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Abstract

We propose a generalization of the classical notion of the V@Rλ that
takes into account not only the probability of the losses, but the balance
between such probability and the amount of the loss. This is obtained by
defining a new class of law invariant risk measures based on an appropriate
family of acceptance sets. The V@Rλ and other known law invariant risk
measures turn out to be special cases of our proposal. We further prove
the dual representation of Risk Measures on P(R).
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1 Introduction

We introduce a new class of law invariant risk measures Φ : P(R) → R∪ {+∞}
that are directly defined on the set P(R) of probability measures on R and are
monotone and quasi-convex on P(R).

As Cherny and Madan (2009) [4] pointed out, for a (translation invariant)
coherent risk measure defined on random variables, all the positions can be
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spited in two classes: acceptable and not acceptable; in contrast, for an accept-
ability index there is a whole continuum of degrees of acceptability defined by
a system {Am}m∈R

of sets. This formulation has been further investigated by
Drapeau and Kupper (2010) [8] for the quasi convex case, with emphasis on the
notion of an acceptability family and on the robust representation.

We adopt this approach and we build the maps Φ from a family {Am}m∈R

of acceptance sets of distribution functions by defining:

Φ(P ) := − sup {m ∈ R | P ∈ Am} .

In Section 3 we study the properties of such maps, we provide some spe-
cific examples and in particular we propose an interesting generalization of the
classical notion of V@Rλ.

The key idea of our proposal - the definition of the ΛV@R in Section 4
- arises from the consideration that in order to assess the risk of a financial
position it is necessary to consider not only the probability λ of the loss, as in
the case of the V@Rλ, but the dependence between such probability λ and the
amount of the loss. In other terms, a risk prudent agent is willing to accept
greater losses only with smaller probabilities. Hence, we replace the constant
λ with a (increasing) function Λ : R →[0, 1] defined on losses, which we call
Probability/Loss function. The balance between the probability and the amount
of the losses is incorporated in the definition of the family of acceptance sets

Am := {Q ∈ P(R) | Q(−∞, x] ≤ Λ(x), ∀x ≤ m} , m ∈ R.

If PX is the distribution function of the random variable X, our new measure
is defined by:

ΛV@R(PX) := − sup {m ∈ R | P (X ≤ x) ≤ Λ(x), ∀x ≤ m} .

As a consequence, the acceptance sets Am are not obtained by the translation of
A0 which implies that the map is not any more translation invariant. However,
the similar property

ΛV@R(PX+α) = ΛαV@R(PX)− α,

where Λα(x) = Λ(x+ α), holds true and is discussed in Section 4.
The V@Rλ and the worst case risk measure are special cases of the ΛV@R.

The approach of considering risk measures defined directly on the set of
distribution functions is not new and it was already adopted by Weber (2006)
[19]. However, in this paper we are interested in quasi-convex risk measures
based - as the above mentioned map ΛV@R - on families of acceptance sets of
distributions and in the analysis of their robust representation. We choose to
define the risk measures on the entire set P(R) and not only on its subset of
probabilities having compact support, as it was done by Drapeau and Kupper
(2010) [8]. For this, we endow P(R) with the σ(P(R), Cb(R)) topology. The
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selection of this topology is also justified by the fact (see Proposition 5) that for
monotone maps σ(P(R), Cb(R))− lsc is equivalent to continuity from above. In
section 5 we briefly compare the robust representation obtained in this paper and
those obtained by Cerreia-Vioglio (2009) [6] and Drapeau and Kupper (2010)
[8].

Except for Φ = +∞, we show that there are no convex, σ(P(R), Cb(R))− lsc
translation invariant maps Φ : P(R) → R ∪ {+∞}. But there are many quasi-
convex and σ(P(R), Cb(R))− lsc maps Φ : P(R) → R ∪ {+∞} that in addition
are monotone and translation invariant, as for example the V@Rλ, the entropic
risk measure and the worst case risk measure. This is another good motivation
to adopt quasi convexity versus convexity.

Finally we provide the dual representation of quasi-convex, monotone and
σ(P(R), Cb(R)) − lsc maps Φ : P(R) → R ∪ {+∞} - defined on the entire set
P(R) - and compute the dual representation of the risk measures associated to
families of acceptance sets and consequently of the ΛV@R.

2 Law invariant Risk Measures

Let (Ω,F ,P) be a probability space and L0 =: L0(Ω,F ,P) be the space of F
measurable random variables that are P almost surely finite.
Any random variable X ∈ L0 induces a probability measure PX on (R,BR) by
PX(B) = P(X−1(B)) for every Borel set B ∈ BR. We refer to [1] Chapter 15 for
a detailed study of the convex set P =: P(R) of probability measures on R. Here
we just recall some basic notions: for any X ∈ L0 we have PX ∈ P so that we
will associate to any random variable a unique element in P . If P(X = x) = 1
for some x ∈ R then PX is the Dirac distribution δx that concentrates the mass
in the point x.
A map ρ : L → R := R ∪ {−∞} ∪ {∞}, defined on given subset L ⊆ L0, is law
invariant if X,Y ∈ L and PX = PY implies ρ(X) = ρ(Y ).

Therefore, when considering law invariant risk measures ρ : L0 → R it is
natural to shift the problem to the set P by defining the new map Φ : P → R

as Φ(PX) = ρ(X). This map Φ is well defined on the entire P , since there

exists a bi-injective relation between P and the quotient space L0

∼
(provided

that (Ω,F ,P) supports a random variable with uniform distribution), where
the equivalence is given by X ∼D Y ⇔ PX = PY . However, P is only a convex
set and the usual operations on P are not induced by those on L0, namely
(PX + PY )(A) = PX(A) + PY (A) 6= PX+Y (A), A ∈ BR.

Recall that the first order stochastic dominance on P is given by: Q 4 P ⇔
FP (x) ≤ FQ(x) for all x ∈ R, where FP (x) = P (−∞, x] and FQ(x) = Q(−∞, x]
are the distribution functions of P,Q ∈ P . Notice that X ≤ Y P-a.s. implies
PX 4 PY .

Definition 1 A Risk Measure on P(R) is a map Φ : P → R∪{+∞} such that:

(Mon) Φ is monotone decreasing: P 4 Q implies Φ(P ) ≥ Φ(Q);
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(QCo) Φ is quasi-convex: Φ(λP + (1− λ)Q) ≤ Φ(P ) ∨ Φ(Q), λ ∈ [0, 1].

Quasiconvexity can be equivalently reformulated in terms of sublevel sets: a
map Φ is quasi-convex if for every c ∈ R the set Ac = {P ∈ P | Φ(P ) ≤ c} is
convex. As recalled in [19] this notion of convexity is different from the one given
for random variables (as in [10]) because it does not concern diversification of fi-
nancial positions. A natural interpretation in terms of compound lotteries is the
following: whenever two probability measures P and Q are acceptable at some
level c and λ ∈ [0, 1] is a probability, then the compound lottery λP +(1−λ)Q,
which randomizes over P and Q, is also acceptable at the same level.
In terms of random variables (namely X,Y which induce PX , PY ) the random-
ized probability λPX + (1 − λ)PY will correspond to some random variable
Z 6= λX + (1 − λ)Y so that the diversification is realized at the level of distri-
bution and not at the level of portfolio selection.

As suggested by [19], we define the translation operator Tm on the set P(R)
by: TmP (−∞, x] = P (−∞, x − m], for every m ∈ R. Equivalently, if PX is
the probability distribution of a random variable X we define the translation
operator as TmPX = PX+m, m ∈ R. As a consequence we map the distribution
FX(x) into FX(x−m). Notice that P 4 TmP for any m > 0.

Definition 2 If Φ : P → R ∪ {+∞} is a risk measure on P, we say that

(TrI) Φ is translation invariant if Φ(TmP ) = Φ(P )−m for any m ∈ R.

Notice that (TrI) corresponds exactly to the notion of cash additivity for
risk measures defined on a space of random variables as introduced in [2]. It is
well known (see [7]) that for maps defined on random variables, quasiconvexity
and cash additivity imply convexity. However, in the context of distributions
(QCo) and (TrI) do not imply convexity of the map Φ, as can be shown with
the simple examples of the V@R and the worst case risk measure ρw (see the
examples in Section 3.1).

The set P(R) spans the space ca(R) := {µ signed measure | Vµ < +∞}
of all signed measures of bounded variations on R. ca(R) (or simply ca) en-
dowed with the norm Vµ = sup {

∑n
i=1 |µ(Ai)| s.t. {A1, ..., An} partition of R}

is a norm complete and an AL-space (see [1] paragraph 10.11).
Let Cb(R) (or simply Cb) be the space of bounded continuous function f :

R → R. We endow ca(R) with the weak∗ topology σ(ca, Cb). The dual pairing
〈·, ·〉 : Cb × ca → R is given by 〈f, µ〉 =

∫
fdµ and the function µ 7→

∫
fdµ

(µ ∈ ca) is σ(ca, Cb) continuous. Notice that P is a σ(ca, Cb)-closed convex
subset of ca (p. 507 in [1]) so that σ(P , Cb) is the relativization of σ(ca, Cb) to
P and any σ(P , Cb)-closed subset of P is also σ(ca, Cb)-closed.

Even though (ca, σ(ca, Cb)) is not metrizable in general, its subset P is
separable and metrizable (see [1], Th.15.12) and therefore when dealing with
convergence in P we may work with sequences instead of nets.

For every real function F we denote by C(F ) the set of points in which the
function F is continuous.
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Theorem 3 ([17] Theorem 2, p.314) ) Suppose that Pn, P ∈ P. Then Pn
σ(P,Cb)
−→

P if and only if FPn
(x) → FP (x) for every x ∈ C(FP ).

A sequence of probabilities {Pn} ⊂ P is decreasing, denoted with Pn ↓, if
FPn

(x) ≤ FPn+1(x) for all x ∈ R and all n.

Definition 4 Suppose that Pn, P ∈ P. We say that Pn ↓ P whenever Pn ↓
and FPn

(x) ↑ FP (x) for every x ∈ C(FP ). We say that

(CfA) Φ is continuous from above if Pn ↓ P implies Φ(Pn) ↑ Φ(P ).

Proposition 5 Let Φ : P → R be (Mon). Then the following are equivalent:
Φ is σ(P , Cb)-lower semicontinuous
Φ is continuous from above.

Proof. Let Φ be σ(P , Cb)-lower semicontinuous and suppose that Pn ↓ P .
Then FPn

(x) ↑ FP (x) for every x ∈ C(FP ) and we deduce from Theorem 3 that

Pn
σ(P,Cb)
−→ P . (Mon) implies Φ(Pn) ↑ and k := limn Φ(Pn) ≤ Φ(P ). The lower

level set Ak = {Q ∈ P | Φ(Q) ≤ k} is σ(P , Cb) closed and, since Pn ∈ Ak, we
also have P ∈ Ak, i.e. Φ(P ) = k, and Φ is continuous from above.

Conversely, suppose that Φ is continuous from above. As P is metrizable we
may work with sequences instead of nets. For k ∈ R consider Ak = {P ∈ P |

Φ(P ) ≤ k} and a sequence {Pn} ⊆ Ak such that Pn
σ(P,Cb)
−→ P ∈ P . We need

to show that P ∈ Ak. Lemma 6 shows that each FQn
:= (infm≥n FPm

) ∧ FP is
the distribution function of a probability measure and Qn ↓ P . From (Mon)
and Pn 4 Qn, we get Φ(Qn) ≤ Φ(Pn). From (CfA) then: Φ(P ) = limn Φ(Qn) ≤
lim infn Φ(Pn) ≤ k. Thus P ∈ Ak.

Lemma 6 For every Pn

σ(P,Cp)
−→ P we have that

FQn
:= inf

m≥n
FPm

∧ FP , n ∈ N,

is a distribution function associated to a probability measure Qn ∈ P such that
Qn ↓ P .

Proof. For each n, FQn
is increasing and limx→−∞ FQn

(x) = 0. More-
over for real valued maps right continuity and upper semicontinuity are equiva-
lent. Since the inf-operator preserves upper semicontinuity we can conclude
that FQn

is right continuous for every n. Now we have to show that for
each n, limx→+∞ FQn

(x) = 1. By contradiction suppose that, for some n,
limx→+∞ FQn

(x) = λ < 1. We can choose a sequence {xk}k ⊆ R with xk ∈
C(FP ), xk ↑ +∞. In particular FQn

(xk) ≤ λ for all k and FP (xk) > λ defini-
tively, say for all k ≥ k0. We can observe that since xk ∈ C(FP ) we have, for
all k ≥ k0, infm≥n FPm

(xk) < limm→+∞ FPm
(xk) = FP (xk). This means that

the infimum is attained for some index m(k) ∈ N, i.e. infm≥n FPm
(xk) =

FPm(k)
(xk), for all k ≥ k0. Since Pm(k)(−∞, xk] = FPm(k)

(xk) ≤ λ then
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Pm(k)(xk,+∞) ≥ 1 − λ for k ≥ k0. We have two possibilities. Either the

set {m(k)}k is bounded or limkm(k) = +∞. In the first case, we know that the
number of m(k)’s is finite. Among these m(k)’s we can find at least one m and
a subsequence {xh}h of {xk}k such that xh ↑ +∞ and Pm(xh,+∞) ≥ 1− λ for
every h. We then conclude that

lim
h→+∞

Pm(xh,+∞) ≥ 1− λ

and this is a contradiction. If limkm(k) = +∞, fix k ≥ k0 such that P (xk,+∞) <

1− λ and observe that for every k > k

Pm(k)(xk,+∞) ≥ Pm(k)(xk,+∞) ≥ 1− λ.

Take a subsequence {m(h)}h of {m(k)}k such that m(h) ↑ +∞. Then:

lim
h→∞

inf Pm(h)(xk,+∞) ≥ 1− λ > P (xk,+∞),

which contradicts the weak convergence Pn
σ(P,Cb)
−→ P .

Finally notice that FQn
≤ FPn

and Qn ↓. From Pn
σ(P,Cb)
−→ P and the definition

of Qn, we deduce that FQn
(x) ↑ FP (x) for every x ∈ C(FP ) so that Qn ↓ P .

Example 7 (The certainty equivalent) It is very simple to build risk mea-
sures on P(R). Take any continuous, bounded from below and strictly decreasing
function f : R → R. Then the map Φf : P → R ∪ {+∞} defined by:

Φf (P ) := −f−1

(∫
fdP

)
(1)

is a Risk Measure on P(R). It is also easy to check that Φf is (CfA) and
therefore σ(P , Cb)−lsc Notice that Proposition 22 will then imply that Φf can
not be convex. By selecting the function f(x) = e−x we obtain Φf (P ) =
ln
(∫

exp (−x)dFP (x))
)
, which is in addition (TrI). Its associated risk measure

ρ : L0 → R∪{+∞} defined on random variables, ρ(X) = Φf (PX) = ln
(
Ee−X

)
,

is the Entropic (convex) Risk Measure. In Section 5 we will see more examples
based on this construction.

3 A remarkable class of risk measures on P(R)

Given a family {Fm}m∈R
of functions Fm : R → [0, 1], we consider the associated

sets of probability measures

Am := {Q ∈ P | FQ ≤ Fm} (2)

and the associated map Φ : P → R defined by

Φ(P ) := − sup {m ∈ R | P ∈ Am} . (3)
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We assume hereafter that for each P ∈ P there exists m such that P /∈ Am so
that Φ : P → R ∪ {+∞}.

Notice that Φ(P ) := inf {m ∈ R | P ∈ Am} where Am =: A−m and Φ(P )
can be interpreted as the minimal risk acceptance level under which P is still
acceptable. The following discussion will show that under suitable assumption
on {Fm}m∈R

we have that {Am}m∈R
is a risk acceptance family as defined in

[8].
We recall from [8] the following definition

Definition 8 A monotone decreasing family of sets {Am}m∈R
contained in P

is left continuous in m if

Am =:
⋂

ε>0

Am−ε

In particular it is left continuous if it is left continuous in m for every m ∈ R.

Lemma 9 Let {Fm}m∈R
be a family of functions Fm : R → [0, 1] and Am be

the set defined in (2). Then:

1. If, for every x ∈ R, F
�
(x) is decreasing (w.r.t. m) then the family {Am}

is monotone decreasing: Am ⊆ An for any level m ≥ n,

2. For any m, Am is convex and satisfies: Q � P ∈ Am ⇒ Q ∈ Am

3. If, for every m ∈ R, Fm(x) is right continuous w.r.t. x then Am is
σ(P , Cb)−closed,

4. Suppose that, for every x ∈ R, Fm(x) is decreasing w.r.t. m. If Fm(x) is
left continuous w.r.t. m, then the family {Am} is left continuous.

5. Suppose that, for every x ∈ R, Fm(x) is decreasing w.r.t. m and that,
for every m ∈ R, Fm(x) is right continuous and increasing w.r.t. x and
limx→+∞ Fm(x) = 1. If the family {Am} is left continuous in m then
Fm(x) is left continuous in m.

Proof. 1. If Q ∈ Am and m ≥ n then FQ ≤ Fm ≤ Fn, i.e. Q ∈ An.

2. Let Q,P ∈ Am and λ ∈ [0, 1]. Consider the convex combination λQ +
(1− λ)P and notice that

FλQ+(1−λ)P ≤ FQ ∨ FP ≤ Fm,

as FP ≤ Fm and FQ ≤ Fm. Then λQ+ (1− λ)P ∈ Am.

3. Let Qn ∈ Am and Q ∈ P satisfy Qn
σ(P,Cb)
→ Q. By Theorem 3 we know

that FQn
(x) → FQ(x) for every x ∈ C(FQ). For each n, FQn

≤ Fm and therefore
FQ(x) ≤ Fm(x) for every x ∈ C(FQ). By contradiction, suppose that Q /∈ Am.

7



Then there exists x̄ /∈ C(FQ) such that FQ(x̄) > Fm(x̄). By right continuity of
FQ for every ε > 0 we can find a right neighborhood [x̄, x̄+ δ(ε)) such that

|FQ(x) − FQ(x̄)| < ε ∀x ∈ [x̄, x̄+ δ(ε))

and we may require that δ(ε) ↓ 0 if ε ↓ 0.Notice that for each ε > 0 we can
always choose an xε ∈ (x̄, x̄ + δ(ε)) such that xε ∈ C(FQ). For such an xε we
deduce that

Fm(x̄) < FQ(x̄) < FQ(xε) + ε ≤ Fm(xε) + ε.

This leads to a contradiction since if ε ↓ 0 we have that xε ↓ x̄ and thus by right
continuity of Fm

Fm(x̄) < FQ(x̄) ≤ Fm(x̄).

4. By assumption we know that Fm−ε(x) ↓ Fm(x) as ε ↓ 0, for all x ∈ R. By
item 1, we know that Am ⊆

⋂
ε>0

Am−ε. By contradiction we suppose that the

strict inclusion
Am ⊂

⋂

ε>0

Am−ε

holds, so that there will exist Q ∈ P such that FQ ≤ Fm−ε for every ε > 0
but FQ(x) > Fm(x) for some x ∈ R. Set δ = FQ(x) − Fm(x) so that FQ(x) >
Fm(x)+ δ

2 . Since Fm−ε ↓ Fm we may find ε > 0 such that Fm−ε(x)−Fm(x) < δ
2 .

Thus FQ(x) ≤ Fm−ε(x) < Fm(x) + δ
2 and this is a contradiction.

5. Assume thatAm−ε ↓ Am. Define F (x) := limε↓0 Fm−ε(x) = infε>0 Fm−ε(x)
for all x ∈ R. Then F : R → [0, 1] is increasing, right continuous (since the inf
preserves this property). Notice that for every ε > 0 we have Fm−ε ≥ F ≥ Fm

and then Am−ε ⊇ {Q ∈ P | FQ ≤ F} ⊇ Am and limx→+∞ F (x) = 1.
Necessarily we conclude {Q ∈ P | FQ ≤ F} = Am. By contradiction we
suppose that F (x) > Fm(x) for some x ∈ R. Define FQ : R → [0, 1] by:
FQ(x) = F (x)1[x,+∞)(x). The above properties of F guarantees that FQ is a

distribution function of a corresponding probability measure Q ∈ P , and since
FQ ≤ F , we deduce Q ∈ Am, but FQ(x) > Fm(x) and this is a contradiction.

The following Lemma can be deduced directly from Lemma 9 and Theorem
1.7 in [8] (using the risk acceptance family Am =: A−m, according to Definition
1.6 in the aforementioned paper). We provide the proof for sake of completeness.

Lemma 10 Let {Fm}m∈R
be a family of functions Fm : R → [0, 1] and Φ be

the associated map defined in (3). Then:

1. The map Φ is (Mon) on P.

2. If, for every x ∈ R, F
�
(x) is decreasing (w.r.t. m) then Φ is (QCo) on P.

3. If, for every x ∈ R, F
�
(x) is left continuous and decreasing (w.r.t. m) and

if, for every m ∈ R, Fm(�) is right continuous (w.r.t. x) then

Am := {Q ∈ P | Φ(Q) ≤ m} = A−m, ∀m, (4)

and Φ is σ(P , Cb)−lower-semicontinuous.
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Proof. 1. From P 4 Q we have FQ ≤ FP and

{m ∈ R | FP ≤ Fm} ⊆ {m ∈ R | FQ ≤ Fm} ,

which implies Φ(Q) ≤ Φ(P ).
2. We show that Q1, Q2 ∈ P , Φ(Q1) ≤ n and Φ(Q2) ≤ n imply that

Φ(λQ1 + (1− λ)Q2) ≤ n, that is

sup
{
m ∈ R | FλQ1+(1−λ)Q2

≤ Fm

}
≥ −n.

By definition of the supremum, ∀ε > 0 ∃mi s.t. FQi
≤ Fmi

and mi > −Φ(Qi)−
ε ≥ −n − ε. Then FQi

≤ Fmi
≤ F−n−ε, as {Fm} is a decreasing family.

Therefore λFQ1 + (1− λ)FQ2 ≤ F−n−ε and −Φ(λQ1 + (1 − λ)Q2λ) ≥ −n− ε.
As this holds for any ε > 0, we conclude that Φ is quasi-convex.

3. The fact that A−m ⊆ Am follows directly from the definition of Φ, as if
Q ∈ A−m

Φ(Q) := − sup {n ∈ R | Q ∈ An} = inf
{
n ∈ R | Q ∈ A−n

}
≤ m.

We have to show that Am ⊆ A−m. Let Q ∈ Am. Since Φ(Q) ≤ m, for all ε > 0
there exists m0 such that m+ε > −m0 and FQ ≤ Fm0 . Since F�

(x) is decreasing
(w.r.t. m) we have that FQ ≤ F−m−ε, therefore Q ∈ A−m−ε for any ε > 0. By
the left continuity in m of F

�
(x), we know that{Am} is left continuous (Lemma

9, item 4) and so: Q ∈
⋂
ǫ>0

A−m−ε = A−m.

From the assumption that Fm(�) is right continuous (w.r.t. x) and Lemma 9
item 3, we already know that Am is σ(P , Cb)−closed, for any m ∈ R, and there-
fore the lower level setsAm = A−m are σ(P , Cb)−closed and Φ is σ(P , Cb)−lower-
semicontinuous.

Definition 11 A family {Fm}m∈R
of functions Fm : R → [0, 1] is feasible if

• For any P ∈ P there exists m such that P /∈ Am

• For every m ∈ R, Fm(�) is right continuous (w.r.t. x)

• For every x ∈ R, F
�
(x) is decreasing and left continuous (w.r.t. m).

From Lemmas 9 and 10 we immediately deduce:

Proposition 12 Let {Fm}m∈R
be a feasible family. Then the associated family

{Am}m∈R
is monotone decreasing and left continuous and each set Am is convex

and σ(P , Cb)−closed. The associated map Φ : P → R ∪ {+∞} is well defined,
(Mon), (Qco) and σ(P , Cb)−lsc

Remark 13 Let {Fm}m∈R
be a feasible family. If there exists an m such that

limx→+∞ Fm(x) < 1 then limx→+∞ Fm(x) < 1 for every m ≥ m and then
Am = ∅ for every m ≥ m. Obviously if an acceptability set is empty then
it does not contribute to the computation of the risk measure defined in (3).
For this reason we will always consider w.l.o.g. a class {Fm}m∈R

such that
limx→+∞ Fm(x) = 1 for every m.
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3.1 Examples

As explained in the introduction, we define a family of risk measures employing
a Probability/Loss function Λ. Fix the right continuous function Λ : R → [0, 1]
and define the family {Fm}m∈R

of functions Fm : R → [0, 1] by

Fm(x) := Λ(x)1(−∞,m)(x) + 1[m,+∞)(x). (5)

It is easy to check that if supx∈RΛ(x) < 1 then the family {Fm}m∈R
is feasible

and therefore, by Proposition 12, the associated map Φ : P → R∪{+∞} is well
defined, (Mon), (Qco) and σ(P , Cb)−lsc

Example 14 When supx∈RΛ(x) = 1, Φ may take the value −∞. The extreme
case is when, in the definition of the family (5), the function Λ is equal to the
constant one, Λ(x) = 1, and so: Am = P for all m and Φ = −∞.

Example 15 Worst case risk measure: Λ(x) = 0.
Take in the definition of the family (5) the function Λ to be equal to the

constant zero: Λ(x) = 0. Then:

Fm(x) : = 1[m,+∞)(x)

Am : = {Q ∈ P | FQ ≤ Fm} = {Q ∈ P | δm 4 Q}

Φw(P ) : = − sup {m | P ∈ Am} = − sup {m | δm 4 P}

= − sup {x ∈ R | FP (x) = 0}

so that, if X ∈ L0 has distribution function PX ,

Φw(PX) = − sup {m ∈ R | δm 4 PX} = −ess inf(X) := ρw(X)

coincide with the worst case risk measure ρw. As the family {Fm} is feasible,
Φw : P(R) → R ∪ {+∞} is (Mon), (Qco) and σ(P , Cb)−lsc In addition, it also
satisfies (TrI).

Even though ρw : L0 → R ∪ {∞} is convex, as a map defined on random
variables, the corresponding Φw : P → R∪{∞}, as a map defined on distribution
functions, is not convex, but it is quasi-convex and concave. Indeed, let P ∈ P
and, since FP ≥ 0, we set:

−Φw(P ) = inf(FP ) := sup {x ∈ R : FP (x) = 0} .

If F1, F2 are two distribution functions corresponding to P1, P2 ∈ P then for
all λ ∈ (0, 1) we have:

inf(λF1 + (1− λ)F2) = min(inf(F1), inf(F2)) ≤ λ inf(F1) + (1− λ) inf(F2)

and therefore, for all λ ∈ [0, 1]

min(inf(F1), inf(F2)) ≤ inf(λF1 + (1− λ)F2) ≤ λ inf(F1) + (1 − λ) inf(F2).
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Example 16 Value at Risk V@Rλ: Λ(x) := λ ∈ (0, 1).
Take in the definition of the family (5) the function Λ to be equal to the

constant λ, Λ(x) = λ ∈ (0, 1). Then

Fm(x) : = λ1(−∞,m)(x) + 1[m,+∞)(x)

Am : = {Q ∈ P | FQ ≤ Fm}

ΦV@Rλ
(P ) : = − sup {m ∈ R | P ∈ Am}

If the random variable X ∈ L0 has distribution function PX and q+X(λ) =
sup {x ∈ R | P(X ≤ x) ≤ λ} is the right continuous inverse of PX then

ΦV @Rλ
(PX) = − sup {m | PX ∈ Am}

= − sup {m | P(X ≤ x) ≤ λ ∀x < m}

= − sup {m | P(X ≤ m) ≤ λ}

= −q+X(λ) := V@Rλ(X)

coincide with the Value At Risk of level λ ∈ (0, 1). As the family {Fm} is
feasible, ΦV @Rλ

: P → R ∪ {+∞} is (Mon), (Qco), σ(P , Cb)-lsc In addition, it
also satisfies (TrI).

As well known, V@Rλ : L0 → R∪{∞} is not quasi-convex, as a map defined
on random variables, even though the corresponding ΦV @Rλ

: P → R∪ {∞}, as
a map defined on distribution functions, is quasi-convex (see [8] for a discussion
on this issue).

Example 17 Fix the family {Λm}m∈R
of functions Λm : R → [0, 1] such that

for every m ∈ R, Λm(�) is right continuous (w.r.t. x) and for every x ∈ R,
Λ
�
(x) is decreasing and left continuous (w.r.t. m). Define the family {Fm}m∈R

of functions Fm : R → [0, 1] by

Fm(x) := Λm(x)1(−∞,m)(x) + 1[m,+∞)(x). (6)

It is easy to check that if supx∈RΛm0(x) < 1, for some m0 ∈ R, then the family
{Fm}m∈R

is feasible and therefore the associated map Φ : P → R ∪ {+∞} is
well defined, (Mon), (Qco), σ(P , Cb)-lsc

4 On the ΛV@R

We now propose a generalization of the V@Rλ which appears useful for possible
application whenever an agent is facing some ambiguity on the parameter λ,
namely λ is given by some uncertain value in a confidence interval [λm, λM ],
with 0 ≤ λm ≤ λM ≤ 1. The V@Rλ corresponds to case λm = λM and one
typical value is λM = 0, 05.

We will distinguish two possible classes of agents:

11



Risk prudent Agents Fix the increasing right continuous function Λ : R →
[0, 1], choose as in (5)

Fm(x) = Λ(x)1(−∞,m)(x) + 1[m,+∞)(x)

and set λm := inf Λ ≥ 0, λM := supΛ ≤ 1. As the function Λ is increasing, we
are assigning to a lower loss a lower probability. In particular given two possible
choices Λ1,Λ2 for two different agents, the condition Λ1 ≤ Λ2 means that the
agent 1 is more risk prudent than agent 2.
Set, as in (2), Am = {Q ∈ P | FQ ≤ Fm} and define as in (3)

ΛV@R(P ) := − sup {m ∈ R | P ∈ Am} .

Thus, in case of a random variable X

ΛV@R(PX) := − sup {m ∈ R | P(X ≤ x) ≤ Λ(x), ∀x ≤ m} .

In particular it can be rewritten as

ΛV@R(PX) = − inf {x ∈ R | P(X ≤ x) > Λ(x)} .

If both FX and Λ are continuous ΛV@R corresponds to the smallest intersection
between the two curves.

In this section, we assume that

λM < 1.

Besides its obvious financial motivation, this request implies that the corre-
sponding family Fm is feasible and so ΛV@R(P ) > −∞ for all P ∈ P .

The feasibility of the family {Fm} implies that the ΛV@R : P → R∪{∞} is
well defined, (Mon), (QCo) and (CfA) (or equivalently σ(P , Cb)-lsc) map.

Example 18 One possible simple choice of the function Λ is represented by
the step function:

Λ(x) = λm1(−∞,x̄)(x) + λM1[x̄,+∞)(x)

The idea is that with a probability of λM we are accepting to loose at most x̄.
In this case we observe that:

ΛV@R(P ) =

{
V@RλM (P ) if V@Rλm(P ) ≤ −x̄
V@Rλm(P ) if V@Rλm(P ) > −x̄.

Even though the ΛV@R is continuous from above (Proposition 12 and 5), it may
not be continuous from below, as this example shows. For instance take x̄ = 0
and PXn

induced by a sequence of uniformly distributed random variables Xn ∼
U
[
−λm − 1

n
, 1− λm − 1

n

]
. We have PXn

↑ PU [−λm,1−λm] but ΛV@R(PXn
) =

− 1
n
for every n and ΛV@R(PU [−λm,1−λm]) = λM − λm.

12



Remark 19 (i) If λm = 0 the domain of ΛV@R(P ) is not the entire convex
set P. We have two possible cases

• supp(Λ) = [x∗,+∞): in this case ΛV@R(P ) = − inf supp(FP ) for every
P ∈ P such that supp(FP ) ⊇ supp(Λ).

• supp(Λ) = (−∞,+∞): in this case

ΛV@R(P ) = +∞ for all P such that lim
x→−∞

FP (x)

Λ(x)
> 1

ΛV@R(P ) < +∞ for all P such that lim
x→−∞

FP (x)

Λ(x)
< 1

In the case limx→−∞
FP (x)
Λ(x) = 1 both the previous behaviors might occur.

(ii) In case that λm > 0 then ΛV@R(P ) < +∞ for all P ∈ P, so that ΛV@R
is finite valued.

We can prove a further structural property which is the counterpart of (TrI)
for the ΛV@R. Let α ∈ R any cash amount

ΛV@R(PX+α) = − sup {m | P(X + α ≤ x) ≤ Λ(x), ∀x ≤ m}

= − sup {m | P(X ≤ x− α) ≤ Λ(x), ∀x ≤ m}

= − sup {m | P(X ≤ y) ≤ Λ(y + α), ∀y ≤ m− α}

= − sup {m+ α | P(X ≤ y) ≤ Λ(y + α), ∀y ≤ m}

= ΛαV@R(PX)− α

where Λα(x) = Λ(x + α). We may conclude that if we add a sure positive
(resp. negative) amount α to a risky position X then the risk decreases (resp.
increases) of the value −α, constrained to a lower (resp. higher) level of risk
prudence described by Λα ≥ Λ (resp. Λα ≤ Λ). For an arbitrary P ∈ P this
property can be written as

ΛV@R(TαP ) = ΛαV@R(P )− α, ∀α ∈ R,

where TαP (−∞, x] = P (−∞, x− α].

Risk Seeking Agents Fix the decreasing right continuous function Λ : R →
[0, 1], with inf Λ < 1. Similarly as above, we define

Fm(x) = Λ(x)1(−∞,m)(x) + 1[m,+∞)(x)

and the (Mon), (QCo) and (CfA) map

ΛV@R(P ) := − sup {m ∈ R | FP ≤ Fm} = − sup {m ∈ R | P(X ≤ m) ≤ Λ(m)} .

13



In this case, for eventual huge losses we are allowing the highest level of proba-
bility. As in the previous example let α ∈ R and notice that

ΛV@R(PX+α) = ΛαV@R(PX)− α.

where Λα(x) = Λ(x + α). The property is exactly the same as in the former
example but here the interpretation is slightly different. If we add a sure positive
(resp. negative) amount α to a risky position X then the risk decreases (resp.
increases) of the value −α, constrained to a lower (resp. higher) level of risk
seeking since Λα ≤ Λ (resp. Λα ≥ Λ).

Remark 20 For a decreasing Λ, there is a simpler formulation - which will be
used in Section 5.3 - of the ΛV@R that is obtained replacing in Fm the function
Λ with the line Λ(m) for all x < m. Let

F̃m(x) = Λ(m)1(−∞,m)(x) + 1[m,+∞)(x).

This family is of the type (6) and is feasible, provided the function Λ is contin-
uous. For a decreasing Λ, it is evident that

ΛV@R(P ) = ΛṼ@R(P ) := − sup
{
m ∈ R | FP ≤ F̃m

}
,

as the function Λ lies above the line Λ(m) for all x ≤ m.

5 Quasi-convex Duality

In literature we also find several results about the dual representation of law in-
variant risk measures. Kusuoka [15] contributed to the coherent case, while Frit-
telli and Rosazza [12] extended this result to the convex case. Jouini, Schacher-
mayer and Touzi (2006) [14], in the convex case, and Svindland (2010) [16] in
the quasi-convex case, showed that every law invariant risk measure is already
weakly lower semicontinuous. Recently, Cerreia-Vioglio, Maccheroni, Marinacci
and Montrucchio (2010) [7] provided a robust dual representation for law invari-
ant quasi-convex risk measures, which has been extended to the dynamic case
in [11].

In Sections 5.1 and 5.2 we will treat the general case of maps defined on P ,
while in Section 5.3 we specialize these results to show the dual representation
of maps associated to feasible families.

5.1 Reasons of the failure of the convex duality for Trans-

lation Invariant maps on P

It is well known that the classical convex duality provided by the Fenchel-
Moreau theorem guarantees the representation of convex and lower semicontin-
uous functions and therefore is very useful for the dual representation of convex
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risk measures (see [13]). For any map Φ : P → R∪{∞} let Φ∗ be the convex
conjugate:

Φ∗(f) := sup
Q∈P

{∫
fdQ− Φ(Q)

}
, f ∈ Cb.

Applying the fact that P is a σ(ca, Cb) closed convex subset of ca one can easily
check that the following version of Fenchel-Moreau Theorem holds true for maps
defined on P .

Proposition 21 (Fenchel-Moreau) Suppose that Φ : P → R∪ {∞} is σ(P , Cb)−
lsc and convex. If Dom(Φ) := {Q ∈ P | Φ(Q) < +∞} 6= ∅ then Dom(Φ∗) 6= ∅

and

Φ(Q) = sup
f∈Cb

{∫
fdQ− Φ∗(f)

}
.

One trivial example of a proper σ(P , Cb)−lsc and convex map on P is given
by Q →

∫
fdQ, for some f ∈ Cb. But this map does not satisfy the (TrI)

property. Indeed, we show that in the setting of risk measures defined on P ,
weakly lower semicontinuity and convexity are incompatible with translation
invariance.

Proposition 22 For any map Φ : P → R∪{∞}, if there exists a sequence
{Qn}n ⊆ P such that limnΦ(Qn) = −∞ then Dom(Φ∗) = ∅.

Proof. For any f ∈ Cb(R)

Φ∗(f) = sup
Q∈P

{∫
fdQ− Φ(Q)

}
≥

∫
fd(Qn)− Φ(Qn) ≥ inf

x∈R

f(x)− Φ(Qn),

which implies Φ∗ = +∞.

From Propositions (21) and (22) we immediately obtain:

Corollary 23 Let Φ : P → R∪ {∞} be σ(P , Cb)-lsc, convex and not identically
equal to +∞. Then Φ is not (TrI), is not cash sup additive (i.e. it does not sat-
isfy: Φ(TmQ) ≤ Φ(Q)−m ) and limnΦ(δn) 6= −∞. In particular, the certainty
equivalent maps Φf defined in (1) can not be convex, as they are σ(P , Cb)-lsc
and Φf (δn) = −n

5.2 The dual representation

As described in the Examples in Section 3, the ΦV@Rλ
and Φw are proper,

σ(ca, Cb)−lsc, quasi-convex (Mon) and (TrI) maps Φ : P → R∪{∞}. Therefore,
the negative result outlined in Corollary 23 for the convex case can not be true
in the quasi-convex setting.

We recall that the seminal contribution to quasi-convex duality comes from
the dual representation by Volle [18], which has been sharpened to a complete
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quasiconvex duality by Cerreia-Vioglio et al. [7] (case of M-spaces), Cerreia-
Vioglio [6] (preferences over menus) and Drapeau and Kupper [8] (for general
topological vector spaces).

Here we replicate this result and provide the dual representation of a σ(P , Cb)
lsc quasi-convex maps defined on the entire set P . The main difference is that
our map Φ is defined on a convex subset of ca and not a vector space (a similar
result can be found in [8] for convex sets). But since P is σ(ca, Cb)-closed, the
first part of the proof will match very closely the one given by Volle. In order to
achieve the dual representation of σ(P , Cb) lsc risk measures Φ : P → R∪{∞}
we will impose the monotonicity assumption of Φ and deduce that in the dual
representation the supremum can be restricted to the set

C−
b = {f ∈ Cb | f is decreasing} .

This is natural as the first order stochastic dominance implies (see Th. 2.70
[10]) that

C−
b =

{
f ∈ Cb | Q,P ∈ P and P 4 Q ⇒

∫
fdQ ≤

∫
fdP

}
. (7)

Notice that differently from [8] the following proposition does not require the
extension of the risk map to the entire space ca(R). Once the representation is
obtained the uniqueness of the dual function is a direct consequence of Theorem
2.19 in [8] as explained by Proposition 29.

Proposition 24 (i) Any σ(P , Cb)−lsc and quasi-convex functional Φ : P →
R ∪ {∞} can be represented as

Φ(P ) = sup
f∈Cb

R

(∫
fdP, f

)
(8)

where R : R× Cb → R is defined by

R(t, f) := inf
Q∈P

{
Φ(Q) |

∫
fdQ ≥ t

}
. (9)

(ii) If in addition Φ is monotone then (8) holds with Cb replaced by C−
b .

Proof. We will use the fact that σ(P , Cb) is the relativization of σ(ca, Cb)
to the set P . In particular the lower level sets will be σ(ca, Cb)-closed.

(i) By definition, for any f ∈ Cb(R), R
(∫

fdP, f
)
≤ Φ(P ) and therefore

sup
f∈Cb

R

(∫
fdP, f

)
≤ Φ(P ), P ∈ P .

Fix any P ∈ P and take ε ∈ R such that ε > 0. Then P does not belong to the
σ(ca, Cb)-closed convex set

Cε := {Q ∈ P : Φ(Q) ≤ Φ(P )− ε}
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(if Φ(P ) = +∞, replace the set Cε with {Q ∈ P : Φ(Q) ≤ M} , for any M).
By the Hahn Banach theorem there exists a continuous linear functional that
strongly separates P and Cε, i.e. there exists α ∈ R and fε ∈ Cb such that

∫
fεdP > α >

∫
fεdQ for all Q ∈ Cε. (10)

Hence:
{
Q ∈ P :

∫
fεdP ≤

∫
fεdQ

}
⊆ (Cε)

C = {Q ∈ P : Φ(Q) > Φ(P )− ε} (11)

and

Φ(P ) ≥ sup
f∈Cb

R

(∫
fdP, f

)
≥ R

(∫
fεdP, fε

)

= inf

{
Φ(Q) | Q ∈ P such that

∫
fεdP ≤

∫
fεdQ

}

≥ inf {Φ(Q) | Q ∈ P satisfying Φ(Q) > Φ(P )− ε} ≥ Φ(P )− ε.(12)

(ii) We furthermore assume that Φ is monotone. As shown in (i), for every
ε > 0 we find fε such that (10) holds true. We claim that there exists gε ∈ C−

b

satisfying: ∫
gεdP > α >

∫
gεdQ for all Q ∈ Cε. (13)

and then the above argument (in equations (10)-(12)) implies the thesis.
We define the decreasing function

gε(x) =: sup
y≥x

fε(y) ∈ C−
b .

First case: suppose that gε(x) = supx∈R fε(x) =: s. In this case there exists
a sequence of {xn}n∈N ⊆ R such that xn → +∞ and fε(xn) → s, as n → ∞.
Define

gn(x) = s1(−∞,xn] + fε(x)1(xn,+∞)

and notice that s ≥ gn ≥ fε and gn ↑ s. For any Q ∈ Cε we consider Qn

defined by FQn
(x) = FQ(x)1[xn,+∞). Since Q 4 Qn, monotonicity of Φ implies

Qn ∈ Cε. Notice that

∫
gndQ−

∫
fεdQn = (s− fε(xn))Q(−∞, xn]

n→+∞
−→ 0, as n → ∞. (14)

From equation (10) we have

s ≥

∫
fεdP > α >

∫
fεdQn for all n ∈ N. (15)
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Letting δ = s−α > 0 we obtain s >
∫
fεdQn+

δ
2 . From (14), there exists n ∈ N

such that 0 ≤
∫
gndQ−

∫
fεdQn < δ

4 for every n ≥ n. Therefore ∀n ≥ n

s >

∫
fεdQn +

δ

2
>

∫
gndQ −

δ

4
+

δ

2
=

∫
gndQ +

δ

4

and this leads to a contradiction since gn ↑ s. So the first case is excluded.
Second case: suppose that gε(x) < s for any x > x. As the function gε ∈ C−

b

is decreasing, there will exists at most a countable sequence of intervals {An}n≥0

on which gε is constant. Set A0 = (−∞, b0), An = [an, bn) ⊂ R for n ≥ 1.
W.l.o.g. we suppose that An ∩ Am = ∅ for all n 6= m (else, we paste together
the sets) and an < an+1 for every n ≥ 1. We stress that fε(x) = gε(x) on
D =:

⋂
n≥0 A

C
n . For every Q ∈ Cε we define the probability Q by its distribution

function as
FQ(x) = FQ(x)1D +

∑

n≥1

FQ(an)1[an,bn).

As before, Q 4 Q and monotonicity of Φ implies Q ∈ Cε. Moreover
∫

gεdQ =

∫

D

fεdQ+ fε(b0)Q(A0) +
∑

n≥1

fε(an)Q(An) =

∫
fεdQ.

From gε ≥ fε and equation (10) we deduce

∫
gεdP ≥

∫
fεdP > α >

∫
fεdQ =

∫
gεdQ for all Q ∈ Cε.

We reformulate the Proposition 24 and provide two dual representation of
σ(P(R), Cb)-lsc Risk Measure Φ : P(R) → R ∪ {∞} in terms of a supremum
over a class of probabilistic scenarios. Let

Pc(R) = {Q ∈ P(R) | FQ is continuous} .

Proposition 25 Any σ(P(R), Cb)-lsc Risk Measure Φ : P(R) → R ∪ {∞} can
be represented as

Φ(P ) = sup
Q∈Pc(R)

R

(
−

∫
FQdP,−FQ

)
.

Proof. Notice that for every f ∈ C−
b which is constant we haveR(

∫
fdP, f) =

infQ∈P Φ(Q). Therefore we may assume w.l.o.g. that f ∈ C−
b is not con-

stant. Then g := f−f(+∞)
f(−∞)−f(+∞) ∈ C−

b , inf g = 0, sup g = 1, and so: g ∈

{−FQ | Q ∈ Pc(R)}. In addition, since
∫
fdQ ≥

∫
fdP iff

∫
gdQ ≥

∫
gdP we

obtain from (8) and ii) of Proposition 24

Φ(P ) = sup
f∈C

−

b

R

(∫
fdP, f

)
= sup

Q∈Pc(R)

R

(
−

∫
FQdP,−FQ

)
.
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Finally we state the dual representations for Risk Measures expressed either
in terms of the dual function R as used by [7], or considering the left continuous
version of R (see Lemma 27) in the formulation proposed by [8]. If R : R ×
Cb(R) → R, the left continuous version of R(·, f) is defined by:

R−(t, f) := sup {R(s, f) | s < t} . (16)

Proposition 26 Any σ(P(R), Cb)-lsc Risk Measure Φ : P(R) → R ∪ {∞} can
be represented as

Φ(P ) = sup
f∈C

−

b

R

(∫
fdP, f

)
= sup

f∈C
−

b

R−

(∫
fdP, f

)
. (17)

The function R−(t, f) defined in (16) can be written as

R−(t, f) = inf {m ∈ R | γ(m, f) ≥ t} , (18)

where γ : R× Cb(R) → R is given by:

γ(m, f) := sup
Q∈P

{∫
fdQ | Φ(Q) ≤ m

}
, m ∈ R. (19)

Proof. Notice that R(·, f) is increasing and R (t, f) ≥ R− (t, f) . If f ∈ C−
b

then P 4 Q ⇒
∫
fdQ ≤

∫
fdP . Therefore,

R−

(∫
fdP, f

)
:= sup

s<
∫
fdP

R(s, f) ≥ lim
Pn↓P

R(

∫
fdPn, f).

From Proposition 24 (ii) we obtain:

Φ(P ) = sup
f∈C

−

b

R

(∫
fdP, f

)
≥ sup

f∈C
−

b

R−

(∫
fdP, f

)
≥ sup

f∈C
−

b

lim
Pn↓P

R(

∫
fdPn, f)

= lim
Pn↓P

sup
f∈C

−

b

R(

∫
fdPn, f) = lim

Pn↓P
Φ(Pn) = Φ(P ).

by (CfA). This proves (17). The second statement follows from the Lemma 27.

The following Lemma shows that the left continuous version of R is the left
inverse of the function γ as defined in 19 (for the definition and the properties
of the left inverse we refer to [10] Section A.3).

Lemma 27 Let Φ be any map Φ : P(R) → R ∪ {∞} and R : R × Cb(R) → R

be defined in (9). The left continuous version of R(·, f) can be written as:

R−(t, f) := sup {R(s, f) | s < t} = inf {m ∈ R | γ(m, f) ≥ t} , (20)

where γ : R× Cb(R) → R is given in (19).
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Proof. Let the RHS of equation (20) be denoted by

S(t, f) := inf {m ∈ R | γ(m, f) ≥ t} , (t, f) ∈ R× Cb(R),

and note that S(·, f) is the left inverse of the increasing function γ(·, f) and
therefore S(·, f) is left continuous.
Step I. To prove that R−(t, f) ≥ S(t, f) it is sufficient to show that for all s < t
we have:

R(s, f) ≥ S(s, f), (21)

Indeed, if (21) is true

R−(t, f) = sup
s<t

R(s, f) ≥ sup
s<t

S(s, f) = S(t, f),

as both R− and S are left continuous in the first argument.
Writing explicitly the inequality (21)

inf
Q∈P

{
Φ(Q) |

∫
fdQ ≥ s

}
≥ inf {m ∈ R | γ(m, f) ≥ s}

and letting Q ∈ P satisfying
∫
fdQ ≥ s, we see that it is sufficient to show the

existence of m ∈ R such that γ(m, f) ≥ s and m ≤ Φ(Q). If Φ(Q) = −∞ then
γ(m, f) ≥ s for any m and therefore S(s, f) = R(s, f) = −∞.

Suppose now that ∞ > Φ(Q) > −∞ and define m := Φ(Q). As
∫
fdQ ≥ s

we have:

γ(m, f) := sup
Q∈P

{∫
fdQ | Φ(Q) ≤ m

}
≥ s

Then m ∈ R satisfies the required conditions.
Step II : To obtain R−(t, f) := sups<t R(s, f) ≤ S(t, f) it is sufficient to

prove that, for all s < t, R(s, f) ≤ S(t, f), that is

inf
Q∈P

{
Φ(Q) |

∫
fdQ ≥ s

}
≤ inf {m ∈ R | γ(m, f) ≥ t} . (22)

Fix any s < t and consider any m ∈ R such that γ(m, f) ≥ t. By the
definition of γ, for all ε > 0 there exists Qε ∈ P such that Φ(Qε) ≤ m and∫
fdQε > t − ε. Take ε such that 0 < ε < t − s. Then

∫
fdQε ≥ s and

Φ(Qε) ≤ m and (22) follows.

Complete duality The complete duality in the class of quasi-convex mono-
tone maps on vector spaces was first obtained by [5]. The following proposition
is based on the complete duality proved in [8] for maps defined on convex sets
and therefore the results in [8] apply very easily in our setting. In order to
obtain the uniqueness of the dual function in the representation (17) we need to
introduce the opportune class Rmax. Recall that P(R) spans the space of count-
ably additive signed measures on R, namely ca(R) and that the first stochastic
order corresponds to the cone

K = {µ ∈ ca |

∫
fdµ ≥ 0 ∀ f ∈ K◦} ⊆ ca+,
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where K◦ = −C−
b are the non decreasing functions f ∈ Cb.

Definition 28 ([8]) We denote by Rmax the class of functions R : R×K◦ → R

such that: (i) R is non decreasing and left continuous in the first argument,(ii)
R is jointly quasiconcave, (iii) R(s, λf) = R( s

λ
, f) for every f ∈ K◦, s ∈ R

and λ > 0, (iv) lims→−∞ R(s, f) = lims→−∞ R(s, g) for every f, g ∈ K◦, (v)
R+(s, f) = infs′>s R(s′, f), is upper semicontinuous in the second argument.

Proposition 29 Any σ(P(R), Cb)-lsc Risk Measure Φ : P(R) → R ∪ {∞} can
be represented as in 17. The function R−(t, f) given by 18 is unique in the class
Rmax.

Proof. According to Definition 2.13 in [8] a map Φ : P → R is continuously
extensible to ca if

Am +K ∩ P = Am

where Am is acceptance set of level m and K is the ordering positive cone on
ca. Observe that µ ∈ ca+ satisfies µ(E) ≥ 0 for every E ∈ BR so that P +µ /∈ P
for P ∈ Am and µ ∈ K except if µ = 0.
For this reason the lsc map Φ admits a lower semicontinuous extension to ca
and then Theorem 2.19 in [8] applies and we get the uniqueness in the class
Rmax

P (see Definition 2.17 in [8]). In addition, Rmax = Rmax
P follows exactly by

the same argument at the end of the proof of Proposition 3.5 [8]. Finally we
notice that Lemma C.2 in [8] implies that R− ∈ Rmax since γ(m, f) is convex,
positively homogeneous and lsc in the second argument.

5.3 Computation of the dual function

The following proposition is useful to compute the dual function R−(t, f) for
the examples considered in this paper.

Proposition 30 Let {Fm}m∈R
be a feasible family and suppose in addition

that, for every m, Fm(x) is increasing in x and limx→+∞ Fm(x) = 1. The
associated map Φ : P → R∪ {+∞} defined in (3) is well defined, (Mon), (Qco)
and σ(P , Cb)−lsc and the representation (17) holds true with R− given in (18)
and

γ(m, f) =

∫
fdF−m + F−m(−∞)f(−∞). (23)

Proof. From equations (2) and (4) we obtain:

A−m = {Q ∈ P(R) | FQ ≤ F−m} = {Q ∈ P | Φ(Q) ≤ m}

so that

γ(m, f) := sup
Q∈P

{∫
fdQ | Φ(Q) ≤ m

}
= sup

Q∈P

{∫
fdQ | FQ ≤ F−m

}
.

Fixm ∈ R, f ∈ C−
b and define the distribution function FQn

(x) = F−m(x)1[−n,+∞)

for every n ∈ N. Obviously FQn
≤ F−m, Qn ↓ and, taking into account (7),
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∫
fdQn is increasing. For any ε > 0, let Qε ∈ P satisfy FQε ≤ F−m and∫
fdQε > γ(m, f) − ε. Then: FQε

n
(x) := FQε(x)1[−n,+∞) ↑ FQε , FQε

n
≤ FQn

and ∫
fdQn ≥

∫
fdQε

n ↑

∫
fdQε > γ(m, f)− ε.

We deduce that
∫
fdQn ↑ γ(m, f) and, since

∫
fdQn =

∫ +∞

−n

fdF−m + F−m(−n)f(−n),

we obtain (23).

Example 31 Computation of γ(m, f) for the ΛV@R.
Let m ∈ R and f ∈ C−

b . As Fm(x) = Λ(x)1(−∞,m)(x)+1[m,+∞)(x), we compute
from (23):

γ(m, f) =

∫ −m

−∞

fdΛ + (1 − Λ(−m))f(−m) + Λ(−∞)f(−∞). (24)

We apply the integration by parts and deduce

∫ −m

−∞

Λdf = Λ(−m)f(−m)− Λ(−∞)f(−∞)−

∫ −m

−∞

fdΛ.

We can now substitute in equation (24) and get:

γ(m, f) = f(−m)−

∫ −m

−∞

Λdf = f(−∞) +

∫ −m

−∞

(1− Λ)df, (25)

R−(t, f) = −H l
f(t− f(−∞)), (26)

where H l
f is the left inverse of the function: m →

∫m

−∞
(1− Λ)df .

As a particular case, we match the results obtained in [8] for the V@R and
the Worst Case risk measure. Indeed, from (25) and (26) we get: R− (t, f) =

−f l
(

t−λf(−∞)
1−λ

)
if Λ(x) = λ; R− (t, f) = −f l(t), if Λ(x) = 0, where f l is the

left inverse of f .

If Λ is decreasing we may use Remark 20 to derive a simpler formula for γ.
Indeed, ΛV@R(P ) = ΛṼ@R(P ) where ∀m ∈ R

F̃m(x) = Λ(m)1(−∞,m)(x) + 1[m,+∞)(x)

and so from (25)

γ(m, f) = f(−∞)+[1−Λ(−m)]

∫ −m

−∞

df = [1−Λ(−m)]f(−m)+Λ(−m)f(−∞).

22



References

[1] Aliprantis C.D., and K.C. Border (2005): Infinite dimensional anal-
ysis, Springer, Berlin, 3rd edition.

[2] Artzner, P., Delbaen, F., Eber, J.M., and D. Heath (1999): Co-
herent measures of risk, Math. Finance, 4 , 203–228.

[3] Biagini, S., and M. Frittelli (2009): On the extension of the Namioka-
Klee theorem and on the Fatou property for risk measures, In: Optimality
and risk: modern trends in mathematical finance, Eds: F. Delbaen, M.
Rasonyi, Ch. Stricker, Springer, Berlin, 1–29.

[4] Cherny, A., and D. Madan (2009): New measures for performance
evaluation, Review of Financial Studies, 22, 2571-2606.

[5] Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M. and Mon-

trucchio, L. (2009) “Complete Monotone Quasiconcave Duality ”, forth-
coming on Math. Op. Res.

[6] Cerreia-Vioglio, S. (2009): Maxmin Expected Utility on a Subjective
State Space: Convex Preferences under Risk, preprint.

[7] Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M., and L. Mon-

trucchio (2011): Risk measures: rationality and diversification, Mathe-
matical Finance, 21, 743-774.

[8] Drapeau, S., and M. Kupper (2010): Risk preferences and their robust
representation, preprint.

[9] Fenchel, W. (1949): On conjugate convex functions, Canadian Journal
of Mathematics, 1, 73-77.
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