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Abstract A completely microscopic formalism has been developed to treat the observable properties of single-
particle states (e.g. energies and spectroscopic factors), as well as of collective states (e.g., their energy centroid,
their damping width and their gamma decay to the ground state or to low lying states) beyond mean-field. The
phonons are calculated within the fully self-consistent random phase approximation (RPA). The particle-vibration
coupling (PVC) is accounted for within the framework of the nuclear field theory (NFT) at the lowest contributing
order. All the calculations have been performed using the whole effective Skyrme interaction.

1 Introduction

The idea that the nucleons behave as independently mov-
ing particles in an average potential, is the basis of self-
consistent mean-field (SCMF) models. These models are
in many respects analogs of the density-functional theory
(DFT), which gives a very successful description of all
kinds of many-electron systems. Contrary to the electronic
case, in which electronic energy functionals of high ac-
curacy may be derived ab initio from electron gas the-
ory, nuclear SCMF models employ effective interactions
which are adjusted by extensive fits to nuclear structure
data. Nowadays, both in the non-relativistic and in the co-
variant framework, SCMF approaches uses rather sophis-
ticated functionals. Such an approach can produce good
results for bulk nuclear properties like masses, radii and
deformations, covering almost the whole chart of nuclides,
also in the super-heavy and super-deformed regions. A re-
view of SCMF models can be found in Ref [1].

Moreover, the time dependent extension of stationary
mean-field models, or time dependent DFT, is formally
straightforward. The linearization of the time-dependent
mean-field equations bring to the Random Phase Approx-
imation (RPA) equations. Those describe the dynamics of
the nucleus as a whole, as a coherent superposition of one
particle-one hole excitation. In particular, the RPA is one
of the most successful theories for the description of nu-
clear excitations in the energy range of giant resonances
(GR).

Nuclear giant multipole resonances had been widely
investigated in the past decades both theoretically and ex-
perimentally (see, e.g., [2,3]). They carry definite quantum
numbers (spatial angular momentum L, spin S, isospin T)
and, as a rule, they exhaust a large fraction of the associ-
ated energy-weighted sum rule. Accordingly, the macro-
scopic picture of a giant resonance is often thought to be
that of a coherent motion of all nucleons. These states have
finite lifetime and consequently they carry a width of the
order of 3-5 MeV. The most probable damping mechanism
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is their coupling to progressively more complicated states
(of 2p-2h, 3p-3h, ..., np-nh character). The associated con-
tribution to the total width, called spreading width (Γ↓) is
the dominant one. GRs lie in general above the threshold
for emitting a nucleon, so they can decay directly by emis-
sion of particles, mainly neutrons in medium-heavy nuclei
(being proton emission hindered by the large Coulomb bar-
rier). The corresponding escape width (Γ↑) is of some rele-
vance in light nuclei but much less important in heavy nu-
clei. Eventually, the γ-decay width (Γγ), given by coupling
to the electromagnetic field is a small fraction (≈ 10−3)
of the total width. Despite this, the study of the γ decay of
GRs has been considered a valuable tool for about 30 years
[4,5].

Nevertheless, it is known that SCMF models need to
be developed more to overcome some limitations. First,
they show a lower density of states around the Fermi en-
ergy than measured. Some features, like the single particle
states, the spectroscopic factors or the width of GRs, do
not belong strictly to the DFT framework. Regarding this,
we still lack a fully self-consistent microscopic model that
is able to describe single-particle properties along the iso-
topic table.

To improve further on the quality of the description
of the nuclear structure, one of the route that can be un-
dertaken at this point is to introduce correlations beyond
the mean field, allowing the interweaving between the dy-
namics of the mean-field, i.e. the phonons, and the single
particle degrees of freedom. Widely used theoretical ap-
proaches are the quasi-particle-phonon model (QPM) [6],
the extended theory of finite Fermi system (ETFFS) [7],
and the nuclear field theory (NFT) [8,9], based on the par-
ticle-vibration coupling (PVC) idea. The NFT, that we will
adopt in this paper, provides us with a consistent and per-
turbative framework in which phonons and single-particle
degrees of freedom are considered as the relevant indepen-
dent building blocks of the low-lying spectrum of finite
nuclei.

We have developed a completely microscopic self-con-
sistent model, based on Skyrme functionals, to treat prop-
erly single-particle states [10] and collective observables,
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Figure 1. The basic particle-vibration vertex.

like the energy centroid of the resonances, the strength
function (or the spreading width) and γ-decay width [11].
In our approach we adopt the fully self-consistent nonrela-
tivistic mean-field (MF) approach based on Skyrme Hartree-
Fock (HF) plus RPA [12].

In this paper, we apply this model for the study of two
observables: the strength function of the isoscalar giant
quadrupole resonance (ISGQR) and of the isovector giant
quadrupole resonance (IVGQR) in 208Pb; and the γ-decay
width of the ISGQR to the ground state and the low-lying
octupole state in 208Pb. There has been recently a renewed
interest for the latter, following the implementation of the
new AGATA detector array [13].

In Sec. 2 we briefly summarize the basic features of our
formalism and in Sec. 3 we give our results. Eventually, we
draw our conclusions in Sec. 4.

2 Formalism

In this section we briefly sketch our theoretical framework
(for further details, see Refs.[10,11]).

In the case of the coupling with density vibration, the
basic vertex depicted in figure 1 can be calculated start-
ing from the RPA representation of the nth phonon with
multipolarity L (here L is the same as the total angular mo-
mentum J and parity is the natural one). The resulting PVC
vertex reads

⟨i∥V∥ j, nJ⟩ =
√

2J + 1
∑
ph

XnJ
phVJ(ih jp)

+ (−) jh− jp+JYnJ
phVJ(ip jh),

(1)

where XnJ
ph, YnJ

ph are the forward and backward RPA am-
plitudes [14], and VJ is the particle-hole coupled matrix
element

VJ(ih jp) =
∑
{m}

(−) j j−m j+ jh−mh⟨ jimi j j − m j|JM⟩

×⟨ jpmp jh − mh|JM⟩
×⟨ jimi jhmh|V | j jm j jpmp⟩.

(2)

For the detailed derivation of the the reduced matrix ele-
ment of Eq. (1), we refer to the Appendix of Ref. [10].

2.1 The strength function

It has been known for several decades that coupling with
low-lying vibrations is the main source of the GR width
[15,7]. In Ref. [16], calculations of the GRs strength func-
tions that take into account this coupling were performed,
based on the use of a phenomenological separable force
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Figure 2. Processes associated with the strength of the |nJ⟩ RPA
state. Similar diagrams are obtained by interchanging the role of
particles and holes.

in the surface coupling model. We perform a similar cal-
culation here by using consistently the Skyrme force in
both HF+RPA procedures and in the PVC vertex. More
recently, a microscopic, though not self-consistent calcula-
tion were undertaken in Ref. [17].

The perturbative NFT diagrams that contribute to the
strength function can be divided into two groups, and a
representative of each group is depicted in figure 2. The di-
agram in figure 2(a) is the self-energy of the particle (hole)
that form the phonon state, i.e. it represents the process
in which the particle (hole) creates and subsequently re-
absorbs the intermediate vibration of multipolarity λ. Fig-
ure 2(b) represents the process in which a λ-pole phonon
is exchanged between the particle and the hole. If |nJ⟩ or
|nλ⟩ is a density oscillation, the latter contributions have
opposite sign with respect to the former one [15].

The probability of finding the resonance state per unit
energy can be written as [16]

P(E) =
1

2π
ΓGR + η

(E − EGR − ∆EGR)2 +
(
ΓGR+η

2

)2 , (3)

where ∆EGR is the real part of the sum of the diagrams in
figure 2, while ΓGR is the imaginary part of the same sum.
The parameter η corresponds to the energy interval over
which averages are taken and represents, in an approxi-
mate way, the coupling of the intermediate states to more
complicated configurations. In our calculation we set this
parameter at 1 MeV.

The two diagrams in figure 2(a) and 2(b) are evaluated
as follows:

Σs−e(GR, EJ) =
∑

pp′hn′

1
(2J + 1)(2λ + 1)

× |⟨p∥V∥h, nJ⟩|2 |⟨p∥V∥p′, n′λ⟩|2(
EJ − ϵph + iη

)2 (
EJ − En′ − ϵp′h + iη′

) , (4a)

Σv(GR, EJ) =
∑

pp′hh′n′

(−) jp+ jh+ jp′+ jh′

2J + 1

{
jh jp J
jp′ jh′ λ

}
× ⟨p∥V∥h, nJ⟩⟨h′, nJ∥V∥p′⟩⟨h∥V∥h′, n′λ⟩⟨p′, n′λ∥V∥p⟩(

EJ − ϵph + iη
) (

EJ − ϵp′h′ + iη
) (

EJ − En′ − ϵp′h + iη′
) .

(4b)

In these equations ϵph is equal to the difference of the
Hartree-Fock (HF) single-particle energies ϵp − ϵh, and V
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is the residual particle-hole interaction. The other contri-
butions are obtained interchanging the role of particles and
holes, applying the usual rules of diagrammatic expansion.

2.2 The γ decay

The transition amplitude for the emission of a photon of a
given multipolarity is proportional to the matrix element of
the electromagnetic operator, that takes the form

Qλµ =
1
2

A∑
i=1

ee f f
i iλrλi Yλµ(r̂i). (5)

In this equation, the effective charge ee f f
i for neutrons and

protons is introduced (see, e.g., Ref [18]), since the recoil
of the nucleus is non negligible, in general.

The gamma decay width, summed over the magnetic
substates of the photon and of the final nuclear state, is
then given by

Γγ(Eλ; i→ f ) =
8π(λ + 1)
λ[(2λ + 1)!!]2

( E
~c

)2λ+1
B(Eλ; i→ f ),

(6)
where E is the energy of the transition and the reduced
transition probability B associated with the above operator
Qλµ is

B(Eλ; i→ f ) =
1

2Ji + 1
|⟨J f ∥Qλ∥Ji⟩|2. (7)

In this work we consider only the direct γ decay. To
allow a comparison with the experiment, also the γ decay
of the compound nucleus have to be taken into account
[2,19].

2.2.1 The γ decay to the ground state

We consider in this section the decay of an excited RPA
state (which can be, e.g., a GR) to the ground state. We
limit ourselves to spherical systems. The RPA states have
quantum numbers JM (we consider natural parity, or nonspin-
flip, states) and, in addition, they are labelled by an index
n.

At the RPA level, in the case of the decay of the state
|nJ⟩ to the ground-state, we obtain for the reduced matrix
of Eq. (7),

⟨0 ∥QJ∥ nJ⟩ =
∑
ph

(
XnJ

ph + YnJ
ph

)
ee f f

ph ⟨ jp∥iJrJYJ∥ jh⟩, (8)

where X (Y) are the forward (backward) RPA amplitudes.
It is possible to give a diagrammatic representation of the
ground state decay (see figure 3).

2.2.2 The γ decay to low-lying state

The decay to low-lying states is an intrinsically beyond-
mean-field process, as RPA is by construction an appropri-
ate theory to describe transitions between states that dif-
fer only by one vibrational state (phonon). For other pro-
cesses, like the one at hand, the extension to a treatment

p h

Qλµ

nJ

(a)

p h

Qλµ nJ

(b)

Figure 3. Diagrams representing the decay of the vibrational state
|nJ⟩ state to the ground state.
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Figure 4. A set of diagrams representing the decay of the vibra-
tional state |nJ⟩ state to a low-lying |n′J′⟩ state. Other diagrams
are obtained interchanging the role of particles and holes.

beyond RPA is mandatory. As stated above, the NFT pro-
vides a consistent framework in which such processes can
be treated. We consider all the lowest-order contributions
to the transition amplitude between two different phonon
states, evaluating all the lowest-order perturbative diagrams
involving single-particle states and phonon states, which
can lead from the initial state to the final state by the ac-
tion of the external electromagnetic field. The PVC idea
has already been applied to the calculation of the γ decay
[20]; however, the main difference is that in this work we
use in a consistent way a microscopic interaction of the
full-Skyrme type.

The NFT diagrams associated with the λ-pole decay of
the initial RPA state |nJ⟩ (at energy EJ) to the final state
|n′J′⟩ (at energy EJ′) can be grouped into three families.
A representative of each family is shown in figure 4 and
corresponding analytical expressions are the following:

⟨n′J′∥Qλ∥nJ⟩(a) =
∑
pp′h

(−)J+λ+J′+1
{

J λ J′
jp′ jh jp

}

×
⟨p∥V∥h, nJ⟩⟨h, n′J′∥V∥p′⟩Qλpol

p′p(
EJ − ϵph + iη

) (
EJ′ − ϵp′h

) , (9.a)

⟨n′J′∥Qλ∥nJ⟩(b) =
∑
pp′h

(−)
{

J λ J′
jp′ jp jh

}

×
⟨p∥V∥h, nJ⟩⟨p′, n′J′∥V∥p⟩Qλpol

hp′(
EJ − ϵph + iη

) (
EJ − EJ′ − ϵp′h + iη′

) , (9.b)

⟨n′J′∥Qλ∥nJ⟩(c) =
∑
pp′h

{
J λ J′
jh jp′ jp

}

×
⟨p′∥V∥p, nJ⟩⟨h, n′J′∥V∥p′⟩Qλpol

ph(
EJ′ − ϵp′h

) (
EJ + ϵph − EJ′ + iη

) . (9.c)
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Figure 5. Polarization contribution to the operator Qλµ.

The notation here is the same as in Sec. 2.1. The other
contributions are obtained interchanging the role of parti-
cles and holes, applying the usual rules of diagrammatic
expansion.

In all the above equations, the matrix elements of the
operator Qλ include the contribution from the nuclear po-
larization (consequently they carry the label pol). In a dia-
grammatic way, the bare and the polarization contributions
of Eq. (10) are drawn in figure 5.

Qλpol
i j =⟨i∥Qλ∥ j⟩+

+
∑

n′

1
√

2λ + 1

[
⟨0∥Qλ∥n′λ⟩⟨i, n′λ∥V∥ j⟩
(EJ − EJ′) − En′ + iη

− ⟨i∥V∥ j, n
′λ⟩⟨n′λ∥Qλ∥0⟩

(EJ − EJ′ ) + En′ + iη

]
,

(10)

where |n′λ⟩ are the RPA states having multipolarity λ (and
lying at energy En′ ), while the bare operator Qλ has been
defined in Eq. (5). The polarization contribution, that is,
the second and third term in the latter equation, has the
effect of screening partially the external field.

3 Results

In this section, the results obtained from our numerical cal-
culation in 208Pb are discussed. In all cases, we start by
solving the HF equations in a radial mesh that extends up
to 20 fm, with a radial step of 0.1 fm. Once the HF solu-
tion is found, the RPA equations are solved in the usual
matrix formulation. Vibrations (or phonons) with a given
multipolarity L (see the following sections for more de-
tails), and with natural parity, are calculated. The isoscalar
dipole state is subtracted using the procedure explained in
the Appendix A of Ref. [21]. A lower cutoff on the col-
lectivity of the intermediate phonon states is needed for at
least two reasons: firstly, RPA is known to be not reliable
for non-collective states, and secondly, introducing poorly
collective phonons would oblige to account for the issue of
the Pauli principle correction. The RPA model space must
be large, due to the zero-range character of the Skyrme
forces. It consists of all the occupied states, and all the un-
occupied states lying below a cutoff energy EC equal to 50
MeV. The states at positive energy are obtained by setting
the system in a box, that is, the continuum is discretized.
These states have increasing values of the radial quantum
number n, and are calculated for those values of l and j
that are allowed by selection rules. With this choice of the
model space the energy-weighted sum rules (EWSRs) sat-
isfy the double commutator values at the level of about
99%; moreover, the energy and the fraction of EWSR of
the states which are relevant for the following discussion
are well converged. The same model space is used in the
PVC.

9 10 11 12 13 14 15 16
E [MeV]

0

0.1

0.2

0.3

0.4

0.5

0.6

P
IS

G
Q

R
(E

) 
[M

eV
-

1 ]

RPA
3
-
 (3.619 MeV)

3
-

3
-
, 4

+

2
+
, 3

-
, 4

+

1
-
, 3

-
, 4

+

0
+
, 1

-
, 2

+
, 3

-
, 4

+

Figure 6. Probability P to find the ISGQR at an energy E in
208Pb. Each line corresponds to the probability obtained when the
phonons listed in the legend are used as intermediate states. The
label RPA (black-dashed line) refers to the RPA result, in which
none of the diagrams in figure 2 are taken into account, but a
lorentzian averaging with functions having 1 MeV width is intro-
duced.

3.1 The ISGQR and IVGQR strength functions

In this section, the strength function for the isoscalar and
isovector giant quadrupole resonances in 208Pb are discus-
sed. The interaction used is the SLy5 [22] parametrization
of a Skyrme force.

In figure 6 the probability of finding the ISGQR state,
calculated by including in the diagrams an increasing num-
ber of intermediate phonon states, is displayed. In partic-
ular, phonons with multipolarity ranging from 0 to 4, and
with natural parity, are introduced. Only those with energy
smaller than 30 MeV and a fraction of energy weighted
sum rule larger than 5 % where selected as intermediate
states. The most important contribution to the spreading
width comes from the first 3− state, in agreement width
previous calculations [16]. Finally, we get an energy cen-
troid of E = 10.9 MeV and a width Γ↓ ≈ 2 MeV, in good
agreement width the experimental findings [23]. A more
detailed discussion can be found in [11].

The probability of finding the IVGQR state, calculated
in a similar way, is shown in figure 7. In this case, only
phonons with multipolarity from 0 to 3 are included, using
the same exclusion criteria. It is not possible to identify
a multipolarity that affect the width more than the others.
The single RPA state is splitted into two parts: while the
higher energy peak is not really affected by the introduc-
tion of an increasing number of intermediate phonons, the
lower energy one, conversely, becomes broader and it is
shifted to lower energy. For this reason it is difficult to sin-
gle out a value for the energy centroid, that we can set at
21.2 MeV, while the spreading width is of the order of 3.8
MeV. Also these values are consistent with the more recent
experimental results [24].

3.2 The γ decay

In this section, the results obtained for γ decay the ISGQR
in 208Pb to the ground state and the low-lying octupole state
are discussed. We use four different Skyrme interactions:
SLy5 [22], SGII [25], SkP [26], LNS [27].

We group in Table 1 the main properties of the collec-
tive states involved in the processes at hand.

04005-p.4
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Figure 7. Probability P to find the IVGQR at an energy E in
208Pb. Each line corresponds to the probability obtained when the
phonons listed in the legend are used as intermediate states. The
label RPA (black-dashed line) refers to the RPA result, in which
none of the diagrams in figure 2 are taken into account, but a
lorentzian averaging with functions having 1 MeV width is intro-
duced.

Table 1. Energy and collectivity of the ISGQR and of the low-
lying 3− state in 208Pb. The label Exp. indicates the correspond-
ing experimental values (the italic number after the value is the
experimental error on the last figure).

2+ 3−

E [MeV] EWSR [%] E [MeV] B(E3↑) [e2fm6]

Exp. 10.9 3 100 2.6145 3 6.11 105 9
SLy5 12.28 69.27 3.62 6.54 105

SGII 11.72 72.31 3.14 6.58 105

SkP 10.28 81.79 3.29 5.11 105

LNS 12.10 66.98 3.19 5.67 105

3.2.1 The γ decay to the ground state

The results obtained for the decay of the ISGQR to the
ground state are collected in Table 2. Together with our
results, we list also the experimental data [4] and previous
experimental results found in the literature, using different
models.

In general, our calculations reproduce the experiment
quite well, without any parameter adjustment. They tend to
overestimate the decay width, and this is true in particular
for SLy5; however, even in this worst case, our result are
still compatible with the experimental value.

This discrepancy is found to be basically due to the fact
that the energy of the giant resonance do not fit accurately
the experimental findings. This is because in Eq. (6) the
energy of the transition is raised to the fifth power: conse-
quently, an increase of the energy by 1 MeV produces an
increase of the gamma decay width by about 50% (at 10
MeV). To substantiate this point, in the last column of Ta-
ble 2 we report the values obtained for the decay width af-
ter having rescaled the ISGQR energy to the experimental
value (shown in Table 1). For this reason we conclude that
this kind of measurement is not able to discriminate be-
tween models more than other inclusive observables (e.g.
energy).

3.2.2 The γ decay to low-lying 3− state

In Table 3, the results obtained for the decay of the IS-
GQR to the low-lying octupole state are shown, together

Table 2. Energy E of the ISGQR and γ-decay width associated
with its transition to the ground-state. The first four rows corre-
spond to the present RPA calculations. In this case, for 208Pb we
show both the bare Γγ from Eq. (6) as well as the renormalized
value which is discussed in the main text. The next three rows
report the results of previous theoretical calculations [20,28,19].
In the last row the experimental value from Ref. [4] is displayed,
corresponding to the direct decay.

E [MeV] Γγ [eV] Γren
γ [eV]

SLy5 12.28 231.54 127.58
SGII 11.72 163.22 113.57
SkP 10.28 119.18 159.72
LNS 12.10 176.57 104.74

Ref. [19] 11.20 175
Ref. [20] 11.20 142
Ref. [28] 10.60 112

Ref. [4] 10.60 130±40

Table 3. Decay width to the low-lying 3− for the interactions
used, calculated including beyond RPA contributions. The results
from Ref. [28] and Ref. [20] are also listed and in the last row, and
the experimental value from Ref. [4] is provided as well.

Etrans [MeV] Γγ [eV]

SLy5 8.66 3.39
SGII 8.58 29.18
SkP 6.99 8.34
LNS 8.90 39.87

Ref. [20] 8.59 3.5
Ref. [28] 7.99 4

Ref. [4] 7.99 5±5

with the experimental result [4] and theoretical values from
Refs. [20,28]. These latter are obtained using different mod-
els: in [28], the ETFFS with a separable interaction is used,
while in [20], the nuclear field theory with a separable in-
teraction at the particle-vibration coupling vertex is imple-
mented.

Only two interactions, namely SLy5 and SkP are quan-
titatively consistent with the experimental findings, even
though all the models are qualitatively consistent with them,
since all the interaction produce a total Γγ(GQR → 3−)
which is only a few percent of the corresponding
Γγ(GQR→ g.s.).

The most important effect that brings the γ−decay width
to few electronvolts is the polarization of the nuclear medium,
expressed in Eq. (10). In particular, in the case at hand,
the intermediate states are dipole phonons, especially the
isovector dipole resonance. The effect of this term is to
screen partially the external electromagnetic field, produc-
ing a quenching factor of the order of 4 to 10, depending
on the interaction used. We address the interested reader to
Ref. [11] for a more detailed analysis of these results.

4 Conclusions

In this work we deal with some applications of our new
microscopic and consistent framework based on Skyrme
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functionals. In particular, we focus our attention on the
strength function of giant resonances and the γ decay of
GRs to the ground state and to low-lying collective states.
These topics were studied in the past decades using phe-
nomenological or not completely consistent models. There-
fore, we implemented a scheme in which the single particle
states are obtained within HF, the vibrations are calculated
using fully self-consistent RPA and the whole Skyrme force
is employed at the particle-vibration vertices. The decay
width to the ground state is treated within the fully self-
consistent RPA, while the strength function and the decay
to low-lying collective vibrations at the lowest contributing
order of perturbation theory beyond RPA.

We applied our model to calculate the strength function
of the isoscalar and isovector giant quadrupole resonance
and to the γ decay of the ISGQR to the ground state and
the first low-lying collective octupole state in 208Pb.

The energy centroid and the spreading width are con-
sistent with the experimental findings for both the reso-
nances. In the case of the ISGQR, the most important con-
tribution is given by the first 3− state as intermediate state,
as we expected from previous studies based on a phenomeno-
logical model. Concerning the IVGQR, the introduction
of intermediate states produces a splitting of the strength
function into two different peaks. Only the lower energy
peak is affected introducing more and more phonons, even
if we cannot identify a multipolarity that gives a major con-
tribution.

In the γ decay to the ground state, we found that all the
interactions used give a decay width of the order of hun-
dreds of electronvolts, in agreement with the experimen-
tal result. The small discrepancies are due to the fact that
the energy of the resonance is overestimated and the decay
width is highly energy dependent. Scaling the results to the
experimental energy, the decay width turns out to be com-
pletely consistent with the experiment. Thus, the decay to
the ground state is not able to discriminate between differ-
ent models more than less inclusive observables, like the
energy.

However, the γ-decay to low-lying collective states is
more sensitive to the interaction used. As a matter of fact,
only two interactions (namely SLy5 and SkP) manage to
achieve a decay width of few electronvolts, consistently
with the experimental findings. Nonetheless, the other in-
teractions give a width Γγ that is of the order of tens of
electronvolts. It is quite remarkable that our calculation,
being parameter-free, reproduces numbers that are several
orders of magnitude smaller than the nuclear scale of ≈
MeV. In particular, the description of the dipole spectrum
is a crucial point, because small differences in the strength
of the dipole states, introduced as intermediate states, change
significantly the polarization of the nuclear medium.
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