Steric and Electronic Effects on the Configurational Stability of Residual Chiral Phosphorus-Centered Three-Bladed Propellers: Tris-aryl Phosphane Oxides

Abstract: A series of tris-aryl phosphane oxides existing as residual enantio- or diastereoisomers with substituents on the aryl rings differing in size and electronic properties were synthesized and characterized. Their electronic properties were evaluated on the basis of their electrochemical oxidation and reduction potentials together with those of the corresponding “blade bromides” (i.e., the naphthalene derivatives displaying the same substitution pattern of the tris-naphthyl phosphane oxides existing as residual enantiomers or diastereoisomers with substituents on the aryl rings differing in size). The phosphorus atom is located determined by CV. The residual stereoisomeric phosphane oxides were isolated in a stereochemically pure state and were found to be highly configurationally stable at room temperature (stereoisomerization barriers of about 27 kcal mol⁻¹). The chiroptical properties of the residual stereoisomers and the assignments of absolute configuration are discussed. The configurational stability of residual tris-aryl phosphane oxides was found to be scarcely influenced by the electronic properties of the substituents present on the aromatic rings constituting the blades, while steric effects play the most relevant role. Detailed theoretical calculations are in agreement with the experimental results and also contribute to a rational interpretation of the stereodynamics of these systems.

Keywords: chirality · electrochemistry · phosphane oxides · residual stereoisomers · semiempirical calculations

Introduction

The stereodynamics of three-bladed molecular propellers is a fascinating research field currently attracting the interest of several renowned research groups.[i] It was investigated by Mislow et al. in the 1970s in the case of tris-aryl methanes[2] and tris-aryl amines[3] bearing three different aryl rings (denoted maximally labelled propellers). In the former case, in which the carbon atom located on the hub is a stereogenic center, two racemic diastereoisomers could be isolated, while in the latter two achiral diastereomers were separated, since fast pyramidal inversion removes nitrogen stereogenicity. This unusual form of stereoisomerism, which does not involve the presence of any rigid stereogenic element in the molecule, was named “residual” by Mislow et al.[2] In the case of tris-aryl methanes interconversion of the two diastereomeric residual racemates has a rather high barrier (ΔG° ≈ 30 kcal mol⁻¹ at 120°C), while in the case of tris-aryl amines the diastereomerization process is much easier (ΔG° ≈ 18 kcal mol⁻¹ at −20°C).

Differentiation of the edges of the blades and strict correlation of the motion of the rings are the prerequisites for the existence of residual stereoisomers in these systems. Residual stereoisomers result whenever closed subsets of appropriately substituted interconverting isomers (the residual stereoisomers) are generated from a full set of stereoisomers under the operation of a given stereoisomerization mecha-
nism. Helicity reversal (the so-called M_0 mechanism, Figure 1) is not the fastest stereoisomerization process for three-bladed propellers displaying correlated rotation of the rings, as commonly believed, and the two-ring flip mechanism (the so-called M_1 mechanism, Figure 1) is the lowest energy process. It does not interconvert all eight possible conformational stereoisomers generated by helicity and the three simple blade-hub rotors. In the case of systems bearing three identical blades, two non-interconverting subgroups in an enantiomeric relationship (the residual enantiomers, framed in Figure 1) are generated, each one constituted by four quickly interconverting diastereoisomers.[4] The M_1 mechanism is fast at room temperature, involving barriers of about 10 kcal mol$^{-1}$, while the energy required for interconversion of the residual stereoisomers corresponds to that controlling the M_0 mechanism. If this barrier is higher than 20 kcal mol$^{-1}$, the residual stereoisomers should be configurationally stable enough to be separated in a stereoisomerically pure state.

We have focused our recent attention on phosphorus-centered C_3 propellers,[5,6,7] since access to a unconventional class of chiral tris-aryl phosphines as ligands for transition metals in homogeneous stereoselective catalysis appeared to be an exciting challenge, particularly considering that hindered tris-aryl phosphines are the promoters of choice in several metal-catalyzed reactions.[8]

We recently reported the synthesis, structural characterization, and resolution of phosphate oxides 1 and 7.[4] We were able to assign the absolute configuration to the residual antipodes of 7 by anomalous X-ray scattering and, by conventional methods, to all other residual enantiomers, both carbon- and phosphorus-centered, known so far, and they display configurational stability high enough to allow their survival during resolution by HPLC on a chiral stationary phase (CSP). We also coined configurational descriptors for the residual enantiomers of three-bladed propellers. We suggested to assign to a given residual enantiomer the configurational descriptor P_{res} or M_{res} ($res =$ residual) according to the helix exhibited by the diastereoisomer of each subset having the prioritary edges of the blades above the reference plane, which is the plane defined by the three atoms connected to the hub (Figure 1).[6]

The primary aim of this work was to investigate the steric and electronic effects of the substituents present on the blades on the configurational stability of phosphorus-centered propellers, phosphate oxides in particular, existing as residual stereoisomers. To evaluate the electronic effects, the obvious strategy was to synthesize a series of new compounds, derived from 1 and 7, bearing electron-withdrawing (nitro, sulfo, bromo) or electron-releasing (ethoxyl) groups in selected positions of the naphthalene rings not involved in the dynamic gearing of the blades (Figure 2).

To investigate the steric effects, we resorted to substrates 10 and 11 (Figure 2). Phosphane oxide 10 was designed according to the following rationale: 1) At least one of the two methyl groups on the dioxene ring is located in the center of the gearbox controlling the correlated rotation of the blades. 2) The carbon atoms bearing the methyl groups are stereocenters that all display the same S configuration. Their stereogenicity combined with residual stereogenicity implies that two residual diastereoisomers are produced, distinguishable (1H and 31P NMR spectroscopy) and separable by achiral techniques (chromatography on an achiral SP). 3) The methyl groups are forced to stay equatorial and thus

![Figure 1. Stereodynamic sequence of three-bladed propeller-shaped molecules bearing identical blades (see text for discussion). The enantiomorphism of each stereoisomer pair resulting from the M_0 mechanism has been visually enhanced by adding a 60° rotation around the C_3 axis.](Image)
block dioxene ring flipping, which in 7 overlaps with the residual stereoisomerism dynamics and makes interpretation of the dynamic NMR data unreliable.

Phosphane oxide 11 is characterized by a 2,2-dimethyl-1,3-dioxolene ring fused to the naphthalene unit constituting the blade; the steric hindrance of the five-membered ring is smaller than that associated with the 1,4-dioxane ring, and the methyl groups above and below the plane of the blade appear less efficient than the methyl group in the 2-position of the naphtho[dioxene ring in 10 in promoting correlated rotation of the rings. Furthermore, the behavior of C1-symmetric trinitro phosphane oxide 6, carrying one nitro group in a very critical position for interfering with the mechanical gearing of the blades, could add some additional information on the effects of stereoelectronic factors on the configurational stability of residual stereoisomers.

Results and Discussion

Synthesis of the substrates: Phosphane oxides 1 and 7 (and the corresponding phosphanes) were described by us previously.[6] Treatment of a solution of the phosphane corresponding to 1 in chloroform with a 65% aqueous nitric acid solution under vigorous stirring at 50°C afforded a complex mixture of products, three of which were separated and isolated in a pure state by silica-gel column chromatography. Phosphorus oxidation expectedly occurred during the nitration process. Product 3 results from nitration in the 6-position of all naphthalene rings of the phosphane corresponding to 1, while 6 is a constitutional isomer of 3 bearing a nitro group in the 8-position of a single naphthalene moiety. Direct nitration of phosphane oxide 1 gave less satisfactory results. The structures of these products have been univocally confirmed by analytical and spectral data and by single-crystal X-ray diffraction analysis (see below). The C1-symmetric mononitration product 4, bearing the nitro group in the 6-position of one naphthalene ring, was isolated. Structural assignment is based on univocal interpretation of MS and NMR data.

Bromination of phosphane oxide 7 with N-bromosuccinimide (NBS) in 50% acetic acid/chloroform solvent afforded phosphane oxides 8, as the main product and 9, as a byproduct. Structural assignment to these products is based on the univocal interpretation of MS and NMR data.

Phosphane oxides 1a, 2, 5, 10, and 11 were quantitatively obtained by oxidation of the corresponding phosphanes with an excess of hydrogen peroxide.[9] A diastereomeric mixture of 10 was obtained by oxidation of a diastereomeric mixture of the corresponding phosphanes with hydrogen peroxide. The two residual diastereoisomers were separated on a preparative scale by silica-gel column chromatography or by HPLC on a CSP on a semi-preparative level (see below). Crystallization of phosphane oxide 11 as a conglomerate from ethyl acetate allowed the spontaneous resolution process (see below).

X-ray diffraction data: The crystal structures of 1 and 7 were reported by us previously.[6] The structural assignments to some of the phosphane oxides described in this paper, namely, 1a, 3, 6, 10, and 11 were confirmed by the X-ray diffraction data (Figure 3).

An abnormal distortion of the naphthalene ring bearing the nitro group in the 8-position is clearly visible in the structure of 6. It is associated with an anomalous loss of coplanarity, and therefore in conjugation, between the aromatic ring plane and that of the nitro group, which diverge by about 40°, whereas a maximum of 10° is observed in the other two 6-nitro-substituted rings and in all blades of 3. This anomalous situation is probably produced by the strong steric interactions occurring between the peri nitro group and the oxygen atom of the adjacent phosphane oxide group.

The C-P-C angles in 11 [112.34(4)°], which displays crystallographic C1 symmetry, are surprisingly greater than those found in the crystal structure of 1a (109.57(13)°) and suggest strong steric interference amongst the blades of the propeller and hence more efficient blade gearing.

Resolution of the residual racemates of phosphane oxides 1, 3–9, and 11 and separation of the residual diastereoisomers

FULL PAPER

These are not the final page numbers!
of 10: We previously demonstrated that residual phosphane oxides are in general configurationally stable enough to be separated as enantiopure antipodes at room temperature.\[^{6,7}\]

The availability of enantiopure samples of the stereoisomers of the different compounds is essential for acquiring their chiroptical properties, which are very useful tools to assign the absolute configuration to them by correlative methods. The residual racemates of all phosphane oxides, except for 2, were effectively resolved by analytical or semi-preparative HPLC on the immobilized-type Chiralpak IC CSP.\[^{10}\]

The reversed-phase HPLC resolution experiments on racemic trisulfonic acid 2 were unsuccessful, while direct-phase resolution attempts were promising albeit complicated by the extremely low solubility of the compound in the solvents usually employed for this purpose (see Supporting Information).

Even though the resolution of the racemates of 1 and 7 was already described by us in a previous paper,\[^{8}\] we considered it worth carrying out all of the chromatographic resolution experiments under very similar, if not identical, conditions so as to have a reliable elution order for the antipodes. Resolution was excellent in all cases (see Supporting Information) and several milligrams of each enantiomer of 1, 3–9, and 11 were obtained in a pure state. As anticipated, pure samples of both antipodes of 11 and of the diastereoisomers of 10 were obtained by spontaneous resolution and by silica-gel column chromatography, respectively.

Typical chromatograms illustrating the baseline enantioseparation of 4, 8, and 11, recorded with dual UV/CD detection are shown in Figure 4. The specific rotations of the enantiomers of the phosphane oxides, the chromatographic retention factors \(k_1\), the enantiomeric excesses of the resolved antipodes, and their absolute configuration, assigned by comparison of the CD spectra (see below) are summarized in Table 1.

The big difference in the absolute value of the specific rotation of the two diastereoisomers of 10 is due to the contributions of the stereogenic elements in the molecules, which are synergetic in the first-eluted and opposite in the second-eluted stereoisomer, that is, the helicity, which is opposite in

<table>
<thead>
<tr>
<th>Compound</th>
<th>First-eluted residual stereoisomer</th>
<th>Second-eluted residual stereoisomer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>((M)_{\text{en}}) > 99</td>
<td>(-459) (P_{\text{en}}) > 99</td>
</tr>
<tr>
<td>1</td>
<td>((M)_{\text{en}}) > 99</td>
<td>(-487) (P_{\text{en}}) > 99</td>
</tr>
<tr>
<td>3</td>
<td>((M)_{\text{en}}) > 99</td>
<td>(-820) (P_{\text{en}}) > 99</td>
</tr>
<tr>
<td>4</td>
<td>((M)_{\text{en}}) > 99</td>
<td>(-804) (P_{\text{en}}) > 99</td>
</tr>
<tr>
<td>5</td>
<td>((M)_{\text{en}}) > 99</td>
<td>(-206) (P_{\text{en}}) > 99</td>
</tr>
<tr>
<td>6</td>
<td>((M)_{\text{en}}) > 99</td>
<td>(-765) (P_{\text{en}}) > 99</td>
</tr>
<tr>
<td>7</td>
<td>((M)_{\text{en}}) > 99</td>
<td>(-445) (P_{\text{en}}) > 99</td>
</tr>
<tr>
<td>8</td>
<td>((M)_{\text{en}}) > 99</td>
<td>(-351) (P_{\text{en}}) > 99</td>
</tr>
<tr>
<td>9</td>
<td>((M)_{\text{en}}) > 99</td>
<td>(-331) (P_{\text{en}}) > 99</td>
</tr>
<tr>
<td>10</td>
<td>((M)_{\text{en}}) > 99 (de)</td>
<td>(-288) (P_{\text{en}}) > 99</td>
</tr>
<tr>
<td>11</td>
<td>((M)_{\text{en}}) > 99</td>
<td>(-320) (P_{\text{en}}) > 99</td>
</tr>
</tbody>
</table>

[a] Absolute configuration. [b] c = 0.1% in CHCl₃, [c] c = 1% in CH₂Cl₂. [d] Sign of optical rotation monitored on-line at 365 nm during enantioselective HPLC.
the two stereoisomers, and the six carbon stereocenters, which have identical configuration in both compounds.

Circular dichroism spectra of residual antipodes and diasteroisomers 10 and correlative configurational assignment: The CD spectra of the residual antipodes of all phosphane oxides, except for 2, whose racemate was not resolved, and those of the two diastereoisomers of 10 are shown in Figure 5. The CD behavior of all residual stereoisomers is quite similar: the spectra of all the first-eluted products (all levorotatory, as anticipated) display the first bisignate curve quite similar: the spectra of all the first-eluted products (all levorotatory, as anticipated) display the first bisignate curve quite similar: the spectra of all the first-eluted products (all levorotatory, as anticipated) display the first bisignate curve quite similar: the spectra of all the first-eluted products (all levorotatory, as anticipated) display the first bisignate curve quite similar: the spectra of all the first-eluted products (all levorotatory, as anticipated) display the first bisignate curve quite similar: the spectra of all the first-eluted products (all levorotatory, as anticipated) display the first bisignate curve quite similar: the spectra of all the first-eluted products (all levorotatory, as anticipated) display the first bisignate curve.

Figure 5. The CD behavior of all residual stereoisomers is depicted. It is clear that the CD spectra of the diastereoisomers are mirror images of each other. The CD spectra of the residual antipodes of all phosphane oxides, except for 2, whose racemate was not resolved, are also shown.

Helix inversion barriers of the residual stereoisomers of phosphane oxides: The helix inversion barriers related to activation of the M_0 mechanism were evaluated by two different approaches: classical off-column kinetic studies combined with enantio- or diastereoselective HPLC and dynamic 1H NMR spectroscopy. Off-column stereoisomerization kinetics studies were performed on a single enantiomer in CHCl$_3$ solution at 55°C. The 1H NMR technique was necessarily employed in the case of phosphane oxide 2, which was not obtained in an enantioselectively enriched state: the behavior of the methyl hydrogen signals of the ethoxyl groups was examined at different temperatures.

In the case of the residual M_{res} and F_{res} diastereoisomers 10, for which the removal of residual stereogenicity through the M_0 mechanism would produce a single classical enantiomer, two barriers are expected. They were evaluated by off-column diastereomerization experiments carried out on each of the two residual diastereoisomers previously resolved by semipreparative chromatography in a highly enriched diastereomeric state.

Graphical examples of the two techniques are given for the case of 11 in the off-column kinetics studies (Figure 6a) and for the case of 2 for the 1H NMR experiments (Figure 6b). The enantiomerization and diastereomerization rate constants and the corresponding energy barriers (ΔG^*) are reported in Table 2. They demonstrate that all of the phosphane oxides display a quite high configurational stability, since the energy barriers to be surmounted for activating helix reversal through the M_0 mechanism are quite high. The residual stereoisomers of these compounds could be stored in a fridge in a stereomERICUALLY pure state for years.

The second observation is that steric factors, such as the dimensions and rigidity of the dioxolene and dioxene condensed rings, exert a relevant influence on the configurational stability of this kind of stereoisomers. Substrates 6, 10, and 11, displaying a substitution pattern which directly affects the dynamic gearing of the blades, exhibit helix inversion barriers which mostly differ from the average value of 27.0–28.6 kcal mol$^{-1}$ shown by the other phosphane oxides, in which only classical electronic effects are expected. The most sterically hindered substrates 10 are the configurationally most stable stereoisomers, displaying a helix inversion barrier about 2 kcal mol$^{-1}$ higher than that shown by the less encumbered parent compound 7. The opposite behavior is shown by compound 11, in which the presence of a condensed five-membered ring reduces the helix inver-
two subensembles of compounds 1–5 (SE₁) and 7–9 (SE₂), in which electronic contributions more than steric hindrance should be considered significant for influencing the helix inversion rate, the maximum variation of ΔG^* was found to be 1.6 and 0.4 kcal mol⁻¹ respectively.

Theoretical investigation of electronic property-configurational stability relationships:

Theoretical support for the electronic origin of these effects was sought by analyzing the extent of linear correlation between the helix reversal barriers and molecular descriptors of the electronic effects calculated on the ground state of all phosphane oxides 1–11 (details of the calculation procedure are given in the Experimental Section). The same calculation was also performed on tris(1-naphthyl)phosphane oxide (M0) as reference model.

Attention was preliminarily focused on the atomic charges located on phosphorus (d_P) and oxygen (d_O) atoms of the $P=O$ group, as well as on the length of the $P=O$ bond d_{P-O} (Table S1 of Supporting Information). The choice of the first two descriptors was suggested by the knowledge that charges localized on acidic hydrogen atoms or on atoms carrying acidic hydrogen atoms, assessed by quantum mechanical calculations at either semi-empirical[11–19] or ab initio[11,20–26] level, are effective descriptors of acidity that can sensitively reflect even small conformational[16,17] and configurational[16–18,20] changes in the structure of the substrate. Interestingly, several examples[11,22–26] showed that improvements in the level of theory of the quantum mechanical methods used to assess the molecular descriptors (e.g., HF or DFT instead of semiempirical methods, as well as larger basis sets within HF or DFT approaches) do not necessarily lead to significant improve-
Table 2. Enantiomerization/diastereomerization rate constants (k_{rac}/k_{diast}) and energy barriers (ΔG^\ddagger) for residual phosphorus oxides.

<table>
<thead>
<tr>
<th>Compound</th>
<th>k_{rac}/k_{diast}</th>
<th>ΔG^\ddagger [kcal mol$^{-1}$]</th>
<th>r^2</th>
<th>Methoda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.17×10^{-8}</td>
<td>27.53</td>
<td>0.9996</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>4.40×10^{-5}</td>
<td>27.0</td>
<td>–</td>
<td>b</td>
</tr>
<tr>
<td>3</td>
<td>2.08×10^{-6}</td>
<td>27.80</td>
<td>0.9998</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>3.24×10^{-6}</td>
<td>27.51</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>5</td>
<td>6.65×10^{-4}</td>
<td>28.55</td>
<td>0.9981</td>
<td>a</td>
</tr>
<tr>
<td>6</td>
<td>2.43×10^{-3}</td>
<td>26.20</td>
<td>0.9995</td>
<td>a</td>
</tr>
<tr>
<td>7</td>
<td>3.65×10^{-4}</td>
<td>27.44</td>
<td>0.9999</td>
<td>a</td>
</tr>
<tr>
<td>8</td>
<td>3.48×10^{-4}</td>
<td>27.47</td>
<td>0.9999</td>
<td>a</td>
</tr>
<tr>
<td>9</td>
<td>2.10×10^{-5}</td>
<td>27.80</td>
<td>0.9996</td>
<td>a</td>
</tr>
<tr>
<td>(M${en}$)${10}$</td>
<td>7.40×10^{-5}</td>
<td>29.98</td>
<td>0.9995</td>
<td>a</td>
</tr>
<tr>
<td>(P${en}$)${10}$</td>
<td>2.96×10^{-7}</td>
<td>29.07</td>
<td>0.9997</td>
<td>a</td>
</tr>
<tr>
<td>11</td>
<td>8.15×10^{-9}</td>
<td>25.41</td>
<td>0.9997</td>
<td>a</td>
</tr>
</tbody>
</table>

in the quality of the linear free-energy relationship (LFER) correlations. In other words, unfavorable LFERs obtained through descriptors calculated at low levels of theory do not afford definitive indication about their inadequacy, while, on the contrary, favorable findings are suggestive of their good sensitivity. Therefore, as a basic choice, we decided to assess the LFER descriptors by the fast AM1 semiempirical approach.

A preliminary evaluation of the capacity of each descriptor to monitor as a single probe of the variations in stereoreactivity of selected compounds was limited to subensemble SE$_1$ and compound 6 (see Supporting Information Table S2). Considering the expected difficulties that the use of a single descriptor entails in monitoring all electronic and structural factors responsible for the stereoreactivity of such a variegated ensemble of phosphorus oxides 1–11, a more in-depth LFER investigation was carried out by resorting to multiparameter equations incorporating the most limited number of non-interrelated descriptors, chosen among those discussed above. The mathematical expression of such equations can be generalized as Equation (1)

$$\Delta G^\ddagger \text{tot} = \sum C_i D_i + C_0$$

where C_i and C_0 are coefficients evaluated by linear regression analysis, and the former modulate the effects monitored by the molecular descriptors D_i employed. Therefore, analyses based on type (1) equations were initially repeated on the subset of compounds 1–6 (Equations (1S)–(3S) in the Supporting Information). On the basis of the results obtained from these calculations (see Supporting Information), it was possible to give a preliminary rationalization of the experimental data.

Inspection of the data collected in Table 2 and Table S1 of the Supporting Information evidences that an increase in the ΔG^\ddagger barrier is observed when the positive atomic charge on the phosphorus atom is reduced and, conversely, when electron density on the P=O oxygen atom increases. A lower helix inversion barrier is found in correspondence with a reduction in d_{P-O} values. A possible interpretation of these results is that the electronic effects produced by the substituents present on the blades, though modest, may affect the van der Waals volume of the phosphorus and oxygen atoms of the P=O group, and hence the hindrance that they may pose to blade rotation, by modulating their electron density and the length of the P=O bond. Thus, it seems logical to expect that a reduction in the van der Waals volume of the P atom (i.e., more positive δ_P values) might correspond to an increase in helix-inversion rate constant, while a growth of the O van der Waals volume (i.e., more negative δ_O values) corresponds to a slowdown of the process. It is also expected that the longer the P=O bond the higher the hindrance to blade rotation. In particular, it appears that d_{P-O} is the most sensitive among the three molecular descriptors (see the relevant factor of statistical significance in Table S2 of the Supporting Information).

In conclusion, electron-withdrawing groups would decrease ΔG^\ddagger by reducing the electron density on both phosphorus and oxygen atoms of the P=O group, while the opposite should be expected from the action of electron-releasing substituents, as observed by comparing the data calculated for compounds 1–6 with those obtained for the reference compound M$_0$, with the only, albeit macroscopic, exception of compound 3, for which more marked stereoreactivity would be expected (Figure 7, Table S1 and relevant comments in the Supporting Information).

According to the resonance structures RS$_{3a,b}$ (Scheme 1), the electron-releasing effect of the ethoxyl group located in the 2-position of the naphthalene ring of all compounds 1–6 can be considered the main factor responsible for the calculated increase in P=O bond length relative to reference compound M$_0$.

When, together with compounds SE$_1$ and 6, also the phosphorus oxides belonging to subensemble SE$_2$ were included in LFER analyses based on Equation (1S) (descriptors δ_P and δ_O), (2S) (descriptors δ_O^o and δ_P^o), or (3S) (descriptors δ_P and δ_O) of the Supporting Information, a dramatic reduction in r^2 was prevented only in the two last cases [r^2 was found to be 0.62 from Eq. (1S), 0.77 from Eq. (2S), and 0.71 from Eq. (3S)].
In comparison with compounds belonging to the SE₁ group, the propellers of the SE₂ group have phosphorus atoms with much less positive δ_P values, and oxygen atoms with much less negative δ_O values. These trends appear to be in opposition to each other in relation to the effect that they should produce on the enantiomerization barriers. Furthermore, the assessed $d_{P,O}$ values are always smaller. In the compounds belonging to subset SE₂, the bromine atom shows an experimentally negligible effect on stereostability, according to the opposed inductive +M effects of the halogen atom (resonance structure RS₂_11 in Scheme 1). Such behavior seems to closely reflect the opposed changes observed for δ_P and δ_O.

Interestingly, when calculation of δ_P, δ_O, and $d_{P,O}$ was performed on the model tris[1-(2,3-dimethoxy)naphthyl]phosphane oxide (M₁), obtained from 7 by breaking the C–C single bond of the dioxene ring of each blade, and tris[1-(2,3-diiethoxy)naphthyl]phosphane oxide (M₂), derived from 1 by ethoxylation of the 3-position of the naphthalene rings, the calculated values much more closely matched those characterizing phosphane oxides of the SE₁ series (see Table S1 of the Supporting Information). This result confirms that the rigidity of the dioxene ring significantly affects the electronic (δ_P and δ_O) and structural ($d_{P,O}$) properties of the P=O group and influences the helix reversal barriers, which are different from those produced by the more conformationally mobile ethoxyl group of compounds 1–6 and model structures M₁ and M₂.

A rough estimate of ΔG^* based on the multiparameter regression performed with Equation (3S) of the Supporting Information afforded for models M₁ and M₂ greater values than that calculated for compound 7 (+0.6 and +1.1 kcal mol⁻¹, respectively), in agreement with the higher experimental stability shown by 5 (the electronically most similar propeller to models M₁ and M₂) with respect to 7–9. These findings suggest that the dioxene ring is a structural component that slightly activates the helix inversion process, and justifies grouping compounds 7–9 in an individual subset (SE₃); hereafter, we designate the effect of the dioxene ring as $E_{dioxene}$.

We suggest that $E_{dioxene}$ may originate from the worse conjugation that the ring oxygen lone-pair can establish with the naphthalene ring. Conjugative electron donation would require trigonal sp² hybridization for the oxygen atom, a change that should lead to modest destabilization of the six-membered ring due to the increase in the C-O-C angle. To gain some indications on this point, we considered the O-C2 distance to the naphthalene ring ($d_{C,O}$, Table S1 of Supporting Information). In-Inspection of these data indicates that in compounds 7–9 the $d_{C,O}$ value is greater, in accordance with a smaller contribution of resonance structure RS₂_11 compared to the corresponding RS₃_14 (Scheme 1). The increase in $d_{C,O}$ for 7 is the greatest among those calculated for the whole series of compounds 1–9. Concerning the modest electron-withdrawing action displayed by the nitro and sulfo substituents in compounds 2–4 and 6, some relevant considerations are given in the Supporting Information.

Considering the tight structural analogies that phosphane oxides belonging to the SE₂ subset share with compound 10, it was logical to directly compare their experimental stereostabilities and the calculated electronic-effect descriptors. This could give information on the nature of the hindrance that double methyl substitution exerts on blade rotation. As expected, values of δ_P, δ_O, $d_{P,O}$, and $d_{C,O}$ very close to those shown by 7 resulted, and thus suggest that methyl dissubstitu-
tion in 10 has a negligible influence on the electronic and structural properties of the P–O framework. Classical steric interactions, leading to a strong increase in blade gearing, are evidently the main factor responsible for the M_{res}^{P-O} diastereomerization barrier of phosphane oxide 10. In quantitative terms, from the difference among the ΔG^* values, it results that the insertion of the pair of equatorial methyl groups on the dioxene ring leads to a marked slowdown of the helix inversion process, corresponding to an increase in activation free energy of 1.63 kcal mol$^{-1}$ for the (P_{res})-10 \rightarrow (M_{res})-10 diastereomerization and 2.54 kcal mol$^{-1}$ for the opposite (M_{res})-10 \rightarrow (P_{res})-10 conversion. Surprisingly, the enantiomerization barrier of phosphane oxide 11, which looks structurally more similar to compounds 7–10 than to 1–6, was found to be the lowest.

A possible explanation for this observation could be suggested by considering the smaller size of the 1,3-dioxolene ring in comparison with the 1,4-dioxene system. The decrease of one carbon unit involves significant changes in the three-dimensional structure, both in terms of C-P-C angles and O-P-C1-O9 dihedral angles (see X-ray diffraction data above section and Table S1 of the Supporting Information). It is therefore expected that such remarkable differences might have an effect on the electronic properties of the P=O group. Comparative calculations for the couple 10, 11 as well as for 7 and compounds 7–9 gave very different values for parameters δ_p, δ_o, d_{P-O}, and d_{C-O}. In particular, both the δ_p and δ_o descriptors determined for 11 suggested reduced electron density on the atoms constituting the P–O group, corresponding to increased stereolability. In addition, a smaller d_{P-O} (the shortest one found in the whole series) and a greater d_{C-O} value point to a further loss in significance of the resonance structure RS17–11 in favor of RS1'–11 (Scheme 1) and thus also to a contribution to a further drop in the enantiomerization barrier (i.e., a reduction in the ΔG^* similar to that defined above as $E_{dioxene}$ effect for compounds 7–9, but of much greater importance, hereafter designated as $E_{dioxolene}$ effect). A further factor that could justify a less favorable conjugation between the lone pairs of the dioxolene oxygen atoms and the P=O bond is the O-P-C1-C9 torsion angle, which is about 42° in 11, in contrast to the average value of 37° found for compounds 7–9.

As the final test for the reliability of the theoretical approach, we propose two new regression analyses, based on Equations (4S) and (5S), which were derived from Equations (2S) and (3S) of the Supporting Information by inclusion of the αC=O* bond length (d_{C-O}) as a further descriptor of the electronic effects. They were applied to the complete set of propellers 1–11, with the sole exclusion of phosphane oxides 10.

The LFER analysis based on Equation (4S) of the Supporting Information exhibited the best correlation ($r^2 = 0.909$, see Figure 8 and the details reported in the Supporting Information), so that the parameters δ_o, d_{P-O}, and d_{C-O} can be proposed as a set of descriptors that are truly effective in monitoring the complex electronic contributions governing the helix inversion process of phosphane oxides 1–9 and 11, regardless of the low level of theory used for their calculation. Finally, the observed inability of (M_{res})-10 and (P_{res})-10 to correlate according to Equations (4S) and (5S) of the Supporting Information is in agreement with the steric origin of their higher configurational stability, which arises from the insertion of two methyl groups on the dioxene ring and cannot be associated to electron-donating effects attributable to them.

In any case, before stating that there are only modest electronic influences on the configurational stability of trisaryl phosphane oxides, we felt it necessary to quantitatively evaluate their electronic properties through experimental methods.
Experimental evaluation of the electronic properties of phosphane oxides: The electronic properties of phosphane oxides 1–11 were evaluated by cyclic voltammetry in acetonitrile solution, with inclusion in the study of the series of the corresponding blade bromides as reference (Figure 9). As a general rule, in a systematic series, under constant operating conditions, both the first oxidation and reduction peaks \(E_{p,a} \) and \(E_{p,c} \) should regularly shift in positive direction for increasingly electron poor systems (the easier the reduction, the more difficult the oxidation) and vice versa for increasingly electron rich systems. However, steric effects and different reaction mechanisms could significantly modulate the sequence, and therefore must also be taken into account.

Electrochemistry of blade bromides: Table 3 reports key CV data for the nine investigated blade bromides (for corresponding CV patterns, see Figure S10 in the Supporting Information). Comparison of the first reduction peaks provides the most convenient approach to the rationalization of the electronic properties of our substrate series, since blade bromide reduction corresponds to a well-defined process, resulting in bromine–carbon bond cleavage, and involves the same position to which the phosphorus atom is linked in the corresponding phosphane oxide series. Mechanistic details concerning specific blade bromides are provided in the Supporting Information. The first reduction peaks in the whole series can be satisfactorily rationalized in terms of Hammett parameters,[27] by considering the positions of the substituents on the naphthyl system with respect to the bromine reactive site:

1) The 2-positions (ortho) invariably carry an ethoxyl group (a methoxyl group in a single case), which should result in nearly constant inductive effects that can be considered a constant offset condition; therefore, no Hammett parameter has been assigned, and this is a convenient approach considering the unavailability of Hammett parameters for substituents located in ortho positions;

2) The substituent effects in the 3-positions (meta) are purely inductive and therefore were accounted for in terms of \(\sigma_m \).
3) The Br substituent effects in the 4-positions (para) involve mesomeric interactions and therefore were accounted for in terms of σ^+_{Br}.

4) The effects of substituents located in the 6- and 8-positions were accounted for by σ_p parameters, taking into account that they occupy a dienyl-homologous position to the substituent in position para to the phosphorus atom, even though they do not directly interact with the reaction center.

5) The dioxene ring was considered as split into two methoxyl groups.

6) The dioxolene ring was considered as split into a methoxyl group in the 2-position and an isopropoxyl group in the 3-position.

Plotting cathodic peak and onset potentials versus the sum of the Hammett parameters $\Sigma \sigma$ resulting from the above criteria gives fairly linear correlations with significant slopes (Figure S11 in the Supporting Information).

The first oxidation peaks of the blade bromides, characterized by complex shapes and high currents, correspond to complex processes starting with formation of the radical cation and proceeding through several electron-transfer and chemical steps to give a variety of products, including dimers, trimers, electroactive oligomeric films, and quinoid species, depending on the reaction medium and on the nature and position of the alkoxyl substituents, whereby the ortho-dialkoxy case is an especially peculiar one.\cite{28–30} For this reason an Hammett approach appeared hardly appropriate in the case of the blade bromide first oxidation peaks. In fact, they appear to be only slightly affected by substituent effects, with the exception of the strongly electron withdrawing nitro groups, which result in significant displacement towards more positive potentials, albeit less pronounced than in the case of reduction, when the electron transfer is localized on the nitro group.

In any case the oxidation process appears less appropriate for our aim of accounting for the electronic availability of the phosphorus atom in phosphanes, since, unlike bromide reduction, it does not involve the same position to which the phosphorus atom is linked in the corresponding phosphane oxide series.

Electrochemistry of phosphane oxides: A synopsis of the CV patterns of the twelve investigated phosphane oxides, ranked in decreasing order of oxidation facility, is provided in Figure 10. The corresponding $E_{p,a}$ and $E_{p,c}$ are collected in Table 4. Excluding 3, 4, and 6, in which the first reduction peak involves the nitro groups, and 8 and 9, in which it concerns the bromo groups, the first reduction peaks of the phosphane oxides are located at very negative potentials.

According to Savéant,\cite{31} when working in an aprotic solvent with a quaternary ammonium salt as supporting electrolyte, the first reduction peaks of a tris-aryl phosphane oxide or of a tris-aryl phosphane oxide should be related to a complex catalytic process with multiple competitive pathways, starting from formation of the phosphane oxide radical anion and involving partial alkylation of the phosphane oxide by reaction with the quaternary ammonium cation. This results in chemically reversible or partially reversible peaks at very negative potentials, near to the solvent background, which appears to hold for our phosphane oxide series for members having only alkoxyl substituents on the naphthyl blades.

The situation is different:

1) For substrates 8 and 9, in which the first reduction peak concerns chemically irreversible two-electron reduction of the bromo groups producing the corresponding dehalogenated aryl systems, as previously discussed in the case of the bromo-substituted blade series. However, sequences of two or three reversible reduction peaks were observed at potentials more negative than the first one, which could be associated with subsequent reduction of the dehalogenated phosphane oxide by the Savéant catalytic mechanism discussed in the Supporting Information.
Table 4. First reduction peak potentials $E_{p,a}$ and first oxidation potential onsets $E_{p,a}$ (onset) and maxima $E_{p,a}$ (max) of the phosphane oxides, at 0.2 V s$^{-1}$, in MeCN+0.1 m TBAP, with ohmic-drop compensation, in increasing order of oxidation facility. Sums of the relevant ρ parameters are also reported.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Substituents</th>
<th>ρ_{max}</th>
<th>$E_{p,a}$ (onset)</th>
<th>$E_{p,a}$ (max)</th>
<th>ρ_{max}</th>
<th>$E_{p,a}$ (onset)</th>
<th>$E_{p,a}$ (max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2 EtO</td>
<td>0.10</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0.10</td>
<td>0.96</td>
<td>1.13, 1.48</td>
</tr>
<tr>
<td>1</td>
<td>EtO</td>
<td>0</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0</td>
<td>1.35</td>
<td>1.52, 1.70</td>
</tr>
<tr>
<td>1a</td>
<td>MeO</td>
<td>0</td>
<td>−2.22</td>
<td>−2.42</td>
<td>0</td>
<td>1.41</td>
<td>1.53</td>
</tr>
<tr>
<td>7</td>
<td>OCH$_2$CH$_2$O</td>
<td>0.12</td>
<td>−2.23</td>
<td>−2.36</td>
<td>0.12</td>
<td>1.37</td>
<td>1.64</td>
</tr>
<tr>
<td>10</td>
<td>OCH$_2$CH$_2$O, OCH$_2$CH$_2$O</td>
<td>0.10</td>
<td>−2.27</td>
<td>−2.38, −2.58 (diast. I)</td>
<td>0.10</td>
<td>1.40</td>
<td>1.60</td>
</tr>
<tr>
<td>11</td>
<td>OMeO</td>
<td>0.10</td>
<td>−2.24</td>
<td>n.d.</td>
<td>0.10</td>
<td>1.49</td>
<td>1.70</td>
</tr>
<tr>
<td>9</td>
<td>OCH$_2$CH$_2$O (×1); OCH$_2$CH$_2$O, Br (×2)</td>
<td>0.27</td>
<td>−1.66</td>
<td>−1.86, −2.23, −2.35</td>
<td>0.12</td>
<td>1.39</td>
<td>1.68</td>
</tr>
<tr>
<td>8</td>
<td>OCH$_2$CH$_2$O, Br</td>
<td>0.27</td>
<td>−1.61</td>
<td>−1.81, −2.35, −2.50, −2.68</td>
<td>0.27</td>
<td>1.47</td>
<td>1.62, 1.70</td>
</tr>
<tr>
<td>2</td>
<td>SO$_2$H, EtO</td>
<td>0.30</td>
<td>−1.72</td>
<td>−1.9</td>
<td>0.30</td>
<td>1.38</td>
<td>1.60, 1.72</td>
</tr>
<tr>
<td>4</td>
<td>EtO (×2); NO$_2$, EtO (×1)</td>
<td>0.71</td>
<td>−1.00</td>
<td>−1.15;[b] −1.40, −2.21</td>
<td>0</td>
<td>1.34</td>
<td>1.52</td>
</tr>
<tr>
<td>6</td>
<td>NO$_2$, EtO (×2); NO$_2$, EtO (×1)</td>
<td>0.71</td>
<td>−1.03</td>
<td>−1.18;[b] −1.46, −1.91, −2.37</td>
<td>0.71</td>
<td>1.65</td>
<td>1.81</td>
</tr>
<tr>
<td>3</td>
<td>NO$_2$, EtO</td>
<td>0.71</td>
<td>−1.01</td>
<td>−1.19;[b] −2.02</td>
<td>0.71</td>
<td>1.68</td>
<td>1.82</td>
</tr>
</tbody>
</table>

[a] $E_{p,a} - E_{p,c} = 0.065$ V, [b] $E_{p,a} - E_{p,c} = 0.065$ V, [c] $E_{p,a} - E_{p,c} = 0.080$ V.

2) For substrates 3, 4, and 6, featuring nitro substituents on the blades, for which the first reduction peak concerns the electrochemically and chemically reversible monoelectronic reduction to stable nitro radical anions. In the case of C$_7$-symmetric 3 it is particularly interesting that the three nitro redox centers give a single reversible peak corresponding to three electrons, as expected, but of 0.080 V half-peak width, that is much larger than the value of 0.057 V expected for a reversible one-electron transfer, or for three fully equivalent and independent monoelectronic redox centers. This could point to some significant interaction in the space between the three nitro groups, so that radical anion formation on one of them partially hinders the same process on the other two, and slightly different potentials result.

In any case, a fairly linear Hammett relationship was observed for reduction peak potentials in the phosphane oxides series, too, with an even better slope than in the bromide blade case (Figure 11).

The first oxidation should occur on the blades and with the same complex reaction pathways mentioned above in the case of the bromide blades, highly dependent on steric parameters. Therefore, the Hammett approach is not as appropriate as in the reduction case, and the only substituent resulting in significant electronic effects is the nitro group. This can be perceived even within the same molecule, in the case of unsymmetrical phosphane oxide 4, having a first oxidation peak at 1.34 V, corresponding to the electron richer blades decorated with alkoxyl groups, and a subsequent oxidation peak at 1.52 V, corresponding to the electron poorer blade featuring the nitro substituent. In the case of 10, for which two diastereoisomers are available, a slight difference seems to be perceptible, as expected, particularly in the oxidative CV pattern.

As in the blade bromide series, clues to the effect of the steric hindrance of cyclic diethers could be deduced from the degree of electronic availability of the blades expressed through the experimental oxidation potentials. In particular, the presence of a cyclic diether group condensed with the naphthalene ring leads to an increase in $E_{p,a}$ (i.e., to an increase in electron-deficient character) in phosphane oxides 7, 10, and 11 (cf., $E_{p,a}$ values of 7, 10, and 11 with those of 1 and 1a). This observation is in agreement with the above defined $E_{dioxene}$ and $E_{dioxolene}$ effects, which were attributed to loss of conjugation between the lone pairs of the dioxene or dioxolene oxygen atoms and the P–O bond, which is expected to be more pronounced for the five-membered ring of 11. Coherent with these findings, a correlation of quality equivalent to that found by using Equation (4S) of the Supporting Information was obtained when the descriptor d_{C-O} was substituted with the $E_{p,a}$ values in the Equation (6S) of the Supporting Information ($r^2 = 0.906$, Figure 8 and Table S1 of Supporting Information). We conclude that a good relationship exists between the experimental electronic availability of the phosphane oxides, expressed through ox-

Figure 11. Hammett relationships concerning the first reduction peak potentials (onset: empty circles, peak: full symbols) for the phosphane oxide series.
dation potentials, and the calculated conjugation extent between the naphthalene ring and the lone pair of the oxygen atom in the 2-position.

Conclusion

We have shown that the helix inversion barrier controlling the configurational stability of tris-aryl phosphane oxides existing as stable residual stereoisomers is only moderately dependent on the electronic availability of the substrate, while steric factors play the dominant role in the M_6 stereoisomerization process. This conclusion is founded on the results of a series of multidisciplinary experiments based on the following research plan:

1) A series of eleven differently substituted tris-aryl phosphane oxides was synthesized and all members fully structurally characterized.

2) All of the residual racemates, except for 2, were resolved into enantiomers by semipreparative HPLC on a polysaccharide-based chiral stationary phase, while the residual diastereoisomers of 10 could also be separated by chromatography on a silica-gel column.

3) The chiroptical properties of all residual stereoisomers were determined and the absolute configuration descriptors M_{res} or P_{res} assigned to them, either directly by single-crystal anomalous X-ray diffraction analysis or by correlation of the CD spectra.

4) The energy barriers for activation of the M_6 mechanism, which is responsible for the instability of the residual stereoisomers, were evaluated for all compounds by stereoisomerization kinetics studies on the stereomerically pure compounds, or by ^{1}H and ^{31}P NMR techniques. All residual stereoisomers were found to be configurationally quite stable compounds with racemization activation energies between 25 and 29 kcal mol$^{-1}$.

5) Cyclovoltammetry was performed to quantitatively evaluate the electronic properties of the phosphane oxides in terms of their reduction and oxidation peak potentials and, as a simpler model, those of the corresponding single blades having a bromine substituent where the phosphorus atom is located. The results were satisfactorily rationalized in terms of Hammett parameters; moreover, they confirmed that, as pointed out by theoretical computations, cyclic diether substituents lower the electron availability of the aromatic blades with respect to a single alkoylox group.

6) Compounds displaying very different electronic properties and very similar steric properties were found to have very similar configurational stability (\approx 27 kcal mol$^{-1}$), while the most sterically encumbered M_{res} and P_{res} residual diastereoisomers 10 were found to have the highest configurational stability (28–30 kcal mol$^{-1}$).

7) Theoretical analysis furnished a quite clear, rational, and persuasive picture of the possible way in which electronic effects may modulate the stereolability of the investigated phosphane oxides and gave evidence, in particular, on the crucial role of the presence of constrained cyclic diether moieties condensed with the naphthalene blades.

The natural next step is extension of this work to check possible access to configurationally stable residual monodentate tris-aryl phosphane ligands for transition metals in homogeneous stereoelectrolytic catalysis.

Experimental Section

Organic synthesis: Melting points were measured with Büchi B-540 instruments. NMR spectra were recorded on Bruker AV 400 and Bruker AC 300 spectrometers. Chemical shifts are given in parts per million (ppm) and the coupling constants in hertz. Mass spectra were recorded on Bruker Daltonics high-resolution FT-ICR model APEXTM II (4.7 T MagneX cryomagnet with ESI source) and Thermo Finnigan LCQ Adv (APCI). Purification by column chromatography was performed by using Merck silica gel 60 (230–400 mesh for flash-chromatography and 70–230 mesh for gravimetric chromatography).

Synthesis of phosphane oxides: Compounds 1 and 7 were previously described by us.10 Phosphane oxides 1a, 2, 5, 10, and 11 were prepared by hydrogen peroxide oxidation of the corresponding phosphanes.10 Aqueous H$_2$O$_2$ solution (2–3 drops of a 33% solution in 1:2 mL of water) was added to a solution of the phosphane (about 50 mg) in CH$_2$Cl$_2$ (5 mL) and the reaction mixture was vigorously stirred overnight at room temperature. The organic layer was separated, washed with water, dried (Na$_2$SO$_4$), and concentrated under reduced pressure to give the crude phosphane oxide.

Residual Chiral Tris-aryl Phosphane Oxides

FULL PAPER

These are not the final page numbers!
warmed to 50°C. 1H NMR (300 MHz, CDCl3): δ = 8.65 (d, J(H,H) = 8.6 Hz, 3H), 7.64 (d, J(H,H) = 8.1 Hz, 3H), 7.32 (s, J(H,P) = 7.0 Hz, 3H), 7.21–7.16 (m, 3H), 7.19 (d, J(H,P) = 8.6 Hz, 3H), 6.97 (d, J(H,P) = 8.6 Hz, 3H), 3.73 (q, J(=CH2) = 6.4 Hz, 3H), 2.78 (q, J(=CH2) = 6.4 Hz, 3H), 1.07 (d, J(H,CH3) = 6.3 Hz, 9H). APT NMR (300 MHz, CDCl3): δ = 1.45 (d, J(C,P) = 3.85 Hz), 142.76 (d, J(C,P) = 10.72 Hz), 130.59 (d, J(C,P) = 5.89 Hz), 130.19 (d, J(C,P) = 11.02 Hz), 126.92 (d, J(C,P) = 5.58 Hz), 126.83 (s), 124.69 (s), 124.29 (d, J(C,P) = 10.72 Hz), 115.47 (s), 74.22 (s), 73.66 (s), 16.95 (s), 15.64 ppm (s). 13C NMR (300 MHz, CDCl3): δ = 17.19 ppm (s).

Tris-[4-2,2-dimethylphenothiazin-2-yl]-1,3-dioxolyl oxophosphate (11): The crude oxophosphate was treated with CH2Cl2 to give I as a colorless solid. 1H NMR (300 MHz, CDCl3): δ = 8.84 (d, J(H,H) = 8.7 Hz, 3H), 7.61 (d, J(H,H) = 8.7 Hz, 3H), 7.33 (s, J(H,P) = 7.2–7.4 Hz, 3H), 7.28 (s), 6.74–6.9 Hz, 3H), 3.58 (q, J(=CH2) = 6.8 Hz, 3H), 3.28 (q, J(=CH2) = 6.5 Hz, 3H), 1.14 (d, J(H,CH3) = 6.9 Hz, 3H), 1.07 (d, J(H,CH3) = 6.9 Hz, 3H). 13C NMR (300 MHz, CDCl3): δ = 145.81 (d, J(C,P) = 3.70 Hz), 142.64 (d, J(C,P) = 10.72 Hz), 131.49 (d, J(C,P) = 5.96 Hz), 126.94 (d, J(C,P) = 11.32 Hz), 126.86 (d, J(C,P) = 5.66 Hz), 126.76 (s), 126.64 (s), 126.93 (s), 117.73 (s, J(C,P) = 10.66 Hz), 119.93 (s), 74.99 (s), 73.38 (s), 16.81 (s), 15.30 ppm (s). 13C NMR (300 MHz, CDCl3): δ = 17.06 ppm (s).

Tetrakis-[1,2-ethoxy-6-nitro]phenothiazinum [1,2-ethoxy-6-nitro]phenolphosphonate (10): 0.2 g (1.0 mmol) of compound 11 was dissolved into 15 mL of 1,4-dioxane. The reaction mixture was neutralized with 1 M NaOH, and the solvent was removed under reduced pressure to give a residue, which was purified by chromatography on a silica-gel column (CH2Cl2/MeOH: 95/5). The pure compound was collected and dried in vacuo.

Kinetics of the reaction in the absence of tri-1,2-ethoxy-6-nitro]phenolphosphonate (10):

Tris-[5-bromo-2,3-dihydroporphrazin-2,3(2H,3H)-1,4-dioxinophosphate (8): Freshly crystallized NBS (268 mg, 1.5 mmol) was added to a solution of tris-[2,3-dihydroporphrazin-2,3(2H,3H)-1,4-dioxinophosphate (7, 293 mg, 0.49 mmol) in 50% CHCl3/MeOH (40 mL). The reaction mixture was stirred at room temperature for 4 d, and solvent removed under reduced pressure to give a residue, which was purified by chromatography on a silica-gel column (CH2Cl2/MeOH: 95/5). The pure compound was collected as white crystals (310 mg, 85% yield).
Residual Chiral Tris-aryl Phosphane Oxides

In-off column racemization studies, solutions of enantiomers of 1, 3, 9, and 11 or diastereomers of 10 (c=0.1 mg/mL) were held at 55°C in chloroform contained in a closed vessel. The temperature was monitored by a Julabo Julabotemp Thermostat. All experiments were performed on a PC equipped with 3.40 GHz Intel Pentium 4 CPU, 2 GB of RAM, and Windows 2000 Professional. Geometries of all phosphane oxides 1-11 and models M0, M1, and M2 were optimized at the SCF level by using the semiempirical AM1 method as implemented in SPARTAN 98 (Wavefunction, Inc., 18401 Von Karman Avenue, Suite 370, Irvine, CA 92612, USA). The structure of 1 was modeled according to the geometry elucidated by X-ray diffraction, that is, by orienting the naphtalene blades with the ethoxy group anti to the P=O bond and respecting a C2-symmetric disposition of the blades. The optimized structure of 1 was then used as starting geometry to model all other phosphane oxides, by merely performing suitable changes of groups substituting the ethylene blades and reoptimizing the thus-mutated compounds. The charges employed as markers of the stereobility of phosphane oxides were computed according to the Mulliken procedure. Transition state (TS) structures of compounds M0 and 6 were obtained in two steps. To attain the TS of M0 a first geometry, relatively close to the TS involved in the M0 mechanism, was obtained for M0 by optimizing the structure with the three dihedral angles O-P=C2 constrained to 0°. Afterwards, the achieved structure, devoid of any constraint, was subjected to calculation of the TS, according to the procedure implemented in SPARTAN 04. The obtained TS was validated by the presence of only one imaginary frequency among the calculated vibrational modes. In the first step of the procedure carried out to obtain the TS of 6, a starting geometry was modeled by reoptimizing the ground-state structure of 6 with the two dihedral angles O-P=C2 constrained to 0° and 47.7° constrained to 0°. Afterwards, the obtained geometry was subjected to progressive variation of the remaining torsion from its initial values of 180° to the final one of −88.19°, again leaving the other two dihedral angles constrained to 0°. The structure lying on the maximum of the obtained potential energy profile was then submitted to the TS calculation without any constraint. The saddle-point state of the resulting structure was confirmed by calculation of the relevant vibrational modes (only one imaginary frequency was found).

Linear free-energy relationships: regression analyses: LFER analyses were based on the performance of linear regressions of sets of multparameter equations [Eqs. (1S)–(6S) in the Supporting Information], each of which is expressed by the general structure reported in the text as Equa-
tion (1). With the aim of evaluating the casualness of the obtained corre-
sations and quantifying the statistical weight of each used descriptor, the regression results were analyzed according to the well-known statistical F-Test and T-Test. Both linear regression analyses and statistical evaluations were performed by the dedicated mathematical functions implemented in Microsoft Office Excel 2003. Casualness was expressed through index F (probability distribution for two data sets by the function FDIST), and the significance of each descriptor of electronic effect by factors t, compared to the index T calculated through the Excel function TINV (inverse of the t-Student distribution). Probability related to the t-
Student distribution in T-Test set as 0.1.

Crystal data: X-ray data of all structures were collected on two Bruker APEXII diffractometers with MoKα radiation (λ = 0.71073 Å) and graph-
ite monochromator. The structures were solved by direct methods [34] and refined anisotropically by full-matrix least-squares techniques based on F2. H atoms were in calculated positions with the exception of compound 11, whose very good low temperature data allowed complete isotropic re-
finement.

Tri[1-(2-methoxy)naphthyl]phosphonate oxide (1a); C30H23O3P, M = 518.52; trigonal, R3: a = 13.240(4), c = 12.610(4) Å; V = 1944.68(8) Å3; room temperature; Z = 3; ρmax = 1.349 g/cm3; μ(MoKα) = 1.417 cm−1; F(000) = 816; pink needle, 0.03 × 0.16 × 0.48 mm; 40920 data collected, 5614 with I > 2σ(I); the final refinement was on 115 parameters and 1 constraint. The final results, on all and observed reflections, were R = 0.0961 and 0.0931, wR = 0.0809 and 0.0767; GOF 0.827; residues on the final map were from −0.14 to 0.11 e Å−3.

These are not the final page numbers!

Acknowledgements

Work supported by MIUR PRIN-2007 “Catalizzatori innovativi a base di metalli per transizione in sintesi mirate chemo- e stereo-selettive”, by CNR and, in part, by Laboratori Alchemia s.r.l.; T. B. thanks the Dipartimento di Chimica Organica e Industriale of the University of Milano for hospi-

tality.

These are not the final page numbers!
The synthesis and characterization of the phosphanes corresponding to the phosphane oxides 1a, 2, 5, 10, and 11 are described in the article immediately following this one. S. Rizzo, T. Benincori, V. Bonometti, R. Cirilli, P. R. Mussini, M. Pierini, T. Pilati, F. Sannicolo, Chem. Eur. J. DOI: 10.1002/chem.201201182.

Received: April 6, 2012
Revised: August 2, 2012
Published online: 0000

These are not the final page numbers!
Residual Stereoisomerism

T. Benincori, V. Bonometti, R. Cirilli, P. R. Mussini, A. Marchesi, M. Pierini, T. Pilati, S. Rizzo,* F. Sannicolò*

Steric and Electronic Effects on the Configurational Stability of Residual Chiral Phosphorus-Centered Three-Bladed Propellers: Tris-aryl Phosphane Oxides

Residual stereoisomers of tris-aryl phosphane oxides, which can be regarded as phosphorus-centered three-bladed propellers (see figure), were isolated in a stereochemically pure state and found to be highly configurationally stable at room temperature (stereoisomerization barriers of about 27 kcal mol$^{-1}$). The chiroptical properties of the residual stereoisomers and the assignments of absolute configuration are discussed. The configurational stability was found to be scarcely influenced by the electronic properties of the substituents on the aromatic rings constituting the blades, whereas steric effects play the most relevant role.