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CHAPTER 1

INTRODUCTION

Decision-making generally features a dynamic dimension, in the sense that the outcome
of the decision is delayed in time and it depends on other moves that follow, may those
be taken by the same individual, by others, as well as by nature. It is indeed hard to
overestimate the prevalence of this type of decision settings.

Some can be represented as individual decison problems, including investment in ed-
ucation or the choice of a retirement plan. Others have more apparent strategic features:
trading assets, entering a market, adopting a new technology, building social relations,
voting.

It is crucial for both our comprehension of the aggregate outcomes, as well as to cor-
rectly predict the effects of policies, that we have good models of how the agents take
decisions in those domains.

Fully rational decison making requires, at least, that the agent is conscious of the
whole problem, including all available plans of action for each agent and the conse-
quences associated to each, and chooses optimally based on his preferences over such
outcomes and his beliefs about the others. Actual behavior, in particular as recorded by
controlled laboratory experiments, most often fails to conform to this benchmark and
bounded rationality is now widely incorporated into economic models.

In what follows, most of the efforts will be devoted to figuring out the specific chal-
lenges that decision-makers face in dynamic environments; to showing, through con-
trolled laboratory experiments, what consequences they have on actual behavior; and to
finding ways to account for those in economic models.

The main take of those exercises is that strategic thinking is bounded in a way that
is specific to the dynamic dimension of the interaction. In particular, in a sequence of
moves, those that are close to the current decision are the object of deep strategic consid-
eration, whereas distant ones are barely considered, resulting in systematic deviations
from both fully rational and alternative models that do not take this into account. We
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2 CHAPTER 1. INTRODUCTION

report data on three experiments. Despite huge differences, behavior is surprisingly con-
sistent among them. A majority of the population seems endowed, in all of the experi-
ments, with some form of limited look-ahead; the number of steps most subjects can look
forward to, is bounded between two and four.

Most notably, we show how we can successfully account for those bounds using sim-
ple and tractable models, that are likely to produce more accurate predictions in many
applications.

Foresight and farsightedness

We offer two different ways for accounting for bounded thinking in dynamic settings.

In sequential games of perfect information, we propose an out-of-equilibrium model
where backward reasoning is performed only locally, and to an extent that depends on
the foresight of the agent. An experiment on the race game shows the explicative power
of the model. Using a centipede game experiment, we also test the way in which the
foresight of the agents depends on the complexity of the environment. Overall, we see
this model as a proper dynamic analogue of level-k models.

In complex envirnments, such as network formation, we suggest a half-way solution
between the extremes of myopic and farsighted stability. Limited farsightedness makes
both myopically and farsightedly stable outcomes more fragile, either because, in the
former case, more deviations are available, or because, in the latter case, deviations are
not deterred by longer inferences. This is a desirable feature, given that, in general, both
approaches tend to predict too many outcomes.

The difference between foresight and farsightedness becomes all the more clear when
we move to the limited versions of both. Indeed, the clarification of this distinction is
one of the contribution of these essays, as the two concepts are often confused in the
literature1.

Consider a finite extensive form alternate-move game where the agent controlling
each decision node can choose whether to change state or not, and to each final state
corresponds an outcome for each player. Under farsightedness, the agent controlling
each decision node is considered as he was comparing the final outcomes to the one
corresponding to the current state. If one state is preferred to the current one, the agent
looks for a path of decisions/states, where each subject choosing along the path makes
the same consideration - i.e. prefers the final state to the current one. If that is the case,
this path will be a farsighted improving path. Limited farsightedness would simply limit
the lenght of those paths.

1This difference reflects the origin of the two concepts in non-cooperative and cooperative game theory.
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Under (limited) foresight, the agents consider the optimal choice of the agent choos-
ing at the end of his horizon. That is, if he prefers changing state or not, at all the possible
states he may be choosing at. Taking these actions as given, he moves backwards and
solves for the next-to-last stage, and so on, figuring out a chain of best responses. Clearly,
such chain may not be a farsighted improving path. At the same time, a farsighted im-
proving path may not be a chain of best responses. For example, on a chain of best replies,
an agent may not prefer the final state to the current one, but realize that the former is
better than the one that will prevail, if he takes another action.

The choice between the two largely depends on the context, and in particular on how
fine is the information available regarding the details of the interaction. The stability ap-
proach only requires a set of states to be defined and is then independent on the game
protocol. Limited backward induction is a fully strategic model and requires all the de-
tails of the extensive form of the game.

Models of strategic thinking and limited foresight

In the last twenty years, different models have addressed the failures of fully rational,
game theoretic models, generally claiming more success in explaining and predicting
laboratory behavior2. Some of them are based on the assumption that the agents can
make errors (e.g. quantal response equilibrium - QRE [McKelvey and Palfrey, 1995]);
others relax the equilibrium condition in that the players best reply to some (correct)
aggregate statistics of the others’ strategies (e.g. cursed equilibrium [Eyster and Rabin,
2005]; others relax in different ways the assumption of common knowledge of rationality
(k-rationalizabilty [Bernheim, 1984], level-k models [Costa-Gomes et al., 2003; Stahl and
Wilson, 1995], cognitive hierarchy models [Camerer et al., 2004]).

Though those models were meant to target normal form games, some of them proved
suited to be adapted to the extensive form. For example, Ho and Su [2013] builds a dy-
namic level-k model, mixing elements of level-k and cognitive hierarchy models, and
apply it to the centipede game; McKelvey and Palfrey [1998] propose Agent QRE as the
QRE counterpart for extensive form games, by spelling out the model in terms of behav-
ioral strategies; the analogy-based expectation equilibrium [Jehiel, 2005], is close in spirit
to a cursed equilibrium, applied to multistage games of perfect information.

There has been surprisingly little effort to capture the peculiar aspects of dynamic
strategic interactions, and in particular that the depth of strategic thinking can vary
throughout a game tree in a way that is not possible when considering the normal form.
Probably the first attempt in this direction, and indeed close to ours, is the work of Jehiel

2For an excellent survey, see Crawford et al. [2012]
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[1995], where a notion of limited forecast equilibrium is presented for infinitely repeated
alternate-move games. Every player forecasts the future actions only within a restricted
horizon, and takes the action that maximizes his average payoff within it. In equilibrium,
their forecasts prove correct.

Jehiel [1998b] extends the limited forecast equilibrium to repeated simultaneous move
games. The utility of the players includes a term that captures the unawareness of the
players about what will come beyond their horizon of forecast. The equilibrium fore-
casts are correct on and off the equilibrium path, in the sense they coincide with the true
distribution of actions resulting form the behavioral strategies of the players. As shown
by Jehiel [2001], for intermediate discount factors, full cooperation can result, in the iter-
ated prosoner’s dilemma, as a limited forecast equilibrium outcome, whereas defection
cannot. A learning justification for those approaches is provided by Jehiel [1998a].

Diasakos [2008] proposes a model of limited foresight for individual decision prob-
lems. Limited foresight emerges endogenously as a solution to a two-stage optimization
problem. The agent chooses his foresight, balancing between (individual) search costs,
arising from the decison problem’s complexity, and the benefits of deeper reasoning.

Our attempt takes advantage of different features of those models. In particular, our
model of limited foresight is close in spirit to level-k models: we develop an out-of-
equilibrium model, based on a hierarchy of sophistication levels, each of which chooses
the action that best replies to the immediate lower level. We share with Jehiel’s contribu-
tions the idea of a limited horizon whithin which the agents make their plans. The way
in which we assume the agents to project, on their horizon, the consequences that are
beyond their foresight, is similar to Diasakos’s.

Outline of the essays

In the first essay, we present a general out-of-equilibrium framework for strategic think-
ing in sequential games, Limited Backward Induction (LBI). It assumes the agents to take
decisions reasoning backwards on restricted game trees, according to their (limited) fore-
sight level. We develop a simple way in which the foresight is derived as a function of
the stakes of the game and its complexity, captured by an individual cost for thinking
forward; we also extend the model to apply it to infinite games.

We test for LBI using a variant of the race game, where the players take turns in
adding up numbers up to a final one. The player reaching this number wins a prize.
This game has special features that makes it particualrly suited for identifying forward
looking behavior and backward reasoning. In particular, we can separate the predictions
of LBI from other models, without making any specific assumption on the preferences
of the subjects and their beliefs on their opponent’s strategies. In a treatment, we add a
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small prize, off the equilibrium path, to identify reasoning on restricted game trees.

The results provide strong support in favor of LBI, showing that most players solve
for the small prize before they do for the final one. Only a small fraction of subjects play
close to equilibrium. Overall the intermediate prize keeps the subjects off the equilibrium
path longer than in the base game. The results cannot be rationalized using the most
popular models of strategic reasoning, let alone equilibrium analysis. Remarkably, the
players effort in making a decision, as recorded by the time it takes before acting, is very
low until the game gets close to one of the prizes; it then peaks steeply and then decrease
as it becomes clear who is going to get the prize. Most of the player are consistent with a
level of foresight of two, three or four steps.

In the second essay, we test a specific implication of LBI: that the foresight of the play-
ers - i.e. the number of steps of backward induction they are able to perform - is decreas-
ing in the complexity of the environment. We present the results of a novel experiment,
using a centipede game, where we manipulate complexity by reducing the availability
of information regarding the payoffs. We run three treatments featuring the same game,
but where the payoffs are represented in different ways.

We show that reduced availability of information is sufficient to shift the distribution
of take-nodes further from the equilibrium prediction, and similar results are obtained
in a treatment where reduced availability of information is combined with an attempt to
elicit preferences for reciprocity, through the presentation of the centipede as a repeated
trust game.

Behavior in the centipede game has been explained either by appealing to failures of
backward induction or by calling for preferences that induce equilibria consistent with
observed behavior. Our results could be interpreted as cognitive limitations being more
effective than preferences in determining (shifts in) behavior in our experimental cen-
tipede.

Furthermore our results are at odds with the recent ones in Cox and James [2012],
suggesting caution in generalizing their results. Reducing the availability of information
may hamper backward induction or induce myopic behavior, depending on the strategic
environment. Most notably, both effects can be rationalized within the framework of
limited backward induction.

In a nutshell, as complexity increases, the agents respond by reducing the number
of steps over which they perform strategic reasoning, but still incorporate the efficiency
gains that are achievable at distant nodes by projecting those payoffs on their foresight
bound. Beyond a certain threshold, however, on top of being able of very limited back-
ward reasoning, they stop considering distant payoffs, resulting in myopic behavior
(“take the money and run”).
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In the third essay we change completely both the environment and the framework.
We investigate network formation and test for the stability notions that are there ap-
plied. Given the prevalence of interactions through social networks and the extraordi-
nary growth of the network literature in the recent years, we see the empirical founda-
tion and development of sensible models of network formation as mostly needed. More-
over, network formation is typically a complex environment, where bounded reasoning
is most likely to bind actual behavior.

Pairwise stability [Jackson and Wolinsky, 1996] is the standard stability concept in
network formation. It assumes myopic behavior of the agents in the sense that they do
not forecast how others might react to their actions. Assuming that agents are perfectly
farsighted, related stability concepts have been proposed. We design a simple network
formation experiment to test these theories.

Our results reject both of those extreme stability notions. In particular, we show that
the behavioral models thay assume are both untenable. The agents are, instead, consis-
tent with a form of limited farsightedness. Both myopically and farsightedly stable net-
works are found to be fragile to farsighted deviations of short lenght (two, three steps).
The selection among pairwise stable networks seems to be driven by their resilience to
those deviations. Indeed, to the best of our knowledge, no other theory can account for
the variance across treatments in the outcomes that we observe. Beyond this, we find
support for this interpretation in the analysis of individual behavior. Low level of far-
sightedness appear relevant to explain the choices of our subjects.



CHAPTER 2

LIMITED BACKWARD INDUCTION

Abstract

We present a general out-of-equilibrium framework for strategic thinking in se-
quential games. It assumes the agents to take decisions on restricted game trees,
according to their (limited) foresight level, following backward induction. Therefore
we talk of limited backward induction (LBI).
We test for LBI using a variant of the race game. Our design allows to identify re-
stricted game trees and backward reasoning, thus properly disentangling LBI behav-
ior.
The results provide strong support in favor of LBI. Most players solve intermediate
tasks - i.e. restricted games - without reasoning on the terminal histories. Only a
small fraction of subjects play close to equilibrium, and (slow) convergence toward
it appears, though only in the base game. An intermediate task keeps the subjects off
the equilibrium path longer than in the base game. The results cannot be rationalized
using the most popular models of strategic reasoning, let alone equilibrium analysis.

JEL classification: D03, C51, C72, C91

Keywords: Behavioral game theory, bounded rationality, race game, sequential games,
strategic thinking, level-k.
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2.1 Introduction

How do you figure out your moves in a chess game? We would say that most people
think of what the other is going to do next; some think of their next move as well, and
maybe of the opponent following choice. Deep consideration of further stages character-
izes chess lovers and professionals1. This behavior is just backward induction performed
on a limited number of stages. In a nutshell, that represents what we call limited back-
ward induction (LBI). Going back to chess, it is reasonable that we will look further ahead
as our king (or the opponent’s) is plainly menaced. At the same time, we will able to
push our reasoning deeper as the action space shrinks throughout the game, or in games
where the action space is more limited, such as tic-tac-toe. This paper presents a model
that catches such features of strategic reasoning in sequential games and presents a novel
experiment meant to test for it.

The strategic ability of human beings, as recorded form the experimental literature,
seems more limited than assumed in game theory2. Backward induction is no exception
(e.g. Binmore et al. [2002]) and has been long criticized as well on theoretical ground3.
In the last twenty years, different models have addressed the issue, generally claiming
more success in the lab than competing fully-rational models. An excellent survey of the
subject can be found in Crawford et al. [2012].

Despite those models were meant to target normal form games, some of them proved
suited to be adapted to extensive form. As an example, Ho and Su [2013] builds a dy-
namic level-k model to be applied on the centipede game4, while McKelvey and Palfrey
[1998] proposed the agent quantal response equilibrium (AQRE) as the QRE counterpart
for sequential games. An attempt closer to ours is that of Jehiel [1995]; his limited forecast
equilibrium is close in spirit to our approach, although it sticks to equilibrium analysis.
An independent attemp, similar to ours, is being carried out at the moment by Roomets
[2010]. Despite many similarities, in his paper, the level of foresight is exogenously given
and not endogenous to the game, as in ours; the way in which intermediate payoffs are
derived is largely unspecified; most notably, in Roomets [2010] there is no experimental
test of the model.

Beyond this, no model of strategic thinking attempted to address the specific aspects
of dynamic strategic environments, which is the goal of the present paper. In carrying out
the task, we retain the intuition underlying backward induction, but we limit the number

1The literature on chess heuristics is vast and spans from artificial intelligence to psychology. See for
example Reynolds [1982] and De Groot et al. [1996]

2Excellent surveys can be found in Kagel and Roth [1995], Smith [1994] and Selten [1998]
3Aumann and Binmore gave life to a famous crosstalk on the subject. See Aumann [1996] and Binmore

[1996]
4Kawagoe and Takizawa [2012] study classic results on the centipede game with a similar model.
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of stages on which it is performed. As such, LBI is best suited for studying multistage
games with observable actions, characterized by perfect information.

Under LBI, a player faces a reduced game tree, called the limited-foresight game (LF-
game), that encompasses only the stages of the game that are closer to the current deci-
sion node. For each (pseudo-)terminal history of the LF-game, intermediate values are
determined, based on the final payoffs that are consistent with it; finally, actions con-
sistent with a subgame perfect equilibrium (SPE) in the LF-game are taken. The higher
the level of foresight, the more stages are included in the LF-game so that, in the limit,
this coincides with the whole game and the actions taken are consistent with subgame
perfection.

We use a variant of the Race game (also known as the Game of 21) to identify LBI. In
this simple game players alternate to choose numbers within a range; those are summed
up, until a certain target number is reached. The player who reaches it wins a prize,
the other loses. One of the players has an advantage at the beginning of the race, and
can secure the victory of the prize. This possibility transfers to the other player in case
of error. Each player has a family of dominant strategies, which can be identified by
backward induction and should be played in any SPE. Level-k players [Costa-Gomes et
al., 2003] should play consistent with equilibrium.

Previous results [Dufwenberg et al., 2010; Gneezy et al., 2010; Levitt et al., 2011] show
little compliance with equilibrium predictions. The subjects seem to discover the solution
as they play and find it hard to substitute a subgame with its outcome, even after gaining
experience. We replicate those results in a base treatment and show how they are due to
a LBI type of reasoning, using a second treatment. The treatment variable is the presence
of a small prize on the path to the final target. This manipulation is suited to identify
reasoning on a restricted game tree (the LF-game). We also introduce, in both treatments,
the (incentivized) possibility to claim victory of any prize at any time in the game; this
helps us tracking which prize the subjects are targeting beyond their observed actions.

Our results are stark. Most subjects solve for the trap prize before they do for the
final one. This is consistently witnessed by both their actions and their claims, as their
claims of the trap prize anticipate those for the final one and subjects reach the path to the
former earlier than that to the latter. The timing of their decisions shows how reasoning
efforts emerge only when the game approaches one of the prizes - i.e. when this enters
the LF-game. In the presence of the small prize, the players stay off the equilibrium path
longer that when the small prize is absent. On aggregate, we provide strong support in
favor of a LBI type of reasoning. The majority of the population proves able to run no
more than two or three stages of backward induction in our race game, whilst only a
small fraction of the subjects play consistently with equilibrium.
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We propose a formal model of LBI. The foresight of an agent is determined after
considering how relevant the stakes are - i.e. how beneficial strategic reasoning can be -
and how complex the game is - i.e. how costly strategic reasoning can be. To build the LF-
game, he then needs to assign payoffs to intermediate nodes. There are classes of games
where this exercise has an intuitive solution, and most notably, in games where stage-
payoffs are gained. Under this condition, LBI can tackle infinite games and encompasses
perfect myopia as a special case.

More generally, we specify a class of procedures that extract the intermediate val-
ues for a pseudo-terminal history of the LF-game, by projecting the payoffs that arise
beyond the foresight of the agent, and are consistent with that pseudo-terminal history
being reached. In the chess example, a valuation of an intermediate node would depend
mostly on the value assigned to the single pieces, this being associated to the likelihood
of winning after losing that piece5.

We find our attempt to have the same flavor of level-k models. Indeed, LBI types
depend on the depth of their strategic considerations and each type best responds to the
type which is one step lower in the hierarchy. The chain of best replies is anchored to the
behavior of a non-strategic type, which, in our case, is represented by the agent choosing
before the foresight bound. Despite those similarities, LBI predictions will generally di-
verge from the level-k ones in many contexts, as made clear by our design. Both level-k
and LBI constitute out-of-equilibrium models of behavior and should be understood to
capture initial responses to a game.

The paper proceeds as follows: section 2.2 provides an informal description of LBI
and draw some didactic examples ; section 2.3 offers a formal model of LBIsection; 2.4
introduces the race game and the relative experimental literature; section 2.5 presents the
experimental design and procedures; section 2.6 shows results and section 2.7 concludes.

2.2 A sketch of Limited Backward Induction

Consider6 the four-stage game in Figure 2.1, where each outcome a, ...,p is a vector in R2,
identifying von Neumann-Morgenstern utilities for each player. According to backward
induction, player 1 knows what player 2 is choosing after every history in stage four. He
can substitute the preferred outcomes to the decision nodes of stage four and roll over
this reasoning to determine what actions are chosen by himself in stage three and by

5An appropriate evaluation will depend on the position of the pieces as well, however most chess manu-
als report standardized pieces’ values [Capablanca, 2006, e.g.] and those are regularly used by computerized
chess players [Levy and Newborn, 1991].

6See section 2.3 for a formal tractation.
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player 2 in stage two. Finally, he picks his best reply to those profiles in stage one, which
results in a SPE of the game.

Suppose player 1 is not able to run backward induction from the terminal histories
of the game, because of limited foresight. The dashed line in Figure 2.1 represents his
foresight bound, implying he best replies to what he believes the next player is choosing,
without conditioning on the following moves. In the terminology of LBI, his level of
foresight is two: the LF-game he can solve includes two stages. We label this type F2.
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Figure 2.1: A four-stages sequential game with a foresight bound

In order to figure out what his opponent is going to do in stage 2, he needs some
intermediate valuations for the pseudo-terminal histories of the LF-game. Provided that
he knows the final outcomes of the game, he uses this information to retrieve the inter-
mediate valuations. Each payoff of the LF-game will be derived as a projection of the
payoffs of the complete game that are consistent with each pseudo-terminal history. As
an example, the payoffs considered in the LF-game at the pseudo-terminal history (L,W)

will be a function of a,b,c,d, those after (L, E) of e, f,g,h, and so on. If player 1 was of
type F3 - i.e. he had a foresight of three stages - the dashed line in figure 2.1 would move
one stage downwards. The LF-game would be larger and its payoffs would be derived
from smaller sets of final outcomes.

We will not propose a one-fits-all solution to the problem of how to project terminal
payoffs on the terminal histories of the game. In most applications, the obvious choices
will be simple functions like the average, or the median point in the range of available
payoffs, which can be considered as baseline hypothesis. The degrees of freedom that
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are left to the model, are similar to those that arise in the definition of the L0 player
in level-k models, or with the choice of the noise element in QRE. Contrary to those,
however, in LBI the context will generally provide an intuition or a theoretical guide
to which function to choose, as will be clear from the examples of section 2.2.1. Most
importantly, the proper definition of the projection function will be completely irrelevant
in our experimental test. We will discuss further the issue of intermediate payoffs in the
formal set up (see section 2.3.3).

To fix ideas, assume player has a foresight of k stages; call the decision rule of this
player Fk. By construction, the LF-game he is facing in the first stage includes k stages.
Reasoning backward, his implicit belief is that the player choosing at the last stage of
the LF-game is of level F1. This player, who serves as anchor of the LBI reasoning, is
non-strategic, in the sense that he does not perform any strategic reasoning. The player
controlling the next-to-last decision nodes is believed to act as level F2, and so on. Thus,
player one will best responds to the following player, assumed to choose as Fk−1, who
best responds to Fk−2, . . . , who best responds to F1.

Provided that the foresight bounds of players choosing sequentially do not coincide,
beliefs about the next players’ chosen actions will generally prove incorrect. The actions
chosen by one single player need not be consistent one with the other. Those observa-
tions clarify that LBI is an out-of-equilibrium model of the initial responses to a game, by
untrained subjects.

The sketch of LBI we have given is perfectly sufficient to understand the experimental
part of the paper. A reader not interested in the examples and in the formal set up may
then want to jump to section 2.4, which is self-contained.

2.2.1 Examples

We here sketch how LBI can be applied to a couple of classical examples. We briefly draw
predicted behavior and compare it to the experimental evidence.

Centipede game The centipede game (see Figure 2.2) has long been a major workhorse
for investigations of backward induction, as for its simple sequential structure7. It is a
two-player, finite sequential game in which the subjects alternate choosing whether to
end the game ("take") or to pass to the other player ("pass"). The payoff from taking in
the current decision node is greater than that received in case the other player takes in
the next one, but less than the payoff earned if the other player were to pass as well.
The player making the final choice is paid more from taking than from passing, and

7With respect to the motivations underlying the players’ choices, the centipede game proves much less
simpler than it may seem at a first look. We do not think it is a good test of backward induction, and for this
reason we chose a different game for our experiment.
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would therefore be expected to take. Iterating this argument, backward induction leads
to the unique subgame perfect equilibrium: the game is stopped at the first decision node,
implying a huge efficiency loss.

Experimental evidence has shown little compliance with SPE in the laboratory8. The
typical results feature a bell-shaped distribution of endnodes. Figure 2.3 depicts the re-
sults from the six-leg centipede in the seminal paper of McKelvey and Palfrey [1992].
Beyond the failure of SPE, robust findings show that longer games result, ceteris paribus,
in higher endnodes.

Figure 2.2: The six-legs centipede game in McKelvey and Palfrey [1992]

Under LBI, a subject playing the centipede in Figure 2.2 does not take until the ter-
minal histories are included in his LF-game, as he expects the opponent (and himself) to
pass (P) in the following decision nodes. Any function of the payoffs that follow some
decision node, satisfying some basic axioms9, will give a higher value to P than to T at the
foresight bound10. As soon as terminal histories are included in the LF-game of a player,
he takes. This happens later in the game, ceteris paribus, if the centipede features more
decision nodes.

Note that, for an agent to choose T, it is not necessary, in general, that the terminal
histories of the centipede game are included in the LF-game. The point, at which a player
with a certain foresight takes, crucially depends on the progression of the payoffs11. A
population of F2 and F3 (and, possibly F4) describes the initial behavior of the majority of
the experimental subjects in most standard experimental centipede games we are aware
of 12.

Sequential bargaining In sequential bargaining (see Figure 2.4), two players must agree
on the division of a cake that shrinks every time they do not find an agreement (generally

8See, for example: Levitt et al. [2011]; McKelvey and Palfrey [1992]; Palacios-Huerta and Volij [2009];
Zauner [1999]

9See section 2.3.3 for a discussion of those.
10For example, the average of the n payoffs that come after a payoff of x is in the form (1/2 + 4 + 2 +

16...)x/n > x.
11See Crosetto and Mantovani [2012] for a discussion of the issue.
12See Kawagoe and Takizawa [2012] for a presentation of initial response results in the centipede game.
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Figure 2.3: Distribution of endnodes in McKelvey and Palfrey [1992]

intended as the effect of a discount factor). The players alternate in making an offer, with
the other player either accepting, in which case the game ends and the proposed split
is implemented, or rejecting, in which case the cake is reduced and they move to a new
stage, switching roles. In finite bargaining, the last round is an ultimatum game. Its
solution provides the minimal accepted offer in the previous stage. This reasoning can
be iterated backwards up to the first stage. In the unique SPE, in every stage, the proposer
submits the minimal accepted offer, the responder accepts any offer weakly higher than
the minimal acceptable one, so that the first offer is accepted and the game stops.

Broadly speaking, the existing experimental evidence13 shows that offers are, on av-
erage, more generous than in the SPE, and those offers that are close to equilibrium are
often rejected. In general, and contrary to the theory, the first offers are relatively stable,
independently of the number of bargaining stages14.

Consider the game in Johnson et al. [2002], in Figure 2.4; the cake is initially worth $5
and it is halved at every new round, up to the third. They find a first round average offer

13See, for example, Binmore et al. [2002]; Bolton [1991]; Harrison and McCabe [1996]; Johnson et al. [2002];
Ochs and Roth [1989]

14The number of stages is the major determinant of who retains more bargaining power, by determining
the roles in the last round, which is an ultimatum game.
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Figure 2.4: The sequential bargaining game in Johnson et al. [2002]

of around $2.10, against a SPE of $1.26; half of the offers below $2 were rejected. They also
report on a treatment where other-regarding preferences are switched off, using robots
as opponents: the average first-round offer declines to $1.84.

Under LBI, a first mover that does not consider the last round of bargaining within
his LF-game understates the minimal accepted offer in the second round of bargaining,
which in turns implies he make a better offer than in the SPE. Given that offers are a
compact set, we assume the players to use the average value of the set, to compute the
payoffs of the LF-gameThis would be reasonable also in the case of a finite set of possible
offers: the simple average of the terminal payoffs implies an over-representations of all
the zeros that follow a rejection. See section 2.3 for a discussion.. A first mover whose LF-
game includes only the next round of bargaining, assumes intermediate values following
a rejection in round two of $0.625 each15 Reasoning backwards, he expects, in the second
round, player 2 to offer P ∼= $0.63, and keep $1.83 for himself. The offer that best replies
to this belief is P∼= $1.87 in the first round. This prediction perfectly matches the average
offer in the robot treatment of Johnson et al. [2002]16.

Moreover, given a distribution of LBI types, the length of the game does not affect the
behavior of all the first movers whose foresight does not reach the terminal histories.

15.
16The fact that in human vs. human treatments offers are even higher, suggests that other-regarding

preference play a role beyond cognitive limitations in this game.



16 CHAPTER 2. LIMITED BACKWARD INDUCTION

2.3 A formalization of LBI

2.3.1 General notation

Take a set I of players, #I = I finite, playing a multistage game of perfect information
with T + 1 stages (t = 0,1, ..., T), with T finite17. As usual, a history at the beginning of
stage t is a collection of actions in the form ht = (a0, a1, ..., at−1). Let Ai(ht) be the finite
set of feasible actions for player i when history is ht and Ht the set of all histories at
stage t, with HT+1 the set of terminal histories. Then: Ai(Ht) =

⋃
ht∈Ht Ai(ht). Recall that

perfect information implies that at every stage t and history ht for exactly one player it
holds that #Ai(ht) > 1. Function l : H \ HT+1→ I is the mapping of who moves at each
non-terminal history. Utilities are in the form ui : HT+1→R.

This defines a game G =
(
I , H, l, (ui)i∈I

)
. We introduce a property that will be useful

in what follows.

Definition 1. Payoffs are said to satisfy Additive Separability (AS) if:

ui =
T

∑
t=0

πi(at),

where πi(at) is the single stage payoff resulting from actions consistent with hT+1.

In other words, a game displays additive separability of payoffs if utilities can be
represented as the sum of the payoffs gained along the game18.

For any history ht, let Ght be the game that starts at ht; HT+1|ht : {hT+1 = (ht, at+1, ..., aT)}
will be the corresponding set of terminal histories. With a slight abuse of notation let
πi(ht̄) = ∑t̄

t=0 πi(at), and,

uht

i = {ui(hT+1) s.t. hT+1 ∈ HT+1|ht}

and, for t2 ≥ t1,

π
Ht2 |

ht1

i = {πi(ht2
) s.t. ht2 ∈ Ht2 |ht1}

That is, respectively, the set of terminal utilities that are viable after ht and the set of
cumulative payoffs at stage t2, that are viable after ht1

.

17We present the finite case to keep things simple. Our approach easily fits an infinite number of stages,
provided that the players are meant to represent it as a finite game.

18For simplicity, we avoid talking about discounting. Nothing would change in the model if we included
it.
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2.3.2 Sight and foresight

We turn to the players’ sight and foresight. Given any L ∈N+, an agent with sight SL at
history ht sees all histories in {Hl |ht}t+L

l=t+1 and the corresponding payoffs. His sight cap-
tures his understanding of the game, with no relation to strategic considerations. Note
that his sight reaches the terminal histories only if t + L≥ T + 1; when this is not the case,
we will talk about cognitive-terminal histories refering to the set Ht+L|ht ; if L ≥ T + 1
the player sees all relevant information about the game from the very first stage. With a
slight abuse of notation we will interpret t + L as min{t + L, T + 1}, to avoid specifying
such minimum every time.

If the payoffs satisfy additive separability, the sight of a player always provides in-
formation about utilities to players, the same is not true if this property is not satisfied.
More precisely, given AS, a sight SL identifies a game, and allows the player to build the
LF-game, according to the description that follows. Absent AS, only a game form is spec-
ified, with no possibility to build the LF-game, except for the case when t + L ≥ T + 1.

To clarify the point, imagine you are playing chess knowing all the rules, except that
the first who checkmates wins the match. There is no way of playing meaningfully with-
out information about the payoffs. Suppose now you are playing tennis, knowing all the
rules except for the match-winning rule19. You can still play meaningfully and have fun
since you know how to score and to win games.

The usual way in which a game is presented, absent AS, implies, ipso facto, that L≥ T
and thus the sight of players reaches the terminal histories 20. In particular, in economic
experiments, the subjects are generally informed of the final payoffs, and the experi-
menter makes sure that they understood, at least, that point. This is not granted in real
life games, for the cases where the payoffs arise stage after stage. In what follows we
assume that the sight of the players always reaches the terminal histories when AS is not
satisfied.

The sight of a player is exogenously given. His foresight represents the depth of his
strategic thinking. It is derived as a function of the stakes of the game and its complexity
using the information provided by his sight. That is both the stakes Dht

iL , and the com-
plexity, Cht

iL , are assessed according to SL. We denote the level of foresight of a player
with:

K =
⌊

f (Dht

iL ,Cht

iL )
⌋

and we denote with FK a player with foresight of K steps that uses LBI. We will as-

19For example, you do not know how many games are there in a set, and how many sets are needed to
win the match

20See Crosetto and Mantovani [2012] for a discussion and an experiment on representation effects in the
centipede game
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sume fCht
iL
< 0, fDht

iL
> 0, fDht

iL
Dht

iL
< 0, fCht

iL
Cht

iL
> 0; in other words, the level of foresight is

increasing concave in the stakes and decreasing convex in complexity. As K ≤ L, the
level of foresight is always finite.

A player with sight SL engages in more steps of strategic reasoning the higher the
stakes of the game, and the lower its complexity. Though intuitively appealing, it is in-
deed challenging to formally define stakes and complexity, not to mention any specific
functional form. Consistent with the purpose of proposing a general framework, we de-
fine stakes as a function of the payoffs within the sight of the agent, assuming weak
monotonicity in the payoffs and in their variance, and complexity as function of the
number of cognitive-terminal histories in his sight, plus an individual cost parameter,
increasing in both terms. That is

Dht

iL = d(πHt+L|ht
i )

and
Cht

iL = e(ci,#Ht+L|ht)

Absent AS, the above definitions reduce to Dht

i = d(uht) and Cht

i = e(ci,#HT+1|ht). FK

determines the set of the histories of the LF-game, defined as

Hht,K = {Ht+k|ht}K
k=0

The pseudo-terminal histories of the LF game are then Ht+K|ht .

A natural extension of this definition of foresight is to take into account how stakes and
complexity vary over the action space of the subject, letting FK vary over the set Ht+1|ht .
In general, simplicity reasons suggest not to consider such a case, but one should keep in
mind this is possible, for the cases where those differences are likely to be relevant.

2.3.3 Intermediate payoffs and the LF-game

Let Ht
i be the set of histories controlled by player i, Ht

i = {ht s.t. #Ai(ht) > 0}. At each
node in this set, player i, with sight SL, is characterized by a level of foresight, FK. This
level specifies, at every history, a restricted game form (I , Hht,K, l). To complete the LF-
game, utilities must be defined over the pseudo-terminal histories Ht+K|ht . Let those be
a function in the form:

vi :

{π
Ht+L|ht
i }ht∈H\HT+1 →R if AS satisfied

{uht

i }ht∈H\HT+1 →R otherwise
(2.1)
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In other words, the intermediate utilities are functions of the set of consequences that
are consistent with the pseudo-terminal history they refer to. Those consequences are
the terminal utilities, if AS is not satisfied, but can be cognitive-terminal utilities if AS is
satisfied. In the latter case, the players base their evaluation of pseudo-terminal histories
using the payoffs that are viable from those histories on, and that fall within their sight
SL. In principle, different subjects may have different mappings and the same subject
may use different mappings for different pseudo-terminal histories. Despite this, we will
not consider these possibilities in the general case.

Let v ∈ Rn be a vector of the intermediate utility for each player; the LF-game at
history ht, controlled by an agent with foresight FK, is:

Ght,K = (I , Hht,K, l,v)

In applications one wants to make intermediate utilities operational. Up to now, we
only constrained them to depend only on payoffs consistent with the pseudo-terminal
history they refer to. We put forward a set of properties, indeed quite standard, that
must be satisfied by any specification of the intermediate utilities21. We then show some
examples, having intuitive applications, that satisfy those properties.

Definition 2. Given any two histories h, h′ ∈ Ht such that, min{uh
i } ≥max{uh′

i }, intermediate
utilities satisfy dominance iff vi(u(h)) ≥ vi(u(h′)).

Dominance states that if all the utilities viable after a certain history are higher than
those after another history, then the former should be preferred to the latter. A stronger
version is the following, postulating that a history is preferred over another if each utility,
that is viable after the former, beats the corresponding one, that is viable after the latter,
after ordering both sets in the same way. Given uh

i and uh′
i with the same cardinality, let

∆uh,h′
i be the set containing the pairwise differences between the ordered elements of the

two sets.

Definition 3. Given any two histories h, h′ ∈ Ht such that #HT+1|h = #HT+1|h′ and ∆uh,h′
i > 0,

intermediate payoffs satisfy stage monotonicity iff vi(u(h)) ≥ vi(u(h′)).

Extension monotonicity states that, if the set of utilities viable after some history, is the
same as those after another history, plus some utilities that are less valued (more valued)
than the previous ones, than the latter (former) history is preferred to the former (latter).

21The notation is suited for cases where the sight of the agents encopasses the terminal histories. The
reader can easily check that it transfers to the other cases, though at the cost of becoming more cumbersome
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Definition 4. Given any two histories h, h′ ∈ Ht such that uh
i ⊆ uh′

i , intermediate payoffs satisfy
extension monotonicity iff:

i. max(uh′
i \ uh

i ) ≤ min(uh
i )⇒ vi(u(h)) ≥ vi(u(h′))

ii. min(uh′
i \ uh

i ) ≥ max(uh
i )⇒ vi(u(h′)) ≥ vi(u(h))

Examples. The following intermediate payoffs satisfy definitions 2-4:

Simple average: vi(uh
i ) =

∑ui∈uh
i

ui

#uh
i

Range average: vi(uh
i ) =

max(uh
i )−min(uh

i )
2

Random choices: vi(uh
i ) = Er(uh

i ), where Er assigns equal probability to each action in the action
set at every node before the pseudo-terminal history.
Maximum(Minimum): vi(uh

i ) = max(uh
i ) (min(uh

i ))

As we deny proposing a one-fits-all solution, each operational solution needs to be
justified within a context. In general, we favor the use of the most intuitive solutions,
such as the simple average or the range average. For example, in sequential bargaining,
if the set of possible offers if finite, the simple average counts one zero for each possible
offer (in case the offer is rejected). This over-representation of zeros may discourage the
use of the simple average.

On the LF-game the agents take decisions following backward induction. The agent
choosing at ht starts by finding the optimal actions of the subjects that controls the histo-
ries Ht+K−1|ht . He then moves to Ht+K−2|ht , taking the optimal actions in the following
stage as given. And so on, until he reaches ht. is actions are then consistent with a sub-
game perfect equilibrium in the LF-game. The following statements are true.

Proposition 1. i. For any FK, LBI always prescribes at least one action.

ii. If t + K≥ T + 1 the actions prescribed by LBI are all and only those that are part of a subgame
perfect equilibrium strategy of the game.

iii. For K→∞, LBI prescribes all and only the actions that are consistent with a subgame perfect
equilibrium of the game.

The proofs are self-evident and are omitted. Given a population featuring a certain
distribution of levels of foresight, the actions consistent with LBI become closer to equi-
librium as we approach the end of the game, matching a common experimental finding,
perfectly depicted by our experiment. As the agents gain experience, their level of fore-
sight can increase and their actions will converge toward SPE22.

22This does not imply that the agents will improve their level of foresight and converge to SPE in all
situations.
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2.3.4 Strategic reasoning in LBI and in level-k models

There are many similarities between LBI and level-k models. Both are first-response mod-
els. Their scope is to explain the out-of-equilibrium behavior of untrained subjects and
to predict to which equilibrium the subjects are likely to converge, in case they do.

LBI and level-k models are based on a hierarchy of types and the decision rule is such
that each type best replies to the next lower one. Finally, this chain of best replies is
anchored to a non-strategic type.

However, LBI distinguishes from level-k in many aspects. A level-k agent knows the
actions chosen by the agents with level between 0 and k− 1, and best replies to the k− 1
action. When applied to dynamic contexts [Ho and Su, 2013; Kawagoe and Takizawa,
2012] the players specify an action plan for the whole game, consistently with their belief
about the other’s type.

Under LBI, the agent of type FK applies backward induction on a restricted game
tree. In doing so, he acts as if he imposed decreasing levels of foresight on the agents that
control the following nodes: the next player to be active is assumed to act as a FK−1 type,
the following as a FK−2 type. The agent controlling a node at K− 1 stages of distance from
the current one perform no strategic reasoning, in the sense that he does not consider
strategically the other choices.

On the one hand, this implies that, within the LF-game, the player assumes the others’
beliefs to be consistent with his owns. A player of level-k assumes the opponents are of
level k− 1, and they believe the others are of level k− 2. On the other hand, the agents
are not aware of their own type under LBI, in the sense that they impose a lower level
of foresight on themselves, when considering their choices at future nodes. This entails
that the actions of the same player need not be consistent throughout the game. New
information is taken into account as the player explores new portions of the game tree,
and the action plan changes accordingly.

The different features of LBI with respect to level-k models make the two models best
suited for different situations. Specifically, LBI is meant to address those games where the
dynamic aspects are salient and the foresight of the players is likely to bind their strategic
reasoning. Level-k is not suited for those settings, as already clear from our experiment.

2.4 The Race Game experiment

In all of the previous examples, it is hard to disentangle the impact of limited cognition
from other aspects of decision making, such as other-regarding preferences, reciprocity
or efficiency considerations. To test for LBI, we design a novel experiment featuring a
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race game, a sequential, perfect-information game. As it will be clear, this game has nice
features for our scope.

First, it is a zero-sum game, with only two possible outcomes; this implies that we can
overlook all preference-related aspects of the decision problem. Second, each player has
a set of weakly dominant strategies, which mitigates the problem of not observing the
players’ beliefs about others’ strategies. Third, the set of outcomes that is consistent with
some history is identical across all histories within the same stage; this means that the
function that projects the terminal payoffs on the pseudo-terminal histories is completely
irrelevant. Those features make it possible to observe the pure effect of limited strategic
ability, and, in particular, of those limits that are specific to dynamic strategic settings.

2.4.1 Base Game

In the race game, two players take turns choosing a number of steps, an integer within
a range 1, ...,k. The steps chosen are summed up: assuming the players start at position
one, the position at some stage s of the game is given by total number of steps taken in
stages 1, ..., s plus one. When a player reaches the target number M, he wins a prize, the
other loses (and gets nothing).

Any race game can be solved backwards: a player easily wins from positions M −
k, ..., M − 1; thus a player choosing at M − (k + 1) is meant to lose. This position can
be reached from M − (2k + 1), ..., M − (k + 2), meaning that a player choosing at M −
2(k + 1) is meant to lose. This reasoning can be iterated back to position one, unveiling a
sequence of losing positions23. An agent that is able to reach with his choice any of these
positions, is able to secure the victory of the game, by reaching the subsequent losing
positions in his following decision nodes.

Formally, the set of losing position is L = {t ∈ T : t = M − (ik + i), for some i =
1,2, ...}, where T is the ordered set of all positions. The set of winning position is then:
W = T \ L. The game displays a set of (weakly) dominant strategies for both players,
prescribing to reach the closest losing position whenever possible (and choose whatever
number at losing positions). If 1 ∈ L, player 2 has an advantage in the sense that he wins
the game according to any of his dominant strategy. If 1 /∈ L, player 1 has the advantage.
Whenever a player plays an action in a dominated strategy, the advantage transfers to
the other player.

We refer with G(k, M) to the race game with M position and a choice set {1, ..,k}

23We choose the term losing position, following Gneezy et al. [2010]. It comes form the fact that an agent
that chooses there is meant to lose the game, so that an agent reaching a losing position is, actually, winning.
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2.4.2 Previous experiments

The race game has been the object of a series of recent investigations. Dufwenberg et al.
[2010] study the games G(3,21) and G(2,6). The subjects play both games, but the order
in which those games are played is varied. They ask whether solving a simpler game
helps in tackling a similar but more complex one, finding support for this hypothesis.

Gneezy et al. [2010] analyze G(3,15) and G(4,17). They find that subjects switch to
backward analysis as they gain experience. Their understanding of the game proceeds
from the final positions: the losing positions are discovered sequentially, starting from
the one that is closer to the final position.

Levitt et al. [2011] have G(9,100), G(10,100) and a centipede game played by chess
players. Consistently with previous studies, they find the players’ actions to be, on av-
erage, closer to the dominant strategy as the game proceeds. Also, a relatively minor
change in the game - changing k from 9 to 10 - has a major impact on the performance of
the players24. Interestingly, the performance in the race game is strongly correlated to the
players’ ranking as chess players, which is not true with respect to the centipede game25.
This suggests that the race game is able to capture the pure ability to backward induct,
which makes it an ideal set up to test strategic reasoning in sequential games.

2.5 Design

On aggregate, previous results indicate that individuals are unable to figure out their
dominant strategy from the beginning; rather, they discover it as they gain experience,
starting from the actions closer to the end. This observation, despite being consistent
with the LBI hypothesis, leaves open the question of whether the subjects actually reason
only on a limited number of steps ahead of the current decision node and if they do so
consistently with backward induction.

Under limited backward induction, the players solve only a reduced game that in-
cludes the stages that are closer to the current decision node. To identify this behavior
we need to show that the agents (i) reason backward, and (ii) do so on a reduced game
tree. In particular, there are two alternative explanations that we must disentangle from
LBI: under the first, the players perform backward induction from the terminal histo-
ries, but stop the iterative process after some steps26; under the second, behavior is fully
driven by beliefs about the others playing a dominated strategy longer than they do.

24In G(9,100) the set of losing positions is L = {10,20,30,40,50,60,70,80,90}. It is a focal sequence, and
is easier to see, with respect to that in G(10,100), which is L = {1,12,23,34,45,56,67,78,89}.

25Palacios-Huerta and Volij [2009] report partially different findings with respect to the centipede game.
26Gneezy et al. [2010] seem to favor this interpretation.



24 CHAPTER 2. LIMITED BACKWARD INDUCTION

We introduce two modifications to the base game to disentangle LBI behavior.

The trap prize: we add a small prize p at an intermediate position m /∈ L. Winning
p gives your opponent the chance of winning P. Intuitively, p allows indentifying the
reduced game trees that include m as pseudo-terminal histories. Note that p implies
there is no longer a dominant strategy: an agent could try to win both prizes, or only one,
depending on his beliefs about the strategic ability of his opponent. As a consequence,
when we observe an agent playing consistently with SPE on the reduced game tree, we
could not distinguish between LBI and “confident” behavior. We achieve this distinction
with the following device.

Claims: we allow players to claim they are going to win p and P in any position, and
independently of who is moving. One can claim both prizes at the same time; a claim
cannot be withdrawn. The players get no feedback on the claims of their opponent and
those are not affecting their payoff; so the claims are non-strategic. However, one’s own
claims are payoff-relevant: by claiming P (p) at position t an agent gets M− t (m− t), on
top of the prize, in case his claim is realized; otherwise, he gets a fine, F . We use claims
to track what the players are targeting along the game.

We call Lp andWp the set of losing and winning positions on the path to p; L|m ⊆ L
andW|m ⊆W indicate the winning and losing positions toward P, restricted to positions
higher than m. Obviously, one of two players will have an initial advantage to get p. A
generic modified race game will be identified as G(k, M,m, P, p, F).

2.5.1 Parameters and treatments

In accordance to the latter convention, we will denote a game with no trap prize as featur-
ing m= 0 and p= 0. We investigate the games G0(6,66,0,100,0,−15) and G1(6,66,40,100,30,−15).

G0 is just a base game with payoff-relevant claims. The set of losing positions is

L = {3,10,17,24,31,38,45,52,59,66}.

The game displays first mover advantage: in every SPE, player 1 wins P and claims it as
soon as the game starts (t = 1).

The same is true for G1. The set of losing positions on the path to p is

Lp = {5,12,19,26,33,40}.

Player 1 has an advantage to win p, as well. However, in any SPE player 1 wins P and
player 2 wins p. Each player claims victory of his respective prize in the first position
(t = 1).
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We run two treatments, T0 and T1, featuring G0 and G1, respectively. Each subject
participated only in one of those treatments (between protocol). Subjects played 8 race
games of the relevant type changing partner and role (Player 1 and Player 2) in every
repetition (perfect strangers matching). T0 is used as a benchmark for actions and claims
related to the large prize P. We let the player take all the time they need to take each
single action, and we do not impose any time constraint on them, so that their strategic
ability is not biased by time pressure.

2.5.2 Equilibrium and out-of-equilibrium behavior

In any SPE equilibrium of the race game, the player who has the initial advantage wins
P; this holds true both in the base and in the modified game. When a small prize is
available, the player at disadvantage with respect to P, wins p, no matter if he has an
initial advantage toward it or not. Each player claims the prize he is going to win in
equilibrium at the initial position.

As it looks like a natural alternative to LBI, we now consider a dynamic level-k model
for the race game, as in Kawagoe and Takizawa [2012]. Level zero identifies a random
player, normally assumed to be fictitious - i.e. it exists only as a belief in the mind of
the higher-level players. Each level, l, believes the others to be of level l − 1, and best
replies to their actions. Following Ellingsen and Ostling [2010], we assume that a player
observing an action that is inconsistent with his beliefs, revises them assuming the oppo-
nent to be of the highest, among the levels lower than his own, that makes his inference
consistent. Since any action profile is played with positive probability by L0, a player can
always hold a belief that is consistent with the current history. Noting that L0 plays with
positive probability one of his dominant strategies, for k≥ 1, Lk never plays a dominated
strategy. Thus, in the standard race (p = 0) every level should mimic SPE.

When we add p, L1 may try to win both prizes. Intuitively, this happens if the prob-
ability that a random player will pick by chance all t ∈ L|m is sufficiently low27. Thus,
if the action space, k, the distance between the prizes, M−m, and p are relatively large,
an L1 player targets the positions in Lp, switching to those in L|m for t > m. In the other
cases, his play mimics SPE. The higher levels play as in SPE, regardless of the parame-
ters, unless they end up believing their opponent is L0, in which case they mimic L1. The
only type that tries to win both prizes is the less sophisticated one, L1, and he should fail
achieving them (as long as L0 players do not exist). Most notably, the players should pass
through all losing positions, Lp and L.

LBI provides a different perspective. As the players move to higher positions, they

27How to compute this probability depends on the type of randomness assumed for L0. See Kawagoe
and Takizawa [2012] for a discussion of the issue.
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discover new portions of the game tree. If no history corresponding to winning a prize is
included in the LF-game, a player cannot distinguish between any two positions in terms
of chances of winning. As a consequence, the same intermediate payoff is associated to
all pseudo-terminal histories. In the base game, as far as a node corresponding to position
M enter his foresight, he will switch to actions consistent with his dominant strategy - i.e.
try to reach the positions in L. The higher his foresight, the sooner this will happen, the
more chances of winning the player will have. For example, F1 realizes how to win only
when the distance to the prize is lower than k, F2 when it is lower than 2k, and so on. A
player is expected to claim the prize as soon as the positions associated to it fall within
his foresight, and conditional on being at a winning position.

A similar reasoning applies to the modified game. What changes is that position
m falls in the LF-game before M. Thus, the players start targeting Lp before L, and
claiming p before P. This latter feature distinguish behavior consistent with LBI from that
of players who can reason backwards for a limited number of steps, but do so considering
the whole game. In both games, the players spend most of the time off the equilibrium
path and converge to losing positions only when a prize is approached.

We next show that we can properly identify LBI behavior using actions and claims.
Consider a player that was not able to solve the whole game from the start. At some po-
sition t ≤ m, he discovers the solution, reasoning backwards from the terminal histories.
Now he knows how to get p and P. Depending on his belief about the strategic ability
of his opponent, he will either target P or p and then P. In the latter case, we may misin-
terpret as LBI a behavior which is not. It is driven by the player believing the probability
that his opponent solves the game while t≤m to be sufficiently low. For obvious reasons,
we refer to this type of behavior as “Confident”.

Claims turn out useful here, as we cannot disentangle Confident behavior and LBI
from the actions. We can show that, given our parameters, a Confident player should
claim P as soon as he learns the solution.

Assume that at some t̄, t̄ < m and t̄ ∈ W ∩Wp a player, j, discovers the solution. He
has, basically, three options: target and claim P (S1); target p and P, claim p now and P
only when sure of getting it (S2); target p and P, claim p and P (S3). The payoff from S1 is

π1 = P + (M− t̄)

The payoff from S2 is

π2 = p + (m− t̄) + q(P + (M−m− kopp,m))

where q is the probability that the opponent does not solve the game within m and kopp,m
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is the action of the opponent at m28. The payoff from S3 is

π3 = p + (m− t̄) + q(P + (M− t̄)) + (1− q)F

We show that there is no belief that sustains S2 with our parameters, so that can S2-
consistent behavior (acting towards p and claiming only p) can be attributed only to LBI.

Proposition 2. For a risk neutral agent, S2 � S3 and S2 � S1 if and only if:

∆P + ∆M

P + ∆M − kopp,m
≤ q ≤ −F

m + kopp,m − t̄− F
(2.2)

where ∆P = P− p and ∆M = M−m.

Corollary 1. For t̄ < 37 there exists no q such that S2 � S3 and S2 � S1.

This and the following proofs are immediate and are thus omitted. Intuitively, to
choose S2, a player needs to believe he has enough chances of winning P after winning p,
but not that many so as to induce him to claim P immediately. With our parameters, the
above interval for q does not virtually exist: even taking the minimum possible kopp,m,
1, which corresponds to the largest possible interval, such a probability exists only for
t̄ ≥ 37; in this case the interval of beliefs that sustain S2 is q ∈ (0.77,0.79).

The following two propositions regard players displaying constant absolute risk aver-
sion (CARA), and constant relative risk aversion (CRRA), respectively. They show that
risk aversion is not a major concern in this context. The reason for this is that S3 is more
risky than S2, but S2 is more risky than S1: as a consequence, for risk averse players, both
the upper and the lower bound of the above interval move in the same direction.

Proposition 3. Consider an agent, whose utility function is U(x) = −e−αx, α > 0, featuring
CARA. Then S2 � S3 and S2 � S1 if and only if:

1− e−α(∆P+∆M)

1− e−α(P+∆M−kopp,m)
≤ q ≤ 1− e−αF

1 + e−α(P+M−t̄) − e−α(P+∆M−kopp,m) − e−αF
(2.3)

Now let ui
s, i ∈ {1,2,3}, s ∈ {g,b}, be the (rescaled) utility of a CRRA agent, when his

strategy is Si, conditional on state s. In case the opponent does not solve the game within

28More precisely, q is the probability that the opponent, choosing at m, will not reach a position in L (for
whatever reason).
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m, s = g; otherwise, s = b. Let ρ be the coefficient of CRRA. Then:

u1
g,b = (p + m + ∆P + ∆M − t̄)1−ρ

u2
g = (2p + m + ∆P + ∆M − t̄− kopp,m)

1−ρ

u2
b = (p + m +−t)1−ρ

u3
g = (2p + 2m + ∆P + ∆M − 2t̄)1−ρ

u3
b = (p + m− t̄ + F)1−ρ

Proposition 4. Consider an agent, whose utility function is U(x) = x1−ρ

1−ρ , ρ > 0 featuring
CRRA, then S2 � S3 and S2 � S1 if and only if:

u1
g,b − u2

b

u2
g − u2

b
≤ q ≤

u3
b − u2

b

(u2
g − u2

b)− (u3
g − u3

b)
(2.4)

Corollary 2. If an agent is not able to reach m in a single move:

i Under CARA, for α < 0.8 there exists no q such that S2 � S3 and S2 � S1;

ii Under CRRA, for ρ < 0.5 there exists no q such that S2 � S3 and S2 � S1.

This implies that, until very close to m, under no reasonable parameter of risk aver-
sion there exists a belief sustaining S2

29. Moreover, even moving closer to m and admit-
ting higher risk aversion levels, the interval of beliefs that sustain S2 remains virtually
irrelevant.

In Figure 2.5 the bounds of the interval for q, in the case of CARA (circles) and CRRA
(stars), are plotted against the coefficient of (constant or relative) risk aversion. To sustain
S2, q must be higher than the solid line, and lower than the dashed line. It is assumed
that t̄ = 36 and kopp,m = 1, giving the interval the highest chances to exist and the largest
magnitude. As shown, for low levels of risk aversion, there exists no belief supporting
S2. For intermediate values, a tiny interval, smaller than 0.06, appears30.

Overall we might confuse LBI and confident behavior for claims only under the fol-
lowing conditions: the claim happens within a limited number of positions, in the neigh-
borhood of m (a); under extremely restrictive beliefs about the strategic ability of the
opponent, corresponding to small range (≤ 0.06) of probabilities for the opponent failing
to solve the game at m around 0.8− 0.9 or above (b); under restrictive beliefs about the
choice of the opponent at m (kopp,m = 1) (c); for very high values of risk aversion (d).

29There is no consensus on the estimation of the coefficients of relative and absolute risk aversion. How-
ever most experimental and field studies agrees on average coefficients that are below our thresholds [see
Harrison and Rutström, 2008]

30If we let risk aversion grow beyond the bounds in the figure, this interval would eventually shrink.
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Figure 2.5: Risk aversion and beliefs sustaining S2: CARA (red), CRRA (blue)

Given the low probability of (a),(b),(c) and (d) occurring at the same time31, we claim
that our interpretation of an S2-consistent strategy as due to LBI, to be sufficiently sound.

Summing up, in equilibrium, we should observe only positions in L and Lp in G1

and no error in either treatment; Level-k agents should mimic this behavior, although
we may observe some players (L1) claiming both prizes. A more relaxed version would
see the subjects learning a strategy for the whole game as they play it. In other words
we should see portions of an equilibrium strategy being played as the game proceeds.
Even here, we would expect errors toward P to fade away before errors toward p, and
P being claimed before p. Let us call this equilibrium-like behavior. Confident players -
actually only those whose beliefs prove correct - might invert this ordering with respect
to actions, but not with respect to claims: we should see errors toward P decline later
than errors toward p, but prizes being claimed at the same time.

Under LBI, both claims and actions should display a reverse timing with respect to
equilibrium and equilibrium-like behavior. We say that a player makes a p-error (P-error),
if, choosing at a position in Wp (W), he does not reach a position in Lp (L); that is, if
he does not exploit his advantage toward winning a prize. We state the following main
hypothesis, within T1:

31There also seems to be a contrast in the required pair of high confidence (b, c) and high risk aversion
(d).
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Hypothesis 1. The rate of p-errors decreases earlier than that of P-errors.

Hypothesis 2. Prize p is claimed before prize P.

Through repetitions, the subjects are expected to learn the strategic features of the
game (and, eventually, fully solve it). Error rates should then decrease and claims become
more precise.

Comparing T0 and T1, we expect the presence of the trap prize to induce higher P-
error rates in all positions t < m. This conclusion stems from two considerations. First,
a successful targeting of p induces more P-errors, even when compared to random be-
havior. Second, the presence of p makes the game more complex, resulting in a lower
strategic performance of the subjects32.

Hypothesis 3. The rate of P-errors is higher in T1 than in T0, due to the trap effect of p.

2.5.3 Procedures

The experiment took place at the EELAB of the University of Milan-Bicocca on June 15th,
2012. The computerized program was developed using Z-tree [Fischbacher, 2007]. The
subject display was as similar as possible to the one used by Gneezy et al. (2010). We
run 4 sessions with 24 subjects per session, for a total of 96 participants, equally split
across tratments. Participants were undergraduate students from various disciplines,33

recruited through an announcement on the EELAB website.

Instructions were read aloud (see Appendix A for an English translation of the in-
structions). Participants filled in a control questionnaire to ensure everybody understood
the instructions before starting the experiment.

Sessions took on average 70 minutes, including instructions, control and final ques-
tionnaire phases.

During the experiment subjects earned Experimental Currency Units. At the end
one game was selected at random for each couple and subjects were paid the points
they earned in that game only, according to an exchange rate of 1AC = 10ECU. Average
payment was 11.10AC with a minimum of 2.50AC and a maximum of 25.40AC. Subjects
received an initial endowment of 4AC that could be partially spent to pay fines in case of
bankruptcy during the experiment.

32To the extreme, a subject may adopt a “one-problem-at-a-time” approach, starting to think about P at
m. Quite remarkably, the working paper version of Gneezy et al. [2010] was titled ”I will cross that bridge
when I come to it”.

33Sociology, economics, business, psychology, statistics, computer science, law, biology, medicine, math-
ematics, pedagogy and engineering.
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2.6 Results

To facilitate the presentation of the results, we partition the set of positions into intervals.
Each interval is formed by all the positions within two losing positions, excluding the
lower and including the upper bound. In T1, we have a similar partition for the small
prize, p, over positions 1, ...,40. Given that the sets L and Lp are disjoint, the intervals for
P and p do not perfectly overlap34 and should be kept distinguished. If not differently
specified, intervals should be understood with reference to the prize they are specific for.

2.6.1 Errors

We start by tracking P- and p-errors over intervals. Figure 2.6 reports the rate of errors
in the two treatments and for both prizes, distinguishing between repetitions 1-4 (a) and
5-8 (b). It represents the fraction of the subjects that did not reach the upper bound of
the interval. Choices taken at L and Lp are excluded from the computation of P- and
p-errors, respectively, since, by definition, there is no correct action available at those
positions. Note that the simple possibility to make two different kinds of error, in T1, is
not sufficient to inflate the rate of errors, since an action that reaches L (Lp) counts as a
p-error (P-error), only if it is not taken at a position in Lp (L).

Figure 2.6: Error rates over intervals: first (a) and last (b) four repetitions

In the first repetitions, the rate of P-errors follows a similar pace in T0 and T1, though
it is slightly higher in the latter between interval 3 and 7. Around eighty percent35 of the

34In particular, the upper bound of an interval that refers to P is two positions lower that the correspond-
ing interval that refers to p.

35An agent choosing at random makes an error 83 percent of the time.
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subjects choosing at winning positions makes an error in the first interval. This percent-
age decreases slightly in T0, reaching 60 percent at interval 8. It remains more or less
stable in T1 until it drops sharply after interval 7. The rate of p-errors starts above 90
percent, it drops then significantly, reaching 45 percent in interval 5. In the last four rep-
etitions, the performance of the subjects improves significantly in T0, though it remains
above 40 percent until interval 7. In T1 the rate of P-errors is unchanged, with respect to
the first repetitions, until interval 7, after which is substantially lower. The performance
with respect to prize p shows a relevant improvement.

Figure 2.7: Average last error over reetitions: T0 (a) and T1 (b)

A more precise measure of the moment where a subject understands the solution of
the game is to identify the last interval where he makes an error. It should be noted
that when an agent stops making errors, we cannot register any error on the part of his
opponent. As a consequence the last errors we record and their distribution should be
understood as a lower bound for the real ones.

Figure 2.7 shows the average last error for each repetition. As before, the performance
improves sharply in T0, passing from above the sixth to below the fourth interval. Start-
ing from a similar level in the first repetition, the improvement is smaller in T1. The
average last p-error is consistently below the average last P-error in T1, with a difference
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of up to three intervals.

Figure 2.8: Distribution of last errors: first (top) and last (bottom) four repetititions

Figure 2.8 reports the distributions of the last errors, by treatment and for the first
and last repetitions. The same distributions are depicted in Figure 2.9 only for those who
claimed the prize for which the last error is recorded. In the latter case the distribution
shifts slightly toward lower intervals, without affecting the general picture. The distribu-
tions for prize P are bimodal. A fraction of the subjects does not make any error, or do so
only in the first interval. The rest of the population stops making errors only close to the
final position. Those, who constitute a majority of the population, display a bell shaped
distribution, peaking around intervals six, seven and eight.

We reject the null of an equal distribution between T0 and T1 using a Kolmogorov-
Smirnov two-sample test (KST), both for the raw distributions (D = 0.2188, P-val = 0.00)
and for those restricted to the claiming subjects (D = 0.2114, P-val = 0.00). A Mann-
Whitney rank sum test (MWRST) confirms that the average last P-error is different in the
two treatments (z = −2.766, P-val = 0.00). Indeed the fraction of subjects not making
errors is apparently higher in T0. Moreover, the learning effect is much higher: around
40 percent of the subjects show a perfect play in the last repetitions of T036. We observe
smaller differences across repetitions in T1, concentrated in the right-hand side of the
distributions.

36Recall that when a player does not make any error, we cannot register any error for his opponent as
well.
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Figure 2.9: Distribution of last errors, claimed prizes only: first (top) and last (bottom)
four repetititions

Figure 2.10: Distribution of adjusted last errors, claimed prizes only: first (top) and last
(bottom) four repetititions

The distribution of the last p-errors shows again a majority of the subjects making
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Figure 2.11: Distribution of differences between the last P-error and last p-error

the last error less than three intervals before the prize. We observe only a tiny fraction of
players not making any p-error. Within T1, improvements in understanding how to win
p capture most of the learning effect.

That most subjects make the last P-error after they make their last p-error is apparent
in Figure 2.11, where the distribution of the difference for each individual is plotted.

Given that, in T1, a player can make a P-error even if he understood how to win P, in
case he was aiming at winning both prizes, we check if the differences across treatments
are not due to this effect. In case a subject claimed both prizes37 and won prize p, without
making any P-error after that, we attribute to him a last P-error equal to his last p-error.
The new distributions are shown in Figure 2.10. Despite we do observe a better perfor-
mance with respect to the base distributions, the effect is minor and does not affect the
difference with respect to T0 (KST: D = 0.1458, P-val < 0.01; MWRST: z = −1.873, P-val
= 0.06).

Our results are highly consistent with previous investigations. Despite a number of
subjects play (or learn to play) close to equilibrium, most of them find it difficult to solve
the game backwards, even after gaining significant experience. In the early intervals,
their actions cannot be distinguished from random play. A majority of the subjects dis-
cover how to win a prize only when they are at a distance of at most three intervals from

37Recall the discussion in section 2.5.2
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it.

We find strong evidence supporting hypothesis 3 and 1. The subjects manage to reach
the positions in Lp before those in L. To check whether this behavior is due to LBI rea-
soning we analyze claiming behavior.

2.6.2 Claims

Figure 2.12: Distribution of claims: first (top) and last (bottom) four repetititions

The subjects made a wide use of the claiming device. Around 65 and 67 percent of
the subjects claimed they would have won prize P in T0 and T1, respectively; 60 percent
claimed prize p in T1. Some claims were unwarranted, and, indeed, a fine was imposed
on 29 percent of both the p-claims and the P-claims; thus, most claims ended with the
claiming player winning the prize.

Figure 2.12 displays the distribution of claims over intervals; the upper and the lower
panels display results for repetitions 1-4 and 5-8, respectively, for T0 (left) and T1 (right).
The distributions of P-claims tracks the pace of that of last errors, separated between early
(interval 1-2) and late claimers (intervals 7-9) . The comparisons between treatments and
prizes that we made for errors, holds basically unchanged for the claims. In particular,
the distribution of p-claims is first order stochastically dominant with respect to that of
P-claims.

With respect to last errors, the proportion between the early and late claimers shifts
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Figure 2.13: Distribution of differences between the timing of the last error and that of
the claim

in favor of the former. This tendency to bet on one’s ability to solve the game before
the opponent is documented in Figure 2.13: many players claim a prize before they make
their last error, in both treatments. However, a majority of the claims happen at a distance
of less than one interval from the last error.

Given the previous remarks, we look at claims that are perfect, in the sense that the
player does not make any error after he claims. As with the last errors, we correct for the
possibility that a player makes an error consciously, as he thinks he can win both prizes:
in T1, we take a P-claim to be perfect if an agent claim both prizes, does not make any p-
error after claiming P and does not make any P-error after winning p. Figure 2.14 shows
the fraction of those claims on the total for each interval; the two upper panels regard P-
claims in T0 (left) and T1 (right), the lower panel regards p-claims. Late claims are more
likely to be perfect: in the three intervals prior to a prize, virtually all claims are perfect.
This fraction drops significantly if we move further form the prize, and particularly so for
p-claims. The distribution of perfect claims (Figure 2.15) does not present any surprise.

Overall, the evidence is consistent with hypothesis 2: prize p is claimed before prize
P. Combined with the results about errors, this provides strong support for the LBI
hypothesis. It should be noted that, as with errors, repetitions drive behavior apart in
the two treatments.

We close this section with some insights from the timing of the decisions of the sub-
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Figure 2.14: Fraction of claims that are perfect, over repetititions

Figure 2.15: Distribution of perfect claims: first (top) and last (bottom) four repetititions
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jects.

2.6.3 Timing

We wanted the players to take the time they needed to reason and reach a decision with-
out the pressure of time constraints. We then analyze how the subjects used their time.

Figure 2.16: Average time for each decision over repetitions

Figure 2.16 displays the average number of seconds the agents took to choose how
many steps to take. The two panels refers to T0 (left) and T1 (right). Different averages
are computed for winning and losing positions, so that we observe, for T0, the mean for
L andW , and for T1, the mean for L, Lp andW ∩Wp.

In the first repetition the averages are indistinguishable and around twenty seconds
for each decision. The time for each choice drops progressively through repetitions only
in the case of winning positions, so that deciding at losing positions takes relatively more
time with respect to winning positions as the game is repeated; this result is consistent
with the evidence in Gneezy et al. [2010].

We have a more precise picture of where it takes longer to decide by tracking the
average time per decision for the losing positions that are closer to the prizes. The corre-
sponding figures are shown in figure 2.17, with the upper panels referring to prize P in
T0 (left) and T1 (right) and the lower panel referring to prize p.

The losing position that is closest to a prize trigger a decision in about the same time
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Figure 2.17: Average time for each decision in losing positions

as in winning positions. The same can be said of the fourth less distant losing position38.
Most of the difference, between losing and winning positions, comes from the choices at
the two losing positions in between. The time needed to reach a decision in the second
closest losing position to the prize increases in the first repetitions reaching averages of
more than forty seconds, and giving slight signs of decrease in the last repetition. For
prize P, the time per decision at the third closest losing position to the prize traces the
previous, with a couple of repetitions of delay.

An immediate interpretation for those results is that the losing subjects realize they
are doomed to lose and check carefully if that is indeed the case. There is no sign of this
behavior further than three steps from a prize.

We can have a broader view of how the timing of decisions evolves throughout the
game by looking at Figure 2.18, where the average number of seconds per decision is
plotted against the set of positions, for both treatments. In T0, the graph remains flat,
at around ten seconds, until position 40; it then shows a steep increase, reaching thirty

38And for all farther positions (not shown in figure 2.17).
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Figure 2.18: Average time for each decision over positions

seconds around 50, followed by a symmetric drop, and is back to around ten seconds
by 60. T1 displays an identical pace after 40. However it shows another steep increase,
followed by a symmetric drop, between positions 20 and 40. It is clear from the figure
that both the magnitude and the length of both the early and the late raise, in the effort
made to take a decision, are similar, if not identical.

It should be noted that equilibrium reasoning seems to imply that all the strategic
effort is made at the beginning of the game, after which players just follow the planned
strategy. Indeed, no theory that does not target specifically the dynamic structure of the
game can predict such a pace for the timing of decisions. On the other hand LBI predicts
exactly the pace we observe.

At the beginning of the game, the LF-game provides no information on how to choose
a meaningful action, as the probability of winning seems unaffected by the current choice
(without conditioning on future choices). As a consequence, there is no scope for in-
depth consideration of different alternatives, and most players choose basically at ran-
dom39. When, as the game proceeds, a prize is included in the LF-game, it becomes

39Recall that, indeed, the error rate in the first intervals are very close to those obtained by fully random
players.
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worth reasoning on which action to pick. This seems to happen on average between
three and two intervals of distance from each prize, which is perfectly consistent with
the figures shown for errors and claims, and matches the observation of one versus two
peaks in T0 and T1, respectively.

Overall we find evidence in favor of every single hypothesis derived from LBI. Most
players put effort in deciding only when a prize approaches. As a consequence the error
rate for the small prize declines before that of the large prize and the former is claimed
before the latter, on average. We also find evidence of some equilibrium players and of
learning towards equilibrium play (in T0). There seems to exist a huge divide between
those latter players and the rest. This is proven also by the answers given to a ques-
tionnaire we provided at the end of the experiment, including some questions about the
chosen strategy. Around fifteen percent of the subjects identified the set of losing posi-
tions as the guide for their strategy. Half of them stated as “strategic” only a subset of the
last three losing positions and around one third clearly stated they were trying to move
as quickly as possible to the “hot-spots”, close to the prizes.

Our results suggest there is a huge scope for further developing LBI, which we started
doing in section 2.3.

2.7 Conclusion

The paper presents a general framework of out-of-equilibrium behavior in sequential
games, limited backward induction, including a novel experiment aimed at testing its
predictions.

Under LBI, the agents take decisions according to backward induction over restricted
decision trees, the LF-game, the dimension of which is determined by the level of fore-
sight of the players. The framework is flexible and applies to all sequential games with
perfect information, including infinite games. As we let the level of foresight grow, in the
limit, LBI mimic subgame perfection. On the other side, it encompasses perfect myopia
as a special case.

The experiment is based on the race game, which, in our view, is the best setting
to study strategic thinking in sequential games. A small trap prize, off the equilibrium
path, and the possibility to claim prizes, allow us to gather a number of new insights. As
already noted by Gneezy et al. [2010], we find that backward reasoning is the main cog-
nitive procedure used by the subjects. However this procedure does not proceed back-
wards from the terminal histories, but is rather routinely performed on the few stages
that are closer to the current decision node, as predicted by LBI.

This conclusion is supported by the analysis of errors, claims and timing of decisions.
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Effort in decision making increases only when a prize is approached. The path to the trap
prize is discovered and pursued before that to the final prize. The trap prize keeps the
subjects off the equilibrium prize longer than in the base game.

Beyond its clear success in this experiment, LBI can explain aggregate behavior in
other contexts, such as, for example, the centipede game, and sequential bargaining.

LBI type of reasoning bares important messages for real life decisions that include
planning or anticipating the choices of other people in the future. First, the longer the
chain of backward reasoning needed to reach the optimal solution, the more likely errors
are and the more experience is needed to reach it. Second, a myopic bias may emerge
in situations where individual plans involve choices that have different consequences
at different points in time. This may be misunderstood as stemming from low discount
factors, despite being due only to limited strategic thinking. These remarks have relevant
consequences in many applications, such as, for example, retirement decisions and asset
bubbles.
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APPENDIX A

EXPERIMENTAL INSTRUCTIONS

Welcome to this experiment in decision-making. You will receive 3 Euros as a show-up
fee. Please, read carefully thesse instructions. The amount of money you earn depends
on the decisions you and other participants make. In the experiment you will earn ECU
(Experimental Currency Units). At the end of the experiment we will convert the ECU
you have earned into euros according to the rate: 1 Euro = 10 ECU. You will be paid your
earnings privately and confidentially after the experiment. Throughout the experiment
you are not allowed to communicate with other participants in any way. If you have
a question please raise your hand. One of us will come to your desk to answer it.
[Between square brackets, we report the instructions specific to T1]

The game

• You will play a game with two players, P and Q.

• The players decide sequentially: they will take turns, one after the other. Each
decision consists in a number of steps, between 1 and 6 (included).

• You will start at position 1. P is the first to decide.

• At the beginning, P chooses a number of steps between 1 and 6. Summed to the
initial position, those steps determine a new position (example: P chooses 3; new
position = 1+3 = 4).

• Then Q chooses a number between 1 and 6. those are summed to the position
reached by P (example, follows: B chooses 5; new position = 4 + 5 = 9). And so
on.

• The game ends when one of the players reaches position 66 with his decision.

• The players are always informed of the current position.

45
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Prizes

• [When a player reaches position 40 with his choice, he obtains the prize A,
valued 30 ECU].

• When a player reaches position 66 with his choice, he obtains the prize [B], valued
100 ECU.

• At any time you can claim you are going to win the prize [A or the prize B; you are
allowed to claim both prizes].

• If a player obtains the prize he has claimed, he earns, on top of the prize, a number
of ECU equal to the difference between 66 [the position of the prize] and the posi-
tion where he has declared to win it (example: P declares at position 60 he is going
to win the prize, and then wins; he receives 6 ECU on top of the prize [P declares at
position 35 he is going to win prize A, and then wins; he receives 5 ECU on top of
the prize]).

• If a player does not win a prize he has claimed, he gets a fine worth 20 ECU.

• When a player declares he is going to win [a prize], his opponent is not informes
and can himself declare he is winning [the same prize].

• The number of ECU earned are the sum of the prize[s] and the adjunctive ECU
obtained, minus the fine[s].

Structure of the experiment

• You will play 8 rounds of this game.

• You will play alternatively as player P and Q; this means you will choose alterna-
tively as first and second.

• In every new round you will play agianst a new partner, chosen at random between
the other participants.

• You will never play twice with the same partner.

• Two of your opponents will never play one against the other.

Earnings

• Only one out of the eight rounds will be paid to you.

• At the end of the experiment, one number between 1 and 8 will be selected at ran-
dom by the computer, and the corresponding game will be paid.

• You will be informed of the chosen game, of your final payoff in ECU and of the
corrosponding Euro.
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Concluding remarks

You have reached the end of the instructions. It is important that you understand them.
If anything is unclear to you or if you have questions, please raise your hand. To ensure
that you understood the instructions we ask you to answer a few control questions. After
everyone has answered these control questions correctly the experiment will start.
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CHAPTER 3

AVAILABILITY OF INFORMATION

AND REPRESENTATION EFFECTS IN

THE CENTIPEDE GAME1

Abstract

The paper presents the results of a novel experiment testing the effects of environment
complexity on strategic behavior, using a centipede game.

Behavior in the centipede game has been explained either by appealing to failures
of backward induction or by calling for preferences that induce equilibria consistent
with observed behavior. By manipulating the way in which information is provided
to subjects we show that reduced availability of information is sufficient to shift the
distribution of take nodes further from the equilibrium prediction. Similar results are
obtained in a treatment where reduced availability of information is combined with an
attempt to elicit preferences for reciprocity, through the presentation of the centipede
as a repeated trust game.

Our results can be interpreted as cognitive limitations being more effective than pref-
erences in determining (shifts in) behavior in our experimental centipede game. Fur-
thermore our results are at odds with the recent findings in Cox and James [2012],
suggesting caution in generalizing their results. Reducing the availability of informa-
tion may hamper backward induction or induce myopic behavior, depending on the
strategic environment.

JEL classification: C72, C73, C91

Keywords: Centipede; Backward Induction; Representation Effects.

1Joint work with Paolo Crosetto (Max Planck Institute of Economics, Strategic Interaction Group, Jena)
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3.1 Introduction

The effects on observed behavior of apparently superficial changes in presentation are
generally referred to as framing effects. Their existence2 suggests that the game agents
play is hardly ever identical to the canonical representation assumed by the experimenter.
There are two layers of the subject’s representation that can be affected by those changes:
in some cases, an institutional format may elicit preferences that another does not; in
others, the institutional format affects the players’ understanding of the structure of the
game. In terms of extensive form games, utilities only are affected in the former case,
the game form and, as a consequence, utilities in the latter. Obviously, both mechanisms
may be at work at the same time.

We perform two institutional manipulations on the centipede game to gather insights
on the commonly observed patterns of behavior in this game. In particular, by manipulat-
ing the presentation of information about payoffs, we achieve a preference-neutral and a
preference-non-neutral variation on the standard game, which we use to identify what is
effective in shifting aggregate behavior in the game, distinguishing between preference-
related and cognitive factors. As our manipulated institutional formats are more complex
than the standard format, we can isolate the effects on behavior of (marginal) increases
in complexity in a simple sequential game.

The centipede game [Rosenthal, 1981] has attracted experimental investigation mainly
due to its counterintuitive theoretical prediction. The original centipede game is a two-
player, finite sequential game in which the subjects alternate choosing whether to end
the game (“take”) or to pass to the other player (“pass”). The payoff from taking in the
current decision node is greater than that received in case the other player takes in the
next one, but less than the payoff earned if the other player were to pass as well. The
player making the final choice is paid more from taking than from passing, and would
therefore be expected to take. Iterating this argument, backward induction leads to the
unique subgame perfect equilibrium: the game is stopped at the first decision node.

Starting from the first experimental evidence [Fey et al., 1996; McKelvey and Palfrey,
1992], studies have found that players fail to comply with this extreme unraveling pre-
diction, even after a number of repetitions.

Probably due to the combination of the simplest possible sequential structure, a clear-
cut equilibrium prediction, and a still rich and subtle strategic environment, the cen-
tipede has become a workhorse for theory testing. As simple as it may seem, the iden-
tification of the motivations underlying behavior in the centipede turns out to be a chal-

2See, in general, Tversky and Kahneman [1981]; for an application to games, see Devetag and Warglien
[2003]; Kreps [1990].
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lenging task. The list of possible reasons why players may take actions that diverge from
subgame perfect equilibrium turns out to be long and often twisted.3 Broadly speak-
ing, we can identify different families of explanations regarding the roots of deviations
from equilibrium, depending on whether they rely on preferences [e.g., Dufwenberg and
Kirchsteiger, 2004], on bounded strategic thinking [e.g., Kawagoe and Takizawa, 2012;
Palacios-Huerta and Volij, 2009]4 or on a combination of the two [e.g., Maniadis, 2011;
McKelvey and Palfrey, 1992; Zauner, 1999].5

In a recent paper, Cox and James [2012] found that a strategically irrelevant manip-
ulation of the institutional format by which two, otherwise identical, centipede games
are represented can have a significant impact on behavior. In particular, they found that
framing the game as a sequential auction, where the players are informed about the pay-
offs if buying in the current node but have to compute the payoffs for future stages by
themselves, triggers an unprecedented proportion of behavior observationally equiva-
lent to subgame perfect strategies. They interpret this finding as an instance of myopia
arising from making information about the game less available.

Others, preference-non-neutral manipulations that were used on different games can
also be applied to the centipede game. In an early example of preference-eliciting institu-
tional manipulation, Evans [1966] and Pruitt [1967] presented results on the decomposed
Prisoner Dilemma. In their experiments, a standard PD is compared to a decomposed
version where one player choosing a strategy directly determines an allocation to both
players, which is then summed to the allocation chosen by the other player. In general,
the latter presentation achieves significantly higher cooperation: the presentation of the
PD as a sort of simultaneous trust game, which makes the give-and-take nature of the
game salient, elicits preferences, most likely related to reciprocity, that the traditional
version does not.

We exploit the two abovementioned institutional formats to investigate the role of
preferences and cognitive limitations in shaping taking behavior in the centipede game.
In our baseline standard treatment (Tree), the players are shown the standard game tree
displaying the final payoffs at every terminal history. The first manipulation (Formula) is
preference neutral and traces the Clock treatment in Cox and James [2012]: the players are
informed only about the progression of the payoffs throughout the game; as they proceed
they are told the final payoffs were the game to end at that node, but have to compute the

3Levitt et al. [2011] provide a nice example of such a list. A partial attempt to disentangle those reasons
can be found in Atiker et al. [2011].

4This category actually includes departures from common knowledge of rationality (or incorrect beliefs)
and correct beliefs but an imperfect best reply.

5Other relevant papers featuring theoretical and experimental analyses on the centipede are Nagel and
Tang [1998]; Ponti [1996]; Rapoport et al. [2003].
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final payoffs for future decision nodes (if they so wish). The second manipulation (De-
composed) is identical to that of Pruitt [1967]: the payoffs are decomposed in stage payoffs,
so that every pass entails some losses for the passing player and some gains for the other
player. To compute the final payoffs, the players need to sum up the stage payoffs to each
terminal history. As before, they are informed about the final payoffs, were the game to
end at the current node. The final payoffs, the rules of the game and their description, to-
gether with all other details of the design are identical across treatments, and exactly the
same amount of information is available to the players, although presented in a different
way.

Following Cox and James [2012], Formula could elicit myopia due to information be-
ing less available: facing some higher complexity, the players would focus only on the
closest decision nodes and not consider the possible gains from passing. Note however
that, in principle, the more complex environment could trigger an opposite effect: a
player could find it harder (or more costly) to perform backward induction and pass
through more nodes as she fails longer to recognize the strategic structure of the game.

Those considerations apply as well to treatment Decomposed. On top of that, Decom-
posed could elicit preferences for reciprocity as the game is represented as a repeated trust
game. If this is the case, and assuming additivity for the preference and the cognitive ef-
fect, then players should take later in Decomposed with respect to Formula.

We find two main novel results. With respect to the base treatment, both institu-
tional transformations achieve later take nodes which are furher away from the theoret-
ical prediction: apparently, making information less available makes it more difficult for
subjects to understand the strategic structure of the game,6 with no evidence of myopia.
We observed no difference between the preference-neutral Formula and the preference-
non-neutral Decomposed: though we cannot properly separate cognition- and preference-
based effects in Decomposed, it looks as if preference elicitation is ineffective in pushing
the take nodes further away.

More notably, the first result is sharply at odds with results in Cox and James [2012]:
although we perform the same manipulation, our subjects take later where theirs take
earlier. We interpret this gap as stemming from relevant differences in the base game:
their centipede is extremely competitive and already complex in the tree format, whereas
ours is a more standard, less competitive and simple game. Thus it looks reasonable
that a reduction in the availability of information induces, in the former environment,
no use of the information about distant nodes, resulting in myopic early takes, and only
hampers backward induction (or reduced use of the information about distant nodes),
in turn resulting in late takes in the latter. This apparent conflict suggests cautiousness

6Or, change the beliefs obout the others’ ability to understand the strategic structure of the game.
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about generalizations of the effects of complexity on strategic behavior and elicits new
fascinating research questions on the topic.

The paper is organized as follows. In the next section, we describe the experimental
design and present our main hypotheses. The actual implementation of the design in the
lab is detailed in Section 3.3. Section 3.4 describes the results, and Section 3.5 concludes.

3.2 Experimental Design

We implement a twelve-legged centipede, with actions labeled “Stop” and “Continue”.
Terminal histories are ordered and assigned a number between 1 and 13 (Stop at first
node: 1; ... ; Always continue: 13). The aggregate payoff at each terminal history is
worth 5 times the corresponding number; the player choosing “Stop” gathers 4

5 of the
total value, while the opponent gathers the remaining 1

5 (see Fig. 3.1).
The length and the linear increase in the joint payoffs distinguish our game from the

most exploited experimental centipedes.
The length of the game is meant to allow more room for responses to relatively minor

treatment variations to emerge and to enhance the relevance of sequential reasoning.
We chose an arithmetic progression with respect to the more common, geometric one

[as in McKelvey and Palfrey, 1992] for two main reasons. The first, specific to our design,
is that a linear increase (as a function of the decision node) makes the underlying formula
easy to convey also to subjects with potentially low numeracy skills.7 The second, more
general, is to avoid the unpleasant choice the experimenter faces with geometric cen-
tipedes between a very short game, an exchange rate that makes initial payoffs econom-
ically irrelevant, or a geometric factor that makes the progression at first nodes virtually
flat.8 In our setting, it is possible to keep the range of payoffs in line with the literature
while providing economic relevance to choices at all decision nodes, including the first
ones. Our choice allows us to show payoffs directly in euro, with the first decision node
entailing a payoff of (4,1) euro for the player controlling the node and the opponent, re-
spectively, and a payoff of (52,13) euro if both players choose “Continue” at all decision
nodes.

In this general framework, we implement three different ways of conveying the pay-
off information:

7A pilot featuring a geometric progression was run, but proper understanding of the treatment “For-
mula” proved difficult, undermining the comparability of the results. All data and materials are available
upon request.

8Rapoport et al. [2003] avoid the problem for a limited number of subjects in their “high stakes” treat-
ment, bearing the risk of a potentially explosive budget. More commonly, the increase in payoffs at the first
decision nodes is in terms of cents.
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Figure 3.1: The game representation in the Tree condition, payoffs in euro
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Figure 3.2: The game representation in the Decomposed condition, payoffs in euro



56 CHAPTER 3. INFORMATION IN THE CENTIPEDE GAME

Tree: as is standard in the literature, subjects are shown the game tree that reports at
each terminal history the final payoffs accruing to both players. The tree, as shown
to subjects, can be seen in Figure 3.1. This condition replicates the standard way9 to
convey the centipede game in experiments.

Formula: the subjects are not shown the tree but only the formula to compute the pay-
offs. In particular, subjects are told that, when one player chooses “Stop”, she earns
four times the number of the current decision node, while the other earns an amount
equal to the number of the decision node.

Decomposed: the subjects are shown the game tree, but, instead of final payoffs, the
stage-payoffs, i.e., the variations with respect to the currently earned payoff, are
shown for each decision node. The tree, as shown to the subjects of the Decomposed
condition, can be seen in Figure 3.2.

Thus the Tree and the Decomposed conditions conveyed infomation using a compre-
hensive visual representation of the game.10 In the Formula condition, all information
was conveyed by means of words.11

It should be noted that the players were given exactly the same amount of information
under all treatment conditions, the only difference being its availability: in the Formula
and Decomposed conditions, players have to compute endgame payoffs for future stages
on their own. Given our payoffs, this step is, however, minimally demanding: it requires
the computation of the four-times table or of simple integer sums, respectively.

Beyond being less available, the Decomposed structure presents the payoffs with a give-
and-take frame, underlying the intrinsic nature of repeated trust game of the centipede
and possibly eliciting reciprocal behavior.

The proposed game is the same in all treatments and the presentation variations are
minimal. Considering these features, combined with the well-known learning dynamics
in the centipede game, we opted for a pure between subjects design.12

9In particular, the figure is identical to that in Palacios-Huerta and Volij [2009] and Levitt et al. [2011].
10The subjects, identified by color, were shown the full length of the tree and (final or stage) payoffs at

each node. Moreover, every decision node was numbered and intuitively assigned to a player/color. The
images in Figures 3.1 and 3.2 were both given to the subjects in a printed version as part of their instructions
and presented on screen at every decision node; in the screen version, the red arrow would move to indicate
the current decision node; moreover, all past decision nodes would gray out on screen. Both active and
inactive players were shown the same set of pictures, the difference being that the inactive player faced no
choice but was reminded of the choice that the matched player was considering at that moment.

11The part of the screen regarding the current decision node was identical to the Tree condition; with
respect to the latter, a description of the rules of the game (including the formulas to compute the payoffs)
took the place of the visual representation.

12The between subjects is a robust choice if the samples for the two treatments do not differ in underlying
characteristics. This can be guaranteed either by a high number of subjects, or, alternatively, relying on
subject’s randomization. We chose to enlist a mid-sized sample but introduced several controls that allowed
us to check whether a set of relevant subject charachteristics (age, gender, risk and trust attitudes) showed
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Within each experiment, subjects repeated the game 12 times in a perfect stranger
matching, implemented by using the turnpike protocol. This matching allows us to as-
sure subjects that they will never play the same partner twice, and that their partners
will never play one another, thus ensuring absence of contagion effects. Repetitions were
meant to allow for learning, though still focusing on first response behavior. We also
chose to keep the roles fixed across repetitions to restrict the confounding effects of iden-
tification.

In the following we formuilate our hypothesis. A first set of them regards the effect of
the availability of information, thus comparing the Formula and Decomposed conditions to
the Tree condition. As mentioned in the Introduction, one possibility is that the reduced
availability of the consequences of passing in the Formula and Decomposed treatments may
trigger myopic behavior (or beliefs of myopic behavior): subjects do not use information
about efficiency gains and focus on immediate decision nodes, taking as early as possible.
On the other hand, information being less available may not induce subjects to disregard
it but only hamper their ability to reason backwards.13 If that was the case, we would
observe later “Stop” decisions.

Hypothesis 1.1. In conditions Formula and Decomposed, the subjects choose “Stop” ear-
lier than in the Tree condition, due to myopia.

Hypothesis 1.2. In conditions Formula and Decomposed, the subjects choose “Stop” later
than in the Tree condition, due to hampered backward induction.

Besides these cognitive effects, the Decomposed treatment should elicit more reciprocal
behavior, resulting in the subjects passing longer in the game with respect to the Formula
condition.

Hypothesis 2. In condition Decomposed, the subjects choose “Stop” later than in the For-
mula condition, due to enhanced reciprocity.

3.3 Experimental Procedure

The computerized experiment was run in Jena in June 2012, involving 210 subjects dis-
tributed over 8 experimental sessions. Seventy-two subjects took part in the baseline Tree
sessions; a further 74 subjects participated in the Formula and 64 in the Decomposed con-
ditions. The experiment lasted about 1 hour, and average payoff across all sessions and

any particular bias across treatments.
13Our manipulations are close to cognitive load experiments [Cappelletti et al., 2011; Swann, 1990; Shiv

and Fedorikhin, 1999, e.g.] in that we manipulate the level of cognition imposing or not imposing (compu-
tational) burdens on otherwise identical tasks. The hypothesis that reducing the availability of information
may reduce subjects’ strategic ability to reason backwards is consistent with the results in this literature, as
reported by Devetag and Warglien [2003] and Duffy and Smith [2012].
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conditions amounted to 11.8 euro, including a 2.5 euro show-up fee.
All sessions followed an identical procedure. After subjects were allowed into the

lab, instructions were read aloud and extra time was given to the subjects to go through
them on their own. Then all subjects had to correctly answer a set of control questions
before being allowed to proceed. The number of mistakes recorded in the questions,
and the time needed to clear the control questions screen, were both recorded and used
as an objective measure of the complexity of the treatment. During this phase, subjects
could – and many did – ask help from the experimenters with going through the control
questions.

After all subjects had cleared their control questions, the experiment started. Subjects
were randomly assigned to their roles (“White” or “Black”), randomly matched, and
proceeded to play the game. The same game was repeated 12 times, in a perfect stranger
matching design. The pairs were allowed to proceed each at their own pace within the
12 decision nodes of the game but had to wait for all the other pairs between repetitions.

After completing the 12th repetition, subjects were paid according to the results of a
randomly drawn repetition, and were asked to fill in a questionnaire. We gathered qual-
itative information about the expectations from the game and the opponent, the strategy
followed, and the belief on the opponent’s behavior. Moreover, we elicited self-reported
quantitative measures of trust and risk aversion [using the SOEP German Panel trust
and risk questions. For the risk question, see Dohmen et al., 2011] and of the perceived
complexity of the task.

The experiment was conducted in German. The English version of the experimental
instructions is available in Appendix B.14

3.4 Results

3.4.1 Aggregate behavior

Consistently with the bulk of the literature on the centipede game, the players did not
adhere to the Subgame Perfect Nash Equilibrium but played on into the game. Moreover,
there was some unraveling of the game: in all conditions, the average endnode became
significantly lower with the repetitions (WRST, repetition 12 vs. repetition 1: Tree, Formula
and Decomposed, all p-values < 0.001). This trend is monotone and qualitatively similar in
all conditions,15 with the partial exception of Decomposed where unraveling is reversed in
the last two repetitions, in which the average endnode slightly (though not significantly)

14The original German instructions, along with the experimental software [developed using zTree, Fis-
chbacher, 2007] and the raw data from the experiment, are available upon request.

15Average reduction by repetition: 0.21, 0.24 and 0.22 in Tree, Formula and Decomposed, respectively
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increased.16 The average endnodes by repetition and treatment are summarized in Figure
3.4; the distribution of endnodes in the first and second 6 repetitions for all conditions is
instead represented in Figure 3.3.

Ã— Repetition
Ã— 1 2 3 4 5 6 7 8 9 10 11 12
Tree 4.54 4.43 4.24 4.16 3.94 3.67 3.43 3.13 3.03 2.76 2.62 2.27
Formula 5.36 5.27 4.94 4.67 4.39 4.22 3.89 3.67 3.5 3.28 3.02 2.69
Decomposed 5.43 5.15 5.06 4.65 4.62 4.41 3.84 3.62 3.46 3.18 3.22 3.31

Table 3.1: Mean endnode by treatment and repetition

Result 1: In all conditions, the players do not adhere to the SPNE, reaching, on average, slightly
more than a third of the game in the first stages. We observe slow but constant unraveling of the
game toward the SPNE as repetitions are played.

It should be noted that, with respect to the bulk of existing literature, the distance
from equilibrium in our experiment is, on average, relatively low. Although it is hard to
perform a direct comparison, this is consistent with Rapoport et al. [2003], in which im-
posing relatively high stakes from the first decision nodes resulted in closer-to-equilibrium
play.

3.4.2 Treatment effects and test of hypotheses

In the following, we analyze treatment effects by making use of the hypotheses laid out
in Section 3.2.

First both Formula and Decomposed result in later take nodes with respect to the base-
line Tree. We hence find support for a lower incidence of backward induction (Hypothesis
1.2) and have to reject instead that choices are driven by myopia (Hypotheses 1.1).

When comparing the Tree and Formula conditions, we find a significant and strong
treatment effect. In the Formula condition subjects stop the game about 2

3 of an endnode
later than in the Tree condition. This is true both when computing the overall mean across
all repetitions (4.08 vs. 3.52, WRST p-value < 0.001) and when considering each single
repetition: the average endnode of Formula is stably more than half a stage above Tree in
each period, though not always significantly different (WRST, p-value < 0.05 in all but
repetitions 1,11 and 12).

16More tests: WRST, repetition 6 vs. repetition 1: Tree p-value = 0.024, Formula p-value = 0.014, Decom-
posed p-value = 0.198; repetition 12 vs. repetition 7: Tree and Formula, p-values < 0.001, Decomposed p-value
= 0.06. As discussed below, Decomposed generally shows a higher variance in behavior, which explains why
significance is harder to achieve there.
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Figure 3.3: Endnode in the first and second half, by treatment

Moreover, a paired histogram of the distribution of endnodes in both conditions
(Fig. 3.5) readily shows that the distribution for the Formula condition is shifted to the
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Figure 3.4: Mean endnode by treatment and repetition

right with respect to the Tree distribution; testing equality in distribution (Kolmogorov-
Smirnov 2-sample test, p-value < 0.001) confirms the significance of the difference.

Result 2: In the Formula condition, subjects exit significantly later than in the Tree condition.

The comparison between the Tree and Decomposed conditions reveals a similar pattern
to the one between Tree and Formula but with slightly less statistical significance. This is
due to the fact that the variance of behavior is much higher in the Decomposed condition,
especially in the first repetitions (see Fig. 3.3), possibly reflecting the higher self-reported
and objective difficulty encountered by subjects in understanding the game (see below).

In the Decomposed condition, the average endnode is about 2
3 of an endnode higher

with respect to the Tree sessions, considering the overall average (4.17 vs. 3.52, WRST, p-
value < 0.001;), but it is statistically significantly higher only in repetitions 3,5,6,11, and
12.

A paired histogram of the distribution of endnodes (Fig. 3.5) readily shows that the
distribution in Decomposed stochastically dominates that in Tree; this is confirmed by a KS
test (p-value < 0.001).
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Figure 3.5: Tree vs. Formula

Result 3: In the Decomposed condition, subjects exit significantly later than in the Tree condition.

We find no support for Hypothesis 2: there is no statistical difference between the
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Formula and Decomposed conditions, once we discount the higher initial variance of the
Decomposed condition. The mean endnode across all repetitions is not statistically dif-
ferent (WRST, p-value = 0.796). Moreover, the endnode is not statistically different in
any of the single repetitions (WRST, all p-values > 0.356) apart from the last, in which
unraveling stops in Decomposed but continues in Formula (WRST, p-value = 0.006).

In distribution, the two conditions are not statistically different (KS, p-value = 0.728).

Result 4: The Formula and Decomposed conditions do not differ statistically.

In Figures 3.3, 3.4 and 3.5 we observe an impressive similarity between Formula and
Decomposed. Nevertheless, in the latter we observe a higher variance, concentrated es-
pecially in the first repetitions. This is likely related to the higher level of perceived
complexity, as documented next.

3.4.3 Controls

The above results could be due to systematic differences in the composition of subjects
taking part in the between treatments. Moreover, the questionnaire answers and the
statistics gathered on the control questions allow us to see if and to what extent the treat-
ment differences can be ascribed to comprehension problems. This section addresses
these issues.

First, treatments did not differ for all the characteristics that we controlled for (age,
gender, attitudes toward risk and trust). Treatments did not differ in terms of trust
(WRST, all p-values > 0.12) and risk attitudes (WRST, all p-values > 0.08) of the subjects
involved. The composition of the treatment also did not differ statistically by gender
(WRST, all p-values > 0.64) and age (WRST, all p-values > 0.38). Hence, the treatment ef-
fects cannot be said to depend on heterogeneity in the observed subjects’ characteristics.

Result 5: Participants in the different treatments do not differ, on average, by age, gender, atti-
tudes to risk, and indicators of trust in others and the society at large.

In order to evaluate the complexity of each treatment, we both directly asked subjects
to rate the perceived complexity and measured the number of errors in the answers to the
control questions and the time spent completing the control questions screen. The game
was significantly more difficult to understand for subjects in the Decomposed condition
(Table 3.2), while there was no significant difference between Formula and Tree in both
self-reported complexity (Wilcoxon Rank Sum Test, p-value = 0.444) and the number
of errors (WRST, p-value = 0.253); in the Tree condition, though, subjects answered the
control questions significantly faster than in the Formula condition (WRST, p-value =

0.007). On the other hand, Decomposed proved significantly more complex in all indicators
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with respect to both Tree (WRST p-values: complexity = 0.034, errors 0.068, time 0.000)
and Formula (WRST p-values: complexity = 0.003, errors 0.005, time 0.000).

Ã— N Complexity (0-10) Errors (num) Time (sec)
Tree 74 2.32 0.51 104
Formula 72 2.44 0.55 148∗

Decomposed 64 2.89∗,∗∗ 0.95∗,∗∗ 257∗,∗∗

significant with respect to: ∗ row above; ∗∗ two rows above

Table 3.2: Self-reported and objective measures of complexity

Result 6: The Decomposed condition is more difficult to understand than both the Tree and For-
mula conditions, taking into account both self-reported and objective measures of complexity.

3.4.4 Discussion

Our results are small in magnitude but significant and robust, especially when compared
to our minor treatment variations: our subjects are all playing exactly the same game,
having the chance of experiencing it 12 times, but despite this, differences persist consis-
tently across repetitions.

Result 2 shows that a simple reduction in the availability of information can shift take
nodes further away from the equilibrium with no sign of convergence through repeti-
tions. Cox and James [2012] found exactly the opposite, performing the same manipu-
lation: their centipede game is presented either in tree format or as a sequential Dutch
auction, where subjects know the current price and are informed about future price decre-
ments. Their result is interpreted as an instance of myopia, i.e., not using information
about future nodes, while we interpret our result as evidence of more limited backward
induction, i.e., reduced use of information about future nodes.

The apparent conflict can be defused by considering differences in the base game. Cox
and James [2012] use an incomplete information game which is strategically identical to a
centipede game under any belief about the opponent’s payoffs. Moreover, the player who
does not take always earns a payoff of zero, while the increase in the payoff, for the player
who takes is relatively low. Those elements build up a setting that is both extremely
competitive (strict efficiency gains are not possible) and complex even in the standard
tree format. Facing a further increase in complexity due to the reduced availability of
information, subjects stop exploring the strategy space deep into the game and just “take
the money and run.”17 The same effect is not granted under games that are cognitively

17The manipulation in Cox and James [2012] also includes a language shift: in the auction, in order to
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less demanding and exert less competitive pressure, as it is the case in our centipede
game. Subjects are still affected by reduced availability of information, as they find it
harder to reason backward and reduce the depth of their strategic thinking. However,
this results in later take nodes.

Both effects - i.e. myopic behavior and hampered backward induction - can be ratio-
nalized following LBI (see Section 2.3). Starting from a reasonably simple situation, an
increase in complexity reduces the foresight of the agent, inducing him to pass longer
through the game. As complexity increases, at some point, it may become costly even
to retrieve information about the payoffs at distant node. In this case, it is the sight of
the player that shrinks, which, in the centipede game, implies that the agent does not
consider (some of) the efficiency gains that are possible. This, in turns, may induce him
to act myopically.

If this interpretation holds, it suggests cautiousness in generalizing the effects of in-
stitutional format manipulations on strategic reasoning: behavior may react in different
ways, depending on the underlying strategic environment. In particular, consistently
with the results in Devetag and Warglien [2003], the observer should consider whether
the game is complex enough for a marginal increase in the cognitive load to be able to
trigger a shift to a simple heuristic (e.g., myopia) or just throw sand in the gearbox of
strategic thinking.

Since in Decomposed we may be eliciting preferences for reciprocity, while reducing
the availability of information, an immediate interpretation, combining results 3 and 4,
is that cognitive limitations are more effective than preferences in shifting behavior in
the centipede game. Indirectly, this would question interpretations of the results in the
standard centipede game as driven by preferences, given that we know the same manipu-
lation to shift behavior in games where preferences for reciprocity are relevant. However,
we should be cautious with respect to this interpretation as it relies on a series of reason-
able but additional hypotheses; namely that the effects of preference elicitation and re-
duced availability of information are additive and that preferences are not endogenously
affected by marginal (pure) increases in complexity.

3.5 Conclusion

The failure of subgame perfect equilibrium in the centipede game has attracted a num-
ber of scholars, their explanations focusing either on cognitive limitations that hamper
backward induction or on preferences that mandate different equilibrium strategies.

take, the player must “Acquire” a good at a certain “Price”, with the payoff being the difference between his
private value for the good and the realized price.
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In this paper, we made small institutional changes to a centipede game that vary the
way in which information is provided to the subjects, performing a preference-neutral
and a preference-non-neutral manipulation. We show that making information about
future payoffs less available is sufficient, on average, to significantly delay the decision
to take. As this can be attributed to a more limited ability to backward induct, this result
supports the potential of cognitive limitations to determine behavior in the centipede
game.

On the other hand, highlighting the repeated-trust-game nature of the centipede game,
i.e., by presenting the payoffs in a give-and-take frame, has apparently no further effect.

Our results are starkly at odds with those in Cox and James [2012], where performing
a manipulation similar to our preference-neutral one significantly anticipated the decison
to take. Given that our baseline game widely differs from theirs – woth our game pre-
senting a much simpler strategic environment – this conflict suggests that reducing the
availability of information can hamper backward induction (i.e., cause reduced use of the
information about some future nodes) or induce myopic behavior (i.e., cause nonuse of
the information about some future nodes), depending on the circumstances. Exploring
which factors lead to which of the two outcomes is an exciting research question to be
explored by future work.



APPENDIX B

EXPERIMENTAL INSTRUCTIONS

In the following, the English instructions for condition “Tree” are reported. In brackets
are detailed the changes made to adapt the instructions to condition “Formula” (F) and
“Decomposed” (D). The original German instructions are available upon request.

Introduction: common to all conditions

Welcome and thanks for your participation to this experiment. Please remain silent and
switch off your mobile phone. Please do not talk and raise your hand if there are any
specific questions during the experiment: an experimenter will come to your place and
answer your concerns individually. If you violate these rules, we will have to exclude
you from the experiment and all payments.
You receive a 2.5 euro show-up fee for taking part in the experiment. Please read the
following instructions carefully. Prior to the experiment, you will have to answer a few
questions testing your comprehension of these instructions. Please note that, for conve-
nience, the instructions are written in male gender, but refer to both genders equally.
During the experiment you are going to use ECU (Experimental Currency Units). At the
end of the experiment, earned ECU will be converted into euros at an exchange rate of

1 euro = 1 ECUs.

You will take part in a game played by two persons, white and black. You will be ran-
domly assigned the role of white or black, which you will keep for the whole experiment.
The game consists of 12 ordered decision rounds (first round: round=1, ..., last round:
round=12). The players play sequentially. When it is his turn to play, each player can
choose between STOP and CONTINUE.

If a player chooses STOP, the game ends.

67
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If a player chooses CONTINUE, the game continues, and the other player faces a choice
between STOP and CONTINUE.

White plays first; if he chooses STOP, the game ends, but if he chooses CONTINUE,
black is called to play and decide whether to STOP or CONTINUE, and so on. Thus each
player has at most six choices, with white choosing at round 1, 3, 5, 7, 9, and 11 and black
choosing at round 2, 4, 6, 8, 10, and 12. The sequence of choices continues until one player
chooses STOP. If both players choose CONTINUE in every decision round the game ends
at round = 13.

Payoff information: different across conditions

Tree

Below you can see a representation of the game. The game starts from the utmost left.
The color of the circles identifies which player has to decide; the numbers in the circle
represent the decision round; the numbers in the brackets represent the final payment, in
ECU, obtained by each action. In white you see the payoff of white, in black the payoff
of black.

[The image shown to the subjects is reproduced above in Figure 3.1]

Formula

When a player chooses STOP at round = r, the value for him is 4 times the current round,
that is:

VSTOP = 4 · r

The value for the other player is 1 times the current round, that is

VOTHER = 1 · r

Decomposed

Below you can see a representation of the game. The game starts from the utmost left.
The color of the circles identifies which player has to decide; the numbers in the circle
represent the decision round; the numbers in the brackets represent the change in pay-
ments, in ECU, on top of what you have already earned, resulting from each action. The
amount you have earned so far will always be visible on your screen. In white you see
the payoff of white, in black the payoff of black.
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[The image shown to the subjects is reproduced above in Figure 3.2]

Actual play of the game and payment (differences in brackets)

When it is your turn to play, you will see a screen that:

1. reminds you of the current round of the game,

2. shows you the amount you and your partner earn if you choose STOP and

3. asks you to choose between STOP and CONTINUE.

You have 30 seconds to reach a decision. You can revise your choice at any time within
the 30 seconds. The choice is final when you press OK.
When it is not your turn to play, you will see a screen that:

1. reminds you of the current round of the game and

2. shows you the amount you and your partner earn if your partner chooses STOP

Your partner has 30 seconds to make a decision as well. The game continues until one
player chooses STOP or if the last decision round {Tree, Decomposed: on the right of the
above representation} is reached.

{Tree: When the game finishes, payoffs are assigned according to the values in the picture
above. You will be paid according to the values that appear at the point in which the
game stops.}

{Formula: When the game finishes, payoffs are assigned according to the formula detailed
above. You will be paid according to the decision round in which the game stops.}

{Decomposed: You start with a payoff of 4 if you are white, 1 if you are black. After each
decision, your earnings will be updated according to the values that appear in the picture
above. You will be paid what you have earned up to the point at which the game stops.}

You will play the game 12 times. Each time, you will form a couple with a new player
chosen at random from the other participants in this room. You will never play the same
partner twice. Your partners will never play one another.
Only one game of the 12 you play will be paid. At the end of the experiment, one number
between 1 and 12 will be selected at random by the computer, and the corresponding
game will be paid.
For the chosen game the result of you and your partner’s action will be shown on the
screen, and your final payoff will be computed.
Should you have any questions, please raise your hand now. An experimenter will come
to your place and answer your questions in private.
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CHAPTER 4

LIMITED FARSIGHTEDNESS IN

NETWORK FORMATION 1

Abstract

Pairwise stability Jackson and Wolinsky [1996] is the standard stability concept in
network formation. It assumes myopic behavior of the agents in the sense that they do
not forecast how others might react to their actions. Assuming that agents are perfectly
farsighted, related stability concepts have been proposed.
We design a simple network formation experiment to test these extreme theories, but
find evidence against both of them: the subjects are consistent with an intermediate rule
of behavior, which we interpret as a form of limited farsightedness. On aggregate, the
selection among multiple pairwise stable networks (and the performance of farsighted
stability) crucially depends on the level of farsightedness needed to sustain them, and
not on efficiency or cooperative considerations. Individual behavior analysis corrobo-
rates this interpretation, and suggests, in general, a low level of farsightedness (around
two steps) on the part of the agents.

JEL classification: D85, C91, C92

Keywords: Network formation, experiment, myopic and farsighted stability.

1Joint work with Georg Kirchsteiger (ECARES, Université Libre de Bruxelles, CEPR), Ana Mauleon and
Vincent Vannetelbosch (CORE, Université catholique de Louvain, CEREC, Facultés Universitaires Saint-
Louis)
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4.1 Introduction

The network structure of social interactions influences a variety of behaviors and eco-
nomic outcomes, including the formation of opinions, decisions on which products to
buy, investment in education, access to jobs, and informal borrowing and lending. A
simple way to analyze the networks that one might expect to emerge in the long run is
to examine the requirement that individuals do not benefit from altering the structure of
the network. Any such requirement must answer the question of how individuals assess
those benefits.

An extreme answer to this problem is to assume perfect myopia on the part of the
agents, as in the pairwise stability notion, defined by Jackson and Wolinsky [1996]. A
network is pairwise stable if no individual benefits from severing one of her links and
no two individuals benefit from adding a link between them, with one benefiting strictly
and the other at least weakly. Individuals are myopic, and not farsighted, in the sense
that they do not forecast how others might react to their actions. Indeed, the adding or
severing of one link might lead to subsequent addition or severing of another link, and
so on. For instance, individuals might not add a link that appears valuable to them given
the current network, as that might induce the formation of other links, ultimately leading
to lower payoffs for the original individuals.

The von Neumann - Morgenstern pairwise farsightedly stable set (VNMFS) of net-
works predicts which networks one might expect to emerge in the long run when indi-
viduals are farsighted. As the other approaches to farsighted stability2, it incorporates the
assumption that agents are perfectly farsighted, meaning they can consider sequences of
reactions to their moves of any lenght. As this constitutes the exact opposite of perfect
myopia, there appears to be an unbridged gap between those extreme theories.

A notable exception is the work of Dutta et al. [2005], which allows for different de-
grees of farsightedness. In their equilibrium concept, for a dynamic Markovian process
of network formation3, farsightedness is captured by a discount factor, that applies to the
stream of future payoffs. As such, it entangles patience and farsightedness. Moreover,
their dynamic equilibrium model is hardly comparable to the static stability notions4, in
particular for intermediate values of farsightedness5.

2See the work of Chwe [1994], Xue [1998], Herings et al. [2004, 2009], Mauleon and Vannetelbosch [2004],
Page et al. [2005], and Page and Wooders [2009].

3See Konishi and Ray [2003] for a similar approach to the formation of coalitions.
4There are some random dynamic models of network formation that are based on incentives to form

links such as Watts [2002], Jackson and Watts [2002], and Tercieux and Vannetelbosch [2006]. These models
aim to use the random process to select from the set of pairwise stable networks.

5A discount factor of zero, properly corresponds to myopia. At the same time, we argue that a discount
factor of one leads the process close to one in which people only care about the end state, as in the notions
of farsighted stability. For intermediate values, the stream of future payoffs matters in a way that cannot be



4.1. INTRODUCTION 73

In our paper we test the myopic and the (possibly limited) farsighted types of behav-
iors in the context of network formation and compare the stability notions that are based
on them. Network formation is hard to study in the field, as many potentially conflicting
factors are at work. Consequently, we run laboratory experiments. To the best of our
knowledge, this constitutes the first experimental test of farsightedness versus myopia
in network formation.

In the experiment, groups of four subjects had to form a network. More specifically,
they were allowed sequentially to add or sever one link at a time: a link was chosen at
random and the agents involved in the link had to decide if they wanted to form it (if
it had not been formed yet) or to sever it (if it had been already formed). The process
was repeated until all group members declared they did not want to modify the existing
network. In all of the three treatments, the payoffs were designed such that a group
consisting of myopic agents would never form any link. The treatments are characterized
by slight manipulations of the payoffs, resulting in networks in VNMFS sets featuring
different properties.

In treatment 1, a group composed of farsighted agents would form the complete net-
work. This network provides the players with equal payoffs, is strongly stable, in the
sense that no coalition can improve upon it, and features no farsighted deviations. Thus,
beyond being VNMFS, the complete network can be seen as attractive in many ways6.
In the other two treatments we vary those features to ascertain their contribution to the
stability of an outcome.

A group composed of farsighted agents would form a triangle “club” network7 or
a line network among all the players, in treatments 2 and 3, respectively. In both, the
payoffs are unequal, with the disadvantaged players earning around half the payoffs of
the others. We remove strong stability in treatment 2, as a coalition of three players can
improve upon the networks in the VNMFS. In treatment 3 the networks in the VNMFS
are strongly stable, but feature a farsighted deviation in two steps 8. We derive across-
treatment hypothesis based on those properties.

In all the treatments farsighted stability refines the set of pairwise stable networks
(PWS) by selecting the (unique) Pareto dominant network within the set of PWS. Note,
however, that the underlying behavioral assumptions of both notions - myopia versus
farsightedness - are at odds with each other, providing us with general within-treatment
hypothesis.

captured by static stability notions.
6The complete network can be a focal point in itself - only for being the complete network.
7A network formed by a single clique (complete sub-network) of three players.
8Also the VNMFS set in T2 features farsighted deviations, but these are both “weak” and longer. See the

discussion in Section 4.3.2
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On aggregate, 75 percent of the network finally reached are pairwise stable. In treat-
ments 1 and 2 most of the groups (up to 70 percent of the overall population) reach a
VNMFS set, supporting farsighted network formation. In treatment 3, only one out of
five groups reach a VNMFS set, with half of the groups ending the game in the empty
network. In this treatment, VNMFS sets are accessed almost as often as in the other treat-
ments, but, after some time, most groups leave them.

Given the properties of the VNMFS sets, this asymmetric result is inconsistent with
strong stability - present in treatment 1 and 3, absent in treatment 2 - and can not be
attributed to the inequality in the payoffs - equal in treatment 1, unequal in treatment 2
and 3. Nor it can be explained by other refinements of pairwise stabilility, such as Nash
stability, or Pareto dominance - both present in all treatments. It is, however, perfectly
consistent with the hypothesis derived from limited farsightedness.

We then show that individual behavior supports the interpretation of the aggregate
results as an instance of limited farsightedness. Subjects respond to myopic incentives as
well as to farsighted improving paths of short length. As a consequence if a farsightedly
stable outcome features a farsighted deviation of limited length, the subjects are likely
to follow it: they do not recognize the full chain of reactions that would prevent a fully
farsighted agent to deviate.

Consequently, neither perfect myopia nor perfect farsightedness seem to be good
models of actual behavior. A model of limited farsightedness would be a valuable devel-
opment in network formation.

The number of experiments addressing networks and network formation is rapidly
increasing.9 Relatively few of them, however, deal with pure network formation, in-
tended as a setting where no strategic interactions take place on the network once it has
been formed. Among the notable exceptions stand the experiments of Goeree et al. [2009]
and Falk and Kosfeld [2012]. They investigate the predictive power of a strict Nash net-
work in the framework of Bala and Goyal [2003]. They find low support for this concept
when the Nash network is asymmetric and the agents homogeneous. The main differ-
ence with our design is that they consider a model with unilateral link formation and
apply non-cooperative solution concepts, while in our context of bilateral link formation
those concepts provide implausible predictions [see Bloch and Jackson, 2006].

Closer to our approach is the work of Ziegelmeyer and Pantz [2005], where R&D net-
works in a Cournot oligopoly are investigated. Their results generally support pairwise
stability. In their design pairwise stable networks are also farsightedly stable and thus
there is no tension between myopia and farsightedness.10

9See Kosfeld [2004] for a partial survey.
10They observe huge differences between the case in which the Cournot profits are considered as exoge-
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Finally, Berninghaus et al. [2011] address limited forward-looking behavior with an
experiment on network formation. Relevant features distinguish our work from their
model: (i) they assume unilateral link formation; (ii) players play a coordination game
on the endogenously formed network and thus the assumption on the beliefs about this
latter game affects the predictions; (iii) the forward-looking notion they consider relates
specifically to the interaction between the linking strategies and the strategies in the co-
ordination game. So their experiment combines a test of network formation and strategic
behavior in the coordination game, while our paper is the first to directly investigate
farsightedness and myopia in a network formation context unaffected by any other con-
siderations.

The paper is organized as follows. In Section 4.2 we introduce the necessary notation
and definitions. Section 4.3 presents the experimental design and procedures. Section 4.4
reports the experimental results. Section 4.5 concludes.

4.2 Networks: notation and definitions

Let N = {1, . . . ,n} be the finite set of players who are connected in some network rela-
tionship. The network relationships are reciprocal and the network is thus modeled as
a non-directed graph. Individuals are the nodes in the graph and links indicate bilateral
relationships between individuals. Thus, a network g is simply a list of which pairs of
individuals are linked to each other. We write ij ∈ g to indicate that i and j are linked
under the network g. Let gN be the collection of all subsets of N with cardinality 2, so
gN is the complete network. The set of all possible networks or graphs on N is denoted
by G and consists of all subsets of gN . The network obtained by adding link ij to an ex-
isting network g is denoted g + ij and the network that results from deleting link ij from
an existing network g is denoted g − ij. We say that g′ is adjacent to g if g′ = g + ij or
g′ = g− ij for some ij. Let us denote with Ag the networks that are adjacent to g so that
Ag = {g′ | g′ = g + ij ∨ g′ = g− ij, for some ij}, and let Āg be its complement.

The material payoffs associated to a network are represented by a function x : G→Rn

where xi(g) represents the material payoff that player i obtains in network g. The overall
benefit net of costs that a player enjoys from a network g is modeled by means of a utility
function ui(g) : Rn→R that associates a value to the vector of material payoffs associated
to network g . This might include all sorts of costs, benefits, and externalities.

Let Ni(g) = {j | ij ∈ g} be the set of nodes that i is linked to in network g. The degree of

nously given and identified with the payoffs of the players in the network, and the case in which players
play the production stage after forming the network. This supports pure network formation as the cleanest
setting to study network formation.
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a node is the number of links that involve that node. Thus node i’s degree in a network
g, denoted di(g), is di(g) = #Ni(g). Let Sk(g) be the subset of nodes that have degree k in
network g: Sk(g) = {i ∈ N | di(g) = k}with k ∈ {0,1, ...,n− 1}. The degree distribution of a
network g is a description of the relative frequencies of nodes that have different degrees.
That is, P(k) is the fraction of nodes that have degree k under a degree distribution P,
i.e., P(k) = (#Sk(g))/n. Given a degree distribution, P, we define a class of networks as
CP = {g ∈ G | P(k) = P(k),∀k}. A class of networks is the subset of G with the same
degree distribution.

Consider a network formation process under which mutual consent is needed to form
a link and link deletion is unilateral. A network is pairwise stable if no player benefits
from severing one of their links and no other two players benefit from adding a link
between them, with one benefiting strictly and the other at least weakly. Formally, a
network g is pairwise stable if

(i) for all ij ∈ g, ui(g) ≥ ui(g− ij) and uj(g) ≥ uj(g− ij), and

(ii) for all ij /∈ g, if ui(g) < ui(g + ij) then uj(g) > uj(g + ij).

A network g′ defeats g if either g′= g− ij and ui(g′)> ui(g) or uj(g′)> uj(g), or if g′=
g + ij with ui(g′) ≥ ui(g) and uj(g′) ≥ uj(g) with at least one inequality holding strictly.
Pairwise stability is equivalent to the statement of not being defeated by an adjacent
network. Agents are assumed to consider only their own incentives when making their
linking choices and not that of the others. In particular, agents do not take into account
the likely chain of reactions that follow an action, but only its immediate profitability.
Thus, PWS implicitly assumes myopic behavior on the part of the agents.

Farsightedness captures the idea that agents will consider the chain of reactions that
could follow when deviating from the current network, and evaluate the profitability
of such deviation with reference to the final network of the chain of reactions. As a
consequence, a farsighted agent will eventually choose against her immediate interest
if she believes that the sequence of reactions that will follow her action could make her
better off.

A farsighted improving path is a sequence of networks that can emerge when players
form or sever links based on the improvement the end network offers relative to the
current network. Each network in the sequence differs by one link from the previous
one. If a link is added, then the two players involved must both prefer the end network
to the current network, with at least one of the two strictly preferring the end network. If
a link is deleted, then it must be that at least one of the two players involved in the link
strictly prefers the end network. We now introduce the formal definition of a farsighted
improving path.
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Definition 1. A farsighted improving path from a network g to a network g′ 6= g is a finite
sequence of graphs g1, . . . , gK with g1 = g and gK = g′ such that for any k ∈ {1, . . . , K − 1}
either:

(i) gk+1 = gk − ij for some ij such that ui(gK) > ui(gk) or uj(gK) > uj(gk) or

(ii) gk+1 = gk + ij for some ij such that ui(gK) > ui(gk) and uj(gK) ≥ uj(gk).

If there exists a farsighted improving path from g to g′, then we write g→ g′. For
a given network g, let F(g) = {g′ ∈ G | g→ g′}. This is the set of networks that can be
reached by a farsighted improving path from g. The von Neumann-Morgenstern pair-
wise farsightedly stable set is obtained by introducing the notion of farsighted improv-
ing path into the standard definition of a von Neumann-Morgenstern stable set. In other
words, we define a set of networks G to be von Neumann-Morgenstern pairwise far-
sightedly stable (VNMFS) if there is no farsighted improving path connecting any two
networks in G and if there exists a farsighted improving path from any network outside
G leading to some network in G. Formally,

Definition 2. The set of networks G is a von Neumann-Morgenstern pairwise farsightedly stable
set if

(i) ∀g ∈ G, F(g′) ∩ G =∅ (internal stability) and

(ii) ∀g′ ∈G\G, F(g′) ∩ G 6=∅ (external stability).

Although the existence of a VNMFS set is not guaranteed in general, when a VNMFS
set exists it provides narrower predictions than other definitions of farsighted stability, a
feature that is particularly welcome in experimental testing. For instance, a VNMFS set
is always included within the pairwise farsightedly stable sets, as defined by Herings et
al. [2009].11

We now turn to individual behavior. We provide a comprehensive evaluation of the
players’ actions by assessing their consistency with progressive levels of farsightedness.
The definition states that an action prescribing to form (break) a link that is not formed
(has been formed) is consistent with farsightedness of level k, if building (breaking) the
link lies on a farsighted improving path of lenght smaller or equal than k. An action
prescribing not to form (keep) a link that is not formed (has been formed) is consistent
with farsightedness of level k if forming (breaking) the link does not lie on a farsighted

11A set of networks G ⊆ G is pairwise farsightedly stable if (i) all possible pairwise deviations from any
network g ∈ G to a network outside G are deterred by a credible threat of ending worse off or equally well
off, (ii) there exists a farsighted improving path from any network outside the set leading to some network
in the set, and (iii) there is no proper subset of G satisfying Conditions (i) and (ii).
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improving path of lenght smaller or equal than k. Let the length of a path be the number
of steps in the sequence. Call P k

g a generic farsighted improving path of length k, starting
from network g, and {P k

g} be the set containing all such paths.12 At time t the link ij
is selected, the action of agent i is ait ∈ {0,1}, where 0 means not to form (to break) the
selected link ij, and 1 means to form (to keep) the link ij.

Definition 3. An action ait is consistent with farsightedness of level k if either

(i) ij /∈ gt and ((∃l ≤ k and a P l
gt
∈ {P l

gt
} s.t gt + ij ∈ P l

gt
) and ait = 1)∨

((@l ≤ k and a P l
gt
∈ {P l

gt
} s.t gt + ij ∈ P l

gt
) and ait = 0)

or

(ii) ij ∈ gt and ((∃l ≤ k and a P l
gt
∈ {P l

gt
} s.t gt − ij ∈ P l

gt
) and ait = 0)∨

((@l ≤ k and a P l
gt
∈ {P l

gt
} s.t gt − ij ∈ P l

gt
) and ait = 1)

As they are equivalent, we call myopic an action that is consistent with farsightedness
of level one - i.e. one that looks at the profitability of adjacent networks. Two aspects in
this definition should be noted. First, an action that aims at changing the current network
and is consistent with some level of farsightedness, including myopia, is also consistent
with higher levels. Second, for an action that does not change the current network, we
implicitly impose a strong assumption on farsighted behavior: that a farsighted agent
should always take a profitable deviation, if available.

Indeed, given that the building blocks of farsightedness are sequences of networks,
farsighted behavior is unambiguously defined only if a choice aims at changing the cur-
rent network. When it does not, we are forced either to draw some further assumptions
or give up categorizing those choices. In the statistical analysis of individual behavior
we pursue both of the alternatives.

4.3 Experimental design and procedures

4.3.1 The game

We consider a simple dynamic link formation game, almost identical to that proposed by
Watts [2001]. Time is a countable infinite set: T = 0,1, ..., t, ...; gt denotes the network that
exists at the end of period t. The process starts at t = 0 with n = 4 unconnected players

12Note that a path of length k will have a sequence of k + 1 networks.
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(g0 coincides with the empty network, g∅). The players meet over time and have the
opportunity to form links with each other.

At every stage t > 0, a link ijt is randomly identified to be updated. At t = 1 each
link from the set gN is selected with uniform probability. At every t > 1, a link ij from
the set gN \ ijt−1 is selected with uniform probability. Thus, a link cannot be selected
twice in two consecutive stages. If the link ij ∈ gt−1, then both i and j can decide uni-
laterally to sever the link; if the link ij /∈ gt−1, then i and j can form the link ij if they
both agree. Once the individuals involved in the link have taken their decisions, gt−1 is
updated accordingly and we move to gt. All group members are informed about both
the decisions taken by the players involved in the selected link and the consequences on
that link. They are informed through a graphical representation of the current network
gt and the associated payoffs. After every stage all group members are asked whether
they want to modify the current network or not. If they unanimously declare they do not
want to, the game ends; otherwise, they move to the next stage.13 To ensure that an end
is reached, a random stopping rule is added after stage 25: at every t≥ 26 the game ends
anyway with probability 0.2.

The game is repeated three times to allow for learning: groups are kept the same
throughout the experiment. Group members are identified through a capital letter (A, B,
C or D). These identity letters are reassigned at every new repetition.

A vector of payoffs is associated to every network: it allocates a number of points
to each player in the network. The subjects receive points depending only on the final
network of each repetition. Thus, their total points are given by the sum of the points
achieved in the final networks of the three repetitions. At the end of the experiment the
points are converted into Euro at the exchange rate of 1 Euro = 6 points.

The subjects are informed about the payoffs associated to every possible network and
know the whole structure of the game from the beginning. Before starting the first repe-
tition the participants have the opportunity of practicing the relation between networks
and payoffs and the functioning of the stages through a training stage and three trial
stages.

4.3.2 Treatments and hypothesis

Since n = 4, it follows that #gN = 6 and #G = 64.
We run three treatments (T1, T2, T3) where we manipulate the payoffs in some net-

works to obtain VNMFS set(s) with different properties. Figures 4.1, 4.2 and 4.3 display
the payoffs that were used in the three treatments for each class of networks, CP̄. The

13Subjects are informed about the outcome of the satisfaction choices - i.e. end of the repetition or not -
but not about individual choices.
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Figure 4.1: Payoffs for T1

function of material payoffs satisfies anonymity14 and then, this representation is suf-
ficient to assign a payoff to each player in each possible network configuration. These
numbers were chosen in order to provide the resulting predictions with a set of nice
properties for each treatment that are described below and are summarized in Table 4.1.15

The empty network, g∅, and the the four networks in class C5 are PWS in all treat-
ments. These are the only PWS networks in T2, whereas gN is also PWS under T1, and
the networks in C7 in T3. Furthermore, in T1 and T3, in every network in C5, the con-
nected agents can improve their situation by cutting both of their links. These networks
(contrary to the others PWS) are not Nash stable in the terminology of Bloch and Jackson
[2006].16

14Anonimity holds if payoffs in a network are assigned to each player independently of his or his part-
ners’ identity.

15In general, the following considerations are valid for self-regarding agents. In some cases they hold for
other-regarding preferences (for an overview, see Sobel [2005]). Most notably, in T1, assuming the inequity
model of Fehr and Schmidt [1999] does not affect our predictions.

16Pairwise Nash stability is a refinement of both pairwise stability and Nash stability, where one requires
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Figure 4.2: Payoffs for T2

In all treatments, all groups start at g∅, and then groups composed of myopic players
are expected not to move from g∅. This prediction is robust to errors. A sequence of at
least three (T1) or two (T2, T3) links added consecutively by error is needed in order to
change the prediction for myopic agents. In both cases, these sequences of events are
highly unlikely, and our prediction for a myopic group of players is to end up in g∅.

To identify the VNMFS sets, we need to compute F(g) for every g. We can prove the
following results.

Proposition 1. Consider a set of four self-regarding agents (ui(g) = xi(g)). Then,

i in T1 the set G = {gN} is the unique VNMFS set.

ii in T2 the set G = {g|g ∈ C5} is the unique VNMFS set.

that a network be immune to the formation of a new link by any two agents, and the deletion of any number
of links by any individual agent.
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Figure 4.3: Payoffs for T3

iii in T3 a set G is a VNMFS set if and only if G = {g | g ∈ C7 and ,di(g) = di(g′),∀i ∈ N, g′ ∈
G}.

The proof of this proposition can be found in Appendix C.

In T1 and T2 there is a unique VNMFS set: the complete network (i) and the set
composed of the four networks in C5 (ii), respectively. We will refer to the latter as club
networks. In T3 there are six VNMFS sets. Their union is C7, i.e. it encompasses all line
networks. Each set consists of a pair of line networks with identical degree distribution
(iii).17

We expect a group composed by farsighted agents to end up in a network included
in some VNMFS set. This prediction is robust to errors in the sense that the farsighted

17The pair of line networks in a VNMFS, are equal up to a single permutation of players with the same
degree. For example, there are two networks in C7 where A and B have 2 links each, call them g and g′. A
and B are linked to one another in both networks, but A will be linked to C, and B to D, in g; vice versa in
g′. The set {g, g′} is a VNMFS.
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prediction does not depend on the starting point: from any other network, there is a
farsighted improving path leading to a network in G.

Let f racMYO(Ti) and f racFAR(Ti) be the fraction of groups ending in the myopic and
in the farsighted prediction, respectively, in treatment i. We state the following, mutually
exclusive, hypothesis, regarding perfect myopia and farsightedness.

PWS VNMFS
Myopic

Prediction
Farsighted
Prediction

Unequal
Payoffs

Strongly
Stable

Farsighted
Deviations

T1 g∅,C∗5 , gN {gN} g∅ gN No gN –
T2 g∅,C5 {g|g ∈ C5} g∅ C5 Yes – Three steps∗∗

T3 g∅,C∗5 ,C7
{g, g′|g, g′ ∈ C7 and

di(g) = di(g′),∀i ∈ N} g∅ C7 Yes g ∈ C7 Two steps

∗ not Nash stable.
∗∗ Weak deviation, based on indifference breaking rule.

Table 4.1: Summary of treatment properties and predictions

Hypothesis 1. (Myopia) In all treatments, a relative majority of the groups end the game in g∅,
and, in particular, for i = 1,2,3:

f racMYO(Ti) > f racFAR(Ti).

Hypothesis 2. (Farsightedness) In all treatments, a relative majority of the groups end the game
in a VNMFS, and , in particular, for i = 1,2,3:

f racMYO(Ti) < f racFAR(Ti).

In our experiment, if a network is in a VNMFS set, it is also PWS. Even myopic agents
will stay at the farsighted stable network once it is reached. Therefore, one cannot find
direct experimental evidence against PWS as opposed to farsighted stability. But our
experiment discriminates between the different behavioral models that lie behind both
stability concepts. In this way our experiment can provide evidence in favor or against
the farsighted models of network formation in cases where they refine PWS.

The payoffs guarantee that the predicted networks are essentially unique, in the sense
that the networks included in a VNMFS set are isomorphic. Moreover, the predicted net-
works are not strongly efficient in the sense of Jackson and Wolinsky [1996]18 nor Pareto
dominant. Previous experimental studies have shown that efficiency considerations can
drive individual’s behavior (see Engelmann and Strobel [2004]. But generic efficiency ar-
guments could not explain if a network in some VNMFS set or g∅ were observed in the

18A network g ∈G is strongly efficient if ∑
i∈N

xi(g) ≥ ∑
i∈N

xi(g′) for all g′ ∈G.
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experiment. The networks included in VNMFS sets are (weakly) Pareto dominant within
the set of pariwise Nash stable networks19.

On top of these general hypothesis, the different VNMFS sets differ on three impor-
tant properties, providing some testable across-treatment hypothesis (see Table 4.1).

First, the payoffs are equal in the VNMFS set in T1 (gN) and unequal in T2 (C5) and
T3 (C7). In the latter, the players gaining more obtain around twice as much as the least
well off. Under both conditions, the disadvantaged players can lead the group to leave
the VNMFS set, if they so wish, by severing a link in T3, by adding a link in T220. If
other-regarding preferences are sufficiently strong, the VNMFS sets could be less stable
in T2 and in T3, with respect to T1.

Hypothesis 3. The fraction of groups ending the game in a VNMFS set is higher if the networks
that are there included feature equal payoffs for the players. Thus:

i f racFAR(T1) > f racFAR(T2), and

ii f racFAR(T1) > f racFAR(T3).

Second, we also consider stability against changes in links by any coalition of indi-
viduals - i.e. look for strongly stable networks (immune to coalitional deviations). In T1
and T3 the networks included in VNMFS sets are also strongly stable. This is not true
in T2, where strongly stable networks fail to exist.21 In this view the VNMFS set seems
more robust in T1 and in T3 than in T2.

Hypothesis 4. The fraction of groups ending the game in a VNMFS set is higher if the networks
that are there included are strongly stable. Thus:

i f racFAR(T1) > f racFAR(T2), and

ii f racFAR(T3) > f racFAR(T2).

Finally, the networks belonging to the VNMFS sets differ with respect to the presence
and length of farsighted deviations leaving the set. Table 4.2 provides an overview and
an example for each treatment. In T1, there are no farsighted improving paths leaving
the complete network (F(gN) = ∅). In T2, F(g ∈ C5) = {g′ | g′ ∈ C9 ∧ g′ /∈ Ag}. This
means that there are farsighted improving paths leaving the VNMFS set and leading to

19Recently, Carrillo and Gaduh [2012] suggested that the players are able to select the PWS networks that
are Pareto dominant. Our results show that Pareto dominance is not a sufficient criterion to select among
PWS networks.

20Despite needing the agreement of his partner to add a link, adding a link in C5 is highly beneficial to
the already connected agents, so that they are likely to agree on that.

21As shown by Jackson and Van Den Nouweland [2005] this is equivalent to an empty core in the derived
cooperative game.
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networks in C9 that are not adjacent to the initial network g. The path is built as follows:
from C5 players move to C9, then to C10 and finally back to another network in C9. This
path relies on the indifference-breaking convention stating that, in C9, a player with two
links is willing to build another one in order to (move to C10 and then) be exactly in
the same situation in another network in C9. As such, this is a “weak” deviation, that
is unlikely to succeed 22. Finally, F(g ∈ C9) includes, beyond the neighboring network
in C5 and the other networks in C9, only the networks in C4, reached with a four-step
farsighted improving path, implying that even groups that leave the VNMFS set for C9

are somewhat stuck there.
In T3 there are two-steps farsighted improving paths from any network in a VNMFS

set to any network in another VNMFS set23. Namely, one of the players with two links
cut any of his existing links (C7→ C3 or C7→ C4). From there, another link will be added
leading back to C7, but in a network where the initial deviator is better off (because he has
only one link). After the first move away from C7 is made, other (short) deviations are
feasible, driving the group away from the VNMFS (and, most notably, toward g∅). Those
differences bare little meaning in the context of perfect farsightedness. However, to the
extent that the agents may be bounded in their ability to pursue farsighted deviations,
the VNMFS set seems more robust in T1 and in T2 than in T3.

Hypothesis 5. The fraction of groups ending the game in a VNMFS set is higher if the networks
that are there included are robust to short farsighted deviations. Thus:

i f racFAR(T1) > f racFAR(T3), and

ii f racFAR(T2) > f racFAR(T3).

4.3.3 Experimental procedures

The experiment took place at the EELAB of the University of Milan-Bicocca in June 2010
(T1) and April/May 2012 (T2,T3). The computerized program was developed using Z-
tree [Fischbacher, 2007]. We run 16 sessions for a total of 288 participants and 72 groups.
Those corresponds to 36 independent observations for T1, and 18 independent observa-
tions for T2 and T3. Table 4.3 summarizes sessions’ details. Participants were under-
graduate students from various disciplines,24 recruited through an announcement on the
EELAB website. No subject participated in more than one session.

22One may question how reasonable it is to keep the same indifference-breaking conventions in the case
of farsighted moves as in the myopic case.

23There are other farsighted deviations, longer than four steps.
24Sociology, economics, business, psychology, statistics, computer science, law, biology, medicine, math-

ematics, pedagogy and engineering.
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Table 4.2: Farsighted deviations from VNMFS sets

Subjects were randomly assigned to individual terminals and were not allowed to
communicate during the experiment. Instructions were read aloud (see Appendix D for
an English translation of the instructions). Participants were asked to fill in a control
questionnaire; the experiment started only when all the subjects had correctly completed
the task.

Sessions took on average 90 minutes, including instructions, control and final ques-
tionnaire phases. Average payment was 16.10 Euro (no show up fee was paid) with a
minimum of 4.70 and a maximum of 32.40 Euro.
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Date Participants Groups (Ind. Obs) Treatment
1 Jun 2010 24 6 T1
2 Jun 2010 24 6 T1
3 Jun 2010 24 6 T1
4 Jun 2010 24 6 T1
5 Jun 2010 24 6 T1
6 Jun 2010 24 6 T1
7 Apr 2012 16 4 T2
8 Apr 2012 16 4 T2
9 Apr 2012 16 4 T2
10 May 2012 16 4 T3
11 May 2012 16 4 T3
12 May 2012 16 4 T3
13 May 2012 16 4 T3
14 May 2012 16 4 T2
15∗ May 2012 8 2 T2
16∗ May 2012 8 2 T3
∗ Sessions 15 and 16 were run at the same time.

Table 4.3: Sessions

4.4 Results

In this section we first show how both perfect myopia and farsightedness are inconsistent
with the networks formed, whereas limited farsightedness can reconcile the different re-
sults in all treatments. We then investigate this hypothesis using individual data, finding
clear evidence of the relevance of limited levels of farsightedness.

We start by considering groups’ final networks. Figure 4.4 classifies groups with re-
spect to their final network. Figure 4.5 provides the same information for each repetition
(period). In every treatment, around three out of four groups reach a PWS network25.
This percentage increases consistently across repetitions within each single treatment,
except between the second and third repetition of T3.

The distribution within PWS networks shows different patterns across treatments. In
T1 and T2 the fraction of groups ending up in the VNMFS set is consistently higher than
that ending up in g∅. This difference increases across repetitions with the farsighted and
the myopic outcome accounting for around 70 and below 20 percent of the final networks,
respectively, in the last repetition.

This pattern is almost reversed in T3. The final network is g∅ for half of the groups,

25This high percentage is reassuring on the subjects’ ability to understand the game, as it would hardly
result from generalized non-meaningful play.
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Figure 4.4: Group final network, by type of outcome

with this percentage peaking at 60 percent in the second repetition. A VNMFS set is
reached by about 20 percent of the groups in all repetitions.26

We use the Pearson’s chi-square and the Likelihood Ratio test to determine whether
the relative frequencies of the myopic and the farsighted outcome differ or not within
treatments and conclude that those differences are statistically significant at the 0.05 level
in each single treatment.27 Running the tests for each single repetition leads to significant
differences in repetitions two and three of T1 and repetition three of T2.28. Given that
those differences go in opposite direction in T3, with respect to T1 and T2, those results
imply a rejection of both Hypothesis 1 and 2.

26Around 90 percent of the groups move from the empty network. As a consequence we gather indirect
evidence about the behavior of groups that do not start from a pairwise stable network.

27We run the tests on the distributions obtained for outcomes - i.e. myopic, farsighted, other -, for net-
work classes and for single networks. We run them against different assumptions for the frequencies that are
not being tested under the null hypothesis (H0: equality of frequencies for myopic and fardighted outcome):
uniform distribution, uniform given the actual cumulative frequency of myopic and farsighted, actual fre-
quencies. The results are identical across all specifications.

28Repetition two of T2 is significant at the 0.1 level. Note that we collected fewer observations for T2 and
T3 than for T1.
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Figure 4.5: Group final network, by type of outcome and repetition

Result 1: The predicted stable networks (PWS) account, on aggregate, for 75 percent of our
groups’ final outcomes. The VNMFS sets account for most of those observations in T1 and T2,
but not in T3. The reverse holds for the myopic prediction, which shows some success only in T3.
Thus, both perfect myopia (H.1) and farsightedness (H.2) fail to rationalize our results.

We use a two-sample Kolmogorov-Smirnov test to compare the distribution of aggre-
gate outcomes - i.e. myopic, farsighted, other - across treatments. As expected, we find
that the distribution of outcomes in T1 and T2 are significantly different from that in T3
at the 0.05 level. When comparing T1 and T2 we do not find their distributions to be sig-
nificantly different. This leads us to reject both Hypothesis 3 and 4, as we do not find the
inaquality of the payoffs nor strong stability to affect systematically the stability of the
VNMFS sets. The results are, instead, consistent with Hypothesis 5, supporting limited
farsightedness.

Between one fifth and one third of the groups did not end up neither in the myopic
nor in the farsighted prediction; we generally refer to this category as “other”. Remark-
ably, a vast majority of those, between 72 and 77 percent, ended the game in networks
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that are direct neighbors of either of the two. The specific figures are as follows: in T1, 50
and 23 percent of those ended up at one step from the empty and the complete network,
and thus in C10 and C2, respectively; in T2, 61 percent resulted in C9, at one step from the
VNMFS set, 16 percent in C2; in T3, 39 percent were in C2, while 33 percent in C4. We note
that in T2 and T3, the groups that were close to a VNMFS set happened to be precisely
ont the first step of the farsighted deviations outlined above.

Result 2: The asymmetric performance of the VNMFS sets in T3 with respect to T1 and T2
can not be explained by payoff inequality or coalitional stability, leading to a rejection of both
Hypothesis 3 and 4. The results are, instead, consistent with limited farsightedness (H.5).

Table 4.4 reports the change in the outcome of individual groups from Period 1 to 2
and from Period 2 to 3, for all treatments. For example, the row “Farsighted” from the
upper-left panel (T1, Period 1 - Period 2) shows that in T1, among those groups who
reached the complete network in period 1, only 7 percent switched to the empty, myopic
network in period 2, whereas 93 percent of the groups also reached the complete network
in period 2. But among those groups who ended up in the empty network in period 1
(row “Myopic”), only 20 percent stayed at the empty network in period 2, whereas 50
percent switched to the complete network, and 30 percent to an unstable network. Simi-
larly, among the groups who ended up in some other network in period 1 (row “Other”),
55 percent of them switched to the complete network in period 2, while only 18 percent
of them switched to the empty network.

Table 4.4 shows that groups that reached a VNMFS set in a previous period are able to
replicate the result in T1 and T2: the Farsighted-Farsighted cell displays a fraction close
or above 80 percent in the corresponding panels. The other categories display greater mo-
bility across time. Some of them reach a VNMFS set, others fluctuate among the empty
network and the Other category. Again, a striking difference appears comparing those
results with the right-hand side panels, corresponding to T3. Around two thirds of the
groups that end in the empty network in one repetition, replicate this outcome in the sub-
sequent one. This is the only outcome showing some persistence; the farsighted outcome,
in particular is much less stable across repetitions.

The columns labeled “Destinations” report the major receivers of the outflows from
each class of network, and their share of those outflows. We are particularly interested in
the results for C7 in T3. It turns out that two thirds of the groups that left a VNMFS set in
T3 did so consistently with the short farsighted deviation described above (destinations
C3 and C4, see Table 4.2) 29.

29Note also that of the groups that left the VNMFS set in T2 (C5), more than 90 percent did so consistently
with a farsighted deviation (destination C9).
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The last three columns display the average number of consecutive stages the groups
stayed in a network, which we consider as another marker of the absorbing power of
a network. In T1, when groups reach the complete network, they immediately decide
to end the game.30 In T2 and T3 the players cannot decide to stop the game when they
reach a VNMFS set, probably due to the asymmetries in their payoffs. Nevertheless they
spend more consecutive stages there than in any other class. In T2 this results in a high
percentage of groups ending the game in C5. In T3 the players leave C7 more often before
the end of the game, despite staying there for more than five rounds, on average 31.
Consistently, on average a game lasted longer in T3 (22.93 stages), followed by T2 (21.5)
and T1 (17.73).

All the presented results are in line with with Hypothesis 5 as a way to reconcile
the aggreagte outcomes. The latters, as said, can not be rationalized using traditional
theoretical arguments. In T3, the VNMFS are Pareto efficient, Pareto dominant among
the PWS networks, and strongly stable (a condition not met in T2). Our interpretation is
that the VNMFS sets are less robust to limitedly farsighted deviations in T3. As discussed
in Section 4.3.2 there are farsighted improving paths in two steps leaving any g ∈ C7 and
reaching another network in the same class. Both steps imply a strict improvement in
the final network with respect to the current one (see table 4.2). Deviations leaving the
VNMFS set in T2 are longer and less feasible as they include some players adding a link
only to be as well off in the final network as they are in the current one.

An alternative interpretation would be that the multiplicity of networks that are in
a VNMFS set generate coordination problems among the players. This problem is not
present in T1 and has an obvious solution in T2, given the sequential nature of the game32.
In T3, agents with two links are worse off than the agents with one link, in network class
in C7. Hence, agents have a strategic incentive to build only one link, and let the others
build two. However, this interpretation is confuted by our data. According to it, we
would observe the agents having problems in reaching C7, and not moving away once
they are there. We observe almost the opposite. As shown in Table 4.5, in T3 the groups
ended the game in C7 only in ten out of the forty-two times they accessed it. The same
ratio (for C5) is twenty-nine out of fifty-five in T2. Thus the groups have more problems

30This fact explains why gN displays a low average stay, despite it is the final network for a majority of
the groups.

31Note the relatively high numbers for C5 in T1 and T3; those networks feature relatively low payoffs and
are not Nash stable (the connected players can be better off by cutting two of their existing links), though
they are PWS. Note also the high number for C9 in T2. Those networks are often reached when an unsatisfied
player in a VNMFS set takes a non-myopic move. As expected, this deviation is generally unsuccessful, in
the sense that the group is stuck in C9 until a backward move is taken by the same player.

32As the connected agents in a VNMFS set are better off, the first agents that are proposed a link on a
path to C5 should build them.
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staying in C7 than accessing it.

We thus explore the relevance of limited farsightedness, analyzing individual behav-
ior. Before doing so, we should stress that limited farsightedness, as its extreme counter-
parts, is meant to be a tool for assessing the stability of a certain state. As such, it should
not be interpreted as a proper model of individual strategic behavior, and the following
analysis should be understood accordingly.

We build the vectors of choices of virtual players endowed with different levels of
limited farsightedness, including myopia, according to Definition 3. Those are vectors of
dummies, f ij

ik gt
, for k = 1,2, . . . , containing the ideal actions of an individual i, with level

of farsightedness k, choosing over link ij in netwrok gt.

Recall that an action is consistent with farsightedness of level k if it lies on a far-
sighted improving path of length (weakly) shorter than k; k = 1 is identical to myopia.
To lie on a farsighted improving path, an action must imply moving from the current
network. Categorizing choices that imply inaction - i.e. staying in the current network -
is more problematic. According to definition 3, those actions are consistent with farsight-
edness of level k if moving would not be farsighted of level k, which equals assuming
that a farsighted agent should always take any farsighted improving path, imposing a
strong restriction on farsighted behavior.33 As a throughout theoretical analysis of lim-
ited farsightedness goes beyond the scope of the present paper, we will tackle this issue
by running the analysis twice, on two set of decisions: the full set of choices, and its re-
striction to the actions that imply moving from the current network - i.e. excluding those
that result in inaction. We will refer to the former set as choices, and to the latter as paths34.

In Figure 4.6 we represent the fraction of choices that are consistent with myopia and
progressive levels of limited farsightedness, over stages. Starting relatively low, the frac-
tion of choices that are consistent with myopia remains approximately stable, above 60
percent, in the central part of the game, and is somewhat higher in the last stages. In-
cluding farsightedness of level two increases the fraction of consistent choices by about
15 percentage points. Another 10 percent is added by farsightedness of level three, whilst
higher level of farsightedness result in improvements that are only marginal35. This pic-
ture suggests, once more, that myopic incentives were a main guide for decision making
in our framework; however agents often departed from those, following short farsighted
deviations, with relevant consequences on the final outcomes.

We perform a regression analysis to explore the relation between the actual choices,
aij

igt
, and the ideal benchmarks, f ij

ik gt
, up to a level of farsightedness of four. This exercise

33We note that this restriction is not problematic for myopic behavior.
34This set actually identifies the paths - i.e. sequences of different networks - the groups walk through
35The picture is qualitatively similar across treatments
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Figure 4.6: Fraction of choices consistent with each behavioral benchmark

suffer from many statistical limitations. In particular, the number of choices each agent
takes is endogenous, as groups can decide when to stop a game. We apply a two-steps
Heckman selection model (Heckman, 1979) to address this issue.36

We estimate a (panel) linear probability model (LPM) with random effects, where the
actions aij

igt
are regressed, conditional on being observed, over the benchmark choices,

Fij
igt

= { f ij
ik gt
}4

k=1, and a set of controls, Xij
igt

, including characteristics of the choice prob-
lem and of the individual. The unobservable characteristics of the individual i, assumed
independent from the attributes of the decision problem, are captured by νi, resulting in
the LPM specification:

P(aij
igt

= 1 | z∗i > 0, Fij
igt

, Xij
igt
) = β0 + Fij

igt
β + λ̂itβλ + Xij

igt
γ + νi (4.1)

36We are aware of the limitations of this approach in the case of a binary independent variable; Nicoletti
and Peracchi (2001) show that the bias of two-stage methods might not be severe when the correlation of
unobservables is low.
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where λ̂it is the estimate of the inverse Mills ratio from the selection equation:

z∗it = δWit + ui

zit =

1 if z∗it > 0

0 if z∗it ≤ 0
(4.2)

where z∗it is the latent variable capturing the propensity of a choice to be selected,
and zit is a dummy variable indicating whether we observe the choice or not. We use as
restrictions37 in the selection equation dummies for each treatment and for each type of
final outcome (myopic, farsighted, other). We do not include the treatments in the main
regression because we have no reason to think that they have any effect on single deci-
sions, but for the effect of the different payoffs, which are already accounted for through
our main regressors. A similar reasoning holds for the final outcomes of the groups. The
restrictions are justified as both the treatments and the group final outcomes are relevant
determinants of the time when the agents stop the game.

We run this specification on both choices and paths, with and without group fixed ef-
fects38, giving the four specifications shown in Table 4.6. There is a major shift between
the left-hand side and the right-hand side specifications. When considering choices, my-
opic behavior and farsightedness of level two have a positive and significant coefficient.
For higher levels of farsightedness the coefficient eventually turns negative (though not
significantly different form zero). The picture is reverted with paths. Myopia has a neg-
ative and significant coefficient, and those for all farsightedness levels are positive and
significant. Level two is the only variable to show a stable explanatory power across
specifications.

Combining the results, we see that subjects often refused to move from the cur-
rent network, because of myopic incentives. When they move, they do so also against
their immediate interest, following farsighted improving paths (even of relatively high
length); nevertheless, they regularly do not move even if a lengthy farsighted improving
path is available. The coefficients for farsightedness of level two (and myopia) suggest
that agents generally take myopic and farsighted improving paths of length two when
those are available, and refuse to move when neither of the two is.

This interpretation is consistent with the aggregate results, and in particular with
the observation that PWS networks express a high absorbing power, even in those cases

37That is, we include those variables in Wit, but not in Xij
igt

.
38Errors are always clustered at the group level.
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Choices Paths
Group effects: Group effects:
No Yes No Yes

Myopic
.150∗∗∗ .142∗∗∗ −.144∗∗∗ −.178∗∗∗

(.027) (.027) (.013) (.014)

Farsighted 2
.048∗∗ .040∗ .051∗∗∗ .052∗∗∗

(.022) (.023) (.014) (.014)

Farsighted 3
.014 .031 .059∗∗∗ .122∗∗∗

(.028) (.029) (.019) (.020)

Farsighted 4
-.020 −.035∗ .379∗∗∗ .364∗∗∗

(.020) (.019) (.036) (.035)

Inv. Mills
.116∗∗∗ .013 .079∗∗∗ .004
(.023) (.034) (.011) (.018)

Constant
.671∗∗∗ .888∗∗∗ .534∗∗∗ .640∗∗∗

(.119) (.143) (.069) (.069)
N. obs 6166 6166 3003 3003
N. subjects 288
N. groups 72
∗,∗∗ ,∗∗∗ statistical significant at the 10%, 5% and 1% level, respectively.
Controls include the stage, the repetition and a set of individual characteristics.

Table 4.6: Estimates results for the main regressions of a two-steps Heckmen selection
model (Robust Std errors in parentheses)

where they are eventually left by the subjects. The results for farsightedness of level
two are suggestive, as it is exactly the level that would explain the differences between
T3 and the other treatments. Overall, low levels of farsightedness look like important
determinants of individual behavior.

Result 3: Individual behavior is best explained by low level of farsightedness (nesting myopia).
Despite the observed impact of myopic incentives, the subjects often disregard them and take far-
sighted deviations. This limitedly farsighted behavior consistently explains the differences across
treatments, supporting Hypothesis 5 as a rationale for Result 1.

We are aware that the statistical approach suffers from important limitations. We do
not properly take into account the effect of the past choices of the same individual and of
the group, though it is likely that the path of a group has a huge influence on the behavior
of the subjects. Moreover, the different results for paths and choices are, at least partially,
an artifact of the way in which the regressors are constructed. In particular, the ex ante
probability that modifying a network is consistent with some level of farsightedness is
increasing in the level itself.
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Despite those limitations, the interpretation of the aggregate results as determined by
the behavior of limitedly farsighted agents is supported by our analysis.

4.5 Conclusion

This paper reports an experimental test of the most used stability notions for network
formation. In particular, by studying the performance of pairwise stability and of von
Neumann-Morgenstern farsighted stability, we test whether subjects behave according
to myopia or farsightedness when forming a network, allowing for limited levels of far-
sightedness. As far as we know this is the first experimental investigation into this issue.

The results show that both of the extreme theories, perfect myopia and farsightedness,
are inconsistent with our data, and suggest that the subjects are only limitedly farsighted.
Agents reach a stable network in 75 percent of the cases, and more so as the game is
repeated. In two of the treatments, a vast majority reach a von Neumann-Morgenstern
farsightedly stable set. In the third treatment, where the farsighted prediction is not
robust to limitedly farsighted deviations, they fail to do so, and 50 percent of them end
up in the myopic prediction.

The properties of the treatments enable us to attribute this asymmetry to a form of
limited farsightedness, and individual behavior analysis confirms this interpretation:
low levels of farsightedness, nesting myopia as the lowest level, best explain our data.

Our results opens the way to new interesting research questions. While the literature
has concentrated on the extreme cases of perfect myopia and perfect farsightedness, our
experimental results suggests that an intermediate approach could provide a valuable
alternative and a promising refinement of pairwise stability.



APPENDIX C

PROOFS

Proof of Proposition 1. To avoid reporting the farsighted improving path for each single
network, let gi be a generic network in class Ci and ci ⊂ Ci a generic proper subset of the
corresponding class. We will write gi → g with g ∈ Cj, and gi → g with g ∈ cj, when the
generic network gi in class Ci reaches with a farsighted improving path all the networks
in class Cj or only a proper subset cj of Cj, respectively.

i In T1 the list of farsighted improving paths among the networks in G is the following:
F(g∅) = {g | g ∈ C10 ∪ C11}
F(g2) = {g | g ∈ C1 ∪ C10 ∪ C11}
F(g3) = {g | g ∈ C1 ∪ c2 ∪ c5 ∪ C10 ∪ C11}
F(g4) = {g | g ∈ C1 ∪ c2 ∪ c5 ∪ C10 ∪ C11}
F(g5) = {g | g ∈ C1 ∪ c2 ∪ C10 ∪ C11}
F(g6) = {g | g ∈ C1 ∪ c2 ∪ c4 ∪ c5 ∪ C10 ∪ C11}
F(g7) = {g | g ∈ C1 ∪ c2 ∪ c3 ∪ c4 ∪ C5 ∪ C10 ∪ C11}
F(g8) = {g | g ∈ C1 ∪ c2 ∪ c4 ∪ C5 ∪ c7 ∪ C10 ∪ C11}
F(g9) = {g | g ∈ C1 ∪ c2 ∪ c4 ∪ c5 ∪ c6 ∪ c7 ∪ C10 ∪ C11}
F(g10) = {g | g ∈ c2 ∪ c4 ∪ c5 ∪ c6 ∪ C11}
F(gN) =∅.
It follows that gN ∈ F(g), for all g in G \ gN and F(gN) =∅. Thus {gN} is the unique
VNMFS set.

ii In T2 the list of farsighted improving paths among the networks in G is the following:
F(g∅) = {g | g ∈ C5}
F(g2) = {g | g ∈ C1 ∪ C5 ∪ c9}
F(g3) = {g | g ∈ C1 ∪ c2 ∪ C5 ∪ C9}
F(g4) = {g | g ∈ C1 ∪ c2 ∪ c4 ∪ C5 ∪ c9}
F(g5) = {g | g ∈ C9 ∩ Āg5}
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F(g6) = {g | g ∈ C1 ∪ c2 ∪ c4 ∪ C5 ∪ C9}
F(g7) = {g | g ∈ C1 ∪ c2 ∪ c3 ∪ c4 ∪ C5 ∪ C9}
F(g8) = {g | g ∈ C1 ∪ c2 ∪ c4 ∪ C5 ∪ c7 ∪ C9}
F(g9) = {g | g ∈ c4 ∪ (C5 ∩ Ag9) ∪ (C9 \ g9)}
F(g10) = {g | g ∈ C1 ∪ c2 ∪ c4 ∪ C5 ∪ c7 ∪ c8 ∪ C9}
F(gN) = {g | g ∈ C5 ∪ C9 ∪ C10}
The set {g | g ∈ C5} is a VNMFS set. It is reached by any network outside the set and
there are no paths between any two networks in the set. Let us check that it is unique.

Consider first a candidate set that does not include any network in C5. It must then
be reached by each single network in C5, which implies this set should include at
least two networks that belong to C9. Given that {g′ | g′ ∈ C9 \ g} ⊂ F(g) for every
g ∈ C9, a set including two networks in C9 is not internally stable.

Now consider a candidate that includes at least one network g ∈ C5. Then it should
include at least one network g′ ∈ C9, such that g′ /∈ F(g) and g /∈ F(g′). This condition
is impossible as all networks in C9 that are not adjacent to a network in C5 are reached
by a farsighted improving path form this network, and all networks in C9 that are
adjacent to a network in C5 reach this network with a farsighted improving path. We
conclude that {g | g ∈ C5} is the unique VNMFS set.

iii In T3 the list of farsighted improving paths among the networks in G is the following:
F(g∅) = {g | g ∈ C7}
F(g2) = {g | g ∈ C1 ∪ C7 ∪ c10}
F(g3) = {g | g ∈ C1 ∪ c2 ∪ C7 ∪ C10}
F(g4) = {g | g ∈ C1 ∪ c2 ∪ c5 ∪ C7 ∪ c10}
F(g5) = {g | g ∈ C1 ∪ c2 ∪ C7 ∪ c10}
F(g6) = {g | g ∈ C1 ∪ c2 ∪ c4 ∪ c5 ∪ C7 ∪ C10}
F(g7) = {g | (g ∈ C7 ∧ ∃i s.t. di(g) 6= di(g′)) ∨ g ∈ C10}
F(g8) = {g | g ∈ C1 ∪ c4 ∪ C7 ∪ C10}
F(g9) = {g | g ∈ C1 ∪ c2 ∪ c4 ∪ c5 ∪ c6) ∪ C7 ∪ C10}
F(g10) = {g | g ∈ C1 ∪ c2 ∪ c4 ∪ c5 ∪ c6 ∪ C7 ∪ c8 ∪ C10 \ g10}
F(gN) = {g | g ∈ C7 ∪ C10}
A network g ∈ C7 is reached with a farsighted improving path from any other net-
work except for the network g′ ∈ C7, where each single agent has the same degree as
in g. By definition each dyad {g, g′} is a VNMFS set. Let us check there is no other
VNMFS set.

Given the previous argument, any set containing g ∈ C7 and any other network g′′ 6=
g′ (as defined above) does not satisfy internal stability. Consider now a candidate set
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that does not include any network in C7. As it must be reached by networks in C7, it
will necessarily include one and only one (for internal stability) network in C10. Then
it must necessarily include g∅, which violates internal stability.
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APPENDIX D

EXPERIMENTAL INSTRUCTIONS

Welcome to this experiment in decision-making. In this experiment you can earn money.
The amount of money you earn depends on the decisions you and other participants
make. Please read these instructions carefully. In the experiment you will earn points.
At the end of the experiment we will convert the points you have earned into euros
according to the rate: 6 points equal 1 Euro. You will be paid your earnings privately and
confidentially after the experiment. Throughout the experiment you are not allowed to
communicate with other participants in any way. If you have a question please raise
your hand. One of us will come to your desk to answer it.

Groups

• At the beginning of the experiment the computer will randomly assign you - and all
other participants - to a group of 4 participants. Group compositions do not change
during the experiment. Hence, you will be in the same group with the same people
throughout the experiment.

• The composition of your group is anonymous. You will not get to know the identi-
ties of the other people in your group, neither during the experiment nor after the
experiment. The other people in your group will also not get to know your identity.

• Each participant in the group will be assigned a letter, A, B, C, or D, that will identify
him. On your computer screen, you will be marked ‘YOU’ as well as with your
identifying letter (A, B, C or D). You will be marked with your identifying letter (A,
B, C or D) on the computer screens of the other people in your group.

• Those identifying letters will be kept fixed within the same round, but will be ran-
domly reassigned at the beginning of every new round.
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Length and articulation of the experiment

• The experiment consists of 3 rounds, each divided into stages.

• The number of stages in each round will depend on the decisions you and the other
people in your group make.

• After a round ends, the following will start, with the same rules as the previous:
actions taken in one round do not affect the subsequent rounds.

General rules: rounds, stages, formation and break of links

• In each round the task is to form and break links with other members of the group.

• You will have the possibility to link with any other participant in your group. That
is, you can end up with any number of links (0, 1, 2 or 3).

• Thus, the number of links that can be formed in your group will be a number between
0 and 6 (0, 1, 2, 3, 4, 5, 6). The set of links that exist in your group at the same time is
called a network.

• Your group starts the first stage of every round with zero links.

• In every stage a network of links is formed, based on your and the other group par-
ticipants decisions. This network is called the current network.

• Your group will enter a new stage with the links that exist in the network that is
formed in the previous stage, according to the following linking rules

Stage rules

• In each stage the computer will select for each group a single link among the six
possible at random. A link cannot be selected twice in two consecutive stages.

• The participants involved in that link will be asked to take a decision in that stage, the
others will be informed about the selected link and will be asked to wait for others’
decisions.

• If this link does not exist at the beginning of the stage, the decision will be whether
to form that link or not. If this link exists at the beginning of the stage, the decision
will be whether to keep or to break that link.

• Thus, in each stage at most one link can be formed or broken.
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Stopping rules

• After every stage you and the other people in your group will be asked if you are
willing to modify the current network. You can answer YES or NO.

• If ALL the people in your group answer NO the round ends and the points associated
to the current network are considered to compute your earnings.

• If at least one person in your group answers YES, the group moves to the next stage.

• After stage 25 a random stopping rule is added. In this case, even if you or any of the
other people in your group are willing to modify the current network, the round will
end with probability 0.2.

Earnings

• To every participant in every network is associated a number of points.

• You will receive points according to the network that exists in your group at the end
of each round.

• Your total earnings will be the sum of the earnings in each of the 3 rounds.

• Thus, the points associated to the networks you and the other people in your group
form at every stage, except for the last of each round, are not considered for the
computation of your earnings.

• You are always informed about the points associated to the current network on screen.
On the top of your screen, you are always informed of the points you earned in the
previous rounds.

• You can learn about the points associated to every other network through the points
sheet you find attached to the instructions. It displays the points associated to every
class of networks:

– In every network, the black dots are the participants in the group; the lines are the
existing links.

– Every class of network is characterized by the number of links each participant has.

– The numbers close to every black dots indicate the number of points a person with
that number of links is earning in that specific class of networks.
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• An example will clarify the relation between network and points and the developing
of the experiment. You will also practice through a training stage.

Concluding remarks

You have reached the end of the instructions. It is important that you understand them.
If anything is unclear to you or if you have questions, please raise your hand. To ensure
that you understood the instructions we ask you to answer a few control questions. After
everyone has answered these control questions correctly the experiment will start.
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