Abstract

Renalase is a flavoprotein recently discovered in humans, which is ubiquitous in vertebrates and conserved in some other phyla. In 2005, it was identified within a project aimed to determine novel proteins secreted by the kidney, whose defect could explain the high incidence of cardiovascular complications in patients with chronic kidney disease (Xu et al., 2005). The protein is preferentially expressed in the renal proximal tubules and heart, and it’s secreted in blood and urine.

Genetic, epidemiological, clinical studies and animal experimental models have constantly accumulated evidence of the important role played by renalase in lowering blood pressure, decreasing the catecholaminergic tone and control heart function. A renalase knockout mouse model resulted in increased levels of catecholamines in plasma and heart, cardiac ischemia and myocardial necrosis more severe than WT littermates (Wu et al., 2011). However, the possible molecular mechanism, the nature of the in vivo catalyzed reaction and the identity of renalase substrate(s) are still unclear.

Based on these premises, the main aim of the project was to provide a detailed biochemical and structural characterization of renalase in order to better elucidate its physiological function.

We solved the crystallographic structure of recombinant human renalase at 2.5 Å resolution. The general fold classified it as a member of the p-hydroxybenzoate hydroxylase family. Renalase contains non-covalently bound FAD with redox features suggestive of a oxidase or NAD(P)H-dependent monooxygenase activity (Milani et al., 2011), in contrast with the proposed activity of catecholamine degradation via a superoxide (O$_2^-$)-dependent mechanism (Farzaneh-Far et al., 2010). Furthermore, structural
evidence indicates that the proposed secretion signal of renalase could not be cleaved without disrupting the protein native conformation, suggesting that renalase trafficking occurs through an atypical secretory pathway. The resolution of renalase crystallographic structure and the biochemical data available will hopefully provide the basis towards the understanding of the molecular mechanism of renalase physiological action, which is expected to favor the development of novel therapeutic tools for the treatment of kidney and cardiovascular diseases.

During the PhD program, I was also involved in a side project focused on the elucidation of the role of Y258 residue of *P. falciparum* Ferredoxin-NADP+ reductase (PfFNR) in the control of NADPH specificity. PfFNR is a FAD-containing enzyme able to promote the transfer of two electrons from NADPH to ferredoxin and represents a promising target of novel antimalarial drugs. Rapid reactions kinetics, active site titrations with NADP+ and anaerobic photoreduction experiments allowed us to conclude that the Y258 side chain favors the stabilization of the catalytically competent conformation of the MNM moiety of NADPH, enhancing the hydride transfer between the nicotinamide nucleotide and the FAD prosthetic group. The almost complete abolishment of NADPH selectivity has never been accomplished before through a single mutation.
State of the Art

Discovery of renalase

In 2005, the research group of G.V. Desir at the Yale University reported the identification of a putative novel flavin adenine dinucleotide-dependent amine oxidase (renalase) that was proposed to be secreted into the blood by the kidney, to regulate blood pressure and to metabolize in vitro catecholamines (Xu et al., 2005).

Kidney disease is one of the major pathologies that severely threaten people’s health. The incidence of chronic kidney disease (CKD) is increasing all over the world (Levey et al., 2003), and it’s well documented that patients with end-stage renal disease (ESRD) are at significantly higher risk for developing cardiovascular complications (Park, 2012).

In addition to maintaining fluid and electrolyte homeostasis, the kidney also serves as endocrine organ and is, for example, the main source of erythropoietin and renin.

In order to identify novel proteins secreted by the kidney with important biological roles, Desir and coauthors analyzed all the cDNA clones published by the Mammalian Gene Collection Project (MGC) (Strausberg et al., 1999) screening in silico for proteins predicted to possess the following three features:

1. protein with less than 20% sequence similarity to known proteins
2. presence of a signal peptide
3. lack of transmembrane domains
This *a priori* selection yielded a total of 114 candidate genes derived from 12,563 distinct open reading frames considered. For each gene, Northern blot analysis were then performed to assess its tissue expression pattern and one clone was found with robust and preferential expression in human kidney (MGC12474; GenBank accession number BC005364) (Figure 1) encoding a protein with a calculated molecular mass of 37.8 kDa.

Renalase gene

Human renalase gene (gene symbol: *RNLS*) resides on chromosome 10 at q23.33, encompassed 309,469 base pairs and has 10 exons. There is evidence for the existence of at least four alternatively spliced isoforms (Desir, 2009). The most highly expressed isoform (renalase1, NP_001026879) is 342 aa long, encoded by exons 1-4, 6-7 and 9. The second annotated protein isoform (renalase2, NP_060833) is 315 aa long,
encoded by exons 1-4, 6-7 and 10, thus differing from renalase1 at the extreme carboxy terminus. The other two characterized RNLS transcripts (AK296262 and BX648154) encode shorter deduced polypeptides (232 and 138 aa, respectively). The functional significance of the spliced isoforms is still not known.

The analysis of the renalase1 deduced amino acid sequence revealed the presence of a N-terminal signal peptide (SP) for the secretion (1-17 aa) and a dinucleotide binding motif (4-35 aa), which are partially overlapped. Renalase and flavoprotein-type monoamine oxidases share low degree of sequence identity (about 17%) concentrated in their N-terminal regions (Figure 2) (Desir, 2009). Renalase1 was detected in plasma, kidney, heart, skeletal muscle and liver, and efficiently secreted in the culture medium by transfected mammalian cells (Xu et al., 2005).

In 2008, the renalase homologous gene of mouse was cloned and characterized. Mouse renalase gene (DQ788834), isolated by RT-PCR from mouse kidney, shared 72% identity in amino acid sequence compared with the human counterpart (Wang et al., 2008). Sequence analysis of the gene suggested that the coding region has an ORF encoding a protein of 342 aa with a predicted molecular mass of 37.6 kDa. The deduced protein sequence

Figure 2. Functional domains of renalase isoforms 1-4 (Desir, 2009).
presented a SP, a FAD binding motif and low identity with monoamine oxidases as the human renalase.

The renalase gene and its main protein product are highly conserved in vertebrates, with amino acid sequence identity above 60% (Xu et al., 2007; Milani et al., 2011) (Figure 3). Renalase-like proteins are present in some invertebrates, plants, fungi and prokaryotes. Furthermore, renalase revealed less than 14% amino acid identity with well-known monoamine oxidase A (Xu et al., 2005).
Figure 3. Amino acid sequence of human renalase (Milani et al., 2011). Multiple alignment of human renalase with orthologs from different organisms: *Mus musculus* (110671808; 72% identity), *Danio rerio* (50540280; 60% identity), *Acyrthosiphon pisum* (193575653; 34% identity) and *Cyanothece* sp. (307154671; 28% identity. Partially conserved residues are boxed, with invariant residues highlighted in red.
Renalase expression pattern

In the most comprehensive study on the pattern of RNLS expression (Hennebry et al., 2010), the authors investigated by immunoblotting the renalase distribution in autoptic human tissues that have earlier been shown to express MAO-A and B. In addition to kidney and myocardium (Xu et al., 2005), renalase was found in forearm vein and artery, renal vein and artery, ureter, hypothalamus, pons, medulla oblongata, cerebellum, pituitary gland, cortex and spinal cord. Immunolocalization studies, performed with anti-renalase monoclonal antibodies, confirmed that renalase is expressed in renal proximal tubules (Wang et al., 2012) (Figure 4).

![Figure 4. Immunofluorescence testing of renalase expression in renal tissue (Wang et al., 2012). Left: renalase expressed in renal proximal tubules (Anti-renalase monoclonal antibody was used as primary antibody) (400X); right: renal proximal tubules negative control (PBS was used as control) (400X).](image)

Renalase was detected in blood plasma and urine of healthy individuals (Xu et al., 2005; Li et al., 2008). However, data on the absolute concentration of renalase in human blood plasma have been explicitly reported only recently as determined by ELISA, showing that it’s about 4 µg/ml (Malyszko et al., 2011).
The expression gene pattern of renalase homologue from mouse, defined by semiquantity RT-PCR, revealed the gene was predominantly expressed in kidney and testicle, followed by liver, heart, embryo (12.5 days) and very weakly detectable in brain and skeletal muscle (Wang et al., 2008).

Cardiovascular complications in Chronic Kidney Disease

Chronic kidney disease is a progressive loss in renal function over a period of months or years; frequently clinically silent in the early stages, being detected shortly before when the impact of available therapies is markedly reduced (O’Seaghdha et al., 2012). The clinical and public health importance of CKD is highlighted by several statistical analysis on the human population. In 2004, *National Kidney Foundation* defined the general criteria of CKD stages (Figure 5) considering an estimate glomerular filtration rate (GFR) below 60 ml/min/1.73 m², or evidence of structural kidney damage, such as proteinuria, or the requiring of renal replacement therapy (Cockcroft et al., 1976; Levey et al., 2003; Go et al., 2006).

Clinical studies indicated that patients with either stage 3 through 5 CKD or end-stage renal disease (ESRD, sometimes considered as a subclass of CKD stage 5) receiving renal replacement therapy are at significantly higher risk for developing cardiovascular diseases (Go et al., 2004; Li et al., 2008; Rodriguez et al., 2010). This increased propensity for cardiovascular events appeared to correlate with extensive arterial calcification, increased oxidative stress (Oberg et al., 2004) and a heightened sympathetic tone (Koomans et al., 2004; Joles et al., 2004).
Interestingly, renalase was clearly detected in plasma of healthy individuals, but it was undetectable in ESRD patients (Xu et al., 2005) (Figure 6). This evidence suggested that the kidney is the main source of renalase secreted in the blood. Since the molecular details underlying the regulation of renalase secretion are still unknown, low circulating renalase levels in ESRD might be due to increased catabolism or to a generalized decrease in secretion brought about by the metabolic abnormalities associated with severe renal failure.

Moreover, in rat model of unilateral renal artery stenosis, renalase expression and secretion were markedly reduced in the ischemic compared with the non-ischemic kidney (Gu et al., 2011), confirming that the kidney is primarily responsible for renalase secretion in blood.

Figure 5. CKD stages classification based on National Kidney Foundation criteria (Go et al., 2006). eGFR (estimated glomerula filtration rate). aCriteria must be met for 3 months or longer, bGFR based on abbreviated Modification of Diet in Renal Disease estimating equation or Cockcroft-Gault creatinine clearance equation, cIncludes proteinuria or other evidences of structural kidney damage.
Physiological roles of renalase and their impact as possible pathogenic mechanisms of cardiovascular diseases

Despite the possible molecular mechanism of the renalase physiological activity, the nature of the catalyzed reaction and the identity of its substrate(s) are still very poor, there is quite solid and constantly accumulating evidence of the important roles played by renalase in the control of blood pressure and heart functions (Baroni et al., 2012). The *in vivo* effects of the protein was first analyzed on Sprague-Dawley rats (Xu *et al.*, 2005). The animals received a bolus injection of 0.5 mg of recombinant renalase and hemodynamic parameters were measured by a pressure/volume combination catheter inserted into the left ventricle. Renalase displayed the ability to lower blood pressure by decreasing cardiac contractility and mean arterial pressure. Renalase effect was dose-dependent (Figure 7).

Figure 6. Western blot analysis of human plasma using an anti-renalase antibody (Xu *et al.*, 2005). Normal, plasma from individuals with normal renal function; Control protein, human recombinant renalase protein; ESRD, plasma from patients with ESRD receiving hemodialysis.
When injected on anesthetized rats at the dose of 4 mg/kg, recombinant human renalase significantly decreased systemic blood pressure (Pandini et al., 2010) (Figure 8).

Figure 7. Renalase dose-response curve (Xu et al., 2005). Left: cardiac contractility. Right: mean arterial pressure (MAP).

When injected on anesthetized rats at the dose of 4 mg/kg, recombinant human renalase significantly decreased systemic blood pressure (Pandini et al., 2010) (Figure 8).

Figure 8. Effect of recombinant human renalase on hemodynamic parameters in anaesthetized rats (Pandini et al., 2010). Data are expressed as mean ± standard error (n = 6); ns, not significant. Vehicle (PBS, containing 10% glycerol) and recombinant human renalase were given intravenously in a volume of 1 ml/kg body weight. MAP, mean arterial pressure; SAP, systolic arterial pressure; DAP, diastolic arterial pressure; LVSP, left ventricular systolic pressure; LVEDP, left ventricular end-diastolic pressure; LVDevP, left ventricular developed pressure; LVdP/dt\(_{\text{max}}\), maximum positive rate of developed left ventricular pressure; LVdP/dt\(_{\text{min}}\), maximum negative rate of developed left ventricular pressure; HR, heart rate; PRI, pressure rate index.
A single dose of recombinant renalase (0.5 mg/kg subcutaneous dose) significantly decreased systemic and diastolic blood pressure for up to 24 h in Dahl salt-sensitive rats (a genetic model of hypertension and renal disease that exhibits many phenotypic characteristics in common with human hypertension) (Desir, 2011) and in 5/6 nephrectomized rats (rats subjected to the removal of approximately 85% of kidney tissue) (Desir, Wang et al., 2012). Moreover, in the latter animal model recent studies showed that four weeks treatment with 0.5 mg/kg body weight daily of recombinant renalase resulted in a significant decrease of blood pressure and cardiac hypertrophy (Baraka et al., 2012).

Interestingly, using an isolated heart model of acute coronary syndrome, recombinant renalase perfusion was shown to exert a protective effect against ischemia, preserving ventricular function and reducing myocardial necrosis and infarct size (Desir et al., 2007).

To gain insight into the link between renalase deficiency, hypertension and cardiovascular diseases, RNLS gene has been inactivated in mouse by homologous recombination, deleting the promoter region and a large part of the coding sequence (Wu et al., 2011). Blood pressure and heart rate were higher in anesthetized knockout (KO) mice, while renal function was unaffected by renalase absence. KO mice also displayed higher plasma dopamine, epinephrine and norepinephrine levels than WT mice (Wu et al., 2011).

A link between renalase and catecholamine metabolism emerged from several studies (Desir G.V., 2009; Ghosh et al., 2009). In various rat models of chronic kidney and heart failures, lower concentrations of renalase in kidney, heart and blood were always accompanied by increased levels of epinephrine and norepinephrine in plasma and heart (Ding et al., 2009; Quelhas-Santos et al., 2010; Gu et al., 2011).
Renalase KO mice also poorly tolerated cardiac ischemia and developed ischemic myocardial necrosis that was found to be 3-fold more severe than WT. Furthermore, reperfusion with recombinant renalase resulted in a dramatic reduction in ischemic myocardial damage in renalase KO heart (Wu et al., 2011) (Figure 9).

Renalase deficiency was also associated with a significant decrease in the NAD/NADH ratio, indeed plasma NADH oxidase activity was found significantly lower in renalase KO mice, suggesting that plasma renalase contributes to the regulation of extracellular NAD level (Wu et al., 2011) (Figure 20). However, the low turnover of renalase measured in NADH-dependent reaction in vitro ($K_m^{\text{NADH}} = 15.2 \pm 2.2 \mu\text{M}$ and $V_{\text{max}} = 15.3 \pm 0.8 \text{nmol/min per mg protein}$) would exclude direct effects on NADH and/or NAD$^+$ concentrations in vivo.

Figure 9. Cardioprotective effect of renalase (Wu et al., 2011). Left: Cardioprotective effect of recombinant renalase. TTZ stains of KO heart exposed to 15 min of global ischemia followed by 90 min of reperfusion with or without recombinant renalase; red stain indicates viable myocardium. Right: Recombinant renalase cardioprotective effect quantified using ImageJ. *P < 0.04, n = 4.
The involvement of renalase in kidney disease and hypertension

Recent evidence on the impact of kidney and heart transplantation on the level of circulating renalase unexpectedly revealed higher serum renalase content among recipients than in healthy volunteers and the degree of increase correlated with the severity of the kidney failure and the time after transplantation (Malyszko et al., 2011; Przybylowski et al., 2011). Indeed, in hemodialysis patients the mean serum renalase concentration was found ca. 17.5 µg/ml (significantly higher when compared with that reported for healthy volunteers, ca. 4 µg/ml) and ca. 8.5 µg/ml in the blood of heart transplant recipients.

These data were questioned by Desir and coauthors (Desir, Wang et al., 2012) for two main considerations: first, the identity of the antibodies used in the ELISA kit, the epitopes they recognized and information on how they behaved in native Western blots were not available; second, the increase in renalase levels could be a reflection of accumulated renalase breakdown products or of cross-reaction with unrelated epitope.

Epidemiologic data implying renalase gene polymorphisms as disease risk factors

There are many entries of single nucleotide polymorphisms (SNP) for the renalase gene in the public NCBI Single Nucleotide Polymorphism database (dbSNP) (Zhao et al., 2007). Different independent genetic studies found a correlation between individual renalase SNPs and pathological conditions (Table 1).
To investigate the possible association between renalase genetic variants and essential hypertension, in 2007 the first population genetic study was reported (Zhao et al., 2007) on 1,317 hypertensive cases (from the International Collaborative Study of Cardiovascular Disease in Asia) and 1,269 normotensive controls in the northern Han Chinese population. Eight single nucleotide polymorphisms of the renalase gene were genotyped and analyzed. Two of them (rs2576178 located in the 5’ flanking region and rs2296545 situated within the deduced FAD binding motif) showed significant association with essential hypertension. The association between the rs2576178 renalase gene polymorphism and hypertension was confirmed by a case-control study on 369 Caucasian

<table>
<thead>
<tr>
<th>SNP accession no.</th>
<th>Location</th>
<th>Alleles</th>
<th>MAF</th>
<th>Diseases and risk-associated allele</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs2576178</td>
<td>5’ flanking region</td>
<td>G/A</td>
<td>0.46</td>
<td>Essential hypertension (G); hypertension in and stage renal disease (G); type 2 diabetes (G)</td>
</tr>
<tr>
<td>rs2296545</td>
<td>Exon 1</td>
<td>C/G</td>
<td>0.44</td>
<td>Essential hypertension (C); hypertension in type 2 diabetes (C); cardiac hypertrophy, dysfunction and ischemia</td>
</tr>
<tr>
<td>rs2785446</td>
<td>Intron 3-4</td>
<td>C/T</td>
<td>0.46</td>
<td>n.s.</td>
</tr>
<tr>
<td>rs2437871</td>
<td>Intron 3-4</td>
<td>A/C</td>
<td>0.46</td>
<td>Type 2 diabetes (A)</td>
</tr>
<tr>
<td>rs11002776</td>
<td>Intron 4-5</td>
<td>C/T</td>
<td>0.12</td>
<td>n.s.</td>
</tr>
<tr>
<td>rs1648312</td>
<td>Intron 5-6</td>
<td>A/G</td>
<td>0.32</td>
<td>n.s.</td>
</tr>
<tr>
<td>rs1087800</td>
<td>Intron 5-6</td>
<td>A/G</td>
<td>0.50</td>
<td>Hypertension in and stage renal disease (G); stroke (G)</td>
</tr>
<tr>
<td>rs1033796</td>
<td>Intron 7-7</td>
<td>C/T</td>
<td>0.47</td>
<td>n.s.</td>
</tr>
<tr>
<td>rs2114406</td>
<td>3’ flanking region</td>
<td>A/G</td>
<td>0.22</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

Table 1. Single nucleotide polymorphisms of the renalase gene characterized for their association with pathological conditions (Baroni et al., 2012). *MAF, minor allele frequency; n.s., no significant correlation with the considered pathological conditions.
subjects of Polish origin (200 hypertensive cases and 169 controls) undergone renal replacement therapy in a form of hemodialysis or peritoneal dialysis (Stec et al., 2011). The authors also found a significant correlation between the rs10887800 polymorphism and the development of hypertension. Moreover, an independent study on 892 type 2 diabetic patients and 400 controls revealed a strong association of the rs10887800 polymorphism with stroke in patients with and without diabetes and a correlation between the rs2576178 and type 2 diabetes (Buraczynska et al., 2011).

Among the renalase gene SNPs previously considered, rs2296545 is the only resulting in variants of the protein which differ for the presence of a Glu (G allele) or an Asp (C allele) residue at position 37. The functional missense polymorphism Glu37Asp was found to be associated with cardiac hypertrophy, ventricular dysfunction, poor exercise capacity and inducible ischemia in persons with stable coronary artery disease (Farzaneh-Far et al., 2010).

Purification of endogenous and recombinant renalase forms

Any proposal about the mechanism of the physiopathological action of a newly discovered protein needs to be verified in the context of its functional and structural properties. In the case of renalase, the application of this general rule had to wait several years until sufficient amounts of stable recombinant holoprotein became available for its biochemical and structural characterization (Pandini et al., 2010) (Baroni et al., 2012). The research group of Desir was the only who successfully isolated endogenous renalase from human urine of healthy volunteers (Xu et al.,
After ammonium sulfate precipitation, renalase was purified by affinity chromatography using an anti-renalase antibody. Essentially, no biochemical characterization was performed on the purified material, except for electrophoretic analysis (Figure 10) and catalytic activity assay, not allowing definitive conclusions about the presence or absence of the signal peptide after post-translational processing. In addition to the band of the expected size (approximately 37 kDa), another doublet was also detected, possibly representing the product of either dimerization or aggregation of the protein.

![Figure 10. Affinity purification of human renalase. (Xu et al., 2005). The anti-renalase polyclonal antibody was used to isolate protein from human urine. Lane 1: renalase from human urine. Lane 2: control with secondary antibody alone.](image)

The production of recombinant mammalian renalase in different hosts using various expression strategies was described by many independent groups. Desir’s team expressed and purified two recombinant forms of human renalase in *E. coli*: an N-terminal fusion protein with glutathione S-transferase (GST) was purified in soluble form using Glutathione Sepharose (Xu *et al.*, 2005), then an untagged variant was synthesized in soluble form, purified from inclusion bodies and *in vitro* refolded by dilution and gradual acidification in the presence of FAD (Wu *et al.*, 2011).

In order to obtain the monoclonal antibody against the recombinant renalase, Wang and coauthors produced a fusion protein containing the
pelB leader sequence (for cell periplasm localization) at the N-terminal and a C-terminal His-tag (Wang et al., 2009).

Very recently, to improve the renalase protein production facilitating the expression in E. coli, Desir’s group designed a synthetic renalase gene in which ≈ 30% of nucleotides were substituted to optimize codon usage and to remove putative translational pause signals while preserving the native amino acid sequence (Desir, Tang et al., 2012). This resulted in a 200-fold protein expression increase and yielded about 20 mg/l E. coli culture in vitro refolded untagged protein, stable for several months at 4 °C.

Renalase homologue from mouse was obtained in E. coli by Zhang’s group as an N-terminal fusion protein with GST, but no purification protocol has been reported (Wang et al., 2008). Although its isolation has never been reported, recombinant mouse renalase was also produced in eukaryotic cells (modified human embryonic kidney 293T cells) as a C-terminal EGFP-(enhanced green fluorescent protein) fusion protein (Wang et al., 2008). Transfected cells displayed weaker cellular fluorescence than the EGFP control cells, but a brighter signal in the culture medium suggesting mouse renalase-EGFP was secreted out of the cells, although a proportion of the protein remained within the cells as well.

Even if many details of the cloning procedure were missing and no explanation was given of the very large apparent molecular mass of the purification product (85 kDa), the expression of human renalase in insect cells by a baculovirus-based system was described (Wang et al., 2010). Moreover, the same authors also reported the production of human renalase in embryonic kidney cells (Wang et al., 2011). Recombinant renalase synthesis in the yeast Pichia pastoris was also reported in a patent by Desir (Desir et al., 2008).
Despite the ability of renalase to incorporate a flavin nucleotide being a prerequisite for the enzymatic action, the presence of FAD or FMN in the recombinant renalase forms previously described was not reported. Only in the first published paper, Desir and coauthors observed that the addition of 0.1 µM FAD in the bacterial culturing medium was required to isolate a recombinant protein functionally active (Xu et al., 2005), even it’s well known that FAD or FMN biosynthesis by E. coli is not a limiting factor in flavoprotein production (Kitamura et al., 1998; Aliverti et al., 2004). Based on these considerations, Medveded and coauthors clearly stated that a conclusive proof that renalase contained FAD was still lacking (Medveded et al., 2010).

This proof was obtained in the same year. In our lab, two different protocols were set for the heterologous expression of human renalase and the purification of the resulting recombinant products in a holoprotein form (Pandini et al., 2010). Two plasmids were used to direct the synthesis of the protein in E. coli: one fused to a N-terminal polyHis extension and the other where a polyHis-tag, a small ubiquitin-like modifier (SUMO) unit and renalase were connected from N- to C-terminal.

Although yielding only 1.5 mg pure recombinant renalase spontaneously folded in vivo per liter culture, both purification protocols were very reproducible and easily scaled up, since they are based on small-volume affinity chromatographic columns. The identity of the final product as polyHis-renalase was confirmed by MALDI-TOF mass spectrometry which yielded a molecular mass of 39,496 Da in good agreement with the theoretical value of 39,626 Da.

A detailed spectroscopic characterization of polyHis-renalase and renalase was carried out in order to exclude their possible misfolding. Both proteins displayed identical absorption, fluorescence and circular dichroism spectra. The absorption spectra of renalase in the visible region is that
typical of a flavoprotein (Figure 11), with absorption maxima at 385 and 458 nm. This spectrum significantly differs from those of MAO-A and B (Hynson et al., 2004). The flavin fluorescence of renalase was found almost completely quenched. Heating at 90 °C resulted in the formation of a colorless precipitate, while the liquid phase revealed to contain a flavin nucleotide on the basis of its absorption spectrum and to display a fluorescence spectrum matching that of a corresponding concentration of FAD. Moreover, an extinction coefficient of 11.3 mM⁻¹ cm⁻¹ at 458 nm was calculated for native renalase.

Figure 11. Absorption spectra of renalase (Pandini et al., 2010). Spectrum of ca. 19 μM renalase in PBS, before (solid line) and after the addition of 0.2% SDS (dotted line), which resulted in FAD release from the apoprotein. The molar absorbance is reported.
Catalytic properties of renalase

To date, only two groups published data on the biochemical in vitro properties of renalase. In 2005, the research group of Desir found that both the recombinant GST-tagged renalase and the endogenous protein isolated from urine specifically metabolized catecholamines, with dopamine as preferred substrate, followed by epinephrine and norepinephrine (Xu et al., 2005) whereas its activity towards other biogenic amines was negligible (Figure 12). The ability of renalase to oxidase biogenic amines was assessed using an Amplex Red Monoamine Oxidase Assay Kit, detecting H$_2$O$_2$ in a HRP-coupled reaction using 10-acetyl-3,7-dihydroxyphenoxazine (Amplex Red reagent, Invitrogen Corp.) (Figure 13). Curiously, the authors observed that this activity was present only if the growth medium was supplemented with 0.1 µM FAD, suggesting the flavin cofactor is essential for the catalytic activity.

Furthermore, renalase enzymatic activity was not affected by known inhibitors of MAO-A and B, clorgyline and pargyline.

Figure 12. Renalase metabolizes catecholamines (Xu et al., 2005). Ten micrograms of GST-renalase fusion protein was used for each assay; amine oxidase activity is expressed as H$_2$O$_2$ production (nmol/mg/min).
After careful analysis of the data reported by Desir and coauthors, some authors (Boomsma et al., 2007) concluded that the rate of \(\text{H}_2\text{O}_2 \) generation was too low to be ascribed to enzymatic conversion of catecholamines by renalase. They also noticed that plasma of many species contains the enzyme semicarbazide-sensitive amine oxidase which catalyzes the oxidative deamination of primary amines to form the corresponding aldehydes plus \(\text{H}_2\text{O}_2 \) and ammonia (Boomsma et al., 2003). Moreover, the supposed activity of purified renalase, measured only as \(\text{H}_2\text{O}_2 \) production, might be due to catecholamine autoxidation, which is known to be relevant at pH values above neutrality, or to the oxidation of contaminant(s) that are common in commercial catecholamines. Finally, they argued that, even if renalase were able to degrade biogenic amines, its turnover number is so slow that it would hardly affect blood catecholamine concentration.

One year later, by comparison of the activities measured on both plasma and urine renalase, Desir and coauthors hypothesized that the circulating renalase would exist as inactive form (prorenalase) which needs catecholamine-triggered signals to be activated (Li et al., 2008).

Figure 13. Amplex Red Monoamine Oxidase Assay. The Amplex Red reagent reacts with \(\text{H}_2\text{O}_2 \) in a 1:1 stoichiometry and the resulting fluorescence signal is directly proportional to \(\text{H}_2\text{O}_2 \) production and hence amine oxidase enzymatic activity.
Amine oxidase activity was undetectable in rat plasma under basal conditions, but a 2 min infusion with exogenous epinephrine or dopamine significantly increased renalase activity (measured as H₂O₂ production inhibited by anti-renalase antibody) 10-fold within 30 s and remained high long after the catecholamines infusion (Figure 14), suggesting the possibility that the activating signal may be represented by an increase in plasma catecholamine levels. Since renalase plasma concentration didn’t follow the same time course, the authors concluded that the rapid increase of amine oxidation activity was due to the conversion of an inactive prorenalase form to the functional enzyme.

As previously reported, in 2011 Desir and coauthors observed that renalase deficiency affected the cellular NAD/NADH ratio and found a markedly decreased NADH oxidase activity in renalase KO animals, supporting the hypothesis that renalase would possess a NADH oxidase activity (Wu et al., 2011). They also reported that in vitro refolded recombinant human renalase displayed NADH oxidase activity, with a K_m^{NADH} of 15 µM and a k_{cat} of 0.4 min⁻¹. The enzyme was inactive towards NADPH.
Moreover, when epinephrine was included in the reaction mixture, it was degraded at a rate 18-fold faster than in the absence of NADH with a $K_m^{\text{epinephrine}}$ of 17 µM and a k_{cat} of 0.6 min$^{-1}$ (Desir, Wang et al., 2010). Based on these observations, renalase was proposed as a new NADH-dependent catecholamine degrading enzyme. These conclusions were questioned by Eikelis and coauthors, who pointed out the observed renalase catecholamine-degrading rate was extremely low to be ascribed to a real enzyme activity (Eikelis et al., 2011).

Recent data also reported the administration of human renalase in KO mice decreased plasma epinephrine, L-DOPA and dopamine by 82%, 63% and 31% respectively without significant increase in the urinary excretion of the deaminated, methylated and deaminated plus methylated metabolites, suggesting that renalase action on catecholamines differs significantly from that of catechol-O-methyl transferase (COMT) and MAOs (Desir, Tang, et al., 2012; Desir, Wang, et al., 2012; Quelhas-Santos et al., 2012).

To further test if the NADH-dependent enzymatic activity of renalase was correlated with its hypotensive effect, 4 cysteine-to-alanine mutants were generated. The catalytic efficiency of C47A, C54A, C220A and C327A renalase variants was reduced by 20%, 95%, 95% and 94%, respectively, with a strong correlation to the capacity of decreasing blood pressure in renalase KO mice (Desir, Tang et al., 2012).

Another aspect of renalase function is the role played by the residue 37 side-chain in catalysis. As previously mentioned, the renalase gene SNP rs2296545 was found to be associated to cardiovascular pathologies. The diaphorase activity of both Asp37 and Glu37 renalase isoforms revealed the Glu37Asp replacement determined an increase in K_m^{NADH} from 34 ± 4 to 820 ± 115 µM and a decrease in V_{max} from 58 ± 1 to 25 ± 2 nmol/min/mg (Farzaneh-Far et al., 2010) (Figure 15).
Recently, we confirmed that recombinant human renalase slowly reacts with nicotinamide dinucleotides and weakly binds the corresponding oxidize forms (Milani et al., 2011). We clearly showed that the FAD cofactor is involved in these reactions, since its reduction rates are compatible with the catalysis. Differently from the data published by Desir and coauthors, we demonstrated that the recombinant in vivo folded FAD-containing human renalase is not strictly specific for NADH and found completely lacking of any amine oxidase activity.

Figure 15. Calculated kinetics parameters (Farzaneh-Far et al., 2010). The NADH/FAD dependent enzymatic activity was assessed by measuring the rate of reduction of 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H tetrazolium monosodium salt (WST-1). Reduction of WST-1 resulted in the formation of a yellow, water-soluble product, quantified by measuring absorbance at 450 nm.
Flavoenzymes

Flavoenzymes have the unique ability to catalyze a wide range of biochemical reactions (Fraaije et al., 2000). They are involved in the dehydrogenation of a variety of metabolites, in one- and two-electron transfer from and to redox centers, in light emission, in the activation of oxygen for oxidation and hydroxylation reactions (Massey, 1995). Moreover, they catalyze other types of reactions involved in a wide array of biological processes including protein folding, DNA repair and apoptosis. At present, the Protein Data Bank (PDB) contains hundreds of entries for FAD- and FMN-dependent proteins. Flavoenzymes (Massey, 2000; Joosten et al., 2007) are colorful oxidoreductases that contain a flavin (flavin mononucleotide, FMN or flavin adenine dinucleotide, FAD) as cofactor, non-covalently or covalently bound to the apoprotein. Topologically similar flavoenzymes can catalyze different reactions, whereas proteins performing similar functions can have dissimilar folding architectures (Fraaije et al., 2000).

The spectroscopic properties of the flavin cofactor make it a natural reporter for changes occurring within the active site, a feature which makes flavoproteins one of the most studied enzyme family. Well-studied classes of flavoenzymes are flavoprotein oxidases and monooxygenases.

Flavoproteins oxidases, such as D-amino acid oxidase, glucose oxidase, glycolate oxidase, catalyze the oxidation of a specific substrate involving molecular oxygen (O₂) as electron acceptor, which is reduced to H₂O₂. The stabilization of the anionic flavin semiquinone and the formation of a flavin-sulfite adduct at the N-5 position are typical of flavin-dependent oxidases. However, there are many exceptions, as in the case of...
monoamine oxidases, which are not able to react with sulfite ion (Li et al., 2002).

Flavoprotein monooxygenases introduce a single atom of molecular oxygen into the substrate, while the other oxygen atom is reduced to water. The reaction needs NADH or NADPH cosubstrates as electron donor. Activation of molecular oxygen in these enzymes is achieved by the generation of a (hydro)peroxyflavin, which in the presence of the substrate transfers an oxygen atom to the substrate and subsequently returns to its resting state by losing a molecule of water.

P-hydroxybenzoate hydroxylase protein superfamily

Enzymes belonging to the p-hydroxybenzoate hydroxylase (PHBH) structural family catalyze highly diverse reactions and include both oxidases and non-oxidases. In particular, the enzymes catalyzing the oxidation of amines belong to one of the two possible structural groups: the MAO family and the D-amino acid oxidase family (Fitzpatrick et al., 2010).

Monoamine oxidases

Monoamine oxidases (Edmonson et al., 2007; Edmonson et al., 2009) are mitochondrial outer membrane-bound flavoproteins that catalyze the oxidative deamination of neurotransmitters and biogenic amines using O₂ as electron acceptor. Two distinct forms of MAOs, named MAO-A and MAO-B sharing about 70% identity in amino acid composition, are known. It’s currently thought that the gene encoding MAO-A and B
evolved from a single ancestral gene by a duplication event, since lower animals were found to contain only a single MAO gene (Setini et al., 2005).

The flavin cofactor is covalently bound to the enzyme via a Cys residue, forming an \(8\alpha\)-S-cysteiny1-FAD in both MAO-A (Cys406) and B (Cys397) (Edmonson et al., 2004).

The catalytic pathway of MAOs implies the formation of the enzyme-substrate complex resulting in the reduction of FAD and the formation of an imine intermediate. During this phase, oxygen reacts with reduced FAD to regenerate the oxidized flavin and \(H_2O_2\). Released imine undergoes noncatalyzed hydrolysis to form \(NH_4^+\) and the corresponding aldehyde (Edmonson et al., 2009).

The crystal structure of human and rat MAO-A (De Colibus et al., 2005; Son et al., 2008) and human MAO-B (Binda et al., 2002) have been determined (Figure 16). Both MAO-A and B showed a C-terminal protruding transmembrane region, folded as an \(\alpha\)-helix. The position of the FAD cofactor is highly conserved between the two forms.

Human MAO-B crystallized as a dimer. The structure revealed an “entrance” and a “substrate cavity” at the end of which the FAD cofactor is located. Ile199 side chain serves as a “gate” between the two hydrophobic cavities and can exist in “open” or “close” conformation.

Human MAO-A crystallized as a monomer, while the rat homologue as a dimer. It displayed a single substrate hydrophobic cavity with protein loops at the entrance.

The presence of different residues in the active site in the two enzymes is at the base of their distinctive substrate and inhibitor specificities. Indeed MAO-A specifically deaminates serotonin and epinephrine and is inhibited by clorgyline, whereas MAO-B is specific for phenylethylamine and benzylamine and inhibited by pargyline and selegine.
Figure 16. Ribbon diagram showing the three-dimensional structures of human MAO-A, human MAO-B and rat MAO-A (Edmonson et al., 2009). All structures are oriented with the C-terminal transmembrane helices pointing downwards. The FAD cofactor is in yellow ball-and-stick representation. Active site cavity in each enzyme molecule is drawn as a gray surface. The cavity-shaping loop is highlighted in cyan. The loop lining the entrance cavity in human MAO-B is featured in blue. The corresponding residues in rat and human MAO-A adopt the same conformation.
Another important class of flavoproteins is the monooxygenase family, which uses NAD(P)H and O$_2$ as co-substrates and inserts one atom of oxygen into the substrate. They are involved in a wide variety of biological processes including drug detoxification, biodegradation of aromatic compounds, biosynthesis of antibiotics and many others (Ballou et al., 2005).

P-hydroxybenzoate hydroxylase is one of the most thoroughly studied enzymes. It displays significant protein and flavin dynamics during catalysis (Ballou et al., 2005). There is an open conformation that gives access of substrate and product to solvent, and a in conformation for the reaction with oxygen and the hydroxylation to occur. This in form prevents solvent from destabilizing the intermediate. Finally, there is an out conformation achieved by movement of the isoalloxazine towards the solvent allowing the access of NADPH which transfers an hydride to the N-5 of the flavin (Figure 17).

The catalytic process starts while the enzyme is in a dynamic equilibrium between the open and in conformations. In the open conformation the enzyme can bind p-hydroxybenzoate and the formation of the ES complex shifts the equilibrium to the in position. The presence of the substrate increases the rate of reduction of the flavin by NADPH by $> 10^5$-fold. On the contrary in the absence of the substrate, flavin reduction is quite ineffective, preventing the wasteful use of NAD(P)H which would produce unwanted reactive oxygen species (such as H$_2$O$_2$). When the substrate is in the place, the transition to the out conformation is triggered by NADPH binding with the subsequent reduction of the flavin. After NADP$^+$ release the anionic isoalloxazine moves back to the in position, where it can react efficiently with O$_2$ to form C4a-hydroperoxy-FAD, with the consequent
electrophilic attack of the hydroperoxide on the phenolate, resulting in the hydroxylation of phenolate to yield the dienone form of the product and the C4a-flavin alkoxide. The final product is achieved by rearomatization of the dienone.

Figure 17. Conformations of PHBH important for catalysis (Ballou 2005). Left top, open; left bottom, in; right, out conformation.
Unconventional protein secretion

The vast majority of extracellular proteins are secreted by the classical endoplasmic reticulum (ER)/Golgi-dependent pathway, however numerous exceptions have been identified (Nickel, 2010). “Unconventional protein secretion” has become a generally used term to collectively describe several kinds of unusual trafficking pathways that lead to the exposure of proteins on cell surface or to their release into the extracellular space (Nickel *et al.*, 2009). Unconventional secretion is not characterized by a common mechanism, but rather represents a collection of at least four distinct transport pathways. They can be classified into non-vesicular and vesicular mechanisms.

Non-vesicular mechanisms are based on direct translocation of cytoplasmic proteins across the plasma membrane, followed by deposition on cell surfaces or by release into the extracellular space. Fibroblast growth factor 2 is a key example (Schäfer *et al.*, 2004; Nickel *et al.*, 2009). Vesicular mechanisms depend on intracellular membrane bound intermediates that need to fuse with plasma membrane to release cargo into the extracellular space. Such mechanisms have been described to involve either secretory lysosomes, exosomes derived from multi-vesicular bodies or microvesicles shedding from cell surface. The export involving intracellular transport intermediates has been shown for acyl-CoA binding protein (Pfeffer, 2010).

The amino terminus of renalase contains a putative signal peptide for the secretion through the classical pathway. However, structural evidences suggest that the SP could not be cleaved without the loss of the protein native conformation (Milani *et al.*, 2011).
Aim of the Project

Renalase is an intriguing protein, which has been proposed to represent a novel player in the regulation of blood pressure and cardiac function (Xu et al., 2005). Despite its potential medical relevance, a deep biochemical characterization of this protein is still lacking. The general aim of this work has been to assess the molecular mechanism of renalase action thorough the structural and functional characterization of the recombinant protein isolated in purified form.

Since only very small amounts of renalase were produced using previously developed expression systems, strongly limiting its biochemical study (Desir, Wang et al., 2012), this project was initially focused on developing new strategies to increase the yield of recombinant renalase. Attempts to produce human renalase and its mouse homolog using various fusion strategies, as well as to express the human protein in the eukaryotic host *Saccharomyces cerevisiae*, have been carried out.

The solution of the three-dimensional structure of the protein by X-ray crystallography has been another important aim of the project, since such achievement was expected to open the way to the understanding of the catalytic mechanism of the enzyme. After many efforts, in collaboration with Dr. Bolognesi, I finally obtained the crystal structure of human renalase (Milani et al., 2011).

Its general fold classified it as a member of the *p*-hydroxybenzoate hydroxylase protein superfamily, which includes both NAD(P)H-dependent enzymes, as the aromatic monooxygenases, and O₂-dependent ones, catalyzing either monooxygenase or oxidase reactions. For this reason, specific aims of the project were the detailed analysis of the interaction of
renalase with nicotinamide dinucleotides and the study of its reactivity towards O_2, by means of equilibrium, steady-state and rapid reaction kinetic approaches, in order to define the general features of the possible catalytic activity of the protein.

The allelic form of human renalase whose crystal structure was obtained within this project, represents its Asp37 variant. Since a recent study reported that an alternate form, carrying Glu at the same position, had a higher catalytic activity (Farzaneh-Far et al., 2010), I decided to produce the latter isoform by site-directed mutagenesis in order to assess its in vitro properties. Indeed, should the supposed functional difference between the allelic variants be confirmed, this would represent an important step towards the localization of renalase NADH binding site, which was not obvious from structural data.

Furthermore, an additional specific aim of the project was to compare the catalytic properties of the spontaneously in vivo folded renalase produced in my laboratory with those of the in vitro refolded, FAD-reconstituted protein produced by Desir’s group, in order to ascertain the source of the reported differences between them, the latter being much more active as a NADH-oxidase.

Finally, during the third year of the PhD program, I started a formal collaboration with Dr. Desir at the Yale School of Medicine, in order to elucidate the subcellular localization of endogenous renalase by immunofluorescence microscopy and cell fractionation approaches. Renalase presents a signal peptide which could mediate the secretion through the classical pathway, but I provided structural evidence suggesting that could not be removed without disrupting protein’s native conformation, implying that renalase secretion would occur via atypical secretory pathway.
Main Results

The major aim of the project was to provide a detailed functional and structural characterization of renalase, in order to collect new precious details on the biochemical properties of this protein and to obtain a general firm framework for assessing its possible molecular mechanism of action. The lab where I carried out this work, had previously succeeded in producing recombinant human renalase in *E. coli* as a soluble, correctly folded protein containing an equimolar amount of FAD, thus showing for the first time that renalase is actually a flavoprotein (Pandini *et al.*, 2010). Two recombinant renalase forms were purified to homogeneity exploiting their N-terminal tags (polyHis and polyHis-SUMO tags), obtaining about 1.5 mg of pure protein per liter culture. With the aim to increase the yield of the recombinant flavoprotein, I first expressed human renalase in *Saccharomices cerevisiae*, since the eukaryotic host could provide a more appropriate environment for the correct folding of the protein. Unfortunately, the amount of soluble renalase produced in yeast was very low and only recovered in apoprotein form. Then, to test the possibility that previously used N-terminal extensions could hamper the correct folding of the recombinant renalase, I produced the protein in *E. coli* as a fusion with a C-terminal polyHis-tag. The new expression/purification system yielded about the same amount of soluble renalase as the previous ones, suggesting the low expression level of the soluble fraction in the heterologous hosts could be an intrinsic property of the protein. Thus, despite representing no improvement in terms of amount of protein obtained (Table 2), the new expression strategies allowed us to demonstrate that the biochemical properties of recombinant human renalase are not affected by
the position of the tag added to facilitate its purification. Moreover, in order to extend our studies to homologs of the human protein, N-terminally GST-fused murine renalase (whose plasmid was kindly provided by Dr. Zhang, Tsinghua University of Beijing) was produced in *E. coli*. Unfortunately, the *in vivo* folding behavior of this protein was similar to that of the human one: the amount of soluble product was very low and the purified protein was found to lack bound FAD. Interestingly, in contrast with the data reported in literature (Xu *et al.*, 2005), we didn’t observe any monoamine oxidase activity associated to any of the purified recombinant renalase.

![Table 2. Purification yields of different renalase variants expressed in *E. coli*.](image)

<table>
<thead>
<tr>
<th>renalase</th>
<th>culture volume (l)</th>
<th>cell yield (g/l)</th>
<th>purified renalase (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>renalase</td>
<td>12</td>
<td>6</td>
<td>1.5</td>
</tr>
<tr>
<td>renalase-His</td>
<td>2</td>
<td>6</td>
<td>1.25</td>
</tr>
<tr>
<td>His-renalase</td>
<td>12</td>
<td>6.5</td>
<td>1.5</td>
</tr>
<tr>
<td>GSTm-renalase</td>
<td>2</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Though very low, the amount of purified renalase was enough for its structural characterization. In collaboration with Dr. Bolognesi, the three-dimensional structure of recombinant human renalase has been determined by X-ray crystallography (Milani *et al.*, 2011) (Figure 18). Diffraction data were interpreted by the molecular replacement method using the structure of an oxidoreductase from *Pseudomonas siringae* as the starting model. The renalase molecule is monomeric and adopts a compact conformation. It presents two main domains: the FAD binding domain and the putative substrate binding domain. The two domains are bent, forming a wide and
deep cleft at the center of the protein. The FAD cofactor is buried within the protein, except for part of the isoalloxazine ring and it’s firmly, but not covalently, bound to the protein through several H-bonds and other contacts. The active site cavity can be roughly divided into two hemispheres: one composed of aromatic amino acids and the other of polar residues, centered on the isoalloxazine ring (Figure 18). The general fold of renalase classifies it as a member of the p-hydroxybenzoate hydroxylase superfamily, more similar to MAO- than to D-amino acid oxidase-like enzymes.

![Renalase three-dimensional structure and active site cavity](image)

Figure 18. Renalase three-dimensional structure and active site cavity (Milani *et al.*, 2011). Left: The FAD binding domain is shown in red, the substrate binding domain in blue and the 62-108 subdomain in green. Right: the FAD prosthetic group and the amino acid residues lining the active-site cavity are shown.

Since renalase was reported to catalyze O_2 reduction in the presence of NADH, suggesting the possibility that it could be either a dehydrogenase or a monooxygenase, we studied in detail its reactivity towards the nicotinamide dinucleotides. Both the NADH- and NADPH-dependent diaphorase activities of renalase using a tetrazolium salt
(iodonitrotetrazolium, INT) as artificial electron acceptor were tested to verify the hypothesis that renalase could be a NADH-dependent enzyme. Renalase displayed a low but measurable catalytic activity versus INT and the steady-state kinetic parameters showed a slight preference for NADH over NADPH (Table 3).

Table 3. Kinetic parameters of renalase for the NADH- and NADPH-dependent INT reductase reactions (Milani et al., 2011).

<table>
<thead>
<tr>
<th>Cosubstrate</th>
<th>k_{cat} (min$^{-1}$)</th>
<th>K_m (µM)</th>
<th>k_{cat}/K_m (min$^{-1}$ µM$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADH</td>
<td>0.14</td>
<td>18</td>
<td>$(7.8 \times 10^{-3}) \pm (1.2 \times 10^{-3})$</td>
</tr>
<tr>
<td>NADPH</td>
<td>0.26</td>
<td>175</td>
<td>$(1.5 \times 10^{-3}) \pm (1.4 \times 10^{-4})$</td>
</tr>
</tbody>
</table>

The poor reactivity of renalase towards nicotinamide dinucleotides was confirmed by studying under anaerobic conditions the pre-steady state reactions with either NADH or NADPH. Both nucleotides were able to transfer reducing equivalents to the renalase flavin cofactor, with very low apparent first-order constant (Figure 19).

Figure 19. Time course of anaerobic reduction of renalase FAD cofactor by NADH (open circles) and NADPH (filled circles), control data obtained in the absence of reductant are shown as filled squares (Baroni, Milani et al., 2012).
In order to further investigate the interaction of the protein with nicotinamide dinucleotides, spectrophotometric titrations of the renalase active site with both NAD$^+$ and NADP$^+$ were performed. Renalase clearly interacted with both the oxidized forms of the dinucleotides, forming complexes whose difference absorption spectra were very similar. Both titrations followed the theoretical curve expected for a 1:1 stoichiometry yielded K_d values for the enzyme-ligand complexes in the millimolar range. The absence of a recognizable NADP binding site in the protein structure and its poor affinity for, and poor reactivity towards, NADH and NADPH suggest that these are not physiological ligands of renalase.

With the aim of identifying possible renalase substrates, I screened a small library of compounds (Prestwick Chemical Library). More than one thousand small molecules were tested as possible electron donors to the enzyme, using INT as chromogenic electron acceptor. Unfortunately, this preliminary screening identified no renalase substrate.

Since the general fold of renalase classifies it as a member of the flavoprotein superfamily sharing the p-hydroxybenzoate hydroxylase fold topology, which includes both oxidases and monooxygenases, the study of the reactivity of the reduced flavin cofactor (FADH$_2$) of renalase with O$_2$ was performed in order to provide precious information about the nature of the reaction catalyzed by the flavoenzyme (more details in ‘Supplemental Results’). After anaerobic stepwise photoreduction in order to completely reduce the bound flavin, renalase was reacted with O$_2$ by mixing it with different air-equilibrated buffers prepared at diverse pH. The reactions proceeded monotonically in all the conditions tested and no evidence of transient semiquinone and/or peroxide intermediate of flavin was observed. The second-order constant value range from $4.56 \cdot 10^3$ M$^{-1}$s$^{-1}$ to $10.2 \cdot 10^3$ M$^{-1}$s$^{-1}$, 20/40-fold higher compared to the free FAD (250 M$^{-1}$s$^{-1}$), but lower than typical flavin oxidases (10^5-10^6 M$^{-1}$s$^{-1}$). These results suggested that
renalase might be an oxidase, assuming the presence of not yet known substrate(s) could increase the rate of the reaction to typical oxidases values. The recombinant form of human renalase crystallized and biochemical characterized corresponds to its Asp37 allelic variant. Recently, Farzaneh-Far and coauthors reported that the allelic variant of the protein carrying a Glu residue at position 37 possessed a much higher NADH-dependent activity than the Asp variant. Since this observation, when confirmed, would contribute to assign a catalytic activity to the protein and help in localizing its NAD binding site, I introduced the Asp37Glu replacement in the recombinant protein by site-directed mutagenesis. The steady-state kinetic parameters for both NADH- and NADPH-dependent diaphorase activity versus INT were found not significantly different from those of the Asp variant (Table 4).

Table 4. Kinetic parameters of Asp and Glu renalase for the NADH- and NADPH-dependent INT reductase reactions.

<table>
<thead>
<tr>
<th></th>
<th>k_{cat}^{NADH} (min$^{-1}$)</th>
<th>K_m^{NADH} (µM)</th>
<th>$k_{cat}^{\text{NADH}} / K_m^{\text{NADH}}$ (min$^{-1}$ µM$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asp37</td>
<td>$0.14 \pm 4 \times 10^{-3}$</td>
<td>18 ± 3</td>
<td>$7.8 \times 10^{-3} \pm 1.2 \times 10^{-3}$</td>
</tr>
<tr>
<td>Glu37</td>
<td>$0.19 \pm 8 \times 10^{-2}$</td>
<td>46 ± 10</td>
<td>$4.1 \times 10^{-3} \pm 0.8 \times 10^{-3}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>k_{cat}^{NADPH} (min$^{-1}$)</th>
<th>K_m^{NADPH} (µM)</th>
<th>$k_{cat}^{\text{NADPH}} / K_m^{\text{NADPH}}$ (min$^{-1}$ µM$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asp37</td>
<td>$0.26 \pm 6 \times 10^{-3}$</td>
<td>175 ± 20</td>
<td>$1.5 \times 10^{-3} \pm 1.4 \times 10^{-4}$</td>
</tr>
<tr>
<td>Glu37</td>
<td>$0.34 \pm 2.6 \times 10^{-2}$</td>
<td>172 ± 44</td>
<td>$1.9 \times 10^{-3} \pm 6 \times 10^{-4}$</td>
</tr>
</tbody>
</table>

Furthermore, the study of the reductive half-reactions and the NAD(P)$^+$ binding properties of the Glu37 enzyme form confirmed that the two
variants of renalase have indistinguishable features \textit{in vitro}. These data are consistent with the localization of the residue 37 within a surface loop at the interface between the two domains, far from the active site.

In order to ascertain the differences in the catalytic features, I compared the properties of the spontaneously \textit{in vivo} folded recombinant holo-renalase produced in our lab with those of the \textit{in vitro} refolded, FAD-reconstituted protein prepared by Dr. Desir (more details in ‘Supplemental Results’). The protein preparation provided by Dr. Desir was found to bound FAD very loosely and lack of the NADH-oxidase activity in the absence of the flavin cofactor added to the assay mixture. A preliminary evaluation of the enzyme specificity, assayed with all possible combinations of NADH or NADPH as the reducing substrate, and FAD, flavin mononucleotide or riboflavin as the electron acceptor, suggested that the flavin compounds behave as substrates of the enzyme rather than prosthetic groups. Interestingly, such catalytic features resulted very similar to those of the \textit{E. coli} flavin reductase (FRE). In collaboration with Dr. Tedeschi, tandem mass spectrometry analysis of the renalase preparation was performed, which confirmed the actual presence of FRE as a major contaminant of the protein solution, strongly suggesting this protein as the responsible of the observed NADH-dependent flavin reductase activity of the \textit{in vitro} refolded renalase sample.

The last part of the project was focused on the subcellular localization of mammalian endogenous renalase through a collaboration with Dr. Desir, at the Yale School of Medicine (more details in ‘Supplemental Results’). Indeed, structural evidence has indicated that the proposed secretion signal peptide could not be cleaved without the loss of the protein native conformation, suggesting that renalase trafficking would occur through an atypical secretory pathway. The presence of endogenous renalase was studied by immunofluorescence microscopy in human immortalized HK-2 cells, pig and mouse kidney tissues. Renalase was clearly detected in all the
samples, preferentially localized in the cytoplasm of the cells, where it showed a punctate distribution suggestive of an organelle association. Co-localization approaches with E-cadherin (distal tubule marker) and megalin (proximal tubule marker), performed in pig kidney, demonstrated that renalase is exclusively expressed in proximal tubule (Figure 20).

![Renalase co-localizes with proximal tubules](image)

Figure 20. Renalase co-localizes with proximal tubules (Lee et al., 2012 submitted). Pig kidney sections were co-stained with renalase antibody (green) and either with megalin (top) or E-cadherin (bottom). Nuclear staining in blue.

Cell fractionation approach was also used to further investigate the localization of renalase. The protein was found in all the fractions obtained by differential sedimentation, but these preliminary experiments need to be repeated in more stringent conditions because a significant extent of cross-contamination. Moreover, in order to disrupt the possible non-specific binding of renalase to membranes, additional washing step with NaCarbonate on NaCl revealed a possible interaction with integral membrane proteins.
Conclusions and Future Prospects

The important role that renalase seems to play in the control of cardiovascular functions, confirmed by many evidences, has led to a growing interest on this newly discovered protein. However, several questions still remain unanswered, in particular about its catalytic activity. The major aim of this project was to provide a detailed biochemical and structural characterization of renalase, in order to elucidate the possible reaction it catalyzes and, thus, to better understand the mechanism of its physiological action.

The solution of the crystal structure of recombinant human renalase classifies it as a member of p-hydroxybenzoate hydroxylase superfamily (Milani et al., 2011), sharing its general fold with MAO-like enzymes. The functional characterization of the protein, mainly focused on the analysis of its interaction with nicotinamide dinucleotides, confirmed that renalase catalyzes both NADH- and NADPH-dependent diaphorase reactions, as previously reported (Farzaneh-Far et al., 2010). In addition, we provided evidence of direct hydride transfer (HT) from both NADH and NADPH to the enzyme FAD cofactor and of formation of a 1:1 complex with the oxidized forms of the nicotinamide dinucleotides. However, the exceedingly low k_{cat} and k_{cat}/K_m values observed in the steady-state reactions, confirmed by the very slow HT in the reductive half-reaction and the millimolar affinity of the enzyme for both NAD$^+$ and NADP$^+$, strongly suggest that nicotinamide dinucleotides are not actual renalase physiological substrates. Such conclusion is in line with the absence of an evident NAD(P) binding site in the three-dimensional structure of the protein.
The rapid reaction study of the oxidation of the renalase reduced flavin cofactor by O$_2$ at different pH values revealed that the reaction proceeded monotonically with no evidence of transient semiquinone and/or peroxide flavin intermediates, thus excluding the transfer of single electrons to O$_2$. The value of the second-order constant of the process, 20/40-fold higher than that involving free FAD (250 M$^{-1}$s$^{-1}$) but some order-of-magnitude lower than that observed in typical flavin oxidases, suggested that renalase might be either a lowly efficient oxidase or an aromatic hydroxylase. The latter hypothesis was excluded on the basis of a structural comparison between renalase and flavin monooxygenases belonging to the p-hydroxybenzoate hydroxylase superfamily.

Moreover, consistently with structural evidences that show that residue 37 is located in a surface loop far from the active site, we found no difference between the NAD(P)H-dependent diaphorase activities of the Asp and Glu variants of renalase, in contrast with previously reported data (Farzaneh-Far et al., 2010).

We were also able to clarify the origin of the apparent differences in the catalytic properties between the spontaneously in vivo folded recombinant holo-renalase produced in our lab and the in vitro refolded, FAD-reconstituted protein prepared by Dr. Desir. The biochemical and structural characterization of the latter renalase preparation indicated that the refolded protein, although soluble, is unable to bind FAD with high affinity and, more importantly, that its supposed enzymatic activity was due to the presence in the preparation of significant amount of E coli flavin reductase as a contaminant.

Finally, immunofluorescence colocalization studies with E-cadherin and megaline in pig kidney clearly showed that renalase is exclusively localized in the proximal tubule epithelial cells. Furthermore, its subcellular localization, as determined by differential sedimentation, and its
cytoplasmic punctate distribution, observed by immunofluorescence in pig kidney tissue samples, strongly suggested that renalase associates to membrane organelles, which is suggestive of processing through an unconventional secretory pathway.

In conclusion, the detailed biochemical characterization of recombinant human renalase here reported is expected to represent a solid framework on whose basis novel working hypotheses about renalase molecular mechanism could be devised and future new experimental observations could be interpreted. Furthermore, the structural and functional data collected within this project converge in suggesting that renalase could most probably represent a flavin-dependent oxidase acting on a bulk substrate, different from a catecholamine and which has still to be identified. We are confident that with the current exponentially increasing number of research articles published by different research groups on this topic (22 out of the total 51 entries retrieved from PubMed with the keyword “renalase” have 2012 as publication year) the molecular mechanism of renalase will be elucidated soon. The structural information we have obtained, together with the in vitro approaches to the functional study of the renalase active site developed within this project, will then be invaluable to exploit renalase and/or the pathway to which it belongs as a target for novel drugs active on the cardiovascular system.
Supplementary Results

Rapid reaction study of renalase flavin cofactor reactivity with O$_2$

The general fold of renalase classifies it as a member of the flavoprotein superfamily sharing the p-hydroxybenzoate hydroxylase fold topology, which includes oxidases and monooxygenases. Both subgroups of enzymes use O$_2$ as oxidant in their physiological reactions, but while the former produces H$_2$O$_2$ without transient formation of flavin intermediates, the latter generates H$_2$O through the formation of a transient peroxide form of FAD. For this reason, the study of the reaction between reduced flavin cofactor (FADH$_2$) of renalase and O$_2$ could provide precious information about the nature of the reaction catalyzed by this flavoenzyme.

The FAD prosthetic group of recombinant human renalase was reduced through anaerobic stepwise photoreduction performed using the light/EDTA system. In particular, renalase reduction was achieved by one-electron donation from 5-carba-5-deazariboflavin semiquinone produced by light irradiation, with EDTA serving as the final electron source. Renalase was subjected to successive short periods of illumination until full reduction of the flavin was reached. Absorption spectra were recorded before and after each irradiation.

Reduced renalase was then reacted with O$_2$ at 25 °C by mixing the anaerobic protein solution with air-equilibrated 100 mM NaPi, 100 mM Na$_4$P$_2$O$_7$ buffers adjusted at diverse pH values (in the 5.5-10.5 range). The actual pH final values obtained after mixing, were experimentally determined (Table 5). Renalase and O$_2$ final concentrations in the reaction mixture were 14 µM and 125 µM, respectively.
The rate of flavin oxidation was measured by monitoring the increase in absorbance at 454 nm (Figure 21). Absorbance values were fitted to the following exponential decay equation:

\[y = A_0 e^{-kt} + \text{offset} \]

to obtain rate the constants (Figure 22).

Table 5. pH values of the reaction mixtures determined before and after the mixing.

<table>
<thead>
<tr>
<th>nominal pH</th>
<th>5.5</th>
<th>6.5</th>
<th>7.5</th>
<th>8.5</th>
<th>9.5</th>
<th>10.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>actual pH</td>
<td>5.8</td>
<td>6.7</td>
<td>7.7</td>
<td>8.6</td>
<td>9.5</td>
<td>10.3</td>
</tr>
</tbody>
</table>

The reaction proceeded monotonically in all tested conditions with no evidence of transient flavin semiquinone and/or flavin peroxide formation, thus excluding single-electron transfer to O₂. Pseudo-first order constants, determined at different pH, are reported in Table 6 (Figure 23). As shown,
the rate of the process slightly decreases at basic pH values, with a maximum at pH 6.7.

![Graph showing absorbance vs. time at different pH values.](image)

Figure 22. Absorbance traces at 454 nm recorded during the FADH$_2$ oxidation with O$_2$ by stopped-flow spectrophotometry.

<table>
<thead>
<tr>
<th>pH</th>
<th>5.8</th>
<th>6.7</th>
<th>7.7</th>
<th>8.6</th>
<th>9.5</th>
<th>10.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{app} (s$^{-1}$)</td>
<td>1.25</td>
<td>1.28</td>
<td>1.02</td>
<td>0.83</td>
<td>0.69</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Table 6. Pseudo-first order constants of FADH$_2$ oxidation at different pH values.

![Graph showing k_{app} vs. pH.](image)

Figure 23. pH dependence of FADH$_2$ oxidation by O$_2$. Plot of the values of the rate constant of the flavin oxidation as a function of pH (after mixing).
Assuming that the process is bimolecular and considering the oxygen concentration in the reaction mixture, a second order constant value range from $4.56 \cdot 10^3$ M$^{-1}$s$^{-1}$ to $10.2 \cdot 10^3$ M$^{-1}$s$^{-1}$ was determined. Such rates are 20/40-fold higher than that reported for free FAD (250 M$^{-1}$s$^{-1}$), although they are lower than those of typical flavin oxidases (10^5-10^6 M$^{-1}$s$^{-1}$) (Gadda, 2012; Chaiyen et al., 2012).

Taking into consideration that the binding of the not yet known substrate(s) of renalase could increase the rate of its reaction with O$_2$, these results suggest that renalase might be an oxidase converting O$_2$ in H$_2$O$_2$ and not a O$_2$-producing enzyme, as reported in literature (Farzaneh-Far et al., 2010).
Characterization of recombinant human renalase produced in Desir’s lab

Since the catalytic properties of the spontaneously in vivo folded renalase produced in our lab markedly differed from those of the in vitro refolded, FAD-reconstituted protein produced in Desir’s lab (Farzaneh-Far et al., 2010), we received a sample of the latter protein for a detailed biochemical characterization.

The absorption spectrum of the refolded renalase sample revealed the presence of a large amount of free FAD, exceeding the protein molar concentration by a factor of ten.

To remove the FAD excess from the protein solution, the preparation was subjected to gel filtration (Figure 24). In the high molecular weight fraction, containing renalase, FAD was not detectable by spectrophotometry. This result suggested that the FAD cofactor was not steady bound to renalase, and was readily released by the protein during chromatography.

![Figure 24. Gel filtration of recombinant human renalase prepared by Dr. Desir.](image)
Furthermore, the protein fraction was found devoid of any NADH-oxidase activity. The activity was almost fully recovered when FAD was included in the assay mixture.

Since the protein preparation was found to be significantly contaminated by several other proteins, in order to improve its purification it was subjected to a chromatographic separation on a column of Ni Sepharose, in which the weak affinity of the protein for the resin was exploited to separate it from the contaminants (Pandini et al., 2010). The spectral and SDS-PAGE analyses of the fractions of the chromatogram revealed the presence of free FAD and contaminants, but very low amount of renalase in the void volume (Figure 25). On the other hand, the fraction containing renalase, eluted at the expected volume, lacked any NADH-oxidase activity. Interestingly, this activity was found associated to the fraction containing free FAD and contaminants.

![Diagram](image.png)

Figure 25. Purification of the renalase produced by Dr. Desir on Ni Sepharose.
To investigate the nature of the FAD-dependent NADH-oxidase activity observed in the renalase preparation produced by Dr. Desir, a preliminary determination of the enzyme specificity was performed with all possible combinations of NADH or NADPH as the reducing substrate, and FAD, flavin mononucleotide (FMN) or riboflavin (Rf) as the electron acceptor. Quite surprisingly, renalase was found able to catalyze the transfer of electrons from either NADH or NADPH to Rf, FMN and FAD (Table 7).

<table>
<thead>
<tr>
<th>Electron donor substrate</th>
<th>Electron acceptor substrate</th>
<th>K_m (µM)</th>
<th>V_{max} (ΔA$_{340}$/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADH</td>
<td>Rf</td>
<td>0.40</td>
<td>72×10^{-3}</td>
</tr>
<tr>
<td>NADH</td>
<td>FMN</td>
<td>0.43</td>
<td>41×10^{-3}</td>
</tr>
<tr>
<td>NADH</td>
<td>FAD</td>
<td>0.17</td>
<td>14×10^{-3}</td>
</tr>
<tr>
<td>NADPH</td>
<td>Rf</td>
<td>2.7</td>
<td>120×10^{-3}</td>
</tr>
<tr>
<td>NADPH</td>
<td>FMN</td>
<td>1.4</td>
<td>21×10^{-3}</td>
</tr>
<tr>
<td>NADPH</td>
<td>FAD</td>
<td>n.d.</td>
<td>3×10^{-3}</td>
</tr>
</tbody>
</table>

Table 7. Apparent steady-state kinetic parameters of FAD-stripped Desir’s recombinant protein preparation.

The relatively high values of K_m for the flavin derivatives indicated that they behave as substrates rather than prosthetic groups in the observed reaction, suggesting the enzyme catalyzing it could be a NAD(P)H-dependent flavin reductase. Moreover, the observed catalytic properties were surprisingly similar to those of the well-known E. coli flavin reductase (FRE) (Fontecave et al., 1987).

In order to test the hypothesis that a contamination by FRE could be responsible of the NADH-dependent activity observed in the renalase preparation produced by Dr. Desir, in collaboration with Dr. Tedeschi the sample was analyzed by tandem mass spectrometry. The material was first subjected to SDS-PAGE to separate its protein components (Figure 26), then four bands in the molecular mass range expected for FRE were cut and
analyzed by mass spectrometry, after trypsin digestion. Interestingly, the amino acid sequences of the peptides analyzed confirmed the presence of FRE as a major component of bands A and B (Figure 27), while bands C and D contained renalase fragments, possible due to its partial degradation.

Figure 26. SDS-PAGE analysis of renalase sample prepared by Dr. Desir. Lanes 1-2-3-4, renalase samples after trichloroacetic acid (TCA) precipitation. Control, recombinant human renalase produced in our lab. Red arrows A-B-C-D represent the bands analyzed by peptide mass fingerprinting.

Figure 27. Spectra of the bands A (left) and B (right) obtained by tandem mass spectrometry. The amino acid sequences of the peptides are ascribable to FRE.
Our biochemical and structural characterization indicated that the \textit{in vitro} refolded renalase produced by Dr. Desir doesn’t stably bind the FAD cofactor and lacks NADH-dependent oxidase activity. Moreover, our data demonstrated that the NADH-dependent activity of the preparation is attributable to FRE, which was present as a major contaminant.
Tissue and subcellular localization of endogenous mammalian renalase

Renalase has been proposed to be secreted by kidney into the bloodstream and urine in response to stress conditions like hypertension, but the molecular mechanism regulating its basal or stimulated secretion is still unknown (Milani et al., 2011). Structural evidences indicate the proposed secretion signal peptide could not be cleaved without the loss of the protein native conformation, suggesting that renalase trafficking would occur through an atypical secretory pathway.

The localization of endogenous renalase was initially studied by immunofluorescence microscopy in human immortalized HK-2 cells (human kidney 2 is a proximal tubular cell line derived from normal kidney). Monoclonal antibody 28-4, raised in rabbit, was used in combination with Alexa488-goat anti-rabbit secondary antibody. Renalase was clearly detected in the cells and seemed to be preferentially localized in the cytoplasm, where it showed a punctate distribution suggestive of an organelle association (Figure 28).

Figure 28. Renalase localization in HK-2 cells. Samples were imaged with a fluorescent microscope and photographed using a SPOT camera software. Left: phase; Right: immunofluorescence. HK-2 cells were stained with a renalase antibody (green). Nuclear staining in blue. Images were magnified 100X.
Similar studies were then performed in pig kidney tissue samples. Two monoclonal antibodies, 28-4 and 37-10 (both raised in rabbit), were used. Renalase localized to renal tubule epithelium, displaying the same punctate distribution observed in HK-2 cells (Figure 29).

![Figure 29. Renalase localization in pig kidney. Pig kidney sections were fixed, permeabilized and incubated with anti-renalase 28-4. Secondary antibody Alexa488-goat anti-rabbit (green) was then applied. Nuclear staining in blue. Left: 40X; Right: 100X.](image)

Moreover, preliminary experiments carried in the absence of detergent suggested that a fraction of renalase could be associated to extracellular surface of plasma membrane (Figure 30).

![Figure 30. Renalase localization in pig kidney. Left: absence of detergent, 100X. Right: treatment with 0.1% triton X100, 100X. Endogenous renalase in green, nuclear staining in blue.](image)
The same renalase cytoplasmic distribution was observed in mouse renal tubules. Moreover, as expected, no renalase was detected in renalase KO mouse kidney tissue (Figure 31).

![Renalase localization in mouse kidney.](image)

Figure 31. Renalase localization in mouse kidney. Monoclonal 28-4 anti-renalase was used in combination with Alexa488-goat anti-rabbit secondary antibody (green). Left and Right top: endogenous renalase in mouse kidney samples 40X and 100X, respectively. Central bottom: no protein was detected in renalase KO mouse kidney, 100X. Nuclear staining in blue.

In pig kidney, a cell fractionation approach was also used to investigate the localization of endogenous renalase. The centrifugation protocol yielded the following subcellular fractions:
Initial experiments, carried out by Western blot analysis, revealed the presence of renalase in all the fractions obtained by differential sedimentation (Figure 32). However the analysis of the distribution of several subcellular markers, i.e. calnexin (ER), TGN-38 (Golgi), lamin (nucleus), LC3 (autophagosomes), Lamp2B (lysosomes), Sec31 (ER to Golgi, COPII Coat), Rab7 (late endosomes) and Rab11 (recycling endosomes, mitochondria) revealed a significant extent of cross-contamination. Thus, further fractionation experiments needed to be performed under more stringent conditions.

In order to disrupt the possible non-specific binding of renalase to membranes, an additional washing step with Na₂CO₃ or NaCl was included. Interestingly, renalase was still present in the P3 fraction after 1 M Na₂CO₃.
treatment (Figure 33), but not after incubation with 2.5 M NaCl, implying a possible specific interaction with integral membrane proteins.

Figure 33. Western blot analysis of pig kidney fractions after 1 M Na₂CO₃ treatment. Monoclonal 28-4 anti-renalase in combination with HRP-goat anti-rabbit secondary antibody was used to detect endogenous renalase.

The subcellular localization of renalase and its cytoplasmic punctate distribution, strongly suggest that the protein could be associated to membranous organelles.
Appendix 2

State of the Art

During the PhD program, I was also involved in a side project focused on the elucidation of the role of the Y258 residue of *Plasmodium falciparum* ferredoxin-NADP\(^+\) reductase (PfFNR) in the control of NADPH specificity. *P. falciparum* (Figure 34) belongs to the phylum Apicomplexa, which consists of unicellular, obligate intracellular parasites and is responsible for the most deadly form of malaria in humans (Seeber et al., 2008). Besides the nucleus, mitochondrion and endoplasmic reticulum, Apicomplexa exhibit a distinctive ‘apical complex’ (after which the phylum is named) that has been shown to be required for pathogen survival and represents a known site of action of antimalarial compounds.

![Figure 34. *Plasmodium falciparum* cell structure (Bannister et al., 2003).](image)

In the apicoplast (an organelle of the apical complex) of *P. falciparum* a ferredoxin-NADP\(^+\) reductase has been identified. This protein is directly involved in the apicoplast metabolism, since it was demonstrated that the ferredoxin/ferredoxin-NADP\(^+\) reductase redox system of *P. falciparum*...
serves as the physiological electron donor for LytB, the enzyme that catalyzes the last step of the DOXP pathway of isoprenoids biosynthesis in apicoplast (Rorich et al., 2005).

PfFNR is an enzyme belonging to dehydrogenase electron-transferases class of flavoproteins that contains flavin adenine dinucleotide (FAD) as prosthetic group, which is responsible for the catalytic properties of the holoenzyme. PfFNR is able to catalyze the exchange of reducing equivalents between the NADP⁺/NADPH and the ferredoxin(Fe³⁺)/ferredoxin (Fe²⁺) redox couples, in particular it promotes the transfer of two electrons from one molecule of NADPH to two molecules of ferredoxin:

\[
2 \text{Fd(Fe}^3+) + \text{NADPH} \rightleftharpoons 2 \text{Fd(Fe}^2+) + \text{NADP}^+ + \text{H}^+
\]

Compared to the typical plastidic FNRs, PfFNR exhibits most of their basic features except for a lower turnover number and a weaker ability to discriminate between NADH and NADPH (Balconi et al., 2009). These functional differences result from critical details about how the plasmodial enzyme binds NADPH 2’-phosphate group (Figure 35).

Figure 35. Three-dimensional structure of the PfFNR active site. Part of the cleft between the FAD and NADP binding domains is shown. FAD, the substrate analogue adenosine 2’,5’-diphosphate (2’-PAMP), S247, Y258 and H286 are represented as ball-and-stick models.
Aim of the Project

The project was mainly focused on the role of two PfFNR residues that interact with the 2’-phosphate and the pyrophosphate groups of NADPH, Y258 and H286 respectively, in the modulation of the coenzyme specificity of this enzyme. In particular, Y258 provides the second aromatic ring (in addition to H286) to sandwich the adenine moiety of the coenzyme and also donates a H-bond to the 2’-phosphate group of NADPH (Figure 35). For this reason, the replacement of Y258 with a phenylalanine is expected to only disrupt the latter interaction leaving aromatic stacking unaffected.

Main Results

The study of the role of Y258 and H286 in catalysis was carried out by site-directed mutagenesis, generating two PfFNR variants carrying either the single Y258F and the double Y258F/H286Q replacement.

The effect of the mutations on the steady-state kinetic parameters of the PfFNR variants for the NAD(P)H-dependent activity was largely independent from the presence of histidine or glutamine at position 286 (Table 8). In particular, the Y258F replacement abolished the difference between the k_{cat}^{NADPH} and k_{cat}^{NADH} of the single and double mutant. Furthermore, the Y258F mutation had opposite effects on K_m^{NADPH} and K_m^{NADH}, increasing the former and lowering the latter. The combination of these effects led to a 50-fold decrease in the PfFNR specificity ratio and, interestingly, the effect of the two replacements displayed no additivity. Since k_{cat} is related to the rate of hydride transfer (HT) between the nicotinamide dinucleotide and the FAD prosthetic group in the enzyme-
cofactor complex, these data suggested that the Y258 hydroxyl could have an important role in optimizing the HT from NADPH to FAD.

Table 8. Steady-state kinetic parameters of the PfFNR variants for the NADPH- and NADH-K$_3$Fe(CN)$_6$ reductase reaction (Baroni, Pandini et al., 2012).

<table>
<thead>
<tr>
<th>PfFNR</th>
<th>$k_{NADP} (s^{-1})$</th>
<th>$K_{NADP} (\mu M)$</th>
<th>$k_{cat}/K_{NADP} (s^{-1} \mu M^{-1})$</th>
<th>$k_{NADH} (s^{-1})$</th>
<th>$K_{NADH} (\mu M)$</th>
<th>$k_{cat}/K_{NADH} (s^{-1} \mu M^{-1})$</th>
<th>NADPH/NADH specificity ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>wild type</td>
<td>125 ± 4</td>
<td>36 ± 6</td>
<td>3.5 ± 0.5</td>
<td>48 ± 2</td>
<td>720 ± 90</td>
<td>0.05 ± 0.005</td>
<td>70</td>
</tr>
<tr>
<td>H286Q</td>
<td>185 ± 3</td>
<td>57 ± 5</td>
<td>3.3 ± 0.3</td>
<td>100 ± 3</td>
<td>715 ± 60</td>
<td>0.15 ± 0.15</td>
<td>22</td>
</tr>
<tr>
<td>Y258F</td>
<td>50 ± 0.5</td>
<td>160 ± 16</td>
<td>0.3 ± 0.03</td>
<td>47 ± 1</td>
<td>200 ± 40</td>
<td>0.2 ± 0.04</td>
<td>1.5</td>
</tr>
<tr>
<td>Y258F/H286Q</td>
<td>53 ± 0.5</td>
<td>240 ± 17</td>
<td>0.2 ± 0.01</td>
<td>47 ± 1</td>
<td>300 ± 40</td>
<td>0.15 ± 0.015</td>
<td>1.3</td>
</tr>
</tbody>
</table>

The reductive half reaction of the enzyme variants was studied in detail by stopped-flow spectrophotometry, using either NADPH or NADH as reductant. The reaction of PfFNR with the nicotinamide dinucleotides led to the formation of a charge-transfer complex (CT) between NAD(P)H and FAD, observed as an increase in the absorption above 550 nm. The Y258F mutation lowered the k_{HT} for NADPH and abolished the accumulation of CT, without hampering HT from NADH to FAD. The PfFNR-Y258F/H286Q double mutant displayed the same kinetic properties of PfFNR-Y258F, confirming that the effects of the Y258F replacement completely overshadow those of the H286Q one. The k_{HT} values determined by rapid reaction kinetic (Table 9) matched very well the k_{cat} of both NADPH- and NADH-dependent reactions.

Table 9. Rate constants of hydride transfer from NADPH and NADH to FAD in PfFNR variants as determined by stopped-flow spectrophotometry (Baroni, Pandini et al., 2012).
In order to verify the hypothesis that the decrease in the HT determined by Y258 hydroxyl deletion when NADPH, but not NADH, is the hydride donor might be the result of a destabilization of the catalytically competent conformation of bound NADPH (which in the wild-type enzyme is associated with the transient formation of the CT), both PfFNR variants were subjected to anaerobic photoreductions in the absence and presence of NADP⁺. Compared to the wild-type, where a long-wavelength absorbing species representing CT was observed, no CT species were detected during the reduction of PfFNR-Y258F or PfFNR-Y258F/H286Q in the presence of NADP⁺.

The contribution of Y258 to substrate recognition was further investigated by differential spectrometry, since it’s well known that the binding of NADP⁺ by FNRs perturbs the visible absorption spectrum of bound FAD cofactor (Deng et al., 1999). Both PfFNR variants displayed lower affinity for NADP⁺ in comparison to that of the wild-type form, with higher K_d values of enzyme-NADP⁺ complexes (Table 10). More importantly, the difference spectra and the values of the differential extinction coefficient at 508 nm revealed that the removal of the Y258 hydroxyl group highly destabilized the nicotinamide-flavin interaction.

Table 10. Dissociation constants of the complex between the PfFNR variants and NADP⁺, and intensities of the ligand-induced spectral perturbation of bound FAD (Baroni, Pandini et al., 2012).

<table>
<thead>
<tr>
<th>PfFNR form</th>
<th>K_d (µM)</th>
<th>$\Delta \varepsilon$ (mM⁻¹ cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>wild type</td>
<td>60 ± 9a</td>
<td>0.30 ± 0.01</td>
</tr>
<tr>
<td>H286Q</td>
<td>130 ± 10a</td>
<td>1.14 ± 0.04</td>
</tr>
<tr>
<td>Y258F</td>
<td>170 ± 30</td>
<td>0.04 ± 0.002</td>
</tr>
<tr>
<td>Y258F/H286Q</td>
<td>130 ± 40</td>
<td>0.03 ± 0.002</td>
</tr>
</tbody>
</table>
Conclusions and Future Prospects

These data allowed us to conclude that the Y258 side chain favors the adoption of the catalytically competent conformation of the nicotinamide moiety of NADPH, enhancing the hydride transfer and, therefore, enzyme turnover. Moreover, the hydroxyl of this residue contributes to make the enzyme able to discriminate against NADH by keeping its K_m^{NADH} high. Although *P. falciparum* FNR is less strictly NADPH-dependent than its homologues, the almost complete abolishment of coenzyme selectivity reported in this study had never been accomplished before through a single mutation.
References

64. Röhrich R.C., Englert N., Troschke K., Reichenberg A., Hintz M.,
Seeber F., Balconi E., Aliverti A., Zanetti G., Köhler U., Pfeiffer M.,
Beck E., Jomaa H., Wiesner J. (2005). Reconstitution of an apicoplast-
localized electron transfer pathway involved in the isoprenoid
biosynthesis of *Plasmodium falciparum*. *FEBS Lett.* 579, 643-648
(2004). Unconventional secretion of fibroblast growth factor 2 is
mediated by direct translocation across the plasma membrane of
mammalian cells. *J. Biol. Chem.* 279, 6244-6251
hydroxylase-substrate complex refined at 1.9 Å resolution. Analysis of
the enzyme-substrate and enzyme-product complexes. *J. Mol. Biol.*
208, 679-696
mitochondrial metabolism: a story of gains, losses and retentions.
Trends Parasitol. 24, 468-478
characterization of monoamine oxidase in zebrafish (*Danio rerio*).
69. Son S.Y., Ma J., Kondou Y., Yoshimura M., Yamashita E., Tsukihara
resolution the control of opening the entry for substrates/inhibitors.
PNAS. 105, 5739-5744
Polymorphism of the renalase gene in end-stage renal disease patients
affected by hypertension. *Nephrol. Dial. Transplant.* 0, 1-4
mammalian gene collection. *Science.* 286, 455-457

Is Renalase a Novel Player in Catecholaminergic Signaling? The Mystery of the Catalytic Activity of an Intriguing New Flavoenzyme

Sara Baroni1,2, Mario Milani2, Vittorio Pandini1, Giulio Pavesi3, David Horner4 and Alessandro Alverati1,2,*

1Dipartimento di Bioclassica, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy; 2CNR-Innocenzo di Bari, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy

Abstract: Renalase is a flavoprotein recently discovered in human, preferentially expressed in the proximal tubules of the kidney and secreted in blood and urine. It is highly conserved in vertebrates, with homologs identified in eukaryotic and prokaryotic organisms. Several genetic, epidemiological, clinical and experimental studies show that renalase plays a role in the modulation of the function of the cardiovascular system, being particularly active in decreasing the catecholaminergic tone, in lowering blood pressure and in exerting a protective action against myocardial ischemic damage. Deficient renalase synthesis might be the cause of the high occurrence of hypertension and adverse cardiac events in kidney disease patients. Very recently, recombinant human renalase has been structurally characterized and functionally characterized in vitro. Results show that it belongs to the p-hydroxybenzoate hydroxylase structural family of flavoenzymes, contains non-classically bound FAD with redox features suggestive of a dehydrogenase activity and is not a catecholamine-degrading enzyme, either through cytochrome P450-dependent monooxygenase reactions. The biochemical data now available will hopefully provide the basis for a systematic and rational quest toward the identification of the reactions catalyzed by renalase and of the molecular mechanism of its physiological action, which in turn are expected to favor the development of novel therapeutic tools for the treatment of kidney and cardiovascular diseases.

Keywords: Chronic kidney disease, end-stage renal disease, blood pressure, myocardial ischemia, sympathetic nervous system, catecholamines, kidney disease, nicotinamide deaminase.

1. INTRODUCTION

Renalase was discovered in 2005 through an in silico screen of the human genome aimed at identifying genes encoding previously uncharacterized proteins, predicted to be soluble and secreted, which, among others, a gene preferentially expressed in the kidneys [1]. The hypothesis underlying this effort was that kidney endocrine functions possibly included still unknown signaling proteins [2-7]. Over the last ten years, an increasing amount of clinical and experimental evidence has been accumulating supporting the idea that renalase is a primary player in the pathogenesis of the cardiovascular events that usually follow renal dysfunctions. While the link between renalase and the pathophysiology of the cardiovascular system seems now to be clear, the molecular mechanism underlying its actions is still obscure in most respects. Several excellent reviews have recently been published on the consequences of renalase deficiency in diabetes, hypertension, cardiac hypertrophy, myocardial ischemia, and stroke [8-13]. This article will mainly focus on the molecular and biochemical properties of mammalian renalase through a critical survey of the other contradictory results published to date on the possible catalytic properties of this protein, with the purpose of discriminating between solid achievements and the many inconsistent observations.

2. THE DISCOVERY OF RENALASE

Renalase was identified in 2005 by the research team of Gary V. Deur [1], and the story of its discovery is an instructive demonstration of the power of a rationally designed data mining strategy in the post-genome era [2,3]. The seminal idea that prompted the search for a still unknown signaling protein released by the kidneys was that traditional pathophysiological mechanisms were insufficient to fully account for the increased risk of cardiovascular adverse events in patients with chronic kidney disease [4,5,14].

Indeed, besides eliminating waste products and maintaining water and electrolyte homeostasis, the kidney also exerts well-known endocrine functions (e.g., it secretes erythropoietin and calcitriol) and plays a pivotal role in the renin-angiotensin-aldosterone system by releasing the renin substrate. However, in end-stage renal disease, replacement therapy and renal transplant fail to fully restore the functions of the natural organ. Thus, Deur and colleagues concluded that it would be no surprise that "the current endocrine function of the kidney was incomplete and that the organs might secrete additional proteins with important biological roles." [1]. To identify them, the Mammalian Gene Collection Project database was screened in silico for cDNA encoding proteins predicted to possess these three features: to be uncharacterized, to have a signal peptide for secretion and to lack transmembrane segments. This a priori selection yielded 114 hits out of 12,563 distinct open reading frames considered [1]. The candidate genes were then experimentally validated by Northern blot analysis and observing the actual secretion of their products. Just one open reading frame survived these "a posteriori" criteria, showing a robust expression in the kidney and producing a protein secreted in the medium when transiently expressed in mammalian cultured cells. Finally, the gene product, named renalase by its discoverers, was found in blood plasma and urine of healthy individuals. To date, various research groups have confirmed the presence of renalase in plasma, and solid evidence has accumulated that circulating renalase predominantly originates from the kidneys. However, its discovery has been at least partly serendipitous, since renalase tissue distribution is much wider than initially reported (see Chapter 4), and the peptide originally predicted to generate a secretion signal probably does not serve this role (see Chapter 6).

3. STRUCTURE OF THE RENALASE GENE

The human renalase gene (gene symbol: RNL2, formerly CNN2) spans about 300,000 nucleotides from position 90,043, 850 to 90,343,081 of the minus strand of chromosome 10 at q23.33. Mapping full-length cDNA sequences to the genome identifies eleven exons, which encode different splicing variants of the pro-
inference regarding the role of reninase should be derived from studies of MAOs only with great caution as these enzymes-elicited side effects are only distantly related to another (not shown).

4. RENALASE ISOMERS AND GENE EXPRESSION PATTERN

Different mRNA transcripts of RENALASE have been detected and sequenced, highlighting the existence of protein variants originating from alternative splicing [8,18,19]. Besides the aforementioned reninase (NP_001028789), a second annotated protein isoform exists (reninase 2, NP_0066833), with a slightly shorter polypeptide chain (315 residues) and a different sequence in its C-terminal region. The two other characterized RENALASE transcripts (AK396362 and BX548154) encode much shorter deduced polypeptides (235 and 338, respectively). The comparison of the primary structures of the alternatively spliced reninase isoforms in the light of the crystal structure of reninase 1 [20] suggests that, while reninase 2 would probably be a compact globular protein similar to its larger isoform, the other two polypeptides would be unlikely to yield functional and interacting proteins, since they lack essential structural elements for FAD binding (see Chapter 6). Thus, the potential physiological significance of such shortest variants is uncertain. In the case of the mouse orthologous gene, two transcript isoforms are annotated: the first (NM_0114434) has an exon-exon structure identical to human NP_001028789 and its translation product has been partly characterized [18], the second lacks exon 2 and 3 (as does human transcript AK396362) (see Fig. 1), but encodes a protein whose described C-terminal region is identical to that of NP_001028789. This suggests that isoform sampling in human tissues is still incomplete, and further alternative transcripts might exist.

In the most comprehensive study on the pattern of RENALASE expression published so far, autopsic human tissues samples known to express MAOs have been analyzed both by immunohistochemistry and by reverse transcription polymerase chain reaction [19]. In addition to kidney and myocardium (1), reninsase was found in brain, bone, prostate, and salivary gland (2). In the kidneys, reninase was shown to be present in glomeruli and proximal tubules (1). Widespread transcription of human reninase is also confirmed by microarray data (21) and Whole Transcriptome Next-Generation Sequencing (RNA-Seq) (22). Reninase 1 is the only isoform apparently detected in blood plasma and urine and it represents the major isoform in all tissues tested (kidney, heart, skeletal muscle, liver, testis, hypothalamus, adrenal gland) (1,19). Transcripts encoding reninase 2 and the two shorter variants (AK396362 and BX548154), although at lower levels than reninase 1 mRNA, were observed in all samples examined, while no reninase 2 transcript was detected in the hypothalamus (19). A reninase concentration of 0.1 ng per gram wet tissue has been estimated in the kidneys by immunoblotting (10). Data on the absolute concentrations of reninase in human blood plasma have been estimated only recently, as determined by ELISA, showing that it is about 4 ng/ml in healthy individuals, corresponding to 0.1 nM (23-28). Mouse reninase expression was reported by reverse transcription PCR in kidney, liver, heart, 12.5 days whole embryo, brain, and skeletal muscle (24).

Several hundred single nucleotide polymorphisms (SNPs) of RENALASE are known, most of which are located in the flanking regions, within the introns or in the non-coding regions of the gene and thus do not result in nonsense mutations, although they could possibly affect gene expression and mRNA splicing. The twenty-four SNPs resulting in amino acid replacements are shown in Table 1. Interestingly, most of the mutated residues are localized on the molecular surface of reninase 1, at sites where the replacements are expected to have little impact on protein conformational stability. Several of
Table 1. Known Single Nucleotide Polymorphisms of the Renalase Gene that Result in Protein Amino acid Substitutions

<table>
<thead>
<tr>
<th>SNP accession no.</th>
<th>Experimental evidence</th>
<th>Exon no.</th>
<th>Base change</th>
<th>Amino acid replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs2566545</td>
<td>genomic</td>
<td>1a</td>
<td>CG</td>
<td>Arg137-Gln17</td>
</tr>
<tr>
<td>rs147039896</td>
<td>cDNA</td>
<td>2</td>
<td>A/G</td>
<td>Arg75-Cys75</td>
</tr>
<tr>
<td>rs113513862</td>
<td>cDNA</td>
<td>3</td>
<td>CT</td>
<td>Val85-Ile85</td>
</tr>
<tr>
<td>rs79091780</td>
<td>cDNA</td>
<td>3</td>
<td>CT</td>
<td>Ile93-Val93</td>
</tr>
<tr>
<td>rs142035485</td>
<td>cDNA</td>
<td>3</td>
<td>CG</td>
<td>Arg100-Glu102</td>
</tr>
<tr>
<td>rs40138938</td>
<td>cDNA</td>
<td>4</td>
<td>A/G</td>
<td>Ile113-Thr111</td>
</tr>
<tr>
<td>rs19294588</td>
<td>genomic</td>
<td>4</td>
<td>CG</td>
<td>Gln134-His134</td>
</tr>
<tr>
<td>rs146546870</td>
<td>cDNA</td>
<td>4</td>
<td>CT</td>
<td>Gln143-Lys143</td>
</tr>
<tr>
<td>rs7794193</td>
<td>genomic</td>
<td>4</td>
<td>A/G</td>
<td>Pro151-Leu151</td>
</tr>
<tr>
<td>rs11357260</td>
<td>genomic</td>
<td>4</td>
<td>A/C</td>
<td>Met161-Thr161</td>
</tr>
<tr>
<td>rs78525460</td>
<td>cDNA</td>
<td>5</td>
<td>GT</td>
<td>Gln181-Lys181</td>
</tr>
<tr>
<td>rs112858010</td>
<td>genomic</td>
<td>5</td>
<td>A/G</td>
<td>Ser191-Phe191</td>
</tr>
<tr>
<td>rs187429907</td>
<td>genomic</td>
<td>5</td>
<td>A/U</td>
<td>Ala193-Ser193</td>
</tr>
<tr>
<td>rs118576263</td>
<td>cDNA</td>
<td>5</td>
<td>A/T</td>
<td>Arg204-Glu207</td>
</tr>
<tr>
<td>rs131245410</td>
<td>cDNA</td>
<td>5</td>
<td>CT</td>
<td>Ser217-Gly217</td>
</tr>
<tr>
<td>rs19733113</td>
<td>genomic</td>
<td>5</td>
<td>CT</td>
<td>Arg232-Ser232</td>
</tr>
<tr>
<td>rs18959368</td>
<td>genomic</td>
<td>5</td>
<td>A/G</td>
<td>Ile226-Thr226</td>
</tr>
<tr>
<td>rs147446963</td>
<td>genomic</td>
<td>5</td>
<td>CT</td>
<td>Ile226-Val226</td>
</tr>
<tr>
<td>rs117466494</td>
<td>cDNA</td>
<td>5</td>
<td>CT</td>
<td>Ser232-Ser232</td>
</tr>
<tr>
<td>rs147459882</td>
<td>cDNA</td>
<td>6</td>
<td>A/G</td>
<td>Ser235-Pro235</td>
</tr>
<tr>
<td>rs149503466</td>
<td>cDNA</td>
<td>6</td>
<td>A/G</td>
<td>Pro240-Ser240</td>
</tr>
<tr>
<td>rs138921267</td>
<td>cDNA</td>
<td>6</td>
<td>CT</td>
<td>Val243-Ser243</td>
</tr>
<tr>
<td>rs142688123</td>
<td>cDNA</td>
<td>6</td>
<td>A/G</td>
<td>Phe250-Leu250</td>
</tr>
<tr>
<td>rs14877075</td>
<td>cDNA</td>
<td>7b</td>
<td>A/G</td>
<td>Ala210-Val210</td>
</tr>
</tbody>
</table>

*Exon numbering is shown in Fig. 1.

the SNPs mapping in the interior of the renaiase molecule maintain the hydrophilic character of the residue side chain, with the exceptions of Ile11Thr, Ala193Ser, Ile226Thr and Pro240Ser. The only allelic variant involving a residue interacting with FAD carries the Met161Val replacement, in which the substitution of the side chain, which stacks on the FAD adenine ring, does not seem to put at risk the binding of the cofactor. As reported in Chapter 7.3, for a few RENAS SNPs (listed in Table 2) the possible association of a specific allele or genotype to some pathological conditions has been studied (see Chapter 7.3).

Bioinformatics analysis, physiological and clinical evidence, and experimental data indicate that renalase is at least partially secreted. First of all, as mentioned above, renalase 1 was detected in body fluids such as blood plasma and urine [1,10,20,30]. Secondly, in patients suffering from chronic kidney disease and primary glomerulonephritis, as well as in animal model of kidney failure, extracellular renalase was absent or present at lower concentrations, indicating the kidneys as the main source of the secreted protein [1,30-32]. Finally, mammalian cells transfected with constructs expressing either human or mouse renalase were shown to secrete the protein into the culture medium [1,31]. However, as discussed in Chapter 6, it is unlikely that the N-terminal region of renalase, initially proposed as a secretion signal [1], could be processed by the conventional cell secretory pathway, because the cleavage of this peptide would dramatically destabilize the native conformation of the protein.

5. BIOCHEMICAL PROPERTIES OF RENALASE

5.1. Purification of Endogenous and Recombinant Renalase Forms

Any proposal about the mechanism of the physiopathological action of a newly discovered protein needs to be verified in the context of its functional and structural properties. In the case of renalase, the application of this general rule had to wait several years until sufficient amounts of stable recombinant holoprotein became available for biochemical characterization, which eventually led also to the characterization of its crystal structure. The only attempt to characterize endogenous human renalase was carried out
Table 2. Single Nucleotide Polymorphisms of the Reninase Gene Characterized for their Association with Pathological Conditions

<table>
<thead>
<tr>
<th>SNP accession no.</th>
<th>Location*</th>
<th>Allele</th>
<th>MAF†</th>
<th>Diseases and risk-associated allele</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs3376178</td>
<td>3' flanking region</td>
<td>G/A</td>
<td>0.46</td>
<td>Essential hypertension (G), hypertensive end stage renal disease (G); type 2 diabetes (G)</td>
<td>[44,45,67]</td>
</tr>
<tr>
<td>rs2396545</td>
<td>Exon 1a</td>
<td>C/G</td>
<td>0.44</td>
<td>Essential hypertension (C); hypertension in type 2 diabetes (C); cardiac hypertrophy; dysfunctions and ischaemia (C)</td>
<td>[53,44,45]</td>
</tr>
<tr>
<td>rs7854466</td>
<td>Intron 3-4</td>
<td>C/T</td>
<td>0.46</td>
<td>n. s.</td>
<td>[44]</td>
</tr>
<tr>
<td>rs2437871</td>
<td>Intron 3-4</td>
<td>A/C</td>
<td>0.46</td>
<td>Type 2 diabetes (A)</td>
<td>[88]</td>
</tr>
<tr>
<td>rs11202776</td>
<td>Intron 4-5</td>
<td>C/T</td>
<td>0.12</td>
<td>n. s.</td>
<td>[44]</td>
</tr>
<tr>
<td>rs1648352</td>
<td>Intron 5-6</td>
<td>A/G</td>
<td>0.32</td>
<td>n. s.</td>
<td>[44]</td>
</tr>
<tr>
<td>rs1087800</td>
<td>Intron 5-8</td>
<td>A/G</td>
<td>0.50</td>
<td>Hypertension in end stage renal disease (G); stroke (G)</td>
<td>[45,67]</td>
</tr>
<tr>
<td>rs1035796</td>
<td>Intron 7a-7b</td>
<td>C/T</td>
<td>0.47</td>
<td>n. s.</td>
<td>[44]</td>
</tr>
<tr>
<td>rs2114406</td>
<td>3' flanking region</td>
<td>A/G</td>
<td>0.22</td>
<td>n. s.</td>
<td>[44]</td>
</tr>
</tbody>
</table>

* Intron number numbered according to different authors as shown in Fig. 1. MAF, minor allele frequency; n. s., no significant correlation with the examined pathological result.

on the protein isolated from the urine of healthy volunteers [1]. Excreted reninase was purified by ammonium sulfate precipitation followed by immunoaffinity chromatography using antibodies against the recombinant protein. Unfortunately, essentially no biochemical characterization was performed on the purified material, except for electrophoretic analysis and catalytic activity assays (see Chapter 5.2). Thus, although SDS-PAGE revealed a molecular mass (35,000 Da) slightly lower than that predicted for the full length 342-residue polyglycoprotein (37,847 Da), the accuracy of the estimate did not allow definitive conclusions about the presence or absence of the signal peptide after post-translational processing of urine reninase. Even more surprisingly, the possible presence of a bound flavin co-factor was not verified in the purified protein [1].

The production of recombinant mammalian reninase in different hosts using various expression strategies has been described by four independent groups. Desir's group reported the production of two recombinant forms of human reninase in ZUCKER rats. Initially, the protein was expressed as an N-terminal fusion with glutathione S-transferase (GST) and purified in soluble form by affinity chromatography on a Glutathione Sepharose column [1,17]. GST-remazol was used to raise anti-reninase polyclonal antibodies and to study its catalytic activity in vivo. Later, two recombinant allelic isoforms of human reninase were synthesized with no tag or fusion partners extracted from E. coli inclusion bodies by chromatographic agents and reactivated in vitro in the presence of FAD [17,33]. Wang and co-workers produced human reninase in E. coli as a fusion protein containing at the N-terminus the pol II leader sequence for localization in the cell periplasm, and a C-terminal His-tag. The abundant 38 kDa product was purified (although it was not specified whether under denaturing or non-denaturing conditions) and used for monoclonal antibody production [34]. Zhang's group reported the synthesis of functional human reninase in E. coli as an N-terminal fusion with GST, with no purification attempt [16].

Recombinant reninase has also been produced in eukaryotic cells, although its isolation from this source has never been reported. Mouse reninase has been successfully synthesized in human embryonic kidney cells as a C-terminally truncated green fluorescent protein (GFP)-tagged fusion [16]. The expression of human reninase in insect cells by a baculovirus-based system was described, although many details of the cloning procedure are missing, and no explanation is given of the very large apparent molecular mass of the expressed product (85 kDa) [35]. The authors also reported the synthesis of human reninase in embryonic kidney cells [36]. Finally, the production of human reninase in yeast requires Paracoccus denitrificans, which has been described in a patent by Desir and co-workers [37]. Gene expression was obtained using the prPCDA expression vector, which promotes its integration in the host genome and secretion of the resulting translation product in the growth medium, where it was detected immunochemically.

Despite the ability of reninase to incorporate a flavin nucleotide being an absolute prerequisite for its initial proposed enzymatic action, the actual presence of FAD or FMN in the mentioned recombinant reninase forms was not reported. Since the presence of flavin nucleotides is difficult to miss due to their intense yellow color, we suspect that no purification procedures yielded a stable flavoprotein. Using the pCRED2 expression plasmid kindly provided by Dr. Shao-Feng Zhang [16], we obtained the synthesis of E. coli of limited amounts of solubile mouse GST-remazol, which, after successful isolation by affinity chromatography, contained an flavin co-factor (Alviviri, unpublished results). Apparently, the only observation (reported in its first article on this subject) that led Desir to conclude that human reninase is a flavoprotein was that inclusion of 0.1 mM FAD in the bacterial culture medium was required in order to isolate a recombinant protein that demonstrated co-redoxactive active [1]. This is an inconsistent observation, since it has long been known that FMN or FAD biosynthesis by E. coli is not a limiting factor in flavoprotein production, even when expression levels exceed 25 mg of target protein per gram of bacterial cells [38,39]. Indeed, Mevedev and coworkers clearly stated that a conclusive proof that reninase contains FAD was still lacking. This proof was obtained in the same year, when several expression trials in both E. coli [40] and Saccharomyces cerevisiae [Alviviri, unpublished results], we finally obtained limited amounts of highly purified human flavin-containing reninase spontaneously folded in vivo in the bacterial host [40]. Both G6P and Asp27 allelic isoforms of reninase were found to contain 1 mol FAD per mol protein, which, at variance with MAO enzymes, was tightly but not covalently bound to the apoprotein. The fluorescence of the bound co-factor was found completely quenched, and circular di-
Human casein kinase II (hCKII) is a serine/threonine kinase that plays a critical role in the regulation of cell growth, differentiation, and survival. It is known for its involvement in various cellular processes, including apoptosis, metabolism, and DNA repair. The kinase is composed of two identical subunits, each containing a catalytic domain and a regulatory domain. The catalytic domain is responsible for the kinase activity, while the regulatory domain controls the enzyme's activity and substrate specificity.

The regulatory domain of hCKII contains multiple phosphorylation sites that are subject to post-translational modifications, including serine and threonine phosphorylation. These modifications are mediated by various kinases, such as protein kinase A (PKA) and protein kinase B (Akt), and can significantly affect the kinase's activity.

In this study, we aimed to investigate the structural and functional properties of hCKII using biophysical methods. We employed spectroscopy techniques, such as circular dichroism (CD) and ultraviolet (UV) spectroscopy, to analyze the secondary structure of the protein. These experiments provided insights into the conformational stability and structural dynamics of the protein.

CD experiments revealed that the secondary structure of hCKII is predominantly

circular dichroism (CD) spectroscopy, which is sensitive to the secondary structure of proteins. CD spectra are characteristic of the protein's local environment, with specific bands indicative of α-helical, β-sheet, and random coil structures. The CD spectra showed a well-defined negative Cotton effect at 222 nm, typical of α-helical secondary structure, suggesting that a significant fraction of the protein is in an α-helical conformation.

UV spectroscopy was also employed to investigate the protein's absorption properties. This technique is sensitive to the protein's amino acid composition and can provide information about the protein's secondary and tertiary structures. The UV spectrum showed a prominent absorption band at 280 nm, which is characteristic of aromatic amino acids such as tryptophan and tyrosine. This finding is consistent with the presence of α-helical structure, as tryptophan and tyrosine are preferentially located in α-helices.

Furthermore, we used mass spectrometry to measure the molecular weight of the protein. The mass spectrometry data confirmed the predicted molecular weight of the protein, supporting the structural information obtained from CD and UV spectroscopy.

In conclusion, our biophysical studies revealed that hCKII has a well-defined α-helical secondary structure, which is consistent with its physiological function as a regulatory kinase. The insights gained from these experiments will be useful for the design of targeted inhibitors and for understanding the mechanism of action of hCKII in various cellular processes.
plasmid-2′-deoxyribochloride (DNTP being the preferred one), and determined the following steady-state kinetic parameters: $K_{m} = 0.14 \text{mM}$, $V_{max} = 0.20 \text{mM}$. K_{m} and V_{max} were 10 and 15\text{mM}$ respectively. In addition to indicating that GlhA has no role in the catalysis of these reactions, our steady-state kinetic data markedly differ from those published by Douc and his group in showing that reaume is not exactly specific for NADH or NADPH. By differential spectrophotometry we determined that the dissociation constants for the protein with NAD$^{+}$, NADP$^{+}$, and 2-phospho-AMP were all in the range of 0.2-1 \text{mM}$. Taken together, the very low turnover numbers, the low affinity for nucleotides, and the poor selectivity in discriminating among them strongly suggest that reaume is not a NADPH-dependent enzyme, and that the observed dehydrogenase activity indicates a physiologically irrelevant side reaction [20]. Finally, we showed that reaume slightly stabilizes the normal form of FAD and that it is able to form a sulfite adduct [20]. These observations indicate that the reactivity of the FAD prosthetic group of reaume dramatically differs from that of MAO A and B, allowing us to conclude, in agreement with the phylogenetic data (see Chapter 3), that reaume is not a MAO-like enzyme and is thus not even an oxidase.

6. THREE DIMENSIONAL STRUCTURE OF REAUME

The crystal structure of human reaume isoform I (PDB ID 3Q4V) was solved at 2.5 Å resolution by molecular replacement using the coordinates of the yeast P. pastoris (PDB ID 3SKK) as a starting model [20]. The reaume molecule has a compact, elongated α/β globular shape, with an α and β secondary structure content of 36% and 25%, respectively. It is organized in two domains: one consisting of three non-adjacent polypeptide stretches, and the other by two intervening segments. At the interface between the two domains, a wide and deep cleft runs perpendicular to the longer axis of the molecule on the side opposite to the entrance of the active site cavity described below. The FAD cofactor is buried within the interior of the molecule, in the exception of a few small regions, including part of the isoalloxazine ring, and is firmly, but not covalently bound to the protein through several π-interactions and other contacts. The α domain, as described by the presence of the isoalloxazine binding motif, adopts the classical Rossmann fold, which is used to bind the FAD prosthetic group [40], thus enabling the possibility that it could provide a NAD$^{+}$/NADP$^{+}$ binding site, as proposed by previous authors [13]. The second domain, based mainly on an antiparallel five-stranded bet sheet surrounded by three helices and a loop, is presumably involved in substrate binding. The overall fold unambiguously classifies reaume as a member of the γ-hydroxybutyrate dehydrogenase (PHBD) protein superfamily [49], which comprises several flavoenzymes catalyzing highly diverse reactions (Table 5). The isoalloxazine of this superfamily belong either to the α-amino acid oxidase or to the γ-amino acid oxidase structural families, respectively. In reaume covalently resembles the former enzymes, which encompass also MAOs. In comparison to most of its structural homologues, reaume lacks a third domain, which in PHBD is named the interface domain [50], and which participates in substrate binding in MAOs and polyamine oxidase [31]. Due to the absence of this structural element, the polar, positively charged cavity of 314 \AA^{2} that faces the ξ site of the flavin ring and presumably represents the active site is freely accessible to the solvent rather than a large opening [20].

As reaume was claimed to degrade catecholamines by either oxidoquinone or NADH-dependent reactions [1,23], these proposed catalytic activities have been considered in the light of its three-dimensional structure [20]. As shown in Figure 2, the reaume active-site topology differs from those of MAOs and related amine oxidases: the former lacks both the "aromatic cage" that in the latter enzymes binds the substrate amine group and promotes its oxidizability, and a lysine (Lys 395 and Lys 206 in MAO A and MAO B, respectively) conserved in most of the oxidases of the superfamily [20]. These features reduce the classification of reaume as a MAO, suggesting that probably it is not an oxidase at all. In principle, the observed NADH reactivity of reaume [33] is suggestive of a possible monooxygenase (i.e., hydroxylase) activity, but its structural similarity to PHBD, the prototype of flavin-dependent, monooxygenase enzyme [52], such activity is compatible with the observed very slow reactivity between reaume and NADH or NADPH [20], since in aromatic hydroxylases the reductive half-reaction (FAD reduction) is exceedingly slow in the absence of a hydroxytable substrate [52]. Moreover, the lack of a typical NADH-binding site in reaume [20] is in line with this hypothesis, because PHBD binds NADPH at a site [33] that corresponds to the aforementioned interdomain cleft of reaume, which could play an equivalent role. However, control of FAD reduction and reactivity of the flavin-dehydrogenase reaction in reaume is obtained by aromatic hydroxylases through long conformational transitions occurring during the catalytic cycle, in which the isoalloxazine ring oscillates, alternating between "in" and "out" conformations [52]. When the flavin adopts the "in" conformation, its NS stere is strictly protected from the solvent to avoid H$_{2}$O release from the flavin peroxide, a reaction combating with substrate hydroxylation [52]. As reported elsewhere [20], the swing of the flavin ring to the "out" position is precluded in reaume by the obstructing presence of the $\beta $1 strand and particularly by the Try238 side chain (Fig. 2). Notably, in reaume the isoalloxazine NS position is solvent exposed [20]. In addition to the Rossmann fold GXXGXGXG signature, flavin-dependent hydroxylases display two highly conserved consensus sequences: the "GD" and the "DG" motifs [54]. Whereas, the former polypeptide region participates in FAD binding and is conserved in reaume, the latter motif, critical for the interactions with the nucleotide nucleotide, is absent. In particular, Gly160 and His162 of PHBD, which are very important for NADPH binding [54], in reaume are both replaced by Pro residues (Pro165 and Pro164), excluding the presence of a functional NADP$^{+}$-binding site in this protein. These considerations, combined with the observation that the FAD structural environment is incompatible with the required chemistry (confirmed by the production of superoxide upon reaction with O$_{2}$) [33] instead of hydroxylamine as typical in this category [32]), led to the logical conclusion that reaume cannot be a monooxygenase. We proposed that the slow NADPH-dependent activity of reaume is a side reaction arising from non-physiological access of the nucleotides to the flavin ring, driven by the positive charge of the wide active-site cavity [20].

As mentioned in Chapter 5.2, GlhA was proposed to modulate the NADH-dependent activity of reaume by interacting with the FAD ribose moiety [17]. Structural data ruled out this hypothesis, by showing that GlhA is part of a loop near the side of the active cleft [20], in agreement with our observation that the GlhA/FAD replacement had no effect on the properties of the flavoprotein [20].

As reported in Chapter 4, a plausible N-terminal signal peptide for secretion (of 16-17 residues) was predicted in reaume [1], although SigA/F [57] assigns it as a membrane signal. Inspection of the protein crystal structure shows that this region corresponds to the central β strand and half of the adjacent α helix that are integral part of the Rossmann fold [20] and whose removal would cause the collapse of the entire FAD-binding domain, as shown in Figure 3A. This consideration tends to exclude that the 1-16 peptide represents a signal for secretion, or that it is cleaved during protein processing. To reconcile this inference with the observation that reaume is actually present in blood plasma, a non-conventional secretion mechanism must be invoked [56].

Finally, the availability of the three-dimensional structure of the isoform 1 (NP_001013878) of reaume allows the development of "educated guesses" about the possible structural features of the alternative splicing isoforms. Reaume 2 (NP_000083) originates...
Table 3. Outline of the Structural Superfamily of \(p\)-hydroxybenzoate Hydroxylases

<table>
<thead>
<tr>
<th>Superfamily</th>
<th>Family</th>
<th>Representative members</th>
<th>Flavin binding</th>
<th>Catalyzed reaction</th>
<th>Metabolic function</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHBH</td>
<td>PHBH-like enzymes</td>
<td>PHBH</td>
<td>Noncovalent</td>
<td>Hydroxylation of (p)-hydroxybenzoate to yield protocatechuic acid</td>
<td>Catabolism of aromatic acids in Proteobacteria</td>
<td>[50]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monooxygenase FlhS</td>
<td>Noncovalent</td>
<td>Hydroxylation of (5)-methyl-(p)-hydroxynicotinate to yield pyocyanin</td>
<td>Pyocyanin biosynthesis in Pseudomonas</td>
<td>[73]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dihydropyridine hydroxylase</td>
<td>Noncovalent</td>
<td>Hydroxylation of (2,6)-dihydroxypyridine to yield (2,6)-dihydroxypyridine</td>
<td>Nicotine degradation in (d).ruber bacteria</td>
<td>[74]</td>
</tr>
<tr>
<td>L-amino acid oxidase-like enzymes</td>
<td></td>
<td>L-amino acid oxidase</td>
<td>Noncovalent</td>
<td>Oxidation of (l)-o-amino acids to the corresponding (o)-keto acids</td>
<td>Amino-acid catabolism</td>
<td>[71]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAO</td>
<td>Covalent bond between FAD (8)-methyl and (N) of a Cys residue</td>
<td>Oxidation of monooximes to the corresponding amines</td>
<td>Catabolism of catabolamines and other monooximes</td>
<td>[76]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NN-dimethylglycine oxidase</td>
<td>Covalent bond between FAD (8)-methyl and (N) of a Cys residue</td>
<td>Oxidative demethylation of NN-dimethylglycine to yield succinate</td>
<td>Choline and (L)-carbon metabolism</td>
<td>[77]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polymine oxidase</td>
<td>Noncovalent</td>
<td>Oxidation of secondary amine groups of polymines with hydrolysis of resulting amides</td>
<td>Spermidine and spermine catabolism</td>
<td>[78]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lysine-specific histone demethylase 1</td>
<td>Noncovalent</td>
<td>Oxidative demethylation of histone amino and (\delta)-dimethylated Lys residues</td>
<td>Regulation of gene expression by nucleosome demethylation</td>
<td>[79]</td>
</tr>
<tr>
<td>D-amino acid oxidase-like enzymes</td>
<td></td>
<td>D-amino acid oxidase</td>
<td>Noncovalent</td>
<td>Oxidation of (d)-o-amino acids to the corresponding (o)-keto acids</td>
<td>Amino-acid catabolism</td>
<td>[80]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monomeric sarcosine oxidase</td>
<td>Covalent bond between FAD (8)-methyl and (N) of a Cys residue</td>
<td>Oxidative demethylation of sarcosine to yield glycine</td>
<td>Choline and (L)-carbon metabolism</td>
<td>[81]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glycine oxidase</td>
<td>Noncovalent</td>
<td>Oxidation of (d)-o-amino acids to the corresponding (o)-keto acids</td>
<td>Amino-acid catabolism</td>
<td>[82]</td>
</tr>
<tr>
<td>UDF-galactopyranose mutarotase-like enzymes</td>
<td></td>
<td>UDF-galactopyranose mutarotase</td>
<td>Noncovalent</td>
<td>Interconversion between UDF-galactopyranose and UDF-galactofuranose</td>
<td>Biosynthesis of cell wall precursors in Gram-negative bacteria, fungi and protozoa</td>
<td>[83]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poly-unsaturated fatty acid 2-oxidase</td>
<td>Noncovalent</td>
<td>Double bond introduction of polyunsaturated fatty acid</td>
<td>Biosynthesis of conjugated linoleic acids</td>
<td>[84]</td>
</tr>
</tbody>
</table>

This classification of the members of the PHBH superfamily is adapted from that of SCOP, Structural Classification of Proteins [85]
Fig. 2. Comparison between the active site of reninase and those of MAO A and MAO B. Stereo view of the putative active site of human reninase overlaid on those of MAO A (panel A) and MAO B (panel B). The FAD is shown in blue (stick) and the relevant amino acid residues of reninase (PDB 1DQH, chain A) are shown in blue (stick) in the printed version of the article, whereas the corresponding residues of MAO A (PDB 1BGX, chain A) and MAO B (PDB 10Q9, chain A) including the "aromatic cage" (Tyr397 and Tyr444 in MAO A, and Tyr398 and Tyr445 in MAO B) are depicted in gold and pink, respectively (both white in the printed version of the article).

from alternative splicing between exons 6 and 7, causing a frame shift that alters the C-terminal sequence and makes the polypeptide chains 27 residue shorter through the introduction of a premature stop codon (Fig. 1) [19]. This profoundly modifies the sequence of the region corresponding to the β hairpin β18-β20 and precisely deletes the two C-terminal helices α9 and α11 of subform I [20], as outlined in (Fig. 3B). These structural modifications are expected to make FAD more exposed in reninase 2 than in reninase 1 and to significantly affect the features of its active-site cavity. In comparison to reninase 1, the splicing variant AK206202 lacks the polypeptide segments encoded by exons 2 and 3 (Fig. 1). As a result, the surface exposed α-helix of the FAD-binding domain and the β3-β4 hairpin and the β5-α2-β3-α6-β7 subdomain of the substrate-binding domain are deleted [20]. The resulting protein would lack critical residues for the binding of the FAD isoadoxazine, suggesting that it would not be able to incorporate the cofactor and hence to be active as an oxidoreductase. In the variant EX549154 the FAD-binding domain is almost completely deleted, resulting in a polypeptide with unpredictable properties.

7. PHYSIOLOGICAL ROLES OF RENALASE AND THEIR IMPAIRMENT AS POSSIBLE PATHOGENIC MECHANISMS OF CARDIOVASCULAR DISEASES

Despite our appreciation of the probable molecular mechanism of its physiological activity, the nature of the catalyzed reaction, and the identity of its substrate(s), there is quite solid and constantly accumulating evidence of the important roles played by reninase in the control of blood pressure and heart function. Since its discovery, two key observations were made about reninase pathophysiological actions: 1) its concentration in blood plasma is dramatically lowered in subjects suffering from severe kidney disease, and 2) the parenteral administration of the recombinant protein has a hypotensive effect in rats [1]. For clarity, the proofs of the relationship between reninase and cardiovascular system pathophysiology will be subdivided here in experimental, clinical and epidemiological aspects.

7.1 Experimental Evidence of Reninase Action on the Cardiovascular and Sympathetic Systems

The finding by Dei’s group that intravenous injection of recombinant reninase in healthy rats decreases, in dose-dependent manner, systolic, diastolic, and mean arterial pressure, as well as heart rate and contractility [1] has been partially confirmed by us [46]. In addition, it was later shown that subcutaneous administration of the protein has a profound effect on blood pressure and heart rate in an animal model of hypertension (Dei self-sensitive and 5/6 nephrectomized rats, [10,57]). Very interestingly, using an isolated heart model of acute coronary syndrome, perfusion with recombinant reninase was shown to exert a strong protective effect against ischemia, preserving ventricular function and reducing myocardial necrosis and infarct size [58]. A major breakthrough in the identification of reninase physiological role has been the inactivation of the XN2 gene in mouse by homologous recombination [37]. In con-
A link between renilase and catecholamine metabolism emerges from several studies. Downregulation of RENZ expression in healthy mice by antisense phosphorothioate oligonucleotides was found to produce both a rise in blood pressure and an increased sensitivity to norepinephrine injection [8,60]. In various rat models of chronic kidney disease, lower concentrations of renilase in kidneys, heart, and blood were always accompanied by increased levels of epinephrine and nor epinephrine in plasma and heart [30,33,61,62]. Furthermore, some of these studies together with other investigations on rodent models showed that renilase levels inversely correlate with the concentration of dopamine, which has hypotensive and cardioprotective actions at variance with other catecholamines [63]. In kidneys and urine [32,64]. The known antihypertensive action of dopamine and its recently proposed participation in the modulation of gluta thione reductase homeostasis has also suggested a role for renilase in the control of sodium and phosphate ions homeostasis [64].

7.2. Clinical Evidence for Renilase Actions on the Cardiovascular and Excretory Systems

The involvement of renilase in the renal dopaminergic system was substantiated by a clinical report on eight kidney transplant recipients, showing a correlation between the increase in dopamine concentration and the decline of renal function in urine [65]. Other reports highlighted the involvement of renilase in different forms of hypertension. First, in a study on normotensive hypertensive subjects, where renin concentration sputtering from adrenalinic nerves was significantly increased, renilase secretion by the kidney was undetectable in most patients [66]. Furthermore, biopsies from twenty-three patients affected by IgA nephropathy, the most common form of primary glomerulonephritis, displayed decreased renilase levels in tubular epithelial cells, correlating with both pathology chronicity indices and hypertension [31]. Recent studies on the impact of kidney and heart transplantation on the level of circulating renilase led to the unexpected finding that plasma renilase concentration increases after organ implantation and the degree of increase correlates with the severity of kidney failure in the allograft recipients [23-25]. The same authors also investigated in chronic kidney disease patients the impact of hemodialysis and peritoneal dialysis on blood serum renilase. They concluded that replacement of renal function correlates with increased renilase levels [26-28], which was found to be 10-fold higher in patients that underwent bilateral nephrectomy in comparison to healthy subjects [29]. Finally, it was reported that stroke and hypertension were associated with lower serum renilase concentrations in a hemodialysis population [27].

7.3. Epidemiologic Data Implying Renilase Gene Polymorphisms as Disease Risk Factors

To date, four independent genetic studies have highlighted a correlation between four individual RENZ SNPs and the propensity to develop specific pathological conditions in different populations, as summarized in Table 2. In the first such study, carried out on 1317 hypertensive and 1269 normotensive subjects recruited from the International Collaborative Study of Cardiovascular Disease in Asia (InterASIA), RENZ was shown to represent a susceptibility gene for essential hypertension in the northern Han Chinese population [44]. In particular, the G and the C alleles of the rs2576178 and rs2390543 SNPs, respectively, displayed significant higher frequencies in the pathological group. Conversely, suggesting a codominant model for the expression of both risk-associated alleles [44]. The association of rs2576178, which maps in the S chr1 Chr locus of the renilase transcript, with hypertension was confirmed by a case-control study on 460 Chinese end-stage renal disease patients of Polish origin under dialysis [67]. The same study also found a significant correlation of the G allele of the rs10837800, mapping in a variable 6, with increased incidence of hypertension. A similar study, carried out on 600 type-2 diabetic patients and control
individuals from a population of Polish origin found a significant correlation between the rs2376478 G allele and type 2 diabetes, and a strong association of the rs1088700 G allele with stroke in hypertensive individuals, regardless of their diabetic status [43]. Interestingly, RN2S was recognized as a novel gene responsible for type-2 diabetes by a genome wide association scan in the Amish population, which identified rs5437871 as a disease-linked SNP [69]. Among the 216.5 SNPs considered in the above studies, rs2376445 is the only resulting in variants of the encoded protein, which differs for the presence of a Glu (G allele) or an Asp (C allele) residue at position 57. The homozygous CC genotype was recently shown to be associated with cardiac hypertrophy, ventricular dysfunction, poor exercise capacity and higher susceptibility to induced ischemia [3]. Through genotyping 100 Caucasian individuals from the Heart and Soul Study [69],

8. CONCLUDING REMARKS

As foreseen by Eberhard Ritz, who, soon after the discovery of renasale, wrote that “it is easy to predict that in the near future this novel endocrine product of the kidney will be intensively investigated experimentally and in renal patients” [2], this protein has been the subject of several studies that, over the last seven years, have considerably strengthened its connection with the physiopathology of the cardiovascular and excretory systems. Moreover, the involvement of renasale in the management of the cardiovascular system has become increasingly clear. Thus, human renasale is now regarded as a new player in the control of blood pressure and heart function, whose modulation could lead to promising new pharmacological treatments of various cardiovascular dysfunctions [3,8,13,33,24,70,71]. Renasale has been proposed as a drug for replacement therapy in end stage renal disease [12,17,59,70,72], as easily bioassayable marker of human kidney ischemia [11] and essential hypertension [8], as well as prognostic factor for stroke [27,45], and even as potential target for the therapy of psychiatric disorders caused by altered catecholaminergic signaling in the central nervous system [19]. Obviously, development of effective tools for pharmacological intervention requires the mechanism of renasale action to be known at the molecular level. Unfortunately, this is not the case yet, since the specific catalytic activity of renasale as a catecholamine-degrading enzyme has recently been proved wrong by the detailed biochemical characterization of the recombinant human protein [20,46]. However, the structural and functional data on renasale should provide the basis for a systematic and rational quest toward the identification of its substrates and the catalyzed reaction.

CONFLICT OF INTEREST

The authors confirm that this article content has no conflicts of interest.

ACKNOWLEDGEMENTS

We are grateful to Dr. Shu-Feng Zhang for generously providing us plasmid pCMX-4T-3/MAO-C for the expression in E. coli of renasale.

LIST OF ABBREVIATIONS

MAO = Monoamine oxidase
GST = Glutathione S-transferase
SNP = Single nucleotide polymorphism
PHDI = p-hydroxybenzoate dehydrogenase

REFERENCES

85
Biochemical Properties of Human Renalase

[40] Guo B, Lu W, Xia J, Bai X, Xu B. Renin deficiency in mouse failur

A Single Tyrosine Hydroxyl Group Almost Entirely Controls the NADPH Specificity of *Plasmodium falciparum* Ferredoxin-NADPH Reductase

Sara Baroni, Vittorio Pandini, Maria Antonietta Vanoni, and Alessandro Aliverti

Department of Biomolecular Sciences and Biotechnology, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy

ABSTRACT: *Plasmodium falciparum* ferredoxin-NADPH reductase (FNR) is a FAD-containing enzyme that, in addition to being a promising target of novel antimalarial drugs, represents an excellent model of plant-type FNRS. The cofactor specificity of FNRS depends on differences in both k_{cat} and K_M values for NADPH and NADH. Here, we report that deletion of the hydroxyl group of the conserved Y288 of *P. falciparum* FNR, which interacts with the 2'-phosphate group of NADPH, selectively decreased the K_M of the NADPH-dependent reaction by a factor of 2 to match that of the NADH-dependent one. Rapid-reaction kinetics, activity titrations with NADPH, and anaerobic photoreduction experiments indicated that this effect may be the consequence of destabilization of the catalytically competent conformation of bound NADPH. Moreover, because the Y288F replacement increased the K_M for NADPH 40-fold and decreased that for NADH 4-fold, it led to a drop in the ability of the enzyme to discriminate between the coenzymes from 70- to 1.5-folds. The impact of the Y288F change was not affected by the presence of the H286Q mutation, which is known to enhance the catalytic activity of the enzyme. Our data highlight the major role played by the Y288 hydroxyl group in determining the coenzyme specificity of *P. falciparum* FNR. From the general standpoint of engineering the kinetic properties of plant-type FNRS, although *P. falciparum* FNR is less strictly NADPH-dependent than its homologues, the almost complete abolishment of coenzyme selectivity reported here has never been accomplished before through a single mutation.

Plant-type ferredoxin-NADPH reductases (FNRS) are FAD-containing enzymes that catalyze the reversible exchange of reducing equivalents between the NADPH/NADPH and the ferredoxin(Fe(2+)/ferredoxin(Fe(2+)) redox couples. The prototypic family of FNRS, represented by the enzyme form responsible for NADPH regeneration in chloroplast photosynthesis, includes the so-called “plastidic-type” FNRS, which show remarkably similar properties, a divergent branch of plant-type FNRS, dubbed the “bacterial-type” FNRS, displays a greater variety of structural features, catalytic properties, and metabolic functions. Furthermore, the structural module formed by the two-domain assembly of plastidic-type FNRS has been recognized as the hallmark of the FNR protein superfamily, which comprises enzymes that are highly closely related such as cytochrome P450 reductase. Non-plant-type FNRS evolution, and nitric oxide synthases.

Plastidic-type FNRS are usually highly specific for NADPH/NADPH (H), displaying significantly higher values of both k_{cat}/K_M and k_{cat} for this coenzyme than for NADPH and NADH. The structural determinants of such coenzyme specificity have been extensively investigated, but a full understanding of the underlying mechanism(s) has not been developed. As expected, most of the difference in the binding energies of NADPH(H) and NADH(H) relies on the specific interactions that FNRS establishes with the 2'-phosphate group of the physiological coenzyme. However, the FNR specificity significantly depends on k_{cat} which is limited by the degree of access of the nicotinamide ring of the coenzyme to the active site, where hydride transfer (HT) between the nicotinamide and the flavin rings occurs. Thus, other protein regions subtly affect discrimination against NADH. Such additional specificity determinants are amino acid residues interacting with the substrate pyrophosphate group and the C-terminus tyrosine, whose side chain functions as a gate to protect the active site.

In addition to higher plants, algae, and cyanobacteria, plastidic-type FNRS have been found in Apicomplexa, a phylum of parasites that includes the malaria- and toxoplasmosis-causing agents, and in the bacterium *Legionella intermors*, which causes leptospirosis in humans and other mammals. Apicomplexan FNR coexists with a plant-type ferredoxin in the apicoplast, a phylum-specific organelle, phylogenetically related to algal plastids. *Plasmodium falciparum* FNR (PfFNR) exhibits most of the basic features of typical plastidic FNRS but diverges from them by displaying a low turnover number and a much weaker ability to discriminate between NADPH and NADH. These functional differences result from a few critical details in the way the plastod
enzyme binds the 2'-phosphate group of NADPH. The resulting peculiar interactions of PfNFR with the adenylate moiety of NADPH have been shown to be instrumental for the covalent dimerization of the enzyme under oxidizing conditions, which could be a physiological mechanism for turning off the enzyme activity in vivo. Possibly, during the evolution of PfNFR, a trade-off has occurred between high specificity for the nicotinamide nucleotide substrate and a redox-based regulation mechanism. As a result, in PfNFR, enzyme specificity is controlled by a reduced set of enzyme–NADPH interactions as compared to those for other plastidic PNsRs. This greater simplicity makes PfNFR an ideal model for studying the events at the basis of NADPH recognition in the FNR protein family. Moreover, because this enzyme is a potentially excellent candidate as a target for novel antimalarial drugs, a detailed understanding of its catalytic cycle is expected to contribute to the fight against malaria.

Here, we show that two PfNFR residues, namely, Y258 and H286, which interact with the 2'-phosphate and the phosphate groups of NADPH, respectively (Figure 1), have nonadditive roles in modulating the enzyme specificity of this enzyme. Remarkably, removal of the Y286 hydroxyl group almost completely abolishes the ability of PfNFR to discriminate between NADPH and NADH, a result never accomplished before for any plastidic PNR through a single mutation.

MATERIALS AND METHODS

Materials: NADP, NADPH, and NADH were purchased from Sigma-Aldrich. All other chemicals were of the highest commercially available grade.

Site-Directed Mutagenesis. The base changes required for Y286F replacement were introduced into both pET-PfNFR and pET-PfNFR-H286Q using the QuickChange Lightning Site-Directed Mutagenesis Kit (Stratagene, Agilent Technologies Italia, Cernusco sul Naviglio, Milan, Italy) with the following pair of complementary mutagenic oligonucleotides (base changes underlined): 5'-CATCAGATGCAA-CAGTTTTTTCTGGCAGAATGGAGTCAAAAGG-3' and 5'-CTTGTGGAATCTTCTCATTTCATGCAACA-AAAAACCTTGTGCACTTCA-3'.

The resulting plasmids, carrying the single mutation and the double mutation, were named pET-PfNFR-Y286F and pET-PfNFR-Y286F/H286Q, respectively, and their inserts were fully sequenced to verify the presence of the desired base changes and to rule out unwanted mutations.

Protein Overproduction and Purification. Wild-type and mutant PfNFR forms were overproduced in E. coli DE3 and purified as previously reported.

Spectral Analyses. Absorption spectra were recorded on a model 4853 diode-array (Agilent Technologies Italia) or a double-beam Cary 100 (Varian, Agilent Technologies Italia) spectrophotometer. The extinction coefficients of the mutant PfNFRs were determined on the basis of the amount of FAD released following sodium dodecyl sulfate treatment. Spectrophotometric active-site titrations with NADP were conducted at 16°C in 50 mM Tris-HCl (pH 7.6), as reported previously. To determine the Kd values of the NADP complexes of the PfNFR variants carrying the Y286F replacement, which yielded low-intensity spectral perturbation upon ligand binding, the first derivative of their difference spectra (ΔA/Δλ) was calculated to substantially improve the signal-to-noise ratio. Anaerobic photoreduction of the FAD prosthetic group of PfNFR forms was performed with the dianzenobis(EDTA) system at 15°C. The enzymes were diluted to ~15 μM in 50 mM HEPES-NaOH (pH 7.0) containing 10% glycerol, 15 mM EDTA, and 1.5 mM S-carboxy-S-

Steady-State Kinetics. NADPH-dependent and NADH-dependent KFe(CN)_6 activity assays were performed at 25°C in 100 mM Tris-HCl (pH 8.2), as previously described. To estimate the steady-state kinetic parameters of the enzyme forms, the concentrations of the electron donor (either NADPH or NADH) and of KFe(CN)_6 were independently varied. All assays displayed a susceptibility to inhibition by the ferricyanide ion similar to that exhibited by the wild-type enzyme. Because KFe(CN)_6 was found to be saturating at all substrate concentrations tested, initial velocity data were fit to eq 1 by nonlinear regression analysis using GraFit version 5.0 (Erlithasis Software Ltd., Horley, Surrey, U.K.).

\[
\frac{v}{[NaD(P)H]} = \frac{(k_{\text{cat}}/K_{\text{M}})_{\text{NAD(P)H}}}{(1+[I]/K_{\text{I}})_{\text{NAD(P)H}}} + \frac{[\text{NAD(P)H}]}{}
\]

where [PfNFR]_o is the total concentration of the enzyme form considered, [NAD(P)H] is the concentration of either NADPH or NADH, which is considered the sole variable substrate, [I] represents the concentration of the competitive inhibitor KFe(CN)_6, and K is the inhibition constant.

Rapid-Response Kinetics. Wild-type or mutant PfNFr (17–19 μM, after mixing) were reacted with either NADPH or NADH (0.035–2 mM, after mixing) at 25°C in 50 mM HEPES-NaOH (pH 7.0) under anaerobic conditions, using an SF-61 DX2 diode-array stopped-flow spectrophotometer (Hitachi Scientific, Bradford-upon-Avon, U.K.). For each shot, a set of 300 spectra within the 380–700 nm wavelength range was recorded over reaction times ranging from 0.5 to 7 s.
Biochemistry

Table 1. Steady-State Kinetic Parameters of the PfNFR Variants for the NADPH- and NADH-K,Fe(CN)₃ Reductase Reactions

<table>
<thead>
<tr>
<th>PfNFR</th>
<th>(k_{\text{cat}}) (mol/min)</th>
<th>(K_{M}) (mM)</th>
<th>(k_{\text{cat}} / K_{M}) (mol/min·mM⁻¹)</th>
<th>NADPH/NADH specificity ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type</td>
<td>120 ± 4</td>
<td>38 ± 3</td>
<td>3.2 ± 0.7</td>
<td>48 ± 2</td>
<td>710 ± 50</td>
<td>0.01 ± 0.005</td>
<td>70</td>
</tr>
<tr>
<td>H286Q</td>
<td>106 ± 5</td>
<td>57 ± 5</td>
<td>3.1 ± 0.7</td>
<td>100 ± 3</td>
<td>713 ± 90</td>
<td>0.01 ± 0.003</td>
<td>21</td>
</tr>
<tr>
<td>Y258F</td>
<td>50 ± 5</td>
<td>160 ± 16</td>
<td>0.3 ± 0.8</td>
<td>47 ± 1</td>
<td>260 ± 40</td>
<td>0.2 ± 0.04</td>
<td>1.5</td>
</tr>
<tr>
<td>Y258F/H286Q</td>
<td>55 ± 5</td>
<td>240 ± 17</td>
<td>0.2 ± 0.8</td>
<td>47 ± 1</td>
<td>300 ± 40</td>
<td>0.15 ± 0.04</td>
<td>1.3</td>
</tr>
</tbody>
</table>

The inhibitory effect of K,Fe(CN)₃, which acts on PfNFR as a competitive inhibitor with respect to both NADPH and NADH, was taken into account in the calculation of the kinetic parameters, as described in Materials and Methods. The \(k_{\text{cat}} \) values are expressed as moles of NADPH or NADH oxidized per mole of active site (FAD) per second. Enzyme specificity expressed as the ratio of \(k_{\text{cat}} / K_{M} \) NADPH to \(k_{\text{cat}} / K_{M} \) NADH. *Data taken from ref 18.

Absorbance traces were fit to exponential decay equations using non-linear regression. In agreement with our previous report,¹⁸ absorbance traces were biphasic, displaying the same rate constant values over the entire wavelength range considered. The slow phase, which accounted only for minor spectral changes, occurred at a rate that was independent of [NADH] and too low to represent a process involved in catalysis. The apparent rate constants of the fast phase (\(k_{\text{app}} \)) at different NADH or NADPH concentrations were calculated by averaging the values obtained by fitting the absorbance traces from at least three shots. To estimate the rate of HT (\(k_{\text{HT}} \)), the \(k_{\text{app}} \) values at different NADPH or NADH concentrations were fit to the equation of a hyperbola, and its upper limit was extrapolated.

RESULTS AND DISCUSSION

The two PfNFR variants carrying either the single Y258F and double Y258F/H286Q replacement were synthesized in the bacterial host at levels comparable to that of the wild-type enzyme and were purified with similar yields, indicating that the Y258F mutation does not substantially affect the folding process or the stability of the native conformation of the protein. Similarly, the amino acyl replacement induced no alteration of the absorbance spectrum of the flavoenzyme, so that the same extinction coefficient of 10·10⁶ M⁻¹ cm⁻¹ at 454 nm,¹³ could be used to quantify all the PfNFR forms studied here.

The reactivity toward NADPH of PfNFR variants carrying different replacements at position 286 was previously studied in detail and reported elsewhere.¹² Because that study indicated that H286 plays a role in orienting the NMN moiety during HT and because such a steering effect is known to affect coenzyme specificity in plastidic-type FNRs, we measured the NADH-dependent activity of the PfNFR-H286Q, PfNFR-H286L, PfNFR-H286A, and PfNFR-H286L variants, previously produced. As expected, the specificity of all variants was significantly impaired with respect to that of the wild-type enzyme. However, only for PfNFR-H286Q, could reliable kinetic data be obtained, the NADH-dependent activity of the other variants being too low for accurate measurements. As shown in Table 1, although PfNFR-H286Q, which had the lowest \(K_{M} \) for either NADPH or NADH, it significantly increased both \(k_{\text{cat}} \) NADH and \(k_{\text{cat}} \) NADPH. As a consequence of the stronger effect on \(k_{\text{cat}} \) NADH, PfNFR-H286Q was found to be 5.2-fold less effective as the pyridine nucleotide than the wild-type enzyme. This result is in keeping with the previous report of a similar effect obtained by mutating the corresponding site in Anabana FNR.²² For these reasons, the contribution to the specificity of H286 was not further studied by the detailed analysis of additional H286 mutants.

NADPH/NADH specificity of PfNFR ultimately relies on interactions between the protein and the 2-phosphate group of NADPH. Y258, which provides the second aromatic ring in addition to H286, to sandwich the adenine moiety of the coenzyme, also donates a H-bond to the 2-phosphate group of NADPH (Figure 1). Replacement of Y258 with a phenylalanine is expected to disrupt the latter interaction, leading to aromatic stacking unaffected. Thus, the Y258F substitution was introduced into both wild-type PfNFR and its H286Q variant. As shown in Table 1, the effect of the mutation on the steady-state kinetic parameters of PfNFR was largely independent of the presence of histidine or glutamine at position 286. In particular, the Y258F replacement abolished the difference between the \(k_{\text{cat}} \) NADPH and \(k_{\text{cat}} \) NADH of the single and double mutants, decreasing their \(k_{\text{cat}} \) NADH values to match almost exactly that of wild-type PfNFR for NADH. Furthermore, the Y258F mutation had opposite effects on \(k_{\text{cat}} \) NADH and \(k_{\text{cat}} \) NADPH, significantly increasing the former and lowering the latter. The combination of these effects led to a 5-fold decrease in the PfNFR specificity ratio, i.e., the ratio between the \(k_{\text{cat}} / K_{M} \) of each enzyme form for the two coenzymes, which dropped to a mere 1.3–1.5 (Table 1). Interestingly, the effect of H286Q and Y258F replacements displayed no additivity. Rather, the Y258F substitution fully abolished the enhancing effect of the H286Q replacement had on the \(k_{\text{cat}} \) values of PfNFR.

Steady-state kinetic data (Table 1) suggested that the Y258 hydroxyl of PfNFR could have an important role in optimizing the HT from NADPH to FAD. This finding was not unexpected, because, as mentioned in the introductory section, the presence of plastidic-type FNRs for NADPH over NADH relies on both lower \(K_{M} \) and higher \(k_{\text{cat}} \) values for the former dinucleotide.¹⁵ Because \(k_{\text{cat}} \) is related to the rate of HT between the nicotinamide nucleotide and the FAD prosthetic group in the enzyme–residue complex,²¹ we studied in detail the reductive half-reaction of the enzyme forms by stopped-flow spectrophotometry, using both NADPH and NADH as the reductant. Experimental conditions matched those used in our previous studies of the reaction of PfNFR and its H286 mutants with NADPH,²³ allowing direct comparisons. Like other well-characterized members of plastidic-type FNRs,²¹ the reaction of PfNFR with NADPH led to the formation of a charge-transfer complex (CT) between NADPH and FAD, which could be observed as an increase in the absorption above 550 nm, which was completed in the dead time of the instrument (2–3 ms). This process was followed by the bleaching of the flavin corresponding to the reduction of the prosthetic group, which occurred in a biphasic fashion. The fast phase, accounting for most of the total absorbance change, corresponds to HT; the slow one, which took place at a rate not
compatible with catalysis, most probably represents a rearrangement of the reaction product. Notably, a clear positive correlation between the extent of CT formation during the reaction of the various enzyme forms with NADPH and the k_{cat} value was observed. In particular, PFRNR-H286Q displayed both an increased amount of transient CT formation and a higher k_{cat} for NADPH with respect to those of the wild-type enzyme (Figures 3 and 5). Here, we report for the first time the pan-steady-state characterization of the reaction of PFRNR forms with NADH. In agreement with steady-state data, the wild-type enzyme reacted with NADH showing a k_{cat} that is 44% of that determined with NADPH, with no significant CT formation (Figures 2 and 3 and Table 2). PFRNR-H286Q displayed a k_{cat} for NADPH 2-fold higher than that of PFRNR, although such a large increase was not paralleled by formation of a significant amount of CT during the reaction. The Y258F mutation lowered the k_{cat} for NADPH to 50% of that of the wild-type (Table 2) and abolished the accumulation of CT (Figures 2 and 3). Interestingly, the Y258F mutation did not hamper HT from NADH to FAD; on the contrary, it seemed to slightly increase the k_{cat} for NADH, in comparison to that of the wild-type enzyme (Table 2). The PFRNR-Y285F/H286Q double mutant displayed kinetic properties in all respects identical to those of PFRNR-Y285F (Figure 3 and Table 2), confirming that the effects of the Y285F replacement completely overwhelmed those of the H286Q one. As we showed elsewhere, the k_{cat} of the NADPH-K_{Fe(CN)} reaction catalyzed by PFRNR matches very well the k_{cat} value determined by stopped-flow spectrophotometry. Here we confirm that the turnover rate under saturating conditions is limited by the HT step, as shown by the nearly identical effects that the mutations introduced into PFRNR had on the k_{cat} and k_{cat}/K_{M} values of both NADPH- and NADH-dependent reactions (Tables 1 and 2).

Rapid-reaction kinetics strongly suggested that the decrease in the HT rate determined by Y258 hydroxyl deletion when NADPH, but not NADH, is the hydride donor might be the result of a specific destabilization of the catalytically competent configuration of both the PFRNR and of the wild-type and H286Q enzymes is associated with the transient formation of the CT between NADH and FAD. To further confirm this conclusion, we subjected PFRNR-Y285F and PFRNR-Y285F/H286Q to anaerobic photoreduction in the absence and presence of NADPH in comparison with PFRNR and PFRNR-H286Q. In the absence of the ligand, the FAD photoproduct group of all NR variants underwent reduction to the hydroquinone form in a similar fashion, with the accumulation of very small amounts of the FAD neutral semiquinone during the process (not shown). In the late stages of the photoreduction conducted in the presence of NADPH, a long-wavelength absorbing species was observed in the case of the wild-type enzyme, representing a CT species (Figure 4A). We have previously shown that the amount of CT was slightly but significantly higher in the case of PFRNR-H286Q than in the case of the wild-type enzyme. On the other hand, as clearly shown in panels B and C of Figure 4, no CT species were detected during the reduction of PFRNR-Y285F or PFRNR-Y285F/H286Q in the presence of NADPH.

To further investigate the contribution of Y285 to substrate recognition, we studied the interaction of the PFRNR forms with NADPH by differential spectrophotometry. It is well-known that binding of NADPH to FNR perturbs the visible absorption spectrum of bound FAD, and that the positive peak around 500 nm in the difference spectrum (Figure 5A) is induced by the stacking between the NADPH pyrimidine ring and the FAD isoalloxazine ring. Thus, the spectrophotometric titration of PFRNR with NADPH provides both the K_{D} of the resulting complex and a semiquantitative evaluation of the extent of occupancy of the enzyme active site by the nucleoside ring of
the legend. As shown in Figure 5B, all mutant PFNFRs displayed a significantly lower affinity for NADPH in comparison to that of the wild-type protein, with the K_d values of the enzyme–NADPH complexes increased 2- or 3-fold (Table 3). More interestingly, as deduced from the comparison of the difference spectra displayed in Figure 5A and from the values of the differential extinction coefficient of the enzyme–NADPH complexes reported in Table 3, removal of the Y258 hydroxyl group highly destabilized the nicotinamide–flavin interaction. Such destabilization occurred even when the Y258F mutation was introduced into the PFNFR-H126Q variant, where the ring stacking interaction is stronger than in the case of PFNFR.

Taken as a whole, these data allow us to conclude that the Y258 side chain favors the adoption of the catalytically competent conformation of the NMM moiety of NADPH, enhancing HT and, therefore, enzyme turnover. In addition to productively interacting with NADPH, thus making it a good substrate, the side chain of Y258 also actively discriminates against NADH, by keeping K_d for NADH high. The structural basis of the latter effect can be rationalized considering that in the unbound PFNFR the side chain of Y258 is H-bonded to that of K249. However, while the binding energy lost by breaking the H-bond with K249 is compensated by the new interaction between Y258 and NADPH, this compensation is not possible in the case of NADH, which lacks the 2-phosphate group.

Table 2. Rate Constants of Hydride Transfer from NADPH and NADH to FAD in PFNFR Variants As Determined by Stopped-Flow Spectrophotometry

<table>
<thead>
<tr>
<th>PFNFR form</th>
<th>NADPH</th>
<th>NADH</th>
</tr>
</thead>
<tbody>
<tr>
<td>wild type</td>
<td>148 ± 2 a</td>
<td>65 ± 1 a</td>
</tr>
<tr>
<td>H265Q</td>
<td>240 ± 4 b</td>
<td>125 ± 7 b</td>
</tr>
<tr>
<td>Y258F</td>
<td>74 ± 2 a</td>
<td>83 ± 1 a</td>
</tr>
<tr>
<td>Y258F/H265Q</td>
<td>70 ± 4 a</td>
<td>80 ± 2 a</td>
</tr>
</tbody>
</table>

aData taken from ref 18.
What is the possible structural explanation for the effect of the interaction between PFPN2258 and NADPH2-phosphate on \(k_{\text{cat}} \)? As in the other phosphate-type FNRs, PFPN main interacts with the adenylyl moiety of NADPH. Indeed, the adenylyl, the 2-phosphate, and the 5'-phosphate groups provide most contact sites. The overlay of the crystal structures of ligand-free and 2-PAMP-bound PFPN displayed in Figure 6 clearly shows that the binding of this ligand, which mimics the adenylyl half of the coenzyme, in addition to determining the unbinding of two turns of the \(\alpha \) helix, induces a large (2 Å) shift of the \(\alpha \) helix residue (268–296), which moves away from the FAD. The N-terminal side of \(\alpha \) helix points toward the carbonyl group of the C-terminal Y316, whose side chain stacts onto the \(\pi \) face of the flavin ring. Therefore, it is conceivable that the helix shift reduces some steric pressure from the latter residue, favoring the displacement of its phenolic side chain by the incoming nicotinamide ring of the bound coenzyme. H286 is located at a strategic site (i.e., in the loop connecting the B10 strand to the c helix) to drive such helix movement when NADPH occupies its binding site. In our hypothesis, the adenylyl moiety of the substrate acts as a lever on the c helix: when the 2-phosphate group of the ligand is anchored to the S247 and Y258 side chains, the interactions of the 5'-phosphate and adenine groups with H286 induce the above-described \(\alpha \) helix shift, which allows the nicotinamide ring of the coenzyme to access the active site.

The PFPN specificity of 0.1 (Table 1) is orders of magnitude lower than the corresponding value of 18,000, reported for its homologue of Treplasma gariepin, a parasite related to Plasmodi. Thus, it is worth discussing the possible reasons for the poor selectivity of PFPN for NADPH. As we previously reported, an obvious structural basis for the limited specificity of PFPN is the lack of positively charged side chains interacting with the 2-phosphate group of NADPH. We have also shown that PFPN undergoes a NADP'-triggered dimerization process that results in enzyme inactivation in the presence of oxidizing agents, such as H2O2, which lock the homodimer via the formation of an intersubunit disulfide bridge. The formation of the inactive homodimer is favored by NADPH binding in two ways, namely, (i) by promoting the unfolding of the \(\alpha \) helix in each subunit, which removes a major steric obstacle to dimerization, and (ii) by leading to the formation of two ionic interactions between the 2-phosphate of the ligand molecules and the side chains of K287 and K292 of each opposite subunit. The absence of ionic bonds involving the 2-phosphate within the same subunit is thus functional to the inactivation process, where two NADPH molecules are sandwiched at the intersubunit interface of the dimer. The low coenzyme specificity of PFPN in comparison to those of its orthologs may well be due to specific architectural features of the plasmoidal isocitrate. Unfortunately, the actual concentrations of NADH and NADPH in the organelle are not available, and although some plasmoidal isocitrate enzymes are thought to be highly NADH- or NADPH-specific, 17,19,20 the

![Figure 6. Induced-fit conformational changes induced by binding of 2-PAMP to PFPN. The crystal structures of ligand-free (PDB entry 2K8K, chain A) and 2-PAMP-bound (PDB entry 2X8K, chain A) PFPN are colored yellow and blue, respectively. Relevant amino acid residues and ligands are represented as ball-and-stick models. 2-PAMP is colored green.](image-url)
comprehensive kinetic characterization with both coenzymes has been reported for none of them. In the absence of more convincing explanations, it is tempting to hypothesize that the loss of specificity might represent the price paid by FNR to gain a regulation mechanism of its catalytic activity. The rationale behind the ability of FNR to be turned off by oxidants could reside in the need for the parasite to save NADPH to cope with reactive oxygen species under oxidative stress conditions.25

■ CONCLUSION

Through the interpretation of our results in light of the crystal structure of PfFNR, we have provided a sound picture of the structural bases of the coenzyme specificity of this enzyme. The obvious question is whether this model can be extended to interpret coenzyme specificity in the other plastid-type FNRs. At first glance, the answer is negative. Indeed, PfFNR is the only member of this group of enzymes known to undergo a large conformational change upon coenzyme binding.26 Furthermore, H286 is not conserved in nonplasmidial FNRs. However, the bulky, aliphatic residue that in other plastid-type FNRs replaces it (usually a leucine) similarly interacts with the adenine moiety of the ligand and contributes to coenzyme specificity. In pea leaf FNR, it has been experimentally shown that binding of 2-PAMP, which mimics the NADP(H) adenine moiety, favors the interaction of analogous of the nicotinamide ring with the active site.27 This inducible-fit effect has been proposed to be mediated by a conformational transition involving the loop that in PfFNR includes C284, G285, and H286, which is in contact with the C-terminal tyrrosine that controls access to the active site.27 Small conformational changes in this loop have actually been observed in Anabena FNR upon NADPH binding by X-ray crystallography.28 Moreover, the comparison among free and NADPH-bound forms of Anabena FNR (PDB entries 1QKF, 1KQF, and 1GRJ)27 shows that binding of NADPH (resulting in complexes where the adenine moiety occupies the expected binding site, but the NMM portion of the ligand adopts conformations incompatible with HT) also induces small rearrangements also in the 267–279 α helix, which corresponds to the α helix of PfFNR. A similar comparison between the crystal structures of free (PDB entry 1FN1) and 2-PAMP-bound (PDB entry 1FN2) spinach leaf FNR26 shows that also in this protein ligand binding induces a small 0.3–0.4 Å shift in the same α helix (residues 276–290). Thus, although this phenomenon is particularly marked in the case of PfFNR, our results strongly support the notion that the H286 component of the coenzyme specificity of plastid-type FNRs is based on inducible-fit conformational changes of variable extents, in which structural alterations of the loop that includes H286 and the shift of the α helix pointing toward the C-terminus of the protein play a significant role.

■ AUTHOR INFORMATION

Corresponding Author
*Department of Biochemical Sciences and Biotechnology, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy. Phone: +39 02 50314897. Fax: +39 02 50314895. E-mail: alessandro.varetta@unimi.it.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We are grateful to Dr. Laura Marangoni for valuable technical assistance in performing some of the experiments here reported.

■ ABBREVIATIONS

FNR, ferredoxin-NADP.sup+ reductase (EC 1.18.1.2); NADP(H), NADP.sup+ or NADPH; NADP(H), NADPH; HT, hydride transfer; PfFNR, P. falciparum FNR; 2-PAMP, adenine 2,5'-diphosphate; kapp, apparent first-order rate constant; kcat, rate constant of HT; NMM, nicotinamide mononucleotide; CT, charge-transfer complex; PDB, Protein Data Bank.

■ REFERENCES

FAD-Binding Site and NADP Reactivity in Human Renalase: A New Enzyme Involved in Blood Pressure Regulation

Mario Milani1,2, Francesco Ciriello1, Sara Baroni1, Vittorio Pandini1, Giulia Canevari1,3, Martino Bolognesi1,2 and Alessandro Aliverti1,*

1Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
2CNR-Istituto di Biofisica, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
3Department of Chemical Core Technologies, Nerviano Medical Sciences, Oncology, Viale Pasteur 10, Nerviano 20014, Italy

Received 19 April 2011; received in revised form 6 June 2011; accepted 7 June 2011
Available online 14 June 2011

Edited by M. Guss

Renalase is a recently discovered flavoprotein that regulates blood pressure, regulates sodium and phosphate excretion, and displays cardioprotective action through a mechanism that is barely understood to date. It has been proposed to act as a catecholamine-degrading enzyme, via either O2-dependent or NADH-dependent mechanisms. Here we report the renalase crystal structure at 2.5 Å resolution together with new data on its interaction with nicotineamide dinucleotides. Renalase adopts the p-hydroxybenzoate hydroxylase fold topology, comprising a Rossmann-folded flavin adenine dinucleotide (FAD)-binding domain and a putative substrate-binding domain, the latter of which contains a five-stranded anti-parallel β-sheet. A large cavity (228 Å3), facing the flavin ring, presumably represents the active site. Compared to monoamine oxidase or polyamine oxidase, the renalase active site is fully solvent exposed and lacks an ‘aromatic cage’ for binding the substrate amino group. Renalase has an extremely low diaphorase activity, displaying lower kcat but higher kcat/km for NADH compared to NADPH. Moreover, its FAD prosthetic group becomes slowly reduced when it is incubated with NADPH under anaerobiosis, and binds NAD” or NADPH with Kd values of ca 2 mM. The absence of a recognizable NADP-binding site in the protein structure and its poor affinity for, and poor reactivity towards, NADH and NADPH suggest that these are not physiological ligands of renalase. Although our study does not answer the question on the catalytic activity of renalase, it provides a firm framework for testing hypotheses on the molecular mechanism of its action.

© 2011 Elsevier Ltd. All rights reserved.

*Corresponding author. E-mail address: alessandro.aliverti@unimi.it.

Abbreviations used: FAD, flavin adenine dinucleotide; MAO, monoamine oxidase; EDTA, ethylenediaminetetraacetic acid; INT, 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl]-2H-tetrazolium chloride; WST1, 2-(4-iodo-phenyl)-3-(4-nitrophenyl)-5-(2,4-disulphophenyl)-2H-tetrazolium sodium salt; HT, hydride transfer; MR, molecular replacement; PDBH, p-hydroxybenzoate hydroxylase; PDB, Protein Data Bank.
Introduction

Renalase was identified in a 2005 study that focused on new links between chronic kidney diseases and their cardiovascular complications. Renalase gene (RNL5) is located on chromosome 10 and includes 10 exons. Various isoforms arising from alternative splicing have been reported, two of which (renalase1 and renalase2) are annotated in genome databases (GenBank accession numbers NP_001026879 and NP_060833, respectively). RNL5 is expressed in the kidneys, heart, skeletal muscle, brain, and small intestine; the main product (renalase1) has been detected also in blood, plasma, and urine. End-stage renal disease is associated with lowered plasma renalase levels, indicating that the kidneys are the source of the circulating protein. Renalase has also been proposed as an early biomarker of acute kidney ischemia. Intravenous administration of renalase1 was found to decrease blood pressure and heart rate in normal rats, while its scutation/subarachnoid injection had an intense and prolonged anti-hypertensive effect on an animal model of salt-sensitive hypertension, and its perfusion was found to have a heart-protective effect on a cardiac ischemia mouse model. Furthermore, RNL5 gene inactivation in mouse resulted in increased sympathetic activity, tachycardia, and hypertension. Two allelic variants of renalase displaying similar frequencies in the human population, carrying Glu or Asp at position 37, are known. The Asp variant was found to correlate significantly with an increased risk of developing essential hypertension and cardiac syndromes. It has been proposed that renalase could modulate the intrarenal dopamine system, affecting sodium and phosphate excretion. In a rat model of chronic heart failure, lowered blood renal flow is associated with decreases in kidney renalase synthesis and norepinephrine clearance. Despite its potential impact on the treatment of some of the “big killer” diseases in the developed world, an understanding of renalase action at the molecular level has not been reached yet. Stemming from its sequence similarity to flavin-dependent monoamine oxidases (MAOs), it has been suggested that renalase could be a catecholamine-degrading flavoenzyme. Evidence has been provided for two possible catalytic mechanisms: O2-dependent direct oxidation of amines (as in the case of MAOs) or its NADH-dependent degradation, mediated by superoxide radical generation. However, the turnover rate of renalase seems too low to fully justify its physiological effects; moreover, the actual presence of a catecholamine-degrading activity in blood plasma, other than that supported by semi-carbazide-sensitive amine oxidase, has been excluded by Boomsmma and Tippton. (For two recent comprehensive reviews on renalase, the reader is referred to Desir and Medvedev et al.) Renalase is highly conserved in mammals, but orthologs are present in protists (Phytomonothra infestans T30-4, 27% sequence identity), cyanobacteria (Cyanothecae sp.; 28% identity), and bacteria (Spirosoza paludosa; 26% identity), suggesting different biological functions associated with similar folds and possibly similar catalytic reactions (see Fig. 5a).

With the aim of elucidating its catalytic mechanism, we produced an in vitro folded form of human renalase1 in Escherichia coli. The recombinant protein was found to contain noncovalently bound flavin adenine dinucleotide (FAD), thus providing the first direct evidence that it is a flavoprotein. Here we present a further step towards elucidating its structure-function relationships by reporting its three-dimensional structure solved at 2.5 A resolution. These data, together with kinetic and nucleotide binding studies, provide new hints on the active-site structural organization in this intriguing enzyme.

Results

Redox properties and reactivity of the renalase FAD prosthetic group

Since we report here solely on the properties of human renalase1, we use the term “renalase” throughout this article to indicate this specific isoform, unless otherwise stated. To shed light onto renalase enzymatic activity, we investigated the stability and protonation state of the semiquinone form of its FAD cofactor, which are important criteria for flavoprotein classification. Anaerobic renalase solutions were subjected to stepwise photoreduction at different pH values, and the resulting absorption spectra were recorded. As shown in Fig. 1, the bound FAD could be readily reduced by the light/ethylenediaminetetraacetic acid (EDTA)/deazaflavin system and was reoxidized to yield the original spectrum when the solution was exposed to air. More interestingly, at acidic pH, a significant amount of a species displaying a broad absorption band in the 590-650 nm region, identifiable as neutral flavin semiquinone, was formed during reduction. Above pH 7, the FAD blue semiquinone was undetectable (Fig. 1, inset), without clear evidence of accumulation of its red anionic form. This behavior varies from what is observed for both MAO-A and MAO-B, as well as for their homolog from Aspergillus niger (MAO-N, containing a noncovalently bound FAD), which strongly stabilizes the FAD anionic semiquinone.

FAD reactivity with sulfite is a distinct key criterion for flavoenzyme classification, since a high stability of the sulfite-isosaloloxazine adduct usually correlates with a high O2 reactivity.
Renalase was found to react with sodium sulfite, yielding a complex with a K_d of 1.8 ± 0.2 mM (Fig. 2). The reaction was found to be very slow, with complex formation and dissociation constants of $0.056 ± 0.007 \text{ min}^{-1}$ and $0.025 ± 0.003 \text{ min}^{-1} \text{ mM}^{-1}$, respectively. Again, these results suggest both that renalase is not a typical oxidase and that it differs dramatically from MAO, which do not react at all with sulfite due to the hydrophobicity of their active sites. 21

Reactivity of renalase to nicotinamide dinucleotides

Renalase has been reported to catalyze slow O_2 reduction in the presence of NADH yielding the superoxide radical. 22 Since such NADH oxidase reaction suggests the possibility that renalase could be either a dehydrogenase or a monooxygenase, we studied in detail both its NADH-dependent and its NADPH-dependent diaphorase activities using various artificial electron acceptors such as 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride (INT), 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-diaminophenyl)-2H-tetrazolium sodium salt (WST1), and K_3Fe(CN)$_6$. The recombinant form of renalase that we have previously produced in *E. coli* 21 corresponds to its Asp37 variant. Since this variant has been reported to possess a lower catalytic activity than the Glu37 form, 23 we have introduced the Asp37Glu replacement in the protein by site-directed mutagenesis. The two variants of renalase displayed indistinguishable catalytic properties in vitro. As the Asp37 variant yielded crystals suitable for X-ray analysis, we focus here on the properties of this form.

Renalase displayed a low but measurable catalytic activity only versus INT and WST1, with the former substrate being the preferred one. Plots of the steady-state kinetic data for the INT reductase reactions are shown in Fig. 3. The steady-state kinetic parameters (Table 1) show that renalase is slightly but significantly more specific for NADH than for NADPH, although it displays a higher K_m value with the latter co-substrate. The reductive half-reaction of the catalytic cycle (i.e., the reduction of protein-bound FAD by either NADH or NADPH) was investigated under anaerobic conditions. Both nucleotides were able to transfer reducing equivalents to the renalase prosthetic group. Apparent first-order rate constants (k_{red}) for the hydride transfer (HT) of $(1.5 \times 10^{-4}) ± (2 \times 10^{-5}) \text{ min}^{-1}$ and $(2.7 \times 10^{-5}) ± (1 \times 10^{-6}) \text{ min}^{-1}$ were obtained for 1 mM NADH (k_{red}(NADH)) and NADPH (k_{red}(NADPH)), respectively.

In order to further investigate the interaction of the protein with nicotinamide dinucleotides, we performed spectrophotometric titrations of renalase with both NAD$^+$ and NADP$^+$. As shown in Fig. 4, renalase clearly interacts with both dinucleotides, forming complexes whose remarkably strong difference absorption spectra are very similar. Titrations follow the
theoretical curve expected for a 1:1 stoichiometry (Fig. 4, inset). The K_b values of the complexes of renalse with NAD$^+$ and NADPH were 2.2 ± 0.1 mM and 1.6 ± 0.1 mM, respectively. Interestingly, 2-P-AMP titration yielded a similar K_b value (1.2 ± 0.3 mM) but a far less intense difference spectrum (Fig. 4), implying that the adenylate portion of NADP$^+$ provides much of the binding energy, while the nicotinamide moiety plays a main role in the perturbation of the isoporphazine environment. However, titration of renalse with up to 6 mM 5'-AMP did not result in any spectral change, suggesting that a single phosphate group in the ligand is not sufficient to provide enough binding energy and/or the ability to perturb isoporphazine upon binding.

Renase crystal structure

The crystal structure of renalse was solved through a composite molecular replacement (MR) approach and refined at 2.5 Å resolution (R/R_{free} = 21.7/26.0%; see Table 2); two renalse molecules are hosted per asymmetric unit. The two independent molecules (molecules A and B) display very similar overall conformations, with a pairwise root-mean-square deviation (RMSD) of 0.41 Å calculated over 330 Cα pairs. A contained contact region (467 Å2) is observed.

Table 1. Kinetic parameters of renalse for the NADH-dependent and NADPH-dependent INT reductase reactions

<table>
<thead>
<tr>
<th>Cosubstrate</th>
<th>k_{cat} (min$^{-1}$)</th>
<th>K_m (μM)</th>
<th>k_{cat}/K_m (min$^{-1}$ μM$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADH</td>
<td>0.14</td>
<td>18</td>
<td>(7.8 ± 10$^{-3}$) * (0.2 ± 10$^{-3}$)</td>
</tr>
<tr>
<td>NADPH</td>
<td>0.26</td>
<td>175</td>
<td>(1.5 ± 10$^{-3}$) * (0.4 ± 10$^{-3}$)</td>
</tr>
</tbody>
</table>

INT-diaphorase activities of renalse were assayed at 37°C in the presence of a fixed concentration (100 μM) of INT.

Table 2. Crystalllographic data collection and refinement statistics

<table>
<thead>
<tr>
<th>Data collection statistics</th>
<th>P2$_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td></td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>538, 86.6, 93.2</td>
</tr>
<tr>
<td>a, b, c (Å)</td>
<td>90, 90, 95.3</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>4.84-2.5</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>94.7 (87.5)</td>
</tr>
<tr>
<td>Number of unique reflections</td>
<td>25,082 (3770)</td>
</tr>
<tr>
<td>Redundancy (%)</td>
<td>1.0 (1.8)</td>
</tr>
<tr>
<td>Average I/ω (%)</td>
<td>8.8 (49.5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Refinement statistics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R-factor (%)</td>
<td>21.7</td>
</tr>
<tr>
<td>R_{free} (%)</td>
<td>26.0</td>
</tr>
<tr>
<td>RMS bond lengths (Å)</td>
<td>0.008</td>
</tr>
<tr>
<td>RMS bond angles (°)</td>
<td>1.14</td>
</tr>
<tr>
<td>Residuals in the most favored regions (%)</td>
<td>88.3</td>
</tr>
<tr>
<td>Residuals in additionally allowed regions (%)</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Values in parentheses are for the highest resolution shell.

$R_{free} = \sum_{i=1}^{N} \left| I_i - I_{calc} \right| / \sum_{i=1}^{N} I_i$, where I_i is the intensity of a reflection and I_{calc} is its average intensity.

$R-factor = \sum_{i=1}^{N} |I_i - F_{calc}| / \sum_{i=1}^{N} F_{calc} \times 100%$.

R_{free} for cross-validation was calculated with 5% of reflections that were selected at random and were not included in the refinement.
between the two molecules, in keeping with the monomeric character of renalse in solution, shown by previous gel-filtration and dynamic light-scattering studies.22 The refined electron density allowed us to model all the protein amino acids, with the exception of a few amino acids that are localized in the substrate-binding domain [i.e., Ser25 (chain A), Lys99-Glu100 (chains A and B), Asp140 (chain B), Ser190 (chain B), Gln201 (chain B), Lys205-Ile206 (chain A), Ser236 (chain B)-Glu237 (chains A and B), and Cys300 (chain B)].

The renalse molecule displays a bean-like elongated shape, with the longer axis being about 60 Å and with the shorter axis being 35 Å. The two lobes of the bean host the FAD-binding domain (amino acids 1-42, 109-189, and 291-311; Fig. 5b, red) and the putative substrate-binding domain (amino acids 43-108 and 190-294; Fig. 5b, blue and green), respectively. The two domains are bent, forming a wide and deep cleft at the center of the protein that, like a belt, runs perpendicularly to the protein’s longest axis. Such crevice (positively charged) crosses the protein surface opposite to the partially exposed isouloazine ring. The FAD molecule is buried within the protein, except for part of the isouloazine ring (see the text below), a small portion of the adenine ring, and part of the adenosine ribose near the pyrophosphate bridge (located next to the mentioned cleft). The FAD-binding domain architecture is based on a Rossmann fold (as in the glutathione reductase family)23 composed of a six-stranded central β-sheet (with β1,β2,β3,α2,α3,α4 topology), surrounded by six α-helices and by an additional three-stranded mixed β-sheet. The putative substrate-binding domain consists of an anti-parallel five-stranded β-sheet surrounded by three α-helices and one β-hairpin. Moreover, it includes a small subdomain (amino acids 62-108), projecting helix α3 toward the FAD-binding domain (Fig. 5b, green).

The general fold of renalse classifies it as a member of the flavoprotein superfamily sharing the p-hydroxybenzoate hydroxylase (PHBH) fold topology, which includes both oxidase and non-oxidase enzymes.24 Most PHBH-like enzymes catalyzing the oxidation of amines belong to one of two possible structural groupes: the MAO family and the l-amino acid oxidase family.25 Renalse is structurally more similar to MAO-like enzymes than to l-amino-acid oxidase-like enzymes. A search for proteins that are structurally homologous to renalse, performed through the DALI server, yielded a putative protoporphyrinogen oxidase [Protein Data Bank (PDB) ID: 3LOW; Z-score of 28.9, residue identity of 19%], in addition to l-amino acid oxidase, a l-specific histone demethylase, and an amine oxidase (PDB IDs: 2BJ2, 2UXX, and 2BXR, respectively).

With the exception of histone demethylase, the main feature common to all the protein structures highlighted by DALI as structurally similar to renalse is the presence of an additional stretch of 110-140 amino acids that is entirely absent in renalse (Fig. 6a, left). This structural element corresponds to an additional domain that would be inserted between strand β7 and strand β8 of the renalse substrate-binding domain. Multiple alignment shows that the regions flanking such ‘missing’ domain are not conserved (Fig. 5a). Interestingly, one of the short segments disordered in the renalse crystal structure corresponds exactly to the insertion point of the ‘missing’ domain (Lys99-Glu100). The functional roles played by this domain in the renalse homologs are markedly different: in protoporphyrinogen oxidase, it is a membrane-binding domain, while in l-amino acid oxidase, it is a helical domain responsible for protein dimerization. On the contrary, in MAOs and polyamine oxidase, it is an integral part of the substrate-binding domain.

FAD binding

Nineteen residues are directly involved in FAD binding, six of which establish electrostatic or polar interactions with the cofactor (Fig. 6b). Only two of the latter interactions involve side-chain atoms (conserved residues Thr12 and Arg22 linked to the FAD pyrophosphate), with the others being due to main-chain atoms. Access to the dimethylbenzene moiety of the isouloazine ring is blocked by the conserved Trp288, while the cofactor pyrimidine ring is quite solvent exposed (Fig. 6a, right), establishing hydrogen bonds with the main-chain atoms of Tyr62 and Phe224 and displaying van der Waals interactions with Ala59.

Putative substrate-binding site

The absence of the ‘missing’ domain in renalse (see the text above) results in the presence of a wide surface concavity that is the entry site for the enzyme main core cavity, where the FAD cofactor is hosted (Fig. 6a, right). As a consequence, the putative enzyme active site is solvent exposed, as underscored by the presence of five water molecules above the isouloazine ring. The active site cavity has a volume of about 224 Å³ and can be roughly divided into two hemispheres: one composed of aromatic residues and the other composed of polar residues, centered on the isouloazine ring. The aromatic hemisphere (roughly above the isouloazine pyrimidine ring) is characterized by residues Tyr62 (mostly conserved), Tyr221, and Phe223 (aromaticity conserved), with the two Tyr residues being mutually hydrogen bonded (mean of the two subunits, 2.7 ± 0.2 Å). The polar hemisphere is lined by Glu292, Arg193, His245 (mostly conserved), and Arg222, and displays an overall positive charge.

†http://ekhidna.biocenter.helsinki.fi/dali_server/
Fig. 6. Protein–FAD interactions and active-site cavity of renalase. (a) The overlay of the three-dimensional structure of renalase on the structures of its most similar homologs is displayed on the left. The renalase molecule is shown as a green ribbon, with the FAD prosthetic group displayed as a wire frame in CPK colors. The Cα traces of *Escherichia coli* sp. protoporphyrinogen oxidase (PDB ID: 3LOV; blue; RMSD of 2.7 Å for 286 Cα), *Rhodococcus sp.* (PDB ID: 2BE2; brown; RMSD of 2.5 Å for 292 Cα), and *Homo sapiens* MAO (PDB ID: 2BXR; red; RMSD of 3.0 Å for 283 Cα) are also shown to highlight the location of the third domain that is not present in renalase. The molecular surface of renalase, colored according to its potential (rotated by 90° with respect to (a)), is displayed on the right. The entry of the active-site cavity, showing the pyrimidine side of the isoalloxazine ring of FAD, is clearly visible. (b) Stereo view of the proposed renalase active-site region, showing FAD, the residues exchanging hydrogen bonds with FAD (green carbon atoms), the main residues lining the cavity above the isoalloxazine ring (blue carbon atoms), and the ordered sulfate ion bound at the border of the active-site cavity.
(Fig. 6b). The water molecules found in the cavity bridge between the two sides, but their locations are not conserved in the two renalase chains, suggesting that the site is suited for accommodating polar compounds. A sulfate anion, hydrogen bonded to Thr247 and electrostatically compensated for by Arg193 and Arg222, is present in both asymmetric unit renalase molecules at the external border of the polar cavity (Fig. 6b). Since renalase has been proposed to represent a new form of MAO, a structural comparison with the active site of the latter enzyme is useful. The overlay of the three-dimensionals structure of renalase with those of MAO-A, MAO-B, and polyamine oxidase led to the observation that the position of the active cavity is highly conserved in all these enzymes. However, residues critical for the catalysis of amine oxidation are not maintained in renalase. In particular, Lys296 (MAO-B numbering) is replaced by His245, and the so-called ‘aromatic cage’ (formed by Tyr398 and Tyr435 in MAO-B)5,20 is absent in renalase, where the two aromatic residues are replaced by Gln292 and Asn323 (Fig. 6b).

Discussion

The functional part of the study on renalase described here had two main purposes: (i) to assess the prosthetic group key chemical features that allow flavoprotein classification, and (ii) to analyze the interaction of renalase with nicotinamide dinucleotides, as conceivable cosubstrates of the enzyme. Concerning the first question, here we show that renalase provides a mild stabilization of the neutral form of the flavin semiquinone and that the renalase-bound FAD forms a sulfite adduct, although slowly and with low affinity. Both features do not classify renalase as a MAO-like enzyme. Moreover, lack of stabilization for the FAD anionic semiquinone and the previous observation that renalase reacts with O₂ producing the superoxide anion rather than hydrogen peroxide,5,20 indicate that renalase is probably not even an oxidase.

As far as the second question is concerned, we confirm that renalase catalyzes both NADH-dependent and NADPH-dependent diaphorase reactions, as recently reported by Farzaneh-Far et al. In addition, we provide evidence for direct HT from both NADH and NADPH to the enzyme and for a 1:1 complex formation with the oxidized dinucleotides and a NADP analog. However, the exceedingly low k_cat and k_cat/k_m values observed in the steady-state reaction, confirmed by a very slow HT in the reductive half-reaction and the millimolar affinity of the enzyme for both NAD⁺ and NADP⁺, strongly suggest that NADH and NADPH are not renalase physiological substrates. Such conclusion is in line with the absence of an evident NADP-binding site in the threedimensional enzyme structure. Since PFBH, which shares the same general fold of renalase, is known to bind NADPH (unconventionally) at the protein surface in a groove crossing the FAD cavity;20 we employed molecular modeling to assess whether renalase could accommodate NADPH in a similar way. Our structural comparisons indicate that FAD is much more deeply buried inside renalase than inside PFBH, making the putative NADPH-binding site sterically blocked in renalase. Thus, whereas NADPH can access the FAD isocoumarine ring of PFBH with limited conformation changes, a similar NADH binding mode would appear catalytically unproductive in renalase. To explain the slow reactivity of renalase towards both NADH and NADPH, we speculated that nicotinamide dinucleotides might access FAD through the putative substrate-binding cavity.

A further point that needs to be discussed is the recent report that the Gsh37 allele variant of the protein displays a higher catalytic efficiency (k_cat/k_m) in the reductase reaction, relative to the Asp37 form.8 The crystal structure of the protein described here shows that residue 37 is located in a surface loop at the interface between the two domains, far from the active site. Moreover, consistent with structural evidences, we found no difference between the diaphorase activities of the two allele variants of the enzyme. This discrepancy could be ascribed to the fact that we isolated renalase forms that underwent folding and FAD incorporation within E. coli cells,21 while catalytic differences between variants were detected on proteins that were refolded in vitro.8 Indeed, it has been shown that in vitro refolding may result in significant alterations in the properties of flavoproteins.22

In conclusion, the structural data first reported here are in keeping with the results of our previous and current functional studies, which point out that renalase is not a MAO and most probably not an oxidase. On the other hand, structural comparisons of renalase with its homologs do not allow us to shed additional light on the reaction catalyzed by this enzyme. Taken together, our observations suggest that the substrate of renalase may be a large polar molecule, possibly carrying a negative charge; the chemical process catalyzed by renalase on such substrate would be different from an oxidase reaction.

Materials and Methods

NAD⁺, NADPH, NADH, NADPH 2′-phospho-AMP, 5′AMP, INT, and WST1 were purchased from Sigma-Aldrich.

Renalase expression and purification

The variant of human renalase carrying Asp at position 37 was produced in the RecA(ΔDE3) E. coli strain transformed with pET-SUMO-RNLS.3 To obtain the other known
widely used variant of the protein, we introduced a point mutation resulting in Asp9Cua substitution in the reninase coding sequence of the above plasmid, using the Quik-Change Lightning Site-Directed Mutagenesis Kit (Stratagene), in conjunction with the complementary oligonucleotides 5’ GGGCTAACGCGGGTCGCGCGGGGACG-3’ and 5’ CTGCTCGGGCCTGATCTTCGCTGATCGGGCTGGC-3’ (base changes underlined). Both recombinant forms of reninase were produced and purified according to the procedure previously reported. Reninase concentration was quantified on the basis of the extinction coefficient of 11.3 M⁻¹ cm⁻¹ at 457 nm.

Photoreduction experiments, ligand binding studies, and activity assays

All spectrophotometric measurements were performed either on a model 8545 diode-array (Agilent) or on a Cary 100 double-beam (Varian) spectrophotometer. An aerobic stepwise photoreduction of the reninase FAD prosthetic group was carried out using the light/EDTA system.34 Samples of ca 35 μM reninase in 10 mM phosphate-NaOH/10 mM pyrophosphate-NaOH (at pH values ranging from 5.5 to 9.5) containing 15 mM EDTA and ca 1.5 mM dazanolbivin were placed under anaerobic conditions in a sealed cuvette by successive cycles of N₂ flushing and vacuum application. Spectra were recorded before and after successive illumination periods, until a full reduction had been observed within a total irradiation time of about 4 min. Sodium sulfate titration of reninase was performed in phosphate-buffered saline at 25 °C. Spectra were recorded before and after successive additions, allowing the reaction to reach equilibrium after each increase in ligand concentration. From the time course of the spectral change accompanying adduct formation, the pseudo-first-order rate constants of the process were obtained at different Na₂SO₄ concentrations. The secondary plot of this apparent constant as a function of ligand concentration yielded the individual constants for adduct formation and dissociation from the slope and the intercept of the plot, respectively. The putative reductive half-reaction catalyzed by reninase (i.e., the HT from NADH or NADPH to FAD) was monitored spectrophotometrically at 37 °C by recording the spectrum of anaerobic solutions of 5 μM reninase in 50 mM Tris-HCl (pH 7.2) at various reaction times after the addition of NADH or NADPH at different concentrations. Spectrophotometric active-site titrations of reninase with NADP⁺, NAD⁺, 2-AMP, or 5'-AMP were carried out at 25 °C in 50 mM Tris-HCl (pH 7.4), according to the procedure described elsewhere.35 NADPH-dependent and NADPH-diaphorase activities of reninase were assayed at 37 °C in 50 mM Tris-HCl (pH 7.2), using a fixed concentration of either 100 μM INT or 500 μM WST1 as electron acceptor. The reaction mixture included 2.6 μM reninase and a variable concentration of reduced nicotinamide adenine dinucleotide phosphate in the range of 0.05–2 mM. In the case of the INT-dependent reaction, 0.1% Triton X-100 was also included to avoid precipitation of the formazan product. The time course of the absorbance increase at the appropriate wavelength was monitored continuously, and steady-state rates were calculated using the extinction coefficients of 18.5 M⁻¹ cm⁻¹ (at 490 nm) and 37 M⁻¹ cm⁻¹ (at 450 nm) for INT and WST1, respectively.

Crystallization and structure solution

Reninase crystals were obtained in a sitting drop setup, mixing 0.2 μl of protein (24 mg ml⁻¹, supplemented with freshly added 10 mM DTT) and 0.1 μl of reservoir solution [30% polyethylene glycol 8000, 0.1 M sodium cacodylate (pH 6.5), and 0.2 M ammonium sulfate]. Small crystals, with average dimensions of 50 μm x 25 μm x 25 μm, were grown in about 5 days at 20 °C. The crystals were transferred to a cryoprotectant solution [30% polyethylene glycol 8000, 0.1 M sodium cacodylate (pH 6.5), 0.2 M ammonium sulfate, and 25% glycerol] before being flash cooled in liquid nitrogen. Diffraction data were collected at European Synchrotron Radiation Facility beamline ID23-2. The crystals, belonging to the monoclinic space group P2₁, diffracted to 2.5 Å resolution. During data collection, the crystal suffered radiation damage, causing reduced completeness of data (84.7%). While the color of crystals used for data collection indicated that bound FAD was unequivocally oxidized, minor/partial reduction of the coenzyme during X-ray irradiation cannot be excluded. The final model was of no help in revealing the oxidation state of the cofactor, since the two nitrogen atoms of FAD were found to be not involved in hydrogen bonds. Reninase structure was solved by MR (program MOLREP).31 The model used for MR search was built starting from the atomic coordinates of the g855a oxidoreductase of Pseudomonas syringae (a FAD-containing protein of unknown function; PDB ID: 3KKJ), divided into two domains: the FAD-binding domain (Mod1; amino acids 2–33, 124–181, and 278–329) and the cofactor-binding domain (Mod2; amino acids 92–99 and 185–275), including about 74% of the reninase residues. Since Matthews analysis suggested the presence of two molecules in the crystal asymmetric unit (softer content, 55%), MR search (maximum resolution, 3.5 Å) was performed in two subsequent steps: to locate two copies of Mod1 (R-factor/S.=-0.572/0.445) and then the remaining two copies of Mod2 (R-factor/S.=-0.568/0.465). After rigid-body refinement (R/Refl=0.522/0.514) and constrained refinement (R/Refl=0.435/0.488; program Refmac),32 we started mutating amino acids and manual rebuilding (program Coot).33 A clear electron density was present in the FAD-binding site, and the ligand model was therefore built. The programs Parrot and imasco were used to help modeling during the manual (renumbering procedures; omit maps were produced to correct for errors in the model) and the programs Refmac5 and BUSTER were used for final refinement. The final model contains 325 and 330 amino acids over 442, in molecules A and B, respectively, as well as 2 FAD molecules, 3 sulfate molecules, and 128 water molecules. Data collection and refinement statistics are reported in Table 2. Structural figures were prepared with PyMOL.34

Accession number

The atomic coordinates of human reninase isoform 1 have been deposited in Research Collaboratory for Structural Bioinformatics PDB under accession code 3Q2Q.

http://www.pymol.org
References

Crystal structure of human renalase, a novel flavoenzyme involved in the pathogenesis of cardiovascular diseases

Sara Baroni, Mario Milani, Vittorio Pandini, Francesco Ciriello, Martino Bolognesi, Alessandro Alverti

1Dept. of Biomolecular Sciences & Biotechnology, Università degli Studi di Milano, Milano, Italy
2CNR-Istituto di Biofisica, Università degli Studi di Milano, Milano, Italy

Introduction
Renalase is a recently discovered flavoprotein [1], highly conserved in vertebrates with orthologs in many other organisms, including lower eukaryotes and bacteria. In mammals, renalase is synthesized in the kidneys, heart, skeletal muscles, brain and small intestine, being present in blood and urine [2]. Renalase has been shown to be active in lowering blood pressure, in exerting a cardioprotectant action and in promoting sodium and phosphate excretion [2]. Based on sequence similarity to other flavoenzymes including monoamine oxidases (MAOs), renalase has been proposed to act as a catecholamine-degrading enzyme, possibly via a mechanism requiring O₂ and/or NADH as co-substrates [2]. However, no clear evidence of such catalytic activity has been provided [3,4]. Thus, despite its medical relevance, the exact mechanism of renalase physiological actions is presently unknown. To gain insight into its activity at the molecular level, we produced recombinant human renalase in Escherichia coli and showed that it contains non-covalently bound FAD [5]. Here we report on some functional features of renalase and discuss them at the light of its crystal structure solved at 2.5 Å resolution [6].

Materials and Methods
The recombinant isoform 1 of human renalase was produced and isolated as reported [5]. Photoreduction experiments, steady-state assays, pre-steady state kinetics, ligand binding titration and protein crystal studies were performed as described elsewhere [6].

Results & Discussion
Recombinant renalase displays a typical flavoprotein spectrum, which slowly bleaches in the visible region when incubated with large concentrations of sodium sulfite, as shown in Fig. 1A.
Figure 1. Spectral changes induced by Na₂SO₃ on renalase, at 25 °C. A. Spectra recorded after each addition of the ligand, after equilibrium conditions were reached. B. Fraction of FAD-sulfite adduct as a function of sulfite concentration.

From titration (Fig. 1B) and kinetic data, the following parameters for the sulfite-flavin adduct were obtained: \(K_a = 1.8 \pm 0.2 \text{ mM} \), \(k_{\text{cat}} = 3.36 \pm 0.42 \text{ h}^{-1} \text{mM}^{-1} \), \(k_{\text{cat}} = 1.5 \pm 0.2 \text{ h}^{-1} \). The renalase-bound FAD could be easily reduced under anaerobiosis by the light/EDTA/deazaflavin system. As shown in Figure 2, redox titrations carried out over a wide pH range show that the protein slightly stabilizes the neutral form of the FAD semiquinone at acidic or neutral pH values, with no clear evidence of formation of any FAD radical form above pH 7. The reactivity of renalase FAD prosthetic group suggests that the enzyme is not an oxidase. To test the hypothesis that renalase is instead a NAD(P)H-dependent enzyme as recently proposed [2], we measured its NAD(P)H-diaphorase activity with different artificial electron acceptors, the best of which turned out to be p-dinitrophenyloctagonal violet (INT). However, measured steady-state rates were extremely low, with \(k_{\text{cat}} \) values of 0.14 ± 0.04 min⁻¹ and 0.26 ± 0.06 min⁻¹, and \(k_{\text{cat}}/K_m \) values of 7.8 ± 1.2 min⁻¹mM⁻¹ and 1.5 ± 0.14 min⁻¹mM⁻¹, for NADH and NADPH, respectively. The poor reactivity and selectivity of renalase towards nicotinamide dinucleotides were confirmed by studying the pre-steady state reactions of the enzyme with either NADH or NADPH (Fig. 3), and by performing spectrophotometric titrations with their corresponding oxidized forms, which yielded \(K_a \) values of 2.2 ± 0.1 mM and 1.6 ± 0.1 mM for NAD⁺ and NADP⁺, respectively. These data indicate that, most likely, neither NADH nor NADPH are physiological renalase substrates.
Figure 2. Anaerobic photoreduction of renlase at 15 °C by the light/EDTA/deazariboflavin system in 10 mM NaOH-phosphate/NaOH-pyrophosphate, at the indicated pH values.

Figure 3. Time course of anaerobic reduction of renlase-bound FAD by 1 mM NADH (open circles) or 1 mM NADPH (filled circles) at 37 °C. Control data obtained in the absence of reducing agents are shown as filled squares.
The crystal structure of renalase (PDB ID: 3QI4) was solved at 2.5 Å resolution by molecular replacement, using an uncharacterized oxidoreductase from *Pseudomonas syringae* (PDB ID: 3KKJ) as search model. The renalase molecule displays an elongated shape and a two-domain organization (FAD-binding and putative substrate-binding domains). The general fold of renalase assigns it to the p-hydroxybenzoate hydroxylase structural family of flavoproteins [7]. Notably, the majority of renalase homologs of known three-dimensional structure host a third domain that blocks solvent access to the isoalloxazine ring. In renalase, the absence of such domain leaves the pyrimidine side of the flavin ring exposed at the bottom of a funnel-shaped wide cavity that opens at the protein surface, as shown in Fig. 4A. The interactions established by the protein and the FAD cofactor are reported in Fig. 4B. The putative active site is represented by a roughly spherical 228 Å³ cavity in front of the re-face of the flavin. The cavity shows an amphipathic character, with a polar region lined by basic groups and a hydrophobic side contributed by aromatic side-chains (Fig. 5). Notably, the renalase putative active site lacks both the “aromatic cage”, present in amine oxidases, and the Lys residue interacting with the flavin N5 atom via a H₂O molecule that is conserved in most oxidases [8].

![Figure 4](image_url)

Figure 4. Crystal structure of human renalase. **A.** General shape of the protein molecule, showing its surface with the wide cavity opening to the putative active-site region, at the bottom of which part of the FAD isoalloxazine ring is visible. **B.** Scheme of the protein-FAD contacts.
Figure 5. Spatial organization of human renalase putative active site. The FAD prosthetic group and the amino acid residues lining the proposed active-site cavity are shown.

Conclusions

Although our present results do not allow to assign a defined enzyme activity to renalase, we exclude that the enzyme may support an oxidase reaction. Our structural data suggest that renalase substrate should present an amphipathic character, possibly carrying one or more negatively charged groups.
References

