = 3, then l3′(G) ≤ 3, l3(G/O3(G)) ≤ 3 and O3(G/O3(G)) = A×B, where

A is a {2, 3}-group and B is a nilpotent {2, 3}′-group.

Theorem A and Theorem B should be paired, respectively, with Theorem A and

Corollary B of [6]. Note that in Theorem B above the solvability assumption is

redundant for p = 3, but needed if p = 2.

We remark that we have no examples of groups with no zeros in the 3-Brauer

character table and with 3′-length greater than 2. So, part (b) of Theorem B can

possibly be improved.

The study of groups whith no zeros in the Brauer character table can be ap-

proached by considering some particular linear actions. Namely, denoting by V a

faithful irreducible module over a prime field for a finite solvable group G, it is rel-

evant to keep under control the situation when every p′-element of G fixes at least

one element in each G-orbit on V . As customary, the analysis of the “primitive

case” turns out to be a crucial step. The following statement encloses Theorems 2.1

and 3.1 of this paper and, paired with Theorem 3.1 of [6], should be compared with

Corollary 10.6 of [11] (see Theorem 1.3).

As usual, we denote by Γ(qn) the semilinear group on the field of qn elements.

Theorem C. Let G be a finite solvable group, p ∈ {2, 3} and V a faithful primitive

G-module of order qd, q a prime. Assume that G is not a p-group, and that every

p′-element of G fixes an element in each G-orbit on V . Then one of the following

conclusions hold.

(a) p = 2, qd = 32, and G is isomorphic either to GL(2, 3) or to SL(2, 3), acting

naturally on V .

(b) p = 3, q = 2, d ∈ {2, 6}, and G is isomorphic to Γ(22) if d = 2, whereas G is

isomorphic to a Hall {2, 3}-subgroup of Γ(26) if d = 6. In both cases, G acts

naturally on V .

By means of the previous result, we are able to classify the irreducible actions

with the relevant orbit property for p ∈ {2, 3}. This is done in Theorem 2.2 and

Theorem 3.3, which complete the analysis of [6, Theorem C].
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1. Preliminaries

Every group considered throughout the paper is meant to be a finite group. The

preliminary notation and results that are relevant for our purposes are essentially

those of [6], and here we shall recall only few of them. We start by introducing an

orbit property that will play a central role in our discussion.

Definition 1.1. Let Σ be a finite nonempty set, and letG be a subgroup of Sym(Σ).

Also, let O be an orbit of the action of G on Σ, and π a set of prime numbers. We

say that the orbit O is π-deranged if there exists a π-element of G which does not

fix any element in O.

For the purposes of the present paper, we will have π = p′, that is the set of

prime numbers different from a fixed prime p. We shall consider p′-deranged orbits

both in the general case of permutation actions and in the case of linear actions on

modules.

We recall that a G-module V is said to be primitive if V is irreducible and V is

not induced by a submodule of any proper subgroup of G. By Clifford Theory, it

follows that if V is a primitive G-module, then the restriction VN is a homogeneous

module (i.e. direct sum of isomorphic modules) for every normal subgroup N of G.

Also, following [11], we say that a (not necessarily irreducible) G-module V is

pseudo-primitive if VN is homogeneous for every characteristic subgroup N of G.

The structure of primitive solvable groups of linear transformations is rather

tight. We collect the relevant facts in the following proposition (see for instance

[14, Theorem 2.2], [11, Lemma 0.5 and Theorem 1.9]).

Proposition 1.2. Let G be a solvable group, and V a faithful primitive G-module

over a finite field K. Then there exist subgroups Z ≤ U ≤ F ≤ A, and E, all

normal in G, with the following properties.

(a) U is cyclic, and E is a product of subgroups Ei E G of pairwise coprime orders,

such that, for every i, Ei is cyclic of prime order pi or an extraspecial pi-group

(of exponent pi if pi 6= 2, and of order p2ni+1
i for a suitable integer ni). Also,

F = EU is a central product, Z = E ∩ U = Z(E) and CG(F ) ≤ F . Moreover,

F = F(G) ∩A and |F(G) : F | ≤ 2.

(b) F/U ' E/Z is a direct sum of completely reducible G/F -modules.

(c) A = CG(U), so that G/A embeds into the abelian group Aut(U).

(d) A/F acts faithfully on E/Z, and A/CA(Ei/Z(Ei)) embeds into the symplectic

group Sp(2ni, pi).

(e) Setting e =
√
|E : Z|, we have that e divides dimK(V ).

If q is a prime and V is a finite vector space of order qn, then Γ(V ) denotes a

subgroup of Aut(V ) isomorphic to the semilinear group Γ(qn), obtained by iden-

tifying V with GF(qn) (see [11, page 38]). We shall write Γ0(V ) for the subgroup



4 S. DOLFI AND E. PACIFICI

of Γ(V ) consisting of the multiplication maps. In the setting of Proposition 1.2, if

e = 1, then Corollary 2.3(a) of [11] yields that G can be identified with a subgroup

of Γ(V ) acting naturally on V ; it is easy to see that, conversely, G ≤ Γ(V ) implies

e = 1.

We recall next a result by T. Wolf, concerning module actions where all orbits

have size not divisible by any prime in a fixed set π. Observe that, if π is the set of

prime numbers different from a given prime p, this is a special kind of action without

p′-deranged orbits. In fact, the two conditions coincide when the acting group has

cyclic Hall p′-subgroups. Moreover, somewhat surprisingly, the two conditions turn

out to be equivalent also when the action is primitive, as one can check by comparing

the following Theorem 1.3 with Theorem 3.1 of [6] and Theorem C of the present

paper.

Theorem 1.3 ([11], Corollary 10.6). Let V be a finite faithful and pseudo-primitive

G-module, for a solvable group G. Let π be a set of primes such that π ∩π(G) 6= ∅,
and assume that CG(v) contains a Hall π-subgroup of G for all v ∈ V . Then V is

an irreducible G-module and one of the following occurs.

(a) G ≤ Γ(V ).

(b) π = {3}, |V | = 32 and G is isomorphic either to GL(2, 3) or to SL(2, 3).

(c) π = {2}, |V | = 26, F = F(G) is extraspecial of order 33 and exponent 3

and G/F is a group of order 2 that acts inverting all elements of F/Z(F ) and

trivially on Z(F ).

We stress that the group G in part (c) of Theorem 1.3 is determined up to

conjugation in GL(6, 2) (see [11, Example 10.3]) and that the module V is not

primitive (in fact G has a non-cyclic normal subgroup of order 9).

We now prove a proposition concerning semilinear groups acting with no p′-

deranged orbits on finite vector spaces, with p = 2 or p = 3; this completes the

analysis carried out in Theorem 3.1(b) of [6], where the case p ≥ 5 is treated.

Proposition 1.4. Let q be a prime, V a vector space of order qd, and G a subgroup

of Γ(V ) acting irreducibly on V . For a fixed prime p, assume that G is not a p-

group, and that there are no p′-deranged orbits for the action of G on V . Then the

following conclusions hold.

(a) p 6= 2.

(b) If p = 3, then q = 2 and d ∈ {2, 6}. More precisely, if d = 2 then G = Γ(22),

whereas if d = 6 then either G is a Hall {2, 3}-subgroup of Γ(26), or G ≤ Γ(26)

is a Frobenius group of order 18.

Conversely, the groups in conclusion (b) act irreducibly and with no 3′-deranged

orbits on the natural module V .

Proof. Set Γ0 = Γ0(V ), and G0 = G∩ Γ0; we know that G/G0 ' Γ0G/Γ0 is cyclic.

Now, if R is a Hall p′-subgroup of G, we get R∩G0 = 1, because G0 acts fixed-point
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freely on V ; thus G0 is a cyclic p-group. This implies that R ' G0R/G0 is cyclic,

and also that r := |R| divides |Γ(V ) : Γ0| = d.

Next, we observe that CV (R) ∩ CV (Rg) = {0} for every g ∈ G such that

Rg 6= R. In fact, if v ∈ V \ {0}, then CG(v) ∩ G0 = 1; therefore CG(v) is cyclic,

and it cannot contain two distinct Hall p′-subgroups of G. Since R is cyclic, the

assumption on p′-deranged orbits implies that the centralizer of every nontrivial

element of V contains one (and hence only one) Hall p′-subgroup of G. Thus,

V \ {0} is partitioned by the sets CV (R) \ {0} for R ∈ Hallp′(G). It follows that

qd − 1 = h(|CV (R)| − 1) = h(qd/r − 1), where h is the cardinality of the set of Hall

p′-subgroups of G and the second equality follows from Lemma 3(ii) of [4].

By coprimality, G0 = CG0
(R) × [G0, R] and, G0 being a cyclic p-group not

centralized by R, it follows CG0
(R) = 1 and h = |G0| = pa, for a suitable integer

a. Hence

pa =
qd − 1

qd/r − 1
.

Next, assume that there exists a Zsigmondy prime divisor of qd − 1 (see [11,

Theorem 6.2]), i.e., p is in fact the unique Zsigmondy prime divisor of qd − 1. In

particular, d divides p− 1. Since d cannot be 1 (otherwise G would be a p-group),

p is not 2. If p = 3, then d, r and q must be 2, and so G is a subgroup of Γ(22). As

G is not a 3-group, it must be the whole Γ(22).

On the other hand, assume there does not exist a Zsigmondy prime divisor of

qd − 1. If d = 2, then also r must be 2, and this yields p 6= 2 (recall that r is

a p′-number). Also, if d = 2 and p = 3, then 3a = q + 1 is a power of 2 (by

Zsigmondy’s Theorem [11, 6.2]), a contradiction. It remains to treat the case d = 6

and q = 2. In this situation too, p is clearly not 2. If p = 3, then r = a = 2 (as

26 − 1 and (26 − 1)/(22 − 1) are not powers of 3). Recalling that |G0| = h = 32,

we have |G| ∈ {2 · 32, 2 · 33}, and conclusions (a), (b) follow. The last claim of the

statement is straightforward.

Remark 1.5. We observe that, if G ≤ Γ(26) has order 18, then the action of G

on the natural module V is not primitive. In fact, as can be easily checked, G has

a subgroup H ' Sym(3), and VH has a submodule W of dimension 2, such that

V 'WG.

The other two groups appearing in conclusion (b) of Proposition 1.4 do act

primitively on the natural module V .

2. Linear actions with no 2′-deranged orbits

In the next result, we describe the solvable groups acting faithfully, primitively

and without 2′-deranged orbits on a finite vector space over a prime field. In fact,

it turns out that there are only two of them.
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Theorem 2.1. Let G be a solvable group, q a prime number, and V a faithful

primitive G-module of order qd. Assume that G is not a 2-group and that there are

no 2′-deranged orbits for the action of G on V , i.e., for every v ∈ V and x ∈ G of

odd order, there exists g ∈ G such that x ∈ CG(vg). Then q = 3, d = 2, and G is

isomorphic either to GL(2, 3) or to SL(2, 3), acting naturally on V .

Proof. We shall take into account the fact that, by Lemma 2.9 of [6], the Fitting

subgroup of G is a 2-group; also, we shall use the description of the structure of G

provided by Proposition 1.2, and the notation introduced therein. Observe that,

since in the present context U is a cyclic 2-group, the factor group G/A embeds

in the abelian 2-group Aut(U); in particular, F is properly contained in A, as

otherwise G would be a 2-group.

Let N be a subgroup of A such that N/F is a chief factor of G, say of order

rk for a suitable prime r. Note that r 6= 2, as otherwise N ≤ F . Now, denote

by X a subgroup of order r of N . By Lemma 2.2 of [5] (and as CA(E) ≤ F ), the

group [X,E] is an extraspecial 2-group of order 22m+1 for a suitable m ∈ {1, . . . , n},
where 22n+1 = |E|. Moreover, as can be deduced from the proof of Lemma 2.4 of

[14] (or [5, Lemma 2.4]), we have |CV (X)| ≤ |V |αm , where

αm =


1
r

(
2m+r−1

2m

)
if r | 2m − 1;

1
r

(
2m+1

2m

)
if r | 2m + 1.

(Observe that X acts fixed-point freely on [X,E]/Z, therefore r is a divisor of

22m − 1.) In any case, αm is at most 1/2. Observe also that the number of N -

conjugates of X is at most 22m; in fact

|N : NN (X)| = |F : NF (X)| ≤ |F : CF (X)| = |E : CE(X)| =

= |E/Z : CE(X)/Z| = |[X,E]/Z| = 22m.

Denote by R a Sylow r-subgroup of N (say |R| = rk), and by λm the number of

subgroups X of R such that |X| = r and |[X,E]| = 22m+1. We conclude that, if

(1)

n∑
m=1

λm22m|V |αm < |V |

holds, then in particular the centralizers in V of the elements of order r in N do

not cover the whole V . In other words there exists an element v in V such that,

for x ∈ N with o(x) = r, we have x 6∈
⋃
g∈G CG(vg), against our assumptions.

Taking into account that
∑n
m=1 λm equals rk−1

r−1 (the total number of subgroups

of order r in R), and that αm ≤ 1/2, the left-hand side of Inequality (1) is bounded

above by rk−1
r−1 · e

2 · |V |1/2 = rk−1
r−1 · e

2 · q
ef
2 , for a suitable f ∈ N. Thus, also the

inequality

(2)
rk − 1

r − 1
· e2 < q

ef
2
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would yield a contradiction. This will be enough for most instances of the following

analysis.

Since G is not a 2-group and it has no 2′-deranged orbits on V , then G cannot

have regular orbits on V . Hence, as e is a power of the prime 2, Theorem 3.1 of

[14] yields e ∈ {1, 2, 4, 8, 16}. (But the value 1 is of course not a possibility, as in

that case we would get F = U = A, thus G/F would be a 2-group, as well as G

itself). We shall work to show that e = 2 is in fact the only possible value, and in

that case we get either G ' GL(2, 3) or G ' SL(2, 3).

We start by considering the case e = 2. In this situation, we have A/F ≤
Sp(2, 2) ' Sym(3), therefore the prime r must be 3 and the elementary abelian

3-subgroup N/F of A/F is in fact cyclic. Also, since G/A is a 2-group, the Sylow

3-subgroups of G have order 3. Now, our assumptions imply that every v ∈ V is

centralized by a Sylow 3-subgroup of G: therefore we are in a position to apply

Theorem 1.3, obtaining qd = 32 and G ' GL(2, 3) or G ' SL(2, 3), as wanted.

Since N E G and V is a primitive G-module, then VN is a pseudo-primitive

N -module. So, by Theorem 1.3 we can assume that N/F is non-cyclic.

Set now e = 4, so that A/F ≤ Sp(4, 2) ' Sym(6). More precisely, A/F ≤
O−(4, 2) ' S5 if E ' Q8 �D8, and A/F ≤ O+(4, 2) ' S3 o S2 if E ' Q8 �Q8 (see

for instance [13, Theorem 2.4.6 and Appendix B]). Since the Sylow r-subgroups of

S5 are cyclic for r 6= 2, by the paragraph above we can rule out the case E ' Q8�D8,

therefore we can assume E ' Q8�Q8 and r = 3. Also, the rank k of N/F is at most

2, hence Inequality (2) is satisfied (and our assumptions are not) for every qf ≥ 9.

We conclude that f = 1 and q ∈ {3, 5, 7}, i.e., G is isomorphic to a subgroup

of GL(4, 3), or GL(4, 5), or GL(4, 7). Now, consider a subgroup E ' Q8 � Q8 of

GL(4, q), for q ∈ {3, 5, 7} (by [13, Theorem 2.4.7], there is exactly one conjugacy

class of such subgroups), and let H = NGL(4,q)(E). One checks with GAP ([8])

that for q ∈ {5, 7} there exists an element x of the natural module V such that

CH(x) is a 3′-group. As G ≤ H, this yields a 2′-deranged orbit for the action of

G on V , against the assumption. For q = 3, one checks that H has two conjugacy

classes C1, C2 of elements of order 3 and that they are real. Also, there exists an

element x of the natural module V such that CH(x) has Sylow 3-subgroups of order

3. Thus, CH(x) intersects just one class among C1 and C2. As |H : G| is coprime

to 3, G∩C1 and G∩C2 are both nonempty. It follows that x lies in a 2′-deranged

orbit for the action of G on V , a contradiction.

As for the case e = 8, we get A/F ≤ Sp(6, 2). Using the information in the

Atlas [1], we see that the prime r lies in {3, 5, 7}, and the rank k of N/F is at most

3 for r = 3, whereas it is 1 for r 6= 3. In fact, in the latter situation, the r-part

of |Sp(6, 2)| is r, and we can exclude this case as above. On the other hand, for

r = 3, Inequality (2) is satisfied whenever qf ≥ 7; therefore we have f = 1 and

q ∈ {3, 5}, i.e., G is isomorphic to a subgroup of GL(8, 3) or GL(8, 5). Assume
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first that G ≤ GL(8, 3) and let E be an extraspecial 2-subgroup of GL(8, 3), with

|E| = 27 (there are just two of them, up to conjugation). Let H = NGL(8,3)(E) and

Q a Sylow 3-subgroup of H. Then with GAP [8] one checks that for every N = ET ,

where T varies among the representatives of conjugacy classes of elementary abelian

subgroups of Q, there exists an element v ∈ V with 3 - |CN (v)|, against our

assumptions.

If G ≤ GL(8, 5), then we have to consider the finer Inequality (1): the maximum

value of 22m|V |αm = 22m58αm , for m ∈ {1, 2, 3}, is attained when m = 2 (and it is

24 · 54). Nevertheless, even if m is 2 for every X ≤ N with |X| = 3, the left-hand

side of Inequality (1) (that is, 24 · 54 · 13) is still smaller than |V | = 58, again a

contradiction.

Finally, consider the case e = 16. We have A/F ≤ Sp(8, 2), thus r ∈ {3, 5, 7, 17}.
Moreover, the r-part of |Sp(8, 2)| is r if r ∈ {7, 17}, so these cases cannot occur. As

for r = 3 or r = 5, by Atlas [1] we have k ≤ 4 and k ≤ 2 respectively. If r = 5, then

Inequality (2) is satisfied for every qf ≥ 3, therefore also this case does not occur.

It remains to consider the case r = 3: here Inequality (2) holds whenever qf ≥ 5,

or qf ≥ 3 and k ≤ 3, so only the case k = 4, f = 1 and q = 3 is left. In other

words, G embeds into GL(16, 3). Now, consider Inequality (1): the maximum value

of 22m|V |αm = 22m316αm , for m ∈ {1, 2, 3, 4}, is attained when m = 4 (and it is

28 · 36). But even if m is set to be 4 for every X ≤ N with |X| = 3, the left-hand

side of Inequality (1) (that is, 211 · 36 · 5) is still smaller than |V | = 316. This is the

final contradiction, and the proof is complete.

We are now ready to describe the structure of solvable groups acting irreducibly

and with no 2′-deranged orbits (compare with [6, Theorem C]). In the following,

we will denote by P(Σ) the set consisting of the subsets of a set Σ.

Theorem 2.2. Let G be a solvable group, q a prime number, and V a faithful

irreducible G-module over GF(q). Assume that G is not a 2-group, and that there

are no 2′-deranged orbits for the action of G on V . Then q = 3 and G is isomorphic

to a subgroup of H o K, where H is isomorphic either to GL(2, 3) or to SL(2, 3),

and K is a (possibly trivial) 2-group.

Proof. Choose a subgroup T of G and a primitive submodule W of VT such that

V = WG (possibly T = G). Denoting by H the factor group T/CT (W ), we first

observe that, by Lemma 2.7 of [6], there does not exist any 2′-deranged orbit for the

action of H on W . Therefore, by Lemma 2.9 in [6], F(H) is a 2-group; moreover,

if H 6= F(H), then Theorem 2.1 yields H ' GL(2, 3) or H ' SL(2, 3).

In what follows, we shall keep in mind remarks 2.1 and 2.3 of [6]. In particular,

denoting by Σ a right transversal for T in G, we recall that G can be identified

with a subgroup of H oK, where K is a transitive subgroup of Sym(Σ); also, setting
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s = |Σ|, the group H oK (thus G) acts naturally on the direct sum W⊕s of s copies

of W , and the G-modules V and W⊕s are isomorphic.

We first show that K is a 2-group. Assume, working for a contradiction, that

K is not a 2-group. By Lemma 2.8 of [6], there exists a subset A of Σ such that

(A,Σ \ A) lies in a 2′-deranged orbit for the action of K on P(Σ). Now, take a

nonzero element w ∈W , and consider the element v of W⊕s whose ith component

is w if i ∈ A, whereas it is 0 if i 6∈ A. We claim that v lies in a 2′-deranged orbit

for the action of G on W⊕s. In fact, let k ∈ K be a 2′-element which does not

fix any element in the K-orbit of (A,Σ \ A), and let x ∈ G be a 2′-element that

is a preimage of k along the top projection of G onto K. Now, it is easy to see

that x does not fix any element in the G-orbit of v. Our claim is proved, yielding

a contradiction.

Hence, K is a 2-group. As G is not a 2-group and G is isomorphic to a subgroup

of H o K, we conclude that H is not a 2-group. Therefore, as observed above,

Theorem 2.1 applies to the action of H on W , and we are done.

3. Linear actions with no 3′-deranged orbits

In this section we deal with the case p = 3. As in the previous section, a key step

is the analysis of the primitive case, which is carried out in the following theorem.

Theorem 3.1. Let G be a solvable group, q a prime number, and V a faithful

primitive G-module of order qd. Assume that G is not a 3-group, and that there

are no 3′-deranged orbits for the action of G on V . Then q = 2, d ∈ {2, 6}, and

G is isomorphic to a subgroup of Γ(V ) acting naturally on V . More precisely, G is

isomorphic to Γ(22) if d = 2, whereas G is isomorphic to a Hall {2, 3}-subgroup of

Γ(26) if d = 6.

Proof. As in the proof of Theorem 2.1, we shall keep in mind Lemma 2.9 of [6],

together with Proposition 1.2 and the relevant notation. In particular, here F =

F(G) is a 3-group.

Since G is not a 3-group and it has no 3′-deranged orbits on V , in particular G

has no regular orbits on V . Hence, as e is a power of 3, by Theorem 3.1 of [14] we

get e ∈ {1, 3, 9}. As already mentioned, the condition e = 1 is equivalent to the

fact that G is isomorphic to a subgroup of Γ(V ) acting naturally on V ; therefore,

in this case, we are in a position to apply Proposition 1.4 (taking also into account

Remark 1.5), achieving the desired conclusion. In view of that, the rest of the proof

aims to exclude the other two possibilities for the value of e.

Let N/F be a chief factor of G. We claim that, in both cases e = 3 and e = 9,

there exist v ∈ V and a 3′-element x ∈ N such that x does not fix any element in

the G-orbit of v. In other words, we prove the existence of a 3′-deranged orbit for

the action of G on V , against the assumption.
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First we show that N/F cannot be cyclic. In fact, let r be a prime divisor

of |N/F | (clearly r 6= 3); if N/F is cyclic, then our assumption concerning 3′-

deranged orbits implies that r does not divide |N : CN (v)| for all v ∈ V . Since

N E G and V is a primitive G-module, we have that V is a pseudo-primitive

N -module. As N is not a subgroup of Γ(V ), and V has characteristic different

from 3, we are in the situation described in case (c) of Theorem 1.3; in particular,

e = 3 and G ≤ GL(6, 2). Now, GL(6, 2) has just one conjugacy class of extraspecial

3-groups of order 27 and exponent 3; let E be a representative of this class and

let H = NGL(6,2)(E). One sees that H, which is an extension of E by a group

isomorphic to GL(2, 3), has just two orbits on the nonzero elements of the natural

module V : one of size 36 and one of size 27. The centralizers in H of vectors in

the orbit of size 36 are isomorphic to S3 × S3. It follows that every subgroup of

H that contains an element of order 4 has a 3′-deranged orbit. It is easily checked

(for instance with GAP ([8])) that if G ≤ H has Sylow 2-subgroups of exponent 2,

then V is not primitive as a G-module. This contradiction excludes the possibility

that N/F is cyclic.

In particular, we get that N ≤ A, as otherwise N/F is a group of automorphisms

of the cyclic 3-group U and hence it is cyclic.

Also, if e = 3, we have A/F ≤ Sp(2, 3) = SL(2, 3), and again N/F would be

cyclic. Therefore, e 6= 3.

We henceforth assume e = 32. In this case, A/F is isomorphic to a subgroup

of Sp(4, 3). Write N = FR, where R is a Sylow r-subgroup of N , with r 6= 3. As

|Sp(4, 3)| = 27 · 34 · 5, it follows that R is an elementary abelian 2-group. Now, if T

is a Sylow 2-subgroup of Sp(4, 3), then T ' (Q8 ×Q8) : C2 and hence |R| must be

4; so R contains three involutions. Let x ∈ R be an involution and let X = 〈x〉. By

Lemma 2.2 of [5], [X,E] is an extraspecial 3-group. Write |[X,E]| = 32m+1. As in

the proof of part (3) of Lemma 2.4 in [5] (or of Lemma 2.4 in [14]), one sees that

|CV (x)| ≤ |V |α, where

α ≤ 1

2

(
3m + 1

3m

)
.

The eigenvalues of x are either 1 or −1. If x is not the central involution −I of

Sp(4, 3), then not all the eigenvalues of x are −1, so (as x has determinant 1) x

has exactly two eigenvalues 1 and two eigenvalues −1. Thus, if x 6= −I, we get

that |[X,E]| = 33, α ≤ 2/3 and there are at most 32 involutions conjugate to x in

N (since |CE(X)| = 33). In particular, in N there are at most 3 · 32 involutions

distinct from −I; in fact, if y ∈ N is an involution, then y is N -conjugate to an

element of R.

On the other hand, if x = −I, we have that |[X,E]| = 35, α ≤ 5/9 and there are

at most 34 involutions conjugate to x in N .

Now,

27q6f + 81q5f < q9f
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is always satisfied, as qf ≥ 4 (this follows from the fact that, denoting by W a

simple submodule of VU , qf is a power of |W |, and clearly U acts fixed-point freely

on W ; see [14, Theorem 2.2 part (6) and (7)]). Therefore, there is a v ∈ V which is

not centralized by any involution of N , giving a 3′-deranged orbit of G on V , the

final contradiction.

We shall also make use of the following notation.

Definition 3.2. Let Σ be a finite nonempty set. Given a positive integer k, we

define Pk(Σ) to be the set of ordered (k + 1)-tuples (Ξ1,Ξ2, . . . ,Ξk+1), where the

Ξj are (possibly empty) subsets of Σ such that Ξj ∩ Ξl = ∅ whenever j 6= l, and⋃k+1
j=1 Ξj = Σ. If G is a permutation group on Σ, then an action of G on Pk(Σ)

can be defined in a natural way. Note that, by associating Ξ ⊆ Σ with the pair

(Ξ,Σ \ Ξ), we will identify P(Σ) with P1(Σ).

We are now ready to deal with the irreducible case for p = 3. The following

statement should also be compared with Theorem C of [6].

Theorem 3.3. Let G be a solvable group, q a prime number, and V a faithful

irreducible G-module over GF(q). Assume that G is not a 3-group, and that there

are no 3′-deranged orbits for the action of G on V . Then q = 2 and one of the

following conclusions hold.

(a) G is isomorphic to a subgroup of H oK, where either H = Γ(22) or H is a Hall

{2, 3}-subgroup of Γ(26), and K is a (possibly trivial) 3-group.

(b) G is isomorphic to a subgroup of Γ(22) o (Sym(3) o P ), where P is a (possibly

trivial) 3-group.

Proof. As in Theorem 2.2, choose a subgroup T of G and a primitive submodule

W of VT such that V = WG (possibly T = G). Denoting by H the factor group

T/CT (W ), there are no 3′-deranged orbits for the action of H on W . Therefore

F(H) is a 3-group; moreover, if H is not a 3-group, then H ≤ Γ(W ) is one of the

two groups in the conclusions of Theorem 3.1.

Again, denoting by Σ a right transversal for T in G, we identify G with a

subgroup of H oK, where K is a transitive subgroup of Sym(Σ).

Let us consider the case when K is a 3-group. As G is not a 3-group and G is

isomorphic to a subgroup of H oK, we conclude that H is not a 3-group. Therefore,

as observed above, Theorem 3.1 applies to the action of H on W , and we get

conclusion (a).

In view of that, we shall henceforth assume that K is not a 3-group. If there

exists a subset A of Σ such that (A,Σ \ A) lies in a 3′-deranged orbit for the

action of K on P(Σ), then we can argue as in the third paragraph of the proof of

Theorem 2.2, getting a contradiction. We conclude that there does not exist any

3′-deranged orbit for the action of K on P(Σ).
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As K is assumed not to be a 3-group, we are in a position to apply Lemma 2.8

of [6], getting that K ' Sym(3) o P where P is a (possibly trivial) 3-group, and

that there exists a 3′-deranged orbit for the action of K on P2(Σ). Let (A,B,C)

be an element of P2(Σ) lying in such an orbit. Assume that H is not transitive on

W \ {0}, and choose two elements w, z of W \ {0} lying in distinct H-orbits. Set

now v to be the element of W⊕s whose ith component is w if i ∈ A, it is z if i ∈ B,

and it is 0 if i ∈ C. It is not difficult to see that v lies in a 3′-deranged orbit for

the action of G on W⊕s, again contradicting our assumptions.

Therefore, the action of H on W \{0}must be transitive. As we already observed,

F(H) is a 3-group. Now, set |W | = qn: if H = F(H), then qn−1 is a power of 3, so

we get q = n = 2 and |F(H)| = 3 (whence we get conclusion (b) of the statement).

On the other hand, if H 6= F(H) then Theorem 3.1 applies to the action of H on

W but, among the two groups in the conclusions of that theorem, only Γ(22) acts

transitively on W \ {0}. Therefore we get conclusion (b) as well.

4. The nonsolvable case

We conclude our analysis of groups whose p-Brauer character table does not

contain any zero by considering nonsolvable groups satisfying this condition. As

mentioned in the Introduction, only for p = 2 this class of groups turns out to be

non-empty.

Our first task is to keep under control the 2′-length of the solvable radical (i.e.

the largest solvable normal subgroup) in a group of this kind. Before stating and

proving the relevant results, it will be convenient to fix the following notation: for

a given group G, we set Dk(G) to be the (2k + 1)th term of the 2-series of G (i.e.,

Dk(G) = O2,2′,2,...,2′,2(G), where 2′ appears k times).

Lemma 4.1. Let Ω be a finite nonempty set, and let G be a primitive solvable

subgroup of Sym(Ω). Then there exist three subsets Ω1, Ω2 and Ω3 of Ω, lying in

pairwise distinct G-orbits of P(Ω), such that every 2′-element of the stabilizer GΩi

lies in D2(G) for i ∈ {1, 2, 3}.

Proof. Since G is a solvable group acting faithfully and primitively on Ω, we know

that G has a unique minimal normal subgroup V and, denoting by S the stabilizer

in G of a point, we have G = V S with V ∩ S = 1 and CS(V ) = 1. Moreover, V

acts regularly on Ω (so that |Ω| = |V | = pn for a suitable prime p and n ∈ N), and

the action of S on Ω is equivalent to the action by conjugation of S on V .

Following [11, Lemma 5.1], for g ∈ G, we denote by n(g) the number of 〈g〉-orbits

on Ω, and by s(g) the number of fixed points of g on Ω. We claim that, for every

nontrivial 2′-element g of G, we have

n(g) ≤ 2

3
|Ω|.
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In fact, if s(g) = 0, then n(g) ≤ |Ω|/3 because every 〈g〉-orbit on Ω has size at

least 3. On the other hand, if s(g) 6= 0, then we can assume g ∈ S and we get

s(g) = |CV (g)| ≤ |Ω|/p (where the last inequality holds because S acts faithfully

by conjugation on V ). Thus,

n(g) ≤ s(g) +
|Ω| − s(g)

3
≤ |Ω|

3
+

2

3
· |Ω|
p
≤ 2

3
|Ω|,

as desired.

Now, a subset Ξ of Ω is (setwise) stabilized by an element g ∈ G if and only if Ξ

is a union of 〈g〉-orbits. Therefore, an element g ∈ G stabilizes 2n(g) subsets of Ω,

and if g is a nontrivial 2′-element, then 2n(g) ≤ 2
2
3 |Ω|. As a consequence, if

(3) 2|Ω| − |G| · 2 2
3 |Ω| ≥ 3|G|,

then there are at least three subsets Ω1, Ω2 and Ω3 of Ω, lying in pairwise distinct

G-orbits of P(Ω), such that GΩi
is a 2-group for every i ∈ {1, 2, 3}. Taking into

account that, by [11, Corollary 3.6], we have |G| ≤ 1
2 |Ω|

13
4 , it can be checked that

inequality (3) holds provided |Ω| > 49.

We can therefore assume that |Ω| is either a prime p ≤ 47, or a prime power

in {22, 23, 24, 25, 32, 33, 52, 72}. In the former case, as S embeds in Aut(V ), the

group G is metacyclic, whence l2′(G) ≤ 1. In the latter case, in view of [11,

Theorem 2.11, Theorem 2.12 and Corollary 2.15], we get l2′(G) ≤ 2. Therefore, in

any case, D2(G) = G and the desired conclusion follows.

Proposition 4.2. Let Ω be a finite nonempty set, and let G be a transitive solvable

subgroup of Sym(Ω). Then there exists ∆ ⊆ Ω such that every 2′-element of G∆

lies in D2(G).

Proof. We can clearly assume |Ω| > 1. Let Γ be a minimal nontrivial block for

the action of G on Ω (i.e. |Γ| > 1, but we allow Γ = Ω) and, denoting by L the

pointwise stabilizer of Γ in G, set H = GΓ/L. In this situation, H can be identified

with a primitive subgroup of Sym(Γ). Also, let Σ be a right transversal for GΓ in

G; in view of remarks 2.1 and 2.2 of [6], G can be identified with a subgroup of

H o K, where K ≤ Sym(Σ) is a homomorphic image of G acting transitively on

Σ. Furthermore, the group H oK (thus G, as well) acts naturally on the cartesian

product Γ × Σ, and the G-sets Ω and Γ × Σ are equivalent. If |Σ| = s, then we

identify Σ with {1, 2, . . . , s} ⊆ N.

An application of [3, Corollary 4] to the action of K on Σ yields two disjoint

subsets Ξ1, Ξ2 of Σ such that KΞ1
∩KΞ2

is a 2-group, and we can consider the map

θ : Σ → {1, 2, 3} defined by θ(i) = j if i ∈ Ξj (for j ∈ {1, 2}), whereas θ(i) = 3

if i ∈ Σ \ (Ξ1 ∪ Ξ2). Also, applying Lemma 4.1 to the primitive action of H on

Γ, we obtain three subsets Γ1, Γ2, Γ3 of Γ which satisfy the conclusions of that

proposition. Now, set

∆ = {(γ, i) ∈ Γ× Σ : γ ∈ Γθ(i)};
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we claim that every 2′-element of G∆ lies in D2(G). In fact, let g be a 2′-element

in G∆, and (according to the identification of G with a subgroup of H oK) write g

as (h1, h2, . . . , hs) · k, where hr ∈ H for every r ∈ {1, . . . , s} and k ∈ K; it is easily

seen that k must lie in KΞ1
∩KΞ2

, and that every hr must lie in one of the HΓj
.

We conclude that k = 1 and hr ∈ D2(H) for every r ∈ {1, . . . , s} (note that k and

the hr are elements of odd order). Our claim follows, and the proof is complete.

Next, two results concerning group actions on modules over finite fields.

Lemma 4.3. Let G be a solvable group, and V a faithful primitive G-module over

a prime field. If there are less than five regular orbits for the action of G on V ,

then l2′(G) ≤ 2.

Proof. Taking into account the main result of [14], and following the notation intro-

duced in Proposition 1.2 (that we freely use throughout the proof), our assumption

on the number of regular orbits implies e ≤ 10 or e = 16.

If e = 1 then, by [11, Corollary 2.3(a)], the group G is isomorphic to a subgroup

of the semilinear group on V , therefore it is metabelian, and l2′(G) ≤ 1.

Assume now e ∈ {2, 3, 5, 7}. In this case, by Proposition 1.2(d), the factor group

A/F embeds into Sp(2, e) = SL(2, e) (more specifically, into a subgroup which is

maximal among the solvable subgroups of SL(2, e)). Using for instance [1] for the

cases e = 5 and e = 7, and setting T/F = O2,2′(A/F ), it can be checked that

|A/T | ≤ 2. In particular, A/T is central in G/T . This, together with the fact

that F is nilpotent and G/A is abelian (by Proposition 1.2), yields the desired

conclusion.

For the case e = 6, the factor group A/F embeds into SL(2, 2)×SL(2, 3) and we

get the same situation as in the paragraph above.

As regards the cases e ∈ {4, 8, 16}, we refer to the proof of Lemma 3.3 in [5] (part

(a), (b) and (c) respectively). It turns out that, setting T/F = O2′,2,2′(A/F ), we

get |A/T | ≤ 2 (whence A/T is central in G/T ). In any case, again taking into

account that F is nilpotent and G/A is abelian, we are done as well.

Finally, if e = 9, then A/F is isomorphic to a solvable and completely reducible

subgroup of Sp(4, 3), and the possible structure of A/F is described in Lemma 3.2

of [5]. In particular it is easily checked that, setting T/F = O2′,2,2′(A/F ), we get

again |A/T | ≤ 2, and the desired conclusion follows as above.

Proposition 4.4. Let G be a solvable group, and V a direct sum of irreducible

G-modules over prime fields (possibly not in the same characteristic) such that

CG(V ) = 1. Then there exists v ∈ V such that every 2′-element of CG(v) lies in

D3(G).

Proof. We start by proving the result under the additional assumption that V is

an irreducible G-module. As in Theorem 2.2, choose a subgroup T of G and a
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primitive submodule W of VT such that V = WG. Denoting by H the factor group

T/CT (W ) and by Σ a right transversal for T in G, we identify G with a subgroup

of H o K, where K is a transitive solvable subgroup of Sym(Σ). Also, if |Σ| = s,

then we identify Σ with the set {1, . . . , s} ⊆ N.

By [3, Corollary 4] there exist two disjoint subsets Ξ1, Ξ2 of Σ such thatKΞ1
∩KΞ2

is a 2-group. As in Proposition 4.2, we define a map θ : Σ → {1, 2, 3} by θ(i) = j

if i ∈ Ξj (for j ∈ {1, 2}), whereas θ(i) = 3 if i ∈ Σ \ (Ξ1 ∪ Ξ2).

If we can find three regular orbits for the action of H on W , then we choose an

element from each of them and we denote by x1, x2, x3 the relevant elements.

Now, consider the vector v = w1 +w2 + · · ·+ws ∈W⊕s whose ith component is

xθ(i). It is easy to see that, given an element g = (h1, . . . , hs) · k ∈ G (with hr ∈ H
and k ∈ K, according to the identification of G with a subgroup of H o K), the

element g fixes v if and only if k stabilizes both Ξ1 and Ξ2, and each hr centralizes

wr. In other words, CG(v) is a 2-group and we are done in this case.

Assume now that there do not exist three regular orbits for the action of H on

W ; in this situation, by Lemma 4.3, we get l2′(H) ≤ 2. If there exist at least

two H-orbits in W \ {0}, then take non-zero elements u1, u2 ∈ W lying in distinct

H-orbits and u3 = 0. Consider the vector v = w1 +w2 + · · ·+ws ∈W⊕s whose ith

component is uθ(i). As above, if g = (h1, . . . , hs) · k is a 2′-element in CG(v), then

k = 1 and hence g ∈ D2(G).

Finally, assume that H is transitive on W \ {0}. By Theorem 6.8 of [11], then

l2′(H) ≤ 1. An application of Proposition 4.2 to the action of K on Σ yields a

subset ∆ of Σ such that every 2′-element of K∆ lies in D2(K). Choose any nonzero

element x ∈ W , and define the vector v = w1 + w2 + · · · + ws ∈ W⊕s by setting

wi = x if i ∈ ∆ and wi = 0 otherwise. It is easily seen that, if g = (h1, . . . , hs)·k ∈ G
centralizes v, then k stabilizes ∆. As a consequence, if g has odd order, then k lies

in D2(K) and therefore g lies in D3(G), as wanted. This concludes the proof for

the irreducible case.

Finally, we go back to the general statement: assume V = V1⊕V2⊕· · ·⊕Vn, where

the Vi are irreducible G-modules. By our analysis in the irreducible case, for every

i ∈ {1, . . . , n} there exists vi ∈ Vi such that every 2′-element of CG/CG(Vi)(vi) lies

in D3(G/CG(Vi)). Setting v = v1 + · · · + vn and taking a 2′-element g in CG(v),

we clearly get g ∈
⋂

CG(vi). In particular, the image of g under the canonical

embedding of G into G/CG(V1) × · · · × G/CG(Vn) lies in D3(G/CG(V1)) × · · · ×
D3(G/CG(Vn)), and the conclusion easily follows.

We are now in a position to provide an upper bound for the 2′-length of the

solvable radical of G, under the assumption that the 2-Brauer character table of G

has no zeros.

Theorem 4.5. Let G be a group, and assume that the 2-Brauer character table of

G does not contain any zero. Then the solvable radical of G has 2′-length at most 4.
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Proof. Since the hypothesis is clearly inherited by the factor group G/O2(G),

we can assume O2(G) = 1. Therefore, denoting by S the solvable radical of

G, the group V = F(S)/Φ(S) has odd order. Moreover, by Gaschütz Theo-

rem ([9, III.4.5]), V is a direct sum of irreducible S-modules; the same holds for

V̂ := Irr(V ) = IBr2(V ), where the last equality is due to the fact that |V | is an odd

number, and we have CS(V̂ ) = CS(V ) = F(S).

Now, by Proposition 4.4, we can find µ ∈ V̂ such that every 2′-element in

CS/F(S)(µ) lies in D3(S/F(S)). Thus, regarding µ as an element of IBr2(F(S)),

every 2′-element in IS(µ) lies in D4(S).

Working for a contradiction, assume D4(S) 6= S; then, as can be easily seen,

there exists g ∈ S \ D4(S) such that g is a 2′-element. Clearly g does not lie in

IS(µ), but, for every x ∈ G, it also does not lie in IS(µx) (this follows from the fact

that D4(S) is a normal subgroup of G). Therefore we have

g 6∈
⋃
x∈G

IG(µ)x.

Finally, take φ ∈ IBr2(G) lying over µ; since φ is induced by an irreducible 2-Brauer

character of IG(µ), it vanishes on every 2′-element in G \
⋃
x∈G IG(µ)x. But then

we get φ(g) = 0, the final contradiction which completes the proof.

In order to complete our analysis, we will need one last result on permutation

actions. Note that in the following lemma we are not requiring that the permutation

group is transitive (although we are going to apply it to a transitive action).

Lemma 4.6. Let Ω be a finite nonempty set and let G be a subgroup of Sym(Ω).

Assume that G is not a 2-group. Then there exists an odd prime divisor p of |G|
and two disjoint subsets ∆1 and ∆2 of Ω such that p does not divide |G∆1

∩G∆2
|.

Proof. By Theorem 2 of [3], it is enough to show that if G is primitive on Ω, then

there exist (at least) three p-regular orbits of G on P2(Ω), i.e., orbits of size divisible

by the full p-part of |G|.
If Alt(Ω) 6≤ G or |Ω| ≤ 4, this follows from part (b) of Lemma 1 in [3].

So we can assume that Ω = {1, 2, . . . , n} with n ≥ 5, and that G is either

An or Sn. As a consequence of Bertrand’s Theorem, there exists a prime p ≤ n,

such that p > m = dn/2e (so m = n/2 if n is even, and m = (n + 1)/2 if n

is odd). Then ({1, . . . ,m}, {m + 1, . . . , n}, ∅), ({1, . . . ,m}, ∅, {m + 1, . . . , n}) and

(∅, {1, . . . ,m}, {m + 1, . . . , n}) are elements of three distinct p-regular orbits of G

on P2(Ω).

In the proof of the following theorem, we will make use of the results in [10]. As

mentioned in the Introduction, L will denote the class of the simple groups defined

as follows:

L = {L2(2a), a ≥ 2; L2(q), q = 2a + 1 ≥ 5; 2B2(22a+1), a ≥ 1; S4(2a), a ≥ 2}.
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Theorem 4.7. Let G be a group with no nontrivial normal solvable subgroups.

Assume that the 2-Brauer character table of G does not contain any zero. Then the

generalized Fitting subgroup F∗(G) of G is a direct product of simple groups in L
and G/F∗(G) is a 2-group.

Proof. Set N = F∗(G): as F(G) = 1, N is a direct product of nonabelian minimal

normal subgroups. Let M be a minimal normal subgroup of G, thus M = S1 ×
S2 · · · × Sm where the subgroups Si are isomorphic to a nonabelian simple group

S.

If S 6∈ L, then by [10, Theorem 1.2] there exists a character φ ∈ IBr2(S) and a

2′-element x ∈ S such that φa(x) = 0 for all a ∈ Aut(S). Let ψ = φ×φ× · · · ×φ ∈
IBr2(M) and let η ∈ IBr2(IG(ψ)) be a character lying above ψ. Then, by Clifford

Correspondence, θ = ηG ∈ IBr2(G). Let g = x × x × · · · × x ∈ M . Since θ(g) is a

sum of products whose factors are of the type φa(x) for some a ∈ Aut(S), we get

the contradiction θ(g) = 0.

Thus, N is a direct product of groups in the class L. It remains to prove that

G/N is a 2-group. Write N = M1 ×M2 × · · · ×Mk, where the Mi are the minimal

normal subgroups of G. If k > 1, then by induction G/MiCG(Mi) is a 2-group for

each i = 1, 2, . . . , k. Since G/N is isomorphic to a subgroup of the direct product of

the factor groups G/MiCG(Mi), we can assume that N = M is the unique minimal

normal subgroup of G. Recalling that M = S1 × S2 × · · · × Sm, with Si ' S ∈ L,

set L =
⋂m
i=1 NG(Si). We will first show that L/M is a 2-group. Now, L/M is a

subgroup of a direct product of copies of the outer automorphism group Out(S) of

S. If S = L2(q) with q = 2a + 1, then either q is a Fermat prime or q = 9 and

hence Out(S) is a 2-group (either C2 or C2 × C2, respectively). Therefore, we can

assume that S is either L2(2a), 2B2(22a+1) or S4(2a). In this case O = Out(S)

is cyclic (and S has no nontrivial diagonal automorphism). We claim that O has

a regular orbit on IBr2(S). To show this, we recall that by Theorem 3.1 of [7],

there exists an odd order element g ∈ S such that CAut(S)(g) = 〈g〉. It follows

that the S-conjugacy class gS of g is fixed only by inner automorphisms of S (in

fact, if α ∈ Aut(S) fixes gS , then there exist an element x ∈ S such that gα = gx;

so αx−1 ∈ CAut(S)(g) ≤ S and hence α is an inner automorphism of S). Since

O is cyclic and the 2-Brauer character table is a non-singular matrix, by Brauer

Permutation Lemma there exists a character φ ∈ IBr2(S) such that IAut(S)(φ) ≤ S.

Let ψ = φ×φ× · · ·×φ ∈ IBr2(M). Then IG(ψ)∩L = M . Let ψ̂ ∈ IBr2(IG(ψ)) be

a character lying above ψ and θ = ψ̂G. Thus θ ∈ IBr2(G) and θ(y) = 0 for every

y ∈ L \M , and hence we conclude that L/M is a 2-group.

Finally, we show that G/L is a 2-group, too. First, we observe that, for every

simple group S ∈ L, there are at least three distinct degrees for irreducible 2-

Brauer characters. For the groups in characteristic 2, this follows by considering

that the Steinberg character gives an irreducible Brauer character (by restriction
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to the elements of odd order) and that not all nonprincipal characters can have

2-defect zero. For S = L2(q), where q = 2a + 1, IBr2(S) has both a characters of

degree 2a (i.e. of 2-defect zero) and of degree 2a−1 (see, for instance, [2, Section

VIII (a)]). So, let a and b be distinct degrees of nonlinear characters in IBr2(S).

Assume, working by contradiction, that G/L is not a 2-group. Now, G = G/L is

a permutation group on Ω = {S1, S2, . . . , Sm} and by Lemma 4.6 there exist an

odd prime divisor p of |G| and disjoint subsets ∆1,∆2 ⊆ Ω such that p does not

divide |G∆1 ∩G∆2 |. Consider ψ = φ1 × φ2 × · · · × φm, where φi ∈ IBr2(Si) is such

that φi(1) = a if Si ∈ ∆1, φi(1) = b if Si ∈ ∆2, and φi = 1Si
otherwise. Since

IG(ψ)L/L ≤ G∆1
∩ G∆2

is a p′-group, a p-element g ∈ G \ L cannot lie in any

G-conjugate of IG(ψ). Therefore, if θ ∈ IBr2(G) lies over ψ, we get θ(g) = 0, a

contradiction. Hence G/L is a 2-group, and the proof is complete.

5. Brauer character tables with no zeros

As an application of the results in the previous sections, we can now derive

Theorem A, that was stated in the Introduction. For solvable groups, the argument

is essentially the same as in Theorem A of [6], except for the fact that the results

about linear actions obtained there have to be replaced with those of the present

paper. However, for the convenience of the reader, we give here a complete proof.

We start with a preliminary remark.

Remark 5.1. Let B and C be groups acting on disjoint sets Γ and ∆. Then B×C
acts in a natural way on the union Γ∪∆ and, for any group A, the wreath product

A o (B × C) is isomorphic to (A oB)× (A o C).

Proof of Theorem A. We first consider the case of a solvable group G. Observe

that our assumption on the Brauer character table is obviously inherited by factor

groups. In view of this fact, it will be enough to prove Theorem A in the case when

the Frattini subgroup Φ(G) of G is trivial; this extra assumption ensures that

F := F(G) is a completely reducible G-module (possibly in mixed characteristic).

Let V be a minimal normal subgroup of G. Then V̂ = Irr(V ) = IBrp(V ) (recall

that p does not divide |V |) is a faithful irreducible G/CG(V ) module. Take µ ∈ V̂
and let φ ∈ IBrp(G) lying over µ. By Clifford correspondence (see for instance [12,

(8.9)]), φ is induced from an irreducible Brauer character of IG(µ), and therefore

it vanishes on every p′-element not belonging to the set S =
⋃
x∈G IG(µx). Since

the Brauer character φ has by assumption no value equal to zero, every p′-element

of G lies in S and hence we conclude that there are no p′-deranged orbits for the

action of G/CG(V ) on V̂ .

If p = 2, then either G/CG(V ) is a 2-group or we can apply Theorem 2.2

and conclude that G/CG(V ) is a {2, 3}-group with elementary abelian Sylow 3-

subgroups (moreover, V is a 3-group).
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Assume now that p = 3 and that G/CG(V ) is not a 3-group. Then Theorem 3.3

yields that G/CG(V ) is a {2, 3}-group (and V a 2-group); moreover, G/CG(V ) has

elementary abelian Sylow 2-subgroups and l3′(G/CG(V )) ≤ 1, unless G/CG(V ) is

isomorphic to a subgroup of Γ(22) o (Sym(3) o P ) ' (Sym(3) o Sym(3)) o P , where P

is a 3-group.

Writing F = V1 × · · · × Vn where the Vi are minimal normal subgroups of G,

and observing that F =
⋂n
i=1 CG(Vi), conclusions (a) and (c) now follow (also

taking into account Remark 5.1) because G/F can be regarded as a subgroup of

G/CG(V1)× · · · ×G/CG(Vn).

Assume now that G is nonsolvable. Then, by Theorem 1.3 of [10], p = 2. Let

R be the solvable radical of G. By Theorem 4.5, we get that l2′(R) ≤ 4. An

application of Theorem 4.7 to the factor group G/R yields conclusion (b).

We believe that the structure description in case (b) of Theorem A could be

improved. One possible strategy is studying the action on the generalized Fitting

subgroup. However, we did not pursue this line of analysis, as we did not have

sufficient information on primitive module actions of nonsolvable groups.

Finally, we prove Theorem B.

Proof of Theorem B. The bounds on lp(G) and lp′(G), for both p = 2 and p = 3,

follow easily from (a) and (c) of Theorem A.

Let p = 2 and assume (by factoring out O2(G)) that O2(G) = 1. Write H =

O2(G). Note that F = F(G) = F(H) is a 2′-group and let F = T × B, where T

is a 3-group and B is a {2, 3}′-group. Let Q be a Sylow q-subgroup of F , for some

prime divisor q of F (so, q 6= 2).

Let N and M be normal subgroups of G such that Φ(Q) ≤ N ≤ M ≤ Q and

M/N is a chief factor of G. Let V = IBr2(M/N) be the dual group of M/N . As

in the second paragraph of the proof of Theorem A, one gets that the action of

G/CG(V ) on V has no 2′-deranged orbits. So, by applying Theorem 2.2 to the

action of G on the dual groups V1, . . . Vn of a G-chief series of Q/Φ(Q) we conclude

that G/C, where C =
⋂n
i=1 CG(Vi) coincides with the stabilizer of the series, is a

2-group if q 6= 3 and a subgroup of a direct product of copies of GL(2, 3) if q = 3.

Therefore, recalling that C/CG(Q) is a q-group, we conclude that H/CH(Q) is

a (possibly trivial) q-group if q 6= 3 and that it is a {2, 3}-group if q = 3. We deduce

that
H

F
=
FCH(B)

F
× FCH(T )

F

where FCH(B)/F is a {2, 3}-group and FCH(T )/F is a nilpotent {2, 3}′-group.

For a prime divisor q 6= 3 of |F |, letQ0 be a Sylow q-subgroup ofH. ThenQ0F E H

and Q0 acts trivially on the q-complement of F . It follows that Q0 is normal in Q0F

and hence Q0 = Q. So, q does not divide |H/F | for all primes q 6= 2, 3. Hence, we
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conclude that H = FCH(B) and hence that H = A×B where A is a {2, 3}-group

and B is a nilpotent {2, 3}′-group.

When p = 3, one argues similarly, using Theorem 3.3.
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