Sensory descriptors, hedonic perception and consumer’s attitudes to Sangiovese red wine deriving from organically and conventionally grown grapes

Ella Pagliarini 1, Monica Laureati 1* and Davide Gaeta 2

1 Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
2 Dipartimento di Economia Aziendale, Università degli Studi di Verona, Verona, Italy

In recent years, produce obtained from organic farming methods (i.e., a system that minimizes pollution and avoids the use of synthetic fertilizers and pesticides) has rapidly increased in developed countries. This may be explained by the fact that organic food meets the standard requirements for quality and healthiness. Among organic products, wine has greatly attracted the interest of the consumers. In the present study, trained assessors and regular wine consumers were respectively required to identify the sensory properties (e.g., odor, taste, flavor, and mouthfeel sensations) and to evaluate the hedonic dimension of red wines deriving from organically and conventionally grown grapes. Results showed differences related mainly to taste (sour and bitter) and mouthfeel (astringent) sensations, with odor and flavor playing a minor role. However, these differences did not influence liking, as organic and conventional wines were hedonically comparable. Interestingly, 61% of respondents would be willing to pay more for organically produced wines, which suggests that environmentally sustainable practices related to wine quality have good market prospects.

Keywords: odor, taste, organic wine, consumer expectation, sensory, willingness to pay

INTRODUCTION

The sensory analysis of wine has always given rise to interest both in the scientific community and among consumers. Wine is tightly tied to psychological aspects besides being purely sensory. There have been many studies carried out on different aspects connected with wine tasting such as the cognitive and perceptual processes that characterize wine expertise. Wine-tasting expertise involves advanced discriminative and descriptive abilities with respect to wine. While the basis of wine expertise remains unknown, differences in performance between experts and novices are relatively clear (Lawless, 1984; Noble et al., 1987; Solomon, 1990; Hughson and Boakes, 2002; Zucco et al., 2011). Wine-tasting experts such as sommeliers have obviously a greater wine experts but not novices to judge the product as sweeter than tasterively. Pangborn et al. (1963) found that such a modification led white wines were colored to obtain rosé and red wines, respectively.

The primary goal of organic agriculture is to minimize all forms of pollution and to avoid the use of synthetic fertilizers and pesticides, thus optimizing the health and productivity of soil, plants, animals, and humans.

In recent years, consumers have become increasingly concerned by the effects of conventional agricultural production practices on both human and environmental health. As a consequence, production obtained from organic farming methods has been rapidly growing in developed countries. This may be explained as organic food adequately meets all requirements for quality, genuineness, and healthiness (Forbes et al., 2009). Recent evidence has also shown an increase of the related literature, even though studies are still few in number. The studies comparing foods derived from organic and conventional growing systems focused mainly on three topics: nutritional value, sensory quality, and food safety (Bourn and Prescott, 2002).

Relative to the nutritional value of wine, its antioxidant activity and benefit on health were addressed (Remaud and De Lorgeril, 1992), showing that phenolic compounds are natural anti-inflammatory and efficient scavengers of free radicals (Alcay et al., 2004). As to the sensory quality of food products, reports indicate that organic and conventional fruits and vegetables may differ on a variety of sensory aspects; however, findings are inconsistent (Bourn and Prescott, 2002). Therefore, the assumption of organic food having a better taste may be explained by the consumer’s expectation of a healthier and safer product evoked by the label “organic food” (Deliza and MacFie, 1996). Indeed,
At variance from conventionally cultivated grapes neither insec-
tence food preference, the hedonic dimension of organic and
properties, such as odor, taste, flavor, and mouthfeel sensations,
main aim of this work is to identify and describe the sensory
ies are available on Sangiovese red wine sensory quality. Thus, the
as Chianti and Brunello di Montalcino. T o our knowledge no stud-
be cultivated conventionally and organically and found that
organic wines had a sensory profile similar to that of the conven-
tional ones, but lower odor intensity. The same findings were
reported by Dupin et al. (2000), who examined German wines
and found that organic products tended to be less aromatic than
conventional ones.

“Sangiovese” (Vitis vinifera L.) is the most widely consumed
Italian wine. It is used to produce prestigious Tuscan wines such
as Chianti and Brunello di Montalcino. To our knowledge no stud-
ies are available on Sangiovese red wine sensory quality. Thus, the
main aim of this work is to identify and describe the sensory
properties, such as odor, taste, flavor, and mouthfeel sensations,
that characterize organically and traditionally grown Romagna
Sangiovese red wines. Also, as sensory properties greatly influ-
ence food preference, the hedonic dimension of organic and
conventional wines was investigated.

MATERIALS AND METHODS

WINES

The red wines evaluated in the present study were produced from
ripe grapes from Vitis Vinifera Sangiovese harvested in Septem-
ber 2007 and 2008 in the region of Faenza (Italy). The grapes
were derived from two different farms located in adjacent areas
and subjected to similar environmental conditions. For both vin-
tages, one farm produced grapes according to organic techniques
whereas the other adopted conventional agricultural techniques.
At variance from conventionally cultivated grapes neither insect-
icides nor synthetic fertilizers were used in organic agriculture
during the growth.

All wines were produced following the same process according
to PDO (Protected Designation of Origin) specifications. Wines
were analyzed 6 months after they were bottled. Three bottles from
the organic and three from the traditional production of vintage
2007 were randomly selected to be used for sensory analysis and
the same procedure was used for vintage 2008.

SENSORY ANALYSIS

PARTICIPANTS

Descriptive analysis of wines: 12 assessors (seven women and
five men) aged on average 27.0 ± (SD) 3.5 years (range 23–
35 years) were selected. They were trained to evaluate organic
and conventional wines from vintages 2007 and 2008.

Hedonic test of wines: a second group of 100 (50 women and
50 men) regular red wine consumers (inexpert individuals with
no formal wine training) aged on average 32.1 ± (SD) 9.6 years
(range, 20–60 years) participated.

The participants were students and employees of the University
of Milan, who reported liking red wine and consuming it more
than twice a month. None of the participants had previous or
present taste or smell disorders. The study was in accordance with
the Declaration of Helsinki. The protocol was approved by the
Institutional Ethics Committee at the study site. Informed consent
was obtained from all subjects.

Descriptive analysis

Descriptive analysis (Lawless and Heymann, 1998; ISO Interna-
tional Organization for Standardization, 2003) was used to identify
and quantify the sensory properties of organic and conventional
wines from two successive vintages.

Training phase: subjects were trained over a period of 2 months.
During the first part of the training, assessors tasted Romagna
Sangiovese wines and set up a list of descriptors that characterized
the wines. To do so, assessors wrote down as many terms as they
could to describe the sensory characteristics fully. Assessors agreed
through panel discussion on what terms were relevant, and arrived
at definitions for each term. At this stage, a reference product was
provided in order to help the assessors to understand each term.

Evaluation phase: after training was completed, the panel evalu-
ated the two wines (organic vs. conventional) in triplicate. Judges
were instructed to drink and swallow each sample and rate the
intensity of each attribute using a nine-point scale (1 = absence
of the sensation and 9 = maximum intensity). The sessions
were performed on the same day (with a minimum 2-h break
between the sessions) at the sensory laboratory of the Depart-
ment of Food, Environmental and Nutritional Sciences (DeFENS,
Università degli Studi di Milano) designed in accordance with
ISO guidelines (ISO International Organization for Standardiza-
tion, 2007). Data acquisition was done using Fizz v2.31 software
(Biosystèmes, Couternon, France). Assessors were asked not to
smoke, eat or drink anything, except water, at least 1 h before
the tasting sessions. For each sample, judges received a 30 ml
sample served in glasses coded with a three-digit number and
covered with a Petri dish to avoid the escape of volatile compo-
nents. Participants were provided with mineral water and unsalted
crackers to clean their mouth between tastings. Wines were served
at 18 ± 1°C. Presentation orders were systematically varied over
assessors and replicates in order to balance the effects of serving
order and carryover (MacFie et al., 1989).

Consumer’s preference and attitude toward wine consumption

Since the sensory properties of a food are among the primary
determinants of food preference and choice, we also investigated
the hedonic qualities of organic and conventional Romagna San-
giovese wines. For this purpose, the two wines under study, organic
and conventional from vintage 2008, were evaluated along with
four other Romagna Sangiovese wines from the same vintage pro-
duced according to conventional agriculture techniques, which
were purchased in local wineries and were comparable for price
category to those under study. Due to practical constraints (i.e.,
no availability of wine), the wines from vintage 2007 were not
included in the hedonic evaluation.

Consumers were invited to take part in a hedonic test carried
out at the DeFENS sensory laboratory. Each participant received
a series of six wines (20 ml for each product) served in glasses
coded with three-digit numbers and covered with Petri dishes. For
each sample, participants were instructed to drink and swallow
the wine and rate the degree of liking using a seven-point hedo-
nic scale (with 1 = extremely disliked and 7 = extremely liked;
Lawless and Heymann, (1998). Consumers were asked to drink mineral water and to eat a piece of unsalted cracker to clean their mouth between tastings. Also, they were asked not to smoke, eat or drink anything, except water, 1 h before the tasting session. Data were collected using Fizz v2.31g software program (Biosystemes, Couteron, France). Wines were evaluated under standard light conditions at a temperature of 18 ± 1°C. In order to balance the effects of serving order and carryover, the presentation order of the wines was randomized. After the liking test, the subjects were asked a few questions about their wine consumption habit and organic wine purchase likelihood.

RESULTS

DESCRIPTIVE ANALYSIS

The panel generated a total of 12 descriptors that characterize the sensory profile of the wines: four odor descriptors (fruity, spicy, woody, and vanilla), two taste descriptors (sour and bitter), three flavor descriptors (fruity, spicy, and woody) and three mouthfeel sensations (astringent, alcohol, and body). Complete definitions and standard products for all descriptors are listed in Table 1.

Mean intensity ratings of organic and conventional wines are reported in Figures 1 and 2. Intensity data for each sensory descriptor from the two vintages were analyzed separately through ANOVA with Wines (organic vs. conventional), Judges, Replicates (rep 1 vs. rep 2 vs. rep3) as factors. Relative to vintage 2007, Wines were significantly different for sour taste (F = 10.31, p < 0.01), bitter taste (F = 8.87, p < 0.05) and astringency (F = 51.13, p < 0.001). Post-hoc comparison using the Bonferroni test (p < 0.05) showed that organic wine was perceived as having a higher intensity of sour taste, and astringent sensation but lower bitter taste. Differences between the two wines from vintage 2008 concerned only astringency (F = 13.66, p < 0.01), with organic wine having a higher intensity. The effect of Judges was significant (p < 0.05), which is expected because individuals can of course have different sensitivities to the different descriptors. This effect can seldom be changed by

<table>
<thead>
<tr>
<th>Table 1</th>
<th>List of the 12 sensory descriptors of Romagna Sangiovese PDO wines with their relevant definitions and reference standards.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odor</td>
<td>Definition</td>
</tr>
<tr>
<td>Fruity</td>
<td>Characteristic odor of a combination of blueberry, raspberry, and blackberry perceived by means of the sense of smell (orthonasal perception)</td>
</tr>
<tr>
<td>Spicy</td>
<td>Characteristic odor of a combination of spices (cinnamon and clove) perceived by means of the sense of smell (orthonasal perception)</td>
</tr>
<tr>
<td>Vanilla</td>
<td>Characteristic odor of vanilla perceived by means of the sense of smell (orthonasal perception)</td>
</tr>
<tr>
<td>Woody</td>
<td>Characteristic odor of toasted wood perceived by means of the sense of smell (orthonasal perception)</td>
</tr>
</tbody>
</table>

Taste	**Definition**	
Sour	One of the basic tastes, caused by solution of acidic compounds perceived in the oral cavity	Anhydrous citric acid (2 g) in 0.7 l of red table wine
Bitter	One of the basic tastes, caused by solution of bitter compounds perceived in the oral cavity	Caffeine (0.8 g) in 0.5 l of red table wine

Flavor	**Definition**	
Fruity	Characteristic odor of a combination of blueberry, raspberry, and blackberry perceived by means of the sense of smell (orthonasal perception)	Infusion (24 h, 4°C) of 12 blueberries, two raspberries, and one blackberry in 0.5 l of red table wine
Spicy	Characteristic odor of a combination of spices (cinnamon and clove) perceived by means of the sense of smell (orthonasal perception)	Infusion (24 h, 4°C) of 16 cloves and one cinnamon stick in 0.5 l of red table wine
Woody	Characteristic odor of toasted wood perceived by means of the sense of smell (orthonasal perception)	Guaiacol in red table wine (2 ppb)

Mouthfeel	**Definition**	
Astringent	Mouth dryness caused by tannins and perceived in the oral cavity	Dissolve 1.5 g of tannin in 750 ml of red table wine
Alcohol	Characteristic heat/burning sensation perceived in the oral cavity	Mix 40 ml of 95% ethyl alcohol with 500 ml of red table wine
Body	Characteristic perceived in the oral cavity, due to the friction among the molecules in a liquid, that gives to it a limited fluidity and mobility	Mix 6 ml of glycerol with 1 l of red table wine
training (Lea et al., 1997). Also, data analysis showed that F values for Replicates and interactions between Wines and Judges, Judges and Replicates and Wines and Replicates were not significant ($p < 0.05$) for nearly all the attributes. These results indicated that the mean scores for each wine given by the assessors for each attribute could be assumed to be satisfactory estimates of the sensory profile of the samples (i.e., good panel reliability).

STUDY OF CONSUMER PREFERENCE AND ATTITUDE TOWARD WINE CONSUMPTION

Mean hedonic ratings and standard errors for organic and conventional Romagna Sangiovese wines are reported in Table 2. Data analysis by means of one-way ANOVA showed significant differences ($F = 2.42, p < 0.05$) between wines for liking ratings. Post-hoc comparison using the Bonferroni test ($p < 0.05$) showed that organic and conventional wines from vintage 2008 were not significantly different and showed liking ratings comparable to other commercial wines (Sangiovese A, B, and C).

The same subjects involved in the hedonic study were also asked to answer a few questions about their attitude toward wine consumption (see, Table 3). About 59% of the subjects were habitual red wine consumers. The largest part (85%) of the wine used was mostly for home consumption. Wine is purchased at retail shops (59%) and most of the consumers are used to spending no more than 7 euros for a bottle of wine. Finally, it is interesting to note that when asked about the purchase of organically produced wine, 61% of them declared they would be willing to pay more for such product.

DISCUSSION

The present study investigated the sensory and hedonic qualities of red wines derived from organically and conventionally grown grapes. The examined wines were Romagna Sangiovese red wines. The descriptive analysis identified specific olfactory properties that characterize these wines, namely fruity, spicy, vanilla, and woody odors and flavors. Odor is a relevant sensory attribute of food, as well as of wines, which lead consumer’s preference and choice.
Also, the quality and specificity of each wine are associated in most cases with a specific odorant. This study has shown that the organic and conventional wines differed marginally in the intensity of sensory descriptors. Only the properties of taste and mouthfeel sensations distinguished the two types of wine, whereas odor and flavor seemed to play a minor role. Organic wine from vintage 2007 was perceived as more sour and astringent but less bitter than its conventional counterpart, whereas differences between wines from vintage 2008 concerned only astringency.

In addition, the differences between wines did not influence liking, as organic and conventional wines were hedonically comparable. This means that consumers are not able to discriminate among organic and conventional wines from a hedonic point of view. One reason relates to their lack of formal training in sensory evaluation, which leads them only to detect major differences among products with less sensitivity to more subtle differences. It may be assumed that differences in liking could have been perceived between organic and conventional wines from vintage 2007, which showed larger differences in the intensity of some sensory qualities (i.e., bitter taste, sour taste and astringency) than wines from vintage 2008. Unfortunately, this hypothesis could not be verified, as wines from vintage 2007 were not included in the hedonic comparison. Nevertheless, self-reported comments by the participants suggest that even though the organic wine from vintage 2007 showed a high intensity of sourness and astringency, it was judged equally liked as its conventional counterpart.

The issue of comparing the hedonic qualities of organically and conventionally produced food has been tackled by various authors...
Table 3 | Results from the questionnaire related to wine consumption habit and organic wine purchase intention.

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer (%)</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>How would you define yourself?</td>
<td>59</td>
<td>Habitual wine consumer (2 or more times a month)</td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>Occasional wine consumer (less than twice a week)</td>
</tr>
<tr>
<td>Wine purchase is mainly destined to...</td>
<td>85</td>
<td>Home consumption</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Restaurant consumption</td>
</tr>
<tr>
<td>Where do you usually buy wine?</td>
<td>12</td>
<td>Wine shops</td>
</tr>
<tr>
<td></td>
<td>59</td>
<td>Retail shops</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>Wineries</td>
</tr>
<tr>
<td>How much do you usually pay for a bottle of wine?</td>
<td>3</td>
<td>Less than 3 euros</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>Between 3 and 5 euros</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>Between 5 and 7 euros</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>Between 7 and 10 euros</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>More than 10 euros</td>
</tr>
<tr>
<td>Would you be willing to pay an extra charge for an organically produced wine?</td>
<td>23</td>
<td>Yes, less than 10%</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>Yes, between 10 and 20%</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Yes, between 20 and 30%</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Yes, more than 30%</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>No</td>
</tr>
</tbody>
</table>

with respect to different food products, e.g., yogurt (Laureati et al., 2013), cheese (Napolitano et al., 2010a), meat (Napolitano et al., 2010b), and beer (Caporale and Monteleone, 2004). Interestingly, in these studies the liking of organic and conventional products has been evaluated under different information conditions: the blind condition (i.e., consumers taste and judge the product without any kind of information); the expected condition (i.e., consumers do not taste the product and judge it only on the basis of written or visual information); and the informed condition (i.e., consumers taste and judge the product after having read written information and/or seen an image). The main outcome of these studies is that organic products are liked more than their conventional counterparts but only in informed conditions, namely when consumers knew that they were to taste an organic food. Thus, it would seem that organic products are liked more because of the “healthier” connotation they have in the consumer’s mind rather than for an actual preference based on perceptual attributes. Also, the influence of information about organic production on consumers’ food preferences and expectations is especially evident in the case of consumers who are more interested in and proactive for “sustainable” products (Laureati et al., 2013). This suggests that expectation plays an important role for food consumption, since it may improve or degrade the perception of a product, even before it is tasted (Delius and MacFie, 1996; Dalton et al., 1997). In this respect, it should be pointed out that the Sangiovese wines used in the present study were evaluated under blind conditions, without any information concerning production method. Thus, consumers’ liking derives mainly from the mere sensory perception of the wines without any pre-conceived ideas due to their knowledge about the product.

Finally, an interesting result is that most of the consumers declared themselves willing to pay more for organically produced wines. This result is in line with the finding of a recent study by Lockshin and Corsi (2012) who reported that consumers in European countries as well as in the United States, New Zealand and Australia are willing to pay more for organic wines mainly for health and environmental reasons but also because consumers are interested in helping producers who adopt these innovations. Of course cognitive factors as personal expectancies addressed above have room. Therefore, a greater predisposition to pay an additional charge for organic wine may be due to specific consumers’ attitude and involvement in sustainability issues.

In conclusion, the present study evidenced the sensory properties that characterize red wines from organically and conventionally grown grapes. The differences detected from a quantitative point of view are only marginal, and do not seem to have an impact on consumer’s hedonic perception. A limitation of this study may be that only two vintages of one grape variety of organic and conventional wines were considered. Further research is needed to clarify this aspect. In this context, future perspectives of study should deal with the study of sensory and hedonic qualities of wine, which are undoubtedly the strongest determinants of consumer’s expectations and play a key role in consumer’s purchase attitude. This aspect seems to be particularly relevant for wines deriving from organically and conventionally grown grapes since environmentally sustainable practices related to wine quality seem to have good market prospects.

ACKNOWLEDGMENT

The authors would like to thank professor Zucco for comments and criticisms on an early draft.

REFERENCES

Organs Vinculis, eds H. Willer and U. Meier (Bad Dürkheim, D: Print-Online), 245–251.

