TgpA, a Protein with a Eukaryotic-Like Transglutaminase Domain, Plays a Critical Role in the Viability of Pseudomonas aeruginosa

Andrea Milani, Davide Vecchietti, Ruggero Rusmini, Giovanni Bertoni*
Department of Life Sciences, Università degli Studi di Milano, Milan, Italy

Abstract
The Gram-negative bacterium Pseudomonas aeruginosa is an important opportunistic pathogen in compromised individuals, such as patients with cystic fibrosis, severe burns or impaired immunity. In this work we aimed to screen novel essential genes of P. aeruginosa by shotgun antisense identification, a technique that was developed a decade ago for the Gram-positive bacterium Staphylococcus aureus and was under-used in Gram-negative bacteria for a considerable period of time. Following antisense screenings in the PA01 strain of P. aeruginosa, we focused on a locus, PA2873, which was targeted by an antisense RNA construct that can impair cell growth. The PA2873 gene product was annotated as a hypothetical membrane protein endowed with a periplasmic region harbouring a structural domain belonging to the transglutaminase-like superfamily, a group of archaeal, bacterial and eukaryotic proteins homologous to animal transglutaminases. In this study, we show that the periplasmic portion of the PA2873 protein, which we named TgpA, does possess transglutaminase activity in vitro. This is the first report of transglutaminase activity in P. aeruginosa. In addition, we have provided strong evidences that TgpA plays a critical role in the viability of P. aeruginosa.

Editor: Gunnar F. Kaufmann, The Scripps Research Institute and Sorrento Therapeutics, Inc., United States of America
Received July 6, 2012; Accepted October 18, 2012; Published November 27, 2012
Copyright: © 2012 Milani et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Funding: This work was funded by Italian Cystic Fibrosis Research Foundation (grants FFC@/10/2004, FFC@/6/2006, FFC@/6/2007) and by European Commission (grant NABATIV, EU-FP7-HEALTH-2007-B contract number 223070). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Competing Interests: The authors have declared that no competing interests exist.
* E-mail: giovanni.bertoni@unimi.it

Introduction
P. aeruginosa is a highly adaptable bacterium which thrives in a broad range of ecological niches. In addition, it can infect multiple hosts as diverse as plants, nematodes and mammals. The broad habitat and host ranges of P. aeruginosa reflect the large variety of structural, metabolic and virulence functions found in its large pangenome [1–4]. In humans, it is an important opportunistic pathogen in compromised individuals, such as patients with cystic fibrosis, severe burns or impaired immunity [5,6]. Unfortunately, P. aeruginosa is difficult to control because of its ability to develop resistances, often multiple, to all classes of clinical antibiotics [7–9]. The common P. aeruginosa mechanisms of antibiotic resistance often appear simultaneously and are cephalosporinase AmpC-, porin OprD- and efflux pumps-mediated [8]. Consequently, P. aeruginosa is a major concern to medical practitioners who increasingly face extremely-drug resistant strains (i.e. bacterial isolates susceptible to only one or two antibiotic categories) [9] which may require carefully-selected antibiotic combinations [10].

The discovery of novel essential genes or pathways that have not yet been targeted by clinical antibiotics can underlie the development of alternative effective antibacterials to overcome the extant mechanisms of resistance. We screened novel essential genes of P. aeruginosa by shotgun antisense identification, a technique that was developed a decade ago in Staphylococcus aureus [11,12]; following a period of limited success in Gram-negative bacteria [13,14], the technique has been used effectively in E. coli [15]. Following our shotgun antisense screenings in P. aeruginosa PA01, we focused on a locus, PA2873, which was targeted by an antisense RNA construct that can impair cell growth. The features of the predicted protein encoded by PA2873 locus were intriguing. In fact, it was annotated in the Pseudomonas Genome Database [16] as a hypothetical membrane protein endowed with a periplasmic region harbouring a structural domain belonging to the transglutaminase-like superfamily, a group of archaeal, bacterial and eukaryotic proteins homologous to animal transglutaminases [17]. In this study we show that the periplasmic portion of the PA2873 protein does have transglutaminase activity in vitro. This is the first report of a transglutaminase activity in P. aeruginosa. The PA2873 gene product was called “transglutaminase protein A” (TgpA). In addition, we provided strong evidences that TgpA plays a critical role in the viability of P. aeruginosa.

Methods
Bacterial strains, plasmids and growth conditions
The bacterial strains and plasmids used are listed in Table S1. pVLT31 [18] is an E. coli/Pseudomonas shuttle vector carrying the lacP/lacZ pair and tetracycline resistance, pVI33EH [19] and pHERD20T [20], used for the construction of antisense libraries (see below), are E. coli/Pseudomonas shuttle vectors carrying araC/PBAD pair and ampicillin/carbenicillin resistance. Since pHERD20T allows blue/white screening for the identification of recombinants, it was used in place of pVI33EH at later stages of
Pseudomonas aeruginosa protein database (5753 entries) retrieved from NCBI (http://www.ncbi.nlm.nih.gov/). Data processing of raw spectra was performed by the Bioworks 3.3.1 software (University of Washington, licensed to Thermo Fisher Scientific), based on the SEQUEST algorithm [22].

Purification of TgpA TG180–544 domain and transglutaminase activity assay

The TgpA periplasmic domain [aa. 180–544; TG180–544] was expressed in E. coli as NHis10-tagged protein with an improved His-tag (MGSDKHHHHHHHHHHHG) under the control of T7 promoter in plasmid p2[N][M4G6 (180–544 aa)] (PRIMM srl), and purified using standard protocols of His-tag affinity purification. The fractions containing TG180–544 were pooled and stored at −80°C until use in aliquots at the concentration of 2.7 mg/ml and 93% purity, determined by SDS-PAGE.

Transglutaminase activity (TGase; EC 2.3.2.13) was assayed by a Transglutaminase Colorimetric Microassay Kit (Covalab) which uses immobilized N-carboxybenzoxycCBZ-Gly-Gly as amine acceptor and biotin-conjugated cadaverine as amine donor. Protein samples were incubated in a 96-well microtiter plate coated with CBZ-Gly-Gly at 37°C for 15 min with calcium, DTT and biotinylated cadaverine. The wells were washed three times with phosphate buffer containing 0.1% Tween 20. To assay the formation by TGase of cadaverine covalently linked to CBZ-Gly-Gly (γ-glutamyl-cadaverine-biotin), the wells were filled with streptavidin-labelled horseradish peroxidase (HRP) and incubated for 15 min at 37°C; they were washed three times with phosphate buffer containing 0.1% Tween 20, filled with HRP substrate/chromogen solution containing H2O2 as the substrate and tetramethyl benzidine as the electron acceptor (chromogen). These were incubated for 10 min at room temperature, 50 μl of reaction blocking reagent were added and the mixture quantified by measuring OD50. As references for the TGase activity, the kit included purified guinea pig TGase with a specific activity of 0.1 U/mg. By definition, 1 U of TGase catalyzes the formation of 1 μmol of hydroxamate at pH 6.0 at 37°C, using L-glutamic acid γ-monohydroxamate as the standard [23].

RT-PCR analysis of PA2873 genomic region and transcript 5’-end mapping

Total RNA was purified from P. aeruginosa PAO1 cells, grown in LB with aeration at 37°C until OD600 of 0.6, was harvested by centrifugation at 4000×g for 15 min at 4°C and washed twice with PBS supplemented with 20% sucrose (TIB buffer). PAO1 cells in TIB buffer were disrupted in a French press device. To remove intact cells that had escaped lysis, crude extracts were filtered through 0.22 μm filters. Following incubation for 1 hr at room temperature with RNase A (Qiagen) and DNase I (Ambion), filtered crude extracts were ultracentrifuged at 135,000×g for 60 min at 4°C to separate total membranes from the cytoplasmic fraction. Pellets containing the membrane fraction were washed in sequence with PBS, 1 M NaCl, and water to remove the contaminants; they were treated overnight under stirring with 40 μg/ml trypsin at 37°C for shaving and the extensive peptide proteolysis required for the Multidimensional Protein Identification Technology (MudPIT) analysis. Trypsin-digested samples were centrifuged at 16,000×g for 1 hr at 4°C and the supernatants were subjected to MudPIT analysis using the ProteomeX configuration (Thermo Fisher, San José, CA, USA). The mass spectra produced by MudPIT analyses were correlated to in silico peptide sequences of non-redundant P. aeruginosa genome. The TgpA gene product was predicted as a novel essential protein of P. aeruginosa (PA2873) using the Prosite database (http://prosite.expasy.org/).
Identification of an antisense construct targeting PA2873 locus and impairing PAO1 growth

To identify novel essential genes in *P. aeruginosa*, we constructed shotgun antisense libraries (SALs) in *E. coli* by cloning genomic DNA fragments of *P. aeruginosa* PAO1 downstream the arabinose inducible promoter *Prad* of pVLT33EHH or pHERD290T. Genomic inserts able to impair PAO1 growth, supposedly by antisense transcription effects, were screened by mating transfer of SALs from *E. coli* to PAO1 and replica-plating of exconjugants on Pseudomonas Isolation Agar (PIA) supplemented with carbenicillin, both in the absence and in the presence of arabinose. These screenings resulted in the identification of several positive pVLT33EH and pHERD290T derivatives impairing PAO1 growth when transferred from *E. coli* (manuscript in preparation). As expected, some positives of this panel carried inserts corresponding to already known “essential-for-growth” genes. For instance, in the pHERD290T derivative pHERD-S2F1, in antisense orientation, we detected a 331 bp DNA fragment that spanned from coordinates 637810 to 638141 of PAO1 genome, within the PAO577 locus coding for DnaG primase [24].

For a number of positives to SALs screenings, growth impairment was also observed in the absence of arabinose, suggesting that basal antisense expression of the insert in PAO1, a regulatory context for *Prad* not as restrictive as *E. coli*, was enough to produce deleterious effects. One such pVLT33EH derivative, pVI-M4G6 (Figure 1), was further characterized in this study. The insert of pVI-M4G6 was sequenced and found to correspond to a PAO1 genomic fragment spanning coordinates 3226136 to 3228491 within PA2873 locus (from 898 to 1252 positions; PA2873 total length: 2007 bp), which inserted downstream to the *Prad* promoter of pVLT33EHH in antisense orientation. To assess the antisense effect, the insert of pVI-M4G6 was inverted to give rise to pVI-M4G6i and then retested for PAO1 growth impairment. As shown in Figure 1, unlike pVI-M4G6, pVI-M4G6i was unable to impair PAO1 growth once it had been transferred from *E. coli*. To rule out effects of sensitization to Cd, pVI-M4G6 insert was recloned into the TetR vector pVLT31 [18], downstream to the *P_{top-in*} promoter, both in antisense and sense orientations, giving rise to pVI-M4G6 and pVI-M4G6i, respectively. As in the case of pVLT33EHH, only the antisense expression of insert from pVLT31 again resulted in PAO1 growth impairment (Figure 1). These results strongly suggested that pVI-M4G6-induced growth impairment of PAO1 originated from the expression of a transcript of about 350 nt antisense to PA2873 locus. We therefore speculated that the PA2873 locus could code for a novel and uncharacterized essential function of PAO1.

Features of PA2873 gene product, locus and genomic region

Bioinformatic analyses, listed in Pseudomonas Genome Database (PGD) [16], on the structural features of the PA2873 product (688 aa; Figure 2A), predict that it is an inner membrane protein endowed with six transmembrane helices and a large periplasmic domain between aa 180 and 544 (Figure S3); between aa 396 and 467, it has a highly recognizable structural sub-domain belonging to the transglutaminase-like superfamily (PF01841 in PFAM database [25]), a group of archaeal, bacterial and eukaryotic proteins homologous to animal transglutaminases [17] (Figure S1). It is interesting to note that the 5 transmembrane helices spanning the first 180 aa were within the bacterial domain of unknown function DUF3468 (PF11992 in the PFAM database [25]), typically between 323 to 339 amino acids in length and found to

Results and Discussion

Mutagenesis analyses

For pDM4 cointegration targeting, internal 600–800 bp DNA fragments of PA2875, PA2874, PA2873, dnuG and algR, respectively, were amplified by PCR with oligo pairs containing SalI restriction sites listed in Table S2, digested with SalI (New England Biolabs) and cloned into the corresponding site of pDM4. The cloning was checked by PCR with the oligo pair pDM4-ori/pDM4-cat (Table S2). This procedure gave rise to pDM4 derivatives listed in Table S1 which were transferred from *E. coli* to *P. aeruginosa* PAO1 by triparental mating (see above for details) selecting exconjugant PAO1 clones carrying pDM4 cointegration on PIA plates supplemented with Gm.

The conditional mutagenesis of PA2873 locus was obtained through upstream insertion of the rhamnose-induced/glucose-repressed *P_{rhaB}* promoter. The first 300 bp of PA2873 were amplified by PCR with TgFullFw and Tg300RevXbaI oligos (Table S2) carrying Ndel and XbaI sites, respectively. The resulting DNA fragment was digested with Ndel and XbaI (New England Biolabs) and cloned into the corresponding sites of the vector pSC200, giving rise to the plasmid pSC200-PA2873, which was mobilized to *P. aeruginosa* PAO1 by triparental mating. Exconjugant PAO1 clones carrying pSC200-PA2873 cointegration were selected on PIA plates supplemented with Gm and rhamnose. One such clone, named PAO1 *P_{rhaB*-PA2873}, was grown overnight in 20 ml of M9-citrate, Gm and rhamnose as the inducer at 37°C with shaking. Cells were collected through centrifugation at 10,000 rpm, washed twice with PBS, and resuspended in a suitable volume of PBS to reach an OD600 of 1. To test the antisense effect, the insert of pVI-M4G6 was inverted to give rise to pVI-M4G6i and then retested for PAO1 growth impairment. As shown in Figure 1, unlike pVI-M4G6, pVI-M4G6i was unable to impair PAO1 growth once it had been transferred from *E. coli*. To rule out effects of sensitization to Cd, pVI-M4G6 insert was recloned into the TetR vector pVLT31 [18], downstream to the *P_{top-in*} promoter, both in antisense and sense orientations, giving rise to pVI-M4G6 and pVI-M4G6i, respectively. As in the case of pVLT33EHH, only the antisense expression of insert from pVLT31 again resulted in PAO1 growth impairment (Figure 1). These results strongly suggested that pVI-M4G6-induced growth impairment of PAO1 originated from the expression of a transcript of about 350 nt antisense to PA2873 locus. We therefore speculated that the PA2873 locus could code for a novel and uncharacterized essential function of PAO1.

Features of PA2873 gene product, locus and genomic region

Bioinformatic analyses, listed in Pseudomonas Genome Database (PGD) [16], on the structural features of the PA2873 product (688 aa; Figure 2A), predict that it is an inner membrane protein endowed with six transmembrane helices and a large periplasmic domain between aa 180 and 544 (Figure S3); between aa 396 and 467, it has a highly recognizable structural sub-domain belonging to the transglutaminase-like superfamily (PF01841 in PFAM database [25]), a group of archaeal, bacterial and eukaryotic proteins homologous to animal transglutaminases [17] (Figure S1). It is interesting to note that the 5 transmembrane helices spanning the first 180 aa were within the bacterial domain of unknown function DUF3468 (PF11992 in the PFAM database [25]), typically between 323 to 339 amino acids in length and found to
and exconjugants were spotted onto PIA to counterselect PAO1 with the same procedure. Induction of pVI533 maintenance. As a control, empty pVI533 was transferred to E. coli. The medium was also supplemented with carbenicillin to select for the protocol, with the only variant of M9-citrate for donor counterselection, achieved through the addition of 7.5 mM arabinose (ara). A similar promoter was achieved through the addition of 1 mM IPTG. The presence of a transglutaminase-like domain (TG) in PA2873 product was annotated in PGD as a “hypothetical protein”, i.e. no experimental evidence of in vivo expression was available and thus its existence had only been predicted during bioinformatic genome analysis. To provide evidence of PA2873 product expression, we searched a peptide database that resulted from our recent proteomic survey in PAO1 (unpublished) and found five peptides belonging to the PA2873 periplasmic domain (Table S3), originating from the trypsin digestion of native membrane fractions. Consequently, we have provided experimental evidence that removes the PA2873 product from the status of “hypothetical protein”. Since all five PA2873 peptides “shaved” by trypsin belonged to the predicted outside membrane domain, this strongly supports the notion that it actually emerges from membrane itself.

The presence of a transglutaminase-like domain (TG) in PA2873 protein was intriguing. Transglutaminases (TGases) are enzymes that establish covalent links between proteins through the acyl-transfer reaction between the γ-carboxamide group of peptide-bound glutamine and the ε-amino group of peptide-bound lysine. Catalysis of this reaction involves a catalytic triad consisting of cysteine, histidine and aspartate residues that are well-conserved in eukaryotic and prokaryotic TGases [17]. First of all, we verified the conservation of the catalytic triad in the PA2873 TG domain by sequence alignment with characterized members of the TGase superfamily: the human coagulation factor XIII conserved domain [26], TGase from red sea bream liver (fish-derived transglutaminase, FTG) [27] and WbmE, a periplasmic TGase of Bordetella bronchiseptica [28] involved in the post-assembly modification of LPS O-antigen. As shown in Figure 2A, the catalytic triad of PA2873 TG domain appeared to be well-conserved. To assess whether the conservation of the catalytic triad was correlated to the TGase activity, the N-(His)10-tagged periplasmic domain (aa 180–544) of PA2873 protein (TG180-544) was expressed in E. coli and subjected to affinity purification. TGase activity of the purified protein was tested through a colorimetric microassay, using 0.25 μM of purified guinea pig TGase (gpTGase) as the reference enzyme activity (Figure 2B). Negative control of TGase activity was gpTGase incubated with EDTA. TG180-544 was positive to the TGase test. In actual fact, 2.5 μg of TG180-544 equal to reference gpTGase, showed TGase activity that differed significantly from the negative control and was about 45% of gpTGase activity in the absence of EDTA. To test activity dependence from Ca²⁺, essential for eukaryotic TGases [27], EDTA was added to TG180-544. Unlike gpTGase, EDTA addition did not affect TG180-544 activity. This suggested that PA2873 TGase activity is Ca²⁺-independent, similar to members of the microbial transglutaminase family [29]. For the features described above, we called the PA2873 gene product “transglutaminase protein A” (TgaA).

In PGD, PA2873 locus was predicted to cluster in an operon with the adjacent loci PA2875, PA2874 and PA2872 (Figure 3A). This cluster arrangement is conserved throughout the sequenced P. aeruginosa strains with the exception of strain 39016, where there is a 354 bp intergenic region between PA2873 and PA2872 orthologs. When sequenced-Pseudomonas species in PGD were examined, it was found in P. fulva, P. mendocina, P. syringae and P. stutzeri strains. In the latter case, the PA2872 ortholog was absent.

To profile the transcription of PA2875-2874-2873 locus, we performed RT-PCR experiments on total RNAs purified from PAO1 cell samples, taken both at mid-exponential (OD600 of 0.6) and at early-stationary phase (OD600 of 1.2) in LB at 37°C. To detect single ORF transcription, we used oligo pairs which amplified ORF internal regions (i, iii, v, and vii; Figure 3B). Furthermore, to detect ORF cotranscription, we used oligo pairs which amplified regions spanning the 3′ to 5′ of adjacent ORFs (ii, iv, and vi; Figure 3B). As shown in Figure 3B, we could observe transcription of every ORF in both growth stages. Furthermore, our data strongly suggested that PA2875, PA2874 and PA2873 are co-transcribed and form a transcription unit, while PA2872 is transcribed independently.

Mutagenesis of the PA2875-2874-2873 gene cluster

The essential role of PA2873 locus (tgaA), suggested by the results of SALs screenings (see above), was validated by insertional mutagenesis. Consequently, we also aimed to evaluate the essential role of the co-transcribed PA2875 and PA2874 loci. For this reason, each gene was targeted for knock-out by homologous recombination-mediated cotransintegration of the suicide vector pDM4 carrying Cm resistance (CmR). Since pDM4 is incapable of autonomous replication in PAO1, following conjugational transfer of pDM4 from E. coli to PAO1, CmR clones can be selected only in the event of pDM4 cotransintegration with the chromosome. The dnaG gene for DNA primase [24] and algR gene for a LytTR-type two-component response regulator [30] were selected only in the event of pDM4 cotransintegration with the chromosome. The dnaG gene for DNA primase [24] and algR gene for a LytTR-type two-component response regulator [30] were selected only in the event of pDM4 cotransintegration with the chromosome. The dnaG gene for DNA primase [24] and algR gene for a LytTR-type two-component response regulator [30] were used as positive and negative controls of essentiality, respectively. For cotransintegration targeting, we cloned internal 600–800 bp fragments of PA2875, PA2874, tgaA, dnaG and algR respectively, into pDM4. The resulting constructs were transferred from E. coli S17-λpir to PAO1 by conjugation, selecting cotransintegration events by plating the conjugation mixtures on PIA supplemented with Cm. Three independent cotransintegration experiments were performed for each gene involved. To take fluctuations of conjugation efficiency into account, independent conjugation experiments were performed for each gene. For the features described above, we called the PA2873 gene product “transglutaminase protein A” (TgaA).
account, the results of replicate experiments were expressed as a percentage of CmR ex-conjugant clones relative to the negative control algR. As shown in Figure 4A, targeting pDM4 cointegration to both PA2874 and tgpA gave rise to a dramatic decrease in the yield of CmR ex-conjugant clones, comparable to dnaG inactivation. On the contrary, targeting pDM4 cointegration to PA2875 resulted in a yield of CmR ex-conjugants that was even higher than the control algR.
These results strongly support the notion that \textit{tgpA} is essential. In the case of PA2874, the above results were not conclusive. In actual fact, the low yield of CmR ex-conjugant clones may result either from the essential role of PA2874 or from polar effects of the cointegration in PA2874 on the expression of \textit{tgpA}. We were unable to discriminate these two possibilities by targeting pDM4 cointegration within PA2874 in a PAO1 strain expressing \textit{tgpA} from a plasmid vector. Several attempts to introduce the \textit{tgpA}-expressing vector pVLT31-PA2873 into PAO1 were unsuccessful. Therefore, we suggested that unbalancing the \textit{tgpA} expression may be deleterious. Finally, PA2875 would appear to be non-essential.

Using RT-PCR, we profiled the PA2875-2874-2873 gene cluster transcription in a CmR ex-conjugant strain PAO1 PA2875::pDM4, both upstream and downstream of the site of pDM4 insertion within PA2875. By primer extension analysis with an oligo annealing with 5\textendashregion of \textit{tgpA} (not shown), we could detect 5\textendashtranscript ends located at \textasciitilde31, around \textasciitilde280 and \textasciitilde335 from the translation start site of \textit{tgpA}.

The essentiality of \textit{tgpA} was further confirmed by conditional mutagenesis. The first 300 bp of \textit{tgpA} were cloned into the suicide vector pSC200 [31] downstream of PrhaB, a rhamnose inducible/glucose repressible promoter, to give rise to pSC200-PA2873. Upon transfer to PAO1, pSC200-PA2873 cointegration event placed \textit{tgpA} under PrhaB control. In both liquid and solid media, the PAO1 \textit{PrhaB}:\textit{tgpA} strain showed a specific conditional growth phenotype (Figure 4B), i.e. repression of PrhaB by glucose strongly impairs growth, while rhamnose addition allows normal growth. Due to the low number of cells in the inoculum of liquid media, growth rate was undetectable by microtiter reader during the initial half-time of the experiments (Figure 4B). The growth of PAO1 \textit{PrhaB}:\textit{tgpA} in rhamnose started
Figure 4. Mutagenesis analysis of the PA2875-2874-\textit{tgpA} gene cluster. (A) Each indicated locus was targeted for knock-out by homologous recombination-mediated cointegration of the suicide vector pDM4 carrying chloramphenicol resistance (Cm\(^\text{R}\)). The \textit{dnaG} gene for DNA primase and the \textit{algR} gene for a LytTR-type two-component response regulator were used respectively as positive and negative controls of essentiality. Cointegration targeting was achieved by cloning internal 600–800 bp fragments of PA2875, PA2874, \textit{tgpA}, \textit{dnaG} and \textit{algR}, respectively, into pDM4. The resulting constructs were transferred from \textit{E. coli} S17-1pir to PAO1 by conjugation, selecting cointegration events by plating the conjugation mixtures on PIA supplemented with chloramphenicol. Three independent conjugation experiments were performed. Efficiency of cointegration in a given locus is expressed as a percentage of Cm\(^\text{R}\) ex-conjugant colonies relative to the negative control \textit{algR}. (B) The rhamnose inducible/glucose...
repressible promoter \(P_{	ext{rha}} \) was inserted upstream to \(tgpA \) giving rise to PAO1 \(P_{	ext{rha}}::tgpA \) strain. To test the repression effects of glucose on growth rate, overnight cultures of PAO1 \(P_{	ext{rha}}::tgpA \) in M9-citrate supplemented with rhamnose were diluted to OD\(_{600} = 10^{-6} \) and inoculated in microtiter wells filled with 200 \(\mu \)l of M9-citrate supplemented with either rhamnose or glucose. Culture growth at 37°C with stirring was monitored in real-time by OD\(_{600} \) measurement in a microtiter reader for 21 hrs. Specificity of glucose/rhamnose effects on the growth of PAO1 \(P_{	ext{rha}}::tgpA \) was assessed by monitoring the PAO1 cultures in M9-citrate supplemented with either rhamnose or glucose. Note the opposite effects of glucose on growth of PAO1 \(P_{	ext{rha}}::tgpA \) and PAO1, respectively. In the insert, overnight cultures of PAO1 \(P_{	ext{rha}}::tgpA \) in M9-citrate supplemented with rhamnose were also tested for growth on solid M9-citrate supplemented with either rhamnose or glucose, by spotting 2 \(\mu \)l of 10-fold serial dilutions, from OD\(_{600} = 1 \) (left) to OD\(_{600} = 10^{-6} \) (right). (C) During the first 7 hrs from inoculum, a time window in which growth rate was undetectable by microtiter reader, the growth of PAO1 \(P_{	ext{rha}}::tgpA \) in liquid M9-citrate supplemented with either rhamnose or glucose was monitored by titration of colony-forming units per ml (CFU/ml) on LB plates.

doi:10.1371/journal.pone.0050323.g004

Conclusions

Overall, the results presented above strongly indicate that TgpA plays a critical role in the viability of \(P. \ aeruginosa \). The unambiguous prediction of the presence of six transmembrane helices (Figure S3), our detection in membrane fractions (see above) and the export across inner membrane found by PhoA fusion screen [32] would strongly suggest that TgpA acts at a cytoplasmic membrane level. Figure S3 shows that the TgpA region TG\(_{180-544} \) containing the functional TG domain has a high probability of being exposed on the outward face of cytoplasmic membrane, i.e. to protrude into the periplasmic space. Therefore, we suggest that TgpA takes part in an essential function linked to the cell wall. Specific but non-essential functions at cell wall level have been shown for some prokaryotic proteins endowed with TG domains. In the Methanobacterium species, prophage proteins PeiW and PeiP act as pseudomurein endodiisopeptidases [33,34]. In the periplasm of \(B. \ bronchiseptica \), WbmE protein catalyzes the deamidation of uronamide-rich O chains of lipopolysaccharide (LPS) [20]. It is conceivable that TgpA activity can participate in cell wall functions such as i) assembly of peptidoglycan structures ii) maturation/secretion of key periplasmic proteins iii) assembly of surface polypeptide structures iv) biogenesis/maturation of LPS.

Supporting Information

Figure S1 Graphical representation of the distribution across species of the structural TGase domain belonging to the transglutaminase-like superfamily [17] (PF01841 in PFAM database [25]). The radius of the arc, i.e. distance from the root node at the center of the sunburst, shows the taxonomic level (“superkingdom”, “kingdom”, etc). The length of the arc represents the number of domains represented at a given level. Among the 1752 species represented in the figure, we found 4842 sequences containing the TGase domain. 265 sequences, belonging to 238 prokaryotic species, present a specific association of TGase domain in front of the domain of unknown function DUF3488 (PF11992 in PFAM database [25]) containing typically 6 transmembrane helices.

(TIF)

Figure S2 Graphical representation of the distribution of DUF3488 across prokaryotic species. The radius of the arc, i.e. distance from the root node at the center of the sunburst, shows the taxonomic level (“superkingdom”, “kingdom”, etc). The length of the arc represents the number of domains represented at a given level. Among the 238 species represented in the figure, we found 4842 sequences containing the TGase domain. 265 sequences, belonging to 238 prokaryotic species, present a specific association of TGase domain in front of the domain of unknown function DUF3488 (PF11992 in PFAM database [25]) containing typically 6 transmembrane helices.

(TIF)

Table S1 List of bacterial strains and plasmids.

(PDF)

Table S2 Oligonucleotides.

(PDF)

Table S3 TgpA peptides detected through MudPIT analysis of membrane fractions.

(PDF)

Acknowledgments

The authors are grateful to all members of the lab for their helpful discussions and technical support, D. Haas for the critical discussion and experimental hints, F. Bonomi and D. Di Silvestre for the MudPIT analysis, F. Bonomi and S. Iametti for the biochemistry support.

Author Contributions

Conceived and designed the experiments: AM DV RR GB. Performed the experiments: AM DV RR. Analyzed the data: AM DV RR GB. Wrote the paper: AM DV GB.
References

