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SUMMARY

The Golgi-located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further

analysis on the physiological impact of PHT4;6 remained elusive. Here we show that PHT4;6–GFP is targeted to

the trans-Golgi compartment and that loss of function of this carrier protein has a dramatic impact on plant

growth and development. Knockout mutants of pht4;6 exhibit a dwarf phenotype that is complemented by the

homologous gene from rice (Oryza sativa). Interestingly, pht4;6 mutants show altered characteristics of several

Golgi-related functions, such as an altered abundance of certain N-glycosylated proteins, altered composition

of cell-wall hemicelluose, and higher sensitivity to the Golgi a-mannosidase and the retrograde transport

inhibitors kifunensine and brefeldin A, respectively. Moreover, pht4;6 mutants exhibit a ‘mimic disease’

phenotype accompanied by constitutively activated pathogen defense mechanisms and increased resistance

against the virulent Pseudomonas syringae strain DC3000. Surprisingly, pht4;6 mutants also exhibit phosphate

starvation symptoms, as revealed at the morphological and molecular level, although total Pi levels in wild-

type and pht4;6 plants are similar. This suggested that subcellular Pi compartmentation was impaired. By use

of nuclear magnetic resonance (NMR), increased Pi concentration was detected in acidic compartments of

pht4;6 mutants. We propose that impaired Pi efflux from the trans-Golgi lumen results in accumulation of

inorganic phosphate in other internal compartments, leading to low cytoplasmic phosphate levels with

detrimental effects on plant performance.

Keywords: inorganic phosphate, Golgi apparatus, vacuole, phosphate compartmentation, mimic disease,

Arabidopsis.

INTRODUCTION

Phosphate-containing biomolecules are essential for all

types of cells. Nucleic acids and ATP are among the most

prominent such compounds, but other substances such as

further nucleotides, many types of phosphorylated primary

metabolites and various phospholipids are of similar

importance. Phosphate in soils is not readily available, and

Pi supplementation usually stimulates plant yield, plant

development, and tolerance against biotic and abiotic

stressors (Bucher, 2007). Given the importance of phosphate

for many metabolic and molecular processes, it is not

surprising that plants sense the cellular phosphate status

(Ticconi et al., 2009) and adjust both gene expression and

developmental processes accordingly (Müller et al., 2007;

Nakamura et al., 2009).

Phosphate uptake into root cells is proton-coupled and

catalyzed by plasma membrane-located PHT1-type carriers

(Shin et al., 2004), representing one of several phosphate

transporter sub-families. In addition to PHT1-type carriers

(which have several isoforms), higher-plant genomes

encode plastidic PHT2-type carriers, mitochondrial-located
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PHT3-type carriers and four isoforms of the structurally

unrelated plastidic phosphate translocator (pPT) proteins

that are located in the inner envelope membranes of plastids

(Rausch and Bucher, 2002; Weber et al., 2005). In contrast to

other PHT-type carriers, the latter group of phosphate

carriers does not modify the phosphate concentration

across the corresponding membrane, as pPT proteins

catalyze a strictly coupled counter exchange of Pi and other

phosphorylated intermediates (Fischer et al., 1997; Kam-

merer et al., 1998). The PHT4 sub-family of carriers com-

prises a total of six isoforms, five of which reside in the

plastidic envelope (Guo et al., 2008a).

In addition to the transporters listed above, which have

been characterized at the functional level, higher plants

harbor several isoforms of membrane-located PHO proteins.

PHO proteins clearly influence both cellular phosphate

homeostasis and phosphate loading into the xylem, but

their exact biochemical properties are still unresolved

(Wang et al., 2004; Stefanovic et al., 2011).

PHT-type carriers in Arabidopsis form a large protein

family (Roth et al., 2004), and show substantial amino acid

sequence homology to the large solute carrier family 17

(SLC17) that is present in mammals and other eukaryotes.

Most members of this transporter family reside in the

plasma membrane, exhibit a wide substrate spectrum, and

are typically sodium-driven in animals (Chang et al., 2004).

Further SLC17 members in animals include the H+/ATP

antiporter vesicular nucleotide transporter (VNUT) (Sawada

et al., 2008) and various H+/organic anion antiporters that

are able to transport, among others, glutamate, aspartate,

sialin or sialic acid (Reimer and Edwards, 2004; Miyaji et al.,

2008). These SLC17 members are located in endomem-

branes, namely Golgi-derived vesicles (Reimer and Ed-

wards, 2004; Miyaji et al., 2008; Sawada et al., 2008).

Currently, our knowledge on phosphate transport across

plant endomembranes such as the ER, Golgi or the vacuolar

membrane is limited (Rausch and Bucher, 2002). The

vacuole represents up to 90% of the cell volume and

represents a dynamic intracellular Pi reservoir (Martinoia

et al., 2007; Pratt et al., 2009). However, although the

existence of dynamic Pi transport across the vacuolar

membrane has been known for a long time (Martinoia et al.,

2007), and despite the description of low- and high-affinity

Pi uptake mechanisms, so far no distinct vacuolar Pi

transporting protein has been identified at the molecular

level (Rausch and Bucher, 2002; Martinoia et al., 2007).

Arabidopsis PHT4;6 has been identified as a Golgi-located

phosphate transporter (Guo et al., 2008b) involved in Pi

release from the Golgi compartment (Cubero et al., 2009).

This mode of transport allows export of inorganic phosphate

from the organellar lumen, and is required because ATP-

consuming reactions or nucleotide sugar metabolism in this

compartment continuously releases Pi. The PHT4;6 gene is

expressed ubiquitously in most plant organs, and does not

show diurnal regulation as revealed for most of the five

other Arabidopsis PHT4 genes (Guo et al., 2008a; Cubero

et al., 2009).

Interestingly, PHT4;6 loss-of-function mutants show in-

creased sensitivity against sodium stress as revealed by

altered root morphology which is dependent on rising NaCl

concentrations (Cubero et al., 2009). This observation is in

line with a critical function of the Golgi apparatus in cell-wall

synthesis and the observation that other cell-wall mutants

also exhibit increased salt sensitivity (Koiwa et al., 2003; Shi

et al., 2003; Frank et al., 2008; Kang et al., 2008).

Given the ubiquitous expression of the PHT4;6 gene (Guo

et al., 2008a) and the critical function of the Golgi apparatus

in an enormously wide array of cellular processes, we

analyzed the physiological importance of PHT4;6 in more

detail. In this study, we demonstrate that impaired PHT4;6

activity negatively affects whole plant development and

provokes impaired function of several Golgi-associated

processes. Moreover, we show that the corresponding

loss-of-function mutant shows a ‘mimic disease’ phenotype

at the morphological and molecular level. Surprisingly,

pht4;6 mutants exhibit a Pi starvation response, and in vivo

determination of subcellular Pi compartmentation in pht4;6

mutants indicated a so far unknown type of interaction

between Pi efflux from the Golgi compartment and

increased vacuolar Pi levels.

RESULTS

PHT4;6 loss-of-function mutants show a dwarf phenotype

and altered leaf characteristics

To date, loss of a functional PHT4;6 gene has only been

correlated with a single effect, namely altered root mor-

phology under conditions of salt stress (Cubero et al., 2009).

However, the experiments presented in that study were

performed on plants grown on agar medium, and it was not

analyzed whether absence of this carrier may affect the

overall growth of Arabidopsis on soil.

To search for correlations between PHT4;6 activity and

plant development, we grew wild-type and homozygous

pht4;6 plants (Figure S1) on soil and analyzed their mor-

phological appearance at various developmental stages.

The chosen loss-of-function mutant pht4;6 was exactly the

same as characterized previously (Cubero et al., 2009). We

further confirmed the specificity of the effects in pht4;6

plants by genetic construction of two independent comple-

mentation lines containing either the rice homolog

OsPHT4;6 (Os11g08370) or the native Arabidopsis gene

AtPHT4;6. Both complementations fully restored wild-type

growth (Figures S2 and S3). After 8 weeks of growth, wild-

type plants showed a fully developed rosette covering most

of the pod surface (Figure 1a). In contrast, pht4;6 mutants

exhibited markedly reduced growth (Figure 1b), which

correlated with small curled leaves compared to wild-type
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organs (Figure 1c,d). Both, wild-type and mutant produced

an identical number of leaves, namely 31 � 2 leaves

(n = 3).

After 12 weeks of growth, wild-type plants were com-

pletely developed, and had produced several inflorescences

as well as many flowers and siliques at various develop-

mental stages (Figure 1e). In marked contrast, at this stage,

pht4;6 plants were smaller and in most cases possessed only

a single inflorescence carrying a small number of flowers. At

this developmental stage, no siliques were established on

mutant plants (Figure 1f), further indicating impaired devel-

opment.

PHT4;6 is important for cell-wall sugar composition and

influences Golgi-related processes

PHT4;6 locates to the Golgi apparatus (Guo et al., 2008b;

Cubero et al., 2009), but the exact location within this very

complex cellular structure is unknown. Using co-expres-

sion of a PHT4;6–GFP construct with either cis-Golgi-

located a-mannosidase–RFP (Nebenführ et al., 2002) or

trans-Golgi-located sialin transferase–DsRFP (ST–DsRFP)

(Saint-Jore et al., 2002), we were able to clarify the sub-

cellular location of PHT4;6 in more detail. A merged image

of PHT4;6–GFP with a-mannosidase–RFP at high magnifi-

cation showed distinctly labeled sub-domains of the Golgi

apparatus, whereas a merged image of PHT4;6–GFP with

ST–DsRed revealed close overlap, indicating a trans-Golgi

location of the PHT4;6 protein (Figure S2). Therefore, we

assessed the effect of impaired PHT4;6 activity on several

Golgi-located or Golgi-related processes such as hemi-

cellulose synthesis, glycoprotein synthesis and vesicle

transport.

To quantify hemicellulose composition, we grew wild-

type plants and pht4;6 mutants for 4 weeks on soil, collected

complete rosettes, and extracted and quantified hemicellu-

lose-derived monosaccharides. Xylose, representing the

most abundant sugar moiety, accumulates in wild-type

and mutant lines to nearly identical levels, reaching approx-

imately 30 lmol gFW)1 (fresh weight) (Figure 2). In contrast,

the levels of rhamnose and mannose were slightly reduced

in pht4;6 plants, and fucose and arabinose levels were

significantly increased (Figure 2). These data demonstrate

that impaired PHT4;6 activity correlates with altered cell-wall

compositions.

Some types of sugar moieties required for hemicellulose

biosynthesis also serve in covalent modification of proteins

Figure 2. Cell-wall composition of wild-type and pht4;6 plants.

Cell walls were isolated from freeze-dried leaf material of 4-week-old wild-

type (closed bars) and pht4;6 mutant (open bars) plants grown on soil. Error

bars represent standard error (n = 3). Asterisks indicate a significant differ-

ence between wild-type and the transgenic line (*P < 0.05; **P < 0.005).

(a) (b)

(c) (d)

(e) (f)

Figure 1. Wild-type and pht4;6 mutant phenotypes.

(a, b) Wild type (Wt) and the pht4;6 mutant grown on soil for 8 weeks.

(c, d) Leaf size of 8-week-old wild-type and pht4;6 lines. Scale bar = 2 cm.

(e, f) Habit of wild-type and the pht4;6 mutant 12 weeks after germination.
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in the ER and Golgi compartments. Therefore, we also

searched for putative modifications in the protein glycosyl-

ation pattern. Using concanavalin A, a lectin that is able to

bind high-mannose-type N-glycans attached to polypep-

tides (Mandal and Brewer, 1993), we demonstrated that at

least three proteins of unknown nature show altered abun-

dance in pht4;6 leaves compared to wild-type plants (Fig-

ure 3a). Similarly, use of a-horseradish peroxidase antibody,

which is able to bind complex-type N-glycans (especially

fucose and xylose residues, Wilson et al., 1998), revealed

that at least five proteins in pht4;6 leaves show altered

abundance (either increased or decreased, respectively)

when compared to wild-type (Figure 3b).

The Golgi apparatus and the ER communicate via perma-

nent anterograde and retrograde flux of vesicles. Thus, it

may be hypothesized that altered Golgi properties may also

impair ER-resident processes. Inhibition of essential reac-

tions located in the ER induces luminal accumulation of

incorrectly folded, newly synthesized proteins. This process

leads to the so-called ‘unfolded protein response’ charac-

terized by increased expression of marker genes encoding

ER-associated chaperones (Lai et al., 2007). Interestingly,

using the genes coding for the ER-located proteins Bip1/2,

Bip3, calreticulin1/2 (CRT1/2), calnexin1 (CNX1), Shepherd

and the transcription factor BZIP60 as molecules involved in

plant protein quality control (Liu and Howell, 2010), we

found that all of these genes exhibit markedly increased

expression levels in pht4;6 plants compared to wild-type

plants (Figure 4a,b). Obviously, pht4;6 mutants show a

unfolded protein response in their leaf tissue (Figure 4a,b).

Kifunensine is a potent inhibitor of Golgi- and ER-resident

a-mannosidases, and thus affects protein glycosylation

(Hering et al., 2005). To verify whether protein glycosylation

processes are more sensitive in mutants than in wild-type

plants, we grew all lines under increasing kifunensine

concentrations and checked for altered phenotypic appear-

ances (Figure 5a). At a concentration of up to 30 lM,

kifunensine did not affect the root morphology or length in

wild-type plants (Figure 5a). In contrast, even 5 lM kifunen-

sine strongly inhibited growth of pht4;6 roots. At this

concentration, root length was only half that observed in

the absence of kifunensine. Moreover, the root tips showed

(a) (b) (c)

Figure 3. Glycosylation patterns of proteins ex-

tracted from wild-type (Wt) or pht4;6 plants.

(a) Immunoblot analysis of total protein ex-

tracted from 4-week old wild-type or pht4;6

leaves. Protein (15 lg) was subjected to SDS–

PAGE. The clot was analyzed using the lectin

concanavalin A.

(b) Immunoblot performed using a-horseradish

peroxidase antibody. Asterisks in (a) and (b)

indicate altered protein abundance.

(c) Total protein of wild-type and pht4;6 leaves

separated via SDS–PAGE as a protein loading

control.

(a) (b) Figure 4. Real-time PCR analysis of expression

levels of genes involved in Arabidopsis protein

quality control.

(a) mRNA levels of bip1/2, crt1/2, cnx1 and

shepherd in wild-type (closed bars) and pht4;6

(open bars) plants.

(b) mRNA levels of bip3 and bzip60 in wild-type

(closed bars) and pht4;6 (open bars) plants.

Leaves of 4-week-old plants grown on soil were

used for extraction of total RNA. Error bars

indicate standard error (n = 3).
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a swollen and bushy phenotype (Figure 5a). At a concentra-

tion of 30 lM kifunensine, roots of pht4;6 plants appeared

hardly developed (Figure 5a).

Brefeldin A inhibits Golgi vesicle transport in plant cells

(Nebenführ et al., 2002). Thus, we analyzed whether brefel-

din A acts differently on wild-type and pht4;6 cells. To do

this, we grew wild-type and mutant plants for 3 weeks on

agar plates in the presence of either 10 or 15 lM brefeldin A.

Without brefeldin A, wild-type and pht4;6 plants grew

similarly (Figure 5b), but growth of pht4;6 was inhibited in

the presence of 10 lM brefeldin A but that of wild-type

plants was not (Figure 5c). At 15 lM brefeldin A, growth of

mutant and wild-type plants was reduced, but pht4;6

mutants were much more affected, as indicated by strongly

impaired development accompanied by chlorotic leaves

(Figure 5c,d).

pht4;6 mutants show altered pathogen defense-related

mechanisms

It is known that controlled vesicle flux is critical for various

pathogen defense mechanisms of plant cells (Collins et al.,

2003; Kwon et al., 2008). As we had obtained evidence for

modified Golgi properties and impaired post-Golgi vesicle

flux (Figures 2, 3 and 5c,d), we also searched for putatively

altered defense reactions in pht4;6 mutants.

Salicylic acid (SA) is central to plant pathogen response

mechanisms, and accumulates rapidly in tissues subsequent

to infections (Thulke and Conrath, 1998). Moreover, after

synthesis, SA itself serves as an endogenous signal that

stimulates expression of various pathogen-related (PR)

genes (Shah, 2003). Thus, we first quantified SA levels in

wild-type and pht4;6 leaves, and showed that wild-type

plants accumulate free SA to a level of 0.59 nmol gFW)1,

whereas pht4;6 leaves contained more than twice as much

SA, i.e. 1.4 nmol free SA per gFW (Figure 6a). In plants, SA

may exist in either a free form or in conjugation with other

molecules (Thulke and Conrath, 1998). Interestingly, the

difference between conjugated SA in wild-type and mutant

tissues was even greater than observed for the free SA form.

Wild-type plants accumulated approximately 7.5 nmol con-

jugated SA per gFW, whereas pht4;6 plants contained over

seven times more conjugated SA, i.e. 58 nmol SA per gFW

(Figure 6b).

As mentioned above, SA serves as an endogenous

inducer of several PR genes. Using PR1 (an SA-induced

gene of unclear function), PR2 (ß-1,3–glucanase), GSTF6 (a

glutathione transferase) and PAL (encoding phenylalanine

ammonia- lyase) as pathogen-related reporter genes, we

demonstrated that all of these genes exhibit increased

expression in pht4;6 plants compared to corresponding

wild-type plants (Figure 6c).

To obtain further information regarding the involvement

of PHT4;6 activity in defense mechanisms, we assessed

stimulation of PHT4;6 expression by pathogens. To do this,

wild-type leaves were inoculated with either a virulent or a

non-virulent Pseudomonas syringae strain, i.e. DC3000 or

(a)

(b) (c) (d)

Figure 5. Effect of inhibitors on wild-type and

pht4;6 growth pattern.

(a) Wild-type (Wt) and pht4;6 plants were grown

for 15 days on half-strength MS agar plates

supplemented with 0, 5, 15 or 30 lM kifunensine

(Kif), which is a potent inhibitor of class I a-

mannosidases.

(b) Wild-type (Wt) and pht4;6 lines were culti-

vated for 3 weeks on half-strength MS agar

plates without addition of inhibitors.

(c) Effects of 10 lM brefeldin A on wild-type (Wt)

and pht4;6 plants 3 weeks post-germination.

(d) Effects of 15 lM brefeldin A on wild-type (Wt)

and pht4;6 plants 3 weeks post-germination.
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DC3000 AvrRpt2, respectively. The PHT4;6 gene, which

hardly responds to other types of biotic or abiotic stress

stimuli (Zimmermann et al., 2004), was markedly induced

after 24 h of infection with the virulent strain DC3000,

whereas the avirulent P. syringae strain DC3000 AvrRpt2

provoked only weak accumulation of PHT4;6 mRNA (Fig-

ure 6d).

To obtain evidence for altered pathogen resistance of

pht4;6 plants, we inoculated leaves from wild-type and

mutants with either P. syringae strain DC3000 or DC3000

AvrRpt2, respectively. After 1, 2 or 3 days of incubation,

bacteria were re-isolated from leaves and their titers quan-

tified (Figure 6e,f), and it was found that pht4;6 plants show

markedly increased resistance against infection by the

virulent P. syringae strain DC3000 (Figure 6e), whereas

colonization of wild-type and pht4;6 leaves by the avirulent

strain DC3000 AvrRpt2 occurred with a similar efficiency

(Figure 6f).

Plants have the ability to immobilize and inactivate

pathogens by inducing cell death of infected leaf areas. As

the pathogen defense mechanisms described above differ

between wild-type and pht4;6 plants, we further assessed

differences between these plant lines. Trypan blue labels

dead plant cells, and the abundance of blue areas on pht4;6

leaves was significantly higher than on corresponding wild-

type leaves (Figure 7a,b). Hydrogen peroxide is synthesized

by infected plant tissues to inhibit pathogen development.

Using 3,3¢-diaminobenzidine (DAB) staining, we found that

pht4;6 leaves accumulate significantly higher H2O2 levels

than wild-type leaves (Figure 7c,d). Similarly, callose, rep-

resenting a polysaccharide, responsible for sealing of leaf-

surface injuries and known to accompany early defense

reactions characterized by apoplastic H2O2 bursts, is much

more abundant in mutant than in wild-type leaves (Fig-

ure 7e,f).

PHT4;6 activity is critical for homeostasis of inorganic

phosphate

Although two research groups demonstrated that PHT4;6

acts as a phosphate-transporting carrier protein that is likely

to export phosphate from the Golgi to the cytosol (Guo et al.,

2008b; Cubero et al., 2009), neither phosphate homeostasis

nor phosphate metabolism have yet been analyzed in cor-

responding loss-of-function mutants.

To assess the effect of Pi on pht4;6 mutants, we grew wild-

type and mutant plants on soil under either standard

conditions or conditions of increased Pi supply (25 mM;

Figure 8a–d). pht4;6 plants show a dwarf phenotype under

(a) (b)

(c) (d)

(e) (f)

Figure 6. Lack of pht4;6 leads to an increased

pathogen response.

(a, b) Quantification of free (a) and conjugated

salicylic acid (SA) (b) in rosette leaves of 4-week-

old wild-type (Wt) and pht4;6 plants. Error bars

indicate standard error (n = 3).

(c) Northern blot analysis showing the expres-

sion of pr1, pr2, gstf6 and pal genes in wild-type

(Wt) and pht4;6 plants. Ethidium bromide-

stained rRNA was used as a loading control.

(d) Expression pattern of pht4;6 in 4-week-old

wild-type leaves after infection with the Pseudo-

monas syringae strains Dc3000 or DC3000

AvrRpt2. MgCl2 solution was used as a control.

For Northern blot analysis, plants were harvested

after 0, 4, 8 and 24 h post-infection. Ethidium

bromide-stained rRNA was used as a loading

control.

(e) P. syringae DC3000 population in 4-week-old

wild-type (diamond) and pht4;6 (square) plants.

(f) P. syringae DC3000 AvrRpt2 population in

4-week-old wild-type (diamond) and pht4;6

(square) plants. Plants were infiltrated with

5 · 105 cfu ml)1 of Pst DC3000 or Pst DC3000

AvrRpt2, and harvested 0, 1, 2 and 3 days post-

inoculation (dpi).
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standard growth conditions compared to wild-type plants

(Figures 1a,b and 8a,b). Interestingly, addition of Pi (25 mM)

to the supplied water did not alter the growth of wild-type

plants significantly, but clearly stimulated growth of pht4;6

plants (Figure 8c,d).

With this effect in mind, we quantified the total phosphate

content in both plant lines grown under either standard or

high-Pi conditions. Under standard growth conditions,

Pi levels in wild-type and pht4;6 plants were similar: 4.86 �
0.5 lmol gFW)1 in wild-type and 4.1 � 0.52 lmol gFW)1 in

mutant plants (Figure 9). Because both phosphate and

sulfate accumulate in the vacuole (Martinoia et al., 2007),

and as both types of molecules represent divalent anions, it

was interesting to observe that pht4;6 plants had signifi-

cantly higher SO4
2) levels than wild-type plants, namely

22.33 � 0.84 lmol gFW)1 in mutants compared to 11.48

� 1.4 lmol gFW)1 in wild-type leaves (Figure 9). Remarkably,

addition of Pi into the supplied water resulted in a slight

increase in inorganic phosphate in both genotypes, reaching

approximately 7.0 lmol gFW)1 (Figure 8). However, under

these conditions (which stimulated growth of pht4;6 plants,

Figure 8a–d), the sulfate levels in mutants were very similar

to those in wild-type plants (approximately 11.0 lmol

gFW)1, Figure 9).

(a) (b)

(c) (d)

(e) (f)

Figure 7. Occurrence of leaf lesions on wild-type (Wt) and pht4;6 plants.

(a, b) Leaf tissue of wild-type (a) and pht4;6 (b) plants stained with trypan blue.

Scale bar = 0.5 mm.

(c, d) Histochemical detection of H2O2 in wild-type (c) and pht4;6 (d) plants.

Scale bar = 1 mm.

(e, f) Detection of callose fluorescence in wild-type (e) and pht4;6 (f) leaves.

Scale bar = 0.5 mm. Plants were grown for 4 weeks on soil.

(a) (b)

(c) (d)

Figure 8. Effect of phosphate supplement on wild-type (Wt) or pht4;6 growth.

(a, b) Wild-type and pht4;6 plants were grown for 7 weeks on soil without

KH2PO4.

(c, d) Seven-week old wild-type and pht4;6 plants that were watered using

water supplemented with 25 mM KH2PO4.

Figure 9. Quantification of phosphate and sulfate in wild-type (Wt) and pht4;6

mutant plants.

Phosphate (closed bars) and sulfate (open bars) content was determined in

leaves of 7-week-old wild-type and pht4;6 plants. Plants were grown on soil

with or without addition of phosphate (25 mM). Error bars represent standard

error (n = 4).
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PHT4;6 activity is critical for inorganic phosphate

compartmentation

The observation that addition of Pi to the water promotes

growth of pht4;6 plants (Figure 8a–d) is an indirect indica-

tion of a Pi starvation syndrome. To obtain molecular evi-

dence for a putative Pi starvation phenotype at the cellular

level, we quantified the expression of genes known to re-

spond to low Pi levels (Müller et al., 2007). The selected

genes encode the transcription factors WRKY38 and

WRKY75, the 3¢(2¢),5¢-bisphosphate nucleotidase SAL2

(At5g64000), and the plasma membrane-located phosphate

importer PHT1;4 (Müller et al., 2007). In leaves of pht4;6

mutants, all four Pi-responsive genes were drastically

(4.5–19-fold) up-regulated compared to wild-type plants

(Figure 10). The plant vacuole represents the largest storage

organelle for inorganic phosphate (Martinoia et al., 2007).

Thus, it was tempting to analyze differences in vacuolar Pi

levels in wild-type and pht4;6 plants. To do this, all plant

lines were grown on soil and vacuolar Pi levels were quan-

tified by NMR. NMR is a suitable method to quantify Pi levels

at the subcellular level under in vivo conditions, i.e. on intact

plant material (Espen et al., 2000; Pratt et al., 2009; Stefa-

novic et al., 2011).

Both wild-type and pht4;6 plants accumulated large

amounts of Pi in the vacuole (Figure 11). After quantification

of the NMR signals, we determined that mutant plants

contained substantially increased phosphate levels in the

vacuolar compartment (4.81 � 0.53 lmol ml tissue)1), with

40% more vacuolar Pi than present in corresponding wild-

type vacuoles (3.40 � 0.21 lmol ml tissue)1). Our NMR

studies did not allow exact determination of cytoplasmic Pi

levels (Figure 11), which may lead to under-estimation of the

cytoplasmic Pi in wild-type plants. This is in agreement with

the generally very low cytosolic Pi levels in Arabidopsis and

other plant species (Pratt et al., 2009), representing only a

few per cent of total cellular inorganic phosphate (Espen

et al., 2000). However, the NMR signal pattern observed in

our experiments concurs with recent Pi NMR data obtained

on Arabidopsis leaves (Stefanovic et al., 2011).

DISCUSSION

The Golgi apparatus acts as the cellular site for many reac-

tions involved in cell-wall and protein modifications, as well

as being a structure required for transport of proteins that

enter the secretory pathway. The complement of transport

proteins in membranes of the Golgi apparatus is still widely

unknown, although a few proteins responsible for nucleo-

tide sugar, monosaccharide or manganese transport have

been identified in this plant cell compartment (Handford

et al., 2004; Wang et al., 2006; Peiter et al., 2007). In addition

to the proteins mentioned above, PHT4;6 was identified as

Figure 10. Relative expression of genes induced upon phosphate starvation

quantified using quantitative RT-PCR.

mRNA levels of transcription factors wrky38 and wrky75, the 3¢,(2¢),5¢-
bisphosphate nucleotidase sal2 and the plasmamembrane phosphate trans-

porter pht1;4 in wild-type (Wt) and pht4;6 plants. Leaves of 4-week-old plants

grown on soil were used for extraction of total RNA. Error bars indicate

standard error (n = 3).

(a)

(b)

Figure 11. 31P-NMR spectra of wild-type (a) and pht4;6 (b) leaves.

The spectra were acquired with a 6 sec recycle time and are the sum of 2000

scans. The resonance assignments are as follows: peak 1, Glc6P and other

phosphomonoesters; peak 2, phosphocholine; peak 3, cytoplasmic phos-

phate; peak 4, vacuolar phosphate; peak 5, c-phosphate of NTP and

b-phosphate of NDP; peak 6, a-phosphates of NTP and NDP; peak 7, UDP-

Glc and NAD(P)(H). Some regions are shown on an expanded scale (4·).
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the first phosphate carrier located in this cellular domain

(Guo et al., 2008b). The Golgi lumen contains various enzy-

matic reactions that continuously release inorganic phos-

phate during hemicellulose synthesis, or during protein and

lipid glycosylation. These latter types of reaction produce

nucleoside diphosphates in the lumen that must be

dephosphorylated prior to export into the cytosol (Hirsch-

berg, 1997; Handford et al., 2004). The resulting inorganic

phosphate moiety represents the PHT4;6 substrate (Cubero

et al., 2009) as this carrier was characterized as a Pi facilitator

working independently of the proton or sodium gradient

(Guo et al., 2008b).

So far, increased sensitivity against salt stress accompa-

nied by swollen root tips was the sole phenotypic alteration

described for the pht4;6 mutant (Cubero et al., 2009).

However, absence of PHT4;6 inhibits development of the

whole plant (Figure 1a–e), not only the root tissue, when

under salt stress (Cubero et al., 2009). Up to now, the PHT4;6

protein abundance in various organs or cells has not been

quantified directly, but the strong effect of PHT4;6 activity on

whole plant development (Figure 1a–e) is in line with the

general importance of Golgi-related processes for cell

function and the ubiquitous expression of the correspond-

ing gene in most types of Arabidopsis tissue (Guo et al.,

2008a). The more detailed analysis has revealed that the

protein glycosylation pattern, hemicellulose composition,

vesicle flux and ER-related processes are affected in cells

lacking PHT4;6 activity (Figures 2–5).

Against the background of such a substantial alteration of

Golgi-resident processes, a direct correlation of increased

salt sensitivity with altered cell-wall properties as proposed

previously (Cubero et al., 2009) may not exist, although

several mutants with altered cell-wall properties or modified

protein glycosylation patterns do show increased salt sen-

sitivity (Koiwa et al., 2003; Shi et al., 2003; Frank et al., 2008).

In fact, the strong effect of kifunensine on pht4;6 plants

resembles the increased salt sensitivity observed for Arabi-

dopsis mutants lacking mannosidase I and II (Kang et al.,

2008), and thus supports a genetic interaction of latter

enzmyes with pht4;6 in the Golgi. However, in recent

reports, endomembrane-located transport processes and

regulatory mechanisms therein have received more and

more attention with respect to plant sodium chloride

tolerance. For example, it was shown that impaired activity

of the Golgi-located V-ATPase in Arabidopsis provoked

decreased tolerance against salt (Krebs et al., 2010). Also,

mutants lacking the vesicle-associated sodium/proton anti-

porters NHX5 and NHX6 showed increased sodium sensi-

tivity (Bassil et al., 2011), whereas over-expression of the

vesicle trafficking regulation gene RabG3e increased salt

tolerance (Mazel et al., 2004). These independent observa-

tions clearly indicate involvement of Golgi-derived vesicles

in sodium tolerance. In addition, a causality between the

increased salt sensitivity of pht4;6 plants and altered cell-

wall properties (Cubero et al., 2009) becomes even more

questionable as pht4;6 mutants also exhibit a markedly

stimulated unfolded protein response (Figure 4). However,

to activate salt stress genes, ER-located processes must

obviously be undisturbed, because a constitutively activated

unfolded protein response, as present in pht4;6 plants

(Figure 4), negatively influences abiotic stress responses in

plants (Liu and Howell, 2010).

It is remarkable that pht4;6 mutants show altered Golgi

vesicle flux properties (as directly indicated by increased

sensitivity to brefeldin A, Figure 5b–d) and substantially

increased levels of SA (Figure 6a,b). Interestingly, other

mutants inhibited in post-Golgi vesicle transport are also

characterized by constitutively increased SA levels.

Recently, an Arabidopsis mutant lacking two Qa-SNARE

(soluble N-ethylmaleimide-sensitive factor attachment

receptor) proteins residing in the trans-Golgi network

showed impaired vesicle flux from the trans-Golgi to the

trans-Golgi network, and, similar to pht4;6 plants, constitu-

tively increased SA levels (Uemura et al., 2012). Thus, it

appears justified to assume that altered post-Golgi vesicle

fluxes directly affect SA metabolism in Arabidopsis.

The observation that the PHT4;6 gene is induced by

virulent DC3000 P. syringae cells (Figure 6d) is in line with

stimulation of the secretory machinery during pathogen

infection. Similar to PHT4;6, the gene encoding the Arabi-

dopsis t-SNARE homolog SNAP33 is strongly activated

upon Pseudomonas infection (Wick et al., 2003). Such

stimulation of genes involved in vesicle flux upon pathogen

challenge is consistent with stimulated expression of several

other genes encoding ER-located proteins and the increased

vesicle flux required to release hydrolytic enzymes into the

apoplast as an early plant defense response (Uknes et al.,

1992; Denecke et al., 1995).

We observed that, in contrast to wild-type, leaves from

pht4;6 plants show spontaneous necrotic lesions, increased

H2O2 levels, increased expression of a wide set of PR genes,

and stimulated callose deposition (Figures 6 and 7). The

accumulation of callose may be interpreted as a response to

the elevated H2O2 levels in pht4;6 leaves, as this reactive

oxygen species probably triggers the hypersensitive

response in terms of programmed cell death, resulting in

necrotic lesions. Thus, pht4;6 plants are ‘mimic disease’

mutants, showing morphological, physiological and molec-

ular symptoms of infection without direct contact with

pathogens. Examples of such ‘mimic disease’ mutants are

the loss-of-function mutants cad1 (lacking a membrane

attack complex perforin protein) and mapk4 (lacking a MAP

kinase), which also show spontaneous leaf lesions and

spontaneous activation of the molecular defense machinery

(Petersen et al., 2000; Morita-Yamamuro et al., 2005), closely

resembling the pht4;6 phenotype.

PHT4;6 belongs to the large PHT family of putative

phosphate carriers in Arabidopsis. Moreover, recombinant
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synthesis of PHT4;6 and subsequent transport experiments

provided clear evidence for the Pi transport competence of

this membrane protein (Guo et al., 2008b; Cubero et al.,

2009). Given this, and bearing in mind that the pht4;6 loss-of-

function mutant shows a strong dwarf phenotype and

massively altered Golgi properties (Figures 1–5), it was

surprising to observe that the total Pi content was almost

identical in wild-type and mutant plants (Figure 9). Never-

theless, adding Pi to the daily supplied water stimulates

growth of the pht4;6 mutant but not the wild-type (Figure 8).

This observation provided the first evidence for an intracel-

lular phosphate starvation phenotype, which is substanti-

ated by various further observations. First, independent

genes responsive to low Pi are markedly up-regulated in

pht4;6 mutants (Figure 10). Obviously, internal Pi release

mechanisms such as increased expression of the gene SAL2

(Figure 10), encoding the enzyme 3¢(2¢),5¢-bisphosphate

nucleotidase, are activated in pht4;6 mutants. This enzyme

releases Pi from 3¢Phosphoadenosine-5¢-phospho sulfate

(PAPS), which is required for sulfate assimilation in higher

plants. Thus, accumulation of free sulfate is obvious in

pht4;6 plants under limiting phosphate conditions, but not

under conditions of high phosphate supply (Figure 9), which

also partially ameliorated the dwarf phenotype (Figure 8).

Second, pht4;6 plants show a markedly increased vacuolar

level of Pi (Figure 11), although the total Pi content in mutant

and wild-type plants is nearly identical (Figure 9).

Although cytosolic Pi concentrations could not be deter-

mined directly, the total Pi concentrations are similar in wild-

type and pht4;6 plants, thus the observation that mutant

plants contain 40% more vacuolar Pi suggests that the

cytoplasm of pht4;6 plants is strongly depleted in Pi. As the

lumen of the Golgi is also acidic (Maeda and Kinoshita,

2010), our results do not allow us to distinguish between

vacuolar and Golgi Pi levels. In fact, the increased sensitivity

of pht4;6 mutants to brefeldin A may be caused by a block of

post-Golgi traffic, leading to an even stronger impaired Pi

escape from the Golgi to the vacuole, when compared to

wild-type plants (Figure 5b–d). Obviously, neither other Pi

transporters nor PHO-type carriers are able to compensate

for the loss of a functional PHT4;6 protein. Our data

independently support the recent view that Pi metabolism

and transport in the Golgi and trans-Golgi network play an

important role in intracellular phosphate homeostasis in

Arabidopsis (Arpat et al., 2012).

EXPERIMENTAL PROCEDURES

Plant material and growth conditions

Arabidopsis thaliana ecotype Col-0 and transgenic plants were
grown on standard soil (ED-73, Patzer GmbH, www.einheitserde.de)
in a growth chamber under a 10 h light/14 h dark regimen at 22�C
and 125 lmol quanta m)2 sec)1. The pht4;6 T-DNA insertion mu-
tant SAIL#1404_809_B01 was obtained from the Nottingham Ara-
bidopsis Stock Centre (http://arabidopsis.info). For phosphate

supplementation assays, plants were watered regularly with water
supplemented with 25 mM KH2PO4.

Prior to germination, seeds were surface-sterilized and incubated
for 2 days in the dark for imbibition. For growth experiments with
kifunensine (Sigma, http://www.sigmaaldrich.com) and brefeldin A
(Sigma), surface-sterilized seeds were sown on Murashige and
Skoog (MS) plates as described previously (Reiser et al., 2004).

Generation of mutants

Molecular characterization of the pht4;6 T-DNA insertion line was
performed using genomic DNA isolated from 4-week-old leaves
using primers At5g44370_11, At5g44370_12 and LB-3 (Table S1).
cDNA was isolated as described below and amplified using primers
At5g44370_29 and At5g44370_30. For complementation of the
pht4;6 T-DNA line with the endogenous AtPHT4;6 gene (At5g44370),
the coding sequence including the native promoter and the 3¢ UTR
was amplified from genomic DNA using primers At5g44370_23 and
At5g44370_24. The sequence was cloned in an EcoRV-linearized
pGreen0029 vector (Hellens et al., 2000), and transformed together
with the pSoup vector (Hellens et al., 2000) into Agrobacterium
tumefaciens. For complementation of the pht4;6 T-DNA mutant with
the rice homolog, the entire Os11g08370 coding sequence was
amplified using primers Os11.moo753_1 and Os11.moo753_2. The
sequence was ligated into a KpnI/XhoI-cut pET42a(+) expression
vector (Merck, www.merckmillipore.com), amplified using primer
Os11.moo753_3 and the T7 promotor primer, digested and ligated
into XhoI/BamHI-cut pHannibal (Gleave, 1992). The construct was
cut using NotI/SpeI, cloned into the plant transformation vector
pART27 (Gleave, 1992), and used for A. tumefaciens-mediated
transformation of Arabidopsis (Clough and Bent, 1998).

Pathogen strains and plant treatments

Pseudomonas syringae pv. tomato (Pst) DC3000 and Pst DC3000
AvrRpt2 (Whalen et al., 1991; Kunkel et al., 1993) were propagated
in KB medium produced with protease peptone, no. 3 (20 g), gly-
cerol (12 g), K2SO4 (1.5 g), MgSO4 * 7 H2O (1.5 g) and deionized
distilled water (1 l) at 28�C. Cells were centrifuged for 10 min at
2500 g, and the pellet was resuspended in 10 mM MgCl2 to an OD600

of 0.1. Four-week-old plants were infected by infiltration of Pst
DC3000 or Pst DC3000 AvrRpt2 (5 · 105 cfu ml)1) using a needleless
syringe. For Northern blot analysis, infected leaves were harvested
after several time points post-inoculation, and total RNA was iso-
lated as described below. For quantification of P. syringae growth,
discs (0.3 cm diameter) of infected leaves were prepared after 0, 1, 2
and 3 days post-inoculation (dpi), and homogenized in 0.5 ml
10 mM MgCl2 solution. Cells were counted after incubation for
2 days at 28�C on KB agar plates supplemented with antibiotics
(Rifampicin, Kanamycin).

Gene expression analysis

The relative accumulation of mRNA was determined by Northern
blot analysis as described previously (Jung et al., 2011). Quantita-
tive RT-PCR was performed as described previously (Leroch et al.,
2005). The gene-specific primers used are listed in Table S1. Poly-
ubiquitin ubq10 mRNA was used for quantitative normalization.

Subcellular localization

Established plasmids were used encoding marker proteins for cis-
Golgi localization (Man1–mRFP, Nebenführ et al., 2002) and trans-
Golgi localization (ST–DsRed, Saint-Jore et al., 2002). Arabidopsis
thaliana protoplasts were generated from a cell suspension culture
3 days after sub-cultivation. Subsequently, cells were transformed
via PEG-mediated transformation as described previously (Negrutiu
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et al., 1987). Then the protoplasts were incubated in the dark at 26�C
for a minimum of 20 hs. For CLSM imaging, a Leica TCS SP5 II
confocal laser scanning microscope (http://www.leica-microsys
tems.com) was used. All images were taken using a Leica HCX PL
APO 63·/1.20w motCORR CS objective. The lasers used were VIS-
Argon for GFP constructs (488 nm/496–518 nm) and VIS-DPSS 561
for mRFP and DsRed constructs (561 nm/593–636 nm). Post-pro-
cessing of the images was performed using Leica Application Suite
Advanced Fluorescence Lite software. Pinholes were set to 1 Airy
unit for each wavelength.

N-glycan analysis by immunoblotting and lectin blots

Immunoblotting using anti-peroxidase antibody (Sigma) was per-
formed as described previously (Schoberer et al., 2009) using plant
tissue harvested from 5-week-old plants. Total soluble protein
(15 lg ml)1) was separated SDS–PAGE and transferred to a nitro-
cellulose membrane. For immunodetection of N-glycans, alkaline
phosphatase buffer medium (100 mM Tris/HCl, 100 mM NaCl, 5 mM

MgCl2, pH 9.5) supplemented with 220 ll 5-Bromo-4-chloro-3 in-
dolyl phosphate (BCIP) (50 mg ml)1 in 70% v/v dimethylformamide)
and 165 ll Nitroblue tetrazolium chloride (NBT) (50 mg ml)1 in 50%
v/v dimethylformamide) was used. Mannose-containing N-glycans
were detected using peroxidase-conjugated Concanvalin A (Sigma)
according to the manufacturer’s instructions.

NMR

The 31P-NMR spectra were recorded on a standard broad-band
10 mm probe on a Bruker AMX 600 spectrometer (Bruker, http://
www.bruker.com) with TopSpin software version 1.3. The 31P-NMR
spectra were recorded at 242.9 MHz without lock, using Waltz-based
broad-band proton decoupling and a spectral window of 16 kHz.
Chemical shifts were measured relative to the signal from a glass
capillary containing 33 mM methylene diphosphonate, which is at
18.5 ppm relative to the signal from 85% H3PO4. Resonance
assignment was performed as described previously (Roberts et al.,
1980; Kime et al., 1982).

In vivo 31P-NMR experiments were performed by packing the
leaves into a 10 mm diameter NMR tube equipped with a perfusion
system connected to a peristaltic pump through which aerated
thermo-regulated (25�C) medium (1 mM methylene diphosphonate,
1 mM Mes/Bis-Tris propane (BTP), pH 6.1, 0.4 mM CaSO4) flowed at
10 ml min)1. The quantitative in vivo analyses were performed
using a 90� pulse angle and 6 sec recycle time to give fully relaxed
resonance. Phosphate concentration in the vacuole was determined
as described by Spickett et al. (1992) by comparing the resonance
intensity with that of a glass capillary containing 33 mM methylene
diphosphonate and previously calibrated against standard solu-
tions. The areas of the 31P vacuolar peaks were measured by
Lorentzial line-shape analysis, and the values obtained were
expressed as a percentage of the volume of tissue in the NMR tube
(Spickett et al., 1992).

Histochemical analysis

For histochemical analysis, leaves of 4-week-old plants were used.
Detection of callose was performed as described by Eschrich and
Currier (1964). Accumulation of H2O2 was detected by 3,3¢-diam-
inobenzidine (DAB) staining (Kariola et al., 2005). Trypan blue
staining was performed according to a standard method (Cao et al.,
1998).

Cell-wall sugar isolation

Plant cell-wall carbohydrates were isolated as described previously
(Foster et al., 2010) with the following modifications. For homo-

genization of plant material, a Retsch ball mill (MM301; http://
www.retsch.de) and 40 mg material were used. Starch digestion
was performed using 6.7 units a-amylase from porcine pancreas
(Sigma) and 11 units amyloglucosidase from Aspergillus niger
(Sigma).For carbohydrate determination, 10 mg of isolated plant
cell wall were used. As an internal standard, 250 ll acetone and
50 ll inositol solution (5 mg ml)1) were added and evaporated
under gentle airflow. Weak acid hydrolysis was performed by add-
ing 250 ll of 2 M trifluoroacetic acid to each sample and incubation
for 90 min at 121�C. Tubes were cooled on ice and centrifuged at
11 000 g for 10 min. Then 150 ll supernatant was transferred to new
reaction tubes and evaporated. Pellets were resuspended in 300 ll
2-propanol, mixed and evaporated at 30�C three times. Water
(150 ll) was added and samples were used for sugar determination
as described below.

Metabolite measurement

Sugar quantification was performed by ion chromatography on a
HPLC-RCX-30 7 lm 4.6 · 250 mm column (Hamilton, http://www.
hamiltoncomp.com) using an 871 IC compact device (Metrohm,
http://www.metrohm.com) followed by amperometric quantifica-
tion. NaOH (0.15 M) was used as the mobile phase with a flow rate of
0.3 ml min)1. The pressure was set to 9.5 MPa at a temperature of
27�C.

For isolation of anions, plant material was ground under liquid
N2, and 1 ml water was added to 100 mg, mixed thoroughly and
heated for 15 min at 95�C. After centrifugation for 15 min (18 000 g),
the supernatant was used for quantification using a 761 IC compact
device (Metrohm) on a Metrosep A Supp 4-250/4.0 column
(Metrohm), followed by conductometry at a flow rate of 1 ml min)1

and pressure of 8 MPa, using 4 mM NaHCO3 and 1 mM Na2CO3 as
the mobile phase. H2SO4 (50 mM) was used as a suppressor.

Extraction of SA was performed as described by Meuwly and
Metraux (1993). SA was analyzed using a Dionex HPLC system
(http://www.dionex.com) with a P680 HPLC pump, an RF 2000
fluorescence detector and a UCI 50 interface (Dionex), equipped
with a Nucleodur column 100-5C18ec 250/4 (Machery and Nagel,
http://www.mn-net.com). Samples were separated using a flow rate
of 1 ml min)1 (97% 10 mM sodium acetate, pH 5.2, 3% of 100% v/v
methanol). Fluorescence of SA was detected with an excitation
wavelength of 300 nm and an emission wavelength of 400 nm.
Quantification was performed using Chromeleon 6.7 software
(Dionex).
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Nebenführ, A., Ritzenthaler, C. and Robinson, D.G. (2002) Brefeldin A: deci-

phering an enigmatic inhibitor of secretion. Plant Physiol. 130, 1102–1108.

Negrutiu, I., Shillito, R., Potrykus, I., Biasini, G. and Sala, F. (1987) Hybrid

genes in the analysis of transformation conditions. Plant Mol. Biol. 8,

363–373.

Peiter, E., Montanini, B., Gobert, A., Pedas, P., Husted, S., Maathuis, F.J.,

Blaudez, D., Chalot, M. and Sanders, D. (2007) A secretory pathway-local-

ized cation diffusion facilitator confers plant manganese tolerance. Proc.

Natl Acad. Sci. USA, 104, 8532–8537.

Petersen, M., Brodersen, P., Naested, H. et al. (2000) Arabidopsis MAP kinase

4 negatively regulates systemic acquired resistance. Cell, 103, 1111–1120.

Pratt, J., Boisson, A.M., Gout, E., Bligny, R., Douce, R. and Aubert, S. (2009)

Phosphate (Pi) starvation effect on the cytosolic Pi concentration and Pi

exchanges across the tonoplast in plant cells: an in vivo 31P-nuclear mag-

netic resonance study using methylphosphonate as a Pi analog. Plant

Physiol. 151, 1646–1657.

Rausch, C. and Bucher, M. (2002) Molecular mechanisms of phosphate

transport in plants. Planta, 216, 23–37.

Reimer, R.J. and Edwards, R.H. (2004) Organic anion transport is the primary

function of the SLC17/type I phosphate transporter family. Pflügers Arch.
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