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In this paper, which is part of the Zsyntax project outlined in Boniolo et al. (2010) [2], we
provide a proof-theoretical setting for the study of context-sensitive interactions by means
of a non-monotonic conjunction operator. The resulting system is a non-associative variant
of MLLpol (the multiplicative polarised fragment of Linear Logic) in which the monotonicity
of interactions, depending on the context, is governed by specific devices called control
sets. Following the spirit of Linear Logic, the ordinary sequent calculus presentation is
also framed into a theory of proof-nets and the set of sequential proofs is shown to be
sound and complete with respect to the class of corresponding proof-nets. Some possible
biochemical applications are also discussed.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Jane has a strong preference for red wine over white and for white wine over beer. She also has a weak preference for
fish over beef. If presented with a menu that contains beef (bf ), fish (fs), white wine (ww) and beer (br), she will probably
choose according to her best available choice in each category. Schematically:

fs ⊗ ww ⊗ bf ⊗ br � (fs � ww) ⊗ bf ⊗ br (1)

where (i) ⊗ is a resource-sensitive conjunction, indicating that the conjoined items are simultaneously available for ordering,
each operand representing a single consumable item of the given type (so that the number of times the name of an item-
type occurs in the ⊗-expression reflects the number of consumable items of that type that are available),1 (ii) “�” denotes
a “meal composition” operator, and (iii) the relation symbol “�” denotes the pseudo-consequence relation that obtains
between states A and B when B is reachable from A by a (possibly empty) sequence of choosing acts (so that, for every A,
it holds that A � A as a result of the empty sequence of choosing acts). Hence, in the above example we are assuming that
exactly one item of each dish and drink is available. In the right-hand side, as a result of Jane’s choosing act, the units of
fish and white wine have been used up to fulfil Jane’s order, while the others remain available for further consumption.

What happens if one unit of red wine (rw) is added to the menu? It may well be that Jane chooses to order beef and red
wine despite her weak preference for fish over beef, because to her taste red wine (for which she has a strong preference)
“binds better” to beef than to fish. That is, her choice in the new extended menu is represented by
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fs ⊗ ww ⊗ bf ⊗ br ⊗ rw � (bf � rw) ⊗ fs ⊗ ww ⊗ br. (2)

On the other hand, given that Jane dislikes cider (cd), its addition to the original menu in (1), instead of red wine, would
by no means alter her initial choice:

fs ⊗ ww ⊗ bf ⊗ br ⊗ cd � (fs � ww) ⊗ bf ⊗ br ⊗ cd (3)

and the same happens if the menu is extended with any item (e.g., chicken, tea, etc.) other than red wine.
Now, observing (1), (3) and the like, the ⊗ operator appears to be monotonic, i.e., to satisfy the following condition:

A � C

A ⊗ B � C ⊗ B
(4)

where A, B, C are arbitrary expressions representing states of the process, constructed using the resource-sensitive operators
⊗ and �. However, observing (1) and (2), it turns out to be non-monotonic and violate (4).

If we insist that an operator ⊗ should be classified as “monotonic” only if it always satisfies (4), then we should conclude
that our ⊗ operator is non-monotonic. However, this involves some loss of information. For instance, on the basis of Jane’s
preferences we may know in advance that she will always make the same order as in (2) when presented with any menu
that contains red wine and beef, quite independent of whatever else is available, that is:

bf ⊗ rw ⊗ A � (bf � rw) ⊗ A (5)

whatever A may be. Moreover we may also know, still on the basis of her preferences, that she will always order fish
and white wine unless beef and red wine are both present in the menu. This kind of information may be schematically
represented as follows:

fs ⊗ ww ⊗ A � (fs � ww) ⊗ A provided that rw and bf are not in A. (6)

Observe that the kind of information displayed in (5) and (6) can be obtained and used without knowing all the details of
Jane’s preferences.

The main purpose of this paper is to envisage a formalism for adequately representing, without loss of information,
processes that involve this kind of context-sensitive interactions, which prompt for a controlled monotonicity of the ⊗ operator.
We maintain that this approach may turn out to be useful in a variety of applications. A prominent one is the representation
of biochemical processes where this kind of controlled monotonicity allows for expressing the empirical regularities that are
typically observed in the laboratory, which often involve context-sensitive, non-monotonic interactions between objects.

An example is given by the all-important mechanisms concerning concurrent enzyme inhibition. An enzyme inhibitor is
a molecule that binds to enzymes and decreases their activity. Since blocking an enzyme’s activity can, for example, kill a
pathogen or correct a metabolic imbalance, many drugs are enzyme inhibitors. Let us indicate by E the enzyme and by S
its substratum, that is the molecule that should bind to the enzyme. Then, in most contexts, we have that E ⊗ S � E � S .
However, if the inhibitor I is present, we observe that E ⊗ S ⊗ I � (E � I) ⊗ S and E ⊗ S ⊗ I � (E � S) ⊗ I , violating (4).
Since most biological “regularities” are strongly context-dependent, the standard monotonicity of ⊗ cannot hold in general.
However, simply saying that it does not hold would hide the important information that certain reactions may be assumed
to take place in virtually all contexts, except for some known ones in which another kind of reaction is observed. With
respect to this class of applications, the present paper can be seen as a development of the Z-Syntax project outlined in [2].

Following a tradition started with the Curry–Howard correspondence we shall present our formalism as a logical one, in
which formulas are interpreted as types of objects and proofs are interpreted as processes. Under this interpretation, as in
the examples above, the relation � is informally explained as follows:

A � B (“B is reachable from A”) iff there exists a process (possibly the null one) that,

starting from an aggregate of type A, yields an aggregate of type B . (7)

Such processes typically involve (context-sensitive) non-monotonic interactions of objects that are destroyed to generate
new ones. So, this approach requires that once a formula has been used in a proof, it is no longer available for further
processing unless a fresh copy of it is provided, that is, the classical (and intuitionistic) contraction rule:

A ⊗ A � B

A � B
(Contraction)

is not valid. Given the general failure of contraction, the logic we are concerned with belongs to the family of substructural
logics [17,13,4,12,15,1,16], but departs from it for the important fact that (4), which is valid in all known substructural
logics, is not valid in general.

As customary, we can identify an expression A1 ⊗· · ·⊗ An , when occurring on the left of �, with the multiset [A1, . . . , An]
and often represent such multisets by simply listing their elements (in an arbitrary order). Then, the monotonicity of ⊗ can
be expressed by
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Γ � A � � B

Γ,� � A ⊗ B
(8)

where the comma in the antecedent of a sequent expression represents multiset union. This is a valid inference rule in
all known contraction-free logics (when ⊗ is interpreted as “multiplicative” conjunction), but in the present approach its
unrestricted validity is dropped in favour of the following controlled version:

Γ � A � � B

Γ,� � A ⊗ B
provided that ∀Λ ∈ S,Λ� Γ ∪ � (9)

where ⊆ is multiset inclusion, ∪ is multiset union and S is a set of multisets, called control set, representing the known
multisets of formulas whose inclusion in the input multiset has the effect of preventing the derivation of A from Γ or the
derivation of B from �.

The role played by the control set is somewhat analogous to the role played by the background knowledge in a typical
defeasible rule of the kind investigated in the field of Default Logic [14]. From this point of view, our approach can be
seen as a practical way of introducing a default mechanism to control the monotonicity of a resource-sensitive conjunction
operator.2

It is important to notice that, in most practical applications, the negative information stored in the control set is not fixed
once and for all, but is open to accommodate empirical results, to the effect that proofs are not definitive, but may loose
their validity depending on changes in the composition of the control sets which are dictated by empirical research. In this
perspective, suitable extensions of this kind of formalism can be useful to represent the dynamics of empirical knowledge
especially in areas — like molecular biology and empirical economics — in which the massive and continuous growth of
data is not (yet) matched by the emergence of lawlike generalisations.

An unrestricted version of (8), on the other hand, can be obtained by assuming that the contexts Γ and � do not interact,
which can be expressed by enclosing them in brackets:

Γ � A � � B

(Γ ), (�) � A ⊗ B
. (10)

A straightforward consequence of the use of such unrestricted rules with separation of contexts is that the ⊗ operator is
not associative, a fact that connects our formalism to the class of logical calculi with non-associative conjunction [7,11,6].

The idea of using a contraction-free logic as the primary inference device in modelling molecular biology has been
recently explored in [3], where hybrid connectives are integrated into the proof-theoretical machinery of Intuitionistic Linear
Logic to deal with constraints that may restrict, depending on the application, the validity of a linear proof. In connection
with molecular biology, this approach allows for effectively representing temporal and stochastic constraints that yield an
adequate encoding of the synchronous stochastic π calculus. While our approach shares the same heuristic idea — using
some conservative extension of Linear Logic to model constrained transitions — it focuses on the constraints associated
with context-sensitive transitions, which are accounted for by means of control sets rather than hybrid connectives. It
appears that the two approaches explore complementary aspects of complex transitions — context-sensitivity on the one
hand, and temporal and probabilistic constraints on the other — that may be interestingly integrated in some unifying
framework. Moreover, following the spirit of Linear Logic, we provide a theory of proof-nets [9,10] for context-sensitive
interactions. Proof-nets constitute a graph-theoretical representation of sequent derivations which ignore trivial differences
between proofs (for instance, when rules are applied in a different order). What is important to emphasise is that our
proof-net formalism deals with proper axioms representing background empirical knowledge, and allows for managing this
extra-logical information by means of linear logic links. The advantage of dealing with these geometric objects consists
in expressing the sophisticated machinery of controlled monotonicity in a compact way, so as to facilitate the study of
applications outside the field of proof-theory. The brief discussion of enzymatic inhibition is just a simple example of such
potential applications.

The paper is organised as follows. In Section 1 we introduce the calculus of Context-Sensitive Interactions (CSI). Then,
we provide an easy example of deduction describing a generic case of concurrent enzyme inhibition. In Section 2, we
describe the proof-net formalism and prove that it is complete with respect to the sequent calculus. (We stress, however,
that proof-nets are conceptually independent of the sequent calculus used to construct them.) Finally, in Section 3, some
research issues and further developments are briefly discussed.

2. Language and sequent calculus

Henceforth, we will refer to our Logic of Context-Sensitive Interactions with the abbreviation CSI.

2 Of course, the non-monotonic behaviour of some biochemical reactions is not a new topic in formal biology. For instance, in [5] a system is considered
in which proteins are subject to two kinds of transformations: complexation (proteins bind to each other) and decomplexation (two proteins unbind in order
to bind again in a new way). This latter transformation implies a form non-monotonic causality since the number of links may decrease during a formal
reaction. In a different way, our calculus takes into account the specific non-monotonicity related to concurrent inhibition phenomena which does not
imply any kind of non-monotonic causality.
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Fig. 1. The tree-structure of the context C = (A, (C, D, (E)U)T, B)S .

Definition 1 (Formulas). CSI-formulas are inductively defined as follows:

• set of atoms A = {a,b, c, . . .},
• bonding language F� ::= A | F� � F� ,
• logical language F ::= F� | F ⊗ F .

Technically speaking, the bonding operator � is not a logical connective, since the CSI sequent calculus does not en-
compass any logical rule for introducing it. In fact, � is a connective that expresses the existence of some extralogical
interaction (e.g., a biochemical interaction) between objects of the types specified by the operands that yields a new object
of some other type. Under this interpretation, a proposition such as, for instance, (A ⊗ B) � (C ⊗ D) would be meaningless,
and this is why the formulas of the bonding language cannot contain any operator other than �. In this sense the set of
the logically atomic formulas is given by F� .

Definition 2 (Control sets). By control set we mean a finite set {Γ1, . . . ,Γn} of finite multisets of formulas such that, for all
1 � i � n, Γi ⊂ F� . The empty set ∅ is a control set. Control sets are denoted by Gothic capital letters S,T,U and so on.

Definition 3 (Contexts, subcontexts, supports). Precontexts are rooted trees recursively defined as follows:

• every element of F is a precontext,
• if T1, . . . , Tn are precontexts, then (T1, . . . , Tn) is a precontext.

Let us say that a precontext is proper when it is not an element of F . A CSI-context C is an ordered pair 〈T , f 〉 such that T
is a proper precontext and f a function which assigns a control set to each node of T other than its leaves.

The subcontexts of a CSI-context C = 〈T , f 〉 are the CSI-contexts C′ = 〈T ′, f ′〉 such that T ′ is a subtree of T and f ′ is
the function obtained by restricting the domain of f to the non-leaf nodes of T ′ . We use the notation C[D] to mean that
D occurs as a subcontext of C .

The support of C , denoted by |C|, is the multiset of the formulas labelling the leaves of C .

Contexts are written by stressing the usual compact notation through nested parentheses. In order to represent the
additional information afforded by the function f , right parentheses come indexed with a control set.

Remark 1. Loosely speaking, a CSI-context is nothing but a rooted tree having its leaves single-labelled with a formula from
F and the other nodes double-labelled with both a precontext and a control set. It is worth noting that the unrestricted
tree structure of sequents allows us to generalise the usual approach to logical non-associativity based on binary trees [7,6].
Moreover, as we will see later, the monotonicity of derivations is specifically regulated by the information injected into
precontexts by the function f .

Definition 4 (Immediately acting formulas). An occurrence of a formula A is said to be immediately acting in a context C
if it labels a leaf of C which is directly connected to the root. For any context C , the multiset imac(C) gathers all the
immediately acting occurrences of formulas in C .

Example 1. The tree structure of the context C = (A, (C, D, (E)U)T, B)S is displayed in Fig. 1. (C, D, (E)U)T and (E)U are
the subcontexts of C . In order to exemplify the notion of immediately acting formula, let’s notice that imac(C) = [A, B].

For any A ∈ F , A� denotes the multiset of the logically atomic formulas occurring in A. The �-operation can be straight-
forwardly extended to any multiset of formulas Γ as follows: Γ � = ⋃

A∈Γ A� .
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Table 1
Inference schemata.

Axiom:
ax.

(A)∅ � A

Cut-rules:

C[(C1, . . . ,Cn, A)S] � B D � A
surgical cut

C′[(C1, . . . ,Cn,D)S] � B

C[(C1, . . . ,Cn, A)S] � B (D1, . . . ,Dm)T � A
deep cut†

C′[(C1, . . . ,Cn,D1, . . . ,Dm)S∪T] � B

(†) provided that (imac(C1 . . . ,Cn,D1, . . . ,Dm))� ‖S∪T

Structural rules:

C[(D1, . . . ,Dn,H,K)S] � A ×change
C′[(D1, . . . ,Dn,K,H)S] � A

Multiplicative conjunctions:

C[(D1, . . . ,Dn, A, B)S] � C ⊗LC′[(D1, . . . ,Dn, A ⊗ B)S] � C

C � A D � B ⊗R
(C,D)∅ � A ⊗ B

(C1, . . . ,Cn)S � A (D1, . . . ,Dm)T � B
deep-⊗‡

R(C1, . . . ,Cn,D1, . . . ,Dm)S∪T � A ⊗ B

(‡) provided that (imac(C1 . . . , Cn,D1, . . . ,Dm))� ‖ S∪T

Table 2
Proper axioms.

Axioms of type σ : Axioms of type ρ:

σi
(E ⊗ F )Si � E � F

ρi
(E � F )Ri � E ⊗ F

Definition 5 (Compatibility). A multiset of formulas � is said to be compatible with a control set S = {Γ1, . . . ,Γn} — in
symbols, � ‖S — if, for all Γi ∈ S, Γi ��� .

Definition 6 (Monotonicity soundness). A context C is said to be monotonically sound in case that, for any subcontext D of C ,
(imac(D)) ‖ T where T is the control set attached to the root of D.

Definition 7 (Sequents, related notions). A CSI-sequent is an ordered pair 〈C, A〉 such that C is a CSI context and A ∈ F .
Following the usual logical notation, a sequent 〈C, A〉 will be henceforth written as C � A. Formulas in |C| are the premises
of the sequent, whereas A is the conclusion.

Definition 8 (Proofs). A CSI-proof is a sequence of CSI-sequents such that each sequent is derivable from the sequents
appearing earlier in the sequence by means of the rules displayed in Table 1 and of the proper axioms displayed in Table 2.

Remark 2. It is easy to check that CSI, stripped from the proper axioms and the rules of surgical cut and ⊗R , corresponds
to MLLpol , the multiplicative fragment of the polarised Linear Logic [10].
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Fig. 2. Tensor combinatorics on trees.

Fig. 3. Cut combinatorics on trees.

Figs. 2 and 3 illustrate the basic combinatorics on contexts respectively induced by the two right tensor rules (⊗R and
deep-⊗R) and the two cut rules (surgical and deep).

Whereas the ⊗-connective expresses a sort of proto-conjunction, the operator � indicates that a proto-conjunction has
been, so to speak, activated by virtue of certain (non-logical) conditions. Of course, the word “activated” changes its meaning
according to the specific empirical context under focus. The need for distinguishing these two operators becomes apparent
when one considers that ⊗ is only a multiset-constructor, that may combine occurrences of arbitrary formulas and has the
same meaning as the comma in the antecedent of a sequent, while � expresses the fact that two objects of specified types
interact to generate a new object.

Together with the familiar inference schemata, the deductive apparatus of CSI comes equipped with a set of proper ax-
ioms encoding the information acquired in the specific empirical context we are concerned with. Unlike inference schemata
which provide a general pattern of inference, proper axioms refer to specific types. In order to have a better grasp of CSI
proper axioms, let’s consider the specific empirical context afforded by biochemistry. Suppose that for a certain i ∈ N the
axiom σi expresses the fact that two molecules of hydrogen bind so as to form the compound H2:

σi .
(H ⊗ H)Si � H � H

The axiom σi does not mean that, for any type A ∈ F , A ⊗ A � A � A: it just says that, for the specific type H , we have
empirical evidence allowing us to state that H ⊗ H � H � H . Being our empirical information finite, CSI proper axioms are
conceived as finite in number. Proper axioms are partitioned into two classes: the set of σ -axioms {σ1, . . . , σn} and the set of
ρ-axioms {ρ1, . . . , ρm}. Whereas σ -axioms regulate the “activation” of proto-conjunctions, ρ-axioms symmetrically manage
the reverse process of “deactivation”. As far as biochemical applications are concerned, reactions are standardly classified
as synthesis, decomposition, single and double replacement. The CSI-calculus is able to formally reproduce these reactions
only in a partial way in so far as σ - and ρ-axioms are meant to represent synthesis and decomposition, respectively. In
order to recover the whole class of biochemical reactions, the set of CSI proper axioms must be completed by a third class
of axioms, say ε , shaped as follows:

εi .
(E ⊗ F ) � G ⊗ H
Ei
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Notice that the logical results here proved for CSI can be easily extended so as to cover the enriched calculus including
ε-axioms.

Example 2. A case of non-monotonic interaction is given by the extremely important mechanisms concerning the concurrent
enzyme inhibition. Let us indicate by E the enzyme under consideration, by I the inhibitor and by S its substratum, that is
the molecule that should bind the enzyme. In such a case, it is expected to have at disposal, among the set of biochemical
axioms, a specific σ -axiom

σi
(E ⊗ S){[I],...} � E � S

introducing the control set Si = {[I], . . .}. In order to provide an example of a CSI deduction, we report below a proof of
the sequent ((E ⊗ S){{I},...}, (I)∅)∅ � (E � S) ⊗ I:

ax.
(E)∅ � E

ax.
(S)∅ � S

deep-⊗R
(E, S)∅ � E ⊗ S

σi
(E ⊗ S){[I],...} � E � S

deep-cut
(E, S){[I],...} � E � S

ax.
(I)∅ � I ⊗R

((E, S){[I],...}, (I)∅)∅ � (E � S) ⊗ I ⊗L
((E ⊗ S){[I],...}, (I)∅)∅ � (E � S) ⊗ I

Let’s notice that (E ⊗ S, I){[I],...} � (E � S) ⊗ I is not a CSI-theorem because any derivation leading to this sequent would be
unable to pass the checkpoint imposed by the control set Si .

3. Proof-nets: the natural deduction for CSI

Let us start this section by remarking that there are essentially two ways of guaranteeing the monotonicity soundness
along CSI derivations. One way consists in performing a check on contexts which parallels, critical step by critical step,
the construction of proofs. This approach is followed when providing the CSI sequent calculus with the two metalogical
conditions indicated in Table 1 with (†) and (‡). Another way consists in requiring the monotonicity soundness of the
context to be checked just in the final sequent of the proof. In this way, logical correctness and monotonicity soundness
turn out to be fully disentangled. Whereas, the first solution should be preferred in the traditional framework of sequent
calculus, we will opt for the second alternative when dealing with CSI proof-nets.

The syntax of CSI proof-nets is defined by the set of links displayed in Fig. 4. Following the standard terminology, for
any link 
, incident edges are called the premises of 
, whereas emergent edges are the conclusions of 
. At the level of
sequent calculus, the distinction between input types and output types is clearly established by the very structure of the
sequent. Passing from sequential proofs to deductions in term of nets, such a distinction needs to be recovered by attaching
a polarity to formulas: negative formulas represent the inputs, whereas positive formulas are the outputs. A formal definition
is provided below. Edges labelled with positive (resp. negative) formulas are called positive (resp. negative). Notice that, in
the graph-theoretical setting we are proposing, control sets are taken into account by attaching them to positive edges.

Definition 9 (Polarised formulas). CSI-formulas can be partitioned into positive and negative as follows:

• positive formulas:
– set of positive atoms F+� = {A+ | A ∈ F�},
– F+ ::= F+� | F+ ⊗ F+;

• negative formulas:
– set of negative atoms F−� = {A− | A ∈ F�},
– F− ::= F−� | F− ⊗ F− .

Definition 10 (Proof-structure). A proof-structure is an oriented graph built over the set of links displayed in Fig. 4, which
does not contain oriented cycles.

Proof-structures will be denoted by Π,Π0,Π1, . . . . For any proof-structure Π , emergent negative (resp. positive) edges
which are the premises of no link represent the inputs (resp. the outputs) of Π .

For the sake of clarity, proof-structures will be drawn by satisfying a sort of “gravity condition” according to which neg-
ative edges are always “lighter” than positive ones, that is, we will always draw positive (resp. negative) edges downwardly
(resp. upwardly) oriented.

We indicate with CSI− and CSI= the two subsystems of CSI obtained, respectively, by removing the deep-cut rule from
CSI and by removing the ⊗R rule from CSI− .

We will provide, at first, a theory of proof-nets limited to the fragment CSI− . The difficulty of defining an homogeneous
treatment for the whole class of CSI proof-nets lies in the fact that, in spite of their different combinatorial behaviour, the
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Fig. 4. The set of CSI links.

two cut links, surgical and deep, are identical from a syntactical point of view. Nonetheless, we will sketch in a final remark
how to slightly modify our theory in order to encompass the deep-cut link.

Definition 11 (Splitting links). Given a proof-structure Π , a link 
 ∈ Π is said to be splitting when its premises come from
two disconnected proof-structures.

Definition 12 (Proof-nets). A CSI− proof-structure Π is a proof-net only in case that:

• Π has exactly one output,
• each cut or positive ⊗-link in Π is splitting.

Remark 3. Notice that only positive ⊗-links are required to be splitting in a proof-net. This point appears to be clearly
motivated when we recall that the positive ⊗-link corresponds to the ⊗R-rule in CSI sequent calculus whose combinatorial
mechanism is just to connect two trees by merging the root of one with a leaf of the other. Thus, any CSI− proof-net can
be seen as a tree in which each node is either a splitting link or a CSI= proof-net.

Definition 13 (Cut-decomposition). The cut-decomposition of a certain proof-net Π is given by the set of proof-nets
Π0, . . . ,Πn obtained from Π by disconnecting all the n cut links occurring in Π . We assume that a cut-decomposition
comes with information enough for allowing an unambiguous recomposition of the former net.

Theorem 1 (Context-extraction). The following instructions provide an algorithm for turning any CSI− proof-net Π into a context CΠ .

• Consider the cut-decomposition Π0, . . . ,Πn of Π . For each Πi occurring in the sequence compute CΠi as follows:
1. for each positive deep-⊗ link, contract its premises;
2. contract all the edges directly connecting two negative ⊗-links;
3. rewrite the resulting net through the contraction rule �cnt (see Fig. 5) until the net is no longer rewritable;
4. “close” all the input edges of the net with a terminal node labelled with the type of the incident edge stripped from its polarity;
5. remove all the polarised types labelling the edges;
6. for each positive edge, shift the attached control set to the above node from which it emerges;
7. contract the output edge.

• Compute the context CΠ through the recomposition of all the contexts CΠ0 , . . . ,CΠn . Such a recomposition is intended to be
performed by stressing in the obvious way (i) the information gathered during the cut-decomposition and (ii) the instructions
suggested by the sequent calculus.

Proof. It is easy to verify that our procedure reduces any CSI= proof-net Π to a fan-like tree CΠ where the inputs of Π

label the leaves and the root is labelled by the union of all the control sets appearing in Π . This fact together with Remark 3
straightforwardly leads to the claim of our theorem. �

We write π : C � A to denote a sequential proof π ending with the sequent C � A.
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Fig. 5. Associativity of the negative ⊗-link.

Fig. 6. Context-extraction procedure at work.

Theorem 2 (Soundness). Any CSI− sequential proof π : C � A can be recursively turned into a monotonically sound proof-net Π

having the output labelled with A+ and such that CΠ = C .

Proof. The proof can be easily achieved by induction on the length of the proof π . We consider here only the trickiest case
in which the proof π is obtained by lengthening π ′ through a ⊗L-rule:

π ′
...

C[(D1, . . . ,Dn, A, B)S] � C ⊗L.
C′[(D1, . . . ,Dn, A ⊗ B)S] � C

In terms of nets, Π is obtained from Π ′ by connecting the two inputs labelled with A− and B− by means of a negative
⊗-link. Since Π ′ has exactly one output, the last inserted link will form a new cycle. By induction hypothesis we know
that Π ′ is a proof-net such that CΠ ′ = C[(D1, . . . ,Dn, A, B)S] so the new-formed cycle will not involve any cut or positive
⊗-link, otherwise the leaves A and B would not emerge, in CΠ ′ , by the same node. Moreover, it is easy to check that CΠ

differs from CΠ ′ just in making the two leaves A and B coincide. In this way, the monotonicity soundness turns out to be
trivially preserved. �
Example 3. In Fig. 6, it is shown how to extract the context CΠ from the proof-net Π by stressing Theorem 1.
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Theorem 3 (Completeness). Any CSI− proof-net Π having the output edge labelled with A+ can be turned into a monotonically sound
sequential proof π : CΠ � A.

Proof. The proof consists in providing a recursive procedure for “sequentialising” any monotonically sound proof-net Π

yielding the output A+ into a proof π : CΠ � A. According to Remark 3, the algorithm proceeds modularly by sequentialising,
at first, each of the proof-nets belonging to the cut-decomposition of Π . The sequentialisation for a cut-free CSI proof-net Πi
is an easy task for CΠi immediately provides the sequential structure (quotiented under the associativity of the connectives
⊗L and deep-⊗R) of the proof πi . Once we have at disposal the sequence of proofs π0, . . . ,πn , the entire derivation π
can be “composed” by connecting the sub-proofs in the sequence according to the information gathered while performing
the cut-decomposition. Notice that the monotonicity soundness does not raise any special difficulty, for the proof π is built
over a context which is, by hypothesis, monotonically sound. �
Remark 4 (CSI proof-nets). The theory of proof-nets provided in this section for the fragment CSI− can be slightly modified
in order to encompass the deep-cut link, and so the whole deductive apparatus of CSI. As far as logical correctness is
concerned, it is sufficient to update Definition 12 through the following additional requirement:

• the oriented graph obtained from Π by reversing the orientation of all the positive edges is acyclic [10].

Indeed, CSI proof-nets without surgical cuts and positive ⊗-links geometrically behave as MLLpol proof-nets. The mono-
tonicity soundness of a proof-net Π can be easily checked by turning it into a sequential proof. Note that, in this case,
the sequentialisation procedure just consists in the trivial combination of the above-provided algorithm for CSI− proof-nets
with the well-established procedure for MLLpol proof-nets [10].

4. Future work

This paper is a first attempt to address the problem of controlled monotonicity from a proof-theoretical and a graph-
theoretical points of view. Its main aim is to illustrate the general control mechanism in a basic logical setting that can be
extended in a variety of ways. A natural extension consists in increasing the expressivity of the underlying logical language
to include suitable conditional and negation operators. Others crucially depend on the application context. For example, in
biochemical applications more realistic logical models may require, as suggested in [2], to shift from standard formulas to
labelled formulas as basic units of the contexts. By “labelled formulas” we mean expressions of the form A : α, B : β, C : γ
where α,β,γ are labelling strings, specifying the values of suitable parameters related to any kind of additional information
concerning the entities to which the formulas refer.3 This idea has been recently investigated in some detail in [3] using
Hybrid Linear Logic and an interesting line of research could be that of combining this approach with the one put forward
in the present paper to deal with context-sensitive reactions.

On a more technical side, many proof-theoretical questions are opened, for example the search for a logical setting
without non-associativity decorations so that the non-associative structure of processes can be taken into account by the
tree-structure of proofs. On this view, the monotonicity soundness of derivation could be controlled through the well-
established machinery of proof-nets and empires. A further step is to achieve a multiconclusion system not limited to the
minimal sequents.

Finally, as concerns the cut elimination theorem, it is clear that it fails for sequent calculi with proper axioms. Neverthe-
less, the question of the eliminability of cut remains for a calculus with controlled monotonicity using logical axioms only,
and will be addressed in a future work.
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