Correlation between catechin content and NF-κB inhibition by infusions of black and green tea

Chiara Di Lorenzo, Mario Dell’Agli*, Enrico Sangiovanni, Ariana Dos Santos, Francesca Uberti, Enzo Moro, Enrica Bosisio, Patrizia Restani

Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy

*Corresponding author: Mario Dell’Agli, Ph.D. Phone: +390250318398 Fax: +390250318391; Email: mario.dellagli@unimi.it

Short title: Tea extracts as modulators of gastric inflammation

Keywords: *Camellia sinensis* L., Nuclear Factor-κB, antioxidant, radical scavenger, black and green tea, catechins

Abstract

This study investigates whether infusions of green and black tea inhibit the NF-κB driven transcription in human epithelial gastric AGS cells. Water extracts were prepared from different brands of green and black tea available on the Italian market. Teas with or without caffeine were studied. An industrially prepared freeze-dried water extract of green tea was also tested. Catechin and caffeine contents were measured by HPLC analysis. The decrease in phenol and catechin content 3 months after the expiry date was also investigated. The NF-κB driven transcription and the free radical scavenger activity were inhibited, and this effect was related to catechin levels. The potency of epigallocatechin 3-gallate in inhibiting NF-κB driven transcription is so great that tea extracts low in epigallocatechin 3-gallate are still highly active. In one decaffeinated sample of green tea, the phenol and catechin content was very low, probably as a consequence of caffeine removal. The decrease in catechin levels after 3 months did not reduce the inhibition of NF-κB driven transcription by tea infusions. This is the first paper reporting the inhibitory effect of NF-κB of commercial green and black infusions at the gastric level, evaluating their stability as well.

Introduction
Tea obtained from the dried leaves of *Camellia sinensis* L. (family Theaceae) is one of the most widely consumed beverages in the world, apart from water. Among teas produced and consumed in the world, approximately 78% are black, 20% are green, and 2% are oolong teas [1]. The consumption of green tea (GT) has increased exponentially in recent years because of its claimed beneficial effects on health. Black tea (BT) is also valued for its fragrance produced by the fermentative process, which the leaves undergo. GT contains many bioactive compounds and is particularly rich in flavonoids, including catechins and their derivatives, which may constitute up to 30% of the dry weight. Epigallocatechin 3-gallate (EGCg) is the most abundant catechin in GT, representing around 60% of the total catechin content. In vivo evidence of the health benefits of GT consumption include reduction of blood pressure [2-4] and serum cholesterol [5, 6], protecting low density lipoprotein (LDL) from oxidation [7, 8], increased antioxidant and free radical scavenger activity [9], and decreased risk of cardiovascular diseases and cancer. For reviews on these topics, see [10-12]. A systematic review [13] on plant food supplements evaluated twenty-nine human intervention studies of the anti-inflammatory effects of GT and BT infusions, but the conclusions were contradictory. In addition, impact on polyphenol concentration in faeces, blood, and urine after green and black tea consumption by humans has been reported [14]. Among Western populations, dyspeptic disorders including gastritis and peptic ulcer are widespread and the consumption of tea has been suggested for both prevention and treatment of the associated symptoms. Gastritis and ulcer are often due to infection with *Helicobacter pylori* (*H. pylori*) [15], which is a serious public health concern – the WHO classifies this bacterium as a Type 1 carcinogen. Inflammation caused by the bacterial infection, chemical injury or stress, is associated with a massive production of cytokines by immune cells (i.e. tumour necrosis factor alpha: TNFα) and gastric epithelium (i.e. IL-8); this response depends on activation of NF-κB (Nuclear Factor-kappaB), a critical regulator of genes involved in inflammation, cell proliferation, and apoptosis. Some studies have reported a positive effect of cold water extract or hydroalcoholic extract from green tea (GT) or black tea (BT) on gastric inflammation [16], ethanol-induced gastric mucosal injury [17] and the inhibition of *H. pylori* growth *in vitro* and *in vivo* [18-20]. Although several papers have studies the
composition of green tea as infusions, the most widely used form of consumption of green and black teas [21], until now no studies have been evaluated the effect of this preparation on NF-κB driven transcription. This study investigated whether infusions of GT and BT inhibit NF-κB driven transcription in the human epithelial gastric cell line. Because different forms of commercial production of GT and BT affect the content of active principles in the final herbal preparation, we investigated whether different forms would affect NF-κB activity differently. Infusions were therefore prepared of different brands of green and black tea, with or without caffeine, available on the Italian market. For comparison, an industrially prepared freeze-dried aqueous extract of green tea (GTE) was also tested. For each sample catechin and caffeine content was evaluated by HPLC, as well as the content of phenols and catechin 3 months after the expiry date. Inhibition of NF-κB driven transcription and free radical scavenger activity were investigated and correlated with catechin levels.

Materials and methods

Reagents

Methanol and water were purchased from Romil Pure Chemistry (Cambridge, UK); formic acid and Folin-Ciocalteu reagent were supplied by Merck (Darmstadt, Germany) and acetonitrile by VWR International (Geldenaaksebaan, Leuven, Belgium). Pure standards EGCg, epicatechin (EC), epicatechin gallate (ECg), caffeine, gallic acid and all the reagents for cell culture, including the culture medium Dulbecco’s modified Eagle’s medium F12 (DMEM F12), and trypsin, were supplied by Sigma Aldrich (Milan, Italy). Penicillin, streptomycin, and L-glutamine were from Gibco (Grand Island, NY). All reagents used for the analytical determinations and for the biological assays were of HPLC purity grade.

Preparation of green and black tea infusions and percent recovery

Batches of brands of GT and BT with different expiry dates were purchased from various drugstores in Italy. Four GT, three decaffeinated green tea infusions (GTID), two BT and one decaffeinated black tea (BTID) were included. For each brand, one sachet was chosen randomly, and the content of each sachet was infused for 3 minutes with deionised boiling water in the ratio herb/water $1.5g/200\ mL$. The solution
was then cooled, filtered through a 0.45-µm Millipore filter (Billerica, Massachusetts, USA) and lyophilized. The % recovery (w/w) was calculated. Sample were then stored at -20°C until the analysis.

GTE was provided by Martin Bauer Group (Martin Bauer GmbH & Co, Vestenbergsgreuth, Germany).

Analysis of tea infusions by HPLC-UV

The HPLC for quantitative analysis used two pumps PU-1580, the UV detector 975-UV, an autosampler AS-2059 plus (Jasco Tokyo, Japan) and a column of pentafluorophenyl reverse-phase kinetex 2.6 µm, 100 Å, 100 x 4.6 mm (Phenomenex, Torrance, CA, USA). Data were analysed by Borwin software (Jasco, Tokyo, Japan).

The linear gradient elution for GT used mobile phases of water:formic acid (99.5:0.5 v/v) (phase A) and acetonitrile:formic acid (99.5:0.5 v/v) (phase B). The gradient program was: 0-25 min, from 96 to 83% A; 25-30 min, from 83 to 25% A; 30-35 min, 25% A; 35-40 min, from 25 to 96% A. To optimize the separation of catechins, the gradient for BT analysis was slightly different: 0-25 min, from 96 to 85% A; 25-30 min, from 85 to 30% A; 30-35 min, from 30 to 25% A; 35-40 min, from 25 to 96% A. Sample injection volume was 20 µL. Flow rate was 0.8 mL/min and the post-run time 10 minutes. The UV detector was set at 280 nm. The content of caffeine and catechins (EGCg, EC and ECg) was measured. Peaks were identified by comparison of retention times with those of pure reference compounds: stock solutions of standards in methanol were sonicated for 1 min before injection and calibration curves were obtained by injecting 40-2000 ng catechins and caffeine. The calibration curves were linear (R^2 >0.990).

Total phenol content was measured by the Folin-Ciocalteu colorimetric assay using a Cary 50 Scan UV-VIS spectrophotometer (Varian, Palo Alto, CA, USA) and expressed as mg of gallic acid equivalents (GAE)/g of dry drug weight. The polyphenol concentration in samples was calculated using a standard curve of gallic acid ranging from 1 to 50 µg/mL (R^2 = 0.990).

Stability of catechins in tea infusions

GT and BT sachets were stored in the original packaging at 25°C in the dark. GT and BT were infused and catechin content was measured at month 0 (corresponding to the expiry date) and 3 months later.
DPPH free radical scavenging assay

The 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay was applied as previously described [1, 22], with slight modifications. Aliquots of 0.5 mL of tea infusions or extract were added to 1 mL of DPPH (5 mg/100 mL methanol) and after 30 min at room temperature the absorbance of the solution at 517 nm was measured using methanol as blank. As negative control, 0.5 mL methanol was added to 1 mL DPPH solution. The degree of free radical scavenging was expressed as mg of gallic acid equivalents (GAE)/g dry drug. The calibration equation for gallic acid was \(y = -0.1275x + 0.685 \) (\(R^2 = 0.997 \)).

Cell culture and NF-κB assay

Human adenocarcinoma cells AGS (ATCC, Manassas, VA, USA) were grown at 37°C in DMEM F12 supplemented with 100 units penicillin/mL, 100 mg streptomycin/mL, and 10% heat-inactivated fetal calf serum (FCS) (Euroclone SpA, Pero, Italy), in a humidified atmosphere containing 5% \(\text{CO}_2 \). At confluence, cells were plated in 24-well plates (30,000 cells/well) and transfected after 48 h by the calcium-phosphate method with a plasmid containing the luciferase reporter gene under the control of NF-κB promoter [23]. Cells were placed in a medium deprived of FCS, and treated for 6 h with the compounds and TNF\(\alpha \) 10 ng/mL as pro-inflammatory stimulus. GT and BT infusions were tested at 1-25 \(\mu \)g/mL, GTE at 0.1-10 \(\mu \)g/mL and the individual pure compounds at 0.1-10 \(\mu \)M. After 6 h cells were harvested and a luciferase assay was applied using Britelite™ Plus reagent (PerkinElmer Inc. Massachusetts, USA) according to the manufacturer’s instructions. Parthenolide was used as reference inhibitor of NF-κB driven transcription (-85% at 10 \(\mu \)M) [24].

Cytotoxicity assay

The integrity of the cell morphology before and after treatment was assessed by light microscopy. Cell viability was measured by MTT [25] and Trypan Blue methods. No sign of cytotoxicity was observed in cells treated with infusions/extract (0.1-25 \(\mu \)g/mL) or individual compounds (0.1-10 \(\mu \)M).

Statistical analysis
The results are the mean ± sd of at least three experiments performed in triplicate. IC₅₀s were calculated with GraphPad Prism 4 software. The significance was set at p<0.05 and was calculated using one-way analysis of variance followed by Bonferroni’s post hoc test.

Results and Discussion

Composition of tea infusionss

The recovery of both green and black tea infusions (GTI and BTI, respectively) ranged from 20.6 to 32.5 %, calculated on the dried weight, with no significant difference between GT and BT (25.4 ± 5.24 and 24.7 ± 2.15, respectively; p=0.83). Table 1 shows the content of total phenols, catechins and caffeine. There was good linear correlation between total catechins and total phenol content (r=0.86). Fig. 1 shows the HPLC profile of a GT (A) and BT infusions (B). Peaks 1, 2, 3 and 4 were identified as EGCg, ECg, EC and caffeine respectively; quantities are reported in Table 1. GT contained far more catechins than BT (mean: 60.2 vs. 7.1 mg/g, respectively), whereas caffeine content was not significantly different. Green tea is not fermented as black tea is, so that polyphenol oxidase, which degrades catechins, is not developed. This in part explains the higher catechin content in GTE than in BTE [26]. However, geographical origin, harvesting time, and quality of herb could also affect the abundance of catechins and other phenols. As expected [27, 28], EC was not detectable in BT infusions. Caffeine ranged from 29.4 to 47.6 mg/g (Table 1) in both GTI and BTI samples, but was undetectable in decaffeinated samples, as expected. One of the decaffeinated teas (GTID-1) showed a total phenol and catechin content 6- to 10-fold lower than other GTIs, possibly ascribable to the decaffeinating method used [29]. GTE showed the highest content of phenols, catechins and caffeine.

Effect of tea infusions and pure compounds on NF-κB driven transcription in AGS cells

All the infusions exhibited a concentration-dependent inhibition of the NF-κB driven transcription that had been induced by TNFα. IC₅₀ ranged from 2.47 to 18.9 μg/mL (Table 2). Infusions from black tea inhibited the transcription less powerfully than those from green tea (5.14-11.8 vs. 2.47-4.31 μg/ml, respectively). GTE was the most active (IC₅₀: 0.98 μg/ml). Among the catechins, EGCg showed the
highest activity on the NF-κB driven transcription induced by TNFα (IC$_{50}$: 146 ± 32 nM, mean ± sd). ECg showed 30% inhibition at 10 µM, whereas EC and caffeine, at this concentration, were inactive. When incubated without TNFα, the extracts/individual compounds showed no inhibition of the NF-κB driven transcription; this excludes a direct effect of the extracts on the target. Green and black tea both inhibit TNFα-induced NF-κB driven transcription in vitro and the effect on the inflammatory cellular response correlated closely with their total catechin content; correlation coefficient r was 0.84, thus indicating a strong relationship between catechin content and inhibition of NF-κB driven transcription (additional data are given in online resource 1). Because the potency of EGCg in inhibiting NF-κB driven transcription is so high, tea extracts even with low content of EGCg (i.e. BTI) are still very active. The EGCg content in 25 µg/ml tea extracts ranged from 0.37 to 3.10 µM for green tea and from 0.15 to 0.41 µM for black tea. Taking into consideration its IC$_{50}$ on NF-κB activity (0.146 µM), it is apparent that EGCg is the major component responsible for the overall in vitro effect of the extracts. If the IC$_{50}$ are expressed per total catechin content, black teas exhibit IC$_{50}$ from 4 to 5 times lower than green tea infusions. One possibility to explain this observation is that the relationship between catechin content and NF-κB inhibition is linear at lower concentrations whereas, at higher concentrations, inhibitory activity is not linear. Although the in vivo relevance of the present findings needs to be further investigated, the inhibitory effect on NF-κB in vitro strongly suggests that green and black tea infusions could help to prevent/attenuate gastric inflammation.

Free radical scavenging activity of green and black tea

It has been extensively reported that inflammation leads to a massive production of reactive oxygen species (ROS), including H$_2$O$_2$, and the oxidation of NF-κB by ROS inhibits its DNA-binding ability [30]. Table 2 shows that green tea infusions have high free radical scavenging capacity, whereas that of black tea infusions is four-fold lower. Correlation between antioxidant activity and catechin content was significant (r=0.56) but not as high as correlation between catechin content and NF-κB inhibition.
(additional data are given in online resource 2). This observation indicates that other compounds, in addition to catechins, contribute to the antioxidant activity of infusions.

It has been documented that green teas show strong antioxidant activity [31]; EGCg is an effective free radical scavenger at concentrations of 1-10 µM, which are easily reached in GT infusions [32, 33]. GTE showed the most efficient radical scavenger properties, probably because of its higher content of antioxidants.

Stability of catechins in green tea

These experiments were performed to assess the stability of catechins in sachets of green tea kept beyond the expiry date declared by the seller, and whether the decrease in catechin content would affect its scavenger activity. Fig 2 shows the results. Three months beyond the expiry date, the amount of catechins in GTI-1 was 37% lower whereas in the decaffeinated sample (GTID-2) the difference was almost negligible (-6%). The stability of catechins in tea (either in bulk or in sachets) has rarely been investigated. Friedman et al. reported [34] that the average overall loss of total catechin content in eight teas commercially available was 32% after 2 months' storage, and no further loss was seen after 4 months; however, the study did not consider samples stored beyond the expiry date. The antioxidant activity did decrease in both the expired samples (-62% and -51% for GTI and GTD, respectively), independently of the catechin levels, indicating that other compounds contribute to the antioxidant activity. The effect of green tea on NF-κB driven transcription did not change with aging: IC₅₀ values 2.91 and 3.22 for GTI at M0 and M3 respectively; 2.97 and 2.37 for GTID at M0 and M3, respectively. For each sample, IC₅₀ values were not statistically different, which suggests that EGCg still had the concentration necessary to affect NF-κB activity. However, in GTI-1 the decrease of catechin content was associated with a slightly, though not significantly, higher IC₅₀.

Acknowledgements

This work was funded by the European Community’s Seventh Framework Programme under grant agreement n° 245199. It has been carried out within the PlantLIBRA project (website: [link](#))
This report does not necessarily reflect the Commission's views or its future policy on this area.

References

27. Saito ST, Welzel A, Suyenaga ES and Bueno F (2006) A method for fast determination of epigallocatechin gallate (EGCG), epicatechin (EC), catechin (C), and caffeine (CAF) in green tea using HPLC. Ciencia e Tecnologia de Alimentos 26:394-400

Figure 1: Representative HPLC profile of green (GT-1, panel A) and black tea (BT-2, panel B) infusions. Peaks are caffeine (1), EC (2), EGCg (3) and ECg (4). Different gradients were used for A and B, as described in the Materials and Methods section.