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Doubly heterozygous LMNA and TTN mutations
revealed by exome sequencing in a severe form
of dilated cardiomyopathy

Roberta Roncarati1,2, Chiara Viviani Anselmi2, Peter Krawitz3,4,5, Giovanna Lattanzi6, Yskert von Kodolitsch7,
Andreas Perrot8,9, Elisa di Pasquale2, Laura Papa2, Paola Portararo2, Marta Columbaro6, Alberto Forni10,
Giuseppe Faggian*,10, Gianluigi Condorelli*,1,11 and Peter N Robinson*,3,4,5

Familial dilated cardiomyopathy (DCM) is a heterogeneous disease; although 30 disease genes have been discovered, they

explain only no more than half of all cases; in addition, the causes of intra-familial variability in DCM have remained largely

unknown. In this study, we exploited the use of whole-exome sequencing (WES) to investigate the causes of clinical variability

in an extended family with 14 affected subjects, four of whom showed particular severe manifestations of cardiomyopathy

requiring heart transplantation in early adulthood. This analysis, followed by confirmative conventional sequencing, identified

the mutation p.K219T in the lamin A/C gene in all 14 affected patients. An additional variant in the gene for titin, p.L4855F,

was identified in the severely affected patients. The age for heart transplantation was significantly less for LMNA:p.K219T/

TTN:p.L4855F double heterozygotes than that for LMNA:p.K219T single heterozygotes by Kaplan–Meier analysis. Myocardial

specimens of doubly heterozygote individuals showed increased nuclear length, sarcomeric disorganization, and myonuclear

clustering compared with samples from single heterozygotes. In conclusion, our results show that WES can be used for the

identification of causal and modifier variants in families with variable manifestations of DCM. In addition, they not only indicate

that LMNA and TTN mutational status may be useful in this family for risk stratification in individuals at risk for DCM but

also suggest titin as a modifier for DCM.
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INTRODUCTION

Dilated cardiomyopathy (DCM) is characterized by cardiac
chamber enlargement and impaired contraction of the left ventricle;
approximately 30–50% of affected individuals have a familial form
of DCM. The genetics of familial DCM is complex and includes
over 30 disease-causing genes. With the exception of TTN, truncating
mutations of which have been found in up to 27% of individuals
with DCM,1 a single DCM-causing gene accounts for no more than
6–8% of all cases. The known DCM disease genes include those
encoding for proteins of the sarcomere, the Z-disk, the cytoskeleton,
the mitochondria, RNA binding proteins, the sarcoplasmic reticulum,
and the nuclear envelope.2–4 Familial DCM exhibits a remarkable
degree of clinical variability with respect to severity, penetrance,
and age of onset.5 Like familial hypertrophic cardiomyopathy
(HCM), familial DCM is often characterized by incomplete
penetrance, a high degree of variable expressivity even among

family member, and by highly variable age of onset and rate of
disease progression. The molecular correlates of these observations
have remained largely unknown, which can make medical
management difficult. Recently, two or more sequence alterations
present either in the same or in different genes were demonstrated to
occur in 3–5% of cases of familial HCM, associated with a greater
clinical severity of HCM.6–8 Similarly, compound and digenic
heterozygosity were identified in patients with arrhythmogenic right
ventricular cardiomyopathy, whereby several desmosome and cell-
junction genes were found to carry more than one mutation likely
associated with low penetrance.9 It is to be expected that similar
modifiers exist for DCM; even though a single case of a 14-year-old
boy with manifestations of DCM and mutations in both MYH7 and
TNNT2 has been published,10 little is known about the genes and
the molecular mechanisms involved in modifying the phenotype of
familial DCM.
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Whole-exome sequencing (WES), in which capture methods are
used to enrich the sequences of the coding regions of genes
from fragmented total genomic DNA, followed by massively parallel,
‘next-generation’ sequencing of the captured fragments, has led to a
paradigm shift in diagnostics and disease-gene discovery projects in
human genetics.11 WES thus offers an interesting modality for the
search for the causes of variable expressivity and non-penetrance in
familial DCM. In this work, we investigated an extended Italian family
diagnosed with DCM and cardiac conduction defects (CCM) using
WES followed by targeted Sanger resequencing. In 14 out of the 41
family members enrolled in the study, a mutation in the gene for
lamin A/C (LMNA) was identified. Five of them, clearly showing
DCM features, were doubly heterozygous for variants in LMNA and
in the titin gene (TTN). Four of these patients (all four older than 20
years of age) displayed a particularly severe clinical involvement at
early ages.

MATERIALS AND METHODS

Patient recruitment
From May 1994 to September 2011, 10 patients affected by DCM underwent

orthotopic heart transplantation at the University Hospital of Verona.

Subsequently, these patients were found to belong to the same extended

family, whose ancestors had moved from their native Verona to other regions

of Italy and Northern Europe. In the course of this study, 42 living and 41

deceased family members were identified on the basis of data from parish

church registries and hospital records. A total of 41 subjects were enrolled in

the study, including 18 females and 23 males aged 5–77 years (Supplementary

Figure S3). Fourteen persons were affected by a range of cardiological

symptoms, ranging from mild dyspnea on exertion to severe congestive heart

failure (CHF), leading to emergent heart transplantation. Twenty-seven

persons showed no signs of cardiomyopathy. Written informed consent was

obtained from all participating probands according to the study protocols

approved by hospital ethics committees.

Study protocol
All persons were investigated using the same study protocol, comprising full

medical history and physical examination, chest radiograph, electrocardiogram

and echocardiography, coronary artery angiography, right ventricular cathe-

terization, measurement of oxygen consumption, Holter monitoring, and

endomyocardial biopsy (Supplementary Tables S1–S3 and Supplementary

Figures S1A-S1AQ4 ). The diagnosis of DCM was evaluated according to

published guidelines.12 The main diagnostic criteria were: left ventricular

ejection fraction o45% and left ventricular end-diastolic dimensions 4117%

of the predicted value corrected for age and body surface area. Clinical data

were extracted from medical records when direct examination at Verona

Hospital was not feasible. Peripheral whole-blood samples of patients and

family members were collected during examination or enrollment phase. DNA

was extracted using the DNA Isolation Kit (QiagenQ5 ), following the

manufacturer’s instructions, for all samples. According to the pedigree

structure and clinical data, patients V.13, V.15, and V.17 were chosen as

severely DCM cases and VI.7 as a healthy control. DNA samples from these

four patients were subjected to WES.

DNA samples, targeted exome capture, and massively parallel,
next-generation sequencing (NGS)
An amount of 5mg of DNA extracted from DCM (V.13, V.15, V.17) and non-

DCM patients (VI.7) was sheared by nebulization. Adapter-ligated libraries

were prepared with the Paired-End Sample Prep kit V1.0.1 (IlluminaQ6 ), except

that the gel-size selection step was replaced with a purification using magnetic

bead-based solid-phase reversible immobilization beads (AgencourtQ7 ). Exome

capture was performed with the SureSelect Human All Exon kit v 2.0 (Agilent

Technologies), which targets about 45 Mb. Pair-end sequencing was performed

on the Illumina Genome Analyzer IIx (GAIIx), generating 100-bp end reads.

Read mapping and variant analysis
Pair-end reads were quality trimmed and aligned with the human genome

reference sequence (NCBI build 37/UCSC hg19) by using CLC Bio Genomics

Workbench (CLC Bio, Aarhus, Denmark). Single-nucleotide polymorphisms

(SNPs) and short indels were called with CLC Bio, filtering out calls with a

read coverage o8� and a Phred SNP quality of o20. Variants were filtered

against NCBI dbSNP132, 1000 Human Genomes Project catalog, and the

AVSIFT database, and their functional annotation was performed using

Annovar.13 Data were filtered for genes showing heterozygous variants in all

three sequenced relatives (V.13, V.15, and V.17) and a homozygous reference

sequence in the unaffected relative (VI.7).

PCR and Sanger sequencing validation of LMNA and TTN variants
The mutations LMNA:p.K219T (NM_170708:c.A656C) and TTN:p.L4855F

(NM_133378:c.C14563T) were validated using Sanger methods on the four

subjects (three affected and one clinically healthy) that were sequenced using

WES. Following this, all 41 participating family members were tested for the

presence of these sequence variants by Sanger sequencing (Supplementary

Figures S2A and B).

Primer design and PCR set up
For each target, primers were designed with Primer 3 plus Software14 starting

from the sequences NM_170708 (LMNA exon 4) and NM_133378 (TTN

exon 59). The primers are shown in Table 1. PCR was performed with an

automated liquid handler (Tecan Q8Freedom EVO) in a final volume of 7.5ml with

1� GoTaq Hot Start Master Mix (Promega), 0.5mM of each primer, and 1.5ml

of DNA previously normalized at a concentration of B5 ng/ml. Amplification

was performed on Eppendorf mastercycler ep gradient with the following

amplification protocol: initial denaturation at 95 1C for 2 min, 35 cycles at 95 1C

for 30 min, 58 1C for 45 min, 72 1C for 1 min, and final extension at 721C for

10 min. The amplification protocol was the same for each target gene.

All PCR reactions were purified enzymatically (ExoSAP-IT PCR Clean-up

Kit; GE Healthcare) following the manufacturer’s protocol; purified DNA was

used as a template for sequencing analysis. The sequencing reaction was

performed with an automated liquid handler (Tecan Freedom EVO) in a final

volume of 10ml with Big Dye Terminator kit v 3.1 Chemistry (Applied

Biosystems Q9) according to the manufacturer’s protocol. Capillary electrophor-

esis was performed on an ABI 3730 DNA Analyzers (Applied Biosystems).

Immunohistochemical staining
Heart samples were fixed in 10% formaldehyde, and paraffin-embedded

sections (7mm) were stained with hematoxylin and eosin. Lamin A/C staining

was performed on paraffin-embedded sections from wild-type (WT), LMNA-,

or LMNA/TTN-mutated myocardium after antigen retrieval at pH 9.

Undiluted antibody was applied overnight at 4 1C. Lamin A/C was labeled

using anti-lamin A/C polyclonal antibody (Santa Cruz Biotechnology Q10;

Sc-6215), which was applied for 1 h at room temperature.15 Bound antibody

was detected with a horseradish peroxidase-conjugated anti-goat Ig, using

diaminobenzidine as a substrate. Samples were counterstained with

hematoxylin.

Nuclear size was measured using the NIS elements software (Nikon Q11), and

counts obtained from triplicate examinations were plotted as mean±SE.

Samples from two controls, two LMNA single-heterozygote individuals, and

two LMNA/TTN double-heterozygote individuals were counted.

Table 1 PCR primers for validation of the LMNA and TTN sequence

variants

Gene Primer sequence

LMNA (NM_170708, exon 4) F: 50-AGCACTCAGCTCCCAGGTTA-30

R: 50-CTGATCCCCAGAAGGCATAG-30

TTN (NM_133378, exon 59) F: 50-TCAGTTTGGAAGGATGACACC-30

R: 50-TGCCTGTTATTTGGCATTCA-30

Abbreviations: F, forward primer; R, reverse primer.
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RESULTS

Targeted WES
Forty-one subjects from an extended Italian family with DCM were
investigated (Supplementary Tables S1–S4 and Supplementary
Material), including four patients with unusually severe manifesta-
tions requiring HTX by the age of 35 (see excerpted pedigree in
Figure 1a). We hypothesized that all family members affected by DCM
would segregate an identical mutation in a DCM gene, but the
severely affected persons could have an additional variant/s in the
same or other genes. To test this hypothesis, we performed WES on
three severely affected persons and one unaffected relative (Figure 1)
as described in detail in Materials and methods.

Under the assumption that rare, heterozygous sequence variants are
the best candidates for the etiology of familial DCM, which generally
is transmitted as an autosomal-dominant trait, we filtered variants for
those that were rare, predicted to be pathogenic and heterozygous in
each of the three affected relatives, and not present in the unaffected
relative (Table 2). Only 28 such variants were found. Annotation data
from the Human Phenotype Ontology project16 were used to filter
these variants and the associated genes, revealing eight genes in which
variation has been associated with human Mendelian disease
(Supplementary Table S5 and Supplementary Material). Only two
these genes were found to be associated with abnormalities in the
cardiovascular system, LMNA (lamin A/C) and TTN (titin), both
of which are known to be associated with familial DCM.1,2,17–31

A missense mutation was identified in the gene for lamin A/C

(LMNA:c.656A4C; p.K219T), previously reported in an unrelated
individual with DCM,17 and a previously unreported variant was
found in the gene for titin (TTN:c.14563C4T; p.L4855F). There were
no other variants in genes associated with cardiological phenotypes.
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Figure 1 (a) Excerpt of pedigree. LMNAþ : presence of LMNA:c.656A4C; TTNþ : presence of TTN:c.14563C4T. HTX shows the age of heart

transplantation in years. Four individuals were investigated by exome sequencing, including three with DCM (V.13, V.15, and V.17) and one healthy control

(VI.7). (b) Sequence logo created with lamin A/C sequences from 21 species, ranging from human to zebrafish. (c) Sequence logo made with titin

sequences from 17 species, ranging from human to zebrafish. The mutation p.L4855F affects a highly conserved leucine residue that is conserved in all

analyzed species, except for mouse and rat, in which the corresponding residue is isoleucine.

Table 2 Summary of computational variant filtering

Sample 1 Sample 2 Sample 3 Sample 4 Total

SNV 25392 26099 23 843 24 916 41821

SNV not in dbSNP/ThG 661 704 596 762 1982

Rare syn 98 125 80 128 325

Rare nonsyn 114 119 114 133 349

Indel 1233 1259 1179 1252 2051

Indel not in dbSNP/TG 422 449 419 433 865

Rare ex. Indel 49 50 40 48 92

Rare splicing 3 2 2 8 11

NSISS 166 171 156 189 452

Compatible � � � � 28

The total number of single-nucleotide variants (SNVs) is shown in the first row. These were
further filtered to SNVs not present in dbSNP or in the 1000 genomes project (ThG), and
finally, rare synonymous and rare nonsynonmous variants that are predicted to be pathogenic
by AVSIFT51 are shown. ‘Indel’ shows small insertions and deletions, which were also filtered
against dbSNP and the 1000 Genomes project (ThG). ‘Rare ex. Indel’ shows rare frameshift
or non-frameshift insertions or deletions within the coding sequence. Rare splicing shows
mutations of the canonical splice site sequences. NSISS shows total rare nonsynonymous
(missense) variants, indels, and splicing mutations. These variants were then filtered for being
heterozygous in the three samples from affected persons and not present in the one sample
from a healthy sibling (compatible) See Supplementary Tables S5 and S6 for a list of these
variants.
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Sanger sequencing was used to investigate all 41 probands. In all, 14
subjects were found to carry LMNA:c.656A4C, and five carried
TTN:c.14563C4T. No family members were found to carry just the
TTN variant but not the LMNA variantQ12 . The two family members
from whom the variant could have come (III.4 and IV.11 in Figure 1a)
had lived to over 70 years with no signs of cardiac disease, suggesting
the possibility that TTN:c.14563C4T does not in itself cause DCM.
However, because the third family member who could have con-
ceivably introduced the mutation into the family, III.3, died suddenly
at the age of 33 years, this possibility is far from certain. Family III.3Q13

must have carried the LMNA mutation. We note that LMNA
mutations themselves may portend an increased risk of sudden
death,32 and therefore, sudden death at the age of 33 years is not
necessarily an indication of the presence of an additional TTN
mutation. Further clinical information on potential clinical signs of
DCM in III.3 family was not available. The TTN sequence variant was
not found in 410 unrelated healthy Italian subjects, and, in addition,
was not present in the Exome Variant Server data set,33 in which the
sequence neighborhood surrounding the position of the mutation was
covered at an average depth of 85 reads in 4845 samples. This suggests
that TTN:p.L4855F (NM_133378:c.C14563T) is not a common
polymorphism. TTN:c.14563C4T affects a conserved position in an
Ig repeat in the N2Ba-specific region of titin (Figure 1d).

Among the nine subjects carrying only LMNA:c.656A4C, six
presented with typical manifestations of DCM, including CHF,
dyspnea at rest with reduced maximal oxygen consumption (VO2),
and conduction defects including ventricular arrhythmias. Five of
these persons underwent HTX at a mean age of 58 years
(Supplementary Table S1). None of the single-heterozygote LMNA:
c.656A4C-mutation carriers showed signs of muscular dystrophy or
atrioventricular conduction block.

In contrast, four of the five doubly heterozygote mutation carriers
presented with severe DCM with disease onset at the age of 24 (V.13),

25 (V.15), 28 (V.17), and 35 (V.18) years characterized by CHF,
NYHA IV, dyspnea at rest, ventricular arrhythmias, and episodes of
cardiac arrest. Three of these patients (V.13, V.15, and V.17) under-
went HTX at the age of 29, 33, and 35 years, respectively, whereas the
fourth (V.18) is currently on the waiting list at age 36. In addition, an
18-year-old male double-heterozygote proband (V.8) was asympto-
matic, except for sporadic tachycardia (Supplementary Table S2). All
14 probands were diagnosed with DCM by endomyocardial biopsy.
None of the family members who were negative for LMNA:c.656A4C
and TTN:c.14563C4T presented with signs of cardiac disease, except
for a 55-year-old male diagnosed with ischemic cardiomyopathy and
a child with patent ductus arteriosus (Figure 1a; Supplementary
Figure S2 and Supplementary Table S3). A Kaplan–Meier plot of age
to HTX showed a substantial difference between LMNA:c.656A4C
single heterozygotes and LMNA:c.656A4CþTTN:c.14563C4T dou-
ble heterozygotes (Figure 2a; Supplementary Table S4). There was also
a clearly different distribution of VO2 and ejection fraction
(Figures 2b and c). Myonuclear size was significantly increased in
LMNA:c.656A4C samples compared with healthy controls, with a
significant increase in LMNA:c.656A4CþTTN:c.14563C4T sam-
ples. Nuclear clustering (distance between nuclei to one another along
the myofiber less than the length of a single nucleus) was also
observed both in LMNA:c.656A4C samples and with an even higher
incidence in LMNA:c.656A4CþTTN:c.14563C4T samples
(Figure 3). Histochemical analysis showed moderate interstitial
fibrosis in LMNA patient myocardium compared with controls.
A pronounced increase of fibrosis was observed in LMNA:c.656A4C
þTTN:c.14563C4T patient myocardium. Importantly, in
LMNA:c.656A4CþTTN:c.14563C4T, myocardium areas with
marked sarcomere disorganization were observed (Figure 4).

We additionally investigated the variant c.2327C4T in the NUP133
gene and c.2540G4C in the DIAPH3 gene. To date, no mutations in
human disease have been identified in NUP133. A mutation in the 50
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Figure 2 (a) Actuarial probability of survival without HTX in five patients with LMNA and TTN mutations compared with nine patients with only a LMNA

mutation. (b) Comparison of ejection fraction vs age for the three groups (WT LMNA/TTN status, single-heterozygote status for LMNA:c.656A4C, and

double-heteroyzgote status for LMNA:c.656A4C and TTN:c.14563C4T). A linear regression line is used to visualize the distribution of each group, and

actual data points are plotted together with lines representing the residuals. (c) Comparison of maximum VO2 vs age. A linear regression line is used to

visualize the distribution of each group as before.
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UTR of DIAPH3, and associated with DIAPH3 overexpression, was
found in a family with auditory neuropathy.34 Both variants are
predicted to be disease-causing by MutationTasterQ14 . However, only

three of the four severely affected persons carried the NUP133 variant,
and only two of the four carried the DIAPH3 variant (data not
shown). Nonetheless, a modifying role for these variants cannot be
completely ruled out. In addition, three of the severely affected
persons (V.15, lV.17, and V.13) were shown to carry a mutation in the
gene for thyroid-stimulating hormone receptor (TSHR). Mutations in
this gene are a known cause of autosomal-dominant-inherited
hyperthyroidism (MIM 609152). Each of the three persons has been
under treatment (since the age of 20, 19, and 24 years) with
methimazole for hyperthyroidism. Pretreatment values for TSH
were not available.

DISCUSSION

Because the first use of NGS technologies for disease-gene identifica-
tion and discovery,35,36 the first descriptions of applications of WES
to make clinical decisions in the care of patients have begun to
appear,37 and NGS methods for diagnostics are enabling genomic
studies that were infeasible just a few years ago.11,38–40 Previously,
isolated cases of digenic inheritance underlying diseases such as HCM
have been identified by targeted Sanger sequencing of candidate
genes,6–8,41 but clearly, WES approaches now allow a comprehensive
and systematic approach to questions of genetic modifiers and digenic
inheritance. We therefore hypothesized that all family members
affected by DCM would segregate an identical mutation, but that
the severely affected persons could have an additional variant in the
same or a second gene. To test this hypothesis, we sequenced three of
the severely affected persons and one unaffected relative and
examined the data for variants that were present only in the
affected persons. After initial analysis revealed candidates in two
known DCM genes, LMNA and TTN, a comprehensive screen was
conducted in the family for these variants. All affected family
members were shown to have the variant LMNA:c.656A4C, which
has been previously demonstrated in an unrelated 43-year-old man
with DCM.17 In addition, the four most severely affected family
members were found to have a previously not described variant in the
gene for titin, TTN:c.14563C4T (p L4855F).

Doubly heterozygous family members showed a substantially more
severe clinical course, with respect to age of terminal CHF and heart
transplantation, and a number of cardiological and histological
parameters (Figures 2 and 3). We interpret these results as being
consistent with a role for TTN:c.14563C4T as a modifier of DCM
clinical severity in the LMNA-mutation carriers. A limitation of our
study is the lack of functional data on the TTN mutation. However,
we noted that c.14563C4T changes a leucine, a large aliphatic amino
acid, to a phenylalanine, an aromatic amino acid. The pathogenicity

Figure 3 (a–d) Control (a) or laminopathic nuclei (b–d) were counted and

scored for nuclear major axis length (20–30, 30–50, and 50–140mm
ranges). Nuclei from double-mutant myocardium (c, d) showed increased

length and clustered (double arrow in d corresponds to 140mm).

(e) Percentage of nuclei in the 20–30, 30–50, and 50–140mm ranges,

200 nuclei/sample, was scored from two different WT, LMNA-, or LMNA/

TTN-mutated individuals. Statistically significant differences (Po0.005)

relative to controls, calculated by the Mann–Whitney test, are indicated by

asterisks. (f–i) Control (f) and laminopathic myocardium (g–i) were labeled

using anti-lamin A/C antibody. Focal loss of lamin A/C and misshapen

nuclei are clearly visible in specimens from patients with LMNA and LMNA/

TTN mutations. Bar, 10mm.

Figure 4 Hematoxilin and eosin staining of myocardium cryosections shows sarcomere disorganization in LMNA/TTN-mutant heart, but not in WT or

LMNA-mutant myocardium.
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prediction tool MutationTaster42 predicts c.14563C4T to be a
pathogenic substitution. Both amino acids have hydrophobic side
chains often found in the interior of folded proteins. Based on
literature data, a substitution of leucine to phenylalanine may result in
a mild functional deficit of the affected protein, as was reported for
the mutation L272F in the KvLQT1 gene43 and for the mutation
(F193L) in the KCNQ1 gene44 observed in two different forms of long
QT syndrome. We speculate that the TTN:c.14563C4T (p L4855F)
identified in this study may lead to a mild defect in titin function that
became manifested in combination with the LMNA mutation. Given
the fact that truncating and missense mutations are relatively
common in the general population,1 it is tempting to speculate that
variation in TTN may be a common genetic modifier in DCM.
Further work will be required to determine whether the proposed
modifier role of the TTN mutation results from defects in known titin
functions, such as force transmission or mechanochemical signal
transduction.45,46 A recent study showed that mice heterozygous for a
2-bp TTN insertion were viable and demonstrated normal cardiac
morphology. On the other hand, when the heterozygous mice were
chronically exposed to angiotensin II or isoproterenol, the mice
developed marked left ventricular dilatation.47 Thus, a functional
defect in titin may become only apparent under stress. Interestingly,
lamin A binds the C-terminus of nuclear titin in a way that might
contribute to mechanochemical transduction,48,49 and thus one can
speculate that a combination of LMNA and TTN mutations might
have a synergistically deleterious effect on this function.

A limitation of our study is the small number of individuals
doubly heterozygous for LMNA and TTN mutations. Although the
Kaplan–Meier analysis showed a difference between the LMNA
and the LMNA/TTN groups that was clearly significant, it cannot
be ruled out that other genetic variants or environmental factors were
actually responsible for the observed differences. However, no other
genes associated with hereditary cardiomyopathy were observed to
have rare variants in the sequenced individuals, and indeed, none of
the genes with rare variants were associated with any kind of
heart phenotype upon analysis with the Human Phenotype
Ontology.16

Recently, an important role for truncating mutations of TTN has
been demonstrated for DCM, but rare missense mutations were
common in groups of DCM patients as well as in controls.1 Our
results suggest that TTN missense mutations may be modifiers of
clinical course in familial DCM in the presence of a mutation in
another gene associated with DCM. However, further comprehensive
genotype/phenotype studies will be required to determine how
commonly rare variants in multiple genes associated with DCM are
associated with a particularly severe clinical course.

CONCLUSION

Our results show how WES can be used to address questions about
clinical variability in human genetics. The LMNA and TTN muta-
tional status may be useful in this family for risk stratification in
persons at risk for familial DCM. Given the complexity of familial
DCM, with nearly 40 loci and at least 33 currently known DCM genes
that only explain a minority of cases,50 substantially more data will be
required to develop WES into a reliable tool for routine clinical
diagnostics for familial DCM. A database with comprehensive
genotype information and deep phenotyping data would go a long
way toward providing clinicians and researchers with the tools needed
to identify the remaining DCM genes, as well as the genetic correlates
of variability in familial DCM.
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