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1 Introduction

The scienti�c community is devoting an increasing e�ort to investigate the
emission sources of tra�c-related �ne particulate matter (mainly as PM10)
and its possible e�ects on living organisms [Davidson et al., 2005], [Pope, Dockery, 2006],
[Stone, Donaldson, 1998], [Penttinen et al., 2001], [Nel et al., 2006]. In par-
ticular, actual research focuses on the biological interactions of �ne and ul-
tra�ne particulate matter (micrometer and nanometer scale) in their impacts
on human health [Stone, Donaldson, 1998]. PM10 particulate matter con-
sists in a set of liquid and solid particles, having a diameter less than 10
micrometer, which are suspended in the atmosphere and who originate from
emission processes, such as combustion and erosion, as well as from chemi-
cal transformation processes in the atmosphere. The chemical and physical
properties of PM10, as well as their toxic nature, depend on the dimensions
of the particles, on the type of emission sources, on the transport phenomena
and chemical transformations taking place in the atmosphere. The capacity
of particulate matter to penetrate the organism and to interact with biolog-
ical tissues varies with the dimension of the particles: in particular, it has
been demonstrated that particles having a size of the order of one micrometer
can enter and follow the human respiratory apparatus until the pulmonary
alveoli, inducing in�ammatory responses and cellular death processes (de-
pending on the chemical composition) [Penttinen et al., 2001]. Furthermore,
the theoretical models suppose that particles having a size of the order of
one nanometer can end up in the blood and in the organs, thereby causing
a systematic harm [Nel et al., 2006].

Accordingly, the legislators and policy-makers are striving to �gure out
the most e�ective measures capable to reduce PM atmospheric ground-level
concentration, mainly in urban areas where the population exposure is more
alarming.

Most, if not all, of these policies are currently based on emissions reduc-
tion and control, on the assumption that the prevailing contribution of the
observed PM concentration is due to the direct emission sources of primary
PM or its secondary component's precursors.

In the European urban areas, the dominant emission source of PM10
and PM2.5 (the two fractions of particulate matter presently monitored ac-
cording to the EU regulation) is represented by the vehicular tra�c, whose
contribution to the total PM concentration varies from 30 % to more than
50 % [CAFE, 2005], [Wong et al., 2003]. The European legislation on air
pollution has implemented, in the last two decades, an increasing body of
regulations aimed at reducing vehicles emission factors and establishing na-
tional emission ceilings to be gradually attained by the member states.

As a consequence, many primary air pollutants have been continuously
diminishing and have now met, in most of the European regions, the required
air quality standards [Pey et al., 2009]. However, the PM10 and PM2.5 levels
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have not decreased signi�cantly, at least in the last decade, in most urban
areas [EEA, 2007] [EEA, 2006].

This phenomenon could be explained, at least theoretically, by an in-
crease of secondary PM photochemical formation induced by the ongoing
climate change, and by a parallel decrease of the PM deposition rate caused
by land use changes which have converted natural and agricultural soils into
arti�cial surfaces [De Leeuw, 2002].

Another tentative explanation of the observed decoupling between PM
emissions trend (primary and secondary) and its ground level concentra-
tions could arise by the fact that a considerable fraction of the tra�c-related
PM is attributable to non-exhaust phenomena, like brake abrasion, tire and
road wear and turbulent resuspension of particles previously deposited on
the road surfaces [Dunbar, 1976] [Giovannini, Grechi, 2003] [Empa, 2009].
Furthermore, the vehicle-generated air turbulence due to increased tra�c
�ows can transfer larger amounts of kinetic energy to the air-borne PM, so
contributing to its wider and faster transport. Such non-exhaust PM com-
ponent may even overwhelm the contribution from the engine's combustion
exhaust, especially when high loads of PM are present on the road surfaces
and depending on peculiar tra�c and asphalt features. If these conditions
get worse, the �nal e�ect, at least at a local scale, could overcompensate the
improvement of emission factors derived from new engine technologies.

Under this assumption, in this work we address our attention to a better
estimate of the contribution of non-exhaust sources to the �nal PM air con-
centration and particularly we focus our investigation on the resuspension of
PM deposited on road pavement surfaces and raised by the air turbulence
produced by the vehicle �ux, under urban and extra-urban tra�c conditions.

Phenomenological emissive models [Dunbar, 1976] [Giovannini, Grechi, 2003]
and statistical analysis on experimental data measured in particular tra�c
conditions [Empa, 2009] have shown that the resuspension fraction is about
∼ 50 % of the total PM10 vehicle emission. Our approach to the prob-
lem is based on modeling techniques. We mainly refer to the data reported
in [Empa, 2009] to determine the selected empirical parameters contained in
our models. We use suitable analytical and numerical models to describe the
turbulence �eld generated inside a canyon street by an external wind at roof
level and by vehicles of simpli�ed geometrical shapes in open streets and ur-
ban canyon streets. In particular, analytical models, based on algebraic eddy
di�usivity hypothesis for the description of turbulence, enables us to describe
the mean statistical component of �ow generated by air recirculation inside a
canyon and by the far-wake structure besides moving vehicles. The far-wake
structure is the region of the vehicle wake in which unstable motions, caused
by the deceleration of the boundary layer at the rear slant face of the vehicle,
have been dissipated and a mean structure, with self-similar properties, reat-
taching to the ground level has been created. The analysis of the far wake
solutions is suitable to the description of vehicle wakes interaction, which
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permit to apply our analysis to di�erent driving cycles condition. Numerical
simulations based on �nite element discretization of suitable two-equation
turbulence models have been employed to describe near-wake structure, i.e.
the region behind a vehicle in which turbulence kinetic energy is strongly
produced, which causes the strongest mixing of atmospheric pollutants and
resuspension of road dust. These di�erent components of turbulence �elds at
di�erent scales of the street geometry are composed to de�ne an operational
model for the dispersion of two classes of PM10 pollutants, those correspond-
ing to the two dominant dimensional modes in the mass distribution of ex-
haust and non-exhaust emissions. The deposition and the resuspension of
pollutants are suitably described by resistance models and �ltration models
on porous asphalts, which enable to consider the physics beyond the pro-
cesses, described by suitable parameters combined in adymensional groups.
The corresponding terms are then inserted in the dispersion equations, as
suitable boundary conditions on the ground. The emission from exhaust
tailpipes and from wear components of the vehicles are obtained through
the use of EMEP-CORINAIR methodology, which is an emission inventory
methodology for road transport developed by the EEA. Road dust compo-
sition and concentration are deduced from experimental data. The resus-
pension fraction of tra�c-related PM10 emissions at the tailpipe, for typical
urban and extra-urban driving cycles, has thus been estimated, through a
simpli�ed linear-emission model, considering representative data describing
tra�c statistics coming from the Artemis project [André, 2004].

Pro�le laws of resuspension factors have been drawn, for di�erent vehi-
cles geometries and velocities, and how resuspension changes with di�erent
asphalt characteristics.

Lastly, the results have been applied to typical tra�c situations in the
city of Milan, relying on data provided by the Agenzia Mobilità Ambiente
Territorio (AMAT), [AMAT, 2008], [AMAT, 2010], and studying the e�ect
of implementations of di�erent reduction scenarios to the total amount of
tra�c-related PM10 emissions.

In Chapter 2 we will introduce the physical models which we have used
to describe the deposition and resuspension �uxes, depending on turbulent
quantities, on particles inertia and on asphalt characteristics. A simple
tailpipe emission model, based on this physical models and on tra�c emis-
sion data given in literature, will be used to set up important parameters
of the models by comparison with empirical results. An application of the
results to the case of Milan will be shown, and possible preventive strategies
for pollutant airborne concentration reduction will be analysed.
In Chapter 3 the modelling approach will be described. A set of operational
and simpli�ed numerical models for the dispersion dynamics at the canyon
scale will be introduced. These canyon-scale models allow us to describe
the dispersion processes associated to complex urban tra�c situations, char-
acterised by vehicle wake interactions, which would be di�cult to describe
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with numerical simulations for the dispersion dynamics associated to each
single vehicle. These models require analytical solutions in order to describe
the vehicle wake interactions e�ects and the e�ects of the �ow recirculation
inside the street canyon. Moreover, results from numerical simulations of the
�ow in the near wake of each vehicle are needed in order to obtain suitable
parametrizations of the deposition and resuspension �uxes, to be used at the
canyon scale.
In Chapter 4 we will derive the analytical solutions required by the canyon-
scale dispersion models, remanding some calculation to the Appendix, and
we will show the simulation results for the near wake Turbulence structure,
for di�erent vehicle categories and driving conditions, and will de�ne all the
parametrizations of the deposition and resuspension terms derived from the
numerical results. Finally, we will apply one of the dispersion operational
models introduced in Chapter 3 to the case of a congested urban tra�c
con�guration in a canyon street.
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2 Tra�c emissions in urban areas

Atmospheric aerosols (generally referred to as the particulate component of
a suspension of solid or liquid particles in a gas) are particles that range in
size from a few nanometers (nm) to tens of micrometers (µm) in diameter.
They are directly emitted in the atmosphere as particles (primary aerosol),
or formed by gas-to-particle conversion processes. Particulate matter (PM)
is usually divided into a discrete set of dimensional classes: the nucleation
mode, which comprises particles with equivalent diameter up to 10 nm; the
Aitken mode, which ranges from 10 to 100nm; the accumulation mode, ex-
tending from 0, 1µm to 2, 5µm; the coarse mode, which comprises particles
with diameter > 2, 5µm. Particles with diameter less than 2, 5µm are called
�ne particles, and particles with diameter less than 0, 1µm are called ultra-
�ne. The atmospheric aerosol mass ditribution is dominated in most areas
by the accumulation and the coarse mode; the accumulation mode accounts
for most of the aerosol surface area; the number distribution is dominated by
the nucleation and the Aitken mode. [Seinfeld, Pandis, 2006]. The processes
that in�uence the formation, size and composition of airborne particles are
de�ned here below:

• Nucleation: the formation of stable clusters of a solid or a liquid phase
in a super-saturated vapor phase, in absence (homogeneous) or in pres-
ence (heterogeneous) of condensation nuclei of a foreign substance.
This is the main process for the transfer of mass from the gaseous to
the particulate phase.

• Condensation and evaporation: the condensation of a vapor on the
particle surface or the evaporation of material into the vapor phase.
The rate of growing of particles by condensation depends on the sat-
uration ratio and on their dimension relative to the mean free path of
the gas; for su�ciently grown particles (with a diameter of the order
of ∼ 0, 5µm), the rate of di�usion of vapor molecules on the particle
surface induce a negligible change of volume with respect to the volume
of the particle, and the PM population does not change appreciably
under this transformation.

• Coagulation: the process of transformation of particles size distribution
induced by particles collisions, generated by their Brownian motion or
by advection and mixing in a wind �eld.

• Chemical reaction: atmospheric reactions involving gaseous precursors
and organic compounds.

• Removal processes: deposition at the Earth's surface (dry deposition)
and incorporation into cloud droplets during the formation of precipi-
tation, snow and fog (wet deposition).
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Figure 1: Scheme of the principal modes, sources, particle formation and
removal mechanisms, for the volume distribution of an atmospheric aerosol
[Seinfeld, Pandis, 2006].

Particles in the nucleation mode are formed from condensation of hot vapors
during combustion processes and from the nucleation of atmospheric gases.
Particles in the Aitken mode are mainly formed during high-temperature
combustion processes. The dominant dispersion mechanism is Brownian
motion, and their dominant removal process is coagulation with larger par-
ticles. Due to the fast time-scale of the dispersion and removal process for
these two PM classes, their mixing time and lifetime in atmosphere is of the
orders of few seconds [Seinfeld, Pandis, 2006]. The source of particles in the
accumulation mode is the coagulation of smaller particles and vapor conden-
sation onto existing particles, with relative surface growth. The dispersion
mechanism of Brownian di�usion is less e�cient for this mode, and removal
mechanisms (mainly wet deposition) have a low time-scale, and cause the
lifetime in this regime to be of the order of the weeks. The coarse mode
is formed by mechanical processes, and consists of windblown human-made
and natural dust (soil particles), pollens, plant fragments, seasalt. Their at-
mospheric dispersion is guided by inertial forces, and the dominant removal
process is gravitational sedimentation. The time-scale of the removal process
cause this mode to have a lifetime of the order of few minutes. In �gure 1
the phenomena that in�uence particle volume distribution are schematically
shown.
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Urban aerosols are mixtures of primary particulate emissions from in-
dustries, nonindustrial fugitive sources (soil dust, construction), transporta-
tion, fuel combustion for power generation, natural sources and secondary
PM. The number distribution of PM is dominated by particles smaller than
0, 1µm, whereas the surface area distribution is dominated by particles in the
0, 1 − 0, 5µm range. The Urban aerosol mass distribution has two distinct
modes [Seinfeld, Pandis, 2006], one in the submicrometric regime (accumu-
lation mode) and the other in the coarse mode. Next to tra�cated roads
there is an increase in mass concentrations of roughly 10− 20% with respect
to the urban background; the concentrations of these particles decays by
dilution in a characteristic distance of roughly 100m from the road. Coarse
particles near road sources are generated mainly by mechanical processes
of vehicles and road wear, resuspended by tra�c �ow; accumulation mode
contains primary particles from the combustion processes (mainly Soot -
elemental Carbon) and secondary aerosol material, coming from coagula-
tion and condensation of particles from Aitken and nucleation mode, formed
through nucleation in the atmosphere after rapid cooling and dilution of ve-
hicle emissions (mainly Sulfates, Nitrates, Ammonium and gaseous organic
precursors). Coagulation among accumulation mode particles is a slow pro-
cess and does not transfer particles to the coarse mode.

We considered the case of the city of Milan. Milan is a huge city, charac-
terized by highly dense residential and commercial edi�ces and a very high
volume of vehicular tra�c. It is located in the centre of the Po Valley, the
most industrialized area of Northern Italy. Because of the topography of
the city and the meteorological conditions that characterize the Po Plain,
higher concentrations of suspended PM10 and PM2.5 are registered in win-
ter than in summer [Marcazzan et al., 2001]. In summertime, the higher
average wind velocity and the broader mixing layer improve the dispersion
of pollutants in the atmosphere. In winter, very frequent and persistent ther-
mal inversions and fog situations at ground level cause a considerable amount
of air pollutants to accumulate in the lower layers of the atmosphere. The
monthly-averaged values of PTS (Total Suspended Particulate - PM with an
equivalent diameter ≤ 50µm) and PM10 concentrations for january between
year 1977 and 2009 are shown in �gure 2.

The temporal series of PM10 and PM2.5 concentrations data are well
correlated [Marcazzan et al., 2001], with an almost constant ratio between
the two fractions (0, 61 in summer, 0, 63 in winter). It is evident that PM2.5
is a substantial part of PM10; the mass of �ne particles is nearly twice
as much as the mass of particles with equivalent diameter between 2, 5 to
10µm. Through a mass-closure approach [Vecchi et al., 2004] it is possible
to determine the average elemental compositions of the detected elements
in the two PM fractions. We report in �gure 3 the elemental analysis, with
relative values of concentration, conduced for PM2.5 composition in the year
2004 and for PM10 composition for the year 2009, for winter and summer,
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Figure 2: Historical series of PTS and PM10 january average concentrations for
the city of Milan. The di�erent strategies pursued to reduce PM concentrations are
reported.

for the city of Milan.
We can see that carbon compounds fraction goes from 35% to 50% of

the total mass fraction, being more concentrated in the �ne fraction; Sul-
fate and inorganic ions are increased in the �ne fraction; the mineral oxides
(crustal elements), which de�ne a mineral dust component through the use of
a "preferential oxides" algorithm [Marcazzan et al., 2001], and heavy metals
are more concentrated in the 2, 5 − 10µm fraction, in which they amount
to the 8% of the total mass in winter and to the 20% in summer (this is
due to a greater soil dryness and to the increase of mean wind speed). The
principal component analysis conduced in [Marcazzan et al., 2001] identi�es
four factors, which are able to explain the main part of the variance of the
concentrations data set for both PM10 and PM2.5 fractions: the �rst factor
identi�es a tra�c source, related to car exhaust emissions, while the second
identi�es a generic soil dust source, which can be decomposed into soil par-
ticles, resuspended by the action of the wind, and wear components of tyres,
breaks and roads, resuspended by tra�c. The third factor identi�es an in-
dustrial source, and the fourth identi�es a sulphur contribution of secondary
origin, ascribed not only to local sources, but also to a contribution at the
mesoscale. A proper multilinear regression model between the concentrations
of PM and the concentrations of proper tracers of the identi�ed sources and
subsources shows a contribution of ∼ 30% to the total PM10 concentration
from tra�c (exhaust + wear contribution), and a contribution of ∼ 50%
from secondary aerosols. Tra�c contributions consists of an exhaust and a
non-exhaust component. In principle it is not possible to separate the con-

9



Figure 3: Concentration values and elemental compositions for PM2.5 (year 2004)
and PM10 (year 2009), for winter and summer, for the city of Milan
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Source typology Primary PM10 (t/y) %

Energy production 0, 84 0, 12
Non industrial combustible 75, 53 10, 86
Industrial combustible 20, 43 2, 94
Productive processes 15, 56 2, 24
Combustible extraction 0, 00 0
Solvents usage 25, 13 3, 61
Road transport 445, 81 64, 12
Other mobile sources 39, 04 5, 61
Garbage disposal 2, 90 0, 42
Agriculture 2, 91 0, 42
Other sources 67, 14 9, 66

Total 695, 29

Table 1: Primary PM10 emission estimations for 11 macrosectors for the city of
Milan. Data: INEMAR 2008

tribution of wear processes from that of resuspension of deposited road dust,
since they have the same tracers and the same temporal pro�les. Details on
the method to isolate these components will be shown in next paragraphs.
In order to update the source apportionment contribution of PM10 to more
recent emission scenarios, we analyze the emission data of primary PM10
in Milan city, for the year 2008, reported by INEMAR (INventario delle
EMissioni in ARia). In table 1 we report INEMAR elaboration of the source
apportionment for the concentration of primary PM10 (expressed as tons
per year), considering 11 macrosectors of possible sources.

Road transport is the predominant source of primary PM10 atmospheric
concentrations. Its emission contributions can be disaggregated into the
di�erent parts coming from exhaust and wear processes, for each vehicle
category. Results are reported in table 2.

Diesel motor vehicles, Light Duty Vehicles (LDV) and Heavy Duty Ve-
hicles (HDV) contribute to ∼ 60% of the total road tra�c PM10 primary
emissions; wear components contribute to ∼ 30% of the total. Diesel en-
gines dominate in large vehicle applications because of their improved fuel
e�ciency and torque characteristics over gasoline engines. Lately though, an
increasing shift to diesel engines is observed also for passenger cars, which
now correspond to the highest share of new passenger car registrations in
several European countries, with shares reaching as high as 70% for some
countries [EMEP/CORINAIR, 2007].

Current European legislation addresses total PM10 mass concentration
limits as daily and 1 year averages, and imposes year averages limits to reach
in two steps within 2015 and 2020 for the total PM2.5 mass concentrations.
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Vehicle typology Emission typology %

motor vehicle

unleaded gasoline 0, 68
GPL 0

natural gas 0
diesel 18, 78
wear 15, 34

LDV
unleaded gasoline 0, 08

diesel 30, 21
wear 9, 33

HDV + autobus
unleaded gasoline 0, 00

diesel 11, 54
wear 5, 59

moped
unleaded gasoline 3, 77

wear 0, 51

motorcycles
unleaded gasoline 2, 66

wear 1, 11

Table 2: Primary PM10 percentages of emission for the di�erent vehicle categories,
separated between exhaust and wear components, for the city of Milan. LDV: Light
Duty Vehicles (< 3, 5t). HDV: Heavy Duty Vehicles (> 3, 5t). Data: INEMAR 2008
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PM10 PM2.5

Stage 1 from 1/1/2005 within 1/1/2015

Annual average 40µm/m3 25µm/m3

Daily average 50µm/m3 (not more than 35 times/year)

Stage 2 from 1/1/2010 within 1/1/2020

Annual average 20µm/m3 20µm/m3

Daily average 50µm/m3 (not more than 7 times/year)

Table 3: EU legislation on PM10 and PM2.5 limit atmospheric concentrations.

In Table 3 we report the limits imposed on PM mass concentrations by
European legislation.

Figure 2 shows the historical trend of the monthly averages of PM10 con-
centrations for the city of Milan. PM10 concentrations have not decreased
signi�cantly, at least in the last decade, despite the introduction of Euro X
engine technologies associated with national emission ceilings, and are often
above the limit of EU legislation (we must note that the emission control
technologies of diesel light duty vehicles, which contribute the most to pri-
mary PM emissions, as seen in Table 2, generally follows the technology of
passenger cars with a delay of 1-2 years). High PM10 pollution levels are
constantly observed in street canyons. This suggests that a tentative ex-
planation of the observed decoupling between PM emissions trend and its
ground level concentrations could arise by the fact that a considerable frac-
tion of the tra�c-related PM is attributable to non-exhaust and resuspension
phenomena.

2.1 Exhaust emissions

Tra�c exhaust (coming from fossil fuels combustion processes) emissions
consists of primary particles, Greenhouse gases, CO, NOx and Hydrocar-
bons. The combustion process produces CO2 andH2O as the main products.
Combustion also produces several by-products which either originate from
incomplete fuel oxidation (CO, hydrocarbons, particulate matter) or from
the oxidation of non-combustible species present in the combustion chamber
(NOx, of which more than 90% is in the form of NO, from N2 in the air,
SOx from S in the fuel and lubricant, etc...). A wide range of unburned
and chemically transformed hydrocarbons (e.g. benzene, toluene, ethane,
ethylene, pentane, etc.) is emitted by motor vehicles through a number of
di�erent processes (e.g. evaporation, fuel tank displacement, oil seep, etc...).
Finally, primary particles of condensed carbonaceous material are emitted
mainly by diesel and poorly maintained petrol vehicles. Vehicles with spark-
ignition engine are considered as negligible sources of primary particulate
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emissions. For old generation gasoline vehicles, not equipped with a three-
way catalyzer, emission of primary particles, constituted by Soot and Pb
compounds, are comparable with diesel vehicle emissions. New generation
gasoline vehicles with direct injection and lean-burn combustion technologies
have comparable Soot emissions with diesel vehicles too. Diesel vehicles ex-
haust emissions are constituted by sulfates, nitrates, organic compounds and
carbonaceous (soot and/or ash) agglomerates, on which organic compounds
are adsorbed.

Organic compounds belong to the nucleation mode; they are primarily
composed of readily volatile components derived from unburned fuel and
lubricant oil (i.e. the solvent organic fraction: n-alkanes, alkenes, alkyl-
substituted cycloalkanes, and low molecular weight poly-aromatic hydrocar-
bon compounds).

Carbonaceous agglomerates are accumulation mode particles. They de-
rive mainly from the combustion of engine fuel and lubricant oil by diesel-
fuelled or direct injection petrol-fuelled vehicles, as well as from the coagula-
tion of nucleation mode particles. Most of these particles are formed in the
combustion chamber (or shortly thereafter), in the central zone of the non
homogeneous spray where the air/combustible ratio is low and far from the
values at which the mixture bursts. Soot particles are initially generated by
condensation of products of partial oxidation and of pirolysis; poly-aromatic
hydrocarbon compounds are the main precursors. Oxidation processes at
the tailpipe generate CO and CO2 from Soot particles.

Exhaust primary particulate is thus mainly constituted by small spherical
particles, with a diameter between 10 and 80 nm, which form agglomerates
and chains characterized by a fractal dimension. The size distribution of this
emission source has a principal mode in the accumulation mode, correspond-
ing to the accumulation mode dominant in the mass distribution of urban
aerosol.

Exhaust particles dispersion and transformation processes. Parti-
cles dispersion at urban scales develops at di�erent spatial scales. The vehicle
wake is the �rst spatial scale where the emitted particles disperse into the
ambient environment. It consists of two regions [Kumar et al., 2011]: the
near wake and the mean (or far) wake. In the near wake region the number
and size distributions of particles change rapidly, due to the in�uences of
various transformation processes induced by turbulent mixing and dilution.
The faster of these transformations are homogeneous nucleation, condensa-
tion and coagulation (characteristic times of these transformations go from
the order of nanoseconds to microseconds [Kumar et al., 2011]). These trans-
formations does not in�uence the distribution of mass of dispersed particles:
nucleation and growth through condensation are competing processes in the
nucleation mode happening in the few milliseconds directly after the exhaust
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is released, and can be regarded as part of the emission process, in the case it
is described by an e�ective vehicle emission factor; coagulation between nu-
cleation mode particles preserves the total mass of the submicrometric mode,
and coagulation between accumulation mode particles is a slow process with
respect to dilution, deposition and resuspension processes. Particles are re-
moved at an air surface interface by dry deposition as a result of particle
Brownian di�usion. This can remove the smaller particles (i.e. nucleation
mode) more e�ciently due to their higher di�usion coe�cient compared with
that for larger particles (i.e. accumulation mode), (gravitational settling is
a weak process for exhaust particles). The deposition velocity will be rela-
tively high for small particles and for high friction velocities. In the far wake
region the rate of evolution is much slower because vehicle-produced turbu-
lence decays with the increasing distance from the tailpipe and atmospheric
turbulence in�uences the mixing processes. E�ects of vehicle wakes inter-
action on the dispersion evolution must be considered at this spatial scale.
Driving cycles determine vehicles reciprocal distances and velocities. The
emitted parcel of exhaust is further spread within the street canyon. De-
pending on the atmospheric stability, on the geometric characteristics of the
canyon (such as the aspect ratio W/H, as will be explained in Sections 3.4,
4.1 and 4.2) and the intensity and direction of the roof-level wind, di�erent
components of mean recirculation develop at this scale, which in�uence the
pollutant dispersion. After the street scale, the parcel of exhaust can be as-
sumed to be advected in the neighbourhood through a network of streets, and
further to be extended to the city scale. In our work we consider pollutant
dispersion until the spatial scale of the street canyon. Nucleation and coag-
ulation processes are nearly complete within the near-wake regions behind
the vehicular exhaust tailpipe, and dilution then spreads the particles which
are carried by advection from the near wake to the far wake. In the far-wake
region, particles can still grow by condensation but the growth rates decrease
with distance away from the tailpipe due to decreasing dilution factor and
concentrations of condensable species.

The dilution is the most important parameter and should be considered
appropriately in dispersion models. It is so fast in the near-wake of a moving
vehicle that the competing e�ects of the transformation processes are nearly
over within 1s after emission. Particles processes may last up to 10s in the far
wake region, depending on canyon geometry and meteorological conditions.
Dry deposition is an important process for both wake regions.

Exhaust particles health e�ects. Numerous studies conclude that road
vehicles are a major source of nanoparticles in urban areas. Their contribu-
tion can be up to 86% of total particle number concentrations [Kumar et al., 2011].
The ultra�ne size range of nanoparticles has the potential for the largest de-
position rates in the lungs. They can enter the body through the skin, lung
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and gastrointestinal tract and can also penetrate epithelial cells and accu-
mulate in lymph nodes (Nel et al., 2006). Besides this, particles in the accu-
mulation mode, having the highest surface area to mass ratio, allows greater
contact for adsorbed compounds to interact with biological surfaces. The
studies suggest that particle number concentrations are an important metric
to represent the toxic e�ects. Atmospheric particles are currently regulated
in terms of mass concentrations in the size ranges ≤ 10µm and ≤ 2.5µm
but this does not address particle number concentrations. Thus the ma-
jor proportion of vehicle emissions that contribute signi�cantly to number
concentrations remains unregulated through ambient air quality standards.

In order to comply with emission legislation, vehicle manufacturers have
been installing after treatment devices, such as catalytic converters and diesel
particle �lters, to suppress byproduct emission. Catalytic converters are not
able to bring down NOx and carbonaceous fraction emissions; such devices
may also produce small quantities of pollutants such as NH3 , N2O and
sulfates. There are currently new technologies available, which aim at de-
creasing both energy consumption and pollutant emissions by (for diesel
engines) increasing the air/combustible ratio, the pressure of fuel injection,
the regulation of ignition timing (a shorter ignition timing causes lower soot
but higher NOx emissions) and exhaust gas recirculation. . Those tech-
nologies include new fuels (CNG, Reformulated grades, eventually H2) and
alternative powertrains (hybrids � meaning a combination of internal com-
bustion engine and electric motor, fuel cell vehicles, etc.). Particle mass
emissions from bio-fuelled vehicles have decreased signi�cantly, but possibly
at the expense of an increase in particle number emissions.

Description of the transport dynamics for the Soot component.

As we are interested in mass distribution trend for vehicle exhaust and non-
exhaust emissions, we consider exhaust emitted particles in the accumulation
mode (where there is a dominant peak in urban aerosol mass distribution).
The transformation processes which are dominant in the di�erent spatial
scales of dispersion after emission (from vehicle wake to canyon street) for
accumulation particle dispersion are emission, dilution and dry deposition.
Near wake turbulent quantities are anyhow important to describe resuspen-
sion phenomenon, as will be described in Section 4.3. We do not need to gain
detailed insight into near wake transformation processes, as they does not
in�uence the distribution of mass of dispersed accumulation particles with
respect to dilution. This mode does not interact with the coarse mode of road
dust emissions, as we have already explained. We will consider Soot as the
main tracer of primary exhaust emissions, and will express PM10 primary
exhaust emission factors of diesel powered vehicles as Soot emission fac-
tors in the simulation of particles mass concentration via advection-di�usion
equations. We will consider speci�c emission factors of di�erent vehicle cat-
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Soot Agglomerate diameter Agglomerate density

40nm 900 kg
m3

100nm 500 kg
m3

300nm 200 kg
m3

Table 4: Soot agglomerates diameters and densities.

egories, as given by emission inventories, in the determination of tailpipe
PM10 emission for the case of Milan.

The equation for the statistically averaged concentration evolution C
(mg/m3) of Soot or road dust component is:

∂C

∂t
+ ~U · ~∇C = ~∇ · ((D +DT )~∇C), (2.1)

whereD is the Einstein di�usion coe�cient for the particles in the considered
mode, and DT is the turbulent di�usion coe�cient. This is an advection-
di�usion equation for the dispersion of the pollutant, advected by the wind
�eld ~U at the di�erent spatial scales of dispersion. This equation will be
treated both analytically and numerically in the next chapters. In a con-
text of an operational dispersion model, it will be approximately solved by
a superposition of pu� solutions, with advection and turbulent dispersive
parameters coming from the combination of the vehicle and canyon scales
(for di�erent tra�c conditions and canyon geometries). In a context of a �-
nite element discretization approach, it will be numerically solved in a street
canyon or open street domain, with proper wind �eld description and pa-
rameterization of turbulent di�usivity for di�erent tra�c conditions. Soot
is constituted by fractal-like agglomerates, in the accumulation mode, of
carbon primary spheres of diameter 10− 20nm. The e�ective density of ag-
glomerates decreases as the diameter increases with a power law of the form
[Keskinen et al., 2010]:

ρP ∝ ddF−3
P ,

where dP is the agglomerate maximum diameter, and dF is its fractal dimen-
sion. According to this law and to the data reported in [Keskinen et al., 2010],
we have used the following values for three kind of stable Soot agglomerates
in our dispersion solutions:

Soot particles with a diameter of ∼ 40nm are characteristics of diesel
Euro 3 vehicle (without DPF) emissions; the other two Soot diameters are
characteristics of diesel Euro 4 vehicle with DPF emissions. [Avella, Faedo, 2008].
Soot dispersion in air takes place in the transition regime [Seinfeld, Pandis, 2006]:
particles diameter are comparable with the mean free path of air (equal to
λ = 60nm at 298K and 1atm). In this regime continuum conservation equa-
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tions can be considered, if slip correction factors CC is introduced in the
force balance equations for particle motion. Einstein di�usion coe�cients is:

D =
kTCC
3πµdP

, CC = 1 +
2λ

dP

[
1.257 + 0.4 exp

(
−1.1dP

2λ

)]
(2.2)

Brownian di�usion of Soot particles, described by the di�usive �ux deter-
mined by Einstein coe�cient, is an important process, with respect to turbu-
lent di�usion and gravitational settling, in the far-wake and canyon regions,
and in boundary layers next to rigid boundaries. Deposition and resuspen-
sion processes are described by Neumann boundary conditions for the normal
�ux of particles at the road surface, written as a dynamical balance between
deposition and resuspension (for road dust) �uxes (see later paragraphs).
Exhaust emission processes, which we insert as a linear source of emission
in the operational model or as a source on a small circular surface in the
base rear face of the vehicle in numerical simulations, are given in terms of
emission values, depending on vehicle velocities and thermal conditions of
the engine, vehicle category and technology, according to EMEP CORINAIR
emissive methodology [EMEP/CORINAIR, 2007].

Description of the emission factors. The EMEP CORINAIR method-
ology gives particulate emissions from the vehicle exhaust in the PM2.5 size
range. The calculated emission factors must be multiplied by Soot/PM2.5
ratios, given by the same methodology for di�erent vehicle technologies, in
order to obtain Soot emission factors. For an Euro3 passenger car, the frac-
tion of Soot to PM2.5 is 85%. For an Euro4 passenger car with DPF, the
fraction is 10%. From the data on Soot concentrations we can obtain the
values for primary Organic Matter concentrations, by multiplying the Soot
fraction by given OM/Soot factors for each vehicle categories. Primary or-
ganic material is in this case the mass of primary organic carbon corrected
for the hydrogen content of the organic species collected. This method does
not account for additional quantities of aerosol carbon, usually small, which
may exist either as carbonates or CO2 adsorbed onto Soot particles. Nitrates
and sulphates constitute the remaining fraction when Soot and OM do not
sum up to 100% of total PM2.5 exhaust emissions. From values of primary
OM and data on total OM (obtainable for example by multiplying the pri-
mary OM by a factor 1.5 [Seinfeld, Pandis, 2006]) we should obtain values
of secondary OM emitted by tra�c, through the use of Soot tracier method:
[OC]S = [OC]Tot − (OM/Soot)[Soot]. In general, we are not interested in
secondary components in this work. PM2.5 emission factors for EuroX gaso-
line passenger cars are given as �xed values (expressed in mg/km) for each
kind of road relative to di�erent driving cycles: urban, rural and highway.
PM2.5 emission factors for Euro1,2,3,4 diesel passenger cars are calculated
as a function of speed V . The value introduced for speed should correspond
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to the average speed during travelling and not to the instantaneous speed.
The generic function used is:

ehot = a+ bV + cV 2

whith a, b, c suitable constants. PM2.5 emission reduction percentage for
Euro 5 and 6 diesel passenger cars applied to vehicles complying with Euro
4 standards is 95%. For example, the Soot emission factors ehot(g/km) for a
diesel Euro 4 with DPF and a diesel Euro 3 without DPF motor vehicle in a
urban driving cycle, in thermally stabilised engine operation (hot), moving
at an average velocity of 42km/h, are:

ehot = 1, 7mg/km [Euro4] ehot = 17, 66mg/km [Euro3]

These factor are a little di�erent from those reported in Par�l project report
[Avella, Faedo, 2008]. This is due to the fact that in Par�l project a mean
emission factor for each driving cycle is reported, and a di�erent ratio be-
tween Soot and total primary exhaust PM for the Euro4 vehicle with DPF
is found (pactically negligible Soot fraction with the DPF device for Par�l
project, 10% fraction for EMEP-CORINAIR methodology). PM emissions
from gasoline LDV can be considered similar to passenger cars. Diesel LDV
emission factors are calculated as a function of speed for conventional and
Euro1 vehicles, and by means of reduction percentages for Euro 2,3,4,5 vehi-
cles. Diesel autobus and HDV are calculated as functions of speed, depending
also on load factor. GPL and Gas passenger cars, LDV and autobus, and
gosoline motorcycles emission factors are given as �xed values for each kind
of road relative to di�erent driving cycles. Factors in mg/km can be trans-
formed in units mg/m3 or mol/m3 by dividing for 1000· area of the circle
of the tailpipe emission and by 1000· the molar mass (in u) of the pollutant
furthermore.

Driving cycles. Typical driving cycles, obtained through a clustering sta-
tistical analysis on speed vs acceleration distribution of representative seg-
ments of data describing vehicles instantaneous speed pro�les, are given in
the context of the Artemis project [André, 2004]. European driving condi-
tions are divided in 12 kinematical representative classes, reported in the
Table in Figure 4 with their kinematical characteristics.

The urban and the motorway (extra-urban) driving cycles, obtained by
juxtaposing representative kinematic segments of driving classes, covers a
lenght of 3, 4km and 82km respectively, and are composed by the repre-
sentative classes reported in Table 5, with relative percentages of the total
covered mileage

Data of urban driving cycle will be considered as input data on vehicle ve-
locity, accelerations and covered mileage in the analysis of pollutant tailpipe
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Figure 4: European driving conditions for 12 typical classes, obtained by automatic
clustering of speed pro�les recorded on-board vehicles [André, 2004]

Urban driving cycle % Motorway driving cycle %

Congested, stops 14 3
Urban dense 22 2
Congested, low speed 10 1
Free-�owing 14 2
Free-�owing, unsteady speed 23 5
Secondary roads, unsteady speed 5 6
Secondary roads 7 3
Secondary roads, steady speed 1 4
Main roads, unsteady speed 2 12
Main roads 0 6
Motorway, unsteady speed 1 20
Motorway 0 36

Table 5: Urban and Motorway (extra-urban) driving cycles described in function
of its structure under typical driving conditions
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emissions in a urban area. Canyon street geometry will be considered for
urban and main roads, whereas open street geometry will be considered for
secondary and motorway roads.

2.2 Non-exhaust emissions - De�nition of road dust

Non-exhaust particles, which contribute to the coarse mode of urban aerosol
mass distribution, are produced as a result of the interaction between a vehi-
cle tyre and the road surface, and also when the brakes are applied to decel-
erate the vehicle. In both cases, the generation of shear forces by the relative
movement of surfaces is the main mechanism for particle production. A sec-
ondary mechanism involves the evaporation of material from surfaces at the
high temperatures developed during contact. The other component is com-
ing from wear processes and resuspension processes of deposited road dust on
road surface. Tyre and road surface interactions generate about 70% of parti-
cles by mass mainly in the 2.5−10µm size range [EMEP/CORINAIR, 2007].

Experimental characterization. The APART (Abrasion PArticles pro-
duced by Road Tra�c) project [Empa, 2009], held by the swiss research
organization Empa and by PSI (Paul Scherrer Institut), through a series of
measures in di�erent street con�gurations (urban canyon and extra-urban
road) in the city of Zurich, has identi�ed and quanti�ed, by using proper
statistical analysis on collected data, the tra�c related non exhaust PM10
fraction, both for the entire vehicle �eet and for LDV and HDV vehicles sep-
arately. Principal Component Analysis is applied to the chemical dataset to
identify the most signi�cant factors responsible for the variance of chemical
species in PM10 road dust. Antimony (Sb) and other traciers are correlated
to tra�c emissions coming from brake wear. Other typical traciers for this
emissive component are steel, which is the support material of brake pads,
Cu, Mo, Sn, Sb and Ba. Speci�cal traciers for tyre wear component are Zn
and black carbon. Factor analysis cannot distinguish between vehicle and
road wear and road dust resuspension emissions, due to their similar chem-
ical composition and to their strongly correlated temporal variation. One
way to proceed, once identi�ed the principal factors of the component anal-
ysis, should be to write a multilinear regression model with autocorrelation
terms for the concentration data (�nite di�erence stochastic model whith
autoregressive terms), and to quantify the resuspension source through the
strenght of autocorrelation terms. In [Empa, 2009] the di�erent emission
factors for road wear and resuspension sources are obtained through the
analysis of data obtained in laboratory experiments by using two di�erent
mobile load simulators (wheel devices which reproduce the loads and wheel
�ow of LDV and HDV vehicles on roads with di�erent pavements).

Both in the case of street canyon and extra-urban motorway, the brake
wear component is characterised by a pattern of Fe, Cu, Zn, Mo, Zr, Sn,
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Sb and Ba. Its size distribution is in the range ≥ 1µm for LDV vehicles,
whereas more than 75% of brake wear particles coming from HDV vehicles
are in the coarse mode in the range 2, 5− 10µm.

Tyre wear component is not quantitatively important in PM10 fraction,
whereas in > 10µm size fraction it constitutes a contribution of 5− 10% to
TPS.

The Zurich road dust consists mainly of two components : a) roughly
50% of the mass is crustal material (SiO2, CaO), b) carbonaceous matter,
being the sum of OM + EC and comprising also about 35% of mass. It is
generated mainly by mineral sources, building materials and deposited wear
components from tra�c.

The PM10 area deposition of road dust determined for the Zürich sites
in February 2008 varied within a range of 0.2 − 3.0mg/m2, according to
increasing tra�c density. The maximum concentration is for a street canyon
with a heavy tra�c load, an old surface with many repair patches (asphalt
concrete). A value of 0.5mg/m2 is measured in an open intersection road
with new porous asphalt surface.

The mass fraction of dominant components of PM10 road dust and the
size distribution obtained during the analysis of the abrasion particles pro-
duced by a cycle of operation of a mobile load simulator are shown in �gure
5.

A comparison between road dust analysis for the city of Barcellona can
be made [Amato et al., 2009]. The city centre showed values of PM10 road
dust within a range of 3−23mg/m2, whereas levels reached 24−80mg/m2 in
locations a�ected by transport of uncovered heavy trucks. The largest dust
loads were measured in the proximity of demolition/construction sites with
values up to 328mg/m2. The city centre road dust pro�les were enriched in
OC, EC, Fe, S, Cu, Zn, Mn, Cr, Sb, Sn, Mo, Zr, Hf, Ge, Ba, Pb, Bi, SO42,
NO3, Cl and NH4, but several crustal components such as Ca, Ti, Na, and
Mg were also considerably concentrated. Locations a�ected by construction
and demolition activities had high levels of crustal components such as Ca,
Li, Sc, Sr, Rb and also As whereas ring roads, characterized by a higher load
of uncovered heavy trucks showed an intermediate composition.

Constituents with the highest average concentrations are SiO2 (18, 8%),
Ca (12, 8%) and OC (10, 7%). Averaging the concentration of trace ele-
ments in all the collected samples, the highest elements were found to be
Ti, Zn,Ba,Cu, and Mn. The chemical results highlighted the importance
of distinguishing four categories in order to shed light on how local factors
in�uence sediment properties, classifying the sites according to the type of
environments. City centre locations show similar elemental components and
concentrations of road dust as in the Zurich experiment.
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Figure 5: Mass fraction of dominant components of Zurich PM10 road dust and
size distribution for an experiment with mobile load simulator [Empa, 2009]
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Road dust component de�nition. As we have from experimental data,
even if the di�erent wear processes are characterized by speci�cal traciers
of di�erent chemical compositions (mainly Fe, Cu and Sb for break wear
components, silicon, carbon and mineral compounds for road wear and re-
suspension components, and Zn for tyre wear components), their components
are all distributed in the coarse mode, and can be characterised in principle
by a single mode, with a size corresponding to the dominant peak in an
analysis of road dust, and with a density calculated by a "preferential ox-
ides" like algorithm, derived by the analysis of the fractions of the dominant
components of road dust. As we don't dispose of direct measures of Milan
road dust, we refer to measures coming from APART project [Empa, 2009],
as representative data on a urban typical sample of road dust, with a weak
in�uence of building works and external sources.

We will consider in our simulations initial road dust concentrations with
the same values as those reported in APART data, and a single coarse com-
ponent describing all wear and resuspension of road dust processes, with an
average diameter and a density equal to (see Figure 5):

Road dust

Average diameter 7µm
Density 0, 36 ρSiO2 + 0, 28 ρOM + 0, 125 ρCaO + 0, 075 ρSoot

+0, 075 ρFe2O3 + 0, 06 ρAl2O3 = 2361, 72km
m3

Table 6: Road dust average diameter and density.

We have considered a road dust component composed of chemical con-
stituents in the proportions reported in Figure 5, and reference values for
the oxides densities. The organic component OM of ambient particles is a
complex mixture of hundreds of organic compounds. We consider as the
dominant OM tracier of road dust styrene butadiene coming from tyre wear
[EMEP/CORINAIR, 2007]. Other dominant components, such as benzopy-
ren hidrocarbons, should be associated to exhaust emissions in the accu-
mulation mode. We could consider di�erent classes of coarse particles for
each di�erent wear process as well, but in that case it would be di�cult
to characterise the single component of resuspended road dust. Simulating
the dispersion process of this coarse component we consider as sources all
emission contributions given by the di�erent wear processes, by background
and initial road dust concentrations.

Description of the emission factors. Emission factors, depending on
vehicle velocity, vehicle category, driving cycle, are calculated by means of
EMEP CORINAIR emissive methodology [EMEP/CORINAIR, 2007]. Road
wear emission factor for a new or a damaged asphalt are extrapolated by data
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taken from [Empa, 2009]. We report here the procedure used to determine
wear emission factors, as derived from EMEP-CORINAIR methodology. Re-
ceptor modelling is the widely-used technique for determining particle emis-
sion rates for tyre wear. Another method is to record wear rates of particles
by periodic weighing of tyres, and then to deduce an emission factor by as-
suming that a fraction of this wear is airborne. Particle emission factors
from tyre wear are expressed in term of Total Suspended Particles (TSP) in
the following way:

etyre = eTSP · fT i · ST (V )

where eTSP is TSP mass emission factor from tyre wear [mg/km], given for
the di�erent vehicle categories; fT i is the mass fraction of tyre-wear TSP
that can be attributed to the considered particle size class i (0.6 for the
PM10 class); ST (V ) is the tyre-wear correction factor for a mean vehicle
travelling speed V , expressed as a linear function of V . The TSP emission
rates do not assume that all tyre wear material is transformed into suspended
particulate, as a large fraction may be produced as dustfall particles. From
literature we deduce a fraction of TSP which is directly airborne equal to
50% [Hedalen, 1994]. The determination of particle emissions from brake
wear is obtained by direct measurement using a simulated wheel or brake
operation in the laboratory (the simulation of brake operation in the labo-
ratory is straightforward). Similarly to tyre wear, brake wear emissions can
be calculated as:

ebrake = eTSP · fT i · ST (V )

The mass fraction of brake-wear TSP that can be attributed to the PM10
class is 0, 98. A 55−70% of the total wear material is in the form of airborne
particles; experimental studies reported in [EMEP/CORINAIR, 2007] iden-
tify that 3− 30% of brake debris falls on the road, 16− 22% is retained on
the wheel, and 8− 25% is retained on the brake and steering and suspension
equipment. The wear rate of asphalt, at least in terms of airborne wear
particles, is even more di�cult to quantify than tyre and brake wear, partly
because the chemical composition of bitumen is too complex for quanti�ca-
tion with receptor modeling, and partly because primary wear particles mix
with road dust and resuspended material. Therefore, wear rates and particle
emission rates for road surfaces are highly uncertain. Emission rates from
asphalt wear are calculated through the formula:

easphalt = eTSP · fT i
The mass fraction of asphalt-wear TSP that can be attributed to the

PM10 class is 0, 50. As for the tyre wear component, the fraction of road
wear TSP which is directly airborne is 50% [Hedalen, 1994]. For the heavy-
duty truck case, emission factor needs to take vehicle size into account, in
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term of the number of truck axles and load factor. According to EMEP-
CORINAIR values of eTSP , tyre wear emissions for an HDV are ∼ 2 times
the emissions for a passenger car (depending on the load factor), brake wear
are ∼ 3 times and road wear are ∼ 6 times the corresponding emissions for
a passenger car.

2.3 Deposition and Resuspension

By analysing the diurnal variation pro�les of NOx, Soot and CO2 reported
in [Empa, 2009], we can see that they are strongly correlated to HDV and
LDV frequency pro�les, whereas Sb and coarse Si pro�les show a distinct
peak at midday, correlation with wind velocity and no signi�cant correlation
with daily tra�c frequency pro�les. An explanation to these behaviours
is that NOx, Soot and CO2 emission processes are dominated by vehicle
exhaust emissions, whereas Sb and coarse Si, which are traciers of brake
wear and resuspended road dust respectively, are correlated to wind velocity
in its e�ect on increase of resuspension intensity. We see that resuspension
is an important process for road dust component dynamics, but is negligible
for pollutant dispersion in the accumulation mode. Thus we consider a total
removal of Soot component when deposited on road surface.

Dry deposition and resuspension processes are described by a Neumann
boundary condition for the normal �ux of particles at road surface, writ-
ten as a dynamical balance between deposition and resuspension �uxes (we
don't consider deposition on the vehicle boundary and on the walls of the
canyon). Following [Seinfeld, Pandis, 2006], dry deposition �ux is directly
proportional to the local concentration C of depositing pollutant at some
reference height z above the surface:

F (z) = −vd(z)C(z)

The proportionality constant vd (for z �xed) between dry deposition �ux F
and pollutant concentration is the deposition velocity. The process of dry
deposition is viewed as consisting of three steps: the particle is �rst vertically
transported through the logarithmic boundary layer via turbulent transport
to a thin viscous sublayer adjacent to the boundary; as a second step the
particle is transported by Brownian di�usion and sedimentation across the
viscous sublayer to the boundary itself; lastly the particle is uptaken at the
boundary. In the modelization, the transport in the bu�er sublayer (the
transition layer between the logarithmic and the viscous sublayers, in which
the eddy di�usivity is described by Van-Driest law [Wilcox, 1998], as we will
explain later) is not considered. This is not a problem, as the parametrisation
of the three processes are determined from experimental data �tting based
on the dominant dimensionless groups considered above. The deposition
velocity is modelled using the concept of the resistance analogue, in which
the transport of the pollutant to the surface is assumed to be governed by a
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sequence of three resistances in series, representing aerodynamic resistance
in the logarithmic BL, resistance to transfer across the viscous sublayer,
resistance to surface uptake, and one in parallel, representing gravitational
settling. In �gure 6 we report a scheme for the three resistances in series.

Figure 6: Resistance model for dry deposition

C3 is the pollutant concentration at the top of the logarithmic BL; C2

that at the top of the viscous sublayer; C1 at the bottom of the viscous
sublayer; C0 that at the surface boundary. Particle settling operates in
parallel with the three resistances in series. It is assumed that particles
adhere to the surface on contact, so that the surface resistance is 0. Particle
sedimentation processes are inserted in viscous resistance. At steady state
it is assumed that the total �ux F is constant and equal across the di�erent
sublayers. The deposition �ux is:

F (z) =
C3(z)

rtot(z)
= C3(z)vd(z) =

C3 − C2

ra
+ vsC3 =

C2

rb
+ vsC2

so that:

vd(z) =
1

ra + rb + rarbvs
+ vs
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where vs is the particle settling velocity, dependent on particle density and
diameter, on acceleration of gravity and on air viscosity:

vs =
ρpd

2
pgCc

18µ

The aerodynamic resistance is calculated on the basis of gradient transport
theory and similarity between mass transfer and momentum transfer. For
momentum transfer, vertical turbulent transport is determined by the z com-
ponent of Reynolds stress tensor in the direction parallel to the wall, which
can be written, in the logarithmic BL, in terms of the vertical gradient of
parallel velocity multiplied by an eddy di�usivity proportional to the dis-
tance from the wall (details will be shown in next chapters). In analogy
with momentum transfer, aerodynamic resistance for mass transfer can be
written as:

ra =
1

ku∗

[
log

(
z

z0

)
+ ΦM (ζ)

]
where z0 is the roughness length of the boundary surface, k is Von-Karman
constant, ΦM (ζ) is linked to integrals of empirically determined functions
of the dimensionless variable ζ = z/L, with L the Monin-Obukhov length
(representing the ratio between buoyancy and mechanical turbulence), which
take into account the thermal stability of the atmosphere [Seinfeld, Pandis, 2006].
In the case of neutral stability of the atmosphere, ΦM (ζ) = 1.

The resistance to transfer in the viscous layer depends on viscous di�u-
sivity and on surface characteristics (in the hypothesis that particles depo-
sition on surface elements by impaction and interception are considered as
occurring in the viscous sublayer, with a surface resistance equal to zero and
C0(0) = 0):

rb =
1

3u∗(Eb + EIM + EIN )R1

Semi-analytical descriptions of particle collection e�ciencies are largely de-
rived from wind tunnel studies [Slinn, 1982], adapted here for small collectors
constituted by asphalt collectors (with average diameter dc) with negligible
form drag (only viscous drag is relevant for asphalt collectors). Eb is the
collection e�ciency from brownian di�usion, expressed in terms of Schmidt
number Sc = ν

D as:

Eb = Sc−2/3

EIM is the collection e�ciency from impaction, governed by the dimension-
less Stokes number St = vsu∗/gdc, which represents the ability of a particle
to deviate from the �ow streamline. It is expressed as:
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EIM =
St2

1 + St2

The e�ciency of particle collection by interception depends on the particle
diameter and the average dimension of the collectors. It can be expressed
as:

EIN =
dp

dp + dc

A variety of expressions have been proposed in literature for all the collection
e�ciency parameters. R1 is a sticking coe�cient, representing the fraction
of particles, once in contact, that stick to the surface. It can be expressed
as:

R1 = exp
(
−
√
St
)

As St→ 0, R1 = 1, which means that small particles do not possess su�cient
inertia to bounce o� from a surface. We must observe that the values of u∗,
for di�erent vehicle categories, road type and driving conditions, must be
given from our results of vehicle wake and canyon solutions. The adopted
methodologies will be shown in Section 4.3. We only note that, due to
stability and convergence issues of the discretized turbulence model which
we will consider, turbulence equations will be integrated starting from the
logarithmic BL, in the adjacent discretization cells to the surface boundaries;
the resistance model of deposition velocity usefully reintroduces the viscous
layer physics in the dispersion equation for the pollutant. By considering
the case of the far-wake (at a distance 15 times the height of the vehicle, on
the centerline of the road) of a sedan vehicle �owing at 40km/h in a street
canyon, with dc = 11, 2mm, we obtain (see Section 4.3 for details and values
of deposition velocities for other cases) a value of u∗ = 0, 26m/s, and the
following values for vd for a Soot particle and a road dust particle:

Particle type vd [cm/s]

Soot 0, 25
Road dust 0, 51

Table 7: Values of vd for a sedan vehicle �owing at 40km/h in a street canyon

These should be compared to the values obtained in [Pryor et al., 2008]
for a urban environment:

There are di�erences, as we are considering di�erent density particles and
very small collectors. For the dispersion of the Soot particles, we consider
a complete removal of the deposited particles on the road surface. The
deposition �ux must be expressed at the road level z = 0, as we don't know
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Particle diameter [µm] vd [cm/s]

0, 1− 0, 2 1, 3− 3, 0
0, 2− 0, 5 0, 1− 1, 5
0, 5− 2 0, 3− 0, 8

Table 8: Data of vd in a urban context for di�erent particle dimension ranges
[Pryor et al., 2008]

in advance the value of the pollutant concentration C(z) in the logarithmic
BL: imposing a �ux condition based on the previous parametrizations of the
deposition �ux would be di�cult in the context of a �nite element method.
In order to obtain a form for the deposition velocity at the street level vd(0),
we have to integrate the conservation equation for C in the vertical direction
from the logarithmic BL to the surface:

d

dz

(
(D +K(z))

dC

dz

)
+ vs

dC

dz
=
dF (z)

dz
= 0

where K(z) is the vertical eddy di�usivity. Let us write the deposition
velocity as:

vd(z) =
F (z)

C(z)
= vs + (D +K(z))

(
C ′

C

)
−→ C(z) = C(0) exp

[∫ z

0

1

D +K(z′)
(vd(z

′)− vs) dz′,
]

Substituting into the conservation equation, we obtain the Bernoulli equa-
tion:

v′d +
1

D +K(z)
vd(vd − vs) = 0

Let us also consider an eddy di�usivity of the kind K(z) = ku∗z (we are
neglecting again the bu�er sublayer). This is a Cauchy problem; as z > 0,
there is no divergence of the equation coe�cients (u∗ > 0 for the turbulent
boundary layer), which are C∞ in the considered interval, and a unique
solution exists for z ≥ 0. It's simple, by changing �rst vd → v−1

d in the
previous equation, to �nd its general solution dependent on vd(0). Inverting
the dependence in the solution we obtain:

vd(0) =

[
1

ku∗
+

(
1

vd(z)
− 1

ku∗

)(
1 +

ku∗z

D

) vs
ku∗
]−1

,

where vd(z) is the deposition velocity obtained in the resistance model frame-
work, and z is to be chosen in the logarithmic BL. The logarithmic law of
momentum transfer is valid for a turbulent boundary layer from u∗z/ν =
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z+ = 30 to 100 and more. We can choose a value of z+ = 50. The road
surface boundary condition for Soot dispersion is thus:

N = −vd(0)C, (2.3)

whereN is the normal �ux of particles concentration C at the road boundary.
For road dust dispersion, we must consider the resuspension phenomenon.
Road dust Deposition and Resuspension processes are described by a Neu-
mann boundary condition for the normal �ux of particles (a Robin boundary
condition for C) at road surface in the description of the dispersion equation,
written as a dynamical balance between deposition and resuspension �uxes:


N = −vd(0)

θ0
C(θ0 − cs) + krescs

∂cs
∂t

+ vv
∂cs
∂x

=
vd(0)

θ0
C(θ0 − cs)− (kres + fxnv)cs + S(t),

(2.4)

whereN is the normal �ux of particles concentration C at the road boundary,
cs is the road dust concentration, vd(0) is the deposition velocity, calculated
as for the case of Soot deposition, kres is the resuspension rate (in units of
1/s), θ0 is the maximum capacity of road dust concentration entrainment
of the surface (calculated by means of asphalt parameters, as shown in the
Section 2.4) and S(t) is a source term corresponding to the road and vehicle
wear components. All terms in equations (2.4) have dimensions of [ mg

sm2 ]:
the balance equation is considered in a 2D road surface. The in�uence of
road thickness is treated through the in�uence of a dimensionless parameter
representing the �ltration dynamics, as will be explained in a moment. In
a dispersion equation for road dust in which tra�c is considered as a linear
emissive source, S(t) is the fraction of vehicle and road wear which is not
airborne, but is directly deposited on the road boundary, as expressed in
previous paragraphs (airborne vehicle wear fractions are inserted as linear
emissions at the height of the tyres). In a dispersion simulation in the wake of
a vehicle, total tyre wear emissions should be inserted as Dirichlet conditions
on tyre boundaries, whereas total road wear emission should be inserted as
in (2.4). S(t) must be transformed in an emission rate with units [mg/sm2]
from emission data expressed in [mg/km], by considering vehicle velocity and
road width. Note that, since equations are written in the vehicle system of
reference, the road dust concentration cs must translate along the road with
velocity opposite to the vehicle velocity vv. The term fxnv takes into account
the mechanism for sticking of material to the outer surface of the wheels;
road dust is thus carried along the road by this mechanism. This e�ect
can be described through proper empiric parametrizations, such as those
given in [Patra et al., 2008], in which the fraction of material removed from
a road segment along the road by one vehicle is determined through a street
canyon series of measurments in central London to be fx = 3, 9 10−4[v−1].
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By multiplying this factor by the tra�c �ow rate nv[vs
−1] and road dust

concentration cs, we obtaine the desired removal �ux. We must observe that
the particles sticked to tyre surfaces can be emitted again during the vehicle
�ow; this e�ect is implicitly described by EMEP-CORINAIR emission rates
for tyre and road wear, which are determined by receptor analysis of real-
world tra�c emissions data (and not laboratory data).

Through dimensional group analysis [Stull, 1989] [Seinfeld, Pandis, 2006],
we describe the resuspension rate as dependent on Schmidt number, friction
velocity, particles Stokes number, asphalt bulk porosity θ and surface poros-
ity θS (de�ned as the void area fraction around the surface of the particles
in a concrete asphalt), surface roughness z0 and average collectors diameter
dc. Resuspension rate has the dimension of 1/s. For the case of a concrete
asphalt, it can be dimensionalized as:

kres ∼
u∗z0

(1− θS)A2
,

where A is a collection e�ciency diameter, determined by the average grain
dimension of the components of concrete asphalt. For the case of a porous
asphalt, it can be dimensionalized as:

kres ∼
u∗z0

(1− θS)(dc)2

To determine the resuspension phenomenon dependence on physical pro-
cesses in the boundary layer, we could proceed in two di�erent ways:

• consider, as before, no surface resistance, and all processes of surface in-
teractions with deposited road dust happening in the viscous sublayer.
C2 in �gure 6 is the e�ective concentration cs at the road surface.
In the case of the deposition velocity, the empirical parameterization
was based on the consideration of the e�ect of transport in the log-
arithmic and in the viscous layers, so it was possible to neglect the
bu�er sublayer resistance. For resuspension there is no available em-
pirical parameterization, so the viscous sublayer must be joined to the
bottom of the bu�er layer, where the semi-empirical Van-Driest law
[Wilcox, 1998] for the eddy di�usivity is valid:

νT = ku∗z

(
1− e−

z+

26

)
Particles in the bu�er sublayer are transported by turbulent di�usion
with a turbulent di�usivity DT = νT . The bottom of the bu�er sub-
layer is at z+ ∼ 5 [Wilcox, 1998]. ku∗z = νT (log) is the value of eddy
viscosity in the logarithmic layer; in our analytical and numerical so-
lutions, we will start to integrate the equations from the logarithmic
layer, and we will be able to express ku∗z in terms of boundary values
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of other quantities (such as ku∗z = k
ω at the surface boundary for the

k − ω turbulence model - see next chapters for details). We have at
the bottom of the bu�er sublayer:

νT = νT (log)

(
1− e−

5
26

)
Di�usion in the viscous sublayer will dipend on a dimensionless Schmidt
turbulence number:

Sc =
ν

D +DT

We now suppose that di�usion e�ciency Eb will be expressed by the
same function as those considered in the parameterization of viscous
resistance rb, being considered a universal dependence of di�usion phe-
nomenon on the main dimensional parameters on which it scales:

Eb = Sc−2/3

• apply the gradient transport theory and the mass transfer/momentum
transfer similarity, in the hypothesis that at the steady state the �ux
across the di�erent sublayers is constant, through bu�er and viscous
sublayers. The �ux is given by:

F = C2

∫ z

0

φM (ζ)

ν + ku∗z

(
1− e−

z+

26

) dz

This integral is not exactly solvable, but can be approximated with a
power series.

We choose to use the �rst method, which is simpler and more immedi-
ate. In the case of porous asphalt, �ltration of particles inside the asphalt
medium in�uence the surface pollutant concentration. To obtain the depen-
dence on asphalt characteristics of a dimensionless factor Ef which describes
�ltration in asphalt medium, we use the solution of a �ltration equation
[Logan et al., 1995] obtained from a mass balance for a scalar c across a
layer in a packed bed:

∂c

∂t
− u∂c

∂z
+D

∂2c

∂z2
=

3

2dc

1− θ
θ

(αfη)uc,

where u is the interstitial velocity (equal to vd(0), as air velocity is supposed
to be zero in the medium), D is particles di�usivity, and the term on the right
represent the removal of particles by collectors: η is a collector e�ciency
factor, and αf an adhesion coe�cient for �ltration. Neglecting di�usion
and considering a stationary process, integrating over the thickness L of the
porous medium both in the direction of deposition and resuspension (with an
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elastic condition at the bottom side) we obtain for the e�uent concentration
c in terms of the incoming c0:

c = c0Ef = c0exp

[
−3

(1− θ)
dcθ

αfηL

]
We can suppose that the concentration of road dust cs at the surface bound-
ary is reduced by a factor of Ef when �ltration in a porous asphalt is ongoing.
We must observe that the parameter L should depend on the accumulation
of cs inside the medium, making the Ef highly non-linear in cs, and so intro-
ducing di�culties in analysing the boundary condition (2.4). The e�ect of
the accumulation of road dust in the road medium is expressed by the intro-
duction of the θ0 term in the budget equations (2.4). The collector e�ciency
factor η is equal to [Logan et al., 1995]:

η = 4

(
vd(0)dc
D

)−2/3

+
3

2

(
dp
dc

)2

where the �rst term indicate removal by di�usion (this term can be neglected
here) and the second removal by interception (the only term to be consid-
ered). The forms of resuspension rate for concrete asphalt kres,c and for
porous asphalt kres,f are thus:

kres,c = αc
u∗z0Eb

(1− θS)A2
,

kres,f =
u∗z0EbEf

(1− θS)(dc)2

The adhesion constants αc and αf in the resuspension rate must be ad-
justed in order to �t the experimental results reported in [Empa, 2009]. (A
complete model should incorporate electrostatic and London-Van der Walls
forces between particles and collectors to describe the attachment process.
PM surface electrostatic potentials are a di�cult to �nd, and the attach-
ment process is here quantized through measurements). Surface roughness
z0, as represented by the International Roughness Index (IRI), is taken from
[Sayers, Karamihas, 1998], for di�erent conditions of asphalt maintenance
(new, average and damaged asphalts) and for a dense bituminous and a
porous asphalt. IRI is a mathematical transform of the true sampled ele-
vation pro�le of a road, in units of slope [m/k], which is a pro�le index for
road roughness (intended as the deviation of a pavement surface from a true
planar surface with characteristic dimensions that a�ect vehicle dynamics
and wear processes). Di�erent roughness indexes are associated with dif-
ferent wavelengths associated to a spectral decomposition of the elevation
pro�le. To obtain the IRI value, the pro�le is �ltered with a moving average
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(low-pass �lter) with a 250mm base lenght. Successive �lters are applied
to correlate the pro�le index to the output of response-type road roughness
measuring systems (for example devices which measure the suspension de�ec-
tion of simulated passenger cars). Concrete and porous asphalt pro�les show
di�erent undulations and di�erent power spectra, but can have similar IRI.
IRI is in�uenced by wavelengths ranging from 1, 5 to 30 m (corresponding
to the peaks in power spectra of elevation pro�les of a porous and a bitumi-
nous asphalt respectively, considering the range of wavelengths passed after
applying the IRI �lters). We multiply IRI values by a wavelength relevant to
deposition and resuspension processes (1m), with a weight factor determined
by the relative intensities of power spectra of the true elevation pro�les (i.e.
with no �lter applied, as reported in [Sayers, Karamihas, 1998] for a typi-
cal porous and concrete asphalt) at that wavelenght to obtain z0. Values
for di�erent asphalt types will be reported in the next paragraph. The pa-
rameter L, which describes the depth of the porous medium in which the
deposited particles �lter, can be de�ned by means of the lift-thickness param-
eter [Blades, Kearney, 2004], introduced as the depth of the porous asphalt
wear layer, whose value is approximately four times the diameter of the nomi-
nal top size asphalt aggregate (when the minimal requirements on the porous
asphalt permeability are satis�ed [Hardiman, 2004]). The surface porosity
θS is calculated from the bulk porosity θ as in [Ouchlyama, Tanaka, 1984],
For the particular case of the packing of uniformly sized spheres:

θ = 1− 1

8

[
1 +

13

2
(1− θs)

]
For the case of dense asphalts (such as asphalt concrete), the resuspension
factor depends only on θS , which can be calculated by the nominal value
of the bulk porosity θ given in the asphalt technical papers [SPENS, 2009].
In this sense we consider the bulk porosity as not de�ned for an asphalt
concrete.

2.4 Asphalt parameters and characteristics

A range of asphalt based and concrete based road surfaces are in use through-
out Europe, with block paving being used in many urban areas. Concrete
surfaces are composed of coarse aggregate, sand and cement. Asphalts are
mixtures of mineral aggregate, sands, �ller, and bitumen binder, though
the composition can vary widely both from country to country and within
countries. Generally, the stone content is around 90− 95% and the bitumi-
nous binder around 5− 10%. The properties of asphalt can be modi�ed by
additives such as adhesives, polymers, and di�erent types of �ller.

In this work we consider four types of asphalt mixtures:

• AC11: this is an asphalt concrete mixture. AC11 is the asphalt mixture
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constituting the road surface in the urban canyon frame considered in
Ref. [Empa, 2009].

• PA11: this is a porous asphalt mixture. PA11 is the asphalt mixture
constituting the road surface in the freeway frame considered in Ref.
[Empa, 2009].

• Porous asphalt obtained by a grading design as in [Hardiman, 2004].
In [Hardiman, 2004] a grading design is obtained by �rstly varying the
percentage of aggregate with maximum size of 20, 14, 10 and 5 mm,
and compacting the aggregates, in order to achieve a minimum dry
aggregate porosity and a stable aggregate matrix. Fine aggregate frac-
tions are then added, with a binder content of 4, 5%, in order to achieve
a target porosity and Marshall stability and permeability requirements.
We consider a porous asphalt mixture constituted by the stable coarse
aggregates matrix.

• Optimal porous asphalt. We consider a stable coarse aggregate matrix,
as found in [Hardiman, 2004], and consider the addition of fractions of
�ne aggregates, in order to reduce porosity while keeping the average
grain size as high as possible; this leads to the minimization of the
value of the resuspension factor. The porosity depends on the coarse
component and the �ne aggregate fractions by means of a random
packing theory of spherical spheres with discrete size distribution di =
1, . . . , n, with fractions fi relative to each component of the mixture
and average size d̄ [Ouchlyama, Tanaka, 1984]:

θ = 1−
∑n

i=1 d
3
i fi∑n

i=1(di − d̄)3fi + 1
n̄

∑n
i=1[(di + d̄)3 − (di − d̄)3]fi

where:

n̄ = 1 +
4

13
(7− 8θ∗)d̄

∑n
i=1(di + d̄)2

(
1− 3

8
d̄

d̄+di

)
fi∑n

i=1[d3
i − (di − d̄)3]fi

θ∗ is the porosity value obtainable in the packing of uniformly sized
spheres, which, for a random packing, is equal to 0, 399. We must ob-
serve that such an aggregate may not satisfy Marshall stability require-
ments; in this case it should be necessary to use emulsion binders to in-
crease the stability properties of the aggregate [Blades, Kearney, 2004],
which should cause a raise in the asphalt production costs.

To calculate z0 of the two design mixtures, we observe that by increasing the
values of the average diameter of the particles composing the mixture (with-
out changing surface porosity), IRI, and so surface porosity, increases by the
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same amount [Sayers, Karamihas, 1998]. This increase must be weighted by
the relative values of surface porosity between the design mixture and the
reference mixture (PA11). θ0, the maximum capacity of road dust concen-
tration entrainment of the surface, can be calculated as the total mass of
road dust which can be entrained in a volume 1[m2] ∗ (L+ z0)[m]) of road,
considering the obstruction to entrainment in the total volume at disposal
by interception of road dust particles to asphalt collectors (expressible as the
ratio of their diameters, as expressed previously):

θ0 = (θL+ θsz0)

(
dp
dc

)
ρp

The term θL should not be considered for a concrete asphalt. In the next
Table we show the values of the parameters for the di�erent types of asphalt.

θ z0

good
[mm]

z0

dam-
aged
[mm]

dC
max
[mm]

dC
aver-
age
[mm]

θ0

good
[mg/m2]

θ0

dam-
aged
[mg/m2]

CA11 0, 05 1, 26 4, 00 8, 00 5, 43 59, 06 187, 51
PA11 0, 25 2, 18 6, 00 11, 20 9, 89 19552, 88 21025, 71
Design 0, 35 2, 28 6, 00 20, 00 12, 55 37953, 03 39687, 27
Optimal 0, 26 2, 08 20, 00 12, 50 28178, 00

Note that the maximum capacity of road dust for a porous asphalt is greater
than the largest dust loads measured in the proximity of demolition/construction
sites in Barcellona (reported in Section 2.2). Considering road dust initial
concentration loads for urban and extra-urban streets with the same values
as those measured in Zurich (which vary in the range 0, 2 − 3mg/m2), we
should not be aware of surface dust overload, in which case we should change
the modelization for the dynamical budget (2.4).

2.5 Non-Exhaust estimates in literature

In literature there is an empiric model, developed by the US-EPA, called
"Paved Roads", which estimates the quantity of particulate emissions from
resuspension of loose material on the road surface, due to vehicle travel on
a dry paved road, using the following empirical expression:

E = k(Sl)0,91(W )1,02

where E is the particulate emission factor (in units [gv−1/km]); k is a
particle size multiplier for particle size range (0, 62[gv−1/km] for PM10;
0, 15[gv−1/km] for PM2.5); Sl is road surface silt loading; W is the av-
erage weight of the vehicles traveling the road. In [Giovannini, Grechi, 2003]
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Source Quanti�cation Method EF EF EF
Fleet LDV HDV
mgv−1/km mgv−1/km mgv−1/km

PM10 Measures CMB 71 24± 8 498± 86
Brake wear PMF MR 15 8± 4 81± 39
Exhaust PMF MR 29 15± 6 155± 67
Resuspension PMF CMB 27 1± 11 262± 115
Road wear MLS < 3a,d 7a 80b
Resuspension MLS 5d 76a 110c 660b

Table 9: Emission Factors (EF ) for the individual sources of tra�c-related PM10
for the urban canyon case in Zurich. a = AC new; b = bad condition AC; c =
good condition AC; d = PA new. PMF = Positive Matrix Factorization; CMB =
Chemical Mass Balance; MR = Multilinear Regression. Fleet is 10% HDV

results are reported of the application of the "Paved Roads" model to the
estimation of the resuspension contribution to tra�c-related PM10 emission
in the Florence urban area (year 2000). The result was that ∼ 60% of all
tra�c-related emissions was emitted by resuspension process.

In the context of the APART project [Empa, 2009], evaluation of non-
exhaust contributions to tra�c-related PM10 tailpipe emissions have been
conduced for di�erent street con�gurations and vehicle categories. In table
9 we show the results for the estimation of the tailpipe emission factors for
the individual sources valid for a urban street canyon with heavy tra�c in
Zurich, and for di�erent type of asphalts in the mobile load simulator (MLS)
experiments, with the indication of the method adopted to obtain them.

In this case 38% of �eet-related PM10 tailpipe emissions comes from re-
suspension; resuspension fraction of total emissions is 4% for the LDV and
53% for the HDV case. These di�erence in resuspension fractions for the
LDV and the HDV cases is due to the fact that road dust is resuspended
and kept suspended in the atmosphere mainly by HDV generated turbu-
lence, and LDV resuspension emissions are limited by the low road dust
concentration deposited on the road surface. The mg v−1/km unit is not the
most appropriate unit to de�ne the resuspension emission factor; the most
appropriate unit would be mg/sm2.

In Table 10 we show the results for the estimation of the tailpipe emission
factors for the individual sources valid for an extra-urban freeway (Reiden),
with the indication of the method adopted to obtain them.

In this case 55.8% of �eet-related PM10 tailpipe emissions comes from
resuspension; resuspension fraction of total emissions is 56% for the LDV
and 55.6% for the HDV case. A quanti�cation of the resuspension factor
associated to the resuspension process was not possible, due to the lack of
a chemical pro�le analysis of the road dust deposited on the road surface
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Source Quanti�cation Method EF EF EF
Fleet LDV HDV
mgv−1/km mgv−1/km mgv−1/km

PM10 Measures MR 86 50± 13 288± 72
Brake wear PMF MR 3 1, 6± 1, 1 9± 7
Exhaust PMF MR 35 20, 4± 7 119± 38
Unexplained CMB 48 28± 14 160± 82
(Resuspension)

Table 10: Emission Factors (EF ) for the individual sources of tra�c-related PM10
for the freeway case in Reiden. PMF = Positive Matrix Factorization; CMB =
Chemical Mass Balance; MR = Multilinear Regression. Fleet is 15% HDV

for the case of the freeway in Reiden. In order to investigate the in�uence
of asphalt porosity on the resuspension phenomenon, a quantity of 10g of
sampled road dust has been placed on an AC and on a PA asphalt before the
start of a road simulator ride. In Figure 7 we show a comparison between
PM10 emission factors pro�les in time for the two cases.

The graphs show that resuspension emission is dominant for at least
the �rst 30 minutes. The emission factor in the case of the AC asphalt
are greater than those relative to the PA case: a porous surface retain the
deposited road dust more e�ciently than a dense (concrete) one. We will
show in next paragraphs how resuspension is a�ected by asphalt parameters
in the context of our modelization.

2.6 Tailpipe emissions for urban and extra urban driving

cycles

We now introduce a model to determine the tailpipe emissions of tra�c-
related PM10 for particular tra�c con�gurations. Total tra�c-related PM10
emission factors (Etot, in

mg
hours·km) at the tailpipe are given by:

Etot = Eexhaust + Ewear + Eresusp,

The exhaust emissions are expressed as a sum of the contribution from the
thermal stabilized phase of engine operation (Ehot) and from the engine
warming phase (Ecold).

Ehot,jk = Njehot,jk,

where Ehot,jk is the total hot emission at the tailpipe relative to a vehicle
of category j on a road branch of type k; Nj is the number of vehicles of
category j per hour on the road branch k; ehot,jk is the hot PM10 emission
factor in mg/km depending on vehicle category and road type, determined
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Figure 7: Road dust resuspension emission factors vs time in the case of road
simulator ride on AC11 and PA11 asphalts. Left panel: graph at full scale. Right
panel: zoom on the y axis.

through EMEP-CORINAIR emissive methodology, as expressed in Section
2.1. A sum on all j categories must be performed in order to obtain the total
exhaust emissions per hour on a road branch of type k. Multiplying these
emission factors by the length in km covered by vehicles of category j on
arch type k, Mk, and summing on all arch types composing a typical driving
cycle or real tra�c data, we would obtain the total hot exhaust emission
factor in mg/h:

Ehot,jk = NjMkehot,jk.

For the engine warming phase contribution:

Ecold,jk = βjNjehot,jk

(
ecold
ehot

∣∣∣∣
j

− 1

)
,

where Ecold,jk is the total cold emission at the tailpipe in mg
hkm relative to

a vehicle of category j on a street arch of type k; βj is the fraction of the
vehicle route driven in the warming phase of the engine. The β parameter
depends on ambient temperature and on trip length with speci�ed functions.
An average trip length must be used when we are not working with a speci�c
driving cycle, in which total trip mileage for a single vehicle is known. A
European value of 12, 4km has been established for the average trip length
value [EMEP/CORINAIR, 2007]. Cold start over-emission is attributed to

urban driving only. The correction factor ecold
ehot

∣∣∣∣
j

is determined for each ve-

hicle category through EMEP-CORINAIR emissive methodology.

40



Ewear, in
mg
hkm , is calculated by summing the emission contributions from

each wear process i = 1, 2, 3, corresponding to tyre, brake and asphalt wear
processes:

Ewear,ijk = Njewear,ijkfair,i

ewear,ijk values are given through EMEP-CORINAIR methodology, depend-
ing on vehicle velocity and category, road type and asphalt conditions, as
expressed in Section 2.2. fair,i is the fraction of wear emission which is air-
borne, whose value for each wear process is reported in Section 2.2. The
resuspension emission factors, in mg

hkm , are given by:

Eresusp,jk = Njrs,jkPd(t) = rstot,jkPd(t),

where rs,jk is the fraction of road dust that is resuspended due to the passage
of one vehicle. Njrs,jk = rstot,k is the total resuspension rate (in 1/h) due to
the passage of all vehicles of category j (summing on all j) for a given road
type k. The fraction of road dust that is resuspended due to the passage
of one vehicle in 1h is related to the emission rates (in 1/s) introduced in
equation (2.4) by the relation:

rs,jk = kres,jk

[
1

s

]
· 3600[s]

The resuspension emissions depend on the quantity of road dust available
at the road surface Pd(t) for a given road framework. To obtain the linear
concentration Pd(t) in mg/km it's necessary to multiply the road dust con-
centrations, as reported in [Empa, 2009] in mg/m2, by a factor 1000 ·W ,
whereW is the width of the road (in m). To determine the evolution in time
of road dust quantity for each road type, we recall equation (2.4), and solve
a balance equation:

dPd(t)

dt
=
Pk
θ0

(θ0 − Pd(t))− rstot,kPd(t),

where Pk is the road dust production term, expressed as the fraction of wear
emissions from each vehicle that are not directly emitted in air but deposited
on road surface plus a deposition component:

Pk = Njewear,ijk(1− fair,i) + deposition

The solution of this equation is (in mg/km):

Pd(t) =
Pkθ0

Pk + rstot,kθ0
+

[
Pd(0)− Pkθ0

Pk + rstot,kθ0

]
exp

[
−
(
Pk
θ0

+ rstot,k

)
t

]
(2.5)
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At the equilibrium, the stationary road dust concentration (in mg/km) for
a road framework of type k is:

Pd(t) =
Pkθ0

Pk + rstot,kθ0
=
Eresusp,jk
rstot,jk

(2.6)

From equation (2.5) or (2.6) we can calculate the values of the adhesion con-
stants αc and αf in the resuspension rates kres,c and kres,f , by considering
experimental data and numerical results. In [Empa, 2009] road wear and
road dust emission rates were derived from measurements with two di�erent
types of mobile load simulators on di�erent types of road pavement (asphalt
concrete, porous asphalt) with di�erent conditions of conservation. The ex-
perimental set-up allowed for a separate characterisation of the emissions
caused by fresh in-situ abrasion and by resuspension of previously deposited
dust. These estimates are more accurate than speci�c quanti�cation of PM10
emissions due to abrasion and resuspension from road pavement obtained by
PMF analysis on roadside measurements. Equation (2.5) should be applied
to the time pro�le of road dust emission rates obtained during the opera-
tion of road simulators; unfortunately, no measurement on initial road dust
concentrations was taken in the experiment, and equation (2.5) cannot be ap-
plied to identify the values of the adhesion constants in the emission rates.
Another approach is to consider the application of equation (2.6) to data
coming from roadside measurements in the urban canyon and in the free-
way case. Data on road dust concentrations, averaged between the values
obtained at di�erent samples at each site (8 primary and secondary roads
in the urban area of Zurich have been considered to sample and analyse de-
posited road dust concentrations) for three consecutive days at the end of a
dry period, show an overall stationarity of average values. Road dust analy-
sis has not been performed for the case of the freeway; anyhow, a secondary
road framework in Zurich with similar tra�c regime, the same porous as-
phalt and similar street geometry as the freeway case has been considered
for road dust sampling (Hardstrasse). We use the value of stationary road
dust concentration relative to this secondary road site in Zurich as the value
of the stationary concentration in the freeway case. Data of resuspension
emission factors for LDV and HDV, tra�c statistics and street geometry are
reported in [Empa, 2009] for the two cases. We summarize them in Table
11.

Let us rewrite equation (2.6) as:

EFresusp,jkNj = PCd(t) · 1000 ·WNj(kres,jk) · 3600,

where EFresusp,jk is the resuspension emission factor (in [mg/km]) as ex-
pressed in Table 11 for vehicle category j and road type k, and PCd(t) is
the stationary road dust concentration, in mg/m2, for each road type.

Let us start from the Urban case. We consider the HDV resuspension
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Street type Width Asphalt Tra�c statistics Road dust Resuspension
m [v/h] [mg/m2] emission

[mg/km]

Urban 20 AC11 LDV: 1132[v/h] 3 LDV: 1± 11
Bad condition HDV: 96[v/h] HDV: 262± 115

v = 30[km/h]

Extra Urban 24 PA11 LDV: 2550 [v/h] 0, 5 LDV: 28± 14
4 lanes New HDV: 310 [v/h] HDV: 160± 81, 8

v = 120[km/h]

Table 11: Data of resuspension emission factors for LDV and HDV, tra�c statistics
and street geometry for the Urban and Extra-Urban cases.

emission, since it has a lowest relative error derived from the PMF analysis.
Substituting values and expressions, we have:

261, 8

[
mg

km

]
= 3

[
mg

m2

]
· 1000

[
m

km

]
· 20[m]

(
αc

u∗z0Eb
(1− θS)A2

[
1

s

]
· 3600[s]

)
We need to know the average value of the factor u∗Eb for an HDV vehicle
�owing at 30km/h in a canyon street (in urban dryving cycle) in order to
obtain the value of αc. We suppose that the average resuspension e�ect
induced by the vehicle is determined mainly inside its near-wake. We can
de�ne the following average value, obtained as a result of our turbulence
simulations (see Chapter 4):

1

Wlω

∫
ω
u∗Sc

−2/3 dxdy = 5, 3129

[
m

s

]
from simulations

where the integral is over the road surface in front, under and behind the
vehicle extending for the lenght of its developed near-wake (indicated as ω
in the domain of integration), and lω is the longitudinal dimension of the
domain (considered as 8 times the vehicle length behind the vehicle, and 1
time the vehicle length in front of it). Considering the values of z0, θs and
A for an AC11 in bad condition, as reported in Section 2.4, we obtain:

αc = 1, 676 · 10−9 (2.7)

Note that in this case the resuspension rate and the sticking rate of road
dust to the vehicle tyres are:

kres,c = 1, 21 · 10−6[1/s]

fxnv = 10, 4 · 10−6[1/s]
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The sticking rate to tyre surfaces is dominant over the resuspension rate in
removing deposited road dust. We must observe that we are considering
HDV vehicle moving at 30 km/h. For an HDV moving at 100 km/h the av-
erage value of u∗Eb, calculated in the context of our turbulence simulations,
is equal to 41, 86 [m/s], so that kres,c = 9, 56 · 10−6, and become compara-
ble to tyre sticking rate. (All these conclusions are to be intended as order
of magnitude estimates, since measures are lacking and incomplete). From
equation (2.6) we can estimate an average deposition rate in the given road
framework. We have:

Pd(t) =
(
∑

ij Njewear,ijk(1− fair,i) + deposition)θ0

(
∑

ij Njewear,ijk(1− fair,i) + deposition) + (
∑

j Njkres,jk · 3600)θ0

Substituting the values for θ0 relative to a damaged AC11 asphalt, values
for wear emission processes estimated through the PMF analysis of data
measurment (with the associated fi factors), data on tra�c counting and on
the average resuspension factor for both LDV and HDV vehicles moving at
30 km/h, we obtain:

deposition

[
mg

kmh

]
= 11251

The deposition rate is comparable with the component of Pk coming from
wear processes, which in this case is

∑
ij Njewear,ijk(1− fair,i) = 13954 mg

kmh .
Let us now consider the Extra-Urban case, and the LDV resuspension

emission.

28

[
mg

km

]
= 0, 5

[
mg

m2

]
·1000

[
m

km

]
·24[m]

{u∗z0Eb exp

[
−3 (1−θ)

dcθ
αfηL

]
(1− θs)(dc)2

[
1

s

]
·3600[s]

}
The average value of the factor u∗Eb for an LDV vehicle �owing at 120km/h
in an open street framework (in extra-urban dryving cycle) is:

1

Wlω

∫
ω
u∗Sc

−2/3 dxdy = 10.2051

[
m

s

]
from simulations

We note that this value is lower than the value associated to an LDV vehicle
moving at 120km/h in a street canyon (due to urban driving cycle and
canyon geometry): u∗Eb/Wlω = 11.5167[m/s]. Considering the values of z0,
θ, θs and dc for a new PA11, as reported in Section 2.4, we obtain:

αf = 606193 (2.8)
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Note that in this case the resuspension rate and the sticking rate of road
dust to the vehicle tyres are:

kres,c = 6, 48 · 10−7[1/s]

fxnv = 27, 6 · 10−5[1/s]

The sticking rate to tyre surfaces is high and dominant over the resuspen-
sion rate in removing deposited road dust due to the high vehicle frequency
(heavy tra�c). We should point out that the estimates of the fx term in
[Patra et al., 2008] are obtained in the context of the analysis of roadside
data for a urban primary road in London with heavy tra�c, and don't distin-
guish between LDV and HDV. By considering HDV moving at an average ve-
locity of 90km/h in the freeway (open street geometry), u∗Eb = 24, 41 [m/s],
we can substitute in the formula for kres,c (with the αf just calculated), and
compare the two rates for the HDV case:

kres,c = 6, 08 · 10−6[1/s]

fxnv = 3, 36 · 10−5[1/s]

We highlight the fact that by calculating kres,c by starting with the data
of HDV resuspension emission rates in equation (2.6), we obtain kres,c =
3, 70 · 10−6[1/s]. A propagation of the errors associated to the data given
in [Empa, 2009] shows that this value and the value calculated from the αf
determined with LDV data have overlapping intervals of con�dence. Cal-
culation of the deposition rate is not possible for the extra-urban case, as
a separation of road dust emission between a resuspension component and
road wear component is not available.

With di�erent vehicle velocities the resuspension factors kres,c and kres,f ,
for each vehicle category and for di�erent driving conditions, (which has been
determined here for the reference velocities of tra�c condition analysed in
the experiments in [Empa, 2009]), vary according to power laws, (determined
by our numerical simulations results by considering the variation of the term
u∗Eb with vehicle velocity), introduced in Section 4.3. We write:

kres,jk = kres,jk(ref)

(
v

vref

)njk
(2.9)

and this must be substituted in the form of Eresusp,jk in the tailpipe emission
model.

The tailpipe emissive model

Etot = Eexhaust + Ewear + Eresusp

has been applied to estimate tra�c-related PM10 emission contributions,
from each tra�c source, in the case of the typical urban and extra-urban
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Road dust resuspension factor SV LDV HDV

Extra Urban cycle 40 % 46 % 48 %
Urban cycle 26 % 38 % 53 %

Table 12: Resuspension factors of Road dust as percentage of the total tra�c -
related PM10 emissions in a typical urban and extra - urban guide cycles for SV,
LDV and HDV.

driving cycles. Data on tra�c statistics are reported in [André, 2004], and
brie�y summarised in Table 5. We use as initial data of road dust concentra-
tion, for urban and extra-urban roads, the values sampled in APART project
for the Urban and the Extra-Urban case, and consider AC11 asphalt in good
condition for urban and PA11 in good condition for extra-urban streets. The
velocity variations of the moving vehicles and tra�c densities in�uence the
emission processes as explained previously. We show in Table 12 only the
resuspension emissions percentage of the total tailpipe PM2.5 + Road Dust
tra�c related emissions. Details on the emission rates values, in [mg/h], will
be shown for the case of Milan in Section 2.8 .

We see from these results how resuspension emission is an important
process to determine the tra�c-related PM10 concentrations at urban scale.
These data are in line with the measurements and the phenomenological
model already described [Empa, 2009] [Giovannini, Grechi, 2003]. Sedan re-
suspension factor is lower than that of LDV and HDV vehicles, in line with
results in [Empa, 2009], previously reported. The reason is that much of
the available road dust is kept in resuspension by turbulence generated by
LDV and mainly HDV (The mass budget for Pd(t) in the tailpipe emission
take in consideration all the contributions from SV, LDV and HDV vehicles
at a time). This e�ect is greater in the case of Urban guide cycle, where
interactions between turbulent wakes must be taken into account. For extra
urban guide cycle the wake of the vehicles are considered non-interacting,
and moreover open road conditions enhance deposition of resuspended road
dusts.

2.7 Preventive and mitigative reduction strategies

Di�erent reduction strategies of the total quantity of tra�c-related PM10
emissions are being employed by legislators, in di�erent urban contexts. We
can distinguish between preventive and mitigative reduction strategies. Mit-
igative measures aim at reducing the impact of tra�c-related urban pollu-
tion by lessening PM10 concentrations already emitted in urban air. These
can consist in tra�c control and tra�c pollution charges, in street surfaces
washings and in other control measures on the existing PM10 urban sources.

46



Figure 8: Map of the urban centre of Milan. ECOPASS area (inside the red contour)
occupies a surface of 8, 2km2. The total urban surface is 181km2.

Preventive measures aim at reducing the impact of tra�c-related urban pol-
lution by proper design technologies which ensure lower emission loads of
urban sources before they are emitted.

The e�ect of cyclic road washings with pressurized water and mechanical
sweeping washing actions has been studied in [Amato et al., 2009], carried
out in one of the busiest roads of the city centre of Barcelona during hours
at night. It has been found that these actions correspond to a reduction of
road dust initial concentration at morning of 93% of the total. An example
of a mitigative strategy consisting of tra�c control is the Ecopass urban toll,
implemented in Milan. ECOPASS is a tra�c-congestion charge (through
toll-pay barriers), in force since january 2008, extended to the urban area
within the city's ancient Walls ring, which imposes an entry toll to drivers
of private vehicles of the most pollutant technologies, in order to enter a
tra�c-limited zone inside the center of Milan, delimited by an ECOPASS
(the Bastioni) circle. In Figure 8 we show a topographic map of the urban
centre of Milan, with evidence of the tra�c-limited zone (red ring). E�ects
of this reduction strategy will be derived in the next Section.

An example of a preventive reduction strategy for tra�c exhaust emis-
sions is the design of new engine technologies in order to comply with the
European legislation on air pollution. As a possible preventive reduction
strategy for tra�c non-exhaust emissions, we consider the choice of opti-
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mal geometric parameters of the asphalt in order to minimize resuspension
factor. The resuspension factor, as written in Section 2.3, is a function of
the geometric parameters: bulk porosity θ, surface porosity θS , average di-
ameter of asphalt grains (asphalt aggregate) dc and surface roughness z0.
These parameters can vary in an asphalt according to the aggregate grad-
ing, the di�erent technology used to compact and bind asphalt grains and to
the maintenance condition of the asphalt surfaces (a damaged asphalt has
a greater z0). We choose the values of these parameters which characterize
AC11, PA11, design and optimal asphalts as introduced in Section 2.4 . In
order to characterize the resuspension factor dependence on asphalt param-
eters, let's de�ne the quantity RAB, which is the percentage of reduction of
the road dust resuspension factor when changing two di�erent types of as-
phalt (from A to B). Table 13 shows the values of RAB, considering a dense
asphalt (concrete asphalt AC11), two porous asphalts characterized by two
di�erent values of bulk porosity θ (a porous asphalt PA11, with θ = 0, 25,
and a porous asphalt obtained by a grading design, with θ = 0, 35), and
an optimal asphalt, as introduced in paragraph 2.4. Di�erent conditions of
asphalt maintenance (asphalt in good condition and damaged asphalt, ex-
pressed in terms of di�erent values of surface roughness z0), are considered.

Asphalt A Asphalt B good damaged

concrete θ = 0, 25 RAB = 33, 4% RAB = 42, 3%
θ = 0, 25 θ = 0, 35 RAB = 22, 6% RAB = 26, 0%
θ = 0, 25 optimala RAB = 39, 2%
θ = 0, 35 optimala RAB = 21, 4%

Table 13: RAB for di�erent kinds of asphalt and di�erent conditions of asphalt
maintenance. aFor optimal asphalts we consider only good conditions of mainte-
nance.

According to the results obtained in [Empa, 2009] and shown in �gure 7,
the resuspension factor for a porous asphalt is smaller than that for a concrete
asphalt by a factor of ∼ 40%. Changing a damaged into a good-condition AC
asphalt, a resuspension factor reduction of ∼ 76% has been obtained. This
is in accordance with results obtained in road simulators experiments for an
HDV vehicle in [Empa, 2009] and reported in Table 9: HDV resuspension
emission rate for an AC asphalt in bad condition is reduced by a factor of 83%
when passing to a good condition AC11 asphalt. This is an important check
of our parametrization of the resuspension factor in function of geometrical
parameters of the asphalt.
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2.8 Application to the case of Milan

Lastly, we apply the tailpipe emissions analysis to typical tra�c situations in
the city of Milan, relying on data provided by the Agenzia Mobilità Ambiente
Territorio (AMAT), [AMAT, 2008], [AMAT, 2010], and studying the e�ect
of implementations of di�erent reduction scenarios to the total amount of
tra�c-related PM10 emissions. Vehicular tra�c data collected by AMAT
[AMAT, 2008] are available until the 2006 inventory. These data give a
synthetic description of the Milan road network, constituted by an oriented
graph, determined by road branches between net junctions. For each road
branch are speci�ed the following data:

• length

• road branch typology (highway, principal or secondary road, local road)

• jurisdiction

• free stream velocity along the road branch

• road branch capacity in equivalent vehicles

• free stream curve parameters

Data are given on tra�c �uxes in terms of equivalent vehicles per hour for
di�erent time slots, distinguished between light vehicles (sedan vehicles and
motor cycles) and heavy vehicles (heavy trucks). Throughout equivalence
coe�cients, speci�ed by AMAT in its vehicle counting methodology, and
data on vehicle �eet relative to Milan, we obtain the number of vehicles per
category and technology passed along the road branch. Free stream curve
can be used to obtain the e�ective velocity of vehicles.

Here we show a sample data analysis on tra�c counting data for a given
road branch inside the Bastioni circle for the year 2006, for a typical weekday
in the morning rush hour (7 : 30 − 8 : 30 am). Let us �rst notice that the
Milan road network description given in AMAT �les is constituted by data
on more than 23000 road branches, and total tra�c counting for a weekday
rush hour covers, when compared with AMAT statistical investigation on
people mobility in Milan areas [AMAT, 2008], ∼ 70 % of all people mobility.
Raw data from AMAT counting are in the format given in Table 14, where,
together with the identi�cation numbers of junctions determining the road
branch, the numbers of equivalent LV, HV and total �eet vehicles (EV) per
hour are given. V is the free-stream velocity, C the road branch capacity in
equivalent vehicles; dist is the length of the given road branch; α and β are
the free-stream curve parameters. The equivalence coe�cients are reported
in the Table 15, where LDV truck stands for a weight smaller than 3,5 tons;
HDV truck for a weight smaller than 7,5 tons; Truck trailer for a weight
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Node

A

Node

B

LV HV EV type V

(km/h)
C dist

(km)
α β

31055 31256 317 63 376 secondary 40 601 0,23 1,46 3

Table 14: AMAT counting data

LV Motorcycle Motor vehicle LDV truck

0,7 1 1

HV HDV truck Truck trailer Bus

1,5 2 2

Table 15: equivalence coe�cients

more than 7,5 tons.
From data on vehicle �eet composition in the city of Milan, relative to 2006,
we obtain the percentages of vehicles per category and engine technology. In
Table 16 we report the data on vehicle category composition.

Motor

vehicles

Motorcycles LDV

trucks

HDV

trucks

Trucks

trailer

Buses

78, 71% 13, 88% 6, 21% 0, 22% 0, 68% 0, 29%

Table 16: percentages of vehicles per category for the year 2006 in the city of Milan

Data on engine technologies composition has been extrapolated as well. From
the percentages of vehicle categories in �eet composition we can extrapolate
the "average" proportions of vehicle categories in a single vehicle counting
along a road branch. For the case of LV counting, proportions of Motor
vehicles (Mv), Motorcycles and LDV trucks can be expressed as:

Motor vehicles/1 = Motorcycles/0, 17 = LDV trucks/0, 08.

For the case of HV counting, proportions of HDV trucks, Truck trailers and
Buses can be expressed as:

HDV trucks/0, 32 = Truck trailers/1 = Buses/0, 43.

From the number of LV equivalent vehicles (#LV ) we can get the number
of total Motor vehicles (#Mv) by considering the previous proportions and
the equivalence coe�cients:

50



#Mv =
( #LV

1+0,08+(0,7∗0,17)

)
From this number (#Mv) we can get the numbers of total LDV trucks and
Motorcycles multiplying by the proportions introduced previously. The same
goes for the analysis of HV equivalent vehicles data. In Table 17 we show
the data elaboration conduced on the given road branch data.
Multiplying the data of vehicles counting relative to the rush hour of the
morning by the temporal expansion coe�cients, we obtain the number of
vehicles per hour for the three di�erent reference time slots for a typical
weekday. The temporal expansion coe�cients are reported in Table 18.
From free-stream curve we obtain the e�ective velocity veff of vehicles along
the road branch. Free-stream curve is the relation:

veff = V (1− α
(#EV

C

)β
),

where V is free-stream velocity, C is the road branch capacity and #EV is
the number of equivalent vehicles counted. For the case of the given road
branch analysed here, veff = 25, 7 km/h.

Starting from the tra�c data for a typical weekday in the year of 2006,
we obtain, using ECOPASS monitoring data [Automobile Club Italia, 2010],
a suitable description of tra�c conditions during the time of application
of the ECOPASS toll. Toll-free private vehicles are gasoline vehicles with
technologies Euro III, IV and V; diesel vehicles with Euro IV and V with
Anti Particulate Filter; hybrid vehicles, electric vehicles, GPL and Methane
engined vehicles; motorcycles.

ECOPASS monitoring data, divulged by AMAT, give, for the year of
2010, the tra�c reduction scenario inside the ECOPASS area given in the
Table 19.
Considering data on vehicle �eet composition for the year of 2010, and con-
sidering tra�c variations induced by the application of ECOPASS toll on
the road branches inside ZTL and on those crossing the Bastioni circle, we
can update tra�c data relative to a typical weekday for the year of 2006. We
add the amount of toll-subjected vehicles removed from the road branches
crossing the Bastioni circle to those passing along and around the Bastioni
circle (which automatically increases tra�c congestion on the latter road
branches), in order to conserve tra�c �uxes. In the case of the particular
road branch considered, which is inside the ZTL, the new tra�c data are
reported in Table 20.
Data on vehicles technologies are then extrapolated, considering the varia-
tions induced by the application of the ECOPASS toll.

We apply the tailpipe emission model previously introduced to Milan
data, under di�erent tra�c-related emission scenarios, in order to evaluate
more appropriate PM10 reduction strategies. Figure 9 shows the estimated
emissions (as percentages) from di�erent tra�c-related sources (for a typi-
cal weekday morning , from 7 to 10 am) as a function of di�erent asphalt
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Mv LDV

tr.

HDV

tr.

Tr.

trailer

Motorcycles Buses Tot

259 20 5 17 45 7 353

Gasoline 181 2 0 0 0

Euro0 32 0 0 0 20 0
Euro1 23 0 0 0 11 0
Euro2 59 0 0 0 10 0
Euro3 32 0 0 0 2 0
Euro4 32 0 0 0 0 0
Euro5 0 0 0 0 0 0

GPL 2 0 0 0 0

Euro0 0 0 0 0 0
Euro1 0 0 0 0 0
Euro2 0 0 0 0 0
Euro3 0 0 0 0 0
Euro4 0 0 0 0 0
Euro5 0 0 0 0 0

Methane 0 0 0 0 0

Euro0 0 0 0 0 0
Euro1 0 0 0 0 0
Euro2 0 0 0 0 0
Euro3 0 0 0 0 0
Euro4 0 0 0 0 0
Euro5 0 0 0 0 0

Diesel 74 17 4 17 6

Euro0 4 2 2 8 1
Euro1 1 1 0 1 0
Euro2 10 4 0 3 2
Euro3 36 7 0 3 2
Euro4 20 0 0 0 0
Euro5 0 0 0 0 0

Table 17: data elaboration conduced on the given road branch data
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Time slot Expansion coe�cient

07− 10 h 2,33
10− 16 h 6
16− 20 h 3,52

Table 18: temporal expansion coe�cients

LDV,HDV Mv total

toll-subjected variation -60,4 % -71,2 % -68,4%
toll-free variation +74,9 % +24,0 % +27,2%
total variation -26,1 % -10,8 % -13,0%

Table 19: ECOPASS monitoring data

conditions, before the enforcement of the tra�c-restriction regulation named
ECOPASS. The estimated emission rates are given in the next Table.

Emission rates [mg/h] Total Exhaust Wear Resuspension

Pre Ecopass 11177992 4479230 1682976 5015786
Pre Ecopass - new asphalts 8653037 4479230 1275357 2898431
Pre Ecopass - damaged asphalts 15899178 4479230 1682976 9736972
Pre Ecopass - optimal asphalts 6624614 4479230 1275377 870007

By considering the contributions in the di�erent time slots, we can obtain
total emission per day, for a typical weekday. In the afternoon and evening
time slot, the resuspension rate is 20% and 19% of the total respectively.
The emission data can be disaggregated per vehicle category and technology
(for the exhaust emission), per wear process and per road type. For exam-
ple, in the pre-Ecopass case, the wear processes, in the morning time slot,
contribute to the total PM10 emission rates by the factor: 32% from the tyre
component; 39% from the brake component; 29% from the asphalt compo-
nent. The contribution of the resuspension component to the total PM10
emissions rises from 19% for an optimal asphalt to 61% for a damaged one.
On the other hand, comparing a standard pre-ECOPASS asphalt condition
with a new asphalt cover, the resuspension-linked emissions decrease from
45% to 33%. Table 21 reports estimates of PM10 emission reduction (ex-
pressed as percentage), under a set of selected scenarios based on di�erent
asphalt characteristics (pre-ECOPASS situation).
Quite surprisingly, a damaged asphalt extended to all the road branches
causes a rise in PM10 resuspension of more than 90%, while an optimal as-
phalt produces a drop higher than 80%. Therefore, impressive reductions of
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Mv LDV tr. HDV tr. Tr. trailer Motorcycles Buses Tot

240 8 4 13 42 8 315

Table 20: Updated tra�c data for the considered road branch

Figure 9: Emission (percentages) from di�erent tra�c-related PM10 sources in
di�erent asphalt conditions.
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Total Exhaust Wear Resuspension

pre-Ecopass + new

asphalts

Emission reduction
from pre-Ecopass

-22,58 % +0,0 % -24,21 % -42,21 %

pre-Ecopass + dam-

aged asphalts

Emission reduction
from pre-Ecopass

+42,23 % +0,0 % +0 % +94,12 %

pre-Ecopass + opti-

mal asphalts

Emission reduction
from pre-Ecopass

-40,73 % +0,0 % -24,21 % -82,65 %

Table 21: Estimation of PM10 emission reductions for di�erent scenarios depending
on asphalt characteristics.

PM10 emissions would be expected if these asphalt-based reduction strate-
gies were applied to the whole urban street network , which is, however,
quite unlikely. In Table 22, the e�ects of four di�erent PM10 reduction
strategies are compared, namely (i) the implementation of the ECOPASS
tra�c-congestion charge (through toll-pay barriers) extended to the urban
area within the city's ancient Walls ring (red ring in �gure 8), (ii) a fre-
quent road washing applied to the outer urban area comprised between the
Walls ring and the external beltway (pink ring in �gure 8), (iii) road washing
applied to all the secondary roads in the urban area of Milan and (iv) the
simultaneous adoption of both measures. (We characterize the e�ect of road
washing as a reduction of initial concentrations of road dust by a factor of
93%, corresponding to the results reported in [Amato et al., 2009].
The estimated emission rates in mg/h are:

Emission rates [mg/h] Total Exhaust Wear Resuspension

Ecopass 9688600 3473559 1629436 4585605
pre-Ecopass + street washing (ii) 10780295 4479230 1682976 4618089
pre-Ecopass + street washing (iii) 8269788 4479230 1682976 2107583

As the results of Table 22 point out, not even the joint application of both
measures is so e�ective as a preventive policy based on appropriate asphalt
structure and maintenance (the reduction scenario of all secondary roads
washing is unrealistic). Accordingly, a more e�ective PM10 emission con-
trol strategy (limited to tra�c sources) should be addressed mainly to the
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Total Exhaust Wear Resuspension

Ecopass scenario

Emission reduction from
pre - Ecopass

-13,3 % -22,5 % -3,2 % -8,6 %

pre-Ecopass + street

washing (ii)

Emission reduction from
pre - Ecopass

-3,55 % -7,92 %

pre-Ecopass + street

washing (iii)

Emission reduction from
pre - Ecopass

-26,02 % -57,98 %

Ecopass + street wash-

ing (ii)

Emission reduction from
pre - Ecopass

-16,28 % -22,45 % -3,2 % -15,17 %

Table 22: Estimation of PM10 emission reductions for ECOPASS application and
street washing.
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selection and employment of suitable road asphalts and their accurate main-
tenance. A more thorough investigation on realistic asphalt maintenance
strategies applied to selected urban streets, inclusive of economic evalua-
tions of the connected investment and management costs, is currently in
progress.
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3 CFD approach

The adopted modelization technique consists of a Computational Fluid Dy-
namics (CFD) approach, to model the air �ow in an open street or a street
canyon with tra�c �uxes, coupled to a dispersion model for the two classes
of non-interacting pollutants (Soot and road dust) introduced in Chapter
2, which are the traciers of tra�c related exhaust and non-exhaust emis-
sions (here we call generally the coupled modelization of air �ow and pol-
lutant dispersion as CFD approach). The dispersion model is described by
an advection-difussion equation, assuming that both Soot and Road dust
are passive traciers which do not in�uence the air �ow. This represents a
reasonable hypothesis: Soot dispersion (dp ∼ 100nm) takes place in the
transition regime, whereas road dust (dp = 7µm) takes place in the contin-
uum regime [Seinfeld, Pandis, 2006]. This means that in both the dispersion
cases the equations of continuum mechanics can be applied. Moreover, the
e�ect of induced �uid motion by the motion of PM10 particles is negligible
[Seinfeld, Pandis, 2006]. A CFD model consists of:

• Turbulence modeling: Turbulence is an irregular process, character-
ized by the presence of a large range of excited length and time scales,
extending on a continuum spectrum from the mean scales in which
energy is injected to the viscous scales in which it is dissipated; it is
fully three-dimensional and it is characterized by spatial and temporal
instabilities. Virtually all �ows of engineering interest are turbulent.
The transition to turbulence is driven by the instabilities of laminar
�ows when the Reynolds number is large. For a given turbulent �ow
application, the physically meaningful �ow properties are usually re-
lated to statistically averaged (mean) or smoothed quantities, rather
than to the complete time history over all spatial scales until the dis-
sipative ones. Turbulence modeling is the mathematical description of
turbulence which gives the desired �ow properties or statistics starting
from the Navier Stokes (NS) equations of �uid dynamics.

• Determination of analytical solutions: in the case of the simpler
Turbulence models and geometries, analytical solutions for the aver-
aged �ow quantities can be derived. This solutions can serve as useful
operational tools to calibrate more complex Turbulence models and
their numerical resolution.

• Numerical resolution: the discretization of Turbulence models poses
speci�c problems on grid generation and solver algorithm development.

As seen in Chapter 2, the turbulent quantities needed to describe the dom-
inant dynamical processes of Soot and road dust dispersion are the friction
velocity u∗ and turbulent di�usivity DT at the mean spatial scales of the
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near-wake regiond behind a moving vehicle. This quantities are related to
the mean statistical averages of the turbulent �ow properties, and can be
described by a statistical approach to Turbulence modeling. We will treat
standard algebraic and 2− equations models of turbulence, obtained by sta-
tistically averaging the NS equations and making suitable hypothesis on
the Turbulence enhanced di�usivity. Algebraic models, for the di�erent ge-
ometries considered, will lead to analytical solutions, used both to de�ne the
dispersion models and to calibrate the 2− equations Turbulence models used
to describe the friction velocity and the turbulent di�usivity in the near-wake
region of a moving vehicle.

3.1 Turbulence modeling

Since Turbulence consists of random �uctuations of the various �ow prop-
erties, a statistical approach has been devised by Reynolds in order to in-
troduce a Turbulence modeling, in which all quantities are expressed as the
sum of statistical mean and �uctuating parts [Wilcox, 1998]. For station-
ary Turbulence, Reynolds averaging consists in a time averaging U(x) of an
instantaneous quantity u(x, t):

U(x) = lim
T→∞

1

T

∫ t+T

t
u(x, t) dt

Other averaging concepts are spatial averaging, suitable for homogeneous
Turbulence, and ensemble averaging, de�ned in terms of measurements from
N identical realizations of the turbulent �ow. In the ergodic hypothesis,
ensemble averaging is equal to time and spatial averaging in the case of a
stationary and homogeneous Turbulence. We express the instantaneous i−
component of velocity as the sum of a mean and a �uctuating part:

ui(x, t) = Ui(x, t) + u′i(x, t)

In order to have a practical de�nition of the time averaging operation, a
time T which is very long compared to the maximum period of the velocity
�uctuations is chosen. For �ows in which the mean and the �uctuating com-
ponents are correlated, this procedure is ill-de�ned, and ensemble averaging
must be considered [Wilcox, 1998]. The Reynolds-averaged incompressible
NS equations are:

∂Ui
∂xi

= 0

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

(
2νSij − u

′
iu
′
j

) (3.1)

where the overbar indicates the averaging operation, ρ is the �uid density,
Sij is the mean strain rate tensor
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Sij =
1

2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
,

and

τij = −ρu′iu
′
j

is called the Reynolds stress tensor. It is a second order correlation of turbu-
lent quantities coming from the averaging operator acting on the non-linear
advective term of the NS equations. The Reynolds stress tensor is a symmet-
ric tensor, and thus has six independent components: Reynolds averaging
has produced six new unknown variables. We have four equations (for an
incompressible �uid without the e�ect of buoyancy, the NS equations for the
velocity �eld is decoupled from the energy equation), and ten unknowns, so
that the problem is under-determined. Taking moments of the NS equations
and Reynolds averaging the result, we can determine the dynamic equation
for the Reynolds stress tensor:

∂τij
∂t

+Uk
∂τij
∂xk

= −τik
∂Uj
∂xk
− τjk

∂Ui
∂xk

+ εij −Πij +
∂

∂xk

[
ν
∂τij
∂xk

+Cijk

]
(3.2)

where:

εij = 2µ
∂u
′
i

∂xk

∂u
′
j

∂xk
;

Πij = p′
(
∂u
′
i

∂xj
+
∂u
′
j

∂xi

)
;

Cijk = ρu
′
iu
′
ju
′
k + p′u

′
iδjk + p′u

′
jδik.

The phisical meaning of this terms will be explained later. In general, a
conservation equation for a second moment quantity contains the material
derivative term, a production term, a dissipation term, and a viscous plus a
turbulent transport term. We have now ten equations, but we have intro-
duced twenty-two new unknowns (coming from the third order correlation
tensor and the two new second order correlation tensors). This illustrates
the closure problem of Turbulence: because of the non linearity of the NS
equations, taking higher and higher statistical moments, we generate new
unknowns at each level. Turbulence modeling has the function to intro-
duce approximations for the unknown correlations in terms of the mean �ow
properties that are already known, thus closing the system.

Reynolds Averaged Navier Stokes (RANS) equations describe the turbu-
lent �ow at the level of its stationary mean components. This components
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correspond to spatial scales at which energy is introduced into the �ow (in-
tegral scales, i.e. the scales of the order of magnitude of the correlation
length of the velocity). Turbulence �eld at the dissipative and the inertial
scale (i.e. the scale at which energy is transferred from the integral to the
dissipative scales), as well as instantaneous �elds, are not described. The
ratio between the integral (l0) and the dissipative (lD) length scales is given
by [Wilcox, 1998]:

l0
lD

=

(
l0v0

ν

)3/4

= Re3/4

where v0 is a characteristic velocity of the �ow, generally identi�ed with the
square root of the mean square of velocity, and Re is Reynolds number. The
two scales are more separated, and so the inertial range is more developed,
for greater Reynolds number. A typical length scale for the inertial range is
the Taylor length λ:

λ =
√

5l
1/3
0 l

2/3
D

In the context of a numerical solution of the discretized 3-D NS equations,
direct numerical simulations would require a number of collocation points
∼ Re9/4 in order to resolve all the turbulent scales. This is only a�ord-
able, with modern computation machines, only for laminar �ows or �ows
with an homogeneous and isotropic Turbulence. RANS models resolve the
mean stationary scales, and all sub-grid physics is described by the hypoth-
esis of enhanced di�usivity. Large Eddy Simulation (LES) models resolve
the instantaneous Turbulence �eld at the inertial scales, leaving to sub-grid
modelization the task of modeling the turbulent di�usivity at the viscous
scales. Details will be given in a moment. The simplest RANS Turbulence
models are known as algebraic models. These models use the Boussinesq
eddy-viscosity approximation to compute the Reynolds stress tensor as the
product of an eddy viscosity νt and the mean strain rate tensor. The Boussi-
nesq approximation is formulated by an analogy with momentum transport
at the molecular level. In the latter context, the instantaneous �ux of x−
directed momentum across a surface element in the plane y = 0, for a shear
�ow in which the mean velocity U(y) is in the x− direction, is:

dpxy = ρ
(
U + u

′′)
v
′′
dS

where u
′′
and v

′′
represent random molecular motion. Performing a statis-

tical average on the instantaneous quantity, we have for the viscous stress
tensor acting on y = 0:

txy = −ρu′′v′′
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This resembles the Reynolds stress tensor: a stress that is generated from
a momentum �ux can always be written in this form. The only di�erence
is that, at the macroscopic level, turbulent �uctuations u

′
and v

′
appear in

place of the random molecular �uctuations. Referring to arguments from
the kinetic theory of gases, we can express the shear stress as:

txy ≈
1

2
ρvthlmfp

dU

dy
= µ

dU

dy

where vth is the thermal velocity, and lmfp is the mean free path of the
perfect gas. The ≈ is due to the fact that a momentum de�cit

m
[
U(0)− U(−lmfp)

]
≈ lmfp

dU

dy

is associated to each molecule starting from a point below the y = 0 plane.
This approximation is valid if:

lmfp
L
� 1 where L =

∣∣dU/dy|∣∣d2U/dy2|

Another approximation is introduced, in order to assume that u
′′
remains

Maxwellian even in the presence of shear:

lmfp �
vth∣∣dU/dy| ,

which means that molecules experience many collisions on the time scale of
the mean �ow. In analogy with molecular transport of momentum, Prandtl
introduced the mixing length hypothesis: in turbulent �uid motion �uid par-
ticles coalesce into lumps that cling together and move as a unit. In this
context, for a mean shear �ow U(y), we can write the Reynolds stress in the
form:

τxy =
1

2
ρvmixlmix

dU

dy
(3.3)

with a mixing length lmix replacing lmfp. For the mixing length velocity
vmix, analogous to the thermal velocity of a pure gas, Prandtl postulated
the form:

vmix = constant · lmix
∣∣∣∣dUdy

∣∣∣∣ (3.4)

This can be seen as the �rst order approximation of the Taylor expansion
of the velocity �uctuation. The mixing length is not an intrinsic property
of the �uid, but depends on the particular �ow in consideration. It must be
speci�ed in advance, as part of the Turbulence modeling. For this reason
algebraic models are incomplete models of Turbulence. We can absorb the
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constant in Equations (3.3) and (3.4) in the de�nition of lmix, and write for
the Reynolds stress tensor:

τxy = µT
dU

dy
with µT = ρl2mix

∣∣∣∣dUdy
∣∣∣∣ (3.5)

For a general �ow, the mean strain rate tensor must be considered in the
de�nition of the Reynolds stress tensor in Equation (3.5). Prandtl postu-
lated that for �ows near solid boundaries the mixing length is proportional
to distance from the surface. This is a reasonable assumption, which leads
to the determination of the law of the walls (logarithmic pro�les in scaled
distance from the wall), as will be shown in the context of analytic solutions
of algebraic Turbulence models. For free shear �ows, a mixing length propor-
tional to the width of the layer δ is usually assumed. In the context of a wake
solution over a solid boundary, di�erent prescription for the mixing length
have to be made in di�erent regions of the domain, and matching between
the di�erent solutions, in the context of a singular perturbation theory, must
be performed. Details will be shown in Section 4.1. Prandtl also proposed a
simpler eddy viscosity model for free shear �ows:

µT = αρ
[
Umax(x)− Umin(x)

]
δ(x) (3.6)

where x is the direction parallel to the �ow, α is an empirical constant, Umax
and Umin are the maximum and minimum values of the mean velocity in the
layer, and δ is the width of the layer. For a wake solution in presence of a
boundary layer, the

[
Umax(x)−Umin(x)

]
term should be substituted by the

value of the velocity external to the layer.
Concerning the Boussinesq approximation, closed to a solid boundary we

have [Wilcox, 1998]

lmix
L
≈ k ; lmix ∼

vmix∣∣dU/dy∣∣
where k = 0, 41 is the Von Karman constant. Thus, the theoretical foun-
dation of the mixing-length model is weak; despite this, algebraic models of
Turbulence give results which reproduce well the experimental measurements
[Wilcox, 1998], when suitably calibrated with empirical results. Besides this,
algebraic models of Turbulence usually lead to analytical solutions for the
description of the considered �ow in particular regimes (for example when
self-similarity laws and separated solutions are valid, and when the prop-
erties of the �ow are slowly varying), which can be used to calibrate more
complex Turbulence models for complex �ows, and to build up operational
tools for dispersion modeling. Di�erent algebraic Turbulence model will be
introduced Section 4.1, in the context of �nding analytical solutions for �ow
in the case of the canyon geometry and of the vehicle geometry.
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More complex Turbulence models are based upon the equation for the
turbulent kinetic energy k. These Turbulence models are usually solved in
their discretized counterparts via numerical simulations. We will treat and
use the two standard 2− equation models, i.e. the k−ε and the k−ω models.
In one equation models, a characteristic velocity scale for the Turbulence
mixing is given by the square root of k, so that the eddy viscosity is given
by:

µT = constant · ρk1/2l (3.7)

where l is a turbulent length scale. The Boussinesq eddy viscosity approxi-
mation is assumed, and the model is again incomplete, since l must be related
to some typical �ow dimension. An equation for k is obtained by taking the
trace of Equation (3.2), and observing that τii = −2ρk:

ρ
∂k

∂t
+ ρUj

∂k

∂xj
= τij

∂Ui
∂xj
− ρε+

∂

∂xj

[
µ
∂k

∂xj
− 1

2
ρu
′
iu
′
iu
′
j − p

′u
′
j

]
(3.8)

The various terms in Equation (3.8) represent physical processes occurring
as Turbulence is transported through the given �ow. The term on the right
hand side is the Eulerian derivative of k, giving its rate of change as the �uid
moves in a xi sistem of reference; the �rst term on the right hand side is the
production term, and represents the rate at which work is done by the mean
strain rate against the Turbulence stresses; the second term on the right and
side is the dissipation term, represented by the mean rate at which work is
done by the �uctuating part of the strain rate against the �uctuating vis-
cous stresses; the third term on the right hand side is the molecular di�usion
plus the turbulent transport plus the pressure di�usion term. The produc-
tion, dissipation, turbulent transport and pressure di�usion terms involve
unknown correlations, and must be represented as known mean quantities
by suitable Turbulence modeling. Prandtl established the closure of each
term of Equation (3.8) on the basis of dimensional analysis and empirical
data, assuming a Turbulence �ow in an equilibrium regime. This closure
process is not a rigorous one, and in [Wilcox, 1998] it is calles drastic surgery
of the exact equation. For the production term, a closure prescription comes
from the Boussinesq approximation:

τij = 2µTSij −
2

3
ρkδij ,

with µT given in Equation (3.7), and the second term on the right hand side
added in order to have the proper trace of τij . For the turbulent transport
term, the standard approximation is that of gradient-di�usion, in analogy
with molecular transport processes of scalar quantities. The pressure di�u-
sion term is generally grouped with the turbulent transport term:
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1

2
ρu
′
iu
′
iu
′
j + p′u

′
j = −µT

σk

∂k

∂xj

Again, the main e�ect of Turbulence on the transport process is that of
enhanced di�usivity. σk is a closure coe�cient, which must be obtained
in the context of the Turbulence model calibration on empirical data. The
dissipation term is determined by dimensional arguments. The two unknown
parameters of the model are l and ε; if we assume they are function of
the Turbulence, and do not depend on �uid properties such as molecular
viscosity, we have by dimensional arguments:

ε = CD
k3/2

l
,

where CD is another closure coe�cient to be determined by the calibration
of the model on empirical data. In this one equation Turbulence model, the
length scale of Turbulence l must be prescribed, and the model is incom-
plete. In the case of equilibrium �ows, i.e. the �ows for which production
and dissipation of k balance, the mean �ow and the turbulent scales are pro-
portional [Wilcox, 1998], and the prescription l = lmix is possible (the mean
�ow quantities specify the Reynolds stress factor in the production term, and
the turbulent quantities specify the dissipation term). We see that for an
equilibrium turbulent �ow (i.e. a �ow with slowly varying mean properties)
the RANS model describes the evolution of the mean statistical quantities,
at the integral scale. In non-equilibrium �ows, an unknown mixing of scales
is present, and RANS closure is not possible.

Two-Equations RANS models are complete models, i.e. no turbulent
structure information for a particular �ow con�guration must be inserted in
the model. In these models, a second transport equation is introduced to
determine the length scale l throughout the �ow. Standard two-equations
model introduce transport equations for ε (k − ε model) or for ω (k − ω
model), de�ned as the dissipation per unit turbulence kinetic energy. On
dimensional grounds, we have:

µT ∼ ρ
k2

ε
; l =

k3/2

ε

for the k − ε model, and:

µT ∼ ρ
k

ω
; l =

k1/2

ω
; ε = ωk

for the k − ω model. These prescriptions are suitable for calibration with
empirical data, in order to �nd proper closure coe�cients of the models.
As for the case of the one-equation model, the ratio of Reynolds stresses
to mean strain rate components depends only on the turbulent parameters,
such as k, l, ε, ω, for equilibrium �ows, for which mean �ow and turbulent
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scales are proportional. The transport equations for the turbulent quantities
ε and ω are derived in a similar procedure as that involved to determine
the k equation (3.8), i.e. by describing the physics related to each term of
the exact equations by means of dimensional analysis based on the relavant
turbulent-mean parameters of the process [Wilcox, 1998]. The standard k−ε
model is:



µT = ρCµ
k2

ε

ρ
∂k

∂t
+ ρUj

∂k

∂xj
= τij

∂Ui
∂xj
− ρε+

∂

∂xj

[(
µ+

µT
σk

)
∂k

∂xj

]
ρ
∂ε

∂t
+ ρUj

∂ε

∂xj
= Cε1

ε

k
τij
∂Ui
∂xj
− Cε2ρ

ε2

k
+

∂

∂xj

[(
µ+

µT
σε

)
∂ε

∂xj

] (3.9)

where the closure coe�cients must be determined by calibration of the model
on empiric data.

The Wilcox k − ω model is:


µT = ρ

k

ω

ρ
∂k

∂t
+ ρUj

∂k

∂xj
= τij

∂Ui
∂xj
− β∗ρkω +

∂

∂xj

[(
µ+ σ∗µT

)
∂k

∂xj

]
ρ
∂ω

∂t
+ ρUj

∂ω

∂xj
= α

ω

k
τij
∂Ui
∂xj
− βρω2 +

∂

∂xj

[(
µ+ σµT

)
∂ω

∂xj

] (3.10)

where the closure coe�cients must be determined by calibration of the model
on empiric data. Calibration consists in setting the values of closure coef-
�cients to assure agreement with observed properties of Turbulence. By
applying the models to decaying homogeneous, isotropic Turbulence, lead
to a constraint on the values of the closure coe�cients in order to have a
solution that reproduces experimental observations [Wilcox, 1998]. We must
note that for atmospheric �ows a much larger length-scale interval is available
than for wind-tunnel �ows, which means that for the same dissipation and
turbulence stress, the turbulent kinetic energy will usually be much larger in
the atmosphere than in a tunnel simulation. This lead to di�erent values of
the closure coe�cients for the two cases (e.g. the coe�cient Cµ is smaller for
the atmospheric case). Anyway, the consequences of trying the models with
both coe�cients often seem small [Berkowicz, Kearney, 2004]. Concerning
the k− ω model, this lead to an imposed relation on the ratio β∗/β. Values
for the other coe�cients can be established by the application of singular
perturbation analysis to the boundary layer solutions of the models. Singu-
lar perturbation analysis consists in developing a solution to the transport
equations in the form of an asymptotic expansion in terms of a parame-
ter, the error being small for small values of the parameter. Experimental
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observations provide a strong argument for using singular perturbation anal-
ysis [Wilcox, 1998]: di�erent scales are dominant in di�erent regions of the
domain; in the case of the turbulent boundary layer, di�erent scales and
physical processes are dominant in the inner (near-wall) and outer (wake re-
gion) part of the layer. We observe that closed to a solid boundary, the law
of the walls holds, which can be written as (in the case of two dimensions,
with x parallel and y orthogonal coordinates to the wall):

U(x, y) = u∗(x)f

(
u∗y

ν

)
,

where u∗ is the square root of the wall tangential stress divided by density,
de�ned as the friction velocity. The main body (wake region) of the turbulent
boundary layer behaves according to Clauser defect law [Wilcox, 1998]:

U(x, y) = U∞ − u∗F
(
y

∆

)
, with ∆ =

U∞δ

u∗
,

where U∞ is the external (freestream) velocity to the boundary layer, and δ is
the wake width. This law consists of a small perturbation from the freestream
value. The solutions of the transport equations, developed as asymptotic
expansions in the stretched variables de�ned in the previous empirical laws,
are not uniformly valid on the whole domain: the wall solution, if it is
consistent with the measurements, is logarithmically divergent with distance
from the surface, as u∗y/ν → ∞; the outer solution, in the defect law form
of a small perturbation from the freestream value, cannot satisfy the no-slip
boundary condition at the wall. A matching procedure must be employed,
in order to match the two solutions in the limits:

u∗y

ν
→∞ ,

y

∆
→ 0

Each of the two stretched variables are �nite in their respective domain (near
wall and wake region), and are in�nite and in�nitesimal respectively in the
matching region. Details will be shown in Section 4.1, in the case of singular
perturbation solutions for the canyon geometry and the vehicle geometry.
Solving the equations for the two Turbulence models in the near-wall region
in the limit y+ = u∗y/ν → ∞, through a singular perturbation expansion
in powers of the stretched variable y+ = u∗y/ν, and imposing a logarithmic
behaviour for velocity, we obtain (see [Wilcox, 1998]) other constraints for
two of the closure coe�cients (e.g. β∗ and α for the k − ω model), and the
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laws (valid in the log-layer region):


U =

u∗
k

log(y+) + C, k =
u2
∗√
Cµ

, ε =
u3
∗

ky
k− εmodel

U =
u∗
k

log(y+) + C, k =
u2
∗√
β∗
, ω =

u∗√
β∗ky

k− ωmodel

(3.11)
where C is an integration constant, with an empirical value of 5.0 in the case
of no pressure gradient for the freestream �ow, and we have written k for the
Von-Karman constant, to avoid confusion with turbulent kinetic energy k.
By performing a matching with the outer layer solutions for the two models,
and comparing the velocity pro�le, the derived friction velocity and wake-
related parameters [Wilcox, 1998] with corresponding experimental data, the
k − ω model yields solution close to measurements (with an error of the
order of 3%), whereas the k − ε model show greater di�erences and poor
performance (with a 50 − 100% error) in the case of freestream adverse
pressure gradients. What can be seen [Wilcox, 1998] is that the k− ε model
predicts a turbulence length scale which is too large in the near wall region,
overestimating it in the region of boundary-layer separation; this region is
induced by the presence of external adverse pressure gradient, in which the
Reynolds-stress is frozen to its upstream value and advected in a recirculation
zone [Batchelor, 1967]. The manner in which the k−ω model achieves smaller
values of l than does the k − ε model can be shown by taking the change
of variable ε = β∗ωk in the equation for ω in the case of the stationary
boundary layer approximation:

U
∂ε

∂x
+V

∂ε

∂y
= (1+α)k

(
∂U

∂y

)2

−(1+β/β∗)
ε2

k
+
∂

∂y

[
σνT

∂ε

∂y

]
−2σνT

∂k

∂y

∂ε/k

∂y

The only di�erent term with respect to the k− ε model is the last one. This
term is called the cross-di�usion term. Since, for �ows with adverse pressure
gradient, this term is nonvanishing as y/∆ → 0 [Wilcox, 1998], its e�ect is
to suppress the rate of increase of l close to the surface. By integration of
the Turbulence models equations in the viscous sublayer (i.e. for y+ �nite),
imposing boundary conditions valid on the surface and in the log-layer, and
comparing the derived velocity pro�les with corresponding measurements,
we �nd the constraints for the other two closure constants. We must ob-
serve that, except that for some �ow typology described by the k−ω model
[Wilcox, 1998], all two-equations model require Reynolds number dependent
corrections to the values of the closure coe�cients, in order to yield realistic
sublayer solutions and correct transition from laminar to turbulent regime
in the domain of the �ow (e.g. the transition from a wake zone to the ex-
ternal freestream �ow). These corrections are avoided by integrating the
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2−equations model starting from the log-layer adjacent to a solid bound-
ary, and, in the case of the wake simulation for the vehicle geometry, by
calibrating the model in order to give results comparable with the analyti-
cal solutions for the far-wake region. Details will be shown in Section 3.4.
When applied to free-shear layer �ows, the k − ω model gives results which
predict the correct values of measurement data only for speci�ed values of
the freestream boundary condition on ω [Wilcox, 1998]. For example, in the
case of the wake �ow in a region in which self-similar solutions are valid
(far-wake solution; see Sections 3.4, 4.1 and 4.2 for details), the most sen-
sible boundary conditions are those corresponding to vanishing turbulence
at the turbulent-non turbulent interface, i.e. k, ω and ε vanishing at the
edge of the shear layer. As it turns out, the k − ε model predictions are
una�ected by �nite values of k and ε in the freestream, whereas the k − ω
solutions are very sensitive to the freestream value of ω (ω∞). In the case
of the far-wake solution, it predicts the correct experimental behaviours for
ω∞ = 0.4. For ω∞ = 0, computed quantities exceed measurments by up to
37% [Wilcox, 1998]. There are di�erent ways to overcame this di�culties:

• Use more detailed Turbulence models, which introduce dispersion equa-
tions for other turbulent quantities, in order to describe the length scale
of the recirculation zone induced by the adverse pressure gradient. One
of this is the k−ε−v2−f model introduced by Durbin [Durbin, 1995],
in which it is supposed that the normal Reynolds stress perpendicular
to the wall in the separation zone, v′2, plays the most important role
in determining the mixing length and the eddy viscosity near the wall.
In this model the normal stress dynamics is resolved, along with the
dynamics for k and ε, modi�ed in order to introduce the turbulent scale
associated to v′2. An equation for the pressure strain is introduced (the
f part), in order to describe wall re�ection and integrate the model
in the viscous sublayer. Another possibility is to solve a transport
equation for the full Reynolds stress (SSG models [Wilcox, 1998]), or
to use hybrid RANS - LES models (e.g. Detached Eddy Simulations
models [Martinat et al., 2008]), which use one-equation model which
transform to LES model near a solid boundary, by introducing a de-
pendence of the eddy viscosity on the grid spacing. We do not enter
in the details of these models, but will cite their results in comparison
with the results obtained by our 2-equations model in the case of the
�ow over the vehicle.

• To develop a k−ω model that has no sensitivity to the freestream value
of ω. To obtain this purpose, Menter has included a cross-di�usion
term in the ω equation [Wilcox, 1998]:
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ρ
∂ω

∂t
+ρUj

∂ω

∂xj
= α

ω

k
τij
∂Ui
∂xj
−βρω2+

∂

∂xj

[(
µ+σµT

)
∂ω

∂xj

]
+σd

ρ

ω

∂k

∂xj

∂ω

∂xj

The last term is the cross-di�usion term; since k decreases approaching
the shear layer edge, the e�ect of this term is to make the e�ective en-
trainment velocity positive (or less negative), making ω di�using from
the turbulent into the non-turbulent region. In this way the freestream
value of ω has no e�ect on the solution [Wilcox, 1998]. Clearly, the
cross-di�usion term introduced by Menter cancels out the e�ect of the
cross di�usion term which allows the k − ω model to achieve smaller
value of l than the k − ε model in the wall region. Thus a blend-
ing function must be introduced, which makes σd = 0 close to a solid
boundary. Wilcox [Wilcox, 1998] introduces the function:

σd =


0,

∂k

∂xj

∂ω

∂xj
≤ 0

σ,
∂k

∂xj

∂ω

∂xj
> 0

To understand this prescription, observe that k increases and ω de-
creases in the viscous sublayer [Wilcox, 1998].

• To consider ω∞ as an adjustable empirical parameter in the model. In
the case of strong separation in the vehicle wake simulations, we will
use this approach, starting from a k − ω model, with standard cali-
bration for the closure coe�cients, additionally calibrated in the ω∞
parameter in order to obtain far-wake solutions which reproduce ana-
lytic solutions results obtained through algebraic Turbulence models.
It is assumed [Wilcox, 1998] that the optimum values of ω∞ for the self-
preserving case (far-wake solution) gives good result for non-preserving
cases (near-wake solution).

The standard closure coe�cients, for wind tunnel Turbulence, for the k − ε
and the k − ω model are [Wilcox, 1998]:

RANS models are thus Turbulence models which describe, once cali-
brated on empirical data, the statistical mean of a particular �ow structure;
in the context of a discretization of the equations, a grid cell must have di-
mensions of the order of the integral scales of the �ow (with exceptions for
grid convergence considerations and numerical stabilities of boundary con-
ditions near solid boundaries, as will be shown in Section 3.4). As we have
seen, this results in a reasonable descriptions for equilibrium Turbulence, in
which the mean and the turbulent scales, described by the transport equa-
tions of the model, are proportional. We cite here another the Large Eddy
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k− ε model k− ω model

Cε1 1.44 α 5/9
Cε2 1.92 β 3/40
Cµ 0.09 β∗ 9/100
σk 1.0 σ 1/2
σε 1.3 σ∗ 1/2

Table 14: Standard closure coe�cients for the k − ε and the k − ω model.

Simulation (LES) Turbulence modeling approach. It consists of a �ltering
operation over the governing NS equations. LES models give a description of
an instantaneous realization of a �ltered �ow; this description must be three
dimensional and unsteady, realistic Turbulence structures must be given as
initial conditions, and the spatial resolution must capture all the energetic
scales until the Taylor length λ, in order to describe the dominant coherent
structures and local bifurcations of the �ow which do not decay with viscous
dissipation. The �ltering operation is de�ned as a convolution of a �lter
kernel G and a turbulent quantity on the whole domain of the �ow:

f(x, t) =

∫
D
f(x− r, t)G(r,x) dr

The amplitude of the �lter is of the order of λ, and determines the discrete
grid spacing. The sub-grid shear stress tensor is again described by the
Boussinesq approximation, and the turbulent viscosity is proportional, in
the Smagorinsky model analogous to Prandtl mixing length model, to the
square of the �lter amplitude multiplied by the norm of the �ltered strain
rate tensor [Wilcox, 1998]. Dynamical procedures are available to determine
the mixing length value as a step of the model resolution. We will not enter
in the details of LES formulation.

Since for the description of the resuspension phenomenon and of the
dispersion of Soot and Road dust we are interested in mean scale quantities,
as expressed in Chapter 2, we will use RANS algebraic and 2- equations
Turbulence models. We are interested in describing two kind of turbulent
�ows: i) the �ow which develops inside a canyon street, forced by an external
wind at the roof level; ii) the �ow which develops in the near-wake and in the
far-wake of a moving vehicle, both in the case of an open street and a street
canyon geometry. We will de�ne these cases in later chapters. The initial
and boundary conditions speci�cation of the problem, its discretization, grid
generation and solver algorithm development will be brie�y shown in Section
3.4.

71



3.2 Dispersion models

The equation for the dispersion of a passive scalar is given by a material
balance of its concentration c taken over a volume element:

∂c

∂t
+

∂

∂xj

(
ujc
)

= D
∂2c

∂xj∂xj
+ S (3.12)

where uj is the j− component of the �uid velocity, D is the molecular di�u-
sivity and S is a source term. The molecular di�usivity is given by Formula
(2.2), with the slip correction factor Cc in the case of the dispersion of the
Soot component, in order to take into account non-continuum e�ects, and
without it in the case of the road dust component.

In the context of a RANS description of turbulent �ows, the �uid velocity
is a random function of space and time, represented as the sum of a mean
component and a �uctuating part. Accordingly, c is a random variable, and
only the determination of certain statistical properties of c can be performed.
Expressing c as the sum of a statistical mean C and a �uctuating part c

′
:

c = C + c
′

and taking a statistical average of the dispersion equation (3.12), we obtain:

∂C

∂t
+

∂

∂xj

(
UjC

)
= D

∂2C

∂xj∂xj
− ∂

∂xj

(
u
′
jc
′)+ S (3.13)

This equation contains three new variables, given by the correlations of the
�uctuating concentration with the three components of �uctuating velocity,
and a closure problem is at hand. The mixing length hypothesis is the most

common way to close the problem, expressing the turbulent �uxes u
′
jc
′ in

terms of the mean concentration C:

u
′
jc
′ = −Kjk

∂C

∂xk
,

where Kjk is the eddy di�usivity tensor, generally considered diagonal in
the coordinate axes system. The equation for the pollutant dispersion in an
incompressible turbulent �uid now becomes Equation (2.1):

∂C

∂t
+ Uj

∂C

∂xj
=

∂

∂xj

[(
D +Kjj

) ∂C
∂xj

]
+ S (3.14)

This is an advection-di�usion equation, and must be solved with suitable
initial and boundary conditions. In particular, since we are integrating the
Turbulence equations from the logarithmic layer, the dispersion equation
is integrated from there too, and the molecular di�usion is negligible com-
pared with the turbulent di�usion. All the e�ects of molecular di�usivity
are included in the boundary conditions form, described, in the case of the
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deposition �ux and in the case of the deposition + resuspension �ux at the
road boundary, by Equations (2.3) and (2.4) respectively. Usually, in the
case of isotropic Turbulence, the eddy di�usivity tensor for the pollutant
dispersion is expressed as the eddy viscosity νT :

K = νT ,

where νT is described in the context of the Turbulence model solution to
which the pollutant dispersion is coupled. In the cases in which the atmo-
spheric strati�cation is important, the eddy di�usion coe�cient is considered
as the sum of a component associated to the reference atmospheric state, de-
scribed by similarity theory [Eskridge et al., 1979], and a component associ-
ated to the mechanical Turbulence. In particular cases analytical solutions
of the dispersion equation (3.14) exist. These analytical models can be used
to set up operational models for the pollutant dispersion in street geome-
tries. The Gaussian analytical model [Seinfeld, Pandis, 2006] is derived in
the hypothesis of:

• a stationary dispersion process;

• an homogeneous and plain domain;

• a constant velocity �eld U in the x direction;

• the advection component is dominant with respect to the turbulent
di�usion component in the x direction (slender plume approximation);

• the turbulent di�usion coe�cients Kyy and Kzz are constants;

• the source term is given by

S = Qδ(x) · δ(y) · δ(z)

Besides these assumptions, the pollutant is assumed as chemical inert. With
this conditions, the dispersion equation is exactly solvable, and the Gaussian
model solution is:

C =
Q

2πV σyσz
exp

[
−1

2

(
y2

σ2
y

+
z2

σ2
z

)]
+ C(0),

where C(0) is the concentration at x = 0, and the dispersion coe�cients are
de�ned as:

σ2
y = 2Kyy

x

V
; σ2

z = 2Kzz
x

V

The Gaussian model describes a stochastic process, associated with the con-
centration distribution, with a Gaussian probability density function. The
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dispersion parameters σy and σz are given by empirical parametrizations,
depending on the atmospheric stability [Seinfeld, Pandis, 2006], or by the
corresponding forms in terms of Kyy and Kzz. The Gaussian models can
be extended to non-homogeneous and non stationary dispersion processes
by considering the pollutant dispersion as given by a superposition of dis-
crete pu� solutions in space and time, which are Gaussian solutions valid
in speci�c regions of the domain, in which the dispersion parameters can
be approximately considered constant (for each time step). We will extend
this approach in Section 3.5 to set up an operational model for the disper-
sion of Soot and road dust, in an open and a canyon street, considering the
deposition and the resuspension process.

Let us introduce two important quantities which characterize the dis-
persed pollutant distribution in time and space: the lifetime and the mix-
ing time. The lifetime is an average residence time for the pollutant in the
atmosphere, telling on average how long a representative particle of the sub-
stance will stay in the atmosphere before it is removed [Seinfeld, Pandis, 2006].
It thus depends on the nature of emission and removal processes of the pollu-
tant in the atmosphere. By integrating in a volume of air V the conservation
of mass equation we obtain a balance equation for the total mass of pollutant
Q in the considered spatial volume:

dQ

dt
=
(
Fin − Fout

)
+
(
P −R

)
,

where Fin and Fout are the mass �uxes of substance out of the considered
region, integrated over the surface across which the �ux is calculated, and
P and R are the emission and removal rates of pollutant. In an equilibrium
balance condition dQ/dt = 0, and we can de�ne the average residence time
τ (in [s]) as:

τ =
Q

R+ Fout
=

Q

P + Fin
(3.15)

In the case of the Soot dispersion, Fin and R are zero, and we consider the
proces of deposition at the road surface in the de�nition of τ . In the case
of road dust dispersion, we will consider Fin = krescs in the de�nition of τ .
Details will be given in Section 4.4. The characteristic mixing time τM for
a pollutant in a volume of the atmosphere is de�ned as the time needed to
mix the pollutant in that region of air. Its value depends on the dynamics of
the turbulent mixing processes which the particles undergo in the considered
region of space. The considered region of the atmosphere is well mixed for a
particular pollutant if:

τM � τ

In order to introduce the relevant turbulent length scales in the de�nition of
τM , we refer to the statistical study of a pollutant concentration distribution
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reported in Ref. [Davidson, 2004]. The mixing time is de�ned as the char-
acteristic time for the destruction of the variance of C, which is a measure
of the non-uniformity of the pollutant distribution. Assuming a statistical
homogeneous and isotropic distribution for C, we can obtain an equation
for the variance C2 by multiplying the dispersion equation (3.14) by C and
taking a statistical average of the result:

1

2

dC2

dt
= − ∂C

∂xj

∂KjjC

∂xj

We can de�ne the average destruction rate εC of the variance of C in terms
of the average eddy di�usion coe�cient over the considered volume of air K:

εC = K
∂C

∂xj

∂C

∂xj

Introducing the characteristic length scale ηC of the rapid variations of C,
(δC)ηC , we can write:

εC ∼ K
[

(δC)ηC
ηC

]2

We can consider ηC and εC as the analogous of the dissipative length lD and
the turbulent dissipation ε for the Turbulence �eld: the �uctuations of C
are transported through the integral scales to the dissipative scale ηC , where
they are dissipated at a rate εC . The analogous of the two-thirds law of
Kolmogorov [Davidson, 2004] for the two-points correlation function SC2 can
be obtained by dimensional analysis, considering that it depends only on ε,
εC and r in the isotropic inertial range:

SC2 :=
(
C(x+ r)− C(x)

)2
=
(
δC
)2 ∼ εCε−1/3r2/3

Assuming that lc < l0:

εC =
(
C2
)
ηC
V l
−1/3
0 l

−2/3
C ,

where V is the characteristic velocity of the large-scale vortices, and the
relation ε ∼ V 3/l0 has been used. The length scale lC can be calculated in
analogy with the integral length scale l0 starting from the knowledge of ηC :

lC = (Pe)3/4ηC (3.16)

where Pe is the Peclet number:

Pe =
v0lC
D
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and v0 is the �uid velocity. Once ηC is known, lC is determined through
an iterative procedure applied to Equation (3.16). We note that the anal-
ogy with the Turbulence �eld applied to the result (3.16) is equivalent to
assuming that: (

lC
l0

)1/4( ν
D

)1/2

∼ 1,

and the latter relation can be used to obtain the order of magnitude of lC
too. The values of ηC are given from theoretical and numerical considerations
[Davidson, 2004]:

ηC ∼ lD
(
ν

D

)−1/2

for ν > D

ηC ∼ lD
(
ν

D

)−3/4

for ν < D

The value of V is determined as:

V =
K

lmix
,

where lmix is an average value of the mixing length associated to the pre-
scription used in the de�nition of the eddy di�usion coe�cient. Finally, we
have:

1

2

dC2

dt
∼ −V l−1/3

0 l
−2/3
C C2,

so that the operative de�nition of the characteristic mixing time is:

τM ∼
l
1/3
0 l

2/3
C

V
(3.17)

3.3 Turbulent boundary layer solutions

The turbulent boundary layer solutions are analytic solutions of the Tur-
bulence equations obtained in special limiting cases. Singular perturbation
analysis [Wilcox, 1998] is applied to the RANS equations, which consists in
developing a solution in the form of an asymptotic expansion in terms of a
parameter ε, uniformly valid for di�erent regions of the domain, the error
being small for small values of the parameter. The singular behaviour of the
laws of the turbulent boundary layer, described in Section 3.1, is generated
by the imposition of the no-slip boundary condition on the wall and by the
presence of the turbulent-non turbulent interface in the wake region. The co-
ordinate orthogonal to the boundary must be stretched in terms of the small
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parameter ε, which represent the dominant physical scale in each of the two
regions. In the near-wall region, the small parameter is the reciprocal of the
Reynolds number; in the wake region, the small parameter is u∗/U∞, where
the friction velocity represents the intensity of the perturbation from the
external velocity U∞. Each of the two stretched variables are �nite in their
respective domain, and are in�nite and in�nitesimal in the matching region
respectively. The thickness of the two layers determines the mixing length
in the de�nition of the eddy di�usivity for the two regions. The transport
equations, in the turbulent boundary layer form, are approximated to lead-
ing order terms in the perturbation expansion, considering that the thickness
of the layers are small parameters with respect to the longitudinal mean di-
mensions of the domain. The solutions have a self-preserving (or self-similar)
form, i.e. it can be written in a separated form, such as:

u(x, y) = u∗(x)f

[
y

ε(x)

]
,

where x is the longitudinal and y the orthogonal coordinate (considering for
simplicity a two-dimensional �ow), ε(x) is a generic stretching, and the term
f [y/(ε(x)] depends only on the ratio y/(ε(x) and not on x. A well celebrated
hypothesis of Prandtl states that such a self-preserving form of the solution
always exists for the boundary layer approximations of the NS equations,
which, to leading orders in the expansion parameter, must not contain di-
vergent terms and admit separated solutions in both the inner and the outer
layers. We will test this hypothesis in the case of the singular perturbation
analysis applied to the canyon geometry. Another context in which a self-
preserving form of the solution is supposed is the case of turbulent free-shear
layers [Wilcox, 1998], i.e. �ows not bounded by solid �ows. In the case of
the �ow in the wake of an object, the free-shear layer regime is situated far
enough downstream that the e�ects of the no-slip boundary conditions on
the object boundaries have been dissipated and become unimportant. In
such a regime the �ow is supposed to approach a self-preserving form, with
ε(x) the layer thickness. The boundary layer approximations are applicable
asymptotically: even if a solid wall is not present, vorticity is generated at
the turbulent - non turbulent interface, and the streamwise gradient of vor-
ticity is small compared with that in the orthogonal direction (considering a
two-dimensional wake). It can be still assumed that the departure from the
free-stream velocity is small in the far-wake, since the frictional forces tend
to make the velocity uniform, and the boundary layer NS equations assume
the form of the Oseen equations [Batchelor, 1967].

We will search boundary layer analytical solutions for two kind of �ows:
the �ow in a canyon geometry and the �ow in the far wake of a moving
vehicle in an open or a canyon street. These analytical solutions will be
used to set up the pollutant dispersion models at the canyon scale. Besides
this, the analytical solutions for the moving vehicle will be used to calibrate
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the Turbulence models numerically solved to describe the near-wake region,
to determine critical dimensions for the grid cells near solid boundaries and
initial conditions on turbulent quantities (see Sections 3.4, 4.2 for details).

Canyon geometry The �ow within a street canyon generated by the wind
blowing at the roof level plays an important role in determining pollutant
concentrations within a urban street. There have been numerous studies
aimed at studying the transport and dispersion of pollutants in individual
streets. Most of the studies have been devoted to the particular case of a
wind blowing perpendicular to the street axis, where the formation of a wind
vortex is observed from wind measurements [Nakamura, Oke, 1988], which
generally causes concentration levels greater for the leeward than for the
windward side of the canyon [Berkowicz, Kearney, 2004]. Wind tunnel data
[Hussain, Lee, 1980] give a systematic classi�cation of �ow into three regimes
in urban street canyons, based on the canyon geometry: isolated roughness
�ow, wake interference �ow and skimming �ow. The canyon geometry is de-
�ned by the ratio H/W , where H is the average height of the canyon walls
and W is the canyon width. For widely spaced buildings (H/W < 0.3), the
�ow �elds associated with the buildings do not interact, which results in the
isolated roughness �ow regime. At closer spacing (0.3 < H/W < 0.7) the
wake created by the upwind building is disturbed by the downwind building,
creating a downward �ow along the windward face of this building. This
is the wake interference �ow. Even closer spacing results in the skimming
�ow regime. In this case a stable circulatory vortex is established in the
canyon and the ambient �ow is decoupled from the street �ow. Hotchkiss
and Harlow [Hotchkiss, Harlow, 1973] found an analytical solution for the
case of wind blowing perpendicularly to an in�nitely long canyon with lat-
eral walls of equal height, by solving a di�usion equation for the vorticity in
two dimensions with constant turbulent di�usion, without sources or sinks
of vorticity inside the domain, and imposing slip-conditions on the velocity
at the side walls. This solution, representing one vortex with the kernel
in the centre of the two dimensional canyon, is suitable only to describe
the skimming �ow regime [Berkowicz, Kearney, 2004]. Numerical simula-
tions using 2− equation Turbulence models show the presence of secondary
vortices near the corners of the canyon [Berkowicz, Kearney, 2004]. Street
pollution models based on dispersion into Pu�s (operational models) of the
vehicles pollutant emissions inside the canyon, such as the OSPM (Opera-
tional Street Pollution Model) [Berkowicz, Kearney, 2004], are based on the
Hotchkiss and Harlow or other simpli�ed solutions of the �ow, which describe
the Pu� advection and the dispersion parameters (with suitable parameter-
ization to describe tra�c produced turbulence and the thermal state of the
atmosphere). In [Soulhac et al., 2008] an analytical solution based on an
algebraic turbulence model is found for the case of a wind �owing parallel
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to the axis of a symmetric canyon, and numerical simulations are used to
study the �ow generated by an external wind with any angle relative to the
axis of the �ow. The algebraic model used in [Soulhac et al., 2008] is based
on an eddy viscosity which scales as the distance from the wall in the whole
domain of the canyon, with an ad-hoc separation of the domain in order to
match the di�erent regions of in�uence of the side walls.

In Section 4.1 we will study new analytical solutions, based on di�er-
ent algebraic turbulence models for the wall and the wake regions (with a
matching naturally incorporated in the turbulence model used), and singular
perturbation theory, for both the case of an external wind �owing parallel
and perpendicular to the axis of the canyon, for a symmetric (i.e. equal
height side walls) canyon with in�nite length (homogeneous in the direction
along the street axis). We will then characterize the case of arbitrary exter-
nal angle as in Ref. [Soulhac et al., 2008]. These solutions will be used in
the set up of the street pollution dispersion models. In the Appendix the
analytical details of the solutions are reported.

Vehicle geometry A model for investigating the behaviour of the far-
wake of a vehicle-like geometry will be studied in Section 4.1. In Ref.
[Eskridge et al., 1979] a self-preserving solution is obtained in terms of stretched
variables with the wake thickness, imposing no-slip boundary conditions at
the road boundary. The initial conditions for the wake are determined by
integral properties of the �ows close to the vehicle, determined by the couple
acting on it (the e�ect, on the downstream motion, of the pressure gradient
along the trailing vortices which form in the near wake is shown to be neg-
ligible, except in the case of signi�cant shears in the approaching wind, and
the vehicle is e�ectively considered as a point source of momentum). We will
consider the so called Ahmed body geometry as a simpli�ed geometry to
describe di�erent categories of vehicles, as will be shown in Section 3.4. We
will use the Eskridge far-wake solutions, driven by an initial integral con-
dition determined by the draft coe�cient of the Ahmed body, as measured
in wind-tunnel experiments, to set up the pollutant dispersion model at the
canyon scale. The e�ect of the vehicle far-wake interactions will be described
through modi�cations of the initial integral conditions; this will let us to de-
scribe tra�c situations associated with heavy tra�c, and to determine the
initial values of turbulent intensity at the inlet boundary for near-wake sim-
ulations. In order to calibrate the k − ω Turbulence model, by choosing the
appropriate value of ω∞ which reproduces the far-wake structure characteris-
tics obtained by the analytical solution of the algebraic model, we will modify
the Eskridge solutions, considering a matching with the logarithmic law of
the wall as the road surface boundary condition. This will give appropriate
values of u∗, which will be used to determine the appropriate dimensions of
the �rst cells of the computational grid near the solid boundary for both the
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k − ε and k − ω Turbulence models.

3.4 Canyon and Wake simulations

Canyon simulations. We will compare our analytical results with numer-
ical simulations of the �ow in the canyon, in order to validate the model,
using a suitable 2− equation RANS model. The geometry of the canyon
is reported in Figure 10, in the case of W = H = 12m. In the case of an
external wind orthogonal to the street axis (θ = π/2), for a street canyon ex-
tending to In�nity in the longitudinal direction, the �ow is two dimensional
(as will be shown in Section 4.1).

Following the classi�cation reported in Ref. [Hussain, Lee, 1980], the
isolated roughness �ow regime is equivalent to a backward step �ow, with
adverse pressure gradient of the external stream and strong boundary sepa-
ration. This �ow structure should be described, in the context of RANS sim-
ulations, by a Turbulence model which introduces the dynamical description
for the length scale of separation, or through a calibrated k−ω model. As this
�ow regime is rarely occurring in realistic urban street canyon geometries,
we will not consider it. In the wake interference and in the skimming �ow
regime, a stable vortex is estabilished in the canyon, and the �ow separation
is driven by the length scales of the canyon (W and H). The k − ε Turbu-
lence model performs well for this kind of �ows [Berkowicz, Kearney, 2004],
so we choose it to describe the street canyon wind �eld (the k − ε is more
stable and need less computational sources than the k − ω [Wilcox, 1998]
model, whose ω conservation equation has stronger non-linearities than the
ε equation, and introduces the process of cross-di�usion). We thus consider
the stationary solution of the k − ε Turbulence model of Equations (3.1),
(3.9), with the closure coe�cients given in Table 14, for canyon geometries
with aspect ratios H/W = 1/2; 1; 2, with a width of W = 12m,for di�erent
intensities of the external velocity (ranging from 0.5 to 3 m/s).

We now schematically show the setting of boundary conditions, grid gen-
eration, discretization and solver procedure for the considered problems.

Boundary conditions and grid generation. At the wall bound-
aries of the canyon, the logarithmic laws of the wall are imposed both for
the case of the 2D and 3D simulations. This means that the computational
domain starts from the �rst grid cell adjacent to the boundary, disregarding
the details of the viscous sublayer solution. As told in Section 3.1, the k− ε
model is very sensitive to the distance from the wall at which logarithmic
laws of the wall are imposed. The analytical solutions of the algebraic mod-
els obtained in the case of external �ows parallel and orthogonal to the street
axis give estimates of the friction velocity u∗ in function of the distance along
the wall. We use these values (in the case of an external �ow with arbitrary
angle with respect to the street axis we refer to the estimates in the case of

80



Figure 10: Symmetric canyon geometry with H = W = 12m. For the case of an
external wind orthogonal to the street axis, the �ow is two dimensional (bottom
panel).
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the orthogonal freestream situation) to determine the distance from the wall
at which:

u∗y

ν
∼ 100.

For turbulent �ows with Reynolds number of the order of 106 this is the
stretched distance from the wall at which the logarithmic laws are valid
[Wilcox, 1998]. The values of y goes from ∼ H · 10−2 to ∼ H · 10−3. We
choose as the maximum dimension of the �rst cell adjacent to the wall the
value of y = H/100 in the case of the parallel external �ow, and y = H/1000
in the case of the arbitrary angle and orthogonal angle (2D simulations)
external �ows. Solving the 2D models in the case of smaller y we have seen
that the results remain unchanged. The imposed logarithmic laws are the
�rst Equations in (3.11). The ε behaviour in the logarithmic region shows a
rapid grow approaching the solid boundary. In order to overcome the propa-
gation of signi�cant numerical errors due to the discretization of derivatives
in presence of the singular behaviour (�rst order polynomial �nite elements
will be used as the discretization elements), di�erent layers of clustered grids
of small dimension immediately adjacent to the boundary will be consid-
ered, for which the error in the determination of derivatives is contained.
The cell dimension for the main �ow region far from solid boundaries is of
the order of l0. In the case of the external �ow parallel to the street axis, we
consider a mean cell maximum dimension of diameter H/15; in the case of
an external �ow orthogonal to the street axis, we consider as the maximum
mean cell dimension the maximum value of the wake thickness δ, calculated
in the context of the algebraic Turbulence models, which is of the order of
H/100. In the latter case there are di�erent length scales, that correspond-
ing to the main vortex recirculation in the canyon and those corresponding
to secondary vortices. Thus we have to resolve for smaller mean scales than
in the case of the parallel freestream �ow. In Figure 11 we show the grid
cases for the parallel and the orthogonal (2D geometry) external �ow situa-
tions, for freestream �ow intensity of 1m/s. The grid is constituted by free
tetrahedral and free triangular cells.

The inlet conditions are speci�ed at the roof vertical planes (or lines for
2D simulations) through which the �ow is entering, according to the direction
of the external wind (in the case of a parallel external �ow, slip conditions are
imposed on the lateral vertical roof planes). The inlet boundary conditions
consists of a Dirichlet condition for the wind velocity, plus Dirichlet condi-
tions on the turbulent quantities, expressed in terms of a turbulent length
scale LT and a turbulent intensity IT :

k =
3

2

(∣∣U ∣∣IT )2 ; ε = C3/4
µ

k3/2

LT
(3.18)

where
∣∣U ∣∣ is the external �ow norm. Wind tunnel reference values for IT
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Figure 11: Grid cases for the parallel (upper panel) and the orthogonal (2D geom-
etry, bottom panel) external �ow situations, as described in the text.
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and LT are [Wilcox, 1998]: IT = 0.05; LT = 0.09H.
The outlet conditions are speci�ed at the roof vertical planes (or lines

for 2D simulations) through which the �ow is �owing out. We choose to
specify a Dirichlet condition on the out�ow velocity, equal to that for the
inlet with opposite directions, for the front roof plane of the canyon, since
we consider periodicity in the x− longitudinal direction; a condition on the
pressure and the viscous stress is imposed as an out�ow condition for the
lateral vertical roof planes:

p = p0 ; ν

(
∂Ui
∂xj

+
∂Uj
∂xi

)
nj = 0 (3.19)

where nj are the components of the normal vector to the boundary. This
condition is stable, as it speci�es the pressure level. Note that the pressure
level p0 is to be intended as the speci�cation of the hydrodynamic pressure,
and can be assumed to be equal to 1atm (the pressure variations due to the
e�ect of gravity are included in the de�nition of the Hydrodinamic pressure).
At these outlet boundaries, zero convective �ux conditions are imposed on
the turbulent quantities.

A periodicity boundary condition is imposed at the transversal canyon
section planes: the �ow at the downstream end is identical to the injected
�ow at the upstream entry to the canyon section. This enforce the prescrip-
tion of an in�nite canyon in the x− direction.

A slip condition is imposed at the top horizontal plane of the domain,
since we are not interested in resolving the �ow details near this plane, which
has been chosen su�ciently distant from the canyon so that the external �ow
is purely longitudinal there.

Discretization and solver procedure. We solve the k − ε equa-
tions in the context of a �nite element discretization. As the �nite dimen-
sional subspaces of the Sobolev spaces in which the solutions u and p of
the weak equations are de�ned, we choose �rst order (P1− P1) polynomial
elements for both the velocity and pressure functions and for the turbu-
lent variables. These �nite dimensional subspaces are not compatible: they
do not satisfy the inf − sup Ladyzhenskaya � Babu²ka � Brezzi condition
[Quarteroni, Valli, 2008], which implies that the basis functions for the pres-
sure must be of lower order than the basis functions for the velocity. This
is a necessary condition for the matrix associated to the discretization of a
saddle-point problem to be non-singular; this also implies that no spurious
pressure modes are allowed, which causes instabilities in the pressure cal-
culation. Since we introduce a streamline di�usion stabilization (Galerkin
Least Squares) in order to stabilize the convection-dominated Turbulence
equations, it is possible to use equal-order interpolation. Crosswind di�u-
sion [Quarteroni, Valli, 2008] is also added to the weak formulation of the
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model, in order to introduce extra di�usion in the sharp turbulent-non tur-
bulent layers, which present weak solutions with discontinuous derivatives
[Wilcox, 1998] and would require a very dense mesh to be resolved. The
discretized non-linear system can be solved by the application of the itera-
tive Newton method, solving at each iteration step the corresponding linear
algebraic system with direct LU factorization methods (in the case of 2D
simulations) or with the GMRES iterative procedure (in the case of 3D
simulations), with Geometric Multigrid (GM) smoothers. After some tries,
a pseudo-time advancing scheme has been introduced, since the stationary
simulations showed very low convergence properties even in the 2D cases.
The Newton linearization procedure is substituted by a Euler semi-implicit
scheme for the time discretization. The pseudo-time step is chosen in func-
tion of the local CFL number for each element. The GMRES procedure
must be set up with an optimal number of iterations, in order to not ful�ll the
memory capacity of the calculator. Finally, the Turbulence model equations
are solved through a sequentially-implicit method, solving the mean �ow and
the Turbulence model equations sequentially, with the discretization proce-
dures just described. We have performed the simulations on a multi core
parallel computing machine with 24 processors of 8GB RAM each, using
a commercial code (COMSOL multyphysics) to generate the computational
grid and implement the chosen Turbulence model and solvers in a �nite
element approach.

Wake simulations. For the purpose of validation, the geometry and di-
mensions of the vehicle are chosen to be the same as those of tested vehicles
in previous wind-tunnel experiments. The geometry which has been con-
sidered for the shape of the vehicles is given by the so-called Ahmed body.
The Ahmed body represents a simpli�ed, ground vehicle geometry of a blu�
body type. Its shape, constituted by a parallelepipedal central body, with a
round front, a rear slant face and �xed cylindrical wheels, is simple enough
to allow for accurate �ow simulation, but retains some important practical
features relevant to real vehicle bodies. The geometry was �rst de�ned by
Ahmed [Ahmed, Ramm, 1984]; its aerodynamic properties are known from
wind tunnel experiments [Ahmed, Ramm, 1984] [Lienhart, Becker, 2003]. In
Figure 12 we show the case of Ahmed body geometry with a rear slant angle
of α = 25 ◦ (corresponding to a reduced geometry associated to a typical
Sedan Vehicle (SV)). Dimensions are reduced, with respect to a real vehi-
cle dimensions, by a factor of 4 (because wind tunnel experiments are run
with reduced geometries). To obtain the same Reynolds number as real �ow
situations, velocities in our simulations must be multiplied by 4.

Several inclination angles of the back-side of the vehicles correspond, in
terms of the associated turbulence �eld, to di�erent vehicle classes. α = 30 ◦

is a critical slant angle for which the topology of the �ow is suddenly modi�ed
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Figure 12: Ahmed body geometry for the case of rear slant angle of 25 ◦. Units are
in mm.

and accompanied by an important decrease of the drag. The structure of the
wake consists of a separation zone and counter-rotating vortices coming o�
the slant side edges, whose strength is mainly determined by the base slant
angle. The maximum drag is found for a critical slant angle of α = 30 ◦.
Below this angle, strong counter-rotating vortices are present and the �ow
separates in the middle region of the top edge and reattaches on the slant,
causing a slight increase in the form drag due to the low value of the pressure
in the separation zone [Batchelor, 1967]. In this case the �ow topology is
unsteady. For angles above the critical angle, the counter-rotating vortices
are weaker, causing a sudden drop in the induced drag [Batchelor, 1967], and
the separation occurs along the entire top and the side edges and there is no
reattachment. In this case the �ow remains steady. In Figure 13 we show the
�ow topology of the Ahmed body for the two di�erent slant angles considered
in Ref. [Lienhart, Becker, 2003], i.e. α = 25 ◦ and α = 35 ◦, with an incoming
longitudinal �ow of velocity 40m/s (left panel); the evolution of the average
drag coe�cient CD with the slant angle (right panel), as measured by Ahmed
[Ahmed, Ramm, 1984] and by most recent wind tunnel experiments for the
case of α = 25 ◦ and α = 40 ◦ (VKI2010 results [Tran, 2010]), are reported in
the right panel. We can notice the discontinuity in the drag variation above
the critical angle.

The drag coe�cient is de�ned as:

CD =
FD

1
2ρU

2
∞A

(3.20)

where FD is the drag force on the body, ρ is the air density, U∞ is the
intensity of the incoming �ux and A is the projected area of the Ahmed body
in longitudinal direction. It is an adymensional parameter describing drag
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Figure 13: Flow in the wake of the Ahmed car body (left panel)
[Lienhart, Becker, 2003], and drag coe�cient versus slant angle (right panel)
[Ahmed, Ramm, 1984] [Tran, 2010].

forces which depends only on the Reynolds number of the �ow CD = f(Re)
[Batchelor, 1967].

The topology of the �ow generated by the Ahmed body for subcritical
angle (α = 25 ◦) is comparable with that generated by a SV, with reattach-
ment due to the presence of a trunk at the rear, whereas the topology of the
�ow generated by the Ahmed body for supercritical angle α = 40 ◦ is compa-
rable with that generated by a Sport Urban Vehicle (SUV) or a LDV, with
large detachment and large eddies or recirculating zones [Koike et al., 2004]
[Jindal et al., 2005]. An Ahmed body with a zero rear slant angle is chosen
as a simpli�ed geometry for an HDV vehicle [Browand et al., 2009].

The geometry we adopted to describe di�erent classes of vehicles, with
respective longitudinal dimensions, are shown in Figure 14.

The domain is open road for extra-urban tra�c and a urban canyon for
urban tra�c conditions.

The RANS Turbulence models overestimates the separation of the �ow
for the subcritical case, in which unsteady Turbulence is present; this is due
to the fact that the assumption of equilibrium Turbulence for the formula-
tion of statistical Turbulence models in terms of dimensional analysis (see
Section 3.1 for details) leads to an overestimation of the eddy viscosity: un-
steady RANS models are not able to resolve the unsteady Turbulence. LES
Turbulence models should be applied in this case, which require more com-
putational resources (typically, the discretization space of a LES model for
the Ahmed body must contain ∼ 3 · 106 nodes, based on a Taylor length
λ estimation, whereas a RANS model needs ∼ 5 · 105 nodes. Besides this,
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Figure 14: Ahmed body geometry for the case of: a) sedan vehicle (SV), α = 25 ◦;
b) light duty vehicle (LDV), α = 40 ◦; c) heavy duty vehicle (HDV).

the boundary conditions must be speci�ed in terms of speci�cal �ow real-
izations for the LES case, and cannot be expressed in terms of mean quan-
tities, such as IT and LT ). Anyhow, even if the k − ε model is not able to
predict the reattachment of the �ow after the rear slant edge, it leads to
contained errors (∼ 6%) on the drag coe�cient with respect to the k − ω
model [Craft et al., 2001]. The supercritical case is associated with a steady
Turbulence structure, and should be described by a calibrated k − ω model
or more complex models (see Section 3.1 for details) in order resolve the
scale of the large separation of the �ow behind the body. We will use the
k − ε Turbulence model for the Turbulence �eld description in the case of
the subcritical angle geometry (SV) and in the case of HDV (in this case
no counter-rotating vortices develop, the separation structure is simple and
the k − ε model leads to good predictions of the measured velocity pro�les
[Browand et al., 2009]. We will use the k − ω calibrated Turbulence model
for the supercritical case (LDV). We will compare the obtained velocity pro-
�les (for the case of rear slant angles of α = 25 ◦ and α = 35 ◦) with the
experimental pro�les of Lienhart [Lienhart, Becker, 2003] and pro�les those
obtained by using more complex Turbulence models, reported in literature
or occasionally implemented with CFD codes.

The RANS equations are written in the system of reference of the mov-
ing vehicle. For an accelerating vehicle, the non-inertial forces are considered
as inserted in the hydrodinamic pressure (we consider only constant accel-
erations, given according to the representative values for European driving
cycles reported in Table 5. In this case unsteady RANS model must be
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applied, in order to resolve the unsteady mean-�ow structures.
In order to calibrate the k−ω model by determining an appropriate value

of ω∞, we search for self-preserving solutions of the Turbulence equations
valid in the far-wake region of an LDV vehicle, and compare them with the
analytical solutions obtained using an algebraic model of Turbulence. In
Section 4.1 we will �nd that the self-preserving solution for the longitudinal
component of the velocity in the far-wake region of a vehicle moving with
velocity U∞ has the form of a defect law:

u(x, y, z) = U∞ − U∞A
(
x

h

)−3/4

f [η, ζ] (3.21)

where:

η =
y

δ(x)
; ζ =

z

δ(x)
with δ(x) = γhA

(
x

h

)1/4

;

γ is a constant related to the Turbulence intensity, h is the vehicle height
and A is a constant depending on the draft on the vehicle (which is deter-
mined experimentally). We will prescribe, through the use of initial integral
conditions on the vehicle wake, a form of A which contains the informations
about vehicle far-wake interactions in a urban driving cycle. A solution
of the form of Equation (3.21) has been obtained by Eskridge and Hunt
[Eskridge et al., 1979], substituting it in the linearised equation for the con-
servation of the momentum with an algebraic model of Turbulence, and
imposing no-slip conditions at η → ±∞, ζ = 0 (the road surface boundary)
and ζ →∞. In the context of the k−ω model calibration, we will use a far-
wake solution of the algebraic Turbulence model equations which vanishes
for η → ±∞ (e�ectively, which vanishes at boundaries y = ±W/2, as will
be explained in Section 4.1) andζ → ∞, and which matches with the loga-
rithmic law of the wall for ζ → 0: we are supposing that the outer region of
the boundary layer is being destroyed by the far-wake of the vehicle, which
constitute the outer solution with which the inner viscous solution at the
solid boundary must match in the context of a singular perturbation analy-
sis. To obtain the corresponding solution of the k−ω model, we linearise the
conservation equations, assuming that the velocity defect in the far-wake is
small compared to the freestream velocity (|u|, |v|, |w| � U∞, i.e. the Oseen
approximation):



U∞
∂u

∂x
=

∂

∂y

[
νT
∂u

∂y

]
+

∂

∂z

[
νT
∂u

∂z

]
U∞

∂k

∂x
= νT

[(
∂u

∂y

)2

+

(
∂u

∂z

)2]
− β∗ωk +

∂

∂y

[
νTσ

∗∂k

∂y

]
+

∂

∂z

[
νTσ

∗∂k

∂z

]
U∞

∂ω

∂x
= α

ω

k
νT

[(
∂u

∂y

)2

+

(
∂u

∂z

)2]
− βω2 +

∂

∂y

[
νTσ

∂ω

∂y

]
+

∂

∂z

[
νTσ

∂ω

∂z

]
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Terms containing the pressure p and the v and the w components of the
velocity are considered to be small (of the �rst and of the second order in the
small parameter u/U∞ respectively) with respect to the terms containing u.
Note that we do not need to introduce the λ constant in the {xy} components
of the Reynolds stress to take into account the asymmetry produced by the
ground, as in [Eskridge et al., 1979], since this is accounted automatically
by the matching procedure with the law of the wall. Let us search a self-
preserving solution of the linearised equations of the form of Equation (3.21).
We thus make the transformation of variables:

η =
y

δ(x)
; ζ =

z

δ(x)
with δ(x) = γhA

(
x

h

)1/4

∂

∂x
=

∂

∂x
− δ

′

δ
η
∂

∂η
− δ

′

δ
ζ
∂

∂ζ
∂

∂y
=

1

δ

∂

∂η
∂

∂z
=

1

δ

∂

∂ζ

and the substitutions:

u = U∞ − U∞A
(
x

h

)−3/4

f [η, ζ]

k = U2
∞A

2

(
x

h

)−3/2

K[η, ζ]

ω =
k1/2

δ
=
U∞
x
W [η, ζ]

νT =
k

ω
= U∞γ

2hA2

(
x

h

)−1/2 K

W

The k − ω equations become:



∂

∂η

(
K

W

∂f

∂η

)
+

∂

∂ζ

(
K

W

∂f

∂ζ

)
+

1

4

(
η
∂f

∂η
+ ζ

∂f

∂ζ

)
+

3

4
f = 0

σ∗
[
∂

∂η

(
K

W

∂K

∂η

)
+

∂

∂ζ

(
K

W

∂K

∂ζ

)]
− β∗KW +

K

W

[(
∂f

∂η

)2

+

(
∂f

∂ζ

)2]
+

1

4

(
η
∂K

∂η
+ ζ

∂K

∂ζ

)
+

3

2
K = 0

σ

[
∂

∂η

(
K

W

∂W

∂η

)
+

∂

∂ζ

(
K

W

∂W

∂ζ

)]
− βW 2 + α

[(
∂f

∂η

)2

+

(
∂f

∂ζ

)2]
+

1

4

(
η
∂W

∂η
+ ζ

∂W

∂ζ

)
+W = 0

(3.22)
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The boundary conditions are:

• matching with the solutions in the logarithmic layer (3.11) for ζ → 0;

• f = K = W = 0 for η → ±∞;

• f,K → 0 and W → ω∞ for ζ →∞

Here and in the sequel, homogeneous Dirichlet conditions for k, ε and ω are
intended to correspond to small values of the turbulent quantities (in the
context of RANS Turbulence modeling the Turbulence cannot be zero). For
the Inlet Boundary conditions, the values are determined through Equations
(3.18) and relation ω = ε/(β∗k); for the Open Boundary conditions, reference
values for the turbulence quantities are (see Ref. [Kuzmin et al., 2007]):

kOB = 2.5·10−3[m2/s2] ; εOB = 1.1·10−4[m2/s3] ; ωOB = εOB/(β
∗kOB)

(3.23)
The same values can be chosen for the Open boundary conditions (i.e.
for η → ±∞ and ζ → ∞) for the self-similar variables K and W (the
x−dependent factors cancels out in the self-similar forms of the equations
(3.22)). We do not investigate the dependence of the solutions on the
freestream value of W for η → ±∞.

We consider the standard values of the closure coe�cients, reported in
Table 14. Problem (3.22) is a coupled system of non-linear Partial Di�er-
ential Equations (PDE) in two dimensions. It is simpler than the complete
k−ω problem, and can be integrated on a su�ciently wide rectangle to give
the self-preserving forms of f,K,W .

By employing the realizability constraint [Wilcox, 1998]:

νT ≤
k√

6
√
SijSij

,

which ensures that the diagonal elements of the Reynolds stress tensor be
nonnegative (Sij is the mean strain rate tensor), expressed in the self-similar
form:

K

W
≤

√
2K

√
3

√(
∂f
∂η

)2

+

(
∂f
∂ζ

)2
,

we avoid divisions by zero in the System (3.22). This is done by introducing
the modi�ed Ŵ function:

Ŵ = max

(
W,

√
3√
2

√(
∂f

∂η

)2

+

(
∂f

∂ζ

)2)
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Let us de�ne the spreading rate (in the vertical direction) for the far-wake
of the vehicle as the arithmetic average of the values of ζ where the velocity
defect (at the centerline) is half its maximum value [Wilcox, 1998]. The
process of the k − ω model calibration consists in comparing the spreading
rate (in the vertical direction) calculated through the analytical solution of
an algebraic model of Turbulence with that calculated through the numerical
solution of the System (3.22), varying the value of the freestream value ω∞.
We choose the value that yields the closest spreading rate to that coming
from the analytical solution. This is an extension of the calibration procedure
reported in Ref. [Wilcox, 1998], formulated for the case of two-dimensional
free-shear layers. Results will be shown in Sections 4.1 and 4.2. Finally, we
implement the Durbin realizability constraint [Wilcox, 1998], which imposes
an upper limit on the turbulent viscosity, in order to avoid the excessive
production of Turbulence near the stagnation point on the front face of the
vehicle.

We now schematically show the setting of boundary conditions, grid gen-
eration, discretization and solver procedure for the considered problems.

Boundary conditions and grid generation. At the wall bound-
aries of the canyon and at the vehicle surface, the logarithmic laws of the
wall are imposed. The wall boundary is the road surface in the case of the
open street geometry, and the road surface plus the canyon walls in the case
of the street canyon geometry. These boundaries are moving with a velocity
opposite to the vehicle velocity U∞ (in the reference frame of the vehicle,
in which it is �xed with zero velocity), so that we impose at the canyon
boundaries:

U − U∞ =
u∗
k

log
(u∗y
ν

)
+ C.

We use the u∗ values given by the analytical solutions to determine the dis-
tance from the wall of the �rst grid cell. We choose as the maximum dimen-
sion of the �rst cell adjacent to the street surface a maximum value of y =
L/100, where L is the length of the vehicle; for what concerns the vehicle sur-
face, we multiply the u∗ values by the draft coe�cient for eache vehicle face,
which is reported in the measurement data of Ref. [Lienhart, Becker, 2003]
(for U∞ = 40m/s) and Ref. [Browand et al., 2009]. This gives an indication
of the friction for each face of the vehicle, for the di�erent vehicle geometries,
and leads to values of y ∼ L/500. Di�erent layers of clustered grids of small
dimension immediately adjacent to the boundary has been considered. The
maximum cell dimension ∆x for the main �ow region far from solid bound-
aries is determined as ∆x/δ = 0.1, where δ is the wake thickess calculated
through the algebraic Turbulence model; this is an optimal measure to re-
solve the wake mean scales for the boundary-layer equations [Wilcox, 1998].

The domain dimension goes from distance 2L in front of the vehicle
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to 7L behind it; considering the speci�c dimensions of the Ahmed body,
this means that the domain extends to ∼ 21 times the vehicle heigth h
behind the vehicle. We thus resolve all the near wake and a portion of the
far wake region, which, according to Ref. [Eskridge et al., 1979], begins at
∼ 15h distance behind the vehicle. In Figure 15 we show the grid cases for
the di�erent geometries of the Ahmed body, for freestream �ow velocity of
40m/s. The grid is constituted by free tetrahedral cells. To demonstrate
the grid independence on the results, we will perform an adaptive mesh
re�nement based on the equation residuals, which will be shown in Section
4.2. The fact that we are using �rst order Lagrange elements, while the
equation residuals contain second derivative terms, is not a problem since the
equations are convected dominated, and the viscous layers are nor resolved.

We note that a grid generation procedure based on a block partition of the
domain, reducing the main grid dimensions in a domain region corresponding
to a block containing the immediate near-wake of the vehicle, has lead to
non convergent simulations, due to the bad quality of the generated meshes.
In the reported cases the minimum aspect ratio of the mesh is ∼ 0.5, with
an average value of ∼ 0.9.

The inlet conditions are speci�ed at the front transversal plane of the
street through which the �ow is entering. The inlet boundary conditions
consists of a Dirichlet condition for the wind velocity, plus Dirichlet condi-
tions on the turbulent quantities, expressed in terms of a turbulent length
scale LT and a turbulent intensity IT , as de�ned in Equations (3.18). We
use the values:

IT =
ufw
U∞

; LT = δ(x) (3.24)

where ufw is the maximum value (i.e. the value at the center-line for z =
δ(x)) of the far wake defect velocity (u− U∞) of a preceding vehicle at the
inlet, considering the inlet plane as positioned at a distance from a preceding
vehicle determined by the considered driving condition statistics. In a same
manner, δ(x) is the value of the far-wake thickness of a preceding vehicle at
the inlet. In the case of non-interacting wake conditions the reference values
of wind tunnel experiments can be considered, and the Dirichlet condition
for the velocity is u = U∞. In the case of interacting wakes, the values of
Turbulence intensity can reach the levels of 15%, and a reduced constant
value for the inlet velocity is considered, as will be shown in Section 4.2.

The outlet conditions are speci�ed at the bottom transversal planes
of the canyon through which the �ow is exiting. We choose to specify a
Dirichlet condition on the pressure as an out�ow condition (p = p0 = 1atm),
which has shown to lead to more convergent results than the pressure - no
viscous stress condition in 2D test cases for the �ow on the Ahmed body;
zero convective �ux conditions are imposed on the turbulent quantities.

Open boundary conditions are imposed at the top horizontal plane of
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Figure 15: Grid cases for the di�erent geometries of the Ahmed body, for freestream
�ow velocity of 40m/s, as described in the text.
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the canyon. In this case, a non-friction normal stress condition is imposed
for the momentum equations, implying that the total stress in the tangential
direction is zero:

[−pIij + 2(ν + νT )Sij ]nj = −p0ni,

where Iij is the identity tensor. In the case of the k − ε model simulations,
homogeneous Dirichlet conditions corresponding to (3.23) are prescribed for
the Turbulence variables. In the case of the k−ω model simulations, Dirichlet
conditions are imposed on the turbulent quantities, as previously discussed:

k = 0 ; ω = ω∞

In the case of the open street geometry, open boundary conditions are
imposed on the side planes of the canyon, imposing non friction conditions
for the total stress and homogeneous Dirichlet conditions for the Turbulent
variables.

When the vehicle is moving with a constant acceleration, we consider
unsteady RANS simulations, and an initial condition U = Uv must be con-
sidered. An initial guess for the turbulent quantities, based on wind tunnel
measurments, is [Kuzmin et al., 2007]:

kin =

(
100ν

δ

)2

; εin =
Cµk

3/2
in

0.1δ
; ωin =

εin
kin

We must note that the unsteady RANS Turbulence models cannot be applied
to vehicles starting from zero velocity, cause the equations are singular for
zero values of the turbulent quantities. Even if we prevent the division
by zero by introducing upper limits on the mixing length, the models can
only describe situations with non-zero Turbulence. For this reasons, when
tra�c statistics contain sectors with vehicle velocity starting from zero, we
consider an initial small velocity (i.e. U∞ = 0.1m/s). An initialization of
the Turbulence model by analytical solutions of laminar boundary layer grow
approximation [Batchelor, 1967] will be carried out in future investigations.

Discretization and solver procedure. We choose �rst order (P1−
P1) piecewise polynomial elements for both the velocity and pressure func-
tions and for the turbulent variables. We introduce a streamline di�usion
stabilization (Galerkin Least Squares) in order to stabilize the convection-
dominated Turbulence equations, and crosswind di�usion [Quarteroni, Valli, 2008],
in order to introduce extra di�usion in the sharp turbulent-non turbulent lay-
ers, which present weak solutions with discontinuous derivatives [Wilcox, 1998]
and would require a very dense mesh to be resolved. The discretized non-
linear system is resolved, in the case of stationary simulations, by a pseudo-
time advancing scheme, using an operator splitting Peaceman-Rutherford
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scheme [Quarteroni, Valli, 2008] for each time step iteration. At each it-
eration step the corresponding linear algebraic system are solved with the
GMRES iterative procedure, with Geometric Multigrid (GM) smoothers.
The pseudo-time step is chosen in function of the local CFL number for
each element. The GMRES procedure must be set up with an optimal
number of iterations, in order to not ful�ll the memory capacity of the cal-
culator. The time dependent discretized equations are solved by a fractional
step projection method [Quarteroni, Valli, 2008] based on a BDF di�erenc-
ing scheme and a pressure correction scheme, for the U and p variables, and
a BDF Euler semi-implicit scheme for the turbulent variables. This method
has shown faster convergence times than a Euler semi implicit method ap-
plied to all the valiables, which has been �rstly applied. The choice of the
time-step is a crucial point in obtaining convergent and accurate solutions.
The discretized turbulent transport equations constitutes a sti� system: the
time scale introduced by the rate of decay of Turbulence, tdiss ∼ k/ε ∼ 1/ω
varies on a wide spectrum of scales. We consider a time step based on the
wave propagation and molecular di�usion Courant numbers. As the time
integration algorithms introduced are unconditionally stable for both the
momentum and the turbulent variables approximations, the problem is with
accuracy and convergence time. We have found that, using the BDF di�er-
encing scheme in the initial stages of computation, and changing to a more
accurate generalized alpha di�erence scheme, eventually lowering the time
step, when the convergence properties of the solutions begin to get worse (ob-
serving the convergence plot while solving), a good �nal solution is obtained.
Finally, the Turbulence model equations are solved through a sequentially-
implicit method, solving the mean �ow and the Turbulence model equations
sequentially, with the discretization procedures just described.

3.5 Pollutant dispersion

Let us set up the operational and the numerical models for the dispersion of
the Soot and the road dust component, starting from the dispersion Equation
(3.14).

Operational models An empirical model derived on the basis of pollution
measurements in canyon streets of San Jose and St. Louis is the STREET
model by Johnson et al. (1973) [Berkowicz, Kearney, 2004]. The model
assumes that the emission concentrations (in mg/m3) from the local street
tra�c (Cs) are added to the pollution present in the air that enters from the
roof level (Cb). The street contribution is given by:
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Cs =
K

u+ us

∑
i

Qi[(
y2
i + z2

)1/2
+ h0

] for the leeward side;

Cs =
K

u+ us

H − z
H

∑
i

Qi
W

for the windward side.

K is an empirical constant (K ∼ 7); us accounts for the mechanically induced
air movement caused by the tra�c �ow (us ∼ 0.5m/s); u is the magnitude
of the roof-level wind speed component orthogonal to the street axis; h0 ac-
counts for the initial mixing of the pollutants h0 ∼ 2m; Qi is the emission
strength of the i−th tra�c lane (in mg/ms); yi and z are the horizontal
and the vertical distances from the i−th tra�c lane to the receptor point
(thus the parametrization is 2− dimensional, and homogeneity in the longi-
tudinal direction is considered; H and W are the height and the width of
the canyon, respectively. The model is valid for external winds blowing at
an angle of more than 30◦ to the street canyon axis: in this cases, a helical
recirculation develops in the street [Berkowicz, Kearney, 2004], causing the
pollutants emitted from tra�c in the street to be primarily transported to-
wards the upwind building (leeside), while the downwind side is primarily
exposed to background pollution and pollution that has recirculated in the
street. The model predicts thus that the concentrations on the leeward side
of the street are higher than on the windward side. These are the most
essential features of pollutant dispersion in street canyons and therefore the
STREET model is still widely used. Besides this, the STREET model is
based on the assumption that the dilution of pollutants emitted form the
vehicles is proportional to the distance from the source to the receptor (see
formula in Section 3.2), which is a valid assumption for the short source-
receptor distances in street canyons [Berkowicz, Kearney, 2004].:

σz ∼
(
y2
i + z2

)1/2
.

A pu� in a direction determined by the vector component (yi, z), advected
by the ground level wind component in the helical recirculation, is being
considered. If the roof level wind direction is at angle θ∞ with respect to
the street axis, then the street level wind in the helical recirculation zone
forms an angle θ∞ with the street axis too, but the transverse component is
mirror re�ected [Berkowicz, Kearney, 2004] (see also the results reported in
Section 4.2). Outside the recirculation zone the wind direction is the same
as at roof level. No di�usion in the longitudinal direction is considered in
the empirical parametrization of the model. To modify this empirical model
in order to take into account the deposition and resuspension processes, we
can proceed in the following manner:
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• Soot dispersion case: in Ref. [Rao, 1981] an analytical solution of
a simpli�ed gradient-transfer model is given, which estimates the de-
crease of the emission intensity Q moving along the direction of trans-
portation due to the e�ect of deposition:

Q = Q0 exp

[
−
√

2

π

vd(z)

V

∫ x

0

dx

σz exp
(
H2/2σ2

z

)] (3.25)

where Q0 is the emission rate at the emission point (we are considering
the case of one tra�c lane), vd(z) is the deposition velocity at the
height z of the emission point, and V is the advection velocity in the
direction x. In our case, the plume is advected in a direction orthogonal
to the street axis, V = u+ us and the integration is in the variable y.
Considering the deposition at the road surface level vd(0) (the same
used in Equation (2.3); we consider that the emission point is at z = 0)
and the form for σz introduced previously, we have:

Q = Q0 exp

[
−
√

2

π

(
vd(0)

u+ us

)∫ y

0

exp−
(
H2/2y2

)
y

dy

]
We are not considering the deposition process for the background con-
centration cb, whose value is assumed to be stationary. The integral in
the last expression can be expressed in terms of the incomplete Gamma
function ([Bateman, 1953]):

Γ(0, x) =

∫ ∞
x

e−tt−1 dt.

Taking the substitution:

t→ A

t′2

we have:

Γ(0, x) = 2

∫ √A/x
0

e−A/t
′2

t′
dt′.

We have thus:

Q = Q0 exp

[
−2

√
2

π

(
vd(0)

u+ us

)
Γ

(
0,
H2

2y2

)]
(3.26)

In Figure 16 we show the behaviour of the term exp
[
−Γ
(
0, 1

x2

)]
. Its

value is 1 near the emission point y = 0, and decays moving towards
the canyon wall at the leeward side.
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Figure 16: Behaviour of the term exp
[
−Γ
(
0, 1

x2

)]
.

The modi�ed contributions for the leeward and the windward side,
corresponding to one tra�c lane, are thus:

Leeward side :

Cs =

(
K

u+ us

)Q0 exp

[
−2
√

2
π

(
vd(0)
u+us

)
Γ

(
0, H

2

2y2

)]
[(
y2
i + z2

)1/2
+ h0

]
Windward side :

Cs =

(
K

u+ us

H − z
H

)Q0 exp

[
−2
√

2
π

(
vd(0)
u+us

)
Γ

(
0, 2H2

W 2

)]
W

(3.27)

• Road dust dispersion case: the road dust emission source is dis-
tributed along all the width of the canyon. The appropriate emission
rate (in mg/ms) is:

dQ = kresPs dy,

where the terms have the same meaning of those contained in the
resuspension �ux term in Equation (2.4). Here we have substituted cs
with Pd to avoid confusion with the street contribution term Cs. An
integration over the street canyon width must be performed to consider
the road dust emission charge at a distance y from the street axis
(assumed at y = 0). In this model we cannot consider the deposition
contribution to Cs (observe that ∂Cs/∂z|z=0 is zero except at y = 0).

99



We consider a stationary value of Pd, as in Equation (2.6), and neglect
deposition. The value for the leeward contribution is given by:

Cs =
K

u+ us
kresPs

∫ y

0

dy[(
y2 + z2

)1/2
+ h0

]
The integral can be easily obtained by standard methods in terms
of arctan and log functions. Considering that h0 = 2m, we have the
following modi�ed contributions for the leeward and the windward side,
corresponding to one tra�c lane:

Leeward side :

Cs =

(
K

u+ us

)
kresPs

{
log
(
y +

√
y2 + z2

)
− log z

− 2

[
arctan

( y√
z2−4

)
− arctan

( 2y√
z2−4
√
y2+z2

)]
√
z2 − 4

}

Windward side :

Cs =

(
K

u+ us

H − z
H

)
kresPs

2

(3.28)

Note that the solution for the leeward side is well de�ned: expanding
the arctan in Taylor series around any �nite point y we see that the
singularity in z = h0 is cancelled out. Besides this, the solution is real
∀z: when z2 < 4, the arctan functions becomes arctanh functions and
are purely imaginary for y < 2 (in the case z = 0, but this fact can
be easily extended to all z2 < 4, expressing the arctanh in terms of
logarithms), and when y > 2 the real parts of the two arctan functions
cancel out, as well as the singularity for y = 2. The only singularity
is for z = 0 in the log z term, corresponding to the layer of concen-
tration at the boundary. In Figure 17 we show the behaviour of the
leeward solution for di�erent values of z. We can see that increasing z
the concentration values diminish; for a �x z, the concentration value
increases with y, as should be expected.

The Equations (3.27) and (3.28) de�ne an operational model, which we call
Model A, which is valid in the hypothesis of the Street empirical model:
i) canyon geometry; ii) external wind blowing at an angle > 30◦ relative to
the street axis (or, at least, presence on an helical wind recirculation in the
canyon). We consider constant values of the parameters vd(0) and kres across
the canyon; these values must be determined as integral average values of
this parameters across the street, and depend on the driving cycle. Results

100



Figure 17: Behaviour of the leeward solution for di�erent values of z: z =
0.5, 1.9, 2.1, 6 [m].

of the application of this model will be reported in Section 4.4. We must
observe that this model requires very few computational resources, consisting
in calculating the values of transcendental and special functions on the plane
canyon domain.

Another operational model can be derived starting from the formulation
of theOperational Street Pollution Model (OSPM) [Berkowicz, Kearney, 2004].
In OSPM the concentrations of exhaust gases are calculated using a com-
bination of a plume model, for the direct contribution of vehicle emitted
pollutants, and a box model [Seinfeld, Pandis, 2006], that enables computa-
tion of the additional impact due to pollutants recirculated within the street
by the vortex �ow. This dispersion model makes use of a very simpli�ed
parameterization of �ow and dispersion conditions in a street canyon, de-
duced from extensive analysis of experimental data and model tests. The
direct contribution is calculated assuming that both the tra�c and tra�c
emissions are uniformly distributed across the canyon, treating the emission
�eld as a number of in�nitesimal line sources aligned perpendicular to the
wind direction at the street level, with thickness dy. The line sources are
treated as in�nite in the longitudinal direction; the problem is thus two di-
mensional, and a Gaussian solution is used to determine the contribution to
the concentration at a point located at a distance y from the line source at
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the ground level:

dCs =

√
2

π

dQ

ugσz(y)
,

where ug is the ground-level wind in the y direction, which advects the
plume across the canyon, and σ(z) is the vertical dispersion parameter at a
downwind distance y. This contribution must be integrated along the wind
path at the street level. The integration path depends on the extension of the
recirculation zone. For a receptor on the leeward side, the direct contribution
is calculated considering the emissions from tra�c in the recirculation zone
only. The total concentration at the leeward side must be computed as a sum
of the direct contribution and the recirculation component Cr. For a receptor
on the windward side, only contributions from the emissions outside the
recirculation zone are taken into account. If the recirculation zone extends
through the whole canyon, no direct contribution is given for the receptor
on the windward side, and the only contribution is from the recirculation
component. The latter contribution is calculated assuming a simple box
model [Seinfeld, Pandis, 2006], i.e. a conservation of mass equation inside
the volume of the whole canyon, assuming that the pollutants are perfectly
mixed inside it : the in�ow rate of the pollutants into the recirculation
zone is equal to the out�ow rate. In Ref. [Berkowicz, Kearney, 2004] the
recirculation zone is assumed to have the form of a trapeze, on the sides of
which the in�ow and out�ow �uxes must be calculated. When the vortex is
totally immersed inside the canyon, the recirculation contribution is:

Cr =
Q

σwtW
, (3.29)

where σwt is the canyon ventilation velocity, determined by the turbulence
at the top of the canyon, which is expressed in terms of the roof-level wind
speed ut and the tra�c produced turbulence σtpt as:

σwt =
[(

0.1ut
)2

+ 0.4σ2
tpt

]1/2
No dependence on the atmospheric stability is supposed. The dispersion
parameter of the plume advected in the y direction is expressed in function
of the mechanical Turbulence at the ground level:

σz(y) = σw
y

ug
+ h0,

where σw is the vertical turbulent velocity �uctuation, parametrized as:

σw =
[(

0.1ug
)2

+ σ2
tpt

]1/2
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The value 0.1 corresponds to typical levels of mechanically induced turbu-
lence [Berkowicz, Kearney, 2004]. The tra�c produced Turbulence is de-
scribed on the basis of the production-dissipation balance for turbulent ki-
netic energy generated by a single vehicle or a row of vehicles in a street
canyon [Di Sabatino et al. I, 2003]. The number of vehicles producing Tur-
bulence, the averaging volume in which Turbulence is produced and the
length scale of dissipation of turbulent kinetic energy must be chosen de-
pending on the particular tra�c conditions. The results for the average
values of tra�c produced Turbulence are:

σ2
tpt = c4 · nv · C2/3

D · V 2 · h
3

Sc
LightTraffic Density

σ2
tpt = c5 ·

(
nv · CD

)2/3 · V 2 · h
2

S
2/3
c

IntermediateTraffic Density

σ2
tpt = c6 · C2/3

D · V 2 · h
4/3

S
2/3
c

HeavyTraffic Density

(3.30)

where nv is the number of vehicles per unit length, expressed in terms of the
length of the street and the distance between the vehicles (given by tra�c
statistics); CD is the average drag coe�cient of the vehicles; V is the vehicle
speed; h is the geometrical length scale of the vehicles (i.e. the frontal
area of the vehicle, used in de�ning the drag coe�cient); Sc is the cross-
section area in the canyon in which tra�c produced Turbulence is active
(i.e. W ·H in the case of Turbulence averaged over the whole canyon). Note
that, in the case of heavy tra�c density, the average drag coe�cient of the
vehicles is reduced from the single vehicle drag coe�cient correspondent to
the tra�c velocity V , since the spacing between the vehicles decreases. This
e�ect of wake interactions will be described in Section 4.1. The empirical
constants in Equation (3.30) are determined from wind tunnel measurments
[Kastner-Klein et al. II, 2003], in the case of Light and Intermediate tra�c
density. For the Heavy tra�c density, we use a parametrization based on
values introduced in [Berkowicz, Kearney, 2004] (where a parametrization
constant b is introduced):

c4 = 0.06

c5 = 0.007

c6 =
b · (Sc)2/3

C
2/3
D h4/3

(3.31)

where the average drag coe�cient of the vehicles must be calculated consid-
ering the vehicle wakes interaction, as will be explained in Section 4.1. The
parameter b is estimated to be equal to b = 0.000126.
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Now we want to generalize the OSPM model, in order to take into
account the deposition and resuspension processes, to consider open road
and street canyon geometries, and to treat the cases in which the external
wind at the roof level generates an helical recirculation inside the canyon or a
longitudinal wind �ux. To do this, we consider the solution of the dispersion
Equation (3.14) as a superposition of di�erent Pu� solutions, with a structure
depending on the street geometry and the wind �ux at the street level.
We obtain the Pu� solutions by means of the Green propagation method
[Morse, Feshbach, 1953]. Let us specialize this method to the case of the
di�usion equation:

∂C

∂t
−Kxx

∂2C

∂x2
−Kyy

∂2C

∂y2
−Kzz

∂2C

∂z2
= S(x, y, z, t) (3.32)

where the eddy di�usivity components are considered as constants for each
Pu� solution. Note that, for a Pu� solution advected in the x direction with
a constant velocity U (the same is valid considering advection in the y and
z direction), Equation (3.14) reduces to Equation (3.32), changing to the
characteristics coordinate x → ξ = x − Ut. The distribution equation for
the corresponding Green function G(x− x0, y − y0, z − z0, t− t0) is:

−∂G
∂t
−Kxx

∂2G

∂x2
−Kyy

∂2G

∂y2
−Kzz

∂2G

∂z2
= δ(x−x0)δ(y−y0)δ(z−z0)δ(t− t0)

(3.33)
Now multiply Equation (3.32) by G and Equation (3.33) by C, subtract the
resultant equations, and integrate over space and over time (from t = 0 to
t = t+), applying the Green formula for integration in a simply connected
domain [Morse, Feshbach, 1953]

∫
[div(∇G)]C dV0 = −

∫
∇G · ∇C dV0 +

∫
(∇G · n) C dS0,

where dV0 indicates integration in the (x0, y0, z0) volume, dS0 indicates in-
tegration on the boundary surface, and n is the unit vector normal to the
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boundary. We obtain:

C(x, y, z, t) =

∫ t+

0
dt0

∫
dV0G(x− x0, y − y0, z − z0, t− t0)S(x0, y0, z0, t0)

+

∫
dV0[C(x0, y0, z0, t0)G(x− x0, y − y0, z − z0, t− t0)]t0=0

+Kxx

∫ t+

0
dt0

∫
dS0

[
G
∂C

∂x0
nx0 − C

∂G

∂x0
nx0

]
+Kyy

∫ t+

0
dt0

∫
dS0

[
G
∂C

∂y0
ny0 − C

∂G

∂y0
ny0

]
+Kzz

∫ t+

0
dt0

∫
dS0

[
G
∂C

∂z0
nz0 − C

∂G

∂z0
nz0

]
(3.34)

The �rst term on the right hand side represents the propagation of the source
term; the second term represents the in�uence of the initial conditions; the
remaining terms represent the propagation of inhomogeneous boundary con-
ditions. If we consider inhomogeneous boundary conditions applied only at
the road surface (z = 0, n = (0, 0, nz)), by choosing a Green function with
the same homogeneous boundary conditions as C on the x = c and y = c
boundaries (in a prism domain, where c is a generic constant) the third and
the fourth terms on the right hand side vanish. To consider the deposition
and the resuspension processes, we apply the boundary conditions (see Equa-
tions (2.3) and (2.4), with a stationary value for the road dust concentration,
which enables to neglect the θ0 term):

Kzz
∂C

∂z
= −vd(0)C for Soot dispersion

Kzz
∂C

∂z
= −vd(0)C + krescs for road dust dispersion

(3.35)

These forms are valid when there is no advection of the Pu� in the z direction;
otherwise, the normal �ux at the road surface must contain the advection
term.

Starting from Equation (3.34) we set up the desired operational model,
which we call Model B. We introduce it by distinguishing between the
various dispersion cases.

1. Soot dispersion - Open street geometry: the solution for the pol-
lutant concentration C (in mg/m3) is constituted by a plume advected
in the x direction. We consider a stationary solution of the dispersion
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equation, written in the system of reference of the street:

V
∂C

∂x
−Kyy

∂2C

∂y2
−Kzz

∂2C

∂z2
= Qδ(y)δ(z −He) (3.36)

The advection velocity V is the average tra�c velocity (in the case of
the open street we neglect the e�ect of a mean wind �ow superposed
to the tra�c induced wind, because in this case the driving condition
is usually extra-urban, and the average tra�c velocity is much higher
than the mean wind velocity); Q is the average emission rate of the ve-
hicles (in mg/ms): we consider a linear emissive source at the canyon
centerline (y = 0), at an height He. The canyon length is L: this model
enables the description of the accumulation e�ect of the emitted pol-
lutants in the direction of the tra�c �ow. If Turbulence is considered
homogeneous in the street, the eddy di�usivity can be prescribed as:

Kyy = λσ2
v

L+ h0

V
= λσ2

tpt

L+ h0

V

Kzz = σ2
w

L+ h0

V
= σ2

tpt

L+ h0

V

(3.37)

The λ constant takes into account the asymmetry produced by the
ground, and it is expected from measurements in the wakes of cube
obstacles that 1 ≤ λ ≤ 2 [Eskridge et al., 1979]; anyhow, we assume
that λ = 1, due to the lack of an empirical value obtained from vehicle
wakes measurements. h0 is associated to the initial (immediate) dis-
persion in the wakes of the vehicles (h0 = 2m, as in OSPM model).
Another prescription, which would consider Turbulence accumulation
in the x direction, could be:

Kyy = λσ2
tpt

x+ h0

V

Kzz = σ2
tpt

x+ h0

V

(3.38)

Note that the OSPM prescription for the σz dispersion parameter is
equivalent to:

Kzz =
σ2
w

2

x

V
+
h2

0

2

V

x
+ h0σw (3.39)

Now we �nd the appropriate Green function corresponding to the
Equation (3.36) with boundary condition (3.35) at the road surface.
Note that, by taking the substitution x→ V t, Equation (3.36) has the
form of Equation (3.32). There are two possibilities:
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• consider a Green function with boundary condition at the road
surface:

Kzz

vd(0)

∂G

∂z
= −G

In this case the solution to the dispersion equation is:

C(x, y, z, t) =

∫ t+

0
dt0

∫
dV0GS +

∫
dV0[CG]t0=0;

• consider a Green function with boundary condition at the road
surface:

∂G

∂z
= 0

In this case the solution to the dispersion equation is:

C(x, y, z, t) =

∫ t+

0
dt0

∫
dV0GS +

∫
dV0[CG]t0=0

−
∫ t+

0
dt0

∫
dS0Gvd(0)C

The former possibility is easy to employ only when an homogeneous
Neumann boundary condition is imposed on the z �ux at the roof level
(in a street canyon geometry) or at an inversion layer (in the open street
geometry): in such a case, the Green function can be easily expressed
as a series expansion in terms of eigenfunctions. Otherwise, we should
solve for a transformed function H with an homogeneous Neumann
boundary condition on the ground:

Kzz

vd(0)

∂C

∂z
+ C = H,

using the Laplace transform technique [Morse, Feshbach, 1953]. Since
the latter conditions are physically acceptable only in few cases, we
employ the second possibility. The Green function in the open street
geometry with homogeneous Neumann condition at the road surface
can be obtained using the Fourier transform and the method of images
[Morse, Feshbach, 1953]. Solving Equation (3.33) with:

G(t− t0, y − y0, z − z0) =
1

(2π)2

∫
ei[py(y−y0)+pz(z−z0)]G̃(t− t0, p) dVp,
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considering the reciprocity property of the di�usion Green function,
and the prescription (3.37) for the eddy di�usivity components (note
that they are positive, so that the Fourier transformed Green function
is a Gaussian function), we have:

G(x− x0, y − y0, z − z0) =

1

4π

θ(x− x0)V

(x− x0)
√
KyyKzz

e
− V (y−y0)

2

4Kyy(x−x0)

[
e
− V (z−z0)

2

4Kzz(x−x0) + e
− V (z+z0)

2

4Kzz(x−x0)

]
(3.40)

where θ(x−x0) is the Heaviside step distribution [Morse, Feshbach, 1953].
When considering the prescription (3.38) terms in x2 appears in Equa-
tion (3.40). The Green function can be easily obtained also for the
prescription (3.39). From Equation (3.34), we have for the general
solution:

C(x, y, z) =

1

4π

∫ L

0
dx0

∫
dy0dz0

θ(x− x0)

(x− x0)
√
KyyKzz

e
− V

4(x−x0)

[
(y−y0)

2

Kyy
+

(z−z0)
2

Kzz

]
Qδ(y0)δ(z0 −He)

+
1

4π

∫ L

0
dx0

∫
dy0dz0

θ(x− x0)

(x− x0)
√
KyyKzz

e
− V

4(x−x0)

[
(y−y0)

2

Kyy
+

(z+z0)
2

Kzz

]
Qδ(y0)δ(z0 −He)

+Cb −
vd(0)

2π

∫ L

0
dx0

∫
dy0

θ(x− x0)

(x− x0)
√
KyyKzz

e
− V

4(x−x0)

[
(y−y0)

2

Kyy
+ z2

Kzz

]
C(x0, y0, 0)

(3.41)

where Cb is the background contribution at x0 = 0. The integrals
containing the step function can be considered making the substitution:

ξ = x−x0 →
∫ L

0
dx0

θ(x− x0)

(x− x0)
exp
[
−A/(x−x0)

]
=

∫ x

0
dξ

1

ξ
exp
[
−A/ξ

]
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The solution can be expressed as:

C(x, y, z) =

Q

4π
√
KyyKzz

{
Γ

[
0,
V

4x

(
y2

kyy
+

(z −He)
2

kzz

)]
+ Γ

[
0,
V

4x

(
y2

kyy
+

(z +He)
2

kzz

)]}
+ Cb

− vd(0)

2π
√
KyyKzz

∫ L

0
dx0

∫
dy0

θ(x− x0)

(x− x0)
e
− V

4(x−x0)

[
(y−y0)

2

Kyy
+ z2

Kzz

]
C(x0, y0, 0)

(3.42)

One way to derive an operative solution is to neglect the surface con-
tribution, considering a deposition parametrization as introduced in
Equation (3.26):

C(x, y, z) =

Q0 exp

[
−2
√

2
π

(
vd(0)
V

)
Γ

(
0, H

2

2y2

)]
4π
√
KyyKzz

·{
Γ

[
0,
V

4x

(
y2

kyy
+

(z −He)
2

kzz

)]
+ Γ

[
0,
V

4x

(
y2

kyy
+

(z +He)
2

kzz

)]}
+ Cb

(3.43)

This approach introduces a description of the deposition process only
across the street. This is a good approximation for an in�nitely long
street. Note that in this case the di�usion equation (3.36) could be
substituted by a Poisson equation, making the problem of Green prop-
agation of the source and the boundary terms more simple.

A more detailed method would be to solve by successive approxima-
tions the inhomogeneous Fredholm integral equation of the second kind
[Morse, Feshbach, 1953] associated to Equation (3.42). Here we show
the latter procedure. Consider the solution (3.42) with values on the
road boundary z = 0:

C(x, y, 0) =
Q

2π
√
KyyKzz

Γ

[
0,
V

4x

(
y2

kyy
+
H2
e

kzz

)]
+ Cb

− vd(0)

2π
√
KyyKzz

∫ L

0
dx0

∫
dy0

θ(x− x0)

(x− x0)
e
− V

4(x−x0)
(y−y0)

2

Kyy C(x0, y0, 0)

We underline here the fact that we are making a strong approximation:
the surface boundary on which we impose the form for the deposition
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�ux extends to − inf < y < inf, with a constant value of vd(0) over
the whole surface. This simpli�es the calculations, but introduces a
strong approximation which make the results useless if the receptor
is in a point far away from the road. The results for a road surface
extending to −W/2 < y < W/2 on which a deposition �ux with a
constant deposition velocity vd(0) is imposed (and imposing moreover
an homogeneous Neumann condition on the remaining part of the z =
0 boundary), have been obtained too, but they are not in a closed
form and di�erent expansions are uniformly valid on di�erent domain
regions. We will treat this case in further investigations.

The last equation is an inhomogeneous Fredholm integral equation of
the second kind of the type:

C(x, y, 0) = f(x, y, 0)−λ
∫ L

0
dx0

∫
dy0K(x−x0, y−y0, 0)C(x0, y0, 0)

It's easy to see that the kernel term K(x− x0, y − y0, 0) is continuous
for x > x0 > 0 and has a compact support (even if the y dimension
extends to in�nity), and that the constant λ is small compared to the
maximum value of the kernel integrated on its support (M):

λ ·M ∼ vd(0)√
KzzV

∼ vd(0) ∼ 10−2,

where, for Kzz, the values corresponding to a light tra�c density must
be considered in the open street case (see Equations (3.30) and (3.40)),
and vd(0) ∼ 10−2(see Section 4.3); this means that the equation has
a unique solution [Morse, Feshbach, 1953], and can be solved by the
method of successive approximation:

Ci(x, y, 0) = f(x, y, 0)−λ
∫ L

0
dx0

∫
dy0K(x−x0, y−y0, 0)Ci−1(x0, y0, 0)

We choose C0 = f and retain only the terms linear in vd(0), and sub-
stitute the surface value C(x, y, 0) inside the Equation (3.42), which
propagates it on the whole domain. We introduce a further approx-
imation, in order to make the results as simple as possible: the de-
position contribution coming from the background concentration Cb is
integrated over all the road surface domain, whereas the contribution
coming from the line source Qδ(y)δ(z − He) is propagated from the
centreline of the street at the ground, considering as the source value
the accumulated value at L . We obtain:
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C(x, y, 0) =
Q

2π
√
KyyKzz

Γ

[
0,
V

4x

(
y2

kyy
+
H2
e

kzz

)]
+ Cb

− 2Cb
vd(0)√
πV
√
Kzz

√
x− vd(0)

2π
√
KyyKzz

Γ

[
0,
V

4L

(
H2
e

kzz

)]
Γ

[
0,
V

4x

(
y2

kyy

)],
and �nally:

C(x, y, z) =

Q

4π
√
KyyKzz

{
Γ

[
0,
V

4x

(
y2

kyy
+

(z −He)
2

kzz

)]
+ Γ

[
0,
V

4x

(
y2

kyy
+

(z +He)
2

kzz

)]}
+ Cb

− vd(0)Q

4π2KyyKzz
Γ

[
0,
V

4L

(
H2
e

kzz

)]
Γ

[
0,
V

4x

(
y2

kyy
+

z2

kzz

)]

− 2
vd(0)Cb√
πV Kzz

{
e−

V
4x

z2

Kzz
√
x− z

2

√
πV

Kzz
Erfc

[√
Vz2

4xKzz

]}
(3.44)

where we have integrated the Gaussian functions on the y coordinate,
and used the fact that Γ[1/2, x2] ∝ erf(x). This is the solution for
the Soot plume advected in the direction of the tra�c �ow in an open
street, with constant dispersion parameters determined by the tra�c
produced Turbulence, considering the deposition and the resuspension
processes.

2. Road dust dispersion - Open street geometry: in this case, we
choose the same Green function as that in Equation (3.40), satisfying
an homogeneous Neumann boundary condition. The solution of the
dispersion Equation (3.36), without the source term, but with the sec-
ond boundary condition in (3.35), representing a plume advected in
the longitudinal direction by tra�c velocity, is derived from Equation
(3.34):

C(x, y, z, t) = Cdb+krescs

∫ L

0
dx0

∫
dy0[G]−vd(0)

∫ L

0
dx0

∫
dy0[GC],

where Cdb is the background road dust concentration in air. We are
again assuming a stationary value of the road dust cs, so that the
boundary condition is not coupled with a budget equation for the road
dust concentration dynamics. We have:
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C(x, y, z) = Cdb +
2krescs√
πV Kzz

{√
xe−

V
4x

z2

Kzz − z

2

√
πV

Kzz
Erfc

[√
Vz2

4xKzz

]}

− vd(0)

2π
√
KyyKzz

∫ L

0
dx0

∫
dy0

θ(x− x0)

(x− x0)
e
− V

4(x−x0)

[
(y−y0)

2

Kyy
+ z2

Kzz

]
C(x0, y0, 0)

Solving the corresponding integral equation for the concentration at
the road surface, and than substituting the solution inside the last
equation, we obtain, at O[z0]:

C(x, y, z) = Cdb+

2√
πV Kzz

[
krescs − vd(0)Cdb − 2

√
L
krescsvd(0)√
πV Kzz

]
·{√

xe−
V
4x

z2

Kzz − z

2

√
πV

Kzz
Erfc

[√
Vz2

4xKzz

]} (3.45)

This is the solution for the road dust plume advected in the direction of
the tra�c �ow in an open street, with constant dispersion parameters
determined by the tra�c produced Turbulence, considering the deposi-
tion and the resuspension processes. Note that, due to the approxima-
tion of a constant deposition + resuspension �ux applied to the whole
surface boundary extending to −∞ < y <∞, the solution is indepen-
detn from y; this is a valid approximation only if the receptor point is
posed above the road boundary (i.e. between −W/2 < y < W/2).

3. Soot dispersion - Canyon street geometry - No recirculation:

in this case the solution for the pollutant concentration C is constituted
by a plume advected in the x direction, which is a stationary solution
of the dispersion Equation (3.36). The advection velocity V is the sum
of the average tra�c velocity (the driving condition is usually inter-
mediate or heavy tra�c condition) and the mean velocity U// relative
to the longitudinal component of the wind �ow generated thorough
the canyon by the external wind �ow (which will be de�ned in Section
4.1). If Turbulence is considered homogeneous in the street, the eddy
di�usivity can be prescribed as:

Kyy = σ2
v

L+ h0

V
=
[
(αU//)

2 + σ2
tpt

]L+ h0

V

Kzz = σ2
w

L+ h0

V
=
[
(αU//)

2 + σ2
tpt

]L+ h0

V

(3.46)
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where α = 0.1 as in the OSPM parametrization.

Now we �nd the appropriate Green function for the street canyon geom-
etry corresponding to the Equation (3.36) with the following boundary
conditions:



C = 0 for y = ±W/2

C = 0 for z→∞

∂C

∂z
+
vd(0)

Kzz
C = 0 for z = 0

(3.47)

These are not perfect physical conditions; they are imposed for math-
ematical reasons in order to obtain simple solutions. We have chosen
an homogeneous Dirichlet condition at the side walls, instead of a no-
�ux condition (homogeneous Neumann), because the latter would not
allow a treatment of the deposition and resuspension �uxes through a
Green propagation method as that introduced previously. The third
condition implies a street canyon with in�nite height: this allows us
to avoid considerations on the correct boundary conditions to be im-
posed at the roof level, but it is a good approximation only if the
receptor point is inside the canyon. The Green function with homo-
geneous Neumann boundary conditions at the road surface can be
obtained by expansion in terms of eigenfunctions in the y direction,
and using the Fourier transform and the method of images in the z
direction[Morse, Feshbach, 1953]:

G(x− x0, y − y0, z − z0) =

1

W
√
πKzz

∞∑
n=0

{
θ(x− x0)

√
V

(x− x0)
e−
[
π2(2n+1)2Kyy

W2V
(x−x0)

]
cos

[
(2n+ 1)π

W
y

]
cos

[
(2n+ 1)π

W
y0

]
·[

e
− V (z−z0)

2

4Kzz(x−x0) + e
− V (z+z0)

2

4Kzz(x−x0)

]}
(3.48)

Note that the Fourier series in Equation (3.48) is absolutely and uni-
formly convergent inside the canyon domain, and thus the summation
can be interchanged with the integration operation in the context of the
Green propagation method. The series is rapidly convergent, except
for x = x0. The solution is given by:
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C(x, y, z) =

1

W
√
πV Kzz

∑
n

{∫ L

0
dx0

∫ W/2

−W/2
dy0

∫
dz0

θ(x− x0)√
x− x0

e−
[
π2(2n+1)2Kyy

W2V
(x−x0)

]
·

cos

[
(2n+ 1)π

W
y

]
cos

[
(2n+ 1)π

W
y0

][
e
− V (z−z0)

2

4Kzz(x−x0) + e
− V (z+z0)

2

4Kzz(x−x0)

]
Qδ(y0)δ(z0 −He)

}
+ Cb −

2vd(0)

W
√
πV Kzz

∑
n

{∫ L

0
dx0

∫ W/2

−W/2
dy0

θ(x− x0)√
x− x0

e−
[
π2(2n+1)2Kyy

W2V
(x−x0)

]
·

cos

[
(2n+ 1)π

W
y

]
cos

[
(2n+ 1)π

W
y0

][
e
− V z2

4Kzz(x−x0)

]
C(x0, y0, 0)

}
The result, obtained by solving to the order O(vd(0)) (observing that√
V Kzz ∼ 1 for both the cases of intermediate and heavy tra�c con-

ditions), is:
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C(x, y, z) =

Q

2π
√
KyyKzz

∑
n

{
1

2n+ 1
cos

[
(2n+ 1)π

W
y

]
e
−
[
π(2n+1)

√
Kyy(z−He)

W
√
Kzz

]
·[

1− erf

[√
V(z−He)

2
√

Kzz
√

x
−
π(2n + 1)

√
Kyy
√

x

W
√

V

]
+

e

[
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√
Kyy(z−He)

W
√
Kzz

](
erf

[√
V(z−He)

2
√

Kzz
√

x
+
π(2n + 1)

√
Kyy
√

x

W
√

V

]
− 1

)]}
+

Q

2π
√
KyyKzz

∑
n

{
·
}

(z−He)→(z+He)
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π2
√
KyyKzz

∑
n
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[
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W
y

]
e
−
[
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√
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W
√
Kzz

]
·[
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[ √
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2
√

Kzz
√

x
−
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√
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√

x

W
√

V

]
+

e

[
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√
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W
√
Kzz
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[ √
Vz

2
√

Kzz
√

x
+
π(2n + 1)

√
Kyy
√

x

W
√

V

]
− 1
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−

vd(0)QW

8π3KyyKzz

∑
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{
1

(2n+ 1)2
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W
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]
·
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−
[
π(2n+1)

√
Kyyz

W
√
Kzz
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[ √
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√

Kzz
√

x
−
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√
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√
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√
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√
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√
Kzz
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[ √
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2
√

Kzz
√
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√
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√
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)]}
(3.49)

where I and II are the �rst two series on the right hand side; the second
series is obtained from the �rst by taking z−He → z+He. A solution of
the integral equations in terms of an expansion in eigenfunctions could
be obtained without employing a recurrence procedure and approxi-
mations to order O(vd(0)), applying the Fredholm theorems for the
solvability of integral equations and standard accelaration procedures
for the resulting series [Morse, Feshbach, 1953]. We will treat this ap-
proach in future investigations. This is a cumbersome formula. The
terms which not contain the erf functions can be summed via complex
variable methods using the tanh−1 function [Morse, Feshbach, 1953],
but it's easy to observe that the erf function accelerates convergence
(by making the numerators tending to zero) in such a way that it is pos-
sible to consider only the �rst term n = 0. (Taking �xed values of the
independent variables, by a direct calculation it's possible to observe
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that the term for n = 1 is reduced by a factor of ∼ 103 with respect to
the term for n = 0). This is the solution for the Soot plume advected
in the direction of the tra�c �ow in a street canyon, with constant dis-
persion parameters determined by the tra�c produced Turbulence and
the longitudinal wind �ow component, considering the deposition pro-
cess, in the approximation of a canyon geometry extending to In�nity
in height.

A more contained solution can be obtained by imposing the boundary
conditions:



C = 0 for y = ±W/2

C = 0 for z→ H

∂C

∂z
+
vd(0)

Kzz
C = 0 for z = 0

(3.50)

The second condition introduces a �nite dimension in the z direc-
tion, and we can expand the Green function in eigenfunctions also
in that direction. It is presumable that a value C 6= 0 at the roof
level has no e�ect on the values of concentration at a receptor point
inside the canyon for the case of no wind recirculation. In the case of
dispersion conditions which make the pollutant to disperse above the
roof level, a simple parametrization, contained in the OSPM model
[Berkowicz, Kearney, 2004], of the e�ect of upstream concentrations
can be added to the present results. We do not report it here. The
Green function with homogeneous Neumann boundary conditions at
the road surface and homogeneous Dirichlet conditions at the roof level
is:

G(x− x0, y − y0, z − z0) =

4

WH
θ(x− x0)

∞∑
n,m=0

{
e−

π2

V

[
(2n+1)2

W2 Kyy+
(2m+1)2

4H2 Kzz
]
(x−x0)·

cos

[
(2n+ 1)π

W
y

]
cos

[
(2n+ 1)π

W
y0

]
cos

[
(2m+ 1)π

2H
z

]
cos

[
(2m+ 1)π

2H
z0

]}
(3.51)

The Fourier series are absolutely and uniformly convergent in the do-
main, since the coe�cients areO(n−2), O(m−2) [Morse, Feshbach, 1953].
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The solution is given by:

C(x, y, z) =

4Q

VWH

∞∑
n,m=0
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y

]
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∞∑
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L

π2

V
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·
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] ]}
(3.52)

Note that, in the calculations of Equations (3.49) and (3.52), it was
possible to remove the simplifying hypothesis that the deposition con-
tributions from the term containing Q was limited to the centerline,
by utilizing the orthogonality properties of the eigenfunctions in the
integrations. Since the series in solution (3.52) are double series, there
are no standard methods to accelerate their convergence; we note that
they are rapidly convergent anyhow (although more slowly than the
single series in Equation (3.49)), and only the n = m = 0 term can
be considered. This is the solution for the Soot plume advected in the
direction of the tra�c �ow in a street canyon, with constant disper-
sion parameters determined by the tra�c produced Turbulence and the
longitudinal wind �ow component, considering the deposition process,
in the approximation of a zero value of pollutant concentration at the
roof level.

4. Road dust dispersion - Canyon street geometry - No recircu-

lation:

in this case, we choose the Green function with homogeneous Neumann
boundary conditions at the road surface and homogeneous Dirichlet
conditions at the roof level, written in Equation (3.51). The solution
of the dispersion Equation (3.36), without the source term, but with

117



the second boundary condition in (3.35), representing a plume advected
in the longitudinal direction by tra�c velocity, is given by:

C(x, y, z, t) = Cdb+krescs

∫ L

0
dx0

∫ W/2

−W/2
dy0[G]−vd(0)

∫ L

0
dx0

∫ W/2

−W/2
dy0[GC],

where Cdb is the background road dust concentration in air. We are
again assuming a stationary value of the road dust cs, so that the
boundary condition is not coupled with a budget equation for the road
dust concentration dynamics. Solving to order O[z0], we have:

C(x, y, z) = Cdb+{
8krescs
πV H

− 8vd(0)Cdb
πV H

− 16krescsvd(0)

πV 2H2

[
1− e−

π2

V

[
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4H2 Kzz
]
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V
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4H2 Kzz

] ]}
·

∞∑
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(−1)n

2n+ 1
cos

[
(2n+ 1)π

W
y

]
cos

[
(2m+ 1)π

2H
z

][
1− e−

π2

V

[
(2n+1)2

W2 Kyy+
(2m+1)2

4H2 Kzz
]
x

π2

V

[ (2n+1)2

W 2 Kyy + (2m+1)2

4H2 Kzz

] ]}
(3.53)

This is the solution for the road dust plume advected in the direction of
the tra�c �ow in a street canyon, with constant dispersion parameters
determined by the tra�c produced Turbulence and the longitudinal
wind �ow component, considering the deposition and the resuspension
processes. We can consider again the n = m = 0 term only (even if we
should consider the terms for n = m = 1 too to reach precision to the
order 10−3, as obtained in the case of Equation (3.49) considering the
n = m = 0 term only).

5. Soot and road dust dispersion - Canyon street geometry - Re-
circulation: according to the STREET empirical model, when the
external wind �ows at an angle of more than 30◦ with respect to the
canyon street axis, an helical recirculation develops in the street. In
this situation, the formation of a wind vortex is observed from wind
measurements [Nakamura, Oke, 1988], which causes concentration lev-
els greater for the leeward than for the windward side of the canyon. We
consider the case in which the wind vortex is totally immersed inside
the canyon (wakeinterference and skimmingflow regimes, accord-
ing to the de�nitions introduced in Ref. [Berkowicz, Kearney, 2004]).
As we will show in Section 4, 1, these regimes correspond to external
winds with an orthogonal component relative to the street axis greater
in intensity than 1m/s, and to values of the geometric parameters of
the canyon such that H/W > 0.5 (which are typical for most urban

118



situations). We have obtained analytical solutions for the wind velocity
components (v, w) (the horizontal and the vertical components respec-
tively) valid for these �ow regimes (reported Section 4.1). We are using
these solutions to set up an operational model for the determination
of the pollutant concentration in the canyon recirculation case. As in
the OSPM model, the concentration is calculated as a combination of
a plume model, for the direct contribution coming from the Soot and
the road dust tra�c emissions, and a box model, for the the additional
impact due to pollutants recirculated within the street by the vortex
�ow. For a receptor on the leeward side, we construct the solution
for the pollutant concentration C as the superposition of a plume ad-
vected in the x direction (which we call component 0), which take into
account the deposition and the resuspension processes, plus two Gaus-
sian segments [Seinfeld, Pandis, 2006] (components I and II) which
take into account the advection of pollutants by the horizontal and
the vertical components of the canyon vortex. The plume advected in
the x direction is determined by the solutions (3.52) or (3.53), for the
Soot and the road dust distribution respectively, in which the advec-
tion and the Turbulence parameters are determined by tra�c velocity
and by the mean longitudinal component of the external wind U// as
in Equation (3.46). The �rst Gaussian segment is a Gaussian solution
of the dispersion equation:

vHe
∂CI
∂y
−Kxx

∂2CI
∂x2

−Kzz
∂2CI
∂z2

= SI (3.54)

where the source term is:

SI =
π

2
y2

(
Kyy

∂C0

∂y
+ vHeC0

)
δ(x− Lr)δ(y − yI)δ(z −He) (3.55)

The source term represents a contribution from the concentration C0,
corresponding to the plume solution (component 0), in the form of
a di�usive+advective �ux in the y direction integrated over an hemi-
spherical surface with radius yI centred at x = Lr, y = 0, z = He,
where Lr is the x coordinate of the receptor point and He is the height
of the pollutant emission level (He = 0 for the road dust case). The
meaning of this solution is the following: we start from the 0 compo-
nent; at the centerline and around the emission level, we let it be dis-
persed for a small distance yI , which corresponds to the lateral width
of a vehicle, which determines the distance for which the near wake
Turbulence override the in�uence of the recirculation wind; this �ux,
integrated over an hemispherical surface, constitutes the point source,
at (Lr, yI , He, for a Gaussian segment advected across the canyon by
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a mean horizontal component of the vortex velocity at the level He,
vHe ; the segment component I is advected until the yr coordinate of
the receptor point. Since this segment is not advected through the
whole canyon domain, the boundary conditions at y = −W/2 are not
important, and we can consider a Green propagation function with
homogeneous Neumann boundary conditions at z = 0 (the in�uence
of the surface �uxes boundary conditions are already accounted for by
the 0 component solution):

GI(x− x0, y − y0, z − z0) =

1

4π

θ(y − y0)vHe
(y − y0)

√
KxxKzz

e
−
vHe

(x−x0)
2

4Kxx(y−y0)

[
e
−
vHe

(z−z0)
2

4Kzz(y−y0) + e
−
vHe

(z+z0)
2

4Kzz(y−y0)

]
(3.56)

The solution CI is easily found by propagating the SI source. Note
that this solution is valid only for y > yI . The value of the mean
component vHe is given by integrating the analytical solution for the
horizontal component of the vortex canyon �ow (reported in Section
4.1), at the He level, between yI ≤ y ≤ yr. The constant values of the
turbulent parameters are:

Kxx =
[
(αU//)

2 + σ2
tpt

]Lr + h0

V

Kzz =
[
(αvHe)

2 + σ2
tpt

]yr + h0

vHe

(3.57)

The second Gaussian segment is a Gaussian solution of the dispersion
equation:

wyr
∂CII
∂z
−Kxx

∂2CII
∂x2

−Kyy
∂2CII
∂y2

= SII (3.58)

where the source term is:

SII =
π

2
(z−He)

2

(
Kzz

∂(C0 + CI)

∂z
+wyr(C0+CI)

)
δ(x−Lr)δ(y−yr)δ(z−He−HII)

(3.59)
The source term represents a contribution from the concentration C0 +
CI , in the form of a �ux in the z direction integrated over an hemispher-
ical surface with radius HII centred at x = Lr, y = yr, z = He, where
Lr is the x coordinate of the receptor point, yr is the y coordinate of
the receptor point, and He is the height of the pollutant emission level
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(He = 0 for the road dust case). The meaning of this solution is the
following: we let disperse the 0 and II components for a small distance
HII , which has no direct physical meaning (we choose it to be equal
to 2He, if this distance is less than the distance from yr to the canyon
wall); this �ux, integrated over an hemispherical surface, constitutes
the point source, at (Lr, yr, He+HII , for a Gaussian segment advected
vertically across the canyon by a mean vertical component of the vor-
tex velocity at the level yr, wyr ; the segment component II is advected
until the zr coordinate of the receptor point. Since this segment is not
advected through the whole canyon domain, the boundary conditions
at z = 0 and z = H are not important, and we can consider a Green
propagation function with homogeneous Dirichlet boundary conditions
at y = −W/2:

GII(x− x0, y − y0, z − z0) =

1

4π

θ(z − z0)wyr
(z − z0)

√
KxxKyy

e
−wyr (x−x0)

2

4Kxx(z−z0)

[
e
−wyr (y−y0)

2

4Kyy(z−z0) − e−
wyr (y+W+y0)

2

4Kyy(z−z0)

]
(3.60)

The solution CII is easily found by propagating the SII source. Note
that this solution is valid only for z > He + HII . The value of the
mean component wyr is given by integrating the analytical solution for
the vertical component of the vortex canyon �ow (reported in Section
4.1), at the yr level, between He +HII ≤ z ≤ zr. The constant values
of the turbulent parameters are:

Kxx =
[
(αU//)

2 + σ2
tpt

]Lr + h0

V

Kyy =
[
(αwyr)

2 + σ2
tpt

]Hr + h0

wyr

(3.61)

For a receptor on the windward side, we construct the solution for the
pollutant concentration C as the superposition of a plume advected in
the x direction (which we call component 0), which take into account
the deposition and the resuspension processes, plus a contribution from
the recirculation component. The plume advected in the x direction is
determined by the solutions (3.52) or (3.53), for the Soot and the road
dust distribution respectively, in which the advection and the Turbu-
lence parameters are determined by tra�c velocity and by the mean
longitudinal component of the external windU// as in Equation (3.46).
The contribution from the recirculation component Cr is determined
using a box model as in the OSPM model, considering a recirculation
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zone which extends to the whole canyon. This contribution is expressed
in Equation (3.29). If the recirculation zone is extended to the whole
canyon domain (as in the skimming �ow regime), only the recirculation
term need to be considered [Berkowicz, Kearney, 2004]. In Figure 18
we show a graphic scheme of the model B in the case of the street
canyon Soot emission with recirculation. The circles indicate a plume
di�usion.

Figure 18: Graphic scheme of the model B in the case of the street canyon Soot
emission with recirculation. The circles indicate a plume di�usion.

6. Soot and road dust dispersion - Canyon street geometry -

Canyon intersections: in the case of the pollutant dispersion in
canyon intersections, a simple approach can be employed by consider-
ing the �ow as a 2−dimensional inviscid �ow over a region between to
straight solid boundaries intersecting at an angle α, in a plane parallel
to the road surface. The problem is shown in Figure 19.

In Region B the inviscid �ow can be described introducing the complex
potential Ω(z) [Batchelor, 1967]:

Ω(z) = φ(x, y) + iψ(x, y) = kUA//z
n,

where z = x + iy, φ and ψ are the velocity potential and the stream func-
tion respectively, k is a constant, and α = π/n (note that the case in which
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Figure 19: 2−dimensional inviscid �ow between to straight solid boundaries inter-
secting at an angle α, representing the wind �ow at an intersection between two
canyons.

α = 2π corresponds to a canyon opening). A precise description of the in-
viscid �ow in a canyon intersection should have to consider the conformal
Schwarz�Christo�el mapping corresponding to the elbow geometry of Figure
19 [Batchelor, 1967]. The velocity components can be obtained as the gradi-
ent of the velocity potential; they generally vary with x and y. For example,
in the case of α = π/2, u = UA//x and v = UA//y (and k = 1/2). We
can consider the dispersion process in Region B as the superposition of two
3−dimensional plume solutions, one advected by a velocity in the x direc-
tion with values u entering the intersection, the other by a velocity in the
y direction with values v exiting the intersection (for angles di�erent from
α = π/2, the exiting plume must be parallel to the side walls). The entering
plume has an initial concentration determined by the dispersion in Region
A. The exiting plume constitutes the initial concentration distribution Cb
for dispersion in Region C. The Green propagation problem in Region B is
generally simple: in the case of constant turbulent parameters and an angle
α = π/2, the Gaussian Green function of the entering plume in Region B is
of the type:

GB ∝
UA//

log(x− x(0))
e
−

UA//(z−z0)
2

log(x−x0)

With turbulent parameters varying with polynomial laws in the direction of
advection, the problem is exactly solvable. We do not develop a full treat-
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ment of the solutions here, since it depends on the value of the intersections
angles and on the laws of variance of the turbulent parameters.

Numerical models The numerical models consist in the solution of a
discretized version of the unsteady dispersion equation (3.14):

∂C

∂t
+ Uj

∂C

∂xj
=

∂

∂xj

[(
D +Kjj

) ∂C
∂xj

]
(3.62)

with the inhomogeneous Neumann boundary condition (2.3) for the �ux at
the road surface, in the case of Soot dispersion:

N = −vd(0)C (3.63)

and the inhomogeneous Neumann boundary condition (2.4) coupled with a
balance equation for the road dust concentration at the road surface, in the
case of road dust dispersion:


N = −vd(0)

θ0
C(θ0 − cs) + krescs

∂cs
∂t

+ vv
∂cs
∂x

=
vd(0)

θ0
C(θ0 − cs)− (kres + fxnv)cs + S(t),

(3.64)

Note that we are not considering a stationary value of the road dust con-
centration, as was done in the formulation of the operational models. The
details of the deposition and resuspension �uxes modelization are reported in
Section 2.3. We distinguish between the near wake and the far wake-canyon
cases.

• Near wake case: the dispersion equation must be solved in the near
wake zone of a single vehicle, in the system of reference of the vehicle,
and must be coupled to the momentum conservation equation solved
in the domain of Figure 15, with di�erent Ahmed body geometries for
di�erent vehicle categories. The velocity components Uj in Equation
(3.62) are thus the wind components obtained as a solution of the
corresponding Turbulence models. Assuming an isotropic turbulent
dispersion, the eddy di�usivity is given in terms of the eddy viscosity
of the corresponding Turbulence model:

k − ε model : K = νT = Cµ
k2

ε

k − ω model : K = νT =
k

ω

In the case of Soot dispersion, the vehicle emission is introduced as an
inhomogeneous Neumann �ux on a small circle at the bottom of the
vertical rear face of the Ahmed body, with a value of:
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Nemission = vtpQ,

where vtp is the velocity of exiting exhaust fumes at the tailpipe (given
by values in Ref. [EMEP/CORINAIR, 2007], multiplied by 4, since we
are considering a reduced geometry), and Q is the vehicle Soot emission
rate, dependent on the vehicle category and the driving cycle (calcu-
lated as shown in Section 2.1), transformed from mg/km to mg/m3.
In the case of road dust dispersion, the wear emissions are inserted
through the S(t) term (calculated as shown in Section 2.2) and as a
Dirichlet boundary condition imposed on the tyres surface, depending
on the vehicle category and the driving cycle, and transformed from
emission data in mg/km to emission rates in mg/sm2. We call this
dispersion case model C.

• Far wake-canyon case: in this case the dispersion equation should be
solved in the whole canyon domain for a multi-vehicle case, in a system
of reference �xed in the canyon, considering the dispersion induced by
the superposition of the vehicle wakes and by the components coming
from the canyon wind recirculation. In order to simplify the problem,
we consider the average wake e�ect of a series of vehicles, distributed
along the road, in terms of their interacting far-wake solutions, and
neglect the dispersion in the longitudinal x direction. The letter hy-
pothesis is a good approximation if tra�c is homogeneously distributed
along the canyon, which permits to neglect the pollutant spreading in
the downwake direction with respect to the spreading in the cross-wake
and in the vertical directions. The problem is thus 2−dimensional, and
the dispersion equation is:

∂C

∂t
+ v

∂C

∂y
+ w

∂C

∂z
=

∂

∂y

[
Ky

∂C

∂y

]
+

∂

∂z

[
Kz

∂C

∂z

]
(3.65)

The advection velocity components v and w are expressed as a sum of
the wind recirculation components vr and wr plus the components of
the far-wake solutions averaged over all the vehicles along the canyon
vw and ww. The vr and wr components are given in terms of the self-
preserving analytical solutions, derived in Section 4.1, depending on the
intensity of the orthogonal component of the external wind and on the
canyon geometry. These solutions are valid for situations in which the
recirculation vortex is totally immersed inside the canyon. Note that,
for an open street geometry or for situations with no wind recirculation,
only the far-wake components of velocity must be considered in the
dispersion Equation (3.65). The self preserving far-wake components
for each vehicle have the form of Equation (3.21):
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uw(x, y, z) = U∞ − U∞A
(
x

h

)−3/4

f [η, ζ]

vw(x, y, z) = U∞cvA
2

(
x

h

)−3/2

g[η, ζ]

ww(x, y, z) = U∞cwA
2

(
x

h

)−3/2

h[η, ζ]

where U∞ is the vehicle velocity, cv and cw are constants, and the f, g, h
are self-preserving functions in terms of the y and z variables scaled
with the wake thickness (see Section 4.1 for the details). Now consider a
distribution of N vehicles at the points {(xj , yj) : j = 1, · · · , N} along
the canyon, separated by a distance ∆x (determined by the driving
conditions). Following Ref. [Eskridge et al., 1979], the e�ect of many
vehicles can be obtained by summing the average wake e�ect of each
vehicle as it takes on all positions between xj + ∆x/2 and xj −∆x/2:



uw(x, y, z) = U∞ −
1

∆x

N∑
j=1

∫ xj+∆x/2

xj−∆x/2
dxU∞Aj

(
xj
h

)−3/4

f [ηj , ζj ]

vw(x, y, z) =
1

∆x

N∑
j=1

∫ xj+∆x/2

xj−∆x/2
dxU∞cvA

2

(
x

h

)−3/2

g[η, ζ]

ww(x, y, z) =
1

∆x

N∑
j=1

∫ xj+∆x/2

xj−∆x/2
dxU∞cwA

2

(
x

h

)−3/2

h[η, ζ]

(3.66)
As will be described in Section 4.1, we are introducing the e�ect of far
wake interactions in the form of the constants Aj (and reduction of
the values of U∞ for each vehicle from its moving velocity), so that the
Formula (3.66) can be applied not only to situations of non interacting
vehicles, as in Ref. [Eskridge et al., 1979], but also to situations with
intermediate and heavy tra�c conditions. With this averaging proce-
dure and the introduced hypothesis of homogeneous distributed tra�c
along the canyon, we e�ectively remove the x coordinate from the
description of the dispersion process. substitution of σtpt parametriza-
tion.

The eddy di�usivity components Ky and Kz are given as a sum of re-
circulation components, Ky

r andKz
r , plus average far-wake components

for the multi-vehicle situation, Ky
w and Kz

w. We do not consider the
contribution to the eddy di�usivity coming from the basic state atmo-
sphere. This contribution is described in Ref. [Eskridge et al., 1979],
in terms of the Obukhov length and the bulk Richardson number
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[Seinfeld, Pandis, 2006]. Since the introduced parametrization needs
measurement data on the temperature vertical pro�le to be speci�ed,
we neglect this term, whose in�uence will be treated in future inves-
tigations of speci�c cases with known atmospheric strati�cation data.
The recirculation components are given as:

Ky
r = Kz

r = ω0δ
2, (3.67)

where ω0 is the mean value of the recirculation vorticity inside the
canyon, and δ is the wake thickness relative to the recirculation �ow.
This is equivalent to the prescription that the eddy di�usivity asso-
ciated to the wind recirculation be equal to the eddy viscosity of the
associated algebraic Turbulence model, which will be treated in Sec-
tion 4.1. Note that δ has di�erent expressions in di�erent regions of
the canyon domain. The average far-wake components are given as:

Ky
w =

1

∆x

N∑
j=1

∫ xj+∆x/2

xj−∆x/2
dx v′

2
δ(x)

Kz
w =

1

∆x

N∑
j=1

∫ xj+∆x/2

xj−∆x/2
dxw′

2
δ(x)

(3.68)

where v′
2
and w′

2
are the mean square turbulent velocity components

of the far-wake solution, calculated by assuming that the Turbulence
has also a self-preserving form (see Section 4.1 for the details), and
δ(x) is the far-wake thickness. In the case of Soot dispersion, the ve-
hicle emission is introduced as a point source at an height He above
the centerline of the canyon. In the case of road dust dispersion, the
wear emissions are inserted through the S(t) term. The deposition and
the resuspension �uxes are calculated averaging the contributions from
each vehicle. The deposition velocity and the resuspension rates de-
pend on near-wake turbulent quantities, integrated over the near wake
road surface portion, as explained in Sections 2.3 and 4.3. Thus the
near-wake e�ects on the dispersion at the canyon scale, for the multi-
vehicle case, are con�ned to the determination of the deposition and
the resuspension �uxes, whereas the advection and the eddy di�usiv-
ity components depend on far-wake and recirculation e�ects. We call
this dispersion case model D. Note that we are considering a linear
superposition of the recirculation and the wake �ows in the disper-
sion dynamics, as in most of the canyon dispersion models in literature
[Berkowicz, Kearney, 2004]. Possible non-linear interaction e�ects on
the dispersion dynamics will be considered in future investigations, by
means of approximated non-linear superposition principles (Darboux
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transform [Rogers, Schief, 2002]) associated to the Turbulence equa-
tions.

The boundary condition for the side walls of the canyon is homogeneous
Neumann condition (no �ux), and the boundary condition for the roof level
is homogeneous Dirichlet condition(C = 0), for both model C and model
D. For model C, the boundary condition for the front and bottom plane
of the canyon (the inlet and the outlet boundaries relative to the wind �ow
problem) is a convective �ux condition, i.e. the imposition that the di�usion
�ux across the boundary is zero.

The grid for model C is the same as that used in the simulation of the
near-wake wind �ow near the Ahmed body (see Figure 15). The grid for
model D is the same as that used in the simulation of the 2−dimensional
wind �ow generated by an external orthogonal wind in a canyon (see Figure
11, bottom panel).

We solve the dispersion equations in the context of a �nite element dis-
cretization. In particular, for the road dust dispersion case, a weak formu-
lation for the balance equation of the road dust concentration at the road
boundary is also introduced. We choose piecewise linear �nite elements as
the discretization elements, corresponding to the order of the wind solution
elements. We introduce a streamline di�usion stabilization (Galerkin Least
Squares) in order to stabilize the convection-dominated equations.

The time dependent equations are solved by a BDF Euler semi-implicit
method. The applications of this scheme to the discretized systems have
shown to be stable despite the introduction of the stabilization terms for
proper choices of the time step, avoiding the necessity to introduce operator
splitting schemes, which would introduce the need to split the boundary con-
ditions at the road surface as well. At each iteration step the corresponding
linear algebraic system are solved with direct LU factorization methods (in
the case of 2D simulations) or with the GMRES iterative procedure (in the
case of 3D simulations), with Geometric Multigrid (GM) smoothers. We
consider a time step based on the wave propagation and molecular di�usion
Courant numbers. Finally, in the case of road dust dispersion, the bulk con-
centration and the road surface balance equations are solved sequentially at
each time step.

In Table 15 we recapitulate the introduced dispersion models, which con-
sider the deposition and the resuspension processes, along with the methods
adopted to obtain them, the reference to the Equations of their formulation,
and their range of validity; the results will be shown in Section 4.4.
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Methods Equations Validity

Model A Street model (3.27) Soot Street Canyon + recirculation
+ modi�cations (3.28) road dust

Model B OSPM model (3.43)-(3.44) Soot Open street
+ plume solutions (3.45) road dust

(3.49)-(3.52) Soot Street Canyon-no recirculation
(3.53) road dust + canyon intersections

Gaussian segments (3.54)-(3.58)-(3.29) Soot Street Canyon+ recirculation
+ Box model and road dust + canyon intersections

Model C Numerical (3.62) Near wake
+(3.63)Soot
+(3.64)road dust

Model D Numerical (3.65) Street canyon
+(3.63)Soot
+(3.64)road dust

Table 15: Recapitulation of the dispersion models, along with the methods adopted
to obtain them, the reference to the Equations of their formulations, and their range
of validity
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4 Results

In Section 4.1 we report the results of the analytical solutions of algebraic
Turbulence models for the canyon and the vehicle geometries (Section 4.1),
which are needed to calibrate the 2− equations Turbulence models and to
set up the dispersion equations at the street canyon spatial scale. In Section
4.2 we show the results of the 2− equations Turbulence simulations, in order
to validate the analytical solutions for the �ow inside the street canyon and
to obtain proper parameterizations of the deposition and the resuspension
�uxes, reported in Section 4.3. These parametrizations are used to describe
the corresponding physical processes in the tailpipe tra�c emission models,
introduced in Section 2.6 and 2.8, and in the dispersion models at the street
canyon scale, described in Section 3.5. In Section 4.4 we report the results
of the application of an operational dispersion model at the canyon scale
(model B) to estimate the pollutant spatial concentrations, for the case of
a congested urban tra�c con�guration.

4.1 Analytic solutions

Street canyon We describe the turbulent �ow within the street canyon
by the stationary RANS equations with the eddy viscosity hypothesis:


v ∂u∂y + w ∂u

∂z = ∂
∂y

[
(ν + νT )∂u∂y

]
+ ∂

∂z

[
(ν + νT )∂u∂z

]
v ∂v∂y + w ∂v

∂z = −1
ρ
∂p
∂y + ∂

∂y

[
(ν + νT )∂v∂y

]
+ ∂

∂z

[
(ν + νT )∂v∂z

]
v ∂w∂y + w ∂w

∂z = −1
ρ
∂p
∂z + ∂

∂y

[
(ν + νT )∂w∂y

]
+ ∂

∂z

[
(ν + νT )∂w∂z

]
,

(4.1)

where (u, v, w) and p are respectively the averaged vector �eld of velocity
and the scalar �eld of pressure, ν is the air viscosity and νT the turbulent
viscosity. Due to the hypothesis of stationarity and homogeneity along the
x direction of the mean �eld (the x axis is aligned with the street axis),
the terms containing ∂

∂t and
∂
∂x are zero. We must add the solenoidal con-

dition for the incompressible averaged vector �eld of velocity. Here we do
not consider thermal strati�cation, so the equations are not coupled to the
energy balance equation. We can see from (4.1) that the equations for v
and w do not depend on the u component. This means that the equations
for the components of velocity transversal to the canyon are not coupled to
the equation for the longitudinal component, so they can be solved indipen-
dently in a two dimensional model. This indipendent two dimensional �ow
is generated by the component of the external wind �eld orthogonal to the
street axis. Generally speaking, the equation for the u component is coupled
to the equations for the transversal components. In the special case of an
external wind �ow parallel to the street axis (considering homogeneity in
the x direction), the motion in the cross sectional-plane cannot survive the

130



Figure 20: Domain geometry of the transversal plane of a symmetric canyon. H
is the height of the side walls, W is the width of the street canyon. The domain
decomposition for the solution at di�erent scales is reported

viscous dissipation of energy, as there is not a supply of energy to the �uid by
tangential stresses at the boundaries (tangential stresses in y and z directions
are zero at the roof boundary). In this way the stationary solution is in the
x direction (v = 0 and w = 0) and depends on the y and z coordinates only.
The motion is unidirectional and the advective term in the �rst equation of
(4.1) is identically zero. We can thus separate the analysis in two di�erent
cases: i) a parallel external wind and ii) an external wind orthogonal to the
street axis. The case for an arbitrary angle of external �ow relative to the
street axis will be treated with the help of numerical considerations, as in
Ref. [Soulhac et al., 2008].

External wind parallel to the street axis As expressed in the pre-
vious paragraph, in this case the �ow is unidirectional and the problem is
two dimensional. The governing equation is:

∂

∂y

[
(ν + νT )

∂u

∂y

]
+

∂

∂z

[
(ν + νT )

∂u

∂z

]
= 0 (4.2)

The geometry of the problem is shown in �gure 20.
Equation (4.1) and (4.2) will be considered within the scheme of singular

perturbation theory [Wilcox, 1998], using di�erent asymptotic expansions, in
suitable powers of a small parameter, for di�erent stretching of coordinate
variables (representing the di�erent scales in the physical process); these
asymptotic expansions are valid on di�erent portions of the domain, but not
uniformly on the whole domain. We recall from Section 3.1 that Turbulence
sets up two di�erent dominant scales in the boundary layer near a rigid
boundary: the wall scale, scaling with distance from the wall as
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y+ =
u∗y

ν
,

and the wake scale, scaling as

η =
y

δ

The solution in the wall variables is logarithmically divergent far from the
wall, and must match the wake solution for wake variables tending to zero
[Wilcox, 1998]. For each scale and each term of asympthotic expansion,
the existence of separated solutions is equivalent to the Helmotz hypoth-
esis of existence of self-similar solutions for the boundary layer problem
[Batchelor, 1967]. Let us start from the solution close to the three solid
boundaries of the canyon (segments AB, BC and CD in �gure 1). We
scale the variables, for each segment of the rigid boundaries, and take the
asympthotic expansions as reported in Table 16:

The sequence of asympthotic functions {1, φ1, φ2, . . . } must be suitably
chosen from the analysis of the equations. We assume that the main features
of the solutions can be described by the �rst few terms of the asymptotic
expansions de�ned in table 16. Let us consider the AB segment. We choose
the parameter of the asymptotic expansion as

φ1 =
ν

u∗(z
+
1 )δ(z+

1 )
,

i.e. the inverse of the Reynolds number based on friction velocity. δ(z+
1 ), the

wake thickness, and u∗(z
+
1 ) will be introduced in Section 4.1, in the context of

the wake solution derivation. The sequence of asymptotic functions is given
by the integer powers of φ1, with φ2 = φ2

1. Clearly u∗ = O(1), the stress in
y direction is O(u2

∗) = O(1), and the stress in z direction is O(φ1). Besides
this, by requiring the existence of separated solutions to higher orders, we

can see that terms like u
′
∗
u∗
, where the prime stand for di�erentiation with

respect to the variable on which the function depends, are O(1) or limited
variation functions (this is a general consequence of the procedure, and is
valid for all the perturbation expansions we are considering in this paper).
This ensure the validity of the perturbation. By substituting the formulas
contained in table 16 and the change of variables transformation:

∂
∂y =

u∗(z
+
1 )

ν
∂
∂y+1

∂
∂z = 1

H
∂
∂z+1

+ 1
H
u
′
∗(z

+
1 )

uτ (z+1 )
y+

1
∂
∂y+1

(4.3)
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Segment AB Segment BE

y+
1 =

u∗(z)y

ν
y+

2 =
2y

W

z+
1 =

z

H
z+

2 =
u∗(y)z

ν

u = u∗(z
+
1 )[u0(y+

1 ) + φ1u1(y+
1 , z

+
1 )+ u = u∗(y

+
2 )[u0(z+

2 ) + φ1u1(y+
2 , z

+
2 )+

φ2u2(y+
1 , z

+
1 ) + o(φ2)] φ2u2(y+

2 , z
+
2 ) + o(φ2)]

νT = ν[N0(y+
1 ) + φ1N1(y+

1 , z
+
1 )+ νT = ν[N0(z+

2 ) + φ1N1(y+
2 , z

+
2 )+

φ2N2(y+
1 , z

+
1 ) + o(φ2)] φ2N2(y+

2 , z
+
2 ) + o(φ2)]

Segment EC Segment CD

y+
3 =

2(W − y)

W
y+

4 =
u∗(z)(W − y)

ν

z+
3 =

u∗(y)z

ν
z+

4 =
z

H

u = u∗(y
+
3 )[u0(z+

3 ) + φ1u1(y+
3 , z

+
3 )+ u = u∗(z

+
4 )[u0(y+

4 ) + φ1u1(y+
4 , z

+
4 )+

φ2u2(y+
3 , z

+
3 ) + o(φ2)] φ2u2(y+

4 , z
+
4 ) + o(φ2)]

νT = ν[N0(z+
3 ) + φ1N1(y+

3 , z
+
3 )+ νT = ν[N0(y+

4 ) + φ1N1(y+
4 , z

+
4 )+

φ2N2(y+
3 , z

+
3 ) + o(φ2)] φ2N2(y+

4 , z
+
4 ) + o(φ2)]

Table 16: Scaling of variables and asympthotic expansions chosen for the wall
solutions with the boundaries divided in four segments
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into equation (4.2) we obtain:

∂

∂y+
1

[
(1 +N0 +N1φ1 +N2φ2 + o(φ2))

∂

∂y+
1

(u0 + u1φ1 + u2φ2 + o(φ2))

]
+

φ2
δ2

H2

1

u∗

∂

∂z+
1

[
(1 +N0)

(
u′∗u0 + u∗

∂

∂z+
1

u0 + u′∗y
+
1

∂

∂y+
1

u0 + o(1)

)]
+

φ2
δ2

H2

u′∗
u2
∗
y+

1

∂

∂y+
1

[
(1 +N0)

(
u′∗u0 + u∗

∂

∂z+
1

u0 + u′∗y
+
1

∂

∂y+
1

u0 + o(1)

)]
+ o(φ2) = 0

(4.4)

If we retain only the zeroth order term of the expansion, and use the Prandtl
law for the eddy viscosity far away from the boundary surface: N0 = ky+

1

for y+
1 →∞ (with k = 0.408 the Von Karman constant), we obtain the law

of the wall:

u ∼ u∗(z+
1 )

[
1

k
ln y+

1 + C

]
for y+

1 →∞ (4.5)

where C is a constant of integration. The term u∗(z
+
1 ) is determined by the

matching with the wake solution. Equation (4.4) is also valid in the other
segments of the canyon boundaries (with the appropriate coordinates), so
the wall solutions have the same form in all the sections of the boundaries
de�ned in Figure 20. We are interested only in the y+

1 →∞ limit of the wall
solutions, since we have to set up a boundary condition for the wake solution
matching with the logarithmic law (4.5). A complete solution of the problem
would require the use of the Van-Driest law of variation for the eddy viscosity
near the surface [Wilcox, 1998], in order to resolve the viscous sublayer of
the boundary, and to add the viscous and the wake solutions, after having
performed the matching and having subtracted the overlapping part of the
two solutions. The Van-Driest law has the form:

νT = ku∗y
(
1− e−

y+

B
)

(4.6)

where B is Van-Driest constant. We will �nd in Section 4.1, in the context
of the matching between the wall and the wake solutions, a way to derive an
alternative form to the Van Driest law for the eddy viscosity, valid near the
surface, as an asymphtotic expansion for the function N (de�ned in table
16) in powers of ky+.

Let us consider the wake solution. In Equation (4.2) the viscosity of air
can be neglected. In this case there are not small parameters which allow the
study of a perturbative solution (in the study of the wake solution on a plate
boundary, the small parameter is the deviation from the external velocity,
and a perturbation analysis can be set up [Wilcox, 1998]). In this case the
solution must vanish near the corners of the canyon in the wake solution too,
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so the deviation from the external velocity is not small. Anyway, we search
for separated solutions in suitable scaled coordinate variables, and perform
the matching with the wall solutions and between the wake solutions in the
four regions de�ned in Figure 20. We scale the variables, for each region of
the domain, and search for separated solutions as reported in table 17:

Region 1 Region 2 Region 3 Region 4

η1 =
y

δ1(z)
η2 =

2y

W
η3 =

2(W − y)

W
η4 =

W − y
δ4(z)

ζ1 =
z

H
ζ2 =

z

δ2(y)
ζ3 =

z

δ3(y)
ζ4 =

z

H

u
U∞

= f1(η1)g1(ζ1) u
U∞

= f2(ζ2)g2(η2) u
U∞

= f3(ζ3)g3(η3) u
U∞

= f4(η4)g4(ζ4)

νT = U∞
W
2 η1g1(ζ1) νT = U∞Hζ2g2(η2) νT = U∞Hζ3g3(η3) νT = U∞

W
2 η4g4(ζ4)

Table 17: Scaling of variables, separated form for the wake solutions and turbulence
modelization with the domain divided in four regions

Here δ is the wake thickness and U∞ is the external velocity. We are
supposing that turbulence sets up di�erent self-similar solutions for each
de�ned region of the domain, which are separated solutions in the newly
scaled variables, each one performing its own matching with the wall solution
of the corresponding segment. The eddy viscosity, in an algebraic model of
turbulence, is usually given in two di�erent ways (see Section 3.1):

• through Prandtl mixing-length hypothesis:

• Through Prandtl prescription for free-shear layer problems:

In our case the velocity u is perpendicular to the plane of the motion. For
the solution near the canyon walls, we have already used the prescription
(valid in region 1):

νT = y2∂u

∂y
= ku∗y = νky+ for y+ →∞

For the wake solution, far from the solid boundaries, a possible prescription
for the eddy viscosity would be: νT = U∞δ(z). This modelization for the
wake eddy viscosity leads to unusual boundary value problems, which will
be treated in the Appendix. The fact is that this prescription would be
suitable if the wake thickness is a small parameter, and the wake solution
matches to the external �ow for η = y/δ → ∞. This will be the case for
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the external wind perpendicular to the street axis, and will be treated in
the next paragraph. Here, δ is a �nite parameter, and the wake solution
extends to the whole canyon domain. We have thus used the mixing-length
prescriptions reported in Table 17, whose meaning will be clear in a moment.
Consider region 1, and suppose that the component of the solution g1(ζ1)
is the same component u∗(z

+
1 ) of the wall solution: Turbulence changes the

solutions form only in the direction orthogonal to the boundary. (The same
argument applies to the other regions). By inserting the formulas in table 17
and the change of variable transformations into equation (4.2), we obtain:

H2η1f
′′
1 +H2f

′
1 +

(
g
′
1

g1

)2

δ2
1η1f1 +

g
′′
1

g1
δ2

1η1f1 − 3δ1δ
′
1

g
′
1

g1
η2

1f
′
1 − δ1δ

′′
1η

2
1f
′
1−

δ1δ
′
1

g
′
1

g1
η1f1 + 3δ

′2
1 η

2
1f
′
1 + δ

′2
1 η

3
1f
′′
1 = 0

(4.7)

This equation is indipendent of the ζ1 variable, and so a separated solution
exists, if: 

δ1 = a1ζ1

g1 = ζ
b1/a21
1

(4.8)

with a1 and b1 suitable constants, to be determined from the matching pro-
cedure and as eigenvalues of the boundary problem. Now the eddy viscosity
prescription chosen becomes clear. We have:

νT = U∞
W

2
η1g1(ζ1) = HyU∞

du∗
dz

This is equivalent to the mixing length hypothesis, with l2mix = Hy, and the
turbulent mixing given, in the wake region, by the derivative of the u∗ com-
ponent of velocity (the component of velocity dependent on y is responsible
for the turbulent mixing near the solid boundary). There are two di�erent
scales for the mixing length, and the eddy viscosity still depends on the dis-
tance from the wall, as the wake zone extends to all the domain. Note that
u∗ = g1(ζ1) is dimensionless, and that its derivative is always positive, so
that the absolute value in the mixing length hypothesis can be omitted. The
equation for f1 becomes:

[
H2η1 + a2

1η
3
1

]
f
′′
1 +

[
H2 +

(
3a2

1 − 3b1
)
η2

1

]
f
′
1 + 2

[
b21
a2

1

− b1
]
η1f1 = 0 (4.9)

Equation (4.9) is valid for each fi, i = 1, . . . , 4, with constants {ai, bi}, i =
1, . . . , 4, and with the substitution H → W

2 from regions 1 and 4 to regions 2
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and 3, if equation (4.8) is valid for each gi, i = 1, . . . , 4. Equation (4.9) is a
Fuchsian equation with four regular singular points [Morse, Feshbach, 1953].
The method to �nd its solutions is given in the Appendix. Let us show
now the matching procedure and the setting of boundary conditions. If we
choose the values of the ai parameters to be a1 = a4 = W

2 and a2 = a3 = H,
we �nd that the segments BF and CF, with equations BF : z = 2H

W y and

CF : z = H
(
2− 2y

W

)
, corresponds to the points:

BF : η1 = ζ2 = 1 CF : ζ3 = η4 = 1 (4.10)

Regions 1, 2 are given for 0 ≤ y ≤ W
2 , 0 ≤ z ≤ H, with y ≤ W

2
z
H for region 1,

and y ≥ W
2
z
H for region 2; regions 3, 4 are given for W2 ≤ y ≤W , 0 ≤ z ≤ H,

with W − y ≥ W
2
z
H for region 3, and W − y ≤ W

2
z
H for region 4. (We have

found that with other algebraic turbulence models it's possible to perform
the matching on polynomial segments. Details will be given elsewhere).

We set the boundary conditions for the fi functions (with arguments ξi):{
fi(1) = 1

f
′
i (0)→ 1

kξi

(4.11)

The second boundary condition ensure the matching with the law of the
wall. The �rst condition enables the matching between the four regions.
Note that the corner points B and C are on the segments corresponding to
the points η1 = ζ2; ζ3 = η4 = 1, so that there the solution results correctly
not logarithmically divergent, but vanishing with the gi functions if:

bi
a2
i

> 0 (4.12)

In the point F the functions fi, gi are all equal to 1, so that u = U∞, as it
should be. The condition of matching is now reduced to the fact that the gi
functions coincide on the segments BF and CF:


BF :

(
z

H

)b1/a21
=

(
2y

W

)b1/a21
=

(
2y

W

)b2/a22
=⇒ b1 = b4 = W 2

4H2 b2 = W 2

4H2 b3

CF :

(
z

H

)b4/a24
=

(
2− 2y

W

)b4/a24
=

(
2− 2y

W

)b3/a23
(4.13)

The eigenvalues of the boundary value problem associated to Equation
(4.9) and boundary conditions (4.11) are (see condition (6.5) in the Ap-
pendix):

b1/a
2
1 = c ∈ N > 0
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Equation (4.9) can be rewritten in the form (6.1), and transformed into an
hypergeometric equation, except at the point χ → ∞ for the case c an odd
integer: in this case the monodromy representation of the hypergeometric
equation is di�erent from that of the Equation (6.1), and a proper analytic
continuation for the solution of the hypergeometric equation needs to be im-
plemented in order to obtain a solution of the original problem, as explained
in the Appendix. In the case c = 2n+ 1, with n ∈ N > 0, a general solution
is given by Equation (6.16), in the form of polynomials terms of degree 4n,
plus terms proportional to logχ, χ2 logχ, · · ·χ4n logχ, plus analogous terms
containing

√
1 + χ2. In the case c = 2n, with n ∈ N > 0, a general solution is

given by Equation (6.20), in the form of polynomials terms of degree 2n, plus
terms proportional to logχ, χ2 logχ, · · ·χ2n logχ. We see that only polyno-
mials of even orders are generated. These solutions must be matched to the
wall solutions of Equation (4.4). By considering an asymptotic expansion
for the eddy viscosity near the wall of the form:

νT = ν
[
ky+ + φ1 · 0 + φ2d(y+)3 + · · ·

]
i.e. considering an expansion of the eddy viscosity in odd powers of y+, we
obtain, in the limit y+ → ∞, wall solutions in the form of polynomials of
even orders and logarithmic terms multiplied by even powers of y+. The
matching procedure with the wake solutions, for c ∈ N > 0, speci�es the
coe�cients of the expansion d, · · · . This prescription for the eddy viscosity
near the wall, as an expansion of odd powers of y+, is a correction to the
empirical law of Van Driest (4.6), and can be used to obtain the wall solutions
in the viscous region, for y+ → 0.

Let us show the matching procedures for the case c = 1 and c = 2. The
solution of Equation (4.9) in the case b1/a

2
1 = c = 1, is (see (6.17)):

A

{√
1 +

(
W

2H
η1

)2

+log

[
W

2H
η1

]
− log

[
1+

√
1 +

(
W

2H
η1

)2]}
+B (4.14)

The matching with the law of the wall imposes:

[
1

k
log(y+

1 ) + C

]
−
[
A log(η1) + f0

]
−→ 0 for y+ →∞; η1 → 0 (4.15)

where f0 comprises all the constants of the solution (4.3) for η1 → 0. Hence:

A =
1

k

The other boundary condition (the �rst condition in Equation (4.11)) is
satis�ed if:
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B = 1− 1

k

[√
1 +

W 2

4H2
+ log

(
W

2H

)
− log

(
1 +

√
1 +

W 2

4H2

)]
Observing now that:

y+
1 =

u∗δ1

ν
η1 = Rewake η1

where Rewake is the Reynolds number based on friction velocity and wake
dimensions, we obtain:

C = −1

k
log
(
Rewake

)
+

1

k

(
1 + log

W

2H
− log 2

)
+B

This means that matching imposes that the constant C of the viscous solu-
tion be dependent on wake scaling and variable along the wall. The solution
(4.14), with the speci�ed values of A and B, is valid starting from a point
at a distance y+

1 ∼ 30 from the wall [Wilcox, 1998]. In order to have a uni-
formly valid solution on the whole domain, we have to subtract from the sum
of the viscous solution and the wake solution (4.14) the part of the viscous
solution which overlaps with the wake one for y+

1 → ∞. From Equation
(4.15), it is clear that the term in log η1 disappears from the solution (4.14).
A wall solution valid for y+

1 → 0 should be obtained from Equation (4.4)
considering higher orders in the asymptotic expansion of νT (νT = νky+

1 is
valid only for y+

1 → ∞ [Wilcox, 1998]). We consider an approximation to
the O(φ2) order. As we have already seen, matching with the wake solution

implies that N1 = 0, N2 = d
(
y+

1

)3
. Observing that:

δ2
1

H2

u
′′
∗
u∗

=
δ2

1

H2

(
u
′
∗
)2

u2
∗

=
W 2

4H2
,

which means that separated solutions ui of equation (4.4), i.e. depending
only on the variable y+

1 , exist at all orders, we obtain, in the limit y+
1 →∞,

the solution at the O(φ2) order:

u2

(
y+

1

)
= − W 2

16H2

(
y+

1

)2−d(y+
1

)2
2k

+
W 2

16H2k

(
y+

1

)2− W 2

8H2k

(
y+

1

)2
log
(
y+

1

)
+D

(4.16)
The part of solution (4.16) proportional to log

(
y+

1

)
has been inglobed into

the u0 solution. The wall solution, at O(φ2) order of approximation, is:

u
(
y+

1

)
=

[
1

k
log(y+

1 ) + C

]
+ φ2u2

(
y+

1

)
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By matching with the wake solution f(χ) = fc=1(χ)+fc=2(χ) we can obtain
the value of d. The wake solution, for the case c = 2, is (6.21):

f(χ) = A

{
−2−log

(
W

2H
η1

)
+

(
W

2H
η1

)2

log

(
W

2H
η1

)}
+B

{
1−
(
W

2H
η1

)2}
(4.17)

The term proportional to log
(
W
2H η1

)
is summed to the corresponding term

in the fc=1 solution, so that matching requires that:

A =
1

2k

B is determined in such a way to satisfy the condition f(1) = 1. Now,
remembering that:

φ2 =
1

Re2
wake

we obtain, by matching with the wake solution with the solution at the order
O(φ2):

d =
kW 2

2H2

(
B +

1

4k
− 1

4

)
(4.18)

We can now solve Equation (4.4), with the prescription νT = ν
[
ky+ +φ1 ·0+

φ2d(y+)3
]
, and sum its solution with the solution f(χ) = fc=1(χ) + fc=2(χ),

subtracting the overlapping part for y+
1 →∞, η1 → 0, in order to obtain the

uniformly valid solution (for the whole domain of region 1) u(η1):

u(η1) =
1

2k
log
(
1 + ky+

1

)
+

1

4k4
(
1 + ky+

1

) ·{
−W

2

4H2
k
(
1 + ky+

1

)2(
3 + k − ky+

1 + k2y+
1

)
+ d

[
6 + 18ky+

1 + 6k2
(
y+

1

)2 − 2k3
(
y+

1

)3]−
2
(
1 + ky+

1

)[
4d+ k

(
W 2

4H2

[
−1− k + k2

(
y+

1

)2]− k)] log
(
1 + ky+

1

)}
+

1

2k

{√
1 +

(
W

2H
η1

)2

− log

[
1 +

√
1 +

(
W

2H
η1

)2]}
− F0

(4.19)

where y+
1 = Rewakeη1, and F0 is the constant determined in the context

of the matching processes. The depicted process to �nd uniformly valid
solutions on the whole domain, with an increasing order of precision in the
asymptotic expansion, is an iterative process for c ∈ N > 0. Remember
that an asymptotic expansion is not necessarily convergent, and an optimal
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number of terms, corresponding to the di�erent orders in the expansion,
should be considered. We don't extend this analysis here. Turning back to
the wake solutions for the four regions of the domain, valid starting from
a distance ∼ 30 (until ∼ 100 for high turbulence �ows) in the stretched
variables orthogonal to the walls, we have (applying the change of variables
for the four sections of the domain reported in Tables 17 and 30) the results
shown in Table 18.
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Region 1

0 ≤ y ≤ W

2
, 0 ≤ z ≤ H; y ≤ W

2

z

H

u(y, z) = U∞
z
H

{
1
k

√
1 +

(
y
z

)2

+ 1
k log

(
y
z

)
− 1

k log

(
1 +

√
1 +

(
y
z

)2)
+ 1

− 1
k

[√
1 + W 2

4H2 + log

(
W
2H

)
− log

(
1 +

√
1 + W 2

4H2

)]}

Region 2

0 ≤ y ≤ W

2
, 0 ≤ z ≤ H; y ≥ W

2

z

H

u(y, z) = U∞
2y
W

{
1
k

√
1 +

(
z
y

)2

+ 1
k log

(
z
y

)
− 1

k log

(
1 +

√
1 +

(
z
y

)2)
+ 1

− 1
k

[√
1 + 4H2

W 2 + log

(
2H
W

)
− log

(
1 +

√
1 + 4H2

W 2

)]}

Region 3

W

2
≤ y ≤W , 0 ≤ z ≤ H; W − y ≥ W

2

z

H

u(y, z) = U∞
2(W−y)
W

{
1
k

√
1 +

(
z

W−y

)2

+ 1
k log

(
z

W−y

)
− 1

k log

(
1 +

√
1 +

(
z

W−y

)2)
+ 1

− 1
k

[√
1 + 4H2

W 2 + log

(
2H
W

)
− log

(
1 +

√
1 + 4H2

W 2

)]}

Region 4

W
2 ≤ y ≤W , 0 ≤ z ≤ H; W − y ≤ W

2

z

H

u(y, z) = U∞
z
H

{
1
k

√
1 +

(
W−y
z

)2

+ 1
k log

(
W−y
z

)
− 1

k log

(
1 +

√
1 +

(
W−y
z

)2)
+ 1

− 1
k

[√
1 + W 2

4H2 + log

(
W
2H

)
− log

(
1 +

√
1 + W 2

4H2

)]}

Table 18: Wake solutions for the four regions of the domain, after the matching
with the respective laws of the wall
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External wind orthogonal to the street axis As we have seen in
the introduction of Section 4.1, the equations for v and w do not depend
on the u component. This means that the equations for the components
of velocity transversal to the canyon are not coupled to the equation for
the longitudinal component, so they can be solved indipendently in a two
dimensional model. This indipendent two dimensional �ow is generated by
the component of the external wind �eld orthogonal to the street axis V∞.
Let us consider the second and the third Equations in System (4.1). We can
write them in a more convenient form introducing the vorticity vector:

ω =

(
∂v

∂z
− ∂w

∂y

)
i,

which has only one component in the i direction, and introducing the stream
function ψ (which automatically gives v and w for a divergenceless velocity):

vdz − wdy = dψ ; ω = −∂
2ψ

∂y2
− ∂2ψ

∂z2

Taking the rot of these equations, and considering that νT can depend on y
and z, we obtain:

(
v − ∂νT

∂y

)
∂ω

∂y
+

(
w − ∂νT

∂z

)
∂ω

∂z
=
∂νT
∂y

(
∂2w

∂y2
+
∂2w

∂z2

)
− ∂νT

∂z

(
∂2v

∂y2
+
∂2v

∂z2

)
+ ω

(
∂2νT
∂y2

+
∂2νT
∂z2

)
+ (ν + νT )

(
∂2ω

∂y2
+
∂2ω

∂z2

)
(4.20)

Writing the vorticity form of the equations is suitable for the perturbation
analysis we are going to apply: we consider that, in situations corresponding
to the wake interference and the skimming �ow regimes, described in Section
3.3, in which a uniform vorticity distribution ω0 is extended to the whole
canyon domain, the wake solutions relative to each wall boundary have the
form of a defect law in the vorticity �eld:

ω = ω0 − ωτF [η]

where ωτ is the intensity of the small perturbation from the uniform vorticity
inside the canyon, and η is the orthogonal coordinate to each wall boundary
suitably scaled with the wake thickness. The perturbation is set up as an
expansion in powers of ωτ/ω0, which is a small parameter, and far away from
the boundary the perturbation vanishes and the vorticity tends to ω0. The
hypothesis that the main freestream steady solution, over which a pertur-
bation analysis is set up, is constituted by a region of uniform vorticity ω0

inside the canyon is derived by Physical reasons, which involve the action
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of viscosity in an initial phase of the motion: in the steady state there ex-
ists a set of closed streamlines which do not enclose any wall boundary and
on which the e�ect of viscous stresses is everywhere small (that is, none of
these streamlines passes through a layer in which viscous and inertia forces
are comparable). The vorticity will be approximlately constant along each
one of these streamlines (the vorticity associated with a material element is
constant for an inviscid �ow [Batchelor, 1967]). Now the vorticity in this
case of steady two-dimensional motion satis�es a di�usion equation, and it
follows that if the vorticity has di�erent values on di�erent streamlines there
will be a di�usive �ux of vorticity across streamlines. Since there is no source
or sink of vorticity, the only possible steady state is one of uniform vorticity
ω0. Arguments for this hypothesis will also be given by the analysis of the
numerical results in Section 4.2.

We start from the description of the logarithmic layer adjacent to each
wall segment. Similarly to the previous case, we consider di�erent scalings
of variables for the four segments AB, BE, EC, CD in Figure 20. Referring
to the Segment AB (the extension to the other boundary segments is easy,
employing the change of variables reported in Table 16), we introduce in
Equation (4.20) the variables and expansions:

y+ =
uτ (z)y

ν
; z+ =

z

H
ψ = ν[f0(y+) + φ1f1(y+, z+)] ; νT = ν[N0(y+) + φ1N1(y+, z+)]

φ1 =
ν

uτδ

(4.21)

where δ is the thickness of the boundary layer, and the change of variables
transformations are expressed in Equation (4.3). We obtain, to order O(1),
the Equation:

(1 +N0)
∂4f0

∂y+4
+ 2

∂N0

∂y+

∂3f0

∂y+3
+
∂2N0

∂y+2

∂2f0

∂y+2
= 0 (4.22)

Using the Prandtl law for the eddy viscosity far away from the boundary
surface [Wilcox, 1998]:

N0 = ky+ for y+ →∞

we obtain:

∂3f0

∂y+3
=

1

k

1

y+2
−→ w = −∂ψ

∂y
= −uτ

∂f0

∂y+
+O(φ1) =

uτ
k

log y+ + C

(4.23)
which is the logarithmic law of the wall. This wall solution should be matched
with the wake solution, written as a defect law for the vorticity �eld; this
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matching procedure should give the form for the friction velocity uτ . Note
that the z dependence of the w component of velocity near Segment AB
should be of the form w ∝ z, since the vertex B is a stagnation point for
the local �ow topology [Batchelor, 1967]. This dependence guarantees the
matching between solutions relative to Segments AB and BE. Since we will
obtain a defect law which does not match with the logarithmic behaviour, we
will obtain the form for the friction velocity by another procedure, relating
to integral conditions for the boundary layer [Batchelor, 1967] adjacent to
the wall and on the request that the stagnation-point behaviour be satis�ed.
Remember that the form for uτ is needed in order to determine the optimal
boundary layer cell dimensions of the grid for the solution of the discretized
problem, as explained in Section 3.4.

We now consider the wake solutions. As already told, we are consid-
ering solutions valid only when the wind recirculation vortex is extended
to the whole canyon domain, i.e. the wake interference and the skim-
ming �ow regimes. These situations are the most relevant for the de-
scription of a urban geometry. We refer to the wind tunnel data in Ref.
[Berkowicz, Kearney, 2004] and to our simulation results (see Section 4.2) to
characterize these wind �ow regimes, in terms of the external wind intensity,
of its angle relative to the street axis, and of the ratio H/W . Anyhow, we
point out here an analytical procedure to distinguish between the di�erent
regimes, which is also useful to determine precise values for the constant
ω0. As a �rst step, we �nd the solution for the two-dimensional inviscid
�ow relative to the canyon geometry, driven by an external wind component
Vext orthogonal to the street axis. This can be done through the methods
of complex analysis, by taking a conformal transformation - the Schwarz-
Christo�el transformation [Batchelor, 1967] - which transforms the canyon
domain (in the z variable) to the upper half plane (in the ζ variable). The
transformation is illustrated in Figure 21. The canyon vertices A, B, C, D
are transformed into points on the real axis of the ζ plain, of coordinates ζA,
ζB, ζC , ζD respectively. The transformation is:

z − z0 = A

∫
dζ

√
(ζ − ζA)(ζ − ζD)

(ζ − ζB)(ζ − ζC)
,

where z0 and |A| and argA are arbitrary constants, which must be chosen
in order to yield the correct origin, scale and orientation of the polygonal
boundary in the z plane. We can choose ζA = −1/k, ζD = 1/k, ζB = −1
and ζC = 1, in order to reconduce the transformation to an elliptic integral
of the second kind:

z − z0 = kA

∫
dζ

√
(1− kζ)(1 + kζ)

(1− ζ)(1 + ζ)
= kAE[arcsin ζ, k2],

where E is the elliptic integral of the second kind [Andrews et al., 1999].
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Figure 21: Illustration of the Schwarz-Christo�el transformation. Vext is the exter-
nal wind component orthogonal to the street axis.

Imposing the correspondence between the points ζ = ±1 and the points
z = 0 and z = W , using the properties of the elliptic functions, and inverting
the relation, we have:

ζ = sin

{
E−1

[
E[k2]

2

W

(
z − W

2

)
, k2

]}
,

where E−1 is the elliptic function of the second order, and E[k2] is the com-
plete elliptic integral of the second kind (corresponding to the real quarter
period of the relative elliptic function). The elliptic function sin(E−1) is 1/k
when its argument is E(k2) + E

′
(k2), where E

′
is the imaginary quarter

period. Thus, in order to have ζ = 1/k when z = W + iH, we require that
k is the value for which:

E
′
(k2)

E(k2)
=

2H

W
.

This value of k is obtained using the tables of elliptic integrals [Morse, Feshbach, 1953].
For example, when W = 2H, k2 = 0.5. This completes the speci�cation of
the Schwarz-Christo�el transformation. Now, the inviscid �ow for the canyon
geometry is given by means of the complex potential Ω:

Ω(z) = Vextζ = Vext sin

{
E−1

[
E[k2]

2

W

(
z − W

2

)
, k2

]}
(4.24)

The presence of boundary layer separation can be identi�ed as an index for
the distinction between the �ow regimes inside the canyon: when the external
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inviscid �ow as an adverse pressure gradient which induces separation, the
�ow, which tends to the inviscid solution outside the canyon, recirculate
inside the wake generated by the �rst vertical boundary, and the regime is
isolated roughness. The presence of boundary layer separation induced by the
external inviscid �ow is indicated by the critical points of the inviscid solution
[Batchelor, 1967]: if the inviscid solution has a point, inside the interval
0 ≤ y ≤ W , for which dV∞/dy = 0, there is separation (this reasoning
is analogous to the analysis conduced on boundary layers with accelerated
external inviscid �ows). The non-inviscid instabilities are responsible for
second vortex �ows inside the canyon, but the �ow regime is determined by
the nature of the external stream. The external �ow V∞ can be calculated
as:

V∞ =
∂

∂y
Re[Ω(z)],

and the nature of its critical points depends on the intensity of Vext and on
the geometrical parameters H and W . This approach is based on numerical
valuations of the elliptic integrals; we will develop it in further investigations.

Let us consider now the problem of the determination of the ω0 constant.
The vorticity is primarily generated at the boundary layer which forms along
the streamlines at the canyon roof level (Segment AD in Figure 21). It is
then convected inside the canyon, and the presence of the wall boundaries
determine the regime of recirculation, and eventually generates second order
vortices. In the roof level boundary layer, the v component of the velocity can
be considered as a small departure from the external inviscid �ow component
V∞. From mass conservation, the w component near the Segment AD can
be expressed as:

wAD ∼ −z
dV∞
dy

This could also be written as:

wAD ∼ δ∆ω

where ∆ω is the variation of vorticity from the external value generated
at the layer, and δ is the extension of the layer in which the vorticity is
convected. If the convection of vorticity determine a uniform distribution
inside the canyon domain, we can express the last equation as:

wAD ∼ −ω0H

Now apply the integral form of the NS equations [Batchelor, 1967] to the
control boundary S indicated by the dotted line in Figure 21:∫

ρuiujnjdS =

∫
(−pni + Sijnj)dS (4.25)

147



where we have omitted the external force terms. We choose a control surface
such that there is no �ux velocity across the IH segment, and the viscous
forces are relatively small there. By applying the Bernoulli law for the pres-
sure and the velocity of the undisturbed �ow at the Segments FI and GH,
and considering mass conservation, we see that these two segments give a
zero contribution to Equation (4.25). At the Segments FA, AD and DG
boundary layers are formed, but we assume that the Reynolds number of
the �ow is so large that the corresponding tangential stresses are small (they
are proportional to the inverse of the square root of the Reynolds number).
Equation (4.25) thus becomes:∫ W

0
dy ρV∞wAD = −

∫ W

0
dy ρw2

AD,

and considering that wAD ∼ −ω0H:

ω0HW =

∫ W

0
dy V∞ =

∫ W

0
dy

∂

∂y
Re[Ω(z)] (4.26)

where Ω(z) is given in Equation (4.24) (where z is the complex variable y+iz,
and Ω(z) must be speci�ed at z = H). This gives the desired estimate for
the value of ω0. We now make the approximation that the external velocity
remains constant at the roof level: V∞ = Vext = constant. According to this
approximation, we have:

ω0 =
V∞
H

(4.27)

We will use this value for ω0.
For what concerns the defect layer solutions adjacent to each wall segment

de�ned in Figure 20, we scale the variables and take perturbation expansions
as reported in Table 19.
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There are two small scales associated to each boundary segment i: the
vorticity perturbation ωτi, which de�nes the parameter of the expansion
φ1,i, and the wake thickness δi, which must be inserted, in order to de�ne
an appropriate turbulent viscosity. We scale the coordinate orthogonal to
each boundary with the quantity ∆, which is a combination of the two small
parameters. Note that:

∆φ1

δ
= 1

The stream function is de�ned as a perturbation, to order O(φ1), of a stream
function associated to a constant value of vorticity ω0. We are searching for
separated solutions, as in the previous case, so F will be a function of the
variable η only. The prescription for the eddy viscosity is:

νT = αδ2ω0,

where α is a constant which determines the Turbulence intensity, and must
be chosen by comperison with empirical data. This prescription is simi-
lar to that introduced in the Baldwin-Lomax algebraic Turbulence model
[Wilcox, 1998]. We note that, in the case of the isolated roughness �ow
regime, this prescription is not valid, since the wake thickness is a �nite pa-
rameter. An appropriate prescription should be: νT ∝ U2

r /ω0, where Ur is
the maximum velocity at the external streamlines of the wake recirculation
behind the leeward wall. Ur can be de�ned starting from the fact that, for
an inviscid �ow with constant vorticity ω0, the following relation is valid:

p

ρ
= const.− 1

2
U2

r − ω0ψ,

which is derived from the fact that the the Bernoulli energy is constant along
a streamline [Batchelor, 1967]. In boundary layer separation, the pressure
inside the recirculation zone is equal to the pressure of the external �ow V∞.
By applying the Bernoulli theorem, and considering the appropriate form of
the stream function at the external streamline of the recirculation zone, we
obtain the following prescription:

νT = αmin

[
δ2ω0,

V 2
∞
ω0

+ ω0

(
W

2
− δ
)2]

Details of the solutions for this algebraic Turbulence model will be treated
in future investigations.

Introducing the change of variables and the expansions reported in Table
19 inside Equation (4.20) we obtain, in the case of the Segment AB, the
following equation, retaining the terms to order O(∆φ1):

∂4F

∂η4
1

+
1

αH

[
∆1

δ′1
δ1
−∆1

ω′τ1

ωτ1

]
∆2

1

δ2
1

η2
1

∂3F

∂η3
1

− 1

αH
∆1

ω′τ1

ωτ1

∆2
1

δ2
1

η1
∂2F

∂η2
1

= 0 (4.28)
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Segment AB Segment BE

η1 =
y

∆1(z)
η2 =

z

∆2(y)

ζ1 =
z

H
ζ2 =

2y

W

∆1(z) =
ω0δ1,1(z)
ωτ1(z) ∆2(y) =

ω0δ1,2(y)
ωτ2(y)

φ1,1 = ωτ1(z)
ω0

φ1,2 = ωτ2(y)
ω0

ψ1 = ω0∆2
1

[
−1

2η
2
1 + φ1,1F (η1, ζ1)

]
ψ2 = ω0∆2

2

[
−1

2η
2
2 + φ1,2F (η2, ζ2)

]
νT = α1δ

2
1ω0 νT = α2δ

2
2ω0

Segment EC Segment CD

η3 =
z

∆3(y)
η4 =

W − y
∆4(z)

ζ3 =
2(W − y)

W
ζ4 =

z

H

∆3(y) = ω0δ3(y)
ωτ3(y) ∆4(z) = ω0δ4(z)

ωτ4(z)

φ1,3 = ωτ3(y)
ω0

φ1,4 = ωτ4(y)
ω0

ψ3 = ω0∆2
3

[
−1

2η
2
3 + φ1,3F (η3, ζ3)

]
ψ4 = ω0∆2

4

[
−1

2η
2
4 + φ1,4F (η4, ζ4)

]
νT = α3δ

2
3ω0 νT = α4δ

2
4ω0

Table 19: Scaling of variables, series expansions for the defect layer solutions and
turbulence modelization with the domain divided in four regions, adjacent to the
four segments AB, BE, EC, CD.
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Equation (4.28) is dependent only on the η1 variable, and thus separated
solution exists, if the following conditions are valid:

1

αH

δ′1
δ1

∆3
1

δ2
1

= a

1

αH

ω′τ1

ωτ1

∆3
1

δ2
1

= b

(4.29)

with a and b constants. System (4.29) can be solved by eliminating the δ
variable; considering the form of ∆1 introduced in Table 19, we obtain the
equation:

b
ω′′τ1

ω′τ1

+ (a− 4b)
ω′τ1

ωτ1
= 0

A solution can be easily obtained by making the substitution: ω′τ1 = f(ωτ1)→
ω′′τ1 = f ′f . The solutions, for both ωτ1 and δ1, are:

ωτ1(ζ1) = [(a− 3b)(KIζ1 +KII)]
b/(a−3b)

δ(ζ1) =
αH

ω3
0KI

[(a− 3b)(KIζ1 +KII)]
a/(a−3b)

(4.30)

where KI and KII are constants of integrations. If we impose that ωτ → 0
and δ → 0 for ζ → 0, in correspondence with the stagnation point, we set
KII = 0, and impose particular constraints on the a and b values, in order to
avoid that the Solutions (4.30) diverge, making the perturbation procedure
useless. The Equation (4.28) becomes:

d4F

dη4
1

+ (a− b)η2
1

d3F

dη3
1

− bη1
d2F

dη2
1

= 0 (4.31)

Introducing the function:

y(η1) =
d2F

dη2
1

,

and introducing the change of variable:

x =
b− a

3
η3

1,

we transform Equation (4.31) into the Con�uent Hypergeometric Function
[Morse, Feshbach, 1953]:

xy′′ +

[
2

3
− x
]
y′ − b

3(b− a)
y = 0 (4.32)
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We now extend the analysis to the regions adjacent to the boundary seg-
ments de�ned in Figure 20. In Table 20 we report the form of the equations
and of the solutions for the di�erent regions. The respective variables and
Turbulence modelizations have been introduced in Table 19.
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Segment AB Segment BE

v = O[∆2
1φ1,1] v = −ω0∆2η2 + ω0∆2φ1,2

∂F

∂η2

w = ω0∆1η1 − ω0∆1φ1,1
∂F

∂η1
w = O[∆2

2φ1,2]

ω = ω0 − ω0φ1,1
∂2F
∂η21

ω = ω0 − ω0φ1,2
∂2F
∂η22

ωτ1 = [(a− 3b)(KIζ1 +KII)]
b/(a−3b) ωτ2 = [(a− 3b)(KIζ2 +KII)]

b/(a−3b)

δ1 = αH
ω3
0KI

[(a− 3b)(KIζ1 +KII)]
a/(a−3b) δ2 = αW

2ω3
0KI

[(a− 3b)(KIζ2 +KII)]
a/(a−3b)

y(η1) = d2F
dη21

; x = b−a
3 η3

1 y(η2) = d2F
dη22

; x = a−b
3 η3

2

xy′′ +
[

2
3 − x

]
y′ − b

3(b−a)y = 0 xy′′ +
[

2
3 − x

]
y′ − b

3(b−a)y = 0

Segment EC Segment CD

v = −ω0∆3η3 + ω0∆3φ1,3
∂F

∂η3
v = O[∆2

4φ1,4]

w = O[∆2
3φ1,3] w = −ω0∆4η4 + ω0∆4φ1,4

∂F

∂η4

ω = ω0 − ω0φ1,3
∂2F
∂η23

ω = ω0 − ω0φ1,4
∂2F
∂η24

ωτ3 = [(a− 3b)(KIζ3 +KII)]
b/(a−3b) ωτ4 = [(a− 3b)(KIζ4 +KII)]

b/(a−3b)

δ3 = αW
2ω3

0KI
[(a− 3b)(KIζ3 +KII)]

a/(a−3b) δ4 = αH
ω3
0KI

[(a− 3b)(KIζ4 +KII)]
a/(a−3b)

y(η3) = d2F
dη23

; x = b−a
3 η3

3 y(η4) = d2F
dη24

; x = a−b
3 η3

4

xy′′ +
[

2
3 − x

]
y′ − b

3(b−a)y = 0 xy′′ +
[

2
3 − x

]
y′ − b

3(b−a)y = 0

Table 20: Form of the equations and of the solutions for the four regions adjacent
to the four segments AB, BE, EC, CD.
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We note that the velocity components orthogonal to a given wall segment
are of order of magnitude O[∆2φ1], and thus they can be neglected with
respect to the parallel components in the region adjacent to a segment. The
solution is the sum of the di�erent components relative to each region. In
the Region {0 ≤ y ≤W/2; 0 ≤ z ≤ H/2} the solution is given by:

u = (vBE , wAB),

where the subscripts indicate the segment of reference of the corresponding
solutions. In the Region {W/2 < y ≤W ; 0 ≤ z ≤ H/2} the solution is given
by:

u = (vEC , wCD),

We must add to the solution the in�uence of the freestream boundary con-
dition at the Segment AD: v = V∞. This is done by introducing a solu-
tion for a constant vorticity ω0 with the boundary contition at z = H that
∂ψ/∂z|z=H = V∞, i.e.:

ψAD = −1

2
ω0(H − z)2 + V∞z

It is possible to use this solution due to the fact that we are considering a
constant external freestream �ow V∞ = Vext over the canyon roof level. In
the case we would consider a freestream �ow obtained from the Equation
(4.24), a perturbation analysis, considering a defect layer development at
the roof level as a small perturbation from the freestream velocity, should
be considered. In the Region {0 ≤ y ≤ W/2;H/2 < z ≤ H} the solution is
given by:

u = (vAD, wAB)

In the Region {W/2 < y ≤W ;H/2 < z ≤ H} the solution is given by:

u = (vAD, wCD)

Note that the terms of order ∆ in the solutions have signs corresponding
to the main vortex recirculation inside the canyon; in fact, removing the
scaling, they are:

wCD = −ω0(W − y); vEC = −ω0z; vEB = −ω0z; wBA = ω0y

Anyhow these terms cannot be used in the determination of the solution
valid on the whole domain without an ad-hoc partitioning of it. Consider
for example the term wBA = ω0y: due to the way in which the stream func-
tions have been constructed in each region adjacent to the wall segments
(see Table 19), it vanishes for y = 0, but wBA 6= 0 for z = 0. Besides this,
considering both the contributions from wBA and vEB to order ∆ in Region
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{0 ≤ y ≤ W/2; 0 ≤ z ≤ H/2}, we would have ω = 2ω0 (a factor of ω0/2
should be considered). The same problem arises for the other terms at order
∆. One way to avoid this incompatibility problem of the solutions at order
∆ should be to insert an ad-hoc subdivision of the domain regions for the
corresponding terms, using, for example above the bisector of the straight
angle at the vertex B, the term wBA = ω0y only, neglecting the vBE term.
This approximation is supported by the fact that, in the region of in�uence
of a single wall boundary segment, the velocity component orthogonal to the
boundary are of order O(∆2φ1). Thus the velocity components to leading or-
der parallel to the other adjacent boundaries should not extend to the region
of the considered boundary. (This is a similar procedure as that introduced
in Ref. [Soulhac et al., 2008] to treat the case of an external freestream par-
allel to the street axis). This could introduce non-Physical e�ects, since in
each region a component of velocity is neglected. We will introduce a more
correct way to proceed, by using a main solution ψms(y, z), which substi-
tute the incompatible components in each region. The perturbation term in
the velocity solutions is proportional to δ, whereas the perturbation term in
the vorticity defect law is proportional to ωτ . Since we impose that these
terms go to zero for ζ → 0, respecting the stagnation point behaviour, the
perturbation terms are compatible with each other and can be used in their
respective regions of de�nition. When ωτ changes sign between two adja-
cent regions of the domain, a secondary recirculation can be established,
depending on the intensity of the perturbation itself.

We illustrate here a procedure to solve the incompatibility of the terms
at order ∆ by introducing a main solution ψms of the Equation:

∂2ψms
∂y2

+
∂2ψms
∂z2

= −ω0,

valid for the whole domain, with the boundary condition that ∂ψ/∂z = V∞
for z = H. The procedure consists in composing this solution with the con-
tributions coming from the perturbation terms at order O(∆φ1) reported
in Table 21. When considering a boundary condition at z = H given by a
freestream �ow obtained from the Equation (4.24), this procedure avoid in
a �rst approximation the need to extend the perturbation analysis to the
boundary layer which forms at the Segment AD. Applying a standard sepa-
ration of variable approach to the Poisson equation for the stream functions,
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we have obtained the following main solution ψms:

ψms =
1

2
ω0

[(
W

2

)2

−
(
y − W

2

)2]
+

∞∑
n=0

{[∫ W

0
dy′

2V∞ cos[(2n+ 1)π(y′ −W/2)]

π(2n+ 1) sinh[(2n+ 1)π(H/W )]

]
·

cosh

[
(2n+ 1)πz

W

]
cos

[
(2n+ 1)π(y −W/2)

W

]} (4.33)

where V∞ is obtained from the Equation (4.24). When V∞ is constant, the
Solution (4.33) becomes:

ψms =
1

2
ω0

[(
W

2

)2

−
(
y − W

2

)2]
+

4V∞W

π2

∞∑
n=0

{
(−1)n

(2n+ 1)2

cosh[(2n+ 1)πz/W ]

sinh[(2n+ 1)π(H/W )]
cos

[
(2n+ 1)π(y −W/2)

W

]}
(4.34)

We are interested in the velocity components. Taking the z derivative of
Equation (4.34), we obtain:

vms =
4V∞
π

∞∑
n=0

{
(−1)n

2n+ 1

sinh[(2n+ 1)πz/W ]

sinh[(2n+ 1)π(H/W )]
cos

[
(2n+ 1)π(y −W/2)

W

]}
(4.35)

This form for the v velocity component goes to zero at the canyon walls, and
satis�es the freestream �ow condition at the roof level. It is a solution of
the Laplace equation valid on the whole domain; we consider vms as the v
component of velocity in the regions above the bisectors at the point vertices
B and C. For example, in the region above the bisector at the vertex B, i.e.
for z ≥ y, the velocity component vBE , at order ∆, is incompatible, since
vBE = −ω0z does not vanish at y = 0. In this region the velocity components
are thus: {vms, wAB = ω0y} (note that the wAB solves the Poisson equation,
and takes into account the vorticity ω0). In the region below the bisector at
the vertex B, the v component is given by vBE , and the wAB component is
incompatible. We cannot use the component wms = −∂ψms/∂y as a substi-
tute for wAB in this region, cause it is incompatible with our perturbation
expansion analysis: in the region adjacent to the Segment BC, the stream
functions must be, to leading order, of the form:

ψ ∼ −1

2
ω0z

2,
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which is not compatible with Equation (4.34). We thus introduce the stream
function ψmsII :

ψmsII =
1

2
ω0

[(
H

2

)2

−
(
z − W

2

)2]
+

4W

π2

(
V∞ + ω0

H

2

) ∞∑
n=0

{
(−1)n

(2n+ 1)2

sinh[(2n+ 1)πz/W ]

cosh[(2n+ 1)π(H/W )]
cos

[
(2n+ 1)π(y −W/2)

W

]}
(4.36)

which satis�es the freestream condition. Taking the y derivative of Equation
(4.36), we obtain:

wmsII =
4

π

(
V∞+ω0

H

2

) ∞∑
n=0

{
(−1)n

2n+ 1

sinh[(2n+ 1)πz/W ]

cosh[(2n+ 1)π(H/W )]
sin

[
(2n+ 1)π(y −W/2)

W

]}
(4.37)

This solution satis�es the no slip condition at the boundary z = 0, and
satis�es free-slip conditions at the boundaries y = 0 and y = W . We substi-
tute the wAB component, in the region below the bisector at the B vertex,
by wmsII . (Using this component away from the vertical boundaries, the
boundary conditions at y = 0 and y = W are not important in the form
of the Solution (4.37)). We show in Figure 22 the di�erent contributions,
to leading order, for the di�erent regions of the domain, to which the per-
turbation terms must be added. Note that, considering for example the
region above the bisector at the B vertex, we could use the components
(vms, wms = −∂ψms/∂y), instead of the components (vms, wAB (our pertur-
bation analysis is not changed in this case). The same consideration can be
made for the other segments.

We note that the Series (4.35) and (4.37) are fairly rapidly convergent,
except for z → H. Their convergence can be accelerated with the method
of Kummer [Morse, Feshbach, 1953]. Noting that for large values of n the
ratios of the hyperbolic functions in both the series expansions tends to the
function:

e(2n+1) π
W

(z−H),

we add and subtract to the series (4.35) a term (which can be summed):

∑
n

1

2n+ 1
Re

{
ei π

W
(2n+1)[(y−W/2)−i(z−H)]

}
= Re

{
arctanh

[
ei π

W
[(y−W/2)−i(z−H)]

]}
,

and we add and subtract to the series (4.37) a term (which can be summed):
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Figure 22: Di�erent velocity components contributions, to leading order, for the
di�erent regions of the domain, to which the perturbation terms must be added

∑
n

(−1)n

2n+ 1
Im

{
ei π

W
(2n+1)[(y−W/2)−i(z−H)]

}
= Im

{
arctan

[
ei π

W
[(y−W/2)−i(z−H)]

]}
The series expansions which remain are so rapidly convergent that only the
�rst term needs to be included. The results are:

vms =
V∞
π

log

{
e−

2π
W

(H−z) sin2

[
π

W

(
y − W

2

)]
+

(
e−

π
W

(H−z) cos

[
π

W

(
y − W

2

)]
+ 1

)2}
− V∞

π
log

{
e−

2π
W

(H−z) sin2

[
π

W

(
y − W

2

)]
+

(
1− e−

π
W

(H−z) cos

[
π

W

(
y − W

2

)])2}
+

4V∞
π

e−
πH
W

sinh
[
π
W (z −H)

]
sinh

[
π
WH

] cos

[
π

W

(
y − W

2

)]
(4.38)
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and

wmsII =

V∞ + ω0H/2

π
log

{[
e−

π
W

(H−z) sin

[
π

W

(
y − W

2

)]
+ 1

]2

+ e−
2π
W

(H−z) cos2

[
π

W

(
y − W

2

)]}
− V∞ + ω0H/2

π
log

{[
1− e−

π
W

(H−z) sin

[
π

W

(
y − W

2

)]]2

+ e−
2π
W

(H−z) cos2

[
π

W

(
y − W

2

)]}
− 4

V∞ + ω0H/2

π
e−

πH
W

cosh
[
π
W (z −H)

]
cosh

[
π
WH

] sin

[
π

W

(
y − W

2

)]
(4.39)

Let us return to the solution for the perturbation problem, introduced in
Table 20. As already said, we choose KII = 0. The appropriate boundary
conditions are: 

y(η) =
d2F

dη2
→ 0 for η →∞

y(η) =
d2F

dη2
→ − 1

kη
for η → 0

(4.40)

The �rst of the conditions (4.40) corresponds to the request that the pertur-
bation vanish at in�nity, i.e. the solution tends to the solution with uniform
vorticity ω0 away from the boundary. The second condition is needed to set
up a matching with the logarithmic law of the wall (4.23). We show now
that the second condition cannot be satis�ed by any solution of the Equation
(4.32). The general form of the Hypergeometric Equation is:

xy′′ + [c− x]y′ − dy = 0 (4.41)

where c and d are arbitrary real constants. In the case of Equation (4.32)
(which is valid in all the regions of the domain adjacent to the wall bound-
aries):

c =
2

3
; d =

1

3

b

b− a
(4.42)

The general solution of the Equation (4.41) in a neighbourhood of the origin
(which is a regular singular point of the equation) extending to In�nity is
[Morse, Feshbach, 1953]:

y(x) = A 1F1(d, c, x) +Bx1−c
1F1(d− c+ 1, 2− c, x),

where 1F1 is the Con�uent Hypergeometric Function, expressed in a series
expansion as:

159



1F1(d, c, x) =

∞∑
k=0

(a)k
(c)k

xk

k!
,

(a further 1/Γ(c) factor must be introduced when c is a negative integer),
and A and B are generic real constants. The two terms in the solution are
linearly independent, except for the case c = n ∈ N, in which the origin is a
logarithmic point for the equation. In this case a term containing a logarith-
mic singularity must be present. For d = −n ∈ N > 0, the series expansion
of 1F1(d, c, x) is truncating, and the corresponding solution reduces to poly-
nomials. Analytic continuations of the solutions can be obtained by means
of the Kummer relation:

1F1(d, c, x) = ex 1F1(c− d, c,−x)

In our case c = 2/3, so the origin is not a logarithmic point. In the case
of the Con�uent Hypergeometric Function there is no possibility to take an
analytic continuation of a logarithmic behaviour at the point∞, as was done
in the case of the Hypergeometric solutions in the Appendix, since In�nity
is an irregular singular point of the equation, and solutions in the form
of uniformly convergent series expansions in a neighbourhood of ∞ do not
exist. The only way to satisfy the boundary condition at 0 imposed in (4.40)
is to search for solutions in the form of asymptotic expansions in powers of
1/x near the point ∞. Due to the Stokes phenomenon associated to the
irregularity of the point at In�nity [Morse, Feshbach, 1953], two di�erent
asymptotic behaviours and two di�erent asymptotic expansions correspond
to the points ±∞. The asymptotic series are:

U1Σ = xd−cex
∞∑
k=0

(1− d)k(c− d)k
k!

1

xk

U2Σ = x−d
∞∑
k=0

(−1)k
(d)k(d− c+ 1)k

k!

1

xk

(4.43)

These series expansions are formal solutions of Equation (4.41), but, since
they are divergent, they have to be intended as asymptotic expansions of
e�ective solutions of (4.41) near the In�nity. A case in which the series
expansions (4.43) are e�ective solutions of the Equation (4.41) is when the
series are truncating, i.e. when the values of the parameters c and d are such
that at least one of the terms (1 − d)k, (c − d)k, (d)k, (d − c + 1)k is of the
form (−n)k, with n ∈ N > 0. Exploring the various possibilities, it is easy to
see that no solution of the form x−1/3, which corresponds to the boundary
condition at 0 imposed in (4.40), is available. Besides this, each value of d
for which the series expansions de�ned in (4.43) truncate, remembering that
d = 1

3
b

b−a , is associated to negative values of the exponents for the ωτ and
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the δ terms (see Equation (4.30)), thus introducing divergent solutions when
KII = 0.

We have thus seen that there is no possibility to match the defect layer so-
lutions introduced in Table 20 with the logarithmic law of the wall (4.23). An
appropriate algebraic Turbulence model which introduces a natural match-
ing procedure will be studied in future investigations. We impose the new
boundary conditions:

y(η) =
d2F

dη2
→ 0 for η →∞

dF

dη
= 0 for η = 0

(4.44)

in which the condition at η = 0 is the no-slip boundary condition imposed on
the velocity component parallel to the wall boundary. We are thus searching
for solutions uniformly valid on the whole domain. The e�ect of the wall
viscous layer, the determination of uτ and of the turbulent intensity for the
wake solution must anyhow be included in some way. We start from the
Von-Karman integral relation [Batchelor, 1967], obtained by integrating the
boundary layer equations for the stationary wall solutions with respect to
the coordinate orthogonal to the wall:

u2
τ =

∂U

∂x
Uδ +

∂(U2θ)

∂x
(4.45)

where U is the freestream velocity outside the boundary layer, δ is the dis-
placement thickness, which is intended to be the thickness of the defect layer
adjacent to the viscous region, and θ is the momentum thickness. In our case,
we can consider the displacement thickness as determined by the wake thick-
ness parameter δ of our solutions, whose value is given in Equation (4.30).
We can neglect the term containing the momentum thickness, since it can be
shown that, to leading order, δ and θ are equal [Wilcox, 1998]. The relation
(4.45) can thus be written as:

u2
τ ∼ ω0V∞δ =

V 2
∞
H
δ (4.46)

In order to have an uτ which varies linearly with ζ, thus de�ning wall solu-
tions of the type of Equation (4.23) satisfying the stagnation point behaviour
near the bottom vertices of the canyon, we should require that:

δ ∝ ζ2 (4.47)

This is not a necessary imposition, since the approximation that the wall
e�ect does not change the stagnation point inviscid law in the direction par-
allel to a given boundary is a strong one, especially when vorticity is present
(anyhow, considering that the vorticity variation along a wall boundary is
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negligibly small with respect to the orthogonal variation, this approximation
can be made to leading order). A necessary constraint to be imposed to the
solution is clearly that uτ = 0 for ζ = 0. Now, in order to determine the
turbulent intensity in the defect layer, we have to refer to empirical data.
We use an empirical formula for the shear stress at the wall, introduced by
Blasius [McComb, 1990]:

u2
τ = 0.023 · V 2

∞

(
ν

V∞δ

)1/4

(4.48)

This expression is valid for turbulent boundary layers, but is not clearly valid
when a stagnation poin is present. We anyhow consider it valid far away
from the stagnation point, at the centre of the wall boundary, at ζ = 1/2 for
the vertical segments or ζ = 1 for the road surface segment. Applying the
Condition (4.48) to Equation (4.46), we will �nd the value of the unde�ned
constants in the solution for δ.

We now search for the appropriate solutions of the Equation (4.41), with
the parameters de�ned in (4.42) and the variables de�ned in Table 20 for the
di�erent regions of the domain, satisfying the boundary conditions (4.44).
We start from the observation that, in order to have non-diverging solutions
for the functions ωτ and δ, de�ned in (4.30), we must have:

a > 3b

This condition implies that:

d =
b

3(b− a)
< 0

The only solution of the Con�uent Hypergeometric Equation that vanishes
at In�nity is the solution which tends to In�nity as:

y(x)→ exxd−c for x→∞,

only when x < 0. This solution is the Con�uent Hypergeometric function of
the third kind [Morse, Feshbach, 1953]:

y(x) =
Γ(1− c)
Γ(1− d)

eiπ(d−c)
1F1(d, c, x)− Γ(c− 1)

Γ(c− d)
eiπdx1−c

1F1(d−c+1, 2−c, x)

(4.49)
Applying the Kummer analytic continuation to this solution we obtain di-
vergent solutions at In�nity. Recall that:

x =
b− a

3
η3 for Segments AB−EC

x =
a− b

3
η3 for Segments BE−CD
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so that di�erent values of the constants mus be chosen for the two sets of
segments, in order to have x < 0 in both cases. If we choose:

d = − 1

15
−→ a = 6b,

we have: 
ωτ = (3bKIζ)1/3

δ =
αH

ω3
0KI

(3bKIζ)2

which satis�es Condition (4.47) (for the segments on the road boundary, H
must be substituted with W/2). We must select values of the constants such
that bKI , in order to avoid complex values in the solution for ωτ . When
b > 0, selecting a positive value for α, we have:

∆1(ζ) > 0; ∆3(ζ) > 0→ η1, η3 > 0,

so that:

x =
b− a

3
η3 = −5b

3
η3 < 0 for Segments AB−EC

For the other two segments, both in the cases of b > 0 or b < 0, we have to
choose a negative value for α in order to have x < 0. This means that the
perturbation contributions to the velocity components ω0δdF/dη for Seg-
ments BE and CD have an opposite sign with respect to the contribution
for Segments AB and EC. This fact introduces secondary recirculations in
the �ow structure. This is the reason why we have inserted the constant α in
the prescription for the eddy viscosity, without incorporating the intensity of
Turbulence inside the de�nition of δ itself (since νT ∝ δ2). The magnitude of
the constant α can be e�ectively set equal to 1. We have, in the case b > 0:

∆2(ζ) < 0; ∆4(ζ) < 0→ η2, η4 < 0,

so that:

x =
a− b

3
η3 =

5b

3
η3 < 0 for Segments BE−CD

Now we impose Equation (4.46):
u2
τ ∼

9V 2
∞

ω3
0

KIb
2ζ2 for Segments AB−CD

u2
τ ∼

9WV 2
∞

2Hω3
0

KIb
2ζ2 for Segments EB−EC
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These values of uτ are those used in the context of the grid generation de-
scribed in Section 3.4. Equation (4.48) gives (selecting the value KI = 1):



Segments AB−CD :

9
H

ω3
0

b2ζ2

∣∣∣∣
ζ=1/2

= (0.023)4/5

(
ν

V∞

)1/5

−→ b =

√
4

9

V 3
∞
H4

(0.023)4/5

(
ν

V∞

)1/5

Segments BE−EC :

9
W

2ω3
0

b2ζ2

∣∣∣∣
ζ=1

= (0.023)4/5

(
ν

V∞

)1/5

−→ b =

√
2

9

V 3
∞

WH3
(0.023)4/5

(
ν

V∞

)1/5

(4.50)
Note that the values of b are small, and that the parameters ωτ and δ de�ned
in Equation (4.30) are small as a consequence; moreover, δ is smaller than
ωτ , due to the di�erent value of the exponents, so that also ∆ is small. These
facts enforce our perturbation analysis.

Other choices for the parameter d can be made which respect the con-
straint a > 3b. For example, we can choose values of d such that the expo-
nents of ωτ and δ in Equation (4.30) are positive integers. This allows to
choose values of b and KI with opposite signs, introducing thus a change of
sign of ωτ between the di�erent regions of the domain which let us to depict
secondary recirculations also in the solution for ω. We must observe that
the exponents of ωτ and δ, when they are positive integers, have opposite
parity: 

b

a− 3b
= 2n+ 1→ a

a− 3b
= 4 + 6n

b

a− 3b
= 2n→ a

a− 3b
= 1 + 6n

where n ∈ N ≥ 0. It's easy to see that this fact introduces the necessity to
change the sign of the perturbation contribution for the Regions adjacent to
the Segments BE and CD.

We choose here d = − 1
15 . The Solution (4.49) becomes:

e−iπ(11/15)y(x) = A

{
Γ(1/3)

Γ(16/15)
1F1

(
− 1

15
,
2

3
, x

)
+(−x)1/3 Γ(−1/3)

Γ(11/15)
1F1

(
4

15
,
4

3
, x

)}
(4.51)

where A is an arbitrary constant. Note that, since x < 0, this solution is
always real. This function goes to exx−11/15 for x→∞, thus it satis�es the
�rst boundary condition in Equation (4.44). In order to satisfy the second
boundary condition in Equation (4.44), let us write the Solution Equation
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(4.51) in terms of the variable η:

d2F

dη2
= A

{
Γ(1/3)

Γ(16/15)
1F1

(
− 1

15
,
2

3
,±5

3
bη3

)
+

[
∓
(

5

3
b

)1/3

η

]
Γ(−1/3)

Γ(11/15)
1F1

(
4

15
,
4

3
,±5

3
bη3

)}
(4.52)

where the di�erent signs correspond to the di�erent set of segments (remem-
ber that, for the Segments BE and CD, η < 0). Now we integrate in η,
and obtain (using the standard techniques of integral representations of the
con�uent hypergeometric functions [Andrews et al., 1999]), choosing A = 1
and constant of integrations equal to 0:

dF

dη
=

Γ(1/3)

Γ(16/15)
η 2F2

(
− 1

15
,
1

3
;
2

3
,
4

3
;±5

3
bη3

)
∓
(

5

3
b

)1/3 Γ(−1/3)

2Γ(11/15)
η2

2F2

(
4

15
,
2

3
;
4

3
,
5

3
;±5

3
bη3

)
(4.53)

where 2F2(a, b; c, d;x) is the Generalized Hypergeometric Function, with se-
ries expansion around the origin:

2F2(a, b; c, d;x) =
∞∑
k=0

(a)k(b)k
(c)k(d)k

xk

k!

It is immediate to see that dF/dη = 0 for η = 0; the second boundary
condition in Equation (4.44) is thus satis�ed. We write the solution for the
velocity �eld (v, w), dependent on the orthogonal component of the external
�ow V∞, on ω0 = V∞/H and on the constants H, W and b, in Table 21,
with di�erent expressions for the di�erent regions of the domain adjacent to
the wall segments. The symbol a(·|·)b means that the expression at the right
in the parenthesis must be used above the bisector, and the expression at
the right below.
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Region {0 ≤ y ≤W/2; 0 ≤ z ≤ H/2}

v = a(vms| − ω0z)b −
2 · 32 · b2

ω2
0W

y2 d

dηBE
F (ηBE); ηBE = − ω2

0W
2/3

22/335/3b5/3
z

y5/3

w = a(ω0y|wmsII)b −
32 · b2

ω2
0H

z2 d

dηAB
F (ηAB); ηAB =

ω2
0H

2/3

35/3b5/3
y

z5/3

Region {W/2 < y ≤W ; 0 ≤ z ≤ H/2}

v = a(vms| − ω0z)b +
2 · 32 · b2

ω2
0W

(W − y)2 d

dηEC
F (ηEC); ηEC =

ω2
0W

2/3

22/335/3b5/3
z

(W − y)5/3

w = a(−ω0(W − y)|wmsII)b −
32 · b2

ω2
0H

z2 d

dηCD
F (ηCD); ηCD = −ω

2
0H

2/3

35/3b5/3
(W − y)

z5/3

Region {0 ≤ y ≤W/2;H/2 < z ≤ H}

v = a(ω0(H − z) + V∞|vms)b

w = a(wmsII |ω0y)b −
32 · b2

ω2
0H

z2 d

dηAB
F (ηAB); ηAB =

ω2
0H

2/3

35/3b5/3
y

z5/3

Region {W/2 < y ≤W ;H/2 < z ≤ H}

v = a(ω0(H − z) + V∞|vms)b

w = a(wmsII | − ω0(W − y))b −
32 · b2

ω2
0H

z2 d

dηCD
F (ηCD); ηCD = −ω

2
0H

2/3

35/3b5/3
(W − y)

z5/3

Table 21: Solution for the velocity �eld (v, w), with di�erent expressions for the
di�erent regions of the domain adjacent to the wall segments AB, BE, EC, CD.
The symbol a(·|·)b means that the expression at the right in the parenthesis must
be used above the bisector, and the expression at the right below.
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where the terms dF/dη are given in Equation (4.53), with the minus sign
in the independent variable inside the Hypergeometric functions for the case
of Segments AB and EC, and the plus sign for the case of Segments BE and
CD. Note that the divergence of the solutions when the denominators of
the η variables tend to zero in the terms containing η2 is avoided by the fact
that d2F/dη2 → 0 for η →∞. The parameter b, for the di�erent regions, is
given by Equation (4.50).

External wind with arbitrary direction relative to the street

axis Let us de�ne the canyon longitudinal mean velocity U// relative to
the longitudinal component of the wind �ow generated thorough the canyon
by the external wind �ow:

U// =
1

HW

∫ H

0
dz

∫ W

0
dy u(y, z) (4.54)

where u(y, z) is the solution for the longitudinal velocity component gener-
ated by an external wind �ow U∞ parallel to the canyon axis, as de�ned in
Table 18. In order to calculate this integral, the domain must be split in the
four regions de�ned in Table 18, in which di�erent forms of the solution are
valid. For Region 1, we have the contribution:

U∞
HW

∫ H

0
dz

∫ Wz
2H

0
dy

z

H

{
1

k

√
1 +

(
y

z

)2

+
1

k
log

(
y

z

)
− 1

k
log

(
1 +

√
1 +

(
y

z

)2)
+ 1

− 1

k

[√
1 +

W 2

4H2
+ log

(
W

2H

)
− log

(
1 +

√
1 +

W 2

4H2

)]}
=

U∞
24HWk

[
4H2csch−1

(
2H

W

)
+ W

√
4H2 + W2

]
+

U∞
6k

[
log

(
W

2H

)
− 1

]
− U∞

6Wk

[
2Hcsch−1

(
2H

W

)
+ W

(
log

[
2 +

√
4 +

W2

H2

]
− 1− log 2

)]
+
U∞
6
− U∞

6k

[√
1 +

W 2

4H2
+ log

(
W

2H

)
− log

(
1 +

√
1 +

W 2

4H2

)]
(4.55)

It's easy to see that the contributions from Region 2 is obtained by taking
the change W ←→ 2H in the contribution from Region 1. The contribution
from the other two regions is the same as the sum of the Region 1 and Region
2 contributions by symmetry.

In Section 4.2 we will compare the theoretical estimates of U// with
numerical estimates. The values ofU// are used to set up operational models
for dispersion, as described in Section 3.5.
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In the case of an external �ow with arbitrary angle with respect to the
street axis, the equation for the u component is coupled to the equations for
the transversal components v and w, as is evident by observing the Equations
of motion (4.1). The coupling term is given by:

v
∂u

∂y
+ w

∂u

∂z
,

which is not present in the unidirectional �ow Equation (4.2) describing the
case of external wind parallel to the street axis. The transverse components
can be considered to be independent from the longitudinal one, and we can
use the Solutions reported in Table 21 also to describe them in the case of
an external �ow with arbitrary angle relative to the street canyon axis; on
the other hand, compared with the case of longitudinal freestream �ow, the
presence of the transverse component modi�es the longitudinal component of
the �ow, and we cannot use the Solutions reported in Table 18 in the general
case. In principle, it will be necessary, in order to describe the recirculation
�ow inside a street canyon in the general case, to modify the model for the
longitudinal component, by taking into account the non-linear interactions
with the transversal components of velocity. This can be accomplished by
the method of Green propagation, but the details of the calculations, due
to the di�erent form of the equation in di�erent regions of the domain,
are very cumbersome. We will treat this case in future investigations. In
the same manner as in Ref. [Soulhac et al., 2008], we have introduced the
canyon longitudinal mean velocity U// (see Equation (4.54), since it can be
considered to be independent from the transversal components of velocity
and to depend only on the component of the external velocity parallel to the
street axis U∞. This is shown in Ref. [Soulhac et al., 2008] by numerical
simulations, and by applying to the integral form of the equation of motion.
In fact, by considering the integral form of the NS equations (4.25) for the
longitudinal component u integrated over the canyon surface, we can see
that the �ux of the coupling term through the canyon walls and the roof
boundary is zero. Thus the integral forms of the equation for the case of an
external �ow parallel and with an arbitrary angle relative to the street axis
are the same, and do not depend on the transversal dynamics. The de�nition
of U// comes as a solution of the integral equation for u. We have e�ectively
chosen, in the formulation of dispersion operational models (see Section 3.5),
to introduce an average e�ect of advection and turbulent dispersion along
the canyon in terms of the quantity U//, whose Form (4.54) is valid for
the case of external �ow with arbitrary angles relative to the street axis,
and depends only on the parallel component of the freestream velocity and
on the geometry of the canyon. The advection and turbulent dispersion in
the transversal directions are described by means of the Solutions reported
in Table 21, obtained in the case of an external wind orthogonal to the
street axis. As already said, these solutions depend only on the orthogonal
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component of the freestream velocity.

Far-wake In Sections 3.3 and 3.4 we have pointed to the fact that a
defect law solution for the longitudinal component of the velocity in the
far-wake region of a moving vehicle has the form of a self-preserving solu-
tion. We now investigate this solution, extending the results obtained in Ref.
[Eskridge et al., 1979]. Consider a vehicle travelling at a constant speed U∞
in the −x direction, and consider a system of coordinate �xed relative to
the vehicle. Immediately behind the vehicle, the near-wake is composed by
unsteady turbulent motions. However, several vehicle heights downstream
(x ≥ h, with h the vehicle height), the wake settles into a spatially homoge-
neous turbulent structure spreading in the cross-wake and vertical directions.
The statistical averaged velocity can be expressed in the form of a de�cit law
(which is equivalent to applying the Oseen approximation [Batchelor, 1967]
to the equations of motion for �uid �ow behind an obstacle):

u = [U∞ + u, v, w] (4.56)

where u, v and w are perturbation velocities, which are assumed to be small
compared to U∞. The wake thickness δ is assumed to be much smaller than
the wake length L, so that a boundary-layer approximation [Batchelor, 1967],
i.e. a perturbation analysis obtained by considering the derivatives in the
x direction to be much smaller than the derivatives in the other directions,
can be set up. From the continuity equation it follows that:

|v|, |w| ∼ uδ

L

Considering the defect law (4.56) as the �rst term in a perturbation expan-
sion in powers of a small parameter φ1, as done in previous paragraphs, we
see that the orders of magnitude of the velocity components are:

u = O[φ1]; v = O[φ1δ; v = O[φ1δ

The Reynolds averaged NS equations, to leading order, are:



U∞
∂u

∂x
= −1

ρ

∂p

∂x
+

∂

∂y

[
λνT

∂u

∂y

]
+

∂

∂z

[
νT
∂u

∂z

]
at O[φ1]

U∞
∂v

∂x
= −1

ρ

∂p

∂y
+

∂

∂y

[
λνT

∂v

∂y

]
+

∂

∂z

[
νT
∂v

∂z

]
at O[φ1 · δ]

U∞
∂w

∂x
= −1

ρ

∂p

∂z
+

∂

∂y

[
λνT

∂w

∂y

]
+

∂

∂z

[
νT
∂w

∂z

]
at O[φ1 · δ]

(4.57)
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where λ is a constant which takes into account the asymmetry produced
by the ground, and thus introduces in a simple manner anisotropy of the
Reynolds stress tensor. It is expected that 1 ≤ λ ≤ 2. As in Ref. [Eskridge et al., 1979],
we take λ = 1. The boundary conditions to Equations (4.57) are:

u = v = w → 0 for z = 0, z→∞, x→∞, y→ ±∞ (4.58)

Note that, from the third Equation in (4.35) and the boundary conditions
for z →∞:

∂p

∂z
∼ U∞uδ

L2
;

∂p

∂z
→ 0,

so that:

∂p

∂x
∼
(
∂p

∂z

)
δ

L
∼ U∞uδ

2

L2
,

and thus the pressure gradient term in the �rst Equation of (4.57) is o(φ1)
and can be neglected. We must note that this approximation is not valid
for strong adverse external pressure gradients, which cause boundary layer
separation and for which the perturbation analysis is not applicable and self-
preserving solutions do not generally exist [Wilcox, 1998]. In any case, in the
far-wake zone the e�ects of an adverse pressure gradient can be neglected.
The longitudinal perturbation term u can be obtained by seeking a self-
preserving solution of the corresponding equation, in terms of scaled variables
with the wake thickness parameter:

u = AU∞u0(χ)f [η, ζ]; with χ =
x

h
, η =

y

δ(x)
, ζ =

z

δ(x)
(4.59)

where A is a constant, and with an algebraic Turbulence model prescription
for the adimensional eddy viscosity:

νT = γδ(χ)u0(χ) (4.60)

with γ a constant which determines the Turbulence magnitude within the
wake (which is assumed to be equal to the Von Karman constant k in Ref.
[Eskridge et al., 1979], by comparison with wind tunnel experiments). This
is the Prandtl prescription for the wake boundary layer (3.6). Integrating
the equations of motion for the u component with respect to x, y and z we
�nd an integral constraint to the motion, which gives an initial condition for
the development of the vehicle wake representing an integral property of the
�ow close to the vehicle: ∫ ∞

−∞

∫ ∞
0

zU∞u dzdy = C (4.61)
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where C is a constant. A multiplication by z, and a consequent integration
by part, has been introduced in order to consider the boundary condition at
z = 0. The constant should be given in terms of the drag force on the vehicle,
on the circulation intensity of the trailing vortices which develop behind the
vehicle and on the external pressure gradient. In Ref. [Eskridge et al., 1979]
it is shown how the two last contributions decays very quickly within one or
two vehicle heights behind the vehicle. The constant C is chosen to be equal
to the (the opposite of the) couple on the vehicle per unit mass:

C = −Dh
ρ

= −1

2
U2
∞AhCD (4.62)

where D is the drag force on the vehicle surface, CD is the drag coe�cient
(introduced in Equation (3.20)) and A is the cross-sectional area of the ve-
hicle in the direction of motion. The choice (4.62) has been introduced in
Ref. [Eskridge et al., 1979]. We will justify it in terms of the momentum
integral equation when considering the case of interacting vehicles. The
drag coe�cient CD for the Ahmed body is known from the experiments
[Ahmed, Ramm, 1984] (see Figure 13), for di�erent vehicle geometries and
for a reference velocity. It is an adimensional coe�cient, dependent only
on the Reynolds number of the motion [Batchelor, 1967]. Its value is given
in function of the vehicle velocity CD(U∞) by suitable parametrizations ob-
tained through the numerical simulations in Section 4.2. Let us substitute
the self-preserving form of the solution (4.59), with the corresponding change
of variable, and the eddy viscosity form (4.60) inside the Equation of motion
for the u component (4.57) and inside the integral Constraint (4.61). We
obtain:

∂2f

∂η2
+
∂2f

∂ζ2
+

δ′

Hγu0
η
∂f

∂η
+

δ′

Hγu0
ζ
∂f

∂ζ
− u′0δ

Hγu2
0

f = 0 (4.63)

and ∫ ∞
−∞

∫ ∞
0

ζf [η, ζ] dζdη =
C

AU2
∞u0δ3

(4.64)

The boundary conditions to Equation (4.63) are:

f → 0 for ζ = 0, ζ →∞, η → ±∞ (4.65)

The Equation (4.63) is not dependent on the variable x, and thus self-
preserving solutions exists, if:
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δ′

Hγu0
= c1

u′0δ

Hγu2
0

= c2

C

AU2
∞u0δ3

= c3

with c1, c2 and c3 constants. The solution of the system is given by:
δ ∝ (χ)1/4

u0 ∝ (χ)−3/4

and the Equation (4.63) becomes:

∂2f

∂η2
+
∂2f

∂ζ2
+ c1η

∂f

∂η
+ c1ζ

∂f

∂ζ
− c2f = 0 (4.66)

The solution obtained in Ref. [Eskridge et al., 1979] corresponds to the
choice:

u0δ
3 = γ3h3A4; c1 =

1

4
; c2 = −3

4
(4.67)

With this choice, we obtain the following forms:

δ = γAh(χ)1/4

u0 = A(χ)−3/4

∂2f

∂η2
+
∂2f

∂ζ2
+

1

4
η
∂f

∂η
+

1

4
ζ
∂f

∂ζ
+

3

4
f = 0

(4.68)

The equation in (4.68) can be solved by separation of variables f [η, ζ] =
f1(η)f2(ζ): 

f ′′2 +
1

4
ζf ′2 +

2

4
f2 = 0

f ′′1 +
1

4
ηf ′1 +

1

4
f1 = 0

The �rst Equation is the adjoint of the Hermite di�erential function [Morse, Feshbach, 1953],
whith the corresponding con�uent hypergeometric function truncating to a
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�rst order polynomial; the second is the equation for the Gaussian function.
The solution is thus:

f [η, ζ] = Λ1 ζ e
− (η2+ζ2)

8 (4.69)

where Λ1 is a constant. This solution satis�es the boundary Conditions
(4.65). The general solution Equation (4.66), with arbitrary values of c1

and c2, can be separated into Hermit di�erential equations, and by suitably
choosing the values of the constants c1 and c2, we can generalize the Solution
(4.69) as a series expansion in Hermite polynomials, choosing the eigenvalues
such that only the odd order Hermite polynomials are solutions in the ζ
direction (in order to satisfy the boundary condition at ζ = 0. We do not
go into details; we only note that the di�erential equations obtained by
separating the variables in Equation (4.66) never a logarithmic point at the
origin, so a matching with a logarithmic layer at the road boundary is not
possible. The constant Λ1 is obtained using the fact that the function f has a
relative maximum at (η, ζ) = (0, 2), and imposing the fact that f ≤ 1 (since
we are considering a perturbation of the freestream velocity). Imposing the
integral Condition (4.64) to the solution (4.69), we obtain the value for A:

A4 =
C

γ3h3U2
∞(32π)1/2Λ1

(4.70)

The complete solution for the perturbation term is:

u = −U∞|A|
(
x

h

)−3/4

0.824 ζ e−
(η2+ζ2)

8 (4.71)

In Figure 23 we show a plotting of the perturbation solution |u| corresponding
to an Ahmed body with 25◦ rear slant angle (sedan vehicle) moving at a
velocity U∞ = 50km/h. The pro�le corresponds to the solution at a variable
height, equal to the height of the wake region (ζ = 1 → z = δ(x)), and at
di�erent downstream locations (expressed in terms of the vehicle height h).
We observe that far enough along the vehicle wake, at distances greater than
8h, the perturbation is decreased to more than 1/10 of the freestream value.

By searching for similarity solutions for the perturbation components v
and w in the same form as for the u component, satisfying the second and
the third Equations in (4.57) and the continuity equation, we obtain:

v = U∞γA
2

(
x

h

)−3/2

0.412 ζη e−
(η2+ζ2)

8

w = U∞γA
2

(
x

h

)−3/2

0.206 ζ2 e−
(η2+ζ2)

8

(4.72)

173



Figure 23: x component of perturbation velocity for an Ahmed body of rear slant
angle of 25◦ degrees moving at 50km/h. The z coordinate has been chosen to
correspond to the height of boundary layer. The y coordinate is scaled in units of
boundary layer thickness (η). Di�erent pro�les are reported for di�erent distances
behind the vehicle, in units of the height of the vehicle h

In Ref. [Eskridge et al., 1979], the Turbulence intensity is estimated by
assuming that the Turbulence also has a self-preserving form:

(
u′2, v′2, w′2

)
∝ U2

∞

(
x

h

)−3/2

F [η, ζ],

and assuming moreover that u′2 is proportional to the shear stresses in the
wake, and that the Turbulence is constant inside a core of radius η2+ζ2 = 12.
The result is:

(
u′2, v′2w′2

)
= (a1, a2, a3)

1

2
U2
∞A

2γΛ1

(
x

h

)−3/2 [(
1−ζ

2

4

)
+
η2ζ2

16

]1/2

e−
(η2+ζ2)

8

(4.73)
The values of the constants a1, a2, a3 are obtained in Ref. [Eskridge et al., 1979]
by comparison with empirical data:

a1 = 0.35, a2 = 2.70, a3 = 0.23

We use the Form (4.73) for the Turbulence intensities, even if it should be
reformulated considering the forms for the v and the w components (4.72),
since it has been calibrated over empirical data.
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We consider now the multi-vehicle case. As expressed in Section 3.5, the
e�ect of a distribution of N vehicles at the points {(xj , yj) : j = 1, · · · , N}
along the street, separated by a distance ∆x (determined by the driving con-
ditions) can be obtained by summing the average wake e�ect of each vehicle
as it takes on all positions between xj + ∆x/2 and xj −∆x/2, expressed in
terms of the Solutions (4.71) and (4.72):



uw(x, y, z) = U∞ −
1

∆x

N∑
j=1

∫ xj+∆x/2

xj−∆x/2
dxU∞A

(
xj
h

)−3/4

0.824 ζj e
−

(η2j+ζ
2
j )

8

vw(x, y, z) =
1

∆x

N∑
j=1

∫ xj+∆x/2

xj−∆x/2
dxU∞γA

2

(
xj
h

)−3/2

0.412 ζjηj e
−

(η2j+ζ
2
j )

8

ww(x, y, z) =
1

∆x

N∑
j=1

∫ xj+∆x/2

xj−∆x/2
dxU∞γA

2

(
xj
h

)−3/2

0.206 ζ2
j e
−

(η2j+ζ
2
j )

8

(4.74)
The mean eddy di�usivity contributions, formulated in the context of the

pollutant dispersion as in Equation (3.68), and considering the form of the
solutions for the Turbulence intensity given in Equation (4.73), are:

Ky
w =

1

∆x

N∑
j=1

∫ xj+∆x/2

xj−∆x/2
dx

{
δ(xj)·

(
a2

1

2
U2
∞A

2γΛ1

(
xj
h

)−3/2 [(
1− ζ2

4

)
+
η2ζ2

16

]1/2

e−
(η2+ζ2)

8

)}

Kz
w =

1

∆x

N∑
j=1

∫ xj+∆x/2

xj−∆x/2
dx

{
δ(xj)·

(
a3

1

2
U2
∞A

2γΛ1

(
xj
h

)−3/2 [(
1− ζ2

4

)
+
η2ζ2

16

]1/2

e−
(η2+ζ2)

8

)}

(4.75)

These Expressions for the main e�ect of many vehicles are valid only in
the case on non-interacting vehicles. In the case of interacting vehicles,
we employ a very simple procedure to insert in the perturbation solutions
the e�ect of the vehicles far-wake interactions. This is done by modifying
the initial integral condition (4.61)-(4.62), using the momentum equations
in integral form. The Relations (4.61)-(4.62) can in fact be obtained by
using the momentum Equation in integral form (4.25) for the u component
of velocity, integrated over a control surface, shown in Figure 24 in a 2−
dimensional projection, constituted by a rectangular parallelepiped, with
the horizontal faces, indicated by S in Figure 24, parallel to the freestream,
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and the vertical planes, indicated by A, orthogonal to the stream (frontal
faces) and parallel to the stream (lateral faces).

Figure 24: 2− dimensional projection of the control surface used to integrate the
momentum Equation in integral form for determining an initial constraint on the
far-wake development.

We consider the S faces to be su�ciently far enough from the body to lie
outside the wake, except for the S0 face, which is constituted by the road-
surface boundary. The �uid within this control surface is acted on by forces
at the control surface, and by forces at the body surface, whose resultant in
the x direction is −D. The momentum integral equation gives:

D =

∫
(pin + ρu2

in − pout − ρu2
out) dA − ρ

∫
uu · n dS

+ viscous forces at the control surface.

(4.76)

We assume that all parts of the control surface are at large distances from
the body, to ensure that viscous forces at the control surface are relatively
small and in order to be able to approximate the values of uin, uout, pin and
pout with the corresponding freestream values. Besides we assume that the
Reynolds number of the �ow is so large that the corresponding tangential
stresses at the road surface S0 are small (they are proportional to the inverse
of the square root of the Reynolds number). Applying the conservation of
mass �ux across the control surface, we obtain:

D =

∫
[pin + ρuin(uin − U∞)− pout − ρuout(uout − U∞)] dA (4.77)
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It's easy to see that the integral over the part of the area ofA outside the wake
tends to zero, by application of the Bernoulli theorem. Far from the body the
streamlines are nearly parallel, and the pressure variation across the wake
is very small. The limiting form of the integral in (4.77), as the variables
approach the corresponding free-stream values, but with uout making the
slowest approach, is thus:

−D =

∫
[ρU∞(uout − U∞)] dA (4.78)

Remembering that uout − U∞ is our perturbation term u, and introducing
the e�ect of the boundary at the z = 0 surface, we obtain the Relation
(4.61). The value of D is known from the values of the drag coe�cient CD
for di�erent vehicle geometries and velocities (4.62),whose value is given in
function of the vehicle velocity CD(U∞) by suitable parametrizations ob-
tained through the numerical simulations in Section 4.2. When considering
the case of interacting vehicles, we can assume that a vehicle is moving in
the far-wake zone of the preceding vehicle, and the initial constraint (4.61)
must be expressed in terms of the far-wake solution for the preceding vehicle.
The distance between two consecutive vehicles is given by the tra�c statis-
tics data. We consider the Face Ain in Fifure 24 as situated in the middle
between two consecutive vehicles. In this case, the uin value is given by the
solution (4.71), speci�ed at x = ∆x/2, where ∆x is the distance between
the vehicles, and with the parameter A, de�ned in Equation (4.70), deter-
mined in function of the value of CD(U∞) for the preceding vehicle. The
appropriate momentum Equation is now:

−D =

∫
[ρU∞(uout − U∞)− ρuin(uin − U∞)] dA (4.79)

Now we introduce the e�ect of the boundary condition at z = 0, and de�ne
the following quantities:

• uj−1: the perturbation solution for a preceding vehicle;

• uj : the perturbation solution for the considered vehicle;

• U∞j−1: the freestream velocity for a preceding vehicle;

• U∞j : the freestream velocity for the considered vehicle, which is given
by the maximum value of U∞j−2 − U∞j−1 at x = ∆x/2 (U∞ is the
average tra�c velocity)

• Cj : the constant introduced in (4.61), which determines the value of
A in the solution (4.71). It is given in function of CD(U∞j).
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The integral constraint, in the case of interacting vehicles, for the vehicle j
in a distribution of N vehicles, is given by:

∫ ∞
−∞

∫ ∞
0

zU∞juj dzdy = Cj +

∫ ∞
−∞

∫ ∞
0

z[(U∞j−1 + uj−1)uj−1] dzdy = C′j

(4.80)
where C ′j is a modi�ed constant. The integrals on the right can be calculate
easily by considering the Gaussian self-preserving form of the solution for
uj−1. Using the Prescription (4.67) for the product u0δ

3, we obtain:

C ′j = Cj + Cj−1 + 16
√
πγ3H3Λ2

1U
2
∞j−1A

6
j−1

(
∆x

2h

)−3/4

(4.81)

where ∆x is the distance between two consecutive vehicles. The velocity
and Turbulence solutions (4.71), (4.72) and (4.73) for the vehicle j are thus
modi�ed by considering an Aj given by using the modi�ed constant C ′j in
the Form (4.70):

A4
j =

C ′j

γ3h3U2
∞j(32π)1/2Λ1

(4.82)

This procedure must be iterated for each vehicle in the distribution. The
mean quantities (4.74) and (4.75) represent the case of non-interacting ve-
hicles when using a unique value of the constant A for each vehicle, and
the case of interacting vehicles when using the values Aj given in Equation
(4.82). This method let us calculate the tra�c produced turbulence in the
case of interacting and non interacting vehicles, and the results should be
compared with the empirical parametrizations (3.30).

We note here that the solutions (4.71), (4.72) and (4.73), obtained in
correspondence to the boundary conditions (4.58), i.e. for the case of an
open street geometry, can be used to describe the canyon geometry too. This
is due to the fact that the self-preserving form of the solutions introduces
a scaling of the variables with the wake thickness parameter δ; since this
parameter is small compared to the street dimensions L, V and W , any
�nite boundary in the y direction is e�ectively moved to in�nity. The fact
is that the Gaussian solutions in Equation (4.71) decays rapidly moving
in the y direction away from the street centerline, and is practically 0 for
|y| > 3 (see Figure 23). Treating the canyon case with the imposition of
no-slip or logarithmic boundary conditions at the canyon lateral walls (at
y = ±W/2) in the context of an algebraic Turbulence model would require
a domain decomposition, as those introduced in the study of the canyon
solutions in the previous paragraphs, in order to consider anisotropy of the
Reynolds stress tensor. We will use the solutions (4.71), (4.72) and (4.73)
to derive the convection and the eddy di�usivity terms in the formulation of
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the dispersion models introduced in Section 3.5. The solutions of Equations
(4.57) for the unsteady case, corresponding to the description of the far-
wake development of an accelerating vehicle, can be treated through the
method of the characteristics [Morse, Feshbach, 1953] (in the steady case no
initial conditions for the parameter on the characteristics curves is given,
so the method cannot be used). Anyhow, the presence of the algebraic
eddy di�usivity complicates the procedure. We will treat this approach in
future investigations. In this study, the e�ect of the vehicle acceleration
enters only in the determination of the near-wake Turbulence and in the
corresponding parametrization of the resuspension factor, obtained through
numerical simulations.

Let us �nally introduce a far-wake solution of the algebraic Turbulence
model which matches with the logarithmic law of the wall for ζ → 0, in
order to perform the k − ω model calibration, as explained in Section 3.4.
The process of calibration consists in comparing the spreading rate in the z
direction (de�ned as the arithmetic average of the values of ζ where the ve-
locity defect at the centerline is half its maximum value) calculated through
the analytical solutions with that calculated through the numerical solutions
of the System (3.22), varying the value of the freestream parameter ω0. We
choose the value that yields the closest spreading rate to that coming from
the analytical solution. Note that, since in the full 2− equations Turbulence
simulations we are using the logarithmic law of the wall as the boundary
condition applied to the �rst grid cell above the ground, we need to consider
an analytical solution which matches with the law of the wall, and logarith-
mic boundary conditions above the ground for the system (3.22). We have
already told that the Prandtl Prescription of the eddy viscosity for the wake
boundary layer (4.60) cannot produce analytical solutions which matches
with the logarithmic law of the wall. A Prandtl mixing length prescription
of the same type as that introduced in Table 17 for the case of the canyon
with a longitudinal freestream �ow must be introduced. We thus make the
positions: {

u = AU∞u0(χ)f [ζ]g[y]

νT = γU∞u0(χ)ζδ(χ)
(4.83)

which substitute the Positions (4.59) and (4.60). Note that we have not
introduced the scaling in the y variable, since we are not interested in the
behaviour of the solution near the canyon vertical walls and in order to
avoid the introduction of anisotropy of the eddy viscosity. We are imposing
homogeneous Dirichlet boundary conditions at y = ±W/2. Remember that
the system (3.22) is integrated over a rectangle. As we have already told, a
�nite value of y corresponds e�ectively to an in�nite value of η. Inserting
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the Positions (4.83) inside the �rst equation of the System (4.57), we obtain:

1

δ2

[
f ′′

f
+

1

ζ

f ′

f
+

δ′

hγu0

f ′

f
− u′0δ

hγu2
0

1

ζ

]
=
g′′

g
(4.84)

Separated solutions in the ζ and y variables exists only if the term on the
right hand side is zero (otherwise, all the terms are mixed with functions
of the χ variable, unless δ = constant, which is not physically acceptable).
We can thus choose linear solutions for the component g(y), and divide the
domain in two symmetric parts, one for 0 ≤ y ≤W/2, for which:

g(y) =
W/2− y
W/2

,

and one for −W/2 ≤ y ≤ 0, for which:

g(y) =
W/2 + y

W/2

With these choices g = 1 at the centerline. Anyhow, the choice of the
function g is unimportant, since we are interested in the solutions in the ζ
variable. Note that this is not equivalent to solve a 2−dimensional problem,
cause in two dimensions the Relation (4.64) and the Relations de�ning the
constants (4.67) and the correspondin pro�les for δ and u0 should be changed.
Now we can use the Relations (4.67) inside Equation (4.84), obtaining the
equation:

zf ′′ + [1− z]f ′ − 3f = 0, with z = −1

4
ζ (4.85)

This is a Con�uent Hypergeometric equation with a logarithmic point at the
origin [Morse, Feshbach, 1953]. The solution of Equation (4.85) which goes
to zero at ∞ and has a logarithmic component for z → 0 is the Con�uent
Hypergeometric function of the second kind G(a, c, z):

G(a, c, z) = eiπa
Γ(c)

Γ(a)

{
Γ(1− c)
Γ(1− a)

[
e−iπc +

sinπ(a− c)
sinπa

]
1F1(a, c, z)

− 2
Γ(c− 1)

Γ(c− a)
z1−c

1F1(a− c+ 1, 2− c, z)
}

where in our case a = 3, c = 1. The singularities in the Γ terms indicate a
logarithmic divergence and the fact that the two Con�uent Hypergeometric
functions on the right hand side are not linearly independent for c ∈ N; the
function G(a, c, z) must be calculated using de l'Hopital theorem, as done in
the Appendix for the case of the Hypergeometric functions. In particular,
we have:

G(a, c, z)→ 2 log z + 2ψ(a)− iπ for z→ 0 and a = n ∈ N > 0 (4.86)
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where ψ(a) is the logarithmic derivative of Γ(a). Note that, when the ar-
gument of the logarithm is −z, the pure imaginary term −iπ in the square
bracket is cancelled out. If we apply the Kummer relation to the Solution
(4.86), to �nd another linearly independent solution, we obtain a function
truncating to a polynomial of the second order, which diverges at In�nity.
The only other linearly independent solution which goes to zero at in�nity is

1F1(a, c, z), when z < 0, which is equal to 1 at z = 0. The general solution
for f [ζ] is thus:

f [ζ] = Λ1G

(
3, 1,−1

4
ζ

)
+ Λ2 1F1

(
3, 1,−1

4
ζ

)
(4.87)

where Λ1 and Λ2 are constants to be determined in the context of the match-
ing procedure with the logarithmic law at the wall, and imposing the condi-
tion that f ≤ 1. Let us start from the matching step. Assuming that:

u∗ = |A|U∞u0,

(this is the value we have used to determine the �rst grid cell dimensions
near the road boundary in our numerical simulations of the Ahmed body
wake, as explained in Section 3.4), and introducing the wall scaled variable:

z+ =
u∗z

ν
=
u∗δ

ν
ζ = Reδ ζ,

the matching, to leading order, becomes:

[
1

k
log z++C

]
−
[
−Λ1(2 log ζ−2 log 4+2ψ(3))−Λ2

]
→ 0 for z+ →∞, ζ → 0

(4.88)
Thus we have: 

Λ1 = − 1

2k

C = −1

k
log Reδ −

1

k
log 4 +

1

k
ψ(3)− Λ2

(4.89)

which shows that C is a function of the Reynolds number based on the
wake thickness parameter and the friction velocity in the case of the viscous
sublayer associated to a vehicle far-wake. To determine the value of Λ2,
we observe that the term −(1/2k)G(3, 1,−1

4ζ) has a relative maximum for
ζ ∼ 1.6, with a value of ∼ 0.8. Since the term 1F1(3, 1,−1

4ζ) is decreasing
from ζ = 0, and it has value 0.18 in ζ = 1.6, we have:

f [ζ] ≤ 1←→ 0.8 + Λ2 · 0.18 = 1→ Λ2 = 1.11 (4.90)
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The Solution (4.87) becomes:

f [ζ] = −1.22G

(
3, 1,−1

4
ζ

)
+ 1.11 1F1

(
3, 1,−1

4
ζ

)
(4.91)

In Figure 25 we compare the pro�le of the Solution (4.91), which we call
flog[ζ], with the pro�le of the Solution (4.69) at the centerline (η = 0),
which we call f0[ζ].

Figure 25: Plotting of the pro�les of the Solution (4.91), flog[ζ], and of the Solution
(4.69) at the centerline (η = 0), f0[ζ].

The di�erent behaviour of the two solutions near ζ = 0 is clearly shown.
We also note a translation of the maximum value of the perturbation term
from ζ = 2, in the case of the Solution f0[ζ] (4.69) (the maximum is at the
centerline (η = 0)), to ζ ∼ 0.8, in the case of the Solution flog[ζ] (4.91). The
spreading rate in the z direction for the flog[ζ] solution is equal to 1.59. The
spreading rate in the z direction for the f0[ζ] solution is equal to 2.3. The
spreading rate for the f0[ζ] solution is thus 44.6% higher than that associated
to the analytical solution which matches with the logarithmic law of the wall.
We now show the results for the calibration of the k−ω Turbulence model. In
Figure 26 we compare the pro�le of flog[ζ] with the pro�les of the solution of
the System (3.22) at the centerline (η = 0), which we call fω[ζ], for di�erent
values of the freestream parameter ω0.
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Figure 26: Plotting of the pro�les of the Solution (4.91), flog[ζ], and of the solutions
of the System (3.22) at the centerline (η = 0), fω[ζ], for di�erent values of the
freestream parameter ω0.

We have computated the solution of System (3.22) while taking a para-
metric sweep on the freestream value of the ω0 parameter; in Figure 26
we show the plot of the solutions for four di�erent values of ω0. The case
ω0 = 0.4 corresponds to the optimal choice for the ω0 value, reported in Ref.
[Wilcox, 1998], in the case of 2− dimensional free-shear far-wake structure
(i.e. a wake structure without the solid boundary at z = 0). Note that the
solution fω[ζ] does not diverges logarithmically for ζ → 0. This is due to the
fact that, according to the Matching (4.88)-(4.89), we impose a boundary
condition at the road boundary:

fω[ζ] = − 1

2k
log

(
100ν

uτδ
+ ζ

)
for ζ → 0,

considering the boundary as e�ectively placed in the logarithmic layer, at
z+ ∼ 100. The in�uence of the di�erent vehicle geometries is thus repre-
sented, in the search of a self-preserving solution for the far-wake structure
solving the System (3.22), by the value of z at wich the logarithmic layer
is placed (the parameters uτ and δ in the boundary condition depend on
the constant A, which depends on the drag coe�cient CD). We choose to
consider the case of an Ahmed body with a 40◦ rear slant angle, representing
an LDV geometry, which is the case considered in the simulations with the
k−ω Turbulence model. In Table 22 we report the spreading rates calculated
from the solutions corresponding to the values of ω0 reported in Figure 26,
showing the relative errors of the estimations with respect to the spreading
rate calculated from the Solution flog[ζ].
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Spreading Rate

ω0 flog[ζ] fω[ζ] % error

0.4 1.59 2.2 38%
1.2 1.59 1.73 8%
1.61 1.59 1.59 0%
1.8 1.59 1.5 −5.6%

Table 22: Values of the spreading rate corresponding to the values of ω0 reported
in Figure 26, showing the relative errors of the estimations between the values
calculated from the Solution fω[ζ] and the value calculated from the Solution flog[ζ].

We thus calibrate the k − ω model, used for the Turbulence simulations
in the case of strong boundary layer separation on the rear slant face of
the Ahmed body, choosing a boundary condition for ω, at the top plane
horizontal boundary of the domain, given by:

ω0 = 1.61

4.2 Turbulence simulations

Canyon simulations. In order to verify the theoretical assumptions and
the analytical solutions introduced in Section 4.1, we compare here the cor-
responding results with the results of the numerical simulations, obtained
within the procedures described in Section 3.4.

In Figure 27 we show the simulation results for the �ow topology obtained
in the case of a symmetric street canyon with aspect ratio H/W = 1, and
W = 12m, for di�erent values of the external angle θ∞ = 0, π/6, π/3, and
a freestream wind intensity of 1m/s. The external angle is de�ned as the
angle between the freestream wind direction and the street axis; θ∞ = 0
corresponds to a wind parallel to the street.
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Figure 27: Plotting of the velocity magnitude (on the slice cross-sectional planes)
and of the streamlines of the simulated velocity �eld, in the case of a symmetric
street canyon with aspect ratio H/W = 1, and W = 12m, for di�erent values of
the external angle and a freestream wind intensity of 1m/s. First panel: θ∞ = 0.
Second panel: θ∞ = π/6. Third panel: θ∞ = π/3.
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We see that for θ∞ 6= 0 the streamlines within the street tend to form an
irregular helicoidal pattern: by direct observation of the streamlines topology
we can see that the wind direction is closer to the axis of the street at the
bottom of the street than it is at the top, con�rming the simulation results
reported in Ref. [Soulhac et al., 2008]. The helicoidal pattern is stronger
and more de�ned in the case of θ∞ = 60◦.

In Figures 28, 29 and 30 we show the velocity contour pro�les, for
the v and the w components on a transversal plane at the middle of the
canyon domain, in the case of H/W = 1, for the values of the external an-
gle θ∞ = π/6, π/3, π/2, and a freestream wind intensity of |Ufs| = 1m/s.
The transversal and vertical velocity components are normalized with V∞ =
|Ufs| · sin θ∞ as the reference velocity component.
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Figure 28: Plotting of the velocity contour pro�les, for the v and the w components
on a transversal plane at the middle of the canyon domain, in the case of H/W = 1,
for the values of the external angle θ∞ = π/6, and a freestream wind intensity of
|Ufs| = 1m/s. The transversal and vertical velocity components are normalized
with V∞ = |Ufs| · sin θ∞ as the reference velocity component.
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Figure 29: Plotting of the velocity contour pro�les, for the v and the w components
on a transversal plane at the middle of the canyon domain, in the case of H/W = 1,
for the values of the external angle θ∞ = π/3, and a freestream wind intensity of
|Ufs| = 1m/s. The transversal and vertical velocity components are normalized
with V∞ = |Ufs| · sin θ∞ as the reference velocity component.
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Figure 30: Plotting of the velocity contour pro�les, for the v and the w components
on a transversal plane at the middle of the canyon domain, in the case of H/W = 1,
for the values of the external angle θ∞ = π/2, and a freestream wind intensity of
|Ufs| = 1m/s. The transversal and vertical velocity components are normalized
with V∞ = |Ufs| · sin θ∞ as the reference velocity component.
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Observing the structure and the values associated to the contour lines
for the normalized v and w velocity components, we can see that they tend
to have the same form and distribution independently of the external wind
direction. This con�rms the assumption, introduced in Section 4.1, that
there is no coupling between the two components v and w and the component
u in the case of an homogeneous street canyon in the x direction. Therefore,
for any freestream �ow direction, the mean �ow in the y˘z plane is identical
to that for a �ow generated by an external wind orthogonal to the street
axis. We must observe that, in the results for an external wind orthogonal
to the street axis (Figure 30), the contour pro�les for the normalized w
component show a lower degree of uniformity than the other two cases. This
is probably due to the fact that the imposition of inlet and outlet conditions
on the cross-sectional planes above the roof level, for the cases θ∞ = π/6 and
θ∞ = π/3, introduces spurious e�ects of non-homogeneity in the x direction,
and a small coupling with the u component, which tends to homogenize the
transversal and vertical components, weakening the e�ect of concentration
of vorticity near the canyon vertices.

In Figures 31, 32 and 33 we show the velocity contour pro�les and the
vertical velocity pro�les at the street axis for the longitudinal u compo-
nent, on a transversal plane at the middle of the canyon domain, in the
case of H/W = 1. The cases correspond to the values of the external an-
gle θ∞ = 0, π/6, π/3 and to a freestream wind intensity of |Ufs| = 1m/s.
The longitudinal component is normalized with U∞ = |Ufs| · cos θ∞ as the
reference velocity component.
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Figure 31: First panel: Plotting of the u/U∞ velocity contour pro�les, on a
transversal plane at the middle of the canyon domain, in the case of H/W = 1,
corresponding to the value of the external angle θ∞ = 0, and a freestream wind
intensity of |Ufs| = 1m/s. Second panel: Plotting of the vertical velocity pro�les
at the street axis for the u/U∞ component.
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Figure 32: First panel: Plotting of the u/U∞ velocity contour pro�les, on a
transversal plane at the middle of the canyon domain, in the case of H/W = 1,
corresponding to the value of the external angle θ∞ = 30◦, and a freestream wind
intensity of |Ufs| = 1m/s. Second panel: Plotting of the vertical velocity pro�les
at the street axis for the u/U∞ component.

192



Figure 33: First panel: Plotting of the u/U∞ velocity contour pro�les, on a
transversal plane at the middle of the canyon domain, in the case of H/W = 1,
corresponding to the value of the external angle θ∞ = 60◦, and a freestream wind
intensity of |Ufs| = 1m/s. Second panel: Plotting of the vertical velocity pro�les
at the street axis for the u/U∞ component.
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The velocity contour pro�les and the vertical velocity pro�les of Fig-
ures 31, 32 and 33 clearly show that the �ow behaviour of the longitudinal
component u is greatly in�uenced by the non-linear interactions with the
transversal and the vertical components, when the external freestream is not
parallel to the street axis. Note that, due to the imposition of the logarith-
mic behaviour at the road boundary, the velocity does not go to zero for
z = 0. Based on the hypothesis made in Section 4.1, we introduce the spa-
tially averaged mean velocity component U// (de�ned by Formula (4.54)).
We have supposed that this quantity is independent of the freestream wind
direction, depending only on the geometrical parameters of the canyon and
on the longitudinal component of the external wind U∞ = Ufs cos θ∞. In
Figure 34 we show the simulation results for the values of U///U∞, obtained
by integrating the u values on a transversal plane at the middle of the canyon
domain, as a function of the external angle θ∞. We show the values for the
case of H/W = 1, |Ufs| = 1m/s and θ∞ = 0, 15, 30, 45, 60, 75 ◦.

Figure 34: Values of U///U∞, obtained by integrating the u values on a transversal
plane at the middle of the canyon domain, as a function of the external angle θ∞.
The reported values correspond to the case of H/W = 1, |Ufs| = 1m/s.

We can observe that U///U∞ is almost independent of the external
wind direction (a spurious e�ect of dishomogeneity in the x direction is still
present), in conformity with the hypothesis assumed in Section 4.1. This fact
enforces the choice of the introduction of the parameter U// in the opera-
tional dispersion models (see Section 3.5), which is used to express an average
e�ect of advection and turbulent viscosity in the longitudinal direction for
freestream �ows with arbitrary angles relative to the street axis.

We now compare the simulation results with the analytical results ob-
tained in Section 4.1. In Figure 35 we plot the longitudinal velocity con-
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tours of the analytical solution obtained from Formula (4.17), in the case of
H/W = 1 and |Ufs| = 1m/s, in the Regions 1 and 2 (de�ned in Figure 20).
We do not show the pro�les relative to the solution obtained from Formula
(4.14): due to the fact that the solutions of Equation (4.9), for c ∈ N > 0, are
truncating, the e�ect of the logarithmic divergence for η → 0 is too strong
for the lower values of the eigenvalues c, causing an non-physical de�ection
of the contour lines near the boundaries. A complete solution in terms of an
expansion in the eigenfunctions for c ∈ N > 0 should be considered. This
will be treated in future investigations. Here we are interested mainly in
the quantity U//, which enters in the formulation of the operational disper-
sion models. We will show below that the values of U// given in terms of
the Solution (4.14), i.e. given by the Formula (4.55), are satisfactory, when
compared to the values given by simulation results.

Figure 35: u/U∞ contours of the analytical solution obtained from Formula (4.17)
(corresponding to the eigenvalue c = 2), in the case of H/W = 1 and |Ufs| = 1m/s,
in the Regions 1 and 2 (de�ned in Figure 20)

By comparing the contour pro�les in Figure 35 with those obtained by
means of numerical simulations, reported in Figure 31 (�rst panel), we see
that an excessive de�ection of the contour lines is still present in the analyti-
cal results for c = 2. To show how the things go when considering analytical
solutions of the considered Turbulence model, introduced in Section 4.1, for
higher values of c, we show in Figure 36 the longitudinal velocity contours
in Region 1 for the case c = 3.

We can see how the contour curves and the relative values tend to agree
more and more with the simulation data shown in Figure 31 (�rst panel)
for increasing values of c. This con�rms the validity of algebraic Turbulence
model introduced in Section 4.1. An alternative way to proceed, in order
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Figure 36: u/U∞ contours of the analytical solution of Equation (4.9) for c = 3),
in the case of H/W = 1 and |Ufs| = 1m/s, in the Region 1 (de�ned in Figure 20)

to avoid the in�uence of the logarithmic divergence at the walls extended to
�nite portions of the domain, would be to consider the Solution uniformly
valid on the whole domain (4.19). We do not show this procedure here. In
Table 23 we show the values ofU///U∞, given in terms of the Solution (4.14)
(c = 1), i.e. given by the Formula (4.55), and compare them to the values
given by simulation results, for the cases of aspect ratio H/W = 0.5, 1, 1.5,
and |Ufs| = 1m/s, showing the relative errors of the analytical results with
respect to the simulation data.

U///U∞ Analytic Solution Simulation Results %error

Equation(4.55)

H/W = 0.5 1.0329 0.9285 +11.24%
H/W = 1 0.9469 0.8948 +5.82%
H/W = 1.5 0.8997 0.8737 +2.98%

Table 23: Comparison of the values of U///U∞, given by the Formula (4.55), with
those given by simulation results, for the cases of aspect ratio H/W = 0.5, 1, 1.5,
and |Ufs| = 1m/s, showing the relative errors of the analytical results with respect
to the simulation data.

The values of U///U∞ given in terms of the Formula (4.55) agree well
with the values given by simulation results. The higher relative error has
been found in the case of H/W = 0.5.

We now show the simulation results obtained for the case of an external
�ow V∞ orthogonal to the street axis, in order to study the �ow regimes
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associated to street canyons of di�erent aspect ratios. In Figures 37, 38 and
39 the results corresponding to di�erent aspect ratios H/W = 0.5, 1, 1.5
(which are typical of Urban geometries) are shown, with di�erent freestream
wind intensities V∞ = 0.5, 1, 2, 3m/s. The di�erent colours correspond to
di�erent intensity of the velocity magnitude. The arrows show the direction
of the velocity vector. The arrow length is proportional to the logarithm of
the velocity intensity (in order to catch all the scales of the motion, which
varies from those associated to the bulk velocity to those associated to the
velocity near the stagnation points).
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Figure 37: Velocity �eld structure for the transversal �ow in the case of H/W = 2
and freestream velocity V∞ = 0.5, 1, 2, 3m/s. The di�erent colours correspond to
di�erent intensity of the velocity magnitude. The arrows show the direction of the
velocity vector. The arrow length is proportional to the logarithm of the velocity
intensity.
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Figure 38: Velocity �eld structure for the transversal �ow in the case of H/W = 1
and freestream velocity V∞ = 0.5, 1, 2, 3m/s. The di�erent colours correspond to
di�erent intensity of the velocity magnitude. The arrows show the direction of the
velocity vector. The arrow length is proportional to the logarithm of the velocity
intensity.
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Figure 39: Velocity �eld structure for the transversal �ow in the case of H/W = 0.5
and freestream velocity V∞ = 0.5, 1, 2, 3m/s. The di�erent colours correspond to
di�erent intensity of the velocity magnitude. The arrows show the direction of the
velocity vector. The arrow length is proportional to the logarithm of the velocity
intensity.
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We can see that in all the cases shown in Figures 37, 38 and 39 the
vortex recirculation induced by the external �ow is extended to the whole
canyon domain (wake interference and skimming �ow regimes). The bulk
vorticity is displaced towards the windward side of the street in the case
of H/W = 0.5;in this case a secondary vortex tends to form near the bot-
tom vertex at the leeward side. This secondary recirculation is anyhow
too weak with respect to that shown by wind tunnel results reported in
Ref. [Berkowicz, Kearney, 2004]: this is probably due to the numerical sta-
bilization we have added to the numerical formulation of the equations, as
discussed in Section 3.4, which dissipates the secondary structures.

In Figures 40 and 41 we show the vertical pro�les at the centerline and
the horizontal pro�les at an height z = H/2 of the vorticity ω, normalized
with the quantity ω0 = V∞/H (introduced in Equation (4.27)), for the cases
of H/W = 0.5, 1, 1.5, and with V∞ = 1m/s.
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Figure 40: Vertical pro�les of ω/ω0 at the centerline y = W/2, with ω0 = V∞/H,
in function of z/H, for the cases of H/W = 0.5, 1, 1.5, and with V∞ = 1m/s.
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Figure 41: Horizontal pro�les of ω/ω0 at an height z = H/2, with ω0 = V∞/H, in
function of y/W , for the cases of H/W = 0.5, 1, 1.5, and with V∞ = 1m/s.
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The pro�les shown in Figures 40 and 41, in the cases of H/W = 1 and
H/W = 1.5, clearly con�rm the hypothesis that the vorticity �eld inside the
canyon is constituted by a bulk constant value ω0 = V∞/H, plus pertur-
bation terms near the solid boundaries. This is the hypothesis upon which
we have based our perturbation analysis in Section 4.1. This hypothesis is
not con�rmed in the case of H/W = 0.5. Note that the perturbation terms
are not small, compared with the magnitude of ω0, at the boundary coordi-
nates, due to the imposition of the logarithmic law boundary conditions at
the canyon walls in the simulation models. This e�ect is not described by
the analytical solutions obtained in Section 4.1, which are uniformly valid on
the whole domain and do not diverge logarithmically at the wall boundaries.
In order to validate the solutions obtained in Section 4.1 for the vorticity
�eld in the case of an orthogonal external stream, reported in Table 20, we
consider the perturbation contributions in the vertical and horizontal pro�les
given in Figure 40 and 41, for the case H/W = 1 (second panels), obtained
from simulations, and compare them to the perturbation contributions at
order φ1 expressed in Table 20. The perturbation contributions from the
simulation pro�les ωp,sim are given by the formula:

ω

ω0
∼ 1 + ωp,sim.

Observing the pro�les reported in the second panels in Figures 40 and 41,
we see that the constant value of the bulk vorticity throughout the canyon is
not exactly ω0 = V∞/H. The perturbation contributions from the analytical
solutions ωp,an are calculated as:

ωp,an = −ωτi
∂2F

∂η2
i

,

where i is the index corresponding to the region of the domain, adjacent
to a boundary segment, which in�uence the solution, and ωτi and ∂

2F/∂η2
i

are de�ned in Table 20 and Equation (4.52) respectively. In the case of
the vertical pro�le at the centerline, only the contribution from the regions
adjacent to the Segments BE and EC must be considered, the centerline
is placed at an in�nite distance with respect to the scaled variables ηAB
and ηCD associated to the vertical segments. Analogously, in the case of
the horizontal pro�le, only the contribution from the regions adjacent to the
Segments AB and CD must be considered, the former near y = 0, the latter
near y = W . In Figures 42, 43, 44 and 45 we report the vertical pro�les (at
y = W/2) and the horizontal pro�les (at z = H/2) for ωp,sim and ωp,an, in
the case of H/W = 1 and V∞ = 1m/s, in a neighbourhood of the respective
walls.
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Figure 42: Vertical pro�le (at y = W/2) for ωp,sim , in the case of
H/W = 1 and V∞ = 1m/s, in a neighbourhood of the road surface.

Figure 43: Vertical pro�le (at y = W/2) for ωp,an , in the case of
H/W = 1 and V∞ = 1m/s, in a neighbourhood of the road surface.
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Figure 44: Horizontal pro�le (at z = H/2) for ωp,sim , in the case of
H/W = 1 and V∞ = 1m/s, in a neighbourhood of the leeward wall.
The canyon domain in simulations begins at y = W .

Figure 45: Horizontal pro�le (at z = H/2) for ωp,an , in the case of
H/W = 1 and V∞ = 1m/s, in a neighbourhood of the leeward wall.
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We thus see, from the comparison between the simulation and the an-
alytical pro�les, in a neighbourhood of a wall segment, that our analytical
solutions reproduce well the perturbation terms near a wall boundary. In
particular, the way in which the perturbation goes to zero approaching the
center of the domain is well reproduced, predicting a slower approach to the
bulk value of vorticity for the horizontal pro�le; the behaviour near the wall
boundary is well reproduced too, except for the e�ects of the logarithmic
layer, which are present in the simulation results but not in the analytical
solutions.

Wake simulations. In this Paragraph we show the simulation results for
the Turbulence structure generated by vehicles of di�erent categories, with
an Ahmed body geometry, moving in an open street or in a canyon street,
in correspondence to di�erent driving cycles. We will derive some important
parametrization of the �ow characteristics, to be used in the models described
in the text.

In Figures 46, 47 and 48 we show the wind �eld structure in the cases
of Ahmed body geometry with a rear slant angle of 25◦, corresponding to a
Sedan vehicle, 40◦, corresponding to an LDV, and 0◦, corresponding to an
HDV, in a street canyon geometry. These correspondences are in terms of
the similarity of the topology of the generated Turbulence �elds, as explained
in Section 3.3, where the dimensions of the selected geometries are de�ned.
We show the case of an external wind �owing at U∞ = 40m/s (which means
that the vehicle is moving with a velocity −U∞), which is the case studied in
the wind tunnel experiments in Ref. [Ahmed, Ramm, 1984]. The di�erent
colours refer to the di�erent intensity of the velocity magnitude, plotted in
the bulk domain, as well as on transversal planes and on a longitudinal plane
at the centerline.
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Figure 46: Wind �eld structure in the case of Ahmed body geometry with a rear
slant angle of 25◦, corresponding to a Sedan vehicle, for an external wind �owing
at 40m/s and a street canyon geometry. The di�erent colours refer to the di�erent
intensity of the velocity magnitude, plotted in the bulk domain, as well as on
transversal planes (�rst panel) and on a longitudinal plane at the centerline (second
panel).
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Figure 47: Wind �eld structure in the case of Ahmed body geometry with a rear
slant angle of 40◦, corresponding to an LDV, for an external wind �owing at 40m/s
and a street canyon geometry. The di�erent colours refer to the di�erent intensity
of the velocity magnitude, plotted in the bulk domain, as well as on transversal
planes (�rst panel) and on a longitudinal plane at the centerline (second panel).
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Figure 48: Wind �eld structure in the case of Ahmed body geometry with a rear
slant angle of 0◦, corresponding to an HDV, for an external wind �owing at 40m/s
and a street canyon geometry. The di�erent colours refer to the di�erent intensity
of the velocity magnitude, plotted in the bulk domain, as well as on transversal
planes (�rst panel) and on a longitudinal plane at the centerline (second panel).
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We can see from Figures 46 and 47 that the topology of the simulated �ow
generated by the Ahmed body geometries with rear slant angles of 25◦ and
40◦ reproduces the characteristics of the Turbulence structure obtained from
the wind tunnel experiments [Ahmed, Ramm, 1984], [Lienhart, Becker, 2003],
described in Section 3.4 and in Figure 13: the structure of the wake consists
of a separation zone and counter-rotating vortices coming o� the slant side
edges. In the case of the 25◦ rear slant angle, strong counter-rotating vortices
are present and the �ow separates in the middle region of the top edge and
reattaches on the slant. In the case of the 40◦ rear slant angle, the counter-
rotating vortices are weaker, and the separation occurs along the entire top
and the side edges and there is no reattachment. In the case of the 0◦ rear
slant angle and a geometry with augmented dimensions with respect to the
Ahmed body studied in Ref. [Ahmed, Ramm, 1984], no counter-rotating
vortices develop besides the vehicle, and the wake zone extends to the whole
domain.

Note that we have chosen, to describe the LDV produced Turbulence
�eld, an Ahmed body geometry with a rear slant angle of 40◦; results for the
35◦ case (and a freestream velocity U∞ = 40m/s) are reported in details in
Ref. [Ahmed, Ramm, 1984] and [Lienhart, Becker, 2003], with the measured
vertical pro�les of the stream wise velocity at the rear slant face of the
vehicles. Wind tunnel results of the 40◦ case are not reported in the literature
we have studied, except for the values of the drag coe�cient corresponding
to this case, measured in Ref. [Tran, 2010]. We have chosen to simulate the
Turbulence �eld generated by the 40◦ con�guration, in order to reproduce the
results reported in Ref. [Jindal et al., 2005], where a CFD approach with a
RANS Turbulence model and an Immersed Boundary Method to resolve the
vehicle boundaries has been employed to describe the �ow topology generated
by a vehicle with a detailed LDV geometry, in the case of U∞ = 30m/s. In a
preliminary analysis set up for only the U∞ = 30m/s case, and by varying the
rear slant angle between the values 30◦ ≤ θ ≤ 50◦, we have obtained that the
value θ = 40◦ reproduces the correct extension of the main recirculation zone
behind the rear face obtained in Ref. [Jindal et al., 2005]. In Figure 49 we
show the streamlines of the mean velocity �eld in the center horizontal plane
at the half height of the vehicle, as obtained by the numerical simulations in
Ref. [Jindal et al., 2005] (left panel) and by our simulations with a calibrated
k − ω Turbulence model in the case of θ = 40◦ (right panel).
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Figure 49: Streamlines of the mean velocity �eld in the center horizontal plane
at the half height of the vehicle, as obtained by the numerical simulations in Ref.
[Jindal et al., 2005] (left panel) and by our simulations with a calibrated k − ω
Turbulence model in the case of θ = 40◦ (right panel).

We see that the streamwise extension of the main counter-rotating recir-
culation zones in the center horizontal plane, as obtained in Ref. [Jindal et al., 2005],
is correctly reproduced by our simulation results when θ = 40◦. The Ahmed
body geometry which represent the HDV case has been chosen according
to the studies on Heavy vehicles generated Turbulence reported in Ref.
[Browand et al., 2009], in which an Ahmed body with θ = 0◦ is considered,
with dimensions reported in Figure 14.

In Table 24 we show the values of the drag coe�cient CD, de�ned in
Formula (3.20), for the cases of θ = 25◦, 40◦, 0◦, and U∞ = 40m/s, obtain by
the simulation data, and compare them with the experimental data reported
in Figure 13. In the case of 40◦ rear slant angle, we report the values obtained
for di�erent calibrations of the k − ω Turbulence model, corresponding to
di�erent freestream values ω0.

We must observe that in Ref. [Browand et al., 2009] di�erent geometries
for the HDV vehicle are considered, in the context of wind tunnel measur-
ments. In particular, a �at parallelepiped geometry (i.e. without the rounded
front of the Ahmed body), with the dimensions we have reported in Figure
14, has been considered. A drag coe�cient of CD = 1.17 has been measured
in this case (at a reference velocity). A Generic Conventional Model (GCM)
geometry has been considered too, which is characterized by a front face
of a realistic truck and a rounded rear face. The measured drag coe�cient
corresponding to this con�guration (at a reference velocity) is CD = 0.62.
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Configuration CD simulated CD experimental %error

25◦ (k − ε) 0.282 0.285 −1.05%

40◦ (k − ω) 0.631 0.26 +142.69%
ω0 = 0

40◦ (k − ω) 0.404 0.26 +55.38%
ω0 = 0.4

40◦ (k − ω) 0.253 0.26 −2.69%
ω0 = 1.61

0◦ (k − ε) 0.898 0.96 −6.46%

Table 24: Values of the drag coe�cient CD, for the cases of θ = 25◦, 40◦, 0◦, and
U∞ = 40m/s, obtain by the simulation data, compared with the experimental data
reported in Ref. [Tran, 2010]

When a drag control study is conduced on the GCM geometry, the case in
which �at �aps are added to the rear surface at the top and bottom side,
when U∞ = 40m/s, is associated to a drag coe�cient of CD = 0.96. This is
the value to which we compare the result from our simulations.

Numerical accuracy of the simulation results is achieved by imposing to
the iteration processes of the solvers to stop when the relative error between
two successive iterates is smaller than 0.001. This typically guarantees iter-
ation convergence for the slowly convergent discretized Turbulence systems
[Wilcox, 1998]. In Figure 50 we show the convergence graph of the relative
error between successive iterates in function of the iteration number, for the
case of the k − ω simulation of the case U∞ = 40m/s. Since we are solving
the Turbulence model with a sequentially implicit method, the results for
the two segregated groups of variables (u, p) (segregated group 1) and (k, ω)
(segregated group 2) are shown. The k−ω simulations have been character-
ized by the slowest convergence rates between all our simulations. In order
to accelerate the convergence process, we have in some cases (those charac-
terized by too low convergence rates, both for stationary simulations with
a pseudo-time advancing scheme and for unsteady simulations) initialized
them with an initial solution obtained by a k − ε simulation for the same
con�guration.

In order to show the grid independence of the simulation results, we have
repeated the computations, in the test cases of U∞ = 40m/s for the three
vehicle geometries, with a re�nement of the mesh based on the equation
residuals, and we have compared the solutions with and without re�nement.
In Figures 51, 52 and 53 we report the re�ned meshes and the corresponding
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Figure 50: Convergence graph of the relative error between successive iterates in
function of the iteration number for the two segregated groups of variables, relative
to the case of the k − ω simulation of the case U∞ = 40m/s.

wind �eld structures in the cases of rear slant angles of 25◦, 40◦ and 0◦, in a
street canyon geometry. The di�erent colours refer to the di�erent intensity
of the velocity magnitude, plotted in the bulk domain and on transversal
planes.
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Figure 51: Re�ned mesh (�rst panel) and the corresponding wind �eld structure
(second panel) in the case of a rear slant angles of 25◦, in a street canyon geometry
and U∞ = 40m/s. The di�erent colours refer to the di�erent intensity of the
velocity magnitude, plotted in the bulk domain and on transversal planes.
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Figure 52: Re�ned mesh (�rst panel) and the corresponding wind �eld structure
(second panel) in the case of a rear slant angles of 40◦, in a street canyon geometry
and U∞ = 40m/s. The di�erent colours refer to the di�erent intensity of the
velocity magnitude, plotted in the bulk domain and on transversal planes.
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Figure 53: Re�ned mesh (�rst panel) and the corresponding wind �eld structure
(second panel) in the case of a rear slant angles of 0◦, in a street canyon geometry
and U∞ = 40m/s. The di�erent colours refer to the di�erent intensity of the
velocity magnitude, plotted in the bulk domain and on transversal planes.
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Observing the Figures 51, 52 and 53, it is evident how mesh re�nement
obviously reduces the numerical dissipation, but the �ow topologies remain
the same with respect to the original mesh cases. The minimal mesh sizes
are merely halved by the re�nement processes in all the three cases. We
have taken the norm, on the whole domain, of the di�erence between the
|u| solutions obtained with and without the mesh re�nement. The resulting
values, for the three cases, is of the order of 10−2. This norm is related to
the solution error eh = fexact − fh, where fexact is the exact solution of the
problem, and fh is the solution obtained by a numerical simulation with an
average mesh dimension h [Wilcox, 1998] without the re�nement. Since we
are using linear Lagrange elements as the discretization space, and since in
all three cases the minimal mesh dimension is ∼ 10−3, a rough estimation of
the order of magnitude of the error eh is eh ∼ h2/3, where h is the minimal
mesh dimension. In Table 25 we show the values of the drag coe�cient CD
obtained from the numerical solutions with the mesh re�nement.

Configuration CD from simulation with refinement

25◦ (k − ε) 0.289

40◦ (k − ω) 0.252
ω0 = 1.61

0◦ (k − ε) 0.911

Table 25: Values of the drag coe�cient CD, for the cases of θ = 25◦, 40◦, 0◦, and
U∞ = 40m/s, obtain by the simulation data with mesh re�nement.

Comparing these results with those reported in Table 24 show the grid
insensitivity of the results.

We now validate the simulation results by comparing the vertical pro�les
of the streamwise component of velocity u, normalized with U∞ = 40m/s,
in a longitudinal plane at the middle of the canyon (y = W/2), with those
obtained from wind tunnel measurements. The vertical pro�les are taken at
di�erent positions along the rear slant face. Data for the cases of the Ahmed
body with θ = 25◦ and θ = 35◦ are reported in Ref. [Lienhart, Becker, 2003].
For this reason, concerning the kω simulations, we report the results we have
obtained for the θ = 35◦ con�guration. We have not found any report of ver-
tical pro�les for the case of the Ahmed body with θ = 0◦ in literature. The
graphical representation of the wind tunnel vertical pro�les measured in Ref.
[Lienhart, Becker, 2003] is taken from Ref. [Martinat et al., 2008]. In this
representation, the vertical pro�les are attached to the corresponding posi-
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tions along the rear slant face at the mid longitudinal plane; pro�les coming
from simulations with di�erent Turbulence models are reported as well. In
particular, for the θ = 25◦ case, simulation results from the application of a
k − ω model, a k − ω model with Menter cross-di�usion terms (k − ω SST
model, see Section 3.1), and a 1−equation model (Spalart-Allmaras - SA
model) are reported. In the θ = 35◦ case, simulation results from the appli-
cation of a k − ω SST model, a k − ε model and a SA model are reported.
We report the results of our simulations in a similar manner. The results are
reported in Figures 54 and 55.
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Figure 54: Vertical pro�les of the u/U∞ component of velocity, with U∞ = 40m/s,
in a longitudinal plane at the middle of the canyon (y = W/2), at di�erent positions
along the rear slant face. First panel: wind tunnel data for the case of the Ahmed
body with θ = 25◦ [Lienhart, Becker, 2003] and data coming from simulations with
k−ω, k−ω SST and SA Turbulence models [Martinat et al., 2008]. Second panel:
results from the present simulations, in the case of the k − ε model solved for the
Ahmed body with θ = 25◦ con�guration.
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Figure 55: Vertical pro�les of the u/U∞ component of velocity, with U∞ = 40m/s,
in a longitudinal plane at the middle of the canyon (y = W/2), at di�erent positions
along the rear slant face. First panel: wind tunnel data for the case of the Ahmed
body with θ = 35◦ [Lienhart, Becker, 2003] and data coming from simulations with
k− ε, k−ω SST and SA Turbulence models [Martinat et al., 2008]. Second panel:
results from the present simulations, in the case of the calibrated k−ω model solved
for the Ahmed body with θ = 35◦ con�guration.
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Comparing the wind tunnel vertical pro�les with those obtained from our
simulation results, we see that our computations perform well, especially in
the case of the calibrated k − ω simulations. In particular, our calibrated
k−ω simulations reproduces the experimental data as well as the k−ω SST
simulations, which cost more in terms of computational resources. The kε
simulations mismatch the de�ection of the vertical pro�les, but are anyhow
satisfactory when compared with the k − ω and the SA results obtained in
Ref. [Martinat et al., 2008].

When considering the case of vehicles moving in an open street geometry,
we must consider open boundary conditions at the lateral planes of the do-
main. In Figure 56 we report the wind �eld structure in the case of rear slant
angles of 25◦ and U∞ = 40m/s in an open street geometry. The di�erent
colours in the �rst panel refer to the di�erent intensity of the velocity mag-
nitude, plotted in the bulk domain and on transversal planes. In the second
panel, we show the directions of the velocity vector on a cross-sectional plane
at a distance L/2 behind the vehicle. The length of the arrows is normalized.
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Figure 56: Wind �eld structure (�rst panel) in the case of a rear slant angles of
25◦, in an open street geometry and U∞ = 40m/s. The di�erent colours refer to
the di�erent intensity of the velocity magnitude, plotted in the bulk domain and
on transversal planes. Directions of the velocity vector (second panel) on a cross-
sectional plane at a distance L/2 behind the vehicle. The length of the arrows is
normalized.
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We can see from Figure 56 that there is a suction e�ect at the open
lateral walls, even if this e�ect is very small (the length of the arrows is
normalized, and do not corresponds to the intensity of the velocity �eld).
The draft coe�cient in this case is:

CD,open = 0.248,

so there is a reduction of the draft coe�cient of a factor of 12% with respect
to the result for the canyon street geometry (reported in Table 25), in the
case of U∞ = 40m/s.

When considering the case of vehicles moving in a street canyon geometry,
in an intermediate or in a heavy tra�c situation, we must consider unsteady
RANS simulations, taking into account the vehicles far-wake interactions (see
Sections 3.3, 3.4 and 4.1 for the description of the approach). The driving
cycles for typical urban driving conditions have been introduced in Figure 4
and Table 5. From the data in Ref. [André, 2004] we can deduce also the
typical tra�c density for each driving cycle; if N is the average number of
vehicles which move within a particular tra�c con�guration for a distance
L (N should be di�erent for di�erent European cities), then:

N =
L

Lv
= Lnv,

where Lv is the average distance between vehicles, and nv is the average
number of vehicles per unit length. The interaction with the far wake struc-
ture of a preceding vehicle, when a vehicle is placed at a position Lv behind
a preceding vehicle, is determined by considering as an inlet condition a
reduced value of the freestream velocity U∞ and values of the Turbulence
length scale LT and of the Turbulent intensity IT , given in Equation (3.24).
The reduced value of the freestream velocity U∞,r is determined as the max-
imum reduction, at a distance Lv/2 behind the preceding vehicle, of the
tra�c velocity, given by the self-preserving perturbation Solution Up (4.71):

U∞,r = U∞ − Up = U∞ − U∞|A|
(
Lv/2

h

)−3/4

0.824 e−
1
8

where h is the vehicle height and A a constant which depends on the draft
coe�cient of the preceding vehicle and on the driving condition (see Equa-
tion (4.82)). Thus, the reduction of the freestream velocity is greater if the
preceding vehicle is an HDV vehicle. The Turbulent intensity at the inlet
boundary is given by:

IT =
Up
U∞

,

and the Turbulent length scale is given by:
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LT = γAh

(
Lv/2

h

)1/4

For example, considering the case of a congested urban driving condi-
tion, we can analyse the �ow structure generated by a vehicle accelerating
from the average speed of 10, 2km/h to the running speed of 25, 9km/h,
with a constant acceleration of a = 0.87m/s2 (see the data reported in Fig-
ure 4). We consider now the simulation results corresponding to the case
of a sedan vehicle preceded by an HDV; for this driving condition, an av-
erage value of Lv = 16h is found, corresponding to a perturbation term
Up ∼ 0, 13U∞, with U∞ varying in time from 10, 2km/h to 25, 9km/h (in
a time t = 5, 012s). The appropriate inlet conditions must be transformed
accordingly. Remember that we are considering reduced spatial scales, so
that 10, 2km/h → 11, 3m/2, 25, 9km/h → 28, 7m/s (t and a must also be
rescaled). In Figure 57 we report the unsteady wind �eld structure, at di�er-
ent instants of time, in the case of an accelerating Ahmed body with a rear
slant angle of 25◦, with U∞ = varying from 9, 86m/s to 25, 03m/s, which are
the values of the freestream velocity reduced due to the far-wake interaction
with a preceding HDV vehicle at a distance Lv = 16h. The domain is a
canyon street geometry. The di�erent colours refer to the di�erent intensity
of the velocity magnitude, plotted in the bulk domain and on transversal
planes.

225



Figure 57: Unsteady wind �eld structure, at di�erent instants of unreduced time t,
in the case of an accelerating Ahmed body with a rear slant angle of 25◦, preceded
by an HDV vehicle in a congested Urban driving cycle, with U∞ = varying from
9, 86m/s to 25, 03m/s. The di�erent colours refer to the di�erent intensity of the
velocity magnitude, plotted in the bulk domain and on transversal planes.
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From the comparison between Figure 57 and Figure 46 (corresponding
to the case without vehicle interaction) , we can observe that:

• The e�ect of an increased value of Turbulence intensity IT in the case
of interacting vehicles, which, in this case, goes from a non-interaction
value of 0.05% to 13% (Up ∼ 0, 13U∞), is to enhance boundary layer
separation at the rear slant face (note the deceleration of the �uid veloc-
ity near this face). This clearly goes in the direction of augmenting the
value of the drag coe�cient, increasing the form drag [Batchelor, 1967].

• The retardation of the wake development with respect to the acceler-
ation of the Inlet freestream velocity causes a weakening of the trail-
ing vortex intensity, thus weakening the value of the induced drag
[Batchelor, 1967] with respect to a stationary case with the same inlet
condition.

In Figure 58 we show the variation of the drag coe�cient CD over time.

Figure 58: Variation of the drag coe�cient CD over unreduced time t in the case of
an accelerating Ahmed body with a rear slant angle of 25◦, preceded by an HDV
vehicle in a congested Urban driving cycle, with U∞ = varying from 9, 86m/s to
25, 03m/s.

In Figure 58 we have not reported the initial value of CD when t = 0,
since it is equivalent to the value for a vehicle moving with a stationary
velocity U∞ = 9.86m/s with an increased inlet turbulent intensity (we have
found that CD = 0.265 in this case), (the vehicle is not in�uenced by the
unsteady e�ects at t = 0).

In Table 26 we show the near-wake con�gurations that we have simu-
lated, according to the data on the typical driving cycles reported in Figure
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4 and Table 5, in order to obtain the parametrization of the deposition veloc-
ities and the resuspension rates, to be used in the tailpipe emission model,
described in Section 2.6, and in the dispersion models introduced in Section
3.5, whose results will be reported in Section 4.4. We have adopted the
simpli�cation that only the Congested Urban driving condition is consid-
ered with unsteady speeds and is characterized by vehicle wake interactions,
whereas the other driving cycles are considered as a superposition of steady
states of velocity with non-interacting vehicles (in the case of the Free Flow
Urban driving cycle, an intermediate tra�c condition with interacting wakes
should be considered. An analysis based on the tra�c density for this con-
�guration shows that the appropriate values for IT should be ∼ 3−6%. The
proper extension to the simulation of intermediate tra�c conditions charac-
terized by unsteadiness and vehicle interactions will be considered in future
investigations).

U∞ states [km/h] a [m/s2] IT Geometry

CongestedUrban 0∗ − 10.2− 25.9 0.87 9− 13% Street Canyon

Free-�owUrban 26.1− 28− 32.3− 35.6 Steady 0.05% Street Canyon

SecondaryRoads 45.5− 52.2− 65 Steady 0.05% Open Street

MainRoads 75− 86.1− 115.6− 123.8 Steady 0.05% Open Street
+Motorways

Table 26: Simulated near-wake con�gurations, according to the data reported in
Figure 4 and Table 5. Only the Congested Urban driving condition is considered
with unsteady speeds. ∗: since the Turbulence model cannot be run for U∞ = 0, as
explained in Section 3.4, we consider vehicles starting to move with a small velocity
6= 0.

The simulations for each driving con�guration give values of deposition
velocities and resuspension factors depending on the tra�c velocities. We
will thus derive simple parametrization laws for vdep(0) and kres in function
of U∞. These laws are di�erent for di�erent vehicle geometries and di�erent
street geometries, and their forms depend on the fact that vehicle interactions
and unsteadiness are considered or not.

To conclude this paragraph, we report the parametrization laws we have
obtained for the function CD = f(U∞), considering only steady state con-
�gurations for simplicity. This function must be used in the context of the
pollutant dispersionmodel D, introduced in Section 3.5, in order to express
the interacting far-wake solutions which determine the advection terms and
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the turbulent di�usivity for the dispersion process. It must also be used
to determine the value of Up and IT for the interacting cases (according to
Formulas (4.81) and (4.82)). We introduce the power law paramterization:

CD = CD,ref

(
v

vref

)n
(4.92)

where n is a constant exponent, CD,ref is the drag coe�cient value calculated
for the reference freestream velocity of vref = U∞ = 40m/s, and v = U∞
varies depending on the tra�c driving conditions. In Figures 59, 60, 61, 62,
63 and 64 we show the results of a linear �t of the numerical values of CD
according to the law:

log10

(
CD

CD,ref

)
= n log10

(
v

vref

)
+ C,

which give the optimal values of the �tting parameter n in the di�erent
con�gurations.

Figure 59: Linear �t of the log− log pro�le
law in the case of an Ahmed body with θ =
25◦ (Sedan vehicle) and for a street canyon
geometry.

Figure 60: Linear �t of the log− log pro-
�le law in the case of an Ahmed body with
θ = 25◦ (Sedan vehicle) and for an open street
geometry.

Figure 61: Linear �t of the log− log pro-
�le law in the case of an Ahmed body with
θ = 40◦ (LDV vehicle) and for a street canyon
geometry.

Figure 62: Linear �t of the log− log pro-
�le law in the case of an Ahmed body with
θ = 40◦ (LDV vehicle) and for an open street
geometry.
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Figure 63: Linear �t of the log− log pro�le
law in the case of an Ahmed body with θ = 0◦

(HDV vehicle) and for a street canyon geom-
etry.

Figure 64: Linear �t of the log− log pro�le
law in the case of an Ahmed body with θ = 0◦

(HDV vehicle) and for an open street geome-
try.

The values of n and C, for the di�erent con�gurations, with the corre-
sponding errors introduced in the �tting procedure, are reported in Table
27, along with the values of CD,ref (vref = 40m/s for all the con�gurations).
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Sedan Configuration CD,ref

StreetCanyon 0.282 n = 0.0037 σn = 6.44 · 10−5

C = −5.222 · 10−5 σC = 3.56 · 10−5

OpenStreet 0.248 n = 0.0169 σn = 0.000176
C = 3.2789 · 10−5 σC = 9.7 · 10−5

LDV Configuration CD,ref

StreetCanyon 0.253 n = 0.0779 σn = 0.0014
C = −0.00061 σC = 0.00082

OpenStreet 0.222 n = 0.0951 σn = 0.0014
C = −0.000612 σC = 0.000779

HDV Configuration CD,ref

StreetCanyon 0.898 n = 0.01 σn = 0.000153
C = 0.00012 σC = 8.47 · 10−5

OpenStreet 0.797 n = 0.0277 σn = 0.000359
C = 4.67 · 10−5 σC = 0.000198

Table 27: Values of n and C, for the di�erent con�gurations, with the corresponding
errors σn and σC introduced in the �tting procedure, along with the values of
CD,ref .
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4.3 Deposition velocity and Resuspension factor estimates

In this Paragraph we show the parametrization law for quantitiees vdep(0)
and kres in function of U∞. These laws are di�erent for di�erent vehicle
geometries and di�erent street geometries, and their forms depend on the
fact that vehicle interactions and unsteadiness are considered or not.

We �rst recall the forms of vdep(0) and kres introduced in Sections 2.3,
sending back to that Section for the de�nition of the quantities which enter
in the formulation:

vdep(0) =

[
1

ku∗
+

(
1

vd(z)
− 1

ku∗

)
(1 + 50kSc)

vs
ku∗

]−1

(4.93)

and 
kres,c = αc

u∗z0Eb
(1− θs)A2

kres,f =
u∗z0EbEf
(1− θs)d2

c

(4.94)

In particular, we have chosen z+ = 50, so that:

ku∗
D

= 50kSc

The values of the adhesion constants, set up in Section 2.6 through the
comparison between the tailpipe emission model and the empirical results in
Ref. [Empa, 2009], are given in Equations (2.7) and (2.8). The values of the
geometrical parameters of the asphalts are given in Section 2.4 for di�erent
kinds of asphalts.

We make the assumption (which will be justi�ed in a moment) that
the average deposition and resuspension e�ects induced by each vehicle are
determined mainly inside its near-wake. The quantities u∗ and Eb = Sc−2/3

are given by our numerical simulation data on the Turbulence structure in
the near wake of the vehicles, observing that, in the logarithmic layer and
depending on the Turbulence model used:

u∗ = (0.09)1/4
√
k (4.95)

and


k− εmodel : Eb =

(
ν

D +DT

)−2/3

; DT = 0.09
k2

ε

(
1− e−5/26

)

k− ωmodel : Eb =

(
ν

D +DT

)−2/3

; DT =
k

ω

(
1− e−5/26

)
(4.96)
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We de�ne the following average values:
vd(0) =

1

Wlω

∫
ω
vd(0) dxdy

u∗Eb =
1

Wlω

∫
ω
u∗Sc

−2/3 dxdy
(4.97)

where the integrals are over the road surface in front, under and behind the
vehicles, extending for the length of their developed near-wake (indicated as
ω in the domain of integration), and lω is the longitudinal dimension of the
domain (considered as 8 times the vehicle length behind the vehicle, and 1
time the vehicle length in front of it). These average values are intended
to represent the main contributions to the deposition and the resuspension
factors induced by each single vehicle.

We introduce the power law paramterizations:
vd(0) = vd(0)ref

(
v

vref

)n
u∗Eb = u∗Ebref

(
v

vref

)n (4.98)

where n is a constant exponent, vd(0)ref and u∗Ebref are the average values
of the deposition velocity and the resuspension contribution u∗Eb calculated
for a reference freestream velocity, and v = U∞ varies depending on the tra�c
driving conditions. In Figures 65-82 we show the results of linear �ts of the
numerical values of vd(0) and u∗Eb, for the di�erent tra�c con�gurations
introduced in Table 26, according to the laws:

log10

(
vd(0)

vd(0)ref

)
= n log10

(
v

vref

)
+ C

log10

(
u∗Eb

u∗Ebref

)
= n log10

(
v

vref

)
+ C

,

which give the optimal values of the �tting parameter n in the di�erent
con�gurations.
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Figure 65: Linear �t of the log− log pro�le
law for the quantity vd(0) in the case of an
SV vehicle for the Free Flow Urban (FFU)
driving condition.

Figure 66: Linear �t of the log− log pro�le
law for the quantity u∗Eb in the case of an
SV vehicle for the Free Flow Urban (FFU)
driving condition.

Figure 67: Linear �t of the log− log pro�le
law for the quantity vd(0) in the case of an SV
vehicle for the Secondary Roads (SR), Main
Roads (MR) and Motorways (M) driving con-
ditions.

Figure 68: Linear �t of the log− log pro�le
law for the quantity u∗Eb in the case of an SV
vehicle for the Secondary Roads (SR), Main
Roads (MR) and Motorways (M) driving con-
ditions
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Figure 69: Linear �t of the log− log pro�le
law for the quantity vd(0) in the case of an
LDV vehicle for the Free Flow Urban (FFU)
driving condition.

Figure 70: Linear �t of the log− log pro�le
law for the quantity u∗Eb in the case of an
LDV vehicle for the Free Flow Urban (FFU)
driving condition.

Figure 71: Linear �t of the log− log pro�le
law for the quantity vd(0) in the case of an
LDV vehicle for the Secondary Roads (SR),
Main Roads (MR) and Motorways (M) driv-
ing conditions.

Figure 72: Linear �t of the log− log pro�le
law for the quantity u∗Eb in the case of an
LDV vehicle for the Secondary Roads (SR),
Main Roads (MR) and Motorways (M) driv-
ing conditions
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Figure 73: Linear �t of the log− log pro�le
law for the quantity vd(0) in the case of an
HDV vehicle for the Free Flow Urban (FFU)
driving condition.

Figure 74: Linear �t of the log− log pro�le
law for the quantity u∗Eb in the case of an
HDV vehicle for the Free Flow Urban (FFU)
driving condition.

Figure 75: Linear �t of the log− log pro�le
law for the quantity vd(0) in the case of an
HDV vehicle for the Secondary Roads (SR),
Main Roads (MR) and Motorways (M) driv-
ing conditions.

Figure 76: Linear �t of the log− log pro�le
law for the quantity u∗Eb in the case of an
HDV vehicle for the Secondary Roads (SR),
Main Roads (MR) and Motorways (M) driv-
ing conditions
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Figure 77: Linear �t of the log− log pro�le
law for the quantity vd(0) in the case of an SV
vehicle for the Congested Urban (CU) driving
condition.

Figure 78: Linear �t of the log− log pro�le
law for the quantity u∗Eb in the case of an SV
vehicle for the Congested Urban (CU) driving
condition.

Figure 79: Linear �t of the log− log pro�le
law for the quantity vd(0) in the case of an
LDV vehicle for the Congested Urban (CU)
driving condition.

Figure 80: Linear �t of the log− log pro�le
law for the quantity u∗Eb in the case of an
LDV vehicle for the Congested Urban (CU)
driving condition.
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Figure 81: Linear �t of the log− log pro-
�le law for the quantity vd(0) in the case of
an HDV vehicle for the the Congested Urban
(CU) driving condition.

Figure 82: Linear �t of the log− log pro-
�le law for the quantity u∗Eb in the case of
an HDV vehicle for the the Congested Urban
(CU) driving condition.

The values of n and C, for the di�erent con�gurations, with the corre-
sponding errors introduced in the �tting procedure, are reported in Tables
28 and 29, along with the values of vd(0)ref , u∗Ebref and vref for all the
con�gurations.

238



Sedan Driving Cycle vd(0)ref [m/s] vref [m/s]

FFU 0.0579 33.3 n = 0.8774 σn = 0.0129
C = 0.0182 σC = 0.0057

SR + MR + M 0.1800 133.3 n = 0.8573 σn = 0.0089
C = 0.0143 σC = 0.0040

CU 0.0292 11.1 n = 0.7583 σn = 0.0041
C = 0.0003 σC = 0.0003

LDV Driving Cycle vd(0)ref [m/s] vref [m/s]

FFU 0.0371 33.3 n = 0.9786 σn = 0.0043
C = 0.0003 σC = 0.0014

SR + MR + M 0.1233 133.3 n = 0.9485 σn = 0.0090
C = 0.0028 σC = 0.0029

CU 0.016 11.1 n = 0.8550 σn = 0.0175
C = 0.0008 σC = 0.0013

HDV Driving Cycle vd(0)ref [m/s] vref [m/s]

FFU 0.0768 33.3 n = 0.9664 σn = 0.0032
C = 0.0040 σC = 0.0022

SR + MR + M 0.2424 133.3 n = 0.9478 σn = 0.0039
C = 0.0036 σC = 0.0011

CU 0.0328 11.1 n = 0.8572 σn = 0.0167
C = 0.0007 σC = 0.0014

Table 28: Values of n and C for the parametrization law of vd(0), for the di�erent
con�gurations, with the corresponding errors σn and σC introduced in the �tting
procedure, along with the values of vd(0)ref and vref . The values of velocities are
referred to the reduced geometry of the Ahmed body.
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Sedan Driving Cycle u∗Ebref [m/s] vref [m/s]

FFU 1.9149 33.3 n = 1.5107 σn = 0.0185
C = 0.0265 σC = 0.0083

SR + MR + M 14.5706 133.3 n = 1.4748 σn = 0.0122
C = 0.0195 σC = 0.0054

CU 1.08638 11.1 n = 1.3010 σn = 0.0099
C = 0.0011 σC = 0.0007

LDV Driving Cycle u∗Ebref [m/s] vref [m/s]

FFU 1.18328 33.3 n = 1.64583 σn = 0.0032
C = 0.0001 σC = 0.0010

SR + MR + M 10.2051 133.3 n = 1.5927 σn = 0.0145
C = 0.0037 σC = 0.0047

CU 0.6019 11.1 n = 1.4032 σn = 0.0162
C = 0.00012 σC = 0.0012

HDV Driving Cycle u∗Ebref [m/s] vref [m/s]

FFU 5.3129 33.3 n = 1.6414 σn = 0.0038
C = 0.0033 σC = 0.0027

SR + MR + M 44.3583 133.3 n = 1.6082 σn = 0.0075
C = 0.0026 σC = 0.0039

CU 2.6072 11.1 n = 1.4014 σn = 0.026
C = 0.0005 σC = 0.0019

Table 29: Values of n and C for the parametrization law of u∗Eb, for the di�erent
con�gurations, with the corresponding errors σn and σC introduced in the �tting
procedure, along with the values of u∗Ebref and vref . The values of velocities are
referred to the reduced geometry of the Ahmed body.
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We must observe that the values of vd(0) change of negligible quantities
when the di�erent Soot diameters, reported in Table 4, are considered. The
values of u∗Eb are calculated for the road dust component only. In order
to calculate the resuspension factors kres,c and kres,f , the values of u∗Eb
must be multiplies by the remaining terms in the De�nitions (4.94). The
remaining terms are constants which depends on the asphalt characteristics,
and change, when changing the asphalt geometry and the asphalt state of
maintenance, by the amount reported in Table 13.

By the observation of the values reported in the Tables 28 and 29, we
conclude that:

• The deposition velocity vd(0) in the near wake region is about one or-
der of magnitude grater than the deposition velocity in the far-wake
zone (see the values reported in Table 7). This justi�es our assump-
tion of expressing the deposition velocity and the resuspension rate by
considering the dynamics inside the near wake only;

• The greatest values of the resuspension factors are associated to the
HDV vehicles. This cause the road dust to be resuspended mainly
by the HDV produced Turbulence in the Urban driving conditions, as
explained in Sections 2.5 and 2.6. The resuspension factors for the
LDV vehicles are smaller then those for the SV vehicles, due to the
di�erent properties of boundary layer separation and wake recirculation
associated to the relative Ahmed body con�gurations;

• When considering data on tra�c �ows in a particular urban situation,
the types of roads, and so the types of driving conditions, are given
for each road branch of the road network, together with the e�ective
tra�c velocities along the road branch. When the driving condition has
been determined, the deposition velocities and the resuspension factors
induced by each vehicle category can be determined by applying the
parametrizations introduced in Tables 28 and 29, corresponding to the
considered driving conditions, using the value of the tra�c e�ective
velocity. This was done in Section 2.8 in the context of the application
of the tailpipe emission model to the case of the city of Milan, starting
from tra�c data given by AMAT and from emission inventories given
by the CORINAIR emissive methodology;

• To the unsteady driving conditions ar eassociated more linear variation
pro�les of the resuspension factor variations.

To conclude, we note that, in order to represent more realistic driving
conditions in the congested urban case, we should consider vehicles which
accelerate and decelerate between two consecutive stops, using the values of
acceleration given in Figure 4.
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4.4 Fine Particulate spatial distributions

In this last Section we show the results of the application of some dispersion
models introduced in Section 3.5 (see Table 15).

First of all, we show the results which characterize the deposition and the
dispersion processes in the near wake zone behind the vehicles (application of
Model C). For the case of Soot emission and deposition, we show in Figure
83 the results corresponding to an SV vehicle �owing at 50km/h in a canyon
street (FFU driving condition) for 10s of (reduced) time. The Soot emission
factor is given considering the hot emission contribution for a diesel Euro 4
sedan vehicle (see Section 2.1 for the description of the emission inventory
methodology). The �ux boundary condition corresponding to the emission is
applied to a small circle near the left bottom corner of the vertical rear face
of the vehicle. We plot the data of the deposition �ux vd(0)C at di�erent
instant of times (at the surface), along the centerline of the street canyon,
along a line parallel to the centerline and translated by an amount w/2 to
the left (where w is the vehicle width), and along a transversal line at the
surface at a distance L/2 behind the vehicle (where L is the vehicle length).

Observing the Figure 83 we can see that in this case the deposition pro-
cess is mainly localized in the �rst meters behind the vehicle, approximately
for a length of ∼ 4L. This enforces our assumption that only the e�ects of
the vehicle deposition in the near wake zone must be taken into account.
The highest deposition �ux is found in correspondence of the translated line
parallel to the centerline (second panel). Note that this is the line which
approximately follow the trailing vortex which develops behind the vehicle,
on the side of the pollutant emission. The transversal pro�le (third panel)
is clearly asymmetric, due to the presence of the pollutant emission �ux at
the left bottom vertex of the vertical rear face of the vehicle.

For the case of the road dust deposition and resuspension process, we
show in Figure 84 the results corresponding to an HDV vehicle moving at
30km/h in a canyon street (CU driving condition) for 80s of (reduced) time,
and to an SV vehicle, moving at 30km/h, preceded by the HDV vehicle. The
initial road dust concentration at the surface is 3[mg/m2], and the wear emis-
sion factors are given considering the terms etyre, ebrake and easphalt given
by the EMEP CORINAIR methodology (see Section 2.2 for the description
of the emission inventory methodology). The asphalt wear component is in-
serted in the S(t) term which enters the boundary Condition (3.64), whereas
the tyre and brake wear components are inserted as Dirichlet boundary con-
ditions (properly transformed from the corresponding emission factors terms)
imposed on the vehicle tyre surfaces (the base cylynder surfaces of the Ahmed
body). We plot the data of the deposition - resuspension �ux:

Ndr =
vd(0)

θ0
C(θ0 − cs)− (kres + fxnv)cs + S(t)
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Figure 83: Deposition �ux vd(0)C pro�les at di�erent instant of times (at the
surface), along the centerline of the street canyon (�rst panel), along a line parallel
to the centerline and translated by an amount w/2 to the left (second panel), and
along a transversal line at the surface at a distance L/2 behind the vehicle (third
panel).
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at di�erent instant of times (at the surface), along the centerline of the street
canyon. We consider an AC11 asphalt in good condition (see Section 2.4 for
details on the asphalt parameters and characteristics).
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Figure 84: Deposition-Resuspension �ux NdrC pro�les at di�erent instant of times
(at the surface), along the centerline of the street canyon, for an HDV vehicle
moving at 30km/h in CU driving conditions (�rst panel), and for an SV preceded
by the HDV vehicle (second panel).
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Observing the Figure 84 we can see that in this case the resuspension
phenomenon is mainly localized in the immediate neighbourhoods of the
vehicles front and rear faces. This enforces our assumption that only the
e�ects of the vehicle resuspension in the near wake zone must be taken into
account. The highest deposition and resuspension �uxes are found for the
HDV case. According to the considerations made in Sections 2.5 and 2.6, the
road dust is mainly resuspended and kept in a suspended state by the HDV
produced Turbulence. We lastly note that the deposition and resuspension
dynamics become stationary after ∼ 20s of reduced time.

As a �nal step of this dissertation, we apply the operational dispersion
model B to the case of the Soot and road dust dispersion processes at the
canyon scale in a urban situation, characterized by a canyon geometry with
W = H = 12m (skimming �ow regime), an heavy tra�c condition (CU
driving cycle), and an external wind blowing with an intensity of 1m/s at
an angle of 60◦ with respect to the street axis (presence of recirculation).
The details of the applications of the other models, de�ned in Table 15, for
the dispersion at the canyon scale will appear in future investigations. In
particular, the results of the application of the numerical model D for the
street canyon pollutant spatial distribution will be analysed in full details,
comparing them with the results coming from the analytical operational
models.

We consider a Urban canyon characterised by the same tra�c conditions
as the Zurich Weststrasse canyon street considered in Ref. [Empa, 2009],
which presented a tra�c �ow with an average velocity of ∼ 30km/h =
8.33[m/s], a CU driving con�guration, and a tra�c density, in the rush
hours, given by the number of vehicles per hour:

nv = 1400[v/hour],

with a percentage of HDV vehicles on the total �eet composition equal to
12%. The length of the considered street branch is L = 200m. Let us deter-
mine �rstly the values of the parameters which enter in the model formulation
(see Equations (3.49), (3.52) and (3.53) for the base plume solutions corre-
sponding to no recirculation, plus Equations (3.54), (3.58) and (3.29) for the
Gaussian segments and the box model which describe the recirculation). We
give them in the following list.

• Emissions height and coordinates of the receptor points: we
consider a value of He = 0.1[m] for the Soot emission and also for the
starting height level at which the Gaussian segments for the road dust
component start; the receptor point at the leeward side is at the point
(−5,+1.80)[m] in the cross-sectional coordinates (y, z), where (y =
0, z = 0) corresponds to the road centerline. The receptor point at the
downwind side is at the point (+5,+1.80)[m]. The street con�guration
extends for a length in the x direction L = 200[m]. The receptor is
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considered to beat the middle of the canyon street, so xr = L/2 =
100[m]

• Turbulence parameters for the plume solutions: the wind is
�owing from left to right at the roof level, with U∞ = 1 · cos(π/3),
V∞ = 1 · sin(π/3). The average velocity components of the canyon
helical recirculation, given by our analytical solutions (see Equation
(4.55) and Table 21, where the average transverse velocity components
are given as integrals of the analytical solutions along the paths of the
two gaussian segments, divided by their length), are:


U// = 0.69072[m/s]

vHe = −0.3882[m/s]

wyr = 0.2947[m/s]

(Compare the results of the average transversal components with the
contour values reported in Figure 29). The tra�c produced Turbulence
is given by the third formula in Equation (3.30):

σ2
tpt = c6 · C2/3

D · V 2 · h
4/3

S
2/3
c

Considering a tra�c �eet composition with 12% percentage of HDV,
the average drag coe�cient, calculated from the values reported in
Table 27 for the reference velocity of 30km/h, is:

CD = 0.4052

. Thus we have:

σ2
tpt = 0.008743[m2/s2]

The dispersion coe�cients for the plume solutions are (see the De�ni-
tions (3.46)):

Kyy = Kzz = 0.327591[m2/s]

• Turbulence parameters for the Gaussian segments: the disper-
sion coe�cients for the plume solutions are (in units [m2/s]) (see the
De�nitions (3.57) and (3.61)):

First Segment : Kxx = 0.165417; Kzz = 0.184827

Second Segment : Kxx = 0.165417; Kyy = 0.120674
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The parameter yI in Formula (3.55), which determines the starting
level of the �rst Gaussian segment, is chosen to be yI = 0.5[m]; the
parameter HII in Formula (3.59) is equal to 2He for both the Soot and
the road dust dispersion cases.

• Soot and road dust emissions and initial concentrations: we
consider for simplicity a �eet composed by diesel Euro 4 vehicles with
DPF moving with constant velocity. Thus, considering the value for
the Soot hot emissions averaged on the vehicle �eet (composed by 12%
HDV), we have:

Q = 3.2

[
mg

km

]
· 1

1000

[
km

m

]
· nv = 1, 244 · 10−3[mg/ms]

The Soot background concentration is given as a constant value, uni-
formly distributed across the canyon, taken from the data in Ref.
[Vecchi et al., 2004], coming from measurements campaigns in the city
of Milan:

Cb = 4.8 · 10−3[mg/m3],

which is the value measured in correspondence of a winter situation.
The value of the stationary road dust concentration is (see the discus-
sion in Section 2.5:

Cs = 3[mg/m2].

The value of the background concentration in atmosphere of a road
dust component of the PM10 airborne concentration is taken from the
measurements in Ref. [Vecchi et al., 2008], corresponding to a winter
situation:

Cdb = 8.84 · 10−3[mg/m3].

• Average deposition velocity and resuspension rate: the average
value of the deposition velocity, taken from Table 28 at the reference
velocity of vref = 30[km/h] and considering a �eet composed by a
fraction of 12% HDV vehicles, is:

vd(0) = 0.0616[m/s].

The average value of the resuspension factor, determined by the value
of the u∗Eb factor, given in Table 29 at the reference velocity of vref =
30[km/h] and considering a �eet composed by a fraction of 12% HDV
vehicles, multiplied by the remaining factor in the de�nition of kres,
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correspondent to an AC11 asphalt in good conditions of maintenance,
is:

kres = 0.00068[1/s].

We are now in a position to write the Solutions (3.52) and (3.53) for the
base plume solutions, plus (3.54), (3.58) and (3.29) for the Gaussian segments
and the box model. Considering n = m = 0 in the series expansions for the
plume solutions (3.52) and (3.53), and a value of x corresponding to the
longitudinal position of the receptor along the canyon x = Lr = 100[m], we
have for the Soot dispersion case:

Soot Plume :

C(y, z)0[mg/m3] =(3.5215 · 10−4) cos

(
π

12
y

)
cos

(
π

24
z

)
+ 4.8 · 10−3 − (6.3948 · 10−4) cos

(
π

12
y

)
cos

(
π

24
z

)
− (5.2607 · 10−4) cos

(
π

12
y

)
cos

(
π

24
z

)
(4.99)

For the road dust dispersion case we have:

Road dust Plume :

C(y, z)0[mg/m3] =8.84 · 10−3 + (4.4119 · 10−3) cos

(
π

12
y

)
cos

(
π

24
z

)
− (1.1777 · 10−3) cos

(
π

12
y

)
cos

(
π

24
z

)
− (0.7912 · 10−3) cos

(
π

12
y

)
cos

(
π

24
z

)
(4.100)

Let us now determine the Gaussian segments Solutions (3.54), (3.58).
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The source Term (3.55) for the �rst segment is:

Soot SI :

SI [mg/sm
3] =

π

2
y2

(
Kyy

∂C0

∂y
+ vHeC0

)
δ(x− Lr)δ(y − yI)δ(z −He)

= 6.1239 · 10−4 · δ(x− Lr)δ(y − yI)δ(z −He)

(4.101)

For the road dust dispersion case we have:

Road dust SI :

SI [mg/sm
3] =

π

2
y2

(
Kyy

∂C0

∂y
+ vHeC0

)
δ(x− Lr)δ(y − yI)δ(z −He)

= 1.7061 · 10−3 · δ(x− Lr)δ(y − yI)δ(z −He)

(4.102)

The �rst Gaussian segment GSI is thus determined by propagating the
source term SI , using the propagator in Equation (3.56), distinguishing be-
tween the two dispersion cases, and considering values at the transversal
plane at the receptor x = Lr = 100[m]:

Soot Gaussian Segment I :

GSI =
1.0819 · 10−4

(y − 0.5)

[
e
−0.5251· (z−He)

2

(y−0.5) + e
−0.5251· (z+He)

2

(y−0.5)

] (4.103)

Note that the solution GSI is valid only for y > 0.5[m], and can be used
only to y = yr = 5[m]. For the road dust dispersion case we have:

Road dust Segment I :

GSI =
0.3014 · 10−3

(y − 0.5)

[
e
−0.5251· (z−He)

2

(y−0.5) + e
−0.5251· (z+He)

2

(y−0.5)

] (4.104)
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The source Term (3.59) for the second segment is:

Soot SII :

SII [mg/sm
3] =

π

2
(z −He)

2

(
Kzz

∂(C0 + CI)

∂z
+ wyr(C0 + CI)

)
·

δ(x− Lr)δ(y − yr)δ(z −He −HII)

= 1.1328 · 10−4 · δ(x− Lr)δ(y − yI)δ(z −He)

(4.105)

For the road dust dispersion case we have:

Road dust SI :

SII [mg/sm
3] =

π

2
(z −He)

2

(
Kzz

∂(C0 + CI)

∂z
+ wyr(C0 + CI)

)
·

= 0.2337 · 10−3 · δ(x− Lr)δ(y − yI)δ(z −He)

(4.106)

The second Gaussian segment GSII is thus determined by propagating
the source term SII , using the propagator in Equation (3.60), distinguishing
between the two dispersion cases, and considering values at the transversal
plane at the receptor x = Lr = 100[m]:

Soot Gaussian Segment II :

GSII =
1.8803 · 10−5

(z − 0.2)

[
e
−0.6105· (y−5)2

(z−0.2) − e−0.6105· (y−12+5)2

(z−0.2)

] (4.107)

Note that the solution GSII is valid only for z > 0.2[m], and can be used
only to z = zr = 1.80[m]. For the road dust dispersion case we have:

Road dust Segment II :

GSII =
3.8791 · 10−5

(z − 0.2)

[
e
−0.6105· (y−5)2

(z−0.2) − e−0.6105· (y−12+5)2

(z−0.2)

] (4.108)

We can now obtain the pollutant concentration at the receptor at the
leeward side by summing the contributions from the plume solution and the
Gaussian segments at (yr = 5, zr = 1.80)[m] (note that we have written the

251



Solutions (4.103), (4.104), (4.107) and (4.108) considering the variable y and
the velocity component vHe as positive):

Soot Leeward Concentration :

C(yr, zr) = C0(yr, zr) +GSI(yr, zr) +GSII(yr, zr) =

4.6425 · 10−3[mg/m3]

(4.109)

Road dust Leeward Concentration :

C(yr, zr) = C0(yr, zr) +GSI(yr, zr) +GSII(yr, zr) =

9.5761 · 10−3[mg/m3]

(4.110)

We can observe that the Soot leeward concentration is reduced from the
background value Cb = 4.8 · 10−3. This is clearly due to the deposition phe-
nomenon. In the case of the road dust dispersion, due to the resuspension
phenomenon and to the accumulation at the leeward side induced by the
wind recirculation, the concentration level is increased, from the background
value Cb = 8.84 · 10−3, by a factor of ∼ 8%. This should be compared
with experimental data, and with results of the numerical simulations from
model D. This will be treated in future investigations. The pollutant con-
centration at the receptor at the downwind side is obtained by summing the
contributions from the plume solution and the recirculation contribution Cr,
expressed in terms of a simple box model in Equation (3.29). If the recircu-
lation zone is extended to the whole canyon domain (as in the skimming �ow
regime we are treating), only the recirculation term need to be considered
[Berkowicz, Kearney, 2004]. Note that the source term for the case of the
road dust dispersion can be expressed as:

Q = krescsW

The results are:

Soot Downwind Concentration :

C(−yr,−zr) = Cr =

9.8854 · 10−4[mg/m3]

(4.111)

Road dust Downwind Concentration :

C(yr, zr) = Cr =

7.551 · 10−3[mg/m3]

(4.112)
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The e�ect of the accumulation of the pollutants at the leeward side is thus
evident. As a concluding remark, by applying the Formula for the average
residence time τ of the pollutants de�ned in Equation (3.15), (Q is given by
taking the integral of the concentration solutions over the canyon domain),
we can easily �nd that:

τSoot ∼ 103[s]; τRoad dust ∼ 10[s].

An analysis of the mixing time values τM , de�ned in Equation (3.17), requires
to describe the Turbulence structure in a more detailed way than was done
within the operational model B. We will treat the mixing time study in the
context of the application of model D in future investigations.
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5 Conclusions

The modeling approach developed in Chapter 2 has allowed a quantitative
estimate of the tailpipe contribution of the resuspension component to the
total tra�c-related PM10 emissions. Our results con�rm previous experi-
mental data [Empa, 2009] which attribute to the resuspension fraction ap-
proximately ∼ 50% of total PM10 emissions.

We have shown that PM10 resuspension is in�uenced by asphalt porosity
and its state of maintenance. This kind of quantitative information, applied
to di�erent urban and extra urban environments, is fundamental to outline
more e�ective PM10 reduction scenarios.

We have provided evidence that a preventive policy of appropriate as-
phalt design and maintenance could be much more e�ective than other mit-
igation strategies based on partial tra�c restrictions and/or occasional road
washing to reduce tra�c-dependent PM10 emissions in urban areas.

It should be reminded that, due to the lack of detailed experimental data
on tra�c emissions at kerbside, in roads characterized by di�erent asphalt
properties, our resuspension parametrization is necessarily simpli�ed. Yet,
it can provide important information on how the asphalt features in�uence
resuspension phenomena.

In Chapter 3 a set of operational and simpli�ed numerical models for
the dispersion dynamics at the canyon scale has been introduced. These
canyon-scale models allow us to describe the dispersion processes associated
to complex urban tra�c situations, characterised by vehicle wake interac-
tions, which would be di�cult to describe with numerical simulations for the
dispersion dynamics associated to each single vehicle.

In Chapter 4 we have derived the analytical solutions required by the
canyon-scale dispersion models, in order to describe the vehicle wake in-
teractions e�ects and the e�ects of the �ow recirculation inside the street
canyon. The analytical solutions for the canyon recirculation �ow structure,
obtained by means of a singular perturbation analysis applied to di�erent
algebraic Turbulence models, have been validated by numerical simulations
with 2−equations Turbulence models. The analytical solutions for the far
wake structure of a moving vehicle have been used to calibrate the Tur-
bulence statistical models used in the near wake simulations in �uid �ow
situations with strong boundary layer separations, associated to particular
vehicle geometries. Moreover, the far wake solutions have been used to de-
�ne suitable inlet conditions for the near wake simulations when the e�ect
of wake interaction with a preceding vehicle have to be taken into account,
which is important when congested urban tra�c con�gurations are described.
The simulation results for the near wake Turbulence structure, for di�erent
vehicle categories and driving conditions, have been used to de�ne suitable
parametrizations of the deposition and resuspension �uxes, which are negli-
gible away from the near wake zone, to be used in the canyon scale models.
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Finally, we have applied the operationalmodel B to the case of a congested
urban tra�c con�guration in a canyon street, with wind �ow recirculation
inside the canyon. The validation of the results obtained by the application
of model B, by comparison with measurements and with results from other
canyon-scale models, will be treated in future investigations. We note that
the set of canyon-scale dispersion models introduced in Chaprer 3 can de-
scribe a wide range of Urban dispersion situations and geometries. (We will
extend the modelization to introduce the e�ects of a thermal strati�cation of
the atmosphere, and to describe the isolated roughness canyon �ow regime,
in future investigations).

As we were interested only in PM10 mass concentrations, we have not
considered all the particles' transformation processes which take place in the
wakes of vehicles, as explained in the Chapter 2. In order to obtain particles
number concentrations, which represent a more suitable indicator to be cor-
related with human health protection [Davidson et al., 2005], we should con-
sider all the transformation processes and a turbulent �ow description able to
resolve the instantaneous �ow, and not only its statistical mean. This would
allow to describe the turbulent mixing which induces the faster transforma-
tion processes at the vehicle near wake scale. Large Eddy Simulations (LES)
of turbulence �eld [Wilcox, 1998] and General Dynamic Equations (GDE)
[Seinfeld, Pandis, 2006] for the description of number distribution evolution
should be used, which will be carried out in future investigations.
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6 Appendix - Turbulence analytic solutions

The equation (4.9) for the four regions has the form:

χ
(
1 + χ2

)
f
′′

+ [1 + (3− 3c)χ2]f
′
+ 2(c2 − c)χf = 0 (6.1)

where:

Region 1 Region 2 Region 3 Region 4

χ =
a1η1

H
=

W

2H
η1 χ =

2a2ζ2

W
=

2H

W
ζ2 χ =

2a3ζ3

W
=

2H

W
ζ3 χ =

a4η4

H
=

W

2H
η4

c =
b1
a2

1

=
4b1
W 2

c =
b2
a2

2

=
b2
H2

c =
b3
a2

3

=
b3
H2

c =
b4
a2

4

=
4b4
W 2


f1

(
W

2H

)
= 1

f
′
1(0)→ 1

k

1

χ


f2

(
2H

W

)
= 1

f
′
2(0)→ 1

k

1

χ


f3

(
2H

W

)
= 1

f
′
3(0)→ 1

k

1

χ


f4

(
W

2H

)
= 1

f
′
4(0)→ 1

k

1

χ

Table 30: Change of variables and boundary conditions for the equation of the fi
functions in the four regions of the domain.

Equation (6.1) is a Fuchsian homogeneous second order di�erential equa-
tion with four regular singular points at {0,±i,∞} [Morse, Feshbach, 1953].
The exponents ρ1,2 relative to each singular point are:

0 : ρ1,2 = 0

± i : ρ1 = 0, ρ2 =
3

2
c

∞ : ρ1 = −c, ρ2 = 2− 2c

Let us introduce the change of variable:

ξ = 1 + χ2 (6.2)

Equation (6.1) transforms into:

√
ξ − 1

{
ξ
(
ξ − 1

)
f
′′

+

[(
3

2
c− 1

)
+

(
2− 3

2
c

)
ξ

]
f
′
+
c2 − c

2
f

}
= 0 (6.3)
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The term in the brace bracket corresponds to an hypergeometric equation,
whose corresponding solution can be represented in terms of the Riemann
symbol [Morse, Feshbach, 1953]:

f(ξ) = P


0 1 ∞
0 0 − c

2 ξ
3
2c 0 1− c

 (6.4)

where the �rst row contains the singular points of the equation, the �rst three
elements of the other two rows are the characteristics exponents related to
the corresponding singular points, and the last column contains the indipen-
dent variable of the equation. The Riemann symbol represents a generic
solution of the equation, and in particular is a shorthand representation of
six linearly indipendent local series solutions (24 series representation if we
consider Euler and Pfa� transformation, coming from the transformation
properties of the Riemann symbol), two solutions uniformly convergent in
a neighbourhood of each singular point. When the di�erence between the
exponents corresponding to a singular point is an integer, the monodromy
group generated by analytic continuation of the solution along closed paths
around the singular point is isomorphic to the additive group in C, and one
of the two linearly indipendent solutions in the neighbourhood of the point
contains a logarithmic term. Note that in the neighbourhood of the point
ξ = 1 the solutions contains no poles: one solution is analytic, and a second
linearly independent solution contains a logarithmic term. Thus it is possi-
ble to eliminate the term

√
ξ − 1 in Equation (3.5), for all points except at

∞ (in the case when c is an odd integer). In fact, for c an odd integer, the
monodromy group for the hypergeometric Equation (3.6) is di�erent from
that for the Equation (6.1) (in particular, in this case the set of solutions of
the hypergeometric Equation (6.4) in the neighbourhood of ∞ contains no
logarithmic term, whereas the di�erence between the exponents relative to
the point at ∞ of Equation (6.1) is always an integer for c ∈ N. The mis-
match is due to the elimination of the

√
ξ − 1 term in Equation (6.3): this

term cancels the branch points of the solutions of Equation (6.4) near ∞).
To treat the case of c an odd integer, we will perform proper analytic contin-
uations of solutions of the Hypergeometric equation (6.4) near the point ∞.
Note that the point ξ = 1 corresponds to the point χ = 0. The boundary
conditions reported in Table 30 can thus be satis�ed for all values of c. The
constraints on the solutions of Equation (6.1) are:

• Condition (4.12): c > 0;

• Matching with the solutions of the wall equations (4.4) to all or-
ders in the asymptotic expansion. As shown in Section 2.1, these
solutions have the form (y+)n log y+, when the terms in the asymp-
totic expansion for the eddy viscosity are given as a power expansion:
Nn = k(y+)n. As will be seen later, this condition is satis�ed for c ∈ N.
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• Given the boundary conditions valid on the segments BF and CF, re-
ported in Table 30, the solution of Equation (6.4) must be valid both
in W/2H and in 2H/W . These ratios cannot be both < 1. Gener-
ally, a series representation f(ξ) of the solution of an hypergeometric
equation is valid for |ξ| < 1. In the case of truncating solutions the
hypergeometric series reduce to polynomials [Morse, Feshbach, 1953],
uniformly valid on the whole complex plane. In our case, the solutions
are truncating ones for c ∈ N even. For c ∈ N odd, suitable ana-
lytic continuations will be performed in order to have uniformly valid
solutions in all the complex plane.

Summarizing, the eigenvalues of our boundary value problem are:

c ∈ N > 0 (6.5)

Let us introduce the general symbol:

P


0 1 ∞
0 0 d ξ

1− h h− d− e e

 (6.6)

When d = − c
2 ; e = 1−c; h = 1− 3

2c this corresponds to the symbol in (6.4).
A series solution of (6.6) valid for |ξ| < 1 (if h − d − e > 0 it is convergent
in ξ = 1 too) is the Gauss hypergeometric function:

2F1(d, e|h|ξ) =
Γ(h)

Γ(d)Γ(e)

∞∑
k=0

Γ(d+ k)Γ(e+ k)

k!Γ(h+ k)
ξk ≡ Γ(h)

Γ(d)Γ(e)
2F1 (6.7)

When h = −n, with n a positive integer, a factor of 1
Γ(h) must be inserted

into (6.5), in order to avoid divergence. We will use the Pfa� transformation
identity for the Gauss hypergeometric function:

2F1(d, e|h|ξ) = (1− ξ)−d 2F1

(
d, h− e|h| ξ

ξ − 1

)
(6.8)

valid for h /∈ Z≤0. Let us start from the case of c ∈ N > 0 odd. In this case,
the point 1 is logarithmic, and there are terminating hypergeometric series
associated to the Riemann symbol (6.6) (since e = 1− c is a negative integer
[Morse, Feshbach, 1953]). In order to obtain an analytic continuation of a
solution in a neighbourhood of ∞ which satis�es all the constraints of the
problem, we express one of the solution in the neighbourhood of 1 through
an analytical continuation as a combination of the two solutions around the
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origin [Bateman, 1953]:

(1− ξ)h−e−d 2F1(h− d, h− e|h+ 1− d− e|1− ξ) =

Γ(h+ 1− d− e)Γ(e− d)

Γ(1− d)Γ(h− d)
e−iπ(h−e) (−ξ)−d 2F1

(
d, d+ 1− h|d+ 1− e|1

ξ

)
+

Γ(h+ 1− d− e)Γ(d− e)
Γ(1− e)Γ(h− e)

e−iπ(h−d) (−ξ)−e 2F1

(
e+ 1− h, e|e+ 1− d|1

ξ

)
(6.9)

If e−d = m ∈ Z one (or both) of the terms on the right blows up (the solution
contains a logarithmic term). The identity of Equation (6.9) is valid in ξ = 1,
with the terms which blows up in the two hypergeometric series on the right
which cancel out; thus this is a valid analytic continuation. By considering
the identity for the Γ function: Γ(z)Γ(1 − z) = π

sin(πz) , we arrive, after a
little algebra, to the identity:

(1− ξ)h−e−d2F1(h− d, h− e|h+ 1− d− e|1− ξ) =

π

sinπ(e− d)

1

Γ(d+ 1− h)Γ(e+ 1− h)
·[

sinπd

sinπ(h− e)
e−iπ(h−e) (−ξ)−d2F1

(
d, d+ 1− h|d+ 1− e|1

ξ

)
−

sinπe

sinπ(h− d)
e−iπ(h−d) (−ξ)−e2F1

(
e, e+ 1− h|e+ 1− d|1

ξ

)]
(6.10)

The two terms on the right hand side of (6.10) are not linearly indipendent
solutions at ∞ if d − e = l ∈ Z. We impose this condition. The second
term in (6.10) is thus an indeterminate form 0

0 , and its limit for d − e →
l, calculated by means of De L'Hopital theorem, gives a second linearly
indipendent solutions at the point with a logarithmic term. Note that in the
case of c ∈ N > 0 odd d − e is not an integer. We will perform an analytic
continuation for which h → h − d; in this case h − d − e = l = 0. Let us
de�ne the logarithmic solution at ∞ as the function:

2U1 = (−1)l+1l!
Γ(e+ 1− h)

Γ(h+ 1− d− e)
Γ(h− d)Γ(h− e) sinπ(h− e)

Γ(d) sinπd
·

(1− ξ)h−e−d 2F1(h− d, h− e|h+ 1− d− e|1− ξ) =

l!

Γ(d)Γ(d+ 1− h)

∂

∂(e− d)

[
e−iπ(h−e) (−ξ)−d2F1

(
d, d+ 1− h|d+ 1− e|1

ξ

)
−

sinπ(e) sinπ(h− e)
sinπ(d) sinπ(h− d)

e−iπ(h−d) (−ξ)−e2F1

(
e, e+ 1− h|e+ 1− d|1

ξ

)]∣∣∣∣
d→e+l

(6.11)
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When h → h − d = 1 − c, the solution (6.11) is well de�ned, since the
Γ(h − d) sinπ(h − d) in the denominator is not divergent. Besides, the hy-
pergeometric series resulting in the calculation of the limit in the right hand
side of (6.11) will be truncating, which permit to satisfy the problem con-
straint. All these considerations are the reasons why we started from a
solution in the neighbourhood of 1 of the form (6.9) (other solutions would
be non-truncating or divergent). The result for Equation (6.11), in the limit
d→ e+ l, is:

2U1 = ξ−d log

(
1

ξ

)
2F1

(
d, d+ 1− h|1 + l|1

ξ

)
+

ξ−d
∞∑
k=0

(d)k(d+ 1− h)k
k!(1 + l)k

[Ψ(d+ k) + Ψ(d+ 1− h+ k)−Ψ(1 + l + k)−Ψ(1 + k)]

(
1

ξ

)k
+

ξ−e
l!

(1− d)l(h− d)l

l−1∑
k=0

(−1)1+l−k (e)k(e+ 1− h)k
k!

Γ(l − k)

(
1

ξ

)k
−

l!

Γ(1− l)
1

(1− d)l(h− d)l

[
sinπ(e) sinπ(h− e)
sinπ(d) sinπ(h− d)

]′
ξ−e

∞∑
k=0

(e)k(e+ 1− h)k
k!(1− l)k

(
1

ξ

)k
(6.12)

where (d)n = Γ(d+n)
Γ(d) , and Ψ is the logarithmic derivative of the Γ function.

The details of calculations follow the derivation in [Andrews et al., 1999] for
a logarithmic point at the origin, starting from the expressions of 2F1 given
in Equation (6.7), and considering the properties of the Γ function, and the
fact that [Andrews et al., 1999]:

lim
d−e→l

Γ
′
(1 + e− d+ k)

[Γ(1 + e− d+ k)]2
= (−1)l−kΓ(l − k).

The prime apex in the last term corresponds to the derivative of the function
in the square bracket with respect to e− d, for d→ e+ l. Note that in our
case h−d−e = 0, so this term vanishes. Now consider the following solution
of (6.6) in the neighbourhood of ∞:

fI(ξ) =(−1)l+1l!
Γ(e+ 1− h)

Γ(1 + d− e)
Γ(d)Γ(h− e) sinπ(h− e)

Γ(h− d) sinπ(h− d)
e−iπe·

(−ξ)−d 2F1

(
d, d+ 1− h|d+ 1− e|1

ξ

) (6.13)

This solution is well de�ned, and is valid for ξ > 1. In ξ = 1 it blows
up. In order to obtain an analytic continuation of fI valid in the point
ξ = 1 ↔ χ = 0, we apply Pfa� transformation (6.8) to fI (the same results
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would be obtained by searching for the proper analytic continuations of the
hypergeometric functions inside the square brackets in Equation (6.11)), and
obtain:

fI(ξ) =

{
(−1)l+1l!

Γ(e+ 1− h)

Γ(1 + d− e)
Γ(d)Γ(h− e) sinπ(h− e)

Γ(h− d) sinπ(h− d)
·

1

(1− ξ)d−e 2F1

(
d, h− e|d+ 1− e| 1

1− ξ

)}
(ξ − 1)−e

(6.14)

The term in the brace bracket corresponds to the 2U1 function de�ned in
Equation (6.11), with the substitutions:

d −→ h− d; ξ −→ ξ

ξ − 1

This de�nes the desired analytic continuation. Expressing the 2U1 function
as in Equation (6.12), with the previous substitutions, and noting that:

(ξ − 1)−e
(

ξ

ξ − 1

)d−h
= ξd−h,

since h−d− e = 0, we obtain the solution (after the change of variable (6.2)
ξ = 1 + χ2):

fI(χ) = (1 + χ2)d−h log

(
χ2

1 + χ2

)
2F1

(
h− d, 1− d|1| χ2

1 + χ2

)
+

(1 + χ2)d−h
n∑
k=0

(h− d)k(1− d)k
k!k!

[Ψ(1 + n− k) + Ψ(1− d+ k)− 2Ψ(1 + k)]

(
χ2

1 + χ2

)k
+

(1 + χ2)d−h(−1)nn!
∞∑

k=n+1

(k − n− 1)!(1− d)k
k!k!

(
χ2

1 + χ2

)k
(6.15)

where n = d− h = c− 1, with c ∈ N > 0. Note that, since h− d = −n, the
hypergeometric function comparing in (6.15) is truncating to a polynomial
of degree n. The terms:

(1 + χ2)d−h
n∑
k=0

(h− d)k(1− d)k
k!k!

[Ψ(1 + n− k)]

(
χ2

1 + χ2

)k
+

(1 + χ2)d−h(−1)nn!

∞∑
k=n+1

(k − n− 1)!(1− d)k
k!k!

(
χ2

1 + χ2

)k
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are obtained by �rst subtracting a term Ψ(h− d) 2F1

(
h− d, 1− d|1| χ

2

1+χ2

)
to the second term in Equation (6.12) (with d → h − d and the variable
substitution), in order to avoid the divergence in the term containing the
factor Ψ(−n+ k), and noting that [Bateman, 1953]

lim
h−d→−n

(h−d)kΨ(1 +d−h−k) = (−1)nn!(k−n−1)! for k ≥ n+ 1

This term is erroneously omitted in the calculations reported in [Andrews et al., 1999].
The last series in Equation (6.15) is uniformly convergent for all the real
values of χ, since its argument is always < 1 on the real line. This is a con-
sequence of the chosen analytic continuation. This series can be calculated
by standard methods in complex analysis [Bateman, 1953]. We choose the
other solution fII(χ), linearly indipendent from fI , to be:

fII(χ) = 2F1(d, e|h|1 + χ2)

Note that, since e = 1 − c = −n, this is a polynomial of degree n. The
general solution of Equation (6.1), in the case c ∈ N > 0 odd, is thus:

f(χ) = AfI(χ) +BfII(χ) (6.16)

with A,B constants. In the special case of c = 1, h − d = 0, d = −1/2,
e = 0, h = −1/2, and the general solution is:

f(χ) =A

[
log

χ2

1 + χ2
+

∞∑
k=1

(3/2)k
k!k

(
χ2

1 + χ2

)k]
+B =

A

[
log

χ2

1 + χ2
− 2
√

1 + χ2

{
1√

1 + χ2
+

1√
1 + χ2

log

[
1

2

(
1√

1 + χ2
+ 1

)]
− 1

}]
+B =

A
[√

1 + χ2 + logχ− log(1 +
√

1 + χ2)
]

+B

(6.17)

where we have renamed the constants A and B. It's easy to see, by direct
substitution, that Equation (6.17) is a solution of Equation (6.1) with c = 1.
For c = 1, 3, 5, · · · , 2n + 1, Equations (6.15) and (6.16) gives polynomials
terms of degree 4n, since e = 1 − c = −2n, plus terms proportional to
logχ, χ2 logχ, · · ·χ4n logχ, plus analogous terms containing

√
1 + χ2.

Let us consider now the case of c ∈ N > 0 even. In this case, for c = 2n,
d = −n, e = 1 − 2n, h = 1 − 3n, h − d = 1 − 2n , h − e = −n. The
solutions and analytic continuations in Equations (6.9), (6.11) and (6.13)
contains divergent terms and cannot be used. The monodromy group is a
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non-trivial subgroup of the additive group in C, the points ξ = 1 and ξ =∞
are logarithmic points, whereas the point ξ is not logarithmic(due to the
truncating properties of the hypergeometric series). In this case it's possible
to choose a power series solution at the origin, and express it in a valid
analytic continuation as a combination of linearly independent solutions near
the point 1, which contains a logarithmic term. Let us de�ne the logarithmic
solution at ξ = 1 of the Equation (6.6) as the function:

2u1 = (−1)m+1m!
Γ(d+ 1− h)Γ(e+ 1− h)

Γ(2− h)

sinπd sinπe

sinπ(h− d) sinπ(h− e)
·

ξ1−h
2F1(d+ 1− h, e+ 1− h|2− h|ξ) =

m!

Γ(h− d)Γ(h− e)
∂

∂(h− e− d)

[
2F1

(
d, e|d+ e+ 1− h|1− ξ

)
−

sinπd sinπe

sinπ(h− d) sinπ(h− e)
eiπd(ξ − 1)h−d−e·

2F1

(
h− d, h− e|h+ 1− d− e|1− ξ

)]∣∣∣∣
(h−e−d)→m

(6.18)

where h − e − d = m = 0 in our case. We have introduced in (6.18) the
factor eiπd in order to have real solutions in the variable χ. Note that, since
the variable ξ tends to 1 from above (when χ → 0), formula (6.18) should
be written in the variable ξ − 1 around the point 1. Our procedure is valid
anyway for c ∈ N even. Solution 2u1 contains no divergent term and is well
de�ned. The result for Equation (6.18), in the limit h− d− e→ m, is:

2u1 =

m!

(1 + e− h)m(1 + d− h)m

m−1∑
k=0

(−1)m−k
(d)k(e)k

k!
Γ(m− k)

(
1− ξ

)k
+

(1− ξ)m
∞∑
k=0

(d+m)k(e+m)k
k!(1 +m)k

[Ψ(1 + k) + Ψ(1 +m+ k)]
(
1− ξ

)k−
log
(
ξ − 1

)
(1− ξ)m 2F1

(
d+m, e+m|1 +m|1− ξ

)
−

n∑
k=0

(d+m)k(e+m)k
k!(1 +m)k

Ψ(1 + n− k)
(
1− ξ

)k − 2n−1∑
k=0

(d+m)k(e+m)k
k!(1 +m)k

Ψ(2n− k)
(
1− ξ

)k−
2n−1∑
k=n+1

(−1)nn!(k − n− 1)!
(1− 2n)k
k!(1 +m)k

(
1− ξ

)k−
∞∑

k=2n

(−1)2n−1(2n− 1)!(k − 2n)!
(−n)k

k!(1 +m)k

(
1− ξ

)k
(6.19)
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where h − d − e = m, c = 2n. The same passages as those described
for the case c ∈ N odd have been applied here. The �rst term on the
right hand side of Equation (6.19) is not present, since m = 0. The second
term is a truncating series, since d + m = −n and e + m = 1 − 2n. The
hypergeometric function in the third term truncates to a polynomial of degree
n in the variable 1 − ξ. The second sum in the fourth term vanishes for
n + 1 ≤ k ≤ 2n. Finally, the last series vanishes. We have seen that all
the terms are truncating to polynomials, so that no problems of convergence
impose. We identify the general solution of (6.1), in the case c ∈ N even, to
be (with the substitution ξ = 1 + χ2):

f(χ) = A 2u1(1 + χ2) +B 2F1(d, e|d+ e+ 1− h| − χ2) (6.20)

Let us specify to the case n = 1. In this case d = e = −1, and:

(−1)k
k!

(−1)k
k!

=

(
1

k

)(
1

k

)
The solution (6.20) is thus:

f(χ) =A

{ 1∑
k=0

(
1

k

)(
1

k

)[
2Ψ(1 + k)− 2Ψ(2− k)

]
(−χ2)k − log

(
χ2
)

2F1

(
−1,−1|1| − χ2

)}
+

B
{

2F1(−1,−1|1| − χ2)
}

=

A
{
−2 +

(
1− χ2

)
− log(χ) + χ2 log(χ)

}
+B

{
1− χ2

}
(6.21)

It's easy to see, by direct substitution, that Equation (6.21) is a solution
of Equation (6.1) with c = 2. For c = 2, 4, 6, · · · , 2n, Equations (6.19)
and (6.20) gives polynomials terms of degree 2n, since d = −n, plus terms
proportional to logχ, χ2 logχ, · · ·χ2n logχ.

Let us now consider a form for the eddy viscosity according to the Prandtl
prescription for free-shear layer problems (valid for Region 1):

νT = U∞δ1(z)

We said in Section 4.1 that this prescription leads to unusual boundary
value problems, which now will be shown. Inserting this form for the eddy
viscosity, together with the same changes of variables as those introduced in
Table 17, into Equation (4.2), we obtain:

H2f
′′
1 + δ1δ

′
1

g
′
1

g1
f1 + δ2

1

g
′′
1

g1
f1− δ1δ

′′
1η1f

′
1− 2δ1δ

′
1

g
′
1

g1
η1f

′
1 + δ

′2
1 η1f

′
1 + δ

′2
1 η

2
1f
′′
1 = 0

(6.22)
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A separated solution exists if: 
δ1 = a1ζ1

g1 = ζ

b1
a21
1

(6.23)

with a1 and b1 suitable constants, to be determined from the matching proce-
dure and as eigenvalues of the boundary problem respectively. The equation
for f1 becomes:(

1 +
a2

1η
2
1

H2

)
f
′′
1 +

(
a2

1

H2
− 2

b1
H2

)
η1f

′
1 +

1

H2

b21
a2

1

f1 = 0 (6.24)

Equation (6.24) is valid for each fi, i = 1, . . . , 4, with constants {ai, bi}, i =
1, . . . , 4, and with the substitution H → W

2 from regions 1 and 4 to regions
2 and 3, if equation (6.23) is valid for each gi, i = 1, . . . , 4. It can be written
in the form: (

1 + ξ2
)
f
′′

+ (1− 2c)ξf
′
+ c2f = 0 (6.25)

where:

ξ =
a1η1

H
=

W

2H
η1 , c =

b1
a2

1

=
4b1
W 2

Equation (6.25) is a Gegenbauer equation with imaginary argument, i.e. a
Fuchsian equation with three regular singular points at {±i, i∞} and par-
ticular conditions on the characteristic exponents [Morse, Feshbach, 1953].
Let us introduce the change of variable:

ξ = iχ (6.26)

and represent the solution in term of the Riemann symbol [Morse, Feshbach, 1953]:

f(χ) = P


−1 1 ∞
0 0 −c χ

1+2c
2

1+2c
2 −c

 (6.27)

We recall the fact that the di�erence between the exponents corresponding to
a singular point is an integer, the monodromy group generated by analytic
continuation of the solution along closed paths around the singular point
is isomorphic to the additive group in C, and one of the two linearly in-
dipendent solutions in the neighborhood of the point contains a logarithmic
term. Omographic transformations of the indipendent variables are symme-
tries of the Riemann symbol, which induce a transformation of the singular
points without changing the monodromy group of the equation. Two lin-
early indipendent solutions near one of the points ±1 for the symbol (6.27)
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are Gegenbauer functions of the �rst and second kind T βα and V β
α , with

α = c; β = −(1+2c
2 ). When α is an integer and β is not, the T series

solutions truncate to Gegenbauer polynomials, and the V solutions have
branch points at ±1. When β is an integer, the T solutions are proportional
to derivative of Legendre functions of the �rst kind, which has logarithmic
singularities in one of the two points ∓1. The V solution is proportional
to derivatives of Legendre functions of the second kind, which have loga-
rithmic singularities at both points ±1 [Morse, Feshbach, 1953]. All these
considerations are not useful now, because we need logarithmic divergence
of the solution near the origin, which is a regular point of the equation
(6.27). The usual way of writing the Gegenbauer solutions in terms of 1

χ2

[Morse, Feshbach, 1953] in order to see their behaviour for imaginary argu-
ments are not useful here. It is not guaranteed that such a solution exists, as
we are searching a particular form of the solution in the region of oscillation
of solutions of a Sturm-Liouville problem: it may be that the spectrum of
eigenvalues for the particular boundary value problem is empty or collapse
to a �nite set of points. We start from the identities:

f(χ) = P


−1 1 ∞
0 0 −c χ

1+2c
2

1+2c
2 −c

 = P


0 1 ∞
0 0 −c 1−χ

2
1+2c

2
1+2c

2 −c


= P


0 1 ∞
0 0 − c

2 1− χ2

1+2c
2

1
2 − c

2


(6.28)

The second symbol corresponds to a solution of the hypergeometric equation
with argument 1−χ

2 , whereas the third to a solution of the hypergeometric
equation with argument 1−χ2. The second identity is obtained by taking the
change of variable 1−χ

2 → 41−χ
2

(
1− 1−χ

2

)
in the hypergeometric equation to

which the second symbol is associated, and noting that, due to the particular
form of the exponents of the singular points, the terms containing square root
of variables disappears. We note that in the third symbol the point χ = 0
corresponds to the singular point 1−χ2 = 1 of the associated hypergeometric
equation. The quadratic transformation introduced has conformally changed
the base space of the fundamental group associated to the original equation,
by concentrating the two singular points ±1 into one and introducing a new
singular point at the origin with a di�erent monodromy group. We have now
to search a solution with logarithmic divergence for χ→ 0, which converges
uniformly for suitable intervals of variation of the variables, and which is
real when expressed in terms of the original variable ξ. There are two ways
of doing this:

• to express the solution represented by the third symbol in (6.28) around
the point 1 in terms of two linearly indipendent solutions around the
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point ∞. One of the two indipendent solutions at the point ∞ must
contain a logarithmic term, as the di�erence between the exponents
relative to that point is zero;

• to express the solution represented by the third symbol in (6.28) around
the point 1 in terms of two linearly indipendent solutions around the
point 0, and impose that 1+2c

2 be an integer > 0 (in order to match
condition (4.12)).

We choose here to follow the second procedure, as the �rst one gives condi-
tions on the eigenvalues incompatible with condition (4.12). Let us introduce
the variable 1− χ2 = φ and the symbol:

P


0 1 ∞
0 0 d φ

1− h h− d− e e

 (6.29)

When d = e = − c
2 ; h = 1−2c

2 this corresponds to the third symbol in (6.28).
A series solution of (6.29) valid for |φ| < 1 is the Gauss hypergeometric
function.

Let us express one of the solution in the neighbourhood of 1 in (6.29)
through an analytical continuation as a combination of the two solutions
around the origin [Bateman, 1953]:

2F1(d, e|1 + d+ e− h|1− φ) =

Γ(1 + d+ e− h)Γ(1− h)

Γ(d+ 1− h)Γ(e+ 1− h)
2F1

(
d, e|h|φ

)
+

Γ(1 + d+ e− h)Γ(h− 1)

Γ(d)Γ(e)
(φ)1−h

2F1

(
d+ 1− h, e+ 1− h|2− h|φ

) (6.30)

If 1 − h = m ∈ Z one (or both) of the terms on the right blows up (the
solution contains a logarithmic term). By considering the identity for the
Γ function: Γ(z)Γ(1 − z) = π

sin(πz) , we arrive, after a little algebra, to the
identity:

2F1(d, e|1 + d+ e− h|1− φ) =
π

sin(πh)

1

Γ(d+ 1− h)Γ(e+ 1− h)
·[

2F1

(
d, e|h|φ

)
− (φ)1−h

2F1

(
d+ 1− h, e+ 1− h|2− h|φ

)] (6.31)

The two terms on the right hand side of (6.30) are not linearly indipen-
dent solutions at the origin if h = 1 + m ∈ Z. We impose this condition.
The second term in (6.31) is thus an indeterminate form 0

0 , and its limit for
h → 1 + m, calculated by means of De L'Hopital theorem, gives a second
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linearly indipendent solutions at the point with a logarithmic term. Let us
de�ne the logarithmic solution at the origin as the function:

2U1 = (−1)n+1n!
Γ(d+ 1− h)Γ(e+ 1− h)

Γ(1 + d+ e− h)
2F1(d, e|1 + d+ e− h|1− φ)

=
1

n!Γ(d)Γ(e)

∂

∂h

[
2F1

(
d, e|h|φ

)
− (φ)1−h

2F1

(
1 + d− h, 1 + e− h|2− h|φ

)]∣∣∣∣
h→1+m

(6.32)

We now recall equation (6.28) and condition (4.12): a physical imposition
on the eigenvalues is that c > 0; so we have 1− h = 1

2 + c > 0. Let us now
call 1 − h = n, n ≥ 1, n ∈ Z. As a consequence, h = 1 − n ∈ Z≤0. The
eigenvalues are c = n− 1

2 = 1
2 ,

3
2 , . . . . The result for equation (6.32), for the

limit h→ 1− n, is:

2U1 =(d)n(e)nφ
n lnφ 2F1

(
d+ n, e+ n|1 + n|φ

)
+ n!

n−1∑
k=0

(−1)1+n−k (d)k(e)k
k!

Γ(n− k)φk+

(d)n(e)nφ
n
∞∑
k=0

(d+ n)k(e+ n)k
k!(1 + n)k

[Ψ(d+ n+ k) + Ψ(e+ n+ k)−Ψ(n+ k + 1)−Ψ(k + 1)]φk

(6.33)

where (d)n = Γ(d+n)
Γ(d) , and Ψ is the logarithmic derivative of the Γ function.

The last series is convergent for |φ| ≤ 1.
Now we express the 2F1 function contained in the de�nition of 2U1 (for

1 − h = n), expressed in a neighbourhood of 1, as a suitable linear combi-
nation of two local solutions in the other singular points of the equation (we
choose the �rst of such 20 relations reported in [Bateman, 1953]), obtaining,
after a little algebra:

2U1 = −1n+1n!
Γ(d+ 1− h)Γ(1− e)

Γ(d+ 1− e)
(−φ)−d 2F1

(
d, d+ 1− h|d+ 1− e| 1

φ

)
− n!π

e−iπe

sin(πe)Γ(h)
2F1(d, e|h|φ)

(6.34)

A �rst approach to �nd a solution which goes to zero logarithmically when
φ = 1−χ2 is the following. Take the change φ→ φ−1 in the identity (6.34).
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Then we have:

2U1 = (−1)n+1n!
Γ(d+ 1− h)Γ(e+ 1− h)

Γ(1 + d+ e− h)
2F1(d, e|1 + d+ e− h|2− φ)

= −1n+1n!
Γ(d+ 1− h)Γ(1− e)

Γ(d+ 1− e)
(1− φ)−d 2F1

(
d, d+ 1− h|d+ 1− e| 1

φ− 1

)
− n!π

e−iπe

sin(πe)Γ(h)
2F1(d, e|h|φ− 1)

(6.35)

The 2U1 written in (6.35) is a solution for the equation in question with
a singular poin at 2. Now apply the Pfa� transformation to the �rst term
in the second line:

2U1 = (−1)n+1n!
Γ(d+ 1− h)Γ(e+ 1− h)

Γ(1 + d+ e− h)
2F1(d, e|1 + d+ e− h|2− φ)

= −1n+1n!
Γ(d+ 1− h)Γ(1− e)

Γ(d+ 1− e)
(1− φ)−d

(
2− φ
1− φ

)−d
2F1

(
d, h− e|d+ 1− e| 1

2− φ

)
− n!π

e−iπe

sin(πe)Γ(h)
2F1(d, e|h|φ− 1)

(6.36)

The hypergeometric function in the second line of equation (6.36), with its
constant of multiplication, corresponds to the 2U1 with e → h − e and
φ→ 1−φ

2−φ , so we obtain:

2U1 = (1− φ)−d
(

2− φ
1− φ

)−d{
(d)n(h− e)n

(
1− φ
2− φ

)n
ln

(
1− φ
2− φ

)
2F1

(
d+ n, h− e+ n|1 + n|1− φ

2− φ
)

+ n!

n−1∑
k=0

(−1)1+n−k (d)k(h− e)k
k!

Γ(n− k)

(
1− φ
2− φ

)k
+ (d)n(h− e)n

(
1− φ
2− φ

)n
·

∞∑
k=0

(d+ n)k(h− e+ n)k
k!(1 + n)k

[Ψ(d+ n+ k) + Ψ(h− e+ n+ k)−Ψ(n+ k + 1)−Ψ(k + 1)]

(
1− φ
2− φ

)n}
− n!π

e−iπe

sin(πe)Γ(h)
2F1(d, e|h|φ− 1)

(6.37)

For n ≥ 1 we have a complete set of solutions, and the general solution can be
given by a linear superposition of these base solutions. We don't go further
in the treatment of this solution: by substituting φ = 1 − χ2 we obtain
uniformly convergent series on all the values of the variable. Remembering
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that ξ = iχ, these series diverge on the real axis. Besides this, the behaviour
at the origin is not logarithmic, but has to be matched with higher order
terms of the perturbation expansion of the viscous solution.

We proceed now to �nd another solution with logarithmic behaviour
at the origin. Let's start from identity (6.34), written for a solution of
our hypergeometric equation (6.29) with the translation of singular point
1→ −1. It's easy to see that this is a solution of our original equation if we
set h→ −h and change the variable φ→ −φ.

2U1 = (−1)n+1n!
Γ(d+ 1 + h)Γ(e+ 1 + h)

Γ(1 + d+ e+ h)
2F1(d, e|1 + d+ e+ h| − 1 + φ)

= −(1)n+1n!
Γ(d+ 1 + h)Γ(1− e)

Γ(d+ 1− e)
(φ)−d 2F1

(
d, d+ 1 + h|d+ 1− e| − 1

φ

)
− n!π

e−iπe

sin(πe)Γ(−h)
2F1(d, e|−h| − φ)

(6.38)

Take the change φ→ φ− 1 in the identity (6.38). Then we have:

2U1 = (−1)n+1n!
Γ(d+ 1 + h)Γ(e+ 1 + h)

Γ(1 + d+ e+ h)
2F1(d, e|1 + d+ e+ h| − 2 + φ)

= −(1)n+1n!
Γ(d+ 1 + h)Γ(1− e)

Γ(d+ 1− e)
(φ− 1)−d 2F1

(
d, d+ 1 + h|d+ 1− e| 1

1− φ

)
− n!π

e−iπe

sin(πe)Γ(−h)
2F1(d, e|−h|1− φ)

(6.39)

Now send φ → 2φ and h → 2h, in order for 2U1 to be a solution of the
original hypergeometric equation, and apply the Pfa� transformation to the
�rst term in the second line:

2U1 = (−1)n+1n!
Γ(d+ 1 + 2h)Γ(1− e)

Γ(1 + d− e)
e−iπd(2φ− 1)−d

2φ−d

(2φ− 1)−d
2F1(d,−2h− e|1 + d− e| 1

2φ
)

− n!π
e−iπe

sin(πe)Γ(−2h)
2F1(d, e|−2h|1− 2φ)

(6.40)

The complex exponential factors can be absorbed in the de�nition of the
solution 2U1, as in our original case d = e. The hypergeometric function
in the �rst line of equation (6.40) (sending 2φ → φ and 2h → h), with its
constant of multiplication, corresponds to the 2U1 with e → −h − e and
φ → φ−1

φ . Recall that h = 1 − n, with n ≥ 1. Now we have −h = n − 1,

270



so −h = 0, 1, 2, . . . . When −h = 0 we can apply the result (6.33). We have
already seen that in this case the solution has a φ2 lnφ2 local behaviour, so
it can be used to obtain a matching with the second order solution of the
viscous case. When −h ≥ 1 we have the result:

2U1 = φ−d
{

2F1

(
d, e|n− 1|φ− 1

φ

)
ln

(
φ− 1

φ

)
+

(
φ− 1

φ

)2−n n−3∑
k=0

(−1)n−2−k (d+ 2− n)k(e+ 2− n)k
k!

Γ(n− 2− k)

(
φ− 1

φ

)k
+

∞∑
k=0

(d)k(e)k
k!(n− 1)k

[Ψ(d+ k) + Ψ(e+ k)−Ψ(n− 1 + k)−Ψ(k + 1)]

(
φ− 1

φ

)k}
− n!

π

sin(πe)Γ(n− 1)
2F1(d, e|n− 1|1− φ)

(6.41)

To have a logarithmic behaviour at the origin, it is necessary to have the
condition:

1 + h = 2− n = 0 −→ n = 2 −→ c = n− 1

2
=

3

2
(6.42)

For n ≥ 3 the �nite sums in (6.41) give divergent terms in 1
ξ (when the

substitution has been done). Solutions for eigenvalues n < 2 would be useful
to extend the matching with higher orders viscous solutions, and to obtain
uniformly convergent solutions on the domain. Such a procedure should
help to set up an expansion law for the eddy di�usivity near the walls of
the canyon as a power series in y+, as done previously for the case of the
application of the Prandtl mixing-length hypothesis to the modelization of
the eddy viscosity. Unfortunately, wake solutions for n < 1 are not physical.
We now set n = 2, c = 3

2 → d = e = −3
4 , φ = 1 + ξ2 into equation (6.41):

2U1 = [2(1 + ξ2)]3/4
Γ(−7/4)

Γ(−3/4)

{
2F1

(
−3

4
,−3

4
|1| ξ2

1 + ξ2

)
ln

(
ξ2

1 + ξ2

)
+

∞∑
k=0

(−3
4)k(−3

4)k

k!k + 1!

[
2Ψ

(
−3

4
+ k

)
−Ψ(2 + k)−Ψ(1 + k)

](
ξ2

1 + ξ2

)k}
+

4√
2
π 2F1

(
−3

4
,−3

4
|2| − 1− 2ξ2

)
(6.43)

The last hypergeometric function is uniformly convergent for −1− 2ξ2 ≤ 1.
Remembering that ξ = W

2H η1 in region 1 and ξ = 2H
W ζ2 in region 2, we

see that this last term must be analytically continued through the Pfa�
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transformation in order to be valid for both the regions on the whole real
line, unless W = 2H. We set the general solution as:

f(ξ) =K1

[
2(1 + ξ2)

3
4

Γ(−7/4)

Γ(−3/4)

{
2F1

(
−3

4
,−3

4
|1| ξ2

1 + ξ2

)
ln

(
ξ2

1 + ξ2

)
+
∞∑
k=0

(−3
4)k(−3

4)k

k!k + 1!

[
2Ψ

(
−3

4
+ k

)
−Ψ(2 + k)−Ψ(k + 1)

](
ξ2

1 + ξ2

)k}
+

4√
2
π[2(1 + ξ2)]

3
4 2F1

(
−3

4
,
11

4
|2|1 + 2ξ2

2 + 2ξ2

)]
+

K2

[
(1 + ξ2)

3
4 2F1

(
−3

4
,
5

4
|1| 1

1 + ξ2

)]
= K1fI(ξ) +K2fII(ξ)

(6.44)

which is uniformly valid on all the real line. The matching with the law of
the wall must be imposed. This is a general form for the solution of the
Turbulence model with a Prandtl prescription for free-shear layer. It cannot
be expressed in a closed form. We have found that this form is also important
for a possible extension of the canyon solution to an analytic form for the
case of a freestream wind with arbitrary angle with respect to the street axis,
whose treatment will be studied in future investigations.
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