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Abstract

We extend the classical risk minimization model with scalar risk measures to the general
case of set-valued risk measures. The problem we obtain is a set-valued optimization model
and we propose a goal programming-based approach with satisfaction function to obtain a
solution which represents the best compromise between goals and the achievement levels.
Numerical examples are provided to illustrate how the method works in practical situations.
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1 Introduction

Risk measures are real valued functionals defined on a space of random variables which encloses
every possible financial position. It may seem naive to use a single number to describe the com-
plexity of the distributions characterizing those random variables. On the other hand this appears
as the only way to succeed in the assessment of the capital requirement needed to a bank to
recover a high possible loss due to risky investments. Without any doubt it is a critical point the
choice of the axioms defining the risk measures; these have been vividly discussed since the very
beginning of this theory, opening a broad new branch of research which still triggers the interest
of the Mathematical Finance world.

Seminal contributions to this topics were surprisingly given by Bernoulli in 1738 [13], who per-
ceived the role of the risk aversion in decision making. This was the starting point of the notion
of Expected Utility. Later on, in a financial environment, many risk procedure were introduced. It
was the case of the Mean-Variance criterion (Markovitz, 1952,[25]), the Sharpe’s ratio (1964,[29])
and the Value at Risk (V@R), defined through the quantiles of a given distribution with a prede-
fined level of probability. This last method is the most employed in credit institutes and has been
pointed out as the reference parameter by the Basel Committee on Banking Supervision (Basel II
2006).

At the end of the Nineties, Artzner, Delbaen, Eber and Heath produced a rigorous axiomatic
formalization of coherent risk measures, led by normative intent. The regulating agencies asked
for computational methods to estimate the capital requirements, exceeding the unmistakable lacks
showed by the extremely popular V@R. Given a vector space of random variables L, the definition
of a coherent risk measure ρ : L→ R requires four main hypotheses to be satisfied: monotonicity,
cash additivity, positive homogeneity, sublinearity (see Section 2). The relevant role of the axioms

∗Department of Economics, Management and Quantitative Methods, University of Milan, Italy. Email:
marco.maggis@unimi.it. The author acknowledges the financial support provided by the European Social Fund
Grant.
†Department of Economics, Management and Quantitative Methods, University of Milan, Italy. Email: da-

vide.latorre@unimi.it

1

ar
X

iv
:1

20
1.

17
83

v2
  [

q-
fi

n.
R

M
] 

 1
9 

Se
p 

20
12



was deeply discussed in many papers: Föllmer and Schied (2002,[17]), Frittelli and Rosazza Gianin
(2002,[18]) independently studied the convex case weakening positive homogeneity and sublinear-
ity. El Karoui and Ravanelli relaxed the cash additivity axiom to cash subadditivity (2009,[15])
when the market presents illiquidity; Maccheroni et al. (2010,[14]) showed how quasiconvexity
describes better than convexity the principle of diversification, whenever cash additivity does not
hold.
Finally two important recent generalizations were introduced by Jouini et al. (2004,[22]), who
defined set-valued coherent risk measures, and by Hamel and Heyde (2010,[19]) who introduced
the notion of set-valued convex risk measure. This approach is absolutely natural as far as the
risk is expressed and hedged in different currencies.

Diversification plays a crucial role in insurance and financial business and the interpretation of
this notion was the source of this vivid debate. An agent who considers a fixed basket of financial
instruments X = (X1, ..., Xd) ∈ L∞d tries to reallocate his wealth, by means of a diversified strategy
α ∈ Rd, in order to minimize the risk of his portfolio. Namely, given a real valued risk measure
(as introduced in [10]) ρ : L∞ → R we have the following optimization model

min

{
ρ (α ·X) | α ∈ Rd+ :

∑
i

αi = 1

}
(1)

where α ·X is the usual scalar product in Rd.
The optimal risk allocation is a classical problem in mathematical economics and it is interesting
from both practical and theoretical perspectives. In more recent years this problem has also
been studied in many other contexts such as risk exchange, assignment of liabilities to daughter
companies, individual hedging problems (see, for instance, the papers by Heath and Ku (2004,[21]),
Barrieu and El Karoui (2005,[11]), Burgert and Ruschendorf (2006,[12]), Jouini et al. (2007, [23]),
Acciaio (2007,[1])).

The aim of this paper is to provide a computational procedure, based on the Goal Programming
(GP) model, to problem (1) if the agent has to find the best compromise among different beliefs
which may come either from the uncertainty on the probabilistic model P, or from different opinion
that the agent has to face in his institution. These multi-criteria will be aggregated in a unique
measure of risk which will be described by a set-valued map R : L∞d ⇒ Rn. In particular d stands
for the number of financial instruments considered, whereas n is the number of different criteria
(which in general might be larger that d as shown in Section 5). Thus the interpretation we are
giving to R appears pretty different to the original one provided in [22].

The paper is organized as follows: in Section 2 we recall some basic notions on set valued risk
measures, Section 3 is devoted to the extension of the optimization problem (1) to the case of
set-valued risk measures, Section 4 introduces a GP model with satisfaction function and finally
Section 5 presents some numerical results.

2 Risk Measures

Let (Ω,F ,P) a probability space and we denote with L0 =: L0(Ω,F ,P) the space of F measurable
random variables that are P almost surely finite. We denote by L∞ =: L∞(Ω,F ,P) the space of
P-almost surely bounded random variables which becomes a Banach lattice once endowed with the
P-almost sure pointwise partial order and the usual norm of the supremum. In this probabilistic
framework we recall the definition of risk measure.

Definition 1 A risk measure is a functional ρ : L∞ → R which satisfies

i) monotonicity, i.e. X1 ≤ X2 implies ρ(X1) ≥ ρ(X2) for every X1, X2 ∈ L∞,
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Moreover a risk measure may satisfy

ii) convexity, i.e. ρ(tX1 + (1− t)X2) ≤ tρ(X1) + (1− t)ρ(X2) for all t ∈ [0, 1].

iii) cash additivity, i.e. ρ(X + c) = ρ(X)− c,

iv) positive homogeneity, i.e. for every α > 0, ρ(αX) = αρ(X),

v) sublinearity, i.e. ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

Monotonicity represents the minimal requirement for a risk measure to model the preferences
of a rational agent. If in addition conditions iii), iv) and v) hold then the risk measure is called
coherent and it is automatically convex. Unfortunately both axioms iv) and v) appear to be
restrictive and unrealistic: the former does not sense the presence of liquidity risks, the latter does
not describe the real intuition hidden behind the diversification process. For this reason in most
of the literature iv) and v) are substituted by ii) which has a natural interpretation: the risk of
the diversified aggregated position tX1 + (1− t)X2 is surely smaller than the combination of the
two single risks. Cash additivity is a key property which allows to characterize the risk procedure
in terms of capital requirements

ρ(X) = inf{α | X + α ∈ A}

where A = {X ∈ L∞ | ρ(X) ≤ 0} is the acceptance sets. The risk of a position X is thus the
minimal amount of money that I have to save today in order to make the position acceptable with
respect to a precise criterion (represented by the acceptance set A) which is usually imposed by
regulation agencies (External Risk Measures). On the other hand an institution may have some
specific criteria that need to be enclosed in their model as in the case of Internal Risk Measures.

In literature, some extensions of the notion of risk measure have been considered in order to
better describe the complexity of the risk process. We now recall the notion of set valued risk
measures presented in [22]. Given any subset A ⊂ Rd we shall denote by Lpd(A) the collection of
A-valued random variable X = (X1, ..., Xd) with finite Lp norm (or equivalently Xi ∈ Lp for every
i = 1, ..., d). Whenever no confusion arises we denote Lpd =: Lpd(R). Notice that for p = +∞ we
end up with essentially bounded random vectors of dimension d.
In this paper we take into account the theoretical framework developed in [22] and [19]: consider
a closed convex cone Kd ( Rd (resp. Kn ( Rn) such that Rd+ ⊆ Kd (resp. Rn+ ⊆ Kn) and define
the partial ordering 4d on Rd by x 4d 0 iff x ∈ Kd (similarly for 4n on Rn). This ordering can
be naturally extended to L∞d in the following way:

X 4 Y ⇔ X − Y ∈ Kd P-almost surely

Hence L∞d (Kd) is a cone that consists in all the non-negative random variables in the sense of 4.
Moreover for any A,B ⊆ Rn we may define the partial order 4n as

A 4n B ⇔ B ⊆ A+Kn

We will indicate by (1, 1, ..., 1) =: 1d ∈ Rd (1n ∈ Rn) the vector such that each component is
equal to 1, by 1jd ∈ Rd (1jd ∈ Rd) the vector such that the jth component is 1 and the other are 0.
Finally the sum among sets is to be intended as the usual Minkwoski sum.

Definition 2 A (d, n)-risk measure is a set valued map R : L∞d ⇒ Rn satisfying the following
axioms:

i) for all X ∈ L∞d , R(X) is closed and 0 ∈ R(0) 6= Rn;

ii) for all X,Y ∈ L∞d : X 4d Y P-almost surely implies R(Y ) 4n R(X).

In particular a (d, n)-risk measure is convex if
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iii) for all X1, X2 ∈ L∞d , ∀t ∈ [0, 1], R(tX1 + (1− t)X2) 4n tR(X1) + (1− t)R(X2)

A (d, n)-risk measure is cash additive if

iv) for all x ∈ R, j = 1, ..., d and X ∈ L∞d we have R(X + x1jd) = −x1n +R(X);

and coherent if

v) it is sublinear: for all X,Y ∈ L∞d , R(X + Y ) 4n R(X) +R(Y ) and

vi) positively homogenous: for all t > 0 and X ∈ L∞d , R(tX) = tR(X).

Remark 3 We now illustrate the financial meaning of the previous axioms.

1. Monotonicity implies that for X 4d Y the efficient points of R(X) ‘dominate ’those of R(Y ).
This domination might be described as follows: let l be any straight line with origin in 0 ∈ Rn
and passing through the positive orthant then the point l ∩ ∂R(X) is componentwise greater
then l ∩ ∂R(Y ). If in particular both R(X) and R(Y ) admit an ideal point x, y ∈ Rn then x
is componentwise greater than y. This property describes exactly the idea that X is riskier
than Y in terms of the geometry of the frontier of the sets R(X) and R(Y ). A similar
observation might be repeated for all the other properties: convexity/sublinearity state that
the diversification/aggregation decrease the risk of the portfolio and positively homogeneity
excludes any liquidity risk.

2. It is clear that if R(X) + Kn = R(X) for every X ∈ L∞d the region which lies above
the frontier ∂R(X) represents higher level of risk that might be taken into account. This
become a key point if we understand each component of R(X) as different criteria. Consider
for instance two agents endowed with two different risk measures ρ1 and ρ2: we define
R(X) = C(ρ1(X), ρ2(X)) where C(ρ1(X), ρ2(X)) is a pointed cone in R2. We will be able to
find an agreement between the agents only if C(ρ1(X), ρ2(X)) ∩ {(x, y) ∈ R2 | x = y} 6= ∅.

3. Cash additivity in this multi-criteria framework slightly differs from the definition adopted
in [22]. The interpretation is straightforward: if we add to the jth component of the portfolio
X ∈ L∞d a sure amount of money x then all the different criteria will agree that the risk
decreases by −x. Every cash additive (d, n)-risk measure can be characterized by means of
an acceptance set, namely a closed convex cone A ⊂ L∞d and containing L∞d (K). In fact the
set valued map defined as

RA(X) =

(
d∑
j=1

xj
)
1n ∈ Rn | x = (x1, ..., xd) ∈ Rd and X + x ∈ A


is cash additive (d, n)-risk measure. Viceversa the acceptance set induced by a cash additive
R is given by

AR = {X ∈ L∞d | R(X) 4n R(0)}

Example 4 Definition 2 show a simpler expression as soon as for every X the set R(X) satisfies
R(X) + Kn = R(X), as discussed in [22] and [19]. On the other hand in certain cases we may
need to provide a confidence interval of risk so that we expect the risk measure to take values in
compact sets. We illustrate this idea through an easy example: again let 1, 2 be two agents endowed
with two different risk measures ρ1 and ρ2 which are estimating the risk of a position X. Suppose
that 1 only knows that 2 is more conservative (i.e. ρ1(X) < ρ2(X)), but does not know a priori
the procedure used by 2. Thus agent 1 will provide a confidence interval [ρ1(X),M ], where M
represents the maximal capital requirement that 1 is willing to hold in order to cover the risk of
X. On the other hand agent 2 will provide an interval [m, ρ2(X)] where m is the minimal amount
of money 2 wants to save. Thus R(X) = [ρ1(X),M ] × [m, ρ2(X)] describes the aggregate model:
the agreement will take place only if R(X) ∩ {(x, y) ∈ R2 | x = y} 6= ∅ which is equivalent to
[ρ1(X),M ] ∩ [m, ρ2(X)] 6= ∅.

4



In the following Proposition we motivate the use of set valued risk measures instead of vector
valued: if we consider different agents we are allowed to give different weights to each one of them,
depending on the reliability.

Proposition 5 let l be any straight line with origin in 0 ∈ Rn and passing through the positive
orthant Rn+ . Consider the map ρ : L∞d → Rn defined as

ρl(X) = inf{R(X) ∩ l} (2)

where the inf is to be intended componentwise and ρl(X) = +∞1n if R(X) ∩ l = ∅. If R
is respectively monotone/convex/cash invariant/sublinear/positive homogeneous then ρ is mono-
tone/convex/cash invariant/sublinear/positive homogeneous.

Finally we state a well known automatic continuity result which is a key point for the opti-
mization problems that we will consider in the core of this paper.

Proposition 6 [22] Every (d, n)-coherent risk measure R : L∞d ⇒ Rd such that R(X) = R(X) +
Kn for every X ∈ L∞d , is continuous on L∞d .

3 Optimal Portfolio Diversification

Suppose that an agent is considering a vector X = (X1, ..., Xd) ∈ L∞d of risky financial positions.
In a one-period model this vector might be composed by a basket of bonds, stocks, options so that
every Xi > 0 represents the value of the the ith position at the final time. This is the case of the
two examples given in Section 5.1. For sake of simplicity we assume that the price of each asset at
time 0 is equal to π(Xi) = 1 for i = 1, ..., d. Here the pricing rule π is given endogenously, in the
sense that prices are fixed a priori by market itself. The initial endowment x ∈ R will be given
by a particular combination α̂ ∈ Rd+ so that 1 =

∑
i α̂iπ(Xi) =

∑
i α̂i.

A different point (as the one followed in Section 5.2) is to consider a vector (X1, ..., Xd) that
describes the possible losses/gains that the decision maker (as an insurance company) has to face
holding the position Xi.
In both cases an admissible risk diversification strategy will be given by any vector α ∈ Rd+ such
that

∑
i αi = 1, which represents the proportion of capital invested in each risky position.

The decision maker is interested in redistribute and minimize his risk, by means of an optimal
strategy. Namely given a real valued risk measure (as introduced in [10]) ρ : L∞ → R and X ∈ Rd
we have the following optimization problem

min
α∈∆d

ρ (α ·X) where ∆d =:

{
α ∈ Rd+ |

∑
i

αi = 1

}
(3)

Here we extend the optimization problem (3) to the case of set-valued risk measures giving a
different interpretation than the one in [22], as explained in the following. Given a set-valued risk
measures R : L∞d ⇒ Rn and X ∈ L∞d , the agent deals with the following set-valued optimization
problem

min
α∈∆d

R (α1X1, ..., αdXd) where ∆d =:

{
α ∈ Rd+ |

∑
i

αi = 1

}
(4)

Since the vector X ∈ Rd is supposed to be fixed we will consider, with a slight abuse of notation,
R : ∆d ⇒ Rn, so that we will often write R(α) instead of R (α1X1, ..., αdXd).
We suppose Rn being ordered by the usual Pareto cone Rn+ which means a ≥ b if and only if
a − b ∈ Rn+ for all a, b ∈ Rn. A pair (α̂, ŷ), with ŷ ∈ R(α̂) is an optimal solution to (4) if
R(α) ⊆ ŷ − (Rn+\{0})c for all α ∈ ∆d (see [9] for more details).
In the sequel we will consider the case in which the set R(α) takes the form

R (α1X1, ..., αkXk) := Ř (α1X1, ..., αkXk) +D(α1, α2, . . . , αn),
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Figure 1: A set-valued risk measure

where 0 ∈ D(α) ⊆ Rn+ for all α ∈ Rd+.

A particular case happens when D = Rn+ which leads to R (α) = Ř (α) + Rn+. For instance when

n = 1, the above condition degenerates to R (α) = [Ř (α) ,+∞).
The vector Ř can be thus seen as a conglomerate of these different risk attitudes: some may be
coming from regulatory agencies (external risk measures), others may describe different points of
view arising inside the institution (internal risk measures). Risk managers would like to choose a
strategy that minimizes all these different points of view, but this clearly becomes a quite tough
task.
Whenever the risk measure R : L∞d ⇒ Rn is convex then R : ∆d ⇒ Rn inherits convexity for any
fixed basket X ∈ Rd. Thus the above program (4) admits a solution since ∆d is a compact set.
Moreover (4) can be solved by searching for solutions to the following problem (5):

min
α∈∆d

Ř (α1X1, ..., αdXd) where ∆d =:

{
α ∈ Rd+ |

∑
i

αi = 1

}
. (5)

In fact, it is easy to prove that solutions to (5) are actually solutions to (4). Suppose that α̂
is an optimal solution to (5). Since α̂ is an optimal solution to (5) then it holds

Ř(α) ⊆ Ř(α̂)− (Rn+\{0})c (6)

for all α ∈ ∆d. By easy computations we get

R(α) = Ř(α) +D(α) ⊆ Ř(α̂)− (Rn+\{0})c +D(α) = Ř(α̂)− (Rn+\{0})c (7)

which shows that the pair (α̂, Ř(α̂)) solves (4). In the next section we propose a GP model for
finding approximate solutions to (5).

4 Risk Management through a GP model with satisfaction
function

In classical multi-criteria decision aid (MCDA) the agent has to consider several conflicting and
incommensurable objectives or attributes which have to be optimized simultaneously. If D is the
set of feasible solutions and fi represents the i-th objective function then the general formulation
of a MCDA model is as follows [28]: Maximize (f1(x), f2(x), . . . fn(x)) subject to the condition
that x ∈ D. We suppose that each fi is continuous and D is a compact set which guarantee
that Weierstrass theorem applies providing the existence of a solution. The Goal Programming
model is a well known strategy for solving MCDA models; in this context, the agent seeks the
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best compromise between the achievement levels fi(x) and the aspiration levels or goals gi by
minimizing the absolute deviations (see [3, 20, 24, 26, 27]) and it can formulated as follows:

min

n∑
i=1

δ+
i + δ−i (8)

s.t.

{
fi(x) + δ+

i − δ
−
i = gi, i = 1 . . . n

x ∈ D (9)

The GP model with weights (WGP), which represents an extension of (8), reads as:

min

n∑
i=1

w+
i δ

+
i + w−i δ

−
i (10)

s.t.

{
fi(x) + δ+

i − δ
−
i = gi, i = 1 . . . n

x ∈ D (11)

where w+
i and w−i are weights or scaling factors. The GP model and its extensions have obtained

a lot of popularity and attention because they represent simple models to be analyzed and imple-
mented. However it is worth underlying that an optimal solution to (8) and (10) is an optimal
solution to (5) if some optimality tests are satisfied ([24]). Among several extensions of these
models which are currently available, it is worth mentioning the one developed by Martel and
Aouni [26] which explicitly incorporates the agent’s preferences. They introduced the concept of
satisfaction function in the GP model where the agent can explicitly express his/her preferences for
any deviation between the achievement and the aspiration level of each objective. In general, given
three positive numbers ξi, ξd and ξv which will be called, respectively, the indifference threshold,
the dissatisfaction threshold and the veto threshold in the sequel, a satisfaction function is a map
F : [0, ξv]→ [0, 1] which satisfies the following properties:

• F (x) = 1, for all x ∈ [0, ξi], where ξi is the indifference threshold,

• F (x) = 0 for all x ≥ [ξd, ξv], where ξd is the dissatisfaction threshold,

• F is continuous and descreasing.

Depending on the thresholds’ values, which strictly depend on the agent preferences, it could
happen that positive and the negative deviations are penalized in a different manner. The GP
model with satisfaction function is formulated as follows:

min

n∑
i=1

w+
i F (δ+

i ) + w−i F (δ−i ) (12)

s.t.

 fi(x) + δ+
i − δ

−
i = gi, i = 1 . . . n

x ∈ D
δ+
i , δ

−
i ∈ [0, ξv]

(13)

Let us notice that the GP model (12) admits a solution because of the continuity of fi and F and
the compactness of D. Some applications of this model can also be found in [4, 5, 6, 7, 8].

Let us now formulate a GP model with satisfaction function for risk management and optimal
portfolio diversification based on the above multi-criteria optimization model (5):

max

n∑
i=1

w+
i F (δ+

i ) + w−i F (δ−i ) (14)

s.t.


Ři (α) + δ+

i − δ
−
i = gi, i = 1 . . . n∑

i αi = 1
αi ≥ 0, i = 1 . . . p
δ+
i , δ

−
i ∈ [0, ξv]

(15)
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where gi represents the target of Ři for all i = 1 . . . n. If α̂ solves (14) and α̂ is an optimal
solution to (5) then (α̂, Ř(α̂)) solves (4). For this purpose one can use some of the optimality tests
presented in [24].

5 Examples

In this section we provide three possible applications of set valued risk measures to optimal risk
diversification in presence of ambiguity concerning the risk criterion that should be adopted. In
order to guarantee a simple computational procedure we choose a common mathematical frame-
work for these examples, which is described in the following paragraph.
In the first and second example we suppose that the agent is uncertain on the probabilistic model he
will have to choose: namely a set of possible probabilistic scenarios {Qi}n+1

i=2 is taken into account.
Notice that Q1 is excluded since it corresponds to the real probability P. Moreover we assume
Qi << P so that even though P is unknown we have that the null sets are fixed a priori. The
standard approach would be to define the coherent risk measure ρ(X) = supi=2,...,n+1EQi [−X]
and solve the optimization problem given by equation (3). Here we will compare this deeply con-
servative approach with a multi objective goal programming method.
In the third example the reference probability is assumed to be known and we consider an agent
that adopts the V@R as a risk estimator. Since we are considering a problem of diversification
over risky positions and the V@R fails to be convex, the agent is uncertain on the criterium he will
have to choose between the convex combination of the different Value At Risks

∑
i αiV@Rλ(Xi)

or the Value At Risk of the convex combination V@Rλ(
∑
i αiXi).

5.1 Robust methods for risk evaluation under model uncertainty.

Illustrative setting In all the following computational examples we fix

(Ω,F ,P) = ([0, 1],B[0,1], Leb)

and the sequence of functions

fi(ω) =
i−ω∫ 1

0
i−ωdω

∀ i = 2, ..., n+ 1.

This last equation defines a sequence of probability Qi such that dQi
dP = fi and Qi ∼ P. We simply

compute
∫ 1

0
i−ωdω = 1

ln i

(
1− 1

i

)
so that we deduce that limi fi(0) = +∞ and limi fi(ω) = 0 for

every ω > 0.

The linear case We firstly consider an example in which the agent has different beliefs in terms
of probabilistic models but no risk aversion. We consider a general portfolio (α1X1, ..., αdXd) ∈ L∞d
where α ∈ ∆d. We define the set valued map R : L∞d ⇒ Rn as

R(α1X1, ..., αdXd) =

n+1∏
i=2

[
EQi

[
− α ·X

]
,+∞

)
,

where α ·X is the usual scalar product in Rd. Simple computations show that R is a (d, n)-risk
measure satisfying (i), (ii), (iv), (v) and (vi) in Definition 2.
In our illustrative setting we fix a portfolio composed by a non risky asset X1(ω) = 1 and two risky
assets X2(ω) = 2ω, X3(ω) = 3ω2. The portfolio selection will be thus given by α1, α2, α3 ∈ [0, 1]
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such that α1 + α2 + α3 = 1. We observe that

EQi [α ·X] = EQi [α1X1 + α2X2 + α3X3]

=
1∫ 1

0
i−ωdω

∫ 1

0

(α1 + 2α2ω + 3α3ω
2)i−ωdω

= α1 −
2α2∫ 1

0
i−ωdω

· 1

i ln i
+

2α2

ln i
− 3α3∫ 1

0
i−ωdω

· 1

i ln i

− 6α3∫ 1

0
i−ωdω

· 1

i(ln i)2
+

3α3

ln i

= α1 + 2α2

(
1

ln i
− 1

i− 1

)
+ 3α3

(
1

ln i
− 1

i− 1
− 2

(i− 1) ln i

)
Notice that the classical approach would suggest to compute

ρn
(
α ·X

)
= sup
i=2,...,n+1

EQi [−α ·X] = − inf
i=2,...,n+1

EQi [α ·X]

Clearly EQi [α ·X] ≥ 0 and EQi [α ·X] ↓ α1 as i→ +∞ so that

ρn
(
α ·X

) n→∞−→ −α1.

and the only strategy allowed becomes α1 = 1. This means that the higher is the number
of probabilistic scenarios taken into account, the more the decision maker will concentrate his
investments on the non risky asset.

We restrict ourselves to the case i = 2, 3, 4. If we minimize EQi [−α ·X] separately we obtain
the three possible ideal goals g1 = g2 = g3 = −1 with respect to the three different criteria. These
goals are always realized by the strategy α1 = 1, α2 = α3 = 0. In this way no risk is hazarded
and consequently no real gains are reached. On the other hand if we choose three goals g1, g2, g3

which allow a slightly higher level of risk then a better performing strategy arises.
Let us choose the satisfaction function F (δ) = 1

0.01∗δ2 , ξv = 60, and w+
1 = w−1 = w+

2 = w−2 =

w+
3 = w−3 = 1

3 . We fix the goals g1, g2, and g3 to be equal to −0.7,−0.6,−0.5. The above GP
model for optimal risk diversification can be formulated in this setting as follows:

max

4∑
i=2

(
w+
i F (δ+

i ) + w−i F (δ−i )
)

(16)

(17)

s.t.


EQ2

[−α1X1 − α2X2 − α3X3] + δ+
2 − δ

−
2 = g2,

EQ3
[−α1X1 − α2X2 − α3X3] + δ+

3 − δ
−
3 = g3,

EQ4
[−α1X1 − α2X2 − α3X3] + δ+

4 − δ
−
4 = g4,

α1 + α2 + α3 ≤ 1, α1, α2, α3 ≥ 0
0 ≤ δ+

2 , δ
−
2 , δ

+
3 , δ

−
3 , δ

+
4 , δ

−
4 ≤ ξv

(18)

The numerical solution is performed by using LINGO 12 and provides the following solutions
α1 = 0.000000, α2 = 0.9510359, and α3 = 0.4896409E − 01. The decision maker clearly prefers to
invest in X2 even though the probability Qi(X2 ≥ X1) ≤ 1

2 for every i = 2, 3, 4.
With respect to the classical optimal portfolio diversification in which the agent is forced to invest
only on the non-risky asset, here we obtain a less conservative optimal solution which minimizes
the distance between each achievement level and its goal.

Entropic risk measure under ambiguity of the risk aversion. Again we suppose that the
decision maker is uncertain on the probabilistic model Qi << P and his preferences are described
by some exponential utility u(x) = 1− e−λx. Moreover the agent might be more confident about

9



some probabilistic scenarios, so that his risk aversion λ > 0 will depend on Qi (i.e. λ(Qi) = λi).
As usual the exponential utility induces the entropic risk measures

ρQi(X) = inf{m ∈ R | EQi [u(X +m)] ≥ u(0)} =
1

λi
lnEQi

[
e−λiX

]
.

We consider a portfolio (α1X1, ..., αdXd) ∈ L∞d where α ∈ ∆d and define a map R : L∞d ⇒ Rn as

R(α1X1, ..., αdXd) =

k∏
i=1

[
ρQi
(
α ·X

)
,+∞

)
Simple computations show that R is a (d, n) convex cash additive risk measure (i.e. satisfies (i),
(ii), (iii) and (iv) in Definition 2).
In our illustrative setting we fix a portfolio composed by a non risky asset X1(ω) = 1 and two
risky assets X2(ω) = 2ω, X3(ω) = (4ω − 1)1{ω≥ 1

4}
. The portfolio selection will be thus given by

α1, α2, α3 ∈ [0, 1] such that α1 + α2 + α3 = 1. We thus have

ρQi
(
α ·X

)
=

1

λi
ln

(∫ 1

0
exp{−λi(α1 + 2α2ω + α3(4ω − 1)1{ω≥ 1

4}
)− ω ln i}dω∫ 1

0
i−ωdω

)

Computing explicitly the integrals one gets

ρQi
(
α ·X

)
=

1

λi
ln (i ln i)− 1

λi
ln (i− 1)− λiα1 +

+ ln

(
1− e− 1

4 (2α2λi+ln i)

2α2λi + ln i
+
e−

1
4 (2α2λi+4α3λi+ln i) − e−(2α2λi+4α3λi+ln i)

eα3(2α2λi + 4α3λi + ln i)

)

Again we solve the optimal portfolio diversification problem via a GP model. We restrict ourselves
to the case i = 2, 3, 4. If we minimize ρQi (α ·X) separately we obtain the three possible ideal goals
g1 = −4.405194, g2 = −5.497588, g3 = −6.575445 with respect to the three different criteria.
As in the previous model, let us choose the satisfaction function F (δ) = 1

0.01∗δ2 , ξv = 60, and the

weights w+
1 = w−1 = w+

2 = w−2 = w+
3 = w−3 = 1

3 . We set the parameters λ2, λ3, and λ4 equal to 4,
5 and 6, and the goals g1, g2, and g3 equal to −4,−5, and −6 respectively. The above GP model
for optimal risk diversification can be formulated in this setting as follows:

max

4∑
i=2

(
w+
i F (δ+

i ) + w−i F (δ−i )
)

(19)

(20)

s.t.


ρQ2

(α1X1 + α2 +X2 + α3X3) + δ+
2 − δ

−
2 = g2,

ρQ3(α1X1 + α2 +X2 + α3X3) + δ+
3 − δ

−
3 = g3,

ρQ4
(α1X1 + α2 +X2 + α3X3) + δ+

4 − δ
−
4 = g4,

α1 + α2 + α3 ≤ 1, α1, α2, α3 ≥ 0
0 ≤ δ+

2 , δ
−
2 , δ

+
3 , δ

−
3 , δ

+
4 , δ

−
4 ≤ ξv

(21)

The numerical solution is performed by using LINGO 12 and provides the following solutions
α1 = 0.6659041, α2 = 0.000000, and α3 = 0.3340959.

5.2 A new point of view concerning V@R

In the previous examples we built up a set valued risk measure aggregating different real valued
risk measures that were generated different probability beliefs. Moreover in both example R
depended on the vector X = (X1, ..., Xd) ∈ L∞d only through the sum of the components. In this

10



last example we suppose that the historical probability measure is known: in this framework the
most popular (and also most debated) risk measure is V@Rλ defined as

V@Rλ(Y ) = − sup{m ∈ R | P(Y ≤ m) ≤ λ},

where λ ∈ [0, 01, 0.05] and Y ∈ L0 is any F-measurable random variable. Notice that for every
a > 0 we have V@Rλ(aY ) = aV@Rλ(Y ) and V@Rλ(Y + c) = V@Rλ(Y ) − c for every c ∈ R.
Nevertheless the Value at Risk is not convex on the space of random variables and for this reason it
does not sense the effect of diversification. This lack has an immediate consequence: if we consider
a basket of financial instruments X = (X1, ..., Xd) ∈ L∞d and α ∈ ∆d we cannot guarantee any
order relation between

Vλ(α) =:
∑
i

αiV@Rλ(Xi) and V λ(α) =: V@Rλ

(∑
i

αiXi

)
(22)

As a consequence the decision maker should be uncertain among all the possible values x ∈
[Vλ(α) ∧ V λ(α), Vλ(α) ∨ V λ(α)]. This problem can be clearly reinterpreted via a multi objective
goal programming.
Another common risk measure is given by ρw(Y ) = −ess inf Y with Y ∈ L∞, which is a coherent
(and thus convex) risk measure. The clear drawback is that worst case risk measure is too restric-
tive and conservative from the point of view of an agent who is investing his capital. Anyway it
can be exploited to give an upper boundary of the maximal capital requirement necessary to cover
any possible expected loss.
We introduce the following set valued map R : L∞d ⇒ R2 defined as

R(X1, ..., Xd) =

(x, y) ∈ R2 :

Vλ(1d) ≤ x ≤ ρw(1d)
and

V λ(1d) ≤ y ≤ V λ(1d) + ρw(1d)−V λ(1d)
ρw(1d)−Vλ(1d) (x− Vλ(1d))

 (23)

where Vλ(1d) =:
∑
i V@Rλ(Xi), V

λ(1d) =: V@Rλ (
∑
iXi) and ρw(1d) =

∑
i ρw(Xi). Notice that

the set R(X1, ..., Xd) is a triangle and has a minimizer and a maximizer (w.r.t the Pareto cone
R2

+) given respectively by (Vλ, V
λ) and (ρw, ρw).

We consider a vector (α1X1, ..., αdXd) ∈ L∞d where α ∈ ∆d so that by the positive homogeneity
of V@R and ρw we find

R(α1X1, ..., αdXd) =

(x, y) ∈ R2 :

Vλ(α) ≤ x ≤ ρw(α)
and

V λ(α) ≤ y ≤ V λ(α) + ρw(α)−V λ(α)
ρw(α)−Vλ(α) (x− Vλ(α))


where ρw(α) =

∑
i αiρw(Xi).

As usual our illustrative setting is given by (Ω,F ,P) = ([0, 1],B[0,1], Leb) but in this case the
Lebesgue measure in chosen as the reference probability. In order to clarify the example we
consider three financial positions which allow negative losses namely X1(ω) = 0, X2(ω) = 2ω − 1
and X3(ω) = 2−4ω2. Since the three random variables are continuous we deduce that for λ = 0.05

V@Rλ(X1) = 0 V@Rλ(X2) = 0, 9 V@Rλ(X3) = 1, 61

ρw(X1) = 0 ρw(X2) = 1 ρw(X3) = 2

so that Vλ(α) = α2 ·0, 9 +α3 ·1, 61 and ρw(α) = α2 ·1 +α3 ·2. We need to compute V λ(α): notice
that

∑
i αiXi(ω) = α2(2ω−1)+α3(2−4ω2). In particular

∑
i αiXi(0) = 2α3−α2 = −

∑
i αiXi(1).

Then the function
∑
i αiXi(ω) have a maximum point in ω = α2

4α3
. In general the minimum of

the parabola f(ω) = α2(2ω − 1) + α3(2− 4ω2) will fall on ω = 0 if 2α3 − α2 > 0 and on ω = 1 if
2α3 − α2 < 0.

11



(1) Suppose that α2 = 2α3. In this case the V@R can be simply computed as

V@Rλ (α ·X) = f

(
λ

2

)
.

(2) Assume α2 < 2α3. We find that the solution of f(0) = f(ω) is given by ω = 0; α2

2α3
and

P (α ·X ≤ f(0)) = 1− α2

2α3
. We have two possible cases

(a) λ ≤ 1− α2

2α3
then

V@Rλ (α ·X) = f (1− λ) .

(b) λ > 1− α2

2α3
then

V@Rλ (α ·X) = f

(
λ− (1− α2

2α3
)

2

)
.

(3) Assume α2 > 2α3. We find that the solution of f(1) = f(ω) is given by ω = 1; α2

2α3
− 1 and

P (α ·X ≤ f(1)) = α2

2α3
− 1. We have two possible cases

(a) λ ≤ α2

2α3
− 1 then

V@Rλ (α ·X) = f (λ) .

(b) λ > α2

2α3
− 1 then

V@Rλ (α ·X) = f

(
1−

λ− ( α2

2α3
− 1)

2

)
.

Finally, fixing λ = 0.05 we can conclude

if α2 ≤ 1.9α3 then V@Rλ (α ·X) = 0.9α2 − 1, 61α3

if 1.9α3 < α2 ≤ 2α3 then V@Rλ (α ·X) = −4α3

(
α2

4α3
− 0.475

)2

+
α2

2

2α3
+ 2α3 − 1.95α2

if 2α3 < α2 < 2.1α3 then V@Rλ (α ·X) = −0.9α2 + 2.99α3

if 2.1α3 ≤ α2 then V@Rλ (α ·X) = −4α3

(
α2

4α3
+ 0.475

)2

+
α2

2

2α3
+ 2α3 − 0.05α2

The above GP model for optimal risk sharing can be formulated in this setting as follows:

max

2∑
i=1

(
w+
i F (δ+

i ) + w−i F (δ−i )
)

(24)

(25)

s.t.


∑3
i=1 αiV@Rλ(Xi) + δ+

1 − δ
−
1 = g1,

V@Rλ(
∑3
i=1 αiXi) + δ+

2 − δ
−
2 = g2,

α1 + α2 + α3 ≤ 1, α1, α2, α3 ≥ 0
0 ≤ δ+

1 , δ
−
1 , δ

+
2 , δ

−
2 ≤ ξv

(26)

We choose the goals g1 and g2 to be equal to 0.3 and g2 = 0.5 respectively. LINGO 12 provides
the following optimal solution: α1 = 0.6823770, α2 = 0.2151639, and α3 = 0.1024590.

6 Conclusions and further developments

The recent notion of set-valued risk measure appears as powerful tool that can be exploited
to overcome many complications that arise in risk management. Risk, understood as capital
requirements needed to cover expected future losses, becomes an ambiguous factor to determine
as far as a manager has to face different criteria or is uncertain on the real probabilistic model that
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lays underneath the financial problem. Inspired from the statistical notion of confidence intervals,
the general definition presented in this paper allows to consider compact valued risk measures. In
this way we associate to any financial position a cloud of different risk levels, instead of a single
number, taking into account all the multiplicity of ingredients that characterize this computation.
As illustrated by some examples we may thus formulate an optimal risk diversification problem
which allocates the risk of a given portfolio in an optimal manner. This is a set valued program
which can be reduced to a vector valued model if the images of the set valued mapping admit an
ideal point. Using a Goal Programming approach with satisfaction function we are able to provide
approximate solutions to this vector model: the presence of several free parameters is the strength
of this approach since this allows a calibration of the model sensitive to the risk aversion of the
agent.
We have then illustrated three different examples which support this approach: in the first and
the second one, the agent has fixed a risk procedure ρ but he is uncertain about the probabilistic
model Q. In such a case the functional form of ρQ(·) will explicitly depend on Q and the standard
literature would suggest to take a supremum supQ ρQ(·) to compute the capital requirement. As
explained above, such a strategy would often force the agent to avoid any risk in his decision.
Through the GP model we find a non trivial diversification strategy which takes into account all
these different possible scenarios Q. In the third example we provide a case of compact-valued risk
measure built up from the celebrated Value at Risk. As well known, the Valued at Risk is convex
only on the space of Gaussian random variables, but it looses this property if we extend its domain
to more general random variables. As a consequence the V@R is not sensitive to diversification
and for this reason it might not fit our optimization problem. The method we have proposed in an
illustrative setting is a natural starting point to overcome this controversial and debated feature
of the V@R.
For future developments, we are going to conduct a statistical analysis of the model illustrated
in this manuscript by using real data and by estimating the images of a set-valued risk measure
through the analysis of confidence intervals.
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