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Abstract

The recent observational data in cosmology seem to indicate that the universe

is currently expanding in an accelerated way. This unexpected conclusion can

be explained assuming the presence of a non-vanishing yet extremely �ne tuned

cosmological constant, or invoking the existence of an exotic source of energy, dark

energy, which is not observed in laboratory experiments yet seems to dominate

the energy budget of the Universe. On the other hand, it may be that these

observations are just signalling the fact that Einstein's General Relativity is not

the correct description of gravity when we consider distances of the order of the

present horizon of the universe.

In order to study if the latter explanation is correct, we have to formulate new

theories of the gravitational interaction, and see if they admit cosmological solu-

tions which �t the observational data in a satisfactory way. A necessary condition

for the viability of a theory of �modi�ed gravity� is that it has to reproduce to

high precision the results of General Relativity in experimental setups where the

latter is well tested. Quite in general, modifying General Relativity introduces new

degrees of freedom, which are responsible for the di�erent large distance behav-

ior. For a modi�ed gravity theory to be phenomenologically viable, it is necessary

that the extra degrees of freedom are e�ciently screened on terrestrial and astro-

physical scales. One of the known mechanisms which can screen the extra degrees

of freedom is known as the Vainshtein mechanism, which involves derivative self-

interaction terms for these degrees of freedom.

In this thesis, we consider a class of nonlinear massive gravity theories known as

dGRT Massive Gravity. These theories are candidates as viable models to modify

gravity at very large distances, and, apart from the mass, they contain two free pa-
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Abstract iv

rameters. We investigate the e�ectiveness of the Vainshtein screening mechanism

in this class of theories. There are two branches of static and spherically symmetric

solutions, and we consider only the branch in which the Vainshtein mechanism can

occur. We truncate the analysis to scales below the gravitational Compton wave-

length, and consider the weak field limit for the gravitational potentials, while

keeping all non-linearities of the mode which is involved in the screening. We

determine analytically the number and properties of local solutions which exist

asymptotically on large scales, and of local (inner) solutions which exist on small

scales. We analyze in detail in which cases the solutions match in an intermediate

region. Asymptotically �at solutions connect only to inner con�gurations display-

ing the Vainshtein mechanism, while non asymptotically �at solutions can connect

both with inner solutions which display the Vainshtein mechanism, or with solu-

tions which display a self-shielding behaviour of the gravitational �eld. We show

furthermore that there are some regions in the parameter space where global so-

lutions do not exist, and characterise precisely in which regions of the phase space

the Vainshtein mechanism takes place.
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Conventions

Unless explicitly said, throughout this thesis we will use the following conventions:

For metric signature, connection, covariant derivative, curvature tensors and

Lie derivative we follow the conventions of Misner, Thorne and Wheeler [1]. Ex-

plicitly, the metric signature is the �mostly plus� one

ηAB = diag(−1,+1, . . . ,+1) (0.1)

so for example a spacelike unit vector n has positive norm (nAn
A = +1). In a

metric manifold with metric g we will always use the unique symmetric connection

compatible with the metric (Levi-Civita connection). The sign convention for the

covariant derivative associated to the connection is

∇A V B = ∂AV
B + ΓBALV

L ∇A ωB = ∂A ωB − ΓMAB ωM (0.2)

and the Riemann curvature tensor is de�ned as

RA
BMN = ∂MΓANB − ∂NΓAMB + ΓAMLΓLNB − ΓANLΓLMB (0.3)

while the Ricci curvature tensor is de�ned as

RMN = RL
MLN = ∂LΓLMN − ∂NΓLML + ΓSSLΓLMN − ΓSNLΓLSM (0.4)

The sign convention for the Einstein equation is

RMN −
1

2
RgMN = +

8πG

c4
TMN (0.5)

The convention for the Lie derivative of a tensor TMAB along a vector �eld V N is(
LVT

)M
AB

= V L∂L T
M
AB − (∂LV

M)TLAB + (∂AV
L)TMLB + (∂BV

L)TMAL (0.6)
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Conventions xi

When dealing with models with one or two spatial extra dimensions, 6D indices

are denoted by capital letters, so run from 0 to 5; 5D indices are denoted by latin

letters, and run from 0 to 4, while 4D indices are denoted by greek letters and run

from 0 to 3.

We define symmetrization and antisymmetrization without normalization

A(M |···|N) ≡ AM ···N + AN ···M A[M |···|N ] ≡ AM ···N − AN ···M (0.7)

and we indicate the trace of a rank (1,1) or (0,2) tensor by tr, so

trDM
N = DL

L trAMN = gMN AMN (0.8)

As for notation, abstract tensors are indicated with bold-face letters, while

quantities which have more than one component but are not tensors (such as

coordinates for example) are expressed in an abstract way replacing every index

with a dot. For example, the sextet of coordinates XA are indicated in abstract

form as X ·, the quintet of coordinates ξa are indicated in abstract form as ξ·, and

the quartet of coordinates xµ are indicated in abstract form as x·.

When studying perturbations, the symbol ' indicates usually that an equality

holds at linear order.

We use throughout the text the (Einstein) convention of implicit summation

on repeated indices, and we will use unit of measure where the speed of light has

unitary value c = 1. The reduced 4D Planck mass is de�ned asMP = (8πG)−1/2 ∼
2.43× 1018GeV.



Abbreviations

Throughout this thesis we will use the following abbreviations:

GR: General Relativity

CDM: Cold Dark Matter

4D, 5D, 6D, . . . : four dimensional, �ve dimensional, six dimensional, . . .

FP: Fierz-Pauli

BD: Boulware-Deser
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Chapter 1

Introduction

The universe displays a stunning variety of physical objects and phenomena. The

(almost) empty and cold intergalactic space, the region around a black hole and

a planet placed in one of the arms of a spiral galaxy are very di�erent for aver-

age density, temperature and strength of the gravitational �eld, and bear little

resemblance one to the other. The study of these objects and their properties is

without doubt very interesting and important. However, from the point of view of

a cosmologist, the questions that one would like to answer are more related to how

these objects formed, how long ago this happened and what will happen to them

in the future. More in general, one would like to understand if the universe itself,

seen as a whole physical system, has always existed or not, how old is it in the

latter case, and what will its �nal fate be. To be able to answer these questions,

one should know what are the laws that govern its evolution and be able to solve

the equations of motion. However, since we are not able to handle the complexity

of a system as big and complicated as the universe, we are almost forced to tackle

the problem trying to �nd a very simpli�ed model, which still grasps the essence of

the phenomena under study but is simple enough to be handled mathematically.

As we shall see, this is made possible by the assumption (corroborated by the

observations) that the universe is homogeneous and isotropic on very large scales.

This approach has proved to be very fruitful, and has led to the so called standard

cosmological model, where many observed phenomena like the redshifts of distant

objects, the existence and spectrum of the Cosmic Microwave Background radia-

1



1.1 The Homogeneous and Isotropic Universe 2

tion (CMB), the relative abundance and the nucleosynthesis of light elements �nd

a natural explanation.

1.1 The Homogeneous and Isotropic Universe

Despite the huge variety of physical con�gurations mentioned above (even if we

concentrate just on mass, the density within a galaxy is tipically 105 larger that the

average density of the universe [2]), observing the universe at various length scales

suggests that an averaged description on very large scales may be the simpli�ed

description we are looking for. In fact, once chosen a direction in the sky and

averaged the observations over a solid angle of �xed opening ϑ, it can be seen that

progressively increasing the value of ϑ leads to a result which is independent of the

direction we choose. In other words, on large scales the observable universe seems

to be (spatially) highly isotropic around us. This is suggested by the number count

of galaxies we see in the sky, but is also con�rmed by the counting of radio sources

we can detect, by the observations of X- and γ-ray backgrounds, and expecially

by the striking smoothness (δT/T . 10−5) of the Cosmic Microwave Background

(to be discussed later) [2].

To be able to build a model of the universe, however, it is not enough to know

how it looks like from our planet: we need more information, namely we need to

know how the universe would look like from other positions as well. Since we cannot

achieve that in practice, we have to make some assumptions: it is natural to assume

that we don't occupy a special position in the universe (Copernican Principle),

and therefore that the universe itself would look isotropic (in an averaged sense

as previously mentioned) also when seen from every other point. This condition

implies that, on large scales, we can describe the observable universe as being

spatially homogeneous1 and isotropic. Being impossible to prove it directly, this

assumption has to be veri�ed a posteriori comparing the predictions of the model

we would obtain with the observations: it is indeed very well con�rmed by several

di�erent kinds of observations.

In describing the dynamics of the universe as a whole, we rely heavily on the

1It can be seen that isotropy from every point implies homogeneity [3].



1.1 The Homogeneous and Isotropic Universe 3

knowledge we have of physical phenomena on earth and in the solar system. It

is in fact natural to start from the laws which we know describe well physics on

energies/length scales we can study on and around our planet (in a lab, or with

high precision measurements in the solar system), and extrapolate their validity

to arbitrary large scales. We are of course not granted that this is the correct

thing to do, since new degrees of freedom or even new dynamical laws may show

up as we increase the length scales and the complexity of the system under study.

On the other hand, it is a very reasonable guess to start with. We will therefore

assume that the correct framework to use to model the universe is the one o�ered

by Einstein's General Relativity (GR) [4], which is currently thought to describe

correctly the gravitational interaction (up to very high energies), and that gravity

is the only interaction responsible for the large scale structure of the universe.

To be precise, we will consider an extension of the original theory, proposed by

Einstein [5], where the cosmological constant is explicitly present in the equations

of motion.

In this framework, gravity is seen as a geometrical e�ect, and the geometrical

properties of the universe are encoded in the metric tensor g. The curvature of

the universe is sourced by the energy-momentum tensor of matter �elds T, and is

determined by the Einstein equations2

G + Λg = 8πGT (1.1)

where G is the Newton constant, Λ is the so called cosmological constant and

G is the Einstein tensor. The large scale homogeneity and isotropy suggests to

�approximate� the exact manifold (M ,g) which describes our universe with a

homogeneous and isotropic manifold. We suppose then that (M ,g) is locally

di�eomorphic to a homogeneous and isotropic manifold (M̄ , ḡ), where ḡ is the

metric on M̄ , and that (in a sense to be formalized later) they are very similar

when we focus only on very large scales. We indicate with φ the di�eomorphism

which relate the two manifolds

φ : M̄ →M (1.2)

2We use units of measure where the speed of light c is one.



1.1 The Homogeneous and Isotropic Universe 4

We expect that the homogeneous and isotropic metric ḡ encodes the fundamental

informations on the large scale geometry of the real universe, despite having (due

to the high symmetry) fewer degrees of freedom compared to g. The idea is to start

from the Einstein equations for g, and obtain a set of equations for ḡ which can be

thought of describing the large scale dynamics of the real universe. This description

turns out to be mathematically tractable, and very insightful. Furthermore, this

approach allows us to approximately disentangle the large scale behavior of the

universe from the dynamics of small scale structures which form inside it.

1.1.1 The Robertson-Walker metric

The condition of spatial homogeneity and isotropy is in fact highly stringent, and

amounts to ask that there exist a class of observers (comoving observers) whose

trajectories �ll the universe, and to each of whom the universe appears spatially

isotropic at every time. This implies that there is a natural 3+1 splitting of the

spacetime M̄ , and more precisely that M̄ can be foliated in three-dimensional

spatial hypersurfaces Σt, parametrised by a timelike coordinate t, which are three-

dimensional spaces of constant curvature. It can be shown that it is always possible

to choose a coordinates system on M̄ such that the line element locally takes the

form

ds2 = −dt2 + A2(t)

[
dR2

1−KR2
+R2

(
dθ2 + sin2θ dφ2

)]
(1.3)

where θ and φ are angular coordinates (therefore dimensionless), R is a (dimen-

sionful) radial coordinate, A is a dimensionless function of t andK is a real number

which is proportional to the 3-dimensional curvature of the surfaces Σt. In this

system of reference the comoving observes are at rest, and therefore the reference

system itself is called the comoving reference. Note that in the cases K > 0 and

K < 0 we can rede�ne the radial coordinate as

R→ r =
√
KR K > 0 (1.4)

R→ r =
√
−KR K < 0 (1.5)

and absorb the resulting multiplicative constant in A(t) as

a(t) ≡ A(t)√
|K|

(1.6)



1.1 The Homogeneous and Isotropic Universe 5

which means that all the K > 0 cases are equivalent, and the same holds for the

K < 0 cases. There are therefore only three distinct physical cases, K > 0, K = 0

and K < 0: with the above mentioned coordinate rede�nitions we arrive at the

line element

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2θ dφ2

)]
(1.7)

where k can take on the values +1, 0 and −1. In the case k = +1 the spatial

curvature is positive and the spatial hypersurfaces Σt are locally isomorphic to 3-

spheres, while in the case k = 0 the spatial curvature is vanishing and the spatial

hypersurfaces are locally isomorphic to a 3D �at Euclidean space. Finally, in

the case k = −1 the spatial curvature is negative and the spatial hypersurfaces

are locally isomorphic to 3D hyperboloids. If we assume that the isomorphism is

global, then the universe is called closed in the case k = +1 (and r is de�ned for

0 ≤ r < 1), �at in the case k = 0 (0 ≤ r < +∞) and open in the case k = −1

(0 ≤ r < +∞). Note that now the coordinate r is dimensionless while a(t) is

dimensionful. It is useful sometimes to single out the part of the metric which is

independent of the timelike coordinate t (usually termed cosmic time) and de�ne

spatial metric the three-dimensional metric γij such that the Robertson-Walker

line element takes the form

ds2 = −dt2 + a2(t) γij(x) dxidxj

This metric de�nes a notion of distance on the three-dimensional hypersurfaces:

taken any two points P1 and P2 on the same Σt, the distance calculated using γij is

called comoving distance of the two points, and is indicated with dC(P1, P2). The

spatial distance between P1 and P2 which is e�ectively measured is the one cal-

culated using the full metric gij: it is called (instantaneous) physical distance and

is related to the comoving distance via the relation dF (P1, P2) = a(t) dC(P1, P2).

Note furthermore that rede�ning the time coordinate in the following way

η(t) ≡
∫ t dξ

a(ξ)
(1.8)

it is possible to factorize the dependence on the function a and put the metric

above in the form

ds2 = a2(η)
(
− dη2 + γij(x) dxidxj

)
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The time coordinate η de�ned in this way is called conformal time. A yet di�erent

way to write the line element (1.7) is obtained rede�ning the radial coordinate in

order to have the radial-radial component of the metric independent of k: the line

element reads in this coordinate system

ds2 = −dt2 + a2(t)

[
dχ2 + S 2

k (χ)
(
dθ2 + sin2θ dφ2

)]
(1.9)

where

Sk(χ)


= sin(χ) k = +1

= χ k = 0

= sinh(χ) k = −1

(1.10)

We can see that the requirement of homogeneity and isotropy drastically re-

duces the number of degrees of freedom: once speci�ed the geometry of the spatial

hypersurfaces (i.e. speci�ed if k = 0, k = 1 or k = −1), the metric has just one

degrees of freedom, the scale factor a(t), which depends on just one of the four

spacetime coordinates. The evolution of the universe is then constrained by the

condition of homogeneity and isotropy to be just a uniform expansion/contraction

of the three-dimensional spacelike hypersurfaces, encoded in the evolution of the

scale factor. Its dynamics is determined by appropriate equations that are to

be derived from the exact Einstein equations using the hypothesis of large scale

homogeneity and isotropy.

1.1.2 Perfect �uids

The source term of the dynamical equations for the scale factor will involve (as we

will see later) a spatial averaging procedure on the exact energy-momentum tensor

of the universe. It is therefore important to understand what are the implications

of spatial homogeneity and isotropy for the source term of Einstein equations.

Let us consider in general a tensor �eld T̄ of type (1, 1) de�ned on M̄ and let's

impose the condition of homogeneity and isotropy on T̄: this implies that, in the

comoving reference, the tensor is of the form

T̄ ν
µ (t, ~x) = diag

(
− ρ(t), p(t), p(t), p(t)

)
(1.11)
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or equivalently, lowering one index,

T̄00 = ρ T̄0i = 0 T̄ij = p gij (1.12)

where ρ and p are functions of the cosmic time t only. Note that this is true for

every (homogeneous and isotropic) tensor of type (1,1), so ρ and p are completely

arbitrary functions: the condition of homogeneity and isotropy does not tell any-

thing about the time evolution of p and ρ and if they are independent one from

the other or not. If we identify T̄ with the stress energy tensor, then this infor-

mation is encoded in the continuity equation (which is implied by the equations

of motion), and in the microscopic description of the system.

There is a well known class of physical systems which is described by an energy-

momentum tensor of this form: perfect �uids. A �uid living in a Minkowski space-

time is said to be perfect if, whatever its four-velocity pro�le uµ(x), the heat

conduction is always absent and there are no shear stresses (i.e. its viscosity is

zero). Therefore (apart from its velocity pro�le) a perfect �uid is characterised by

only two macroscopic quantities, its rest frame energy density ρ(x) and pressure

p(x): this implies that its energy momentum tensor is of the form

T µν =
(
ρ+ p

)
uµuν + p ηµν (1.13)

where ρ, p and uµ in general depend on all the four coordinates xµ. It follows that a

perfect �uid living in a curved spacetime has a (lowered indices) energy-momentum

tensor of the form

Tµν(x) =
(
ρ(x) + p(x)

)
uµ(x)uν(x) + p(x) gµν(x) (1.14)

Considering now equation (1.12), we can see that an homogeneous and isotropic

�uid always behaves as a perfect �uid which is at rest in the comoving reference and

whose energy density and pressure are constant on the spatial hypersurfaces Σt. If

we relax the assumption of homogeneity and isotropy, it is not necessarily true that

we can describe the matter-energy content of the universe as a (inhomogeneous and

anisotropic) perfect �uid with nontrivial velocity pro�le, because heat conduction

and viscosity may play a role. However, it turns out to be very fruitful to model

the energy-matter content of the universe as a collection of perfect �uids, so it is

worthwhile to spend some more words on it.
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There are many physical systems that can be macroscopically described as

�uids. Their (di�erent) microscopic structure shows up at macroscopic level via

relations, which are called equations of state, that link together the thermody-

namical parameters of the �uid. A particular importance in cosmology is given to

perfect �uids which are characterised by the very simple equation of state p = wρ,

where w is a constant. Among this class of �uids, there are three special cases

which deserve a more detailed discussion: the cases w = 0, w = 1/3 and w = −1 .

The case w = 0 is suitable to describe a gas of nonrelativistic particles, in other

words particles whose kinetic energy is negligible compared to their rest energy,

and can be used for example to describe the matter which constitutes galaxies.

The case w = 1/3 instead is suitable to describe a gas of ultrarelativistic particles,

that is particles whose rest energy is negligible with respect to their kinetic en-

ergy, such as neutrinos. Note that also a system like the electromagnetic �eld can

be described as a perfect �uid with the equation of state p = (1/3)ρ: this follows

from the well known fact that the energy-momentum tensor of the electromagnetic

�eld is traceless, and is consistent with the idea that we may see the electromag-

netic �eld as a collection of photons (which are by de�nition ultrarelativistic being

massless). Finally, the case w = −1 can be used to describe the so-called vacuum

energy. Quantum Field Theory suggests that also the vacuum state (that is, a

con�guration devoid of particles) possesses a nonzero energy (which is actually

divergent unless we put a cuto� to the theory): the contribution of a quantum

�eld to the classical energy-momentum tensor is expected to be the expectation

value 〈0 | T̂ µν | 0〉 on the vacuum state | 0〉. On �at space, the requirement that

the quantum theory and likewise the vacuum state are invariant with respect to

Lorentz transformations imply that the above mentioned expectation value has

the form 〈0 | T̂µν |0〉 ∝ ηµν : it follows that on curved spacetime

〈0 | T̂µν |0〉 ∝ gµν (1.15)

We can conclude that vacuum energy can be treated as a perfect �uid with the

equation of state p(x) = −ρ(x) . Note that the cosmological constant term in

equation (1.1) is precisely of the form above. The cosmological constant in fact

can be alternatively thought of as a second characteristic energy/length scale of

the gravitational �eld (beside G) which show up only at ultra large scales, or from
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another point of view can be thought of as describing the e�ect of vacuum energy

of quantum �elds in the cosmological context. From the latter point of view, it is

more logical to consider it as a source term, and move the cosmological constant

term to the right hand side of the Einstein equations de�ning

T (Λ)
µν = − Λ

8πG
gµν (1.16)

This energy-momentum tensor is characterised by a pressure p = −Λ/8πG and

an energy density ρ = Λ/8πG. In the following we adopt this point of view and

include the contribution of a (possibly nonzero) cosmological constant in the total

energy-momentum tensor: we don't constrain a priori the sign of Λ and allow it

to have positive or negative value.

1.2 The Friedmann-Robertson-Walker model

Before deriving the equations that govern the evolution of the scale factor, it is

useful to specify how the large scale spatial homogeneity and isotropy is expressed

in our formalism. Using the di�eomorphism φ which maps the reference manifold

(M̄ , ḡ) into the manifold (M ,g) which describes the �real� universe (or at least

its observable part), we can pull-back the exact metric g obtaining the metric

φ?(g) which is de�ned on M̄ . We can de�ne now the deviation from spatial

homogeneity and isotropy as the di�erence of the two metrics on M̄ , which in

comoving coordinates reads as

hµν(t, ~x) =
(
φ?(g)

)
µν

(t, ~x)− ḡµν(t, ~x) (1.17)

where t is the cosmic time and ~x indicates the spatial coordinates on the spacelike

hypersurfaces Σt. Note that since homogeneity and isotropy provide a natural

way of splitting space and time on M̄ (which is explicitly realized in the comoving

reference), it makes sense to talk about operations which involve just the spatial

coordinates. The tensor hµν(x) is not a perturbation and does not need to be

small, actually it can be huge: the condition of large scale spatial homogeneity

and isotropy is translated in the fact that hµν(x) gives approximately a vanishing

contribution to the Einstein tensor when the latter is averaged on spatial volumes
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V large enough to render the homogeneity apparent (to be quantitative, spheres

with diameter bigger than3 100 Mpc [2]). To be more precise, let's indicate with

Ĝ the operator which associates to any metric the Einstein tensor built with the

metric itself, and for every point ~x on Σt let's consider a large enough volume V (~x)

centered around it. The large scale spatial homogeneity and isotropy at a �xed

time t is expressed by the fact that, performing some spatial average over V (~x)

of the pull-back of the �real� Einstein tensor, one gets approximately the Einstein

tensor built with the homogeneous and isotropic metric

〈
[
φ?
(
Ĝ(g)

)]
00
〉V (~x) '

(
Ĝ(ḡ)

)
00

(t, ~x) (1.18)

〈tr
[
φ?
(
Ĝ(g)

)]
ij
〉V (~x) ' tr

(
Ĝ(ḡ)

)
ij

(t, ~x) (1.19)

Here tr[ ]ij stands for the trace over spatial components. Imposing that the large

scale homogeneity and isotropy holds at every t, amounts to ask that the equations

above hold at every t. This implicitly de�nes the time evolution of the scale factor:

to obtain it, we should calculate the evolution of the full metric and then take the

spatial average at every time. However, this is not doable in practice, and we

would like to obtain some dynamical (di�erential) equations for the scale factor

itself. Therefore, we consider the equations(
Ĝ(ḡ)

)
00

(t, ~x) = 8πG 〈
(
φ?(T)

)
00
〉V (~x) (1.20)

tr
(
Ĝ(ḡ)

)
ij

(t, ~x) = 8πG 〈tr
(
φ?(T)

)
ij
〉V (~x) (1.21)

which are written in terms of the scale factor, its derivatives and the averaged

energy-momentum tensor. Note that these equations are not exactly compatible

with the validity of (1.18)-(1.19) at every time: if we start at time ti with a scale

factor which satis�es (1.18)-(1.19), its time evolution according to (1.20)-(1.21)

will not exactly satisfy (1.18)-(1.19) at subsequent times. In other words, the time

evolution of the complete metric (including deviations from from homogeneity and

isotropy) does not commute with the operation of spatial averaging. The actual

di�erence depends on the explicit form of the real metric as well as the details

of the spatial averaging procedure. We decide to neglect this di�erence for the

3One megaparsec (Mpc) is approximately 3.1× 1019 km.
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moment, therefore studying the evolution of the scale factor according to (1.20)-

(1.21), leaving the possibility to study the e�ect of this approximation later.

1.2.1 The Friedmann equations

We de�ne T̄µν(t, ~x) as the homogeneous and isotropic tensor (therefore of the form

(1.12)) whose nonzero components are obtained by spatial averaging the pullback

of the real energy-momentum tensor

T̄00(t, ~x) ≡ 〈
(
φ?(T)

)
00
〉V (~x) (1.22)

tr T̄ij(t, ~x) ≡ 〈tr
(
φ?(T)

)
ij
〉V (~x) (1.23)

Note that we can then write the equations (1.20)-(1.21) in a more familiar way as(
Ĝ(ḡ)

)
µν

= 8πG T̄µν (1.24)

since, out of the 10 components of this equation, just two of them are linearly

independent due to the high symmetry of the system. Taking a suitable linear

combination of these two equations one gets the Friedmann equations

( ȧ
a

)2

=
8πG

3
ρ− k

a2
(1.25)

ä

a
= −4πG

3
(ρ+ 3p) (1.26)

and it is customary to refer to the �rst one simply as the Friedmann equation,

and to the second one as the acceleration equation4. Note that these two equation

imply the continuity equation

ρ̇ = −3
ȧ

a
(ρ+ p) (1.27)

which actually expresses the fact that energy is conserved and can be obtained

from ∇µT̄ µν = 0 . It is customary to de�ne the Hubble parameter

H(t) ≡ ȧ(t)

a(t)
(1.28)

4We indicate derivatives with respect to the cosmic time with an overdot ȧ ≡ da/dt.
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and the deceleration parameter

q(t) ≡ −a(t)ä(t)

ȧ2(t)
(1.29)

which are independent of the overall normalization of the scale factor. The Hubble

parameter has the dimension of inverse time, and its value today H0 can be taken

to be a rough measure of the inverse of the age of the universe, as we shall see. It

is also useful to de�ne the critical density of the universe ρcrit ≡ 3H2/ 8πG (which

is a time dependent quantity) and the density parameter Ω ≡ ρ/ρcrit : using these

two quantities, the Friedmann equation reads as

Ω(t) − 1 =
k

a2(t)H2(t)
(1.30)

and it is easy to see that the sign of k is determined by the fact that ρ is larger,

smaller or equal to the critical density. In fact we have

ρ < ρcrit ⇔ k < 0

ρ = ρcrit ⇔ k = 0

ρ > ρcrit ⇔ k > 0

and this implies that the total value of the density of energy (relatively to the the

square of the Hubble parameter) is directly linked to the spatial geometry of the

universe.

To study the evolution of the scale factor, we should solve equations (1.25)-

(1.26) with appropriate initial conditions. This system of di�erential equations is

however not closed, since there are two equations and three unknowns (a, ρ and p):

to be able to solve it, we need an additional equation, such as one which tells us

how the average pressure p of the universe is related to the average energy density ρ

and to the scale factor a. If we knew the precise distribution and thermodynamic

properties of all matter in the universe, we may construct an equation of state

p = p(ρ, a) which expresses the �global� thermodynamic properties of the universe.

In practice, we model the matter/energy content of the universe as the sum of few

contributions whose thermodynamic properties are simple and easy to handle. In

fact, we consider a model in which the universe is �lled with three components,
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which are nonrelativistic matter (which from now on will be simply called �mat-

ter�), radiation (which comprises also ultrarelativistic matter) and vacuum energy.

As said previously, all these components are perfect �uids which obey the simple

equation of state p = wρ with w respectively equal to 0, 1/3 and −1. Note that

the evolution of the scale factor in�uences di�erently the energy density of every

component since the continuity equation implies that

ρ(t) ∝ a−3(1+w)(t) (1.31)

In particular, for matter the energy density scales as a−3, i.e. inversely proportional

to the spatial volume, while for radiation we have ρ ∝ a−4, which is consistent with

idea that a dilatation/contraction of the spatial volume in�uences both the number

density and the wavelength of photons. Instead, the dilatation/contraction of the

spatial volume does not in�uence the energy density of the vacuum. It follows

that, in order to determine the evolution of scale factor and therefore the history

of the universe, it is essential to know not only the overall energy density, but also

the relative abundances of the three di�erent components.

Note that, once we specify the composition of the universe thereby �xing its

equations of state, in principle to solve the system (1.25)-(1.26) we need the initial

conditions5 a0, ȧ0, k, ρ
M
0 , ρR0 , ρ

Λ
0 . However, the overall value of the scale factor is

not physically observable, so to �nd H(t), ρM(t), ρR(t) and ρΛ(t) it is enough to

know H0, k, ρ
M
0 , ρR0 , ρ

Λ
0 . A nice way to parametrize the initial conditions for the

Friedmann equations, and therefore to parametrize the cosmological models, is to

introduce separate density parameters for every component type of perfect �uid

which composes the energy-momentum tensor: we de�ne

ΩM(t) ≡ 8πG

3

ρM

H2
, ΩR(t) ≡ 8πG

3

ρR

H2
, ΩΛ(t) ≡ 8πG

3

ρΛ

H2
(1.32)

It is also useful to incorporate the dependence on the sign of the spatial curvature

in another density parameter, which however does not come from an energy density

and is therefore only a way of keep track of spatial curvature: we de�ne

ΩK(t) ≡ − k

a2H2
(1.33)

5We indicate with the pedix 0 the quantities evaluated today.
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In term of these cosmological parameters the Friedmann equations take the sug-

gestive form

1 = ΩM(t) + ΩR(t) + ΩΛ(t) + ΩK(t) (1.34)

q(t) =
1

2
ΩM(t) + ΩR(t)− ΩΛ(t) (1.35)

1.2.2 Generic observational features

The Friedmann-Robertson-Walker model, provided with information about the

composition of the universe, gives very distinctive observational features. These

features are indeed observed in the real universe and provide a strong support in

favor of the assumptions we made and on the validity of the model.

Kinematic in a Robertson-Walker spacetime

Let us study the (free) motion of test particles in a Friedmann-Robertson-Walker

universe. In General Relativity free test particles move along geodesics (timelike

geodesics for massive particles and null geodesics for massless particles), and it is

always possible to parametrize the trajectory of a particle xµ(λ) so that its tangent

vector vµ(λ) = dxµ/dλ satis�es the geodesic equation

D

dλ
vµ(λ) =

dvµ(λ)

dλ
+ Γµαβ(x(λ)) vα(λ) vβ(λ) = 0

where the parameter λ is called a�ne parameter, and Γµαβ are the connection

coe�cients relative to the only symmetric connection compatible with the metric.

There are two useful quantities which are conserved along the geodesics: the �rst

is the squared module of the tangent vector

gµν(x(λ)) vµ(λ) vν(λ) (1.36)

which is conserved in every spacetime, and the second is the quantity

Bµν(x(λ)) vµ(λ) vν(λ) (1.37)

whose conservation is instead characteristic of the Robertson-Walker spacetime.

The tensor Bµν is de�ned (in comoving coordinates) as

Bµν(x) = a2(t)
(
gµν(x) + UµUν

)
(1.38)
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where Uµ = (1, 0, 0, 0) is the four-velocity �eld of the comoving observers, and

satis�es

∇(σBµν)(x) = 0 (1.39)

where ∇ is the covariant derivative associated to the metric, while the round

parenthesis mean symmetrization over all the indices.

Let's consider massive particles: in this case it is useful to use the proper time

of the particle as the a�ne parameter, so that the tangent vector to the trajectory

is the actual four-velocity of the particle vµ(λ) and the conserved quantity (1.36)

takes the value

gµν(x(λ)) vµ(λ) vν(λ) = −1 (1.40)

We call peculiar velocity the spatial part vi of the four-velocity expressed in the

comoving reference. This name is motivated by the fact that vi is the �excess� (spa-

tial) velocity of the test particle compared to the comoving observers' one (which

is zero in the comoving reference). Indicating |~v|2 ≡ gijv
ivj, the conservation of

the quantity (1.37) implies

|~v|(t) ∝ 1

a(t)

This implies that, if the scale factor is increasing (and so the universe is expand-

ing), the peculiar velocity of a particle is destined to kinematically decrease and

eventually die o�, while a gas of particles in thermal equilibrium will get cooler

and cooler. The opposite would happen if the universe is contracting. For massless

particles, the concept of proper time cannot be de�ned and we parametrize the

tangent vector kµ(λ) using a generic a�ne parameter λ. In this case the conserved

quantity (1.36) reads

gµν(x(λ)) kµ(λ) kν(λ) = 0 (1.41)

and the conservation of the quantity (1.37) implies

k0(t) ∝ 1

a(t)

We conclude that, if the universe expands, the energy of a massless particles kine-

matically decreases, while it increases if the universe is contracting.
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The cosmological redshift

Consider a photon (a light ray in practice) which is emitted in the comoving

reference at cosmic time ti with frequency ωi: since the frequency is proportional

to k0, the frequency for the same photon observed in the same reference at time

tf is

ω(tf ) =
a(ti)

a(tf )
ω(ti)

The expansion/contraction of the universe therefore determines an overall shift in

the frequency of the electromagnetic radiation between its emission (for example

by a galaxy) and its detection (for example by a telescope). This is not due to the

peculiar motion of the particle, but just to expansion/contraction of the universe:

the received frequency is lower than the emitted one if the universe expands, while

it is higher if the universe contracts. The quantity used to express a generic

frequency shift is the redshift z de�ned as z ≡ λf−λi
λi

, where λ is the wavelength of

the radiation: the redshift due to the cosmological expansion is called cosmological

redshift and reads

z =
a(tf )

a(ti)
− 1

In general a frequency shift can be due to di�erent e�ects, for example it can be due

to the relative motion between emitter and observer (Doppler e�ect): we expect

the total redshift to include also a Doppler component due to peculiar velocities.

Therefore, the Friedmann-Robertson-Walker model implies that if the universe is

expanding we should observe that the radiation coming from most of the celestial

bodies is redshifted, and going to higher redshifts we should observe less or none

contributions from the (conventional) Doppler e�ect. We instead expect to observe

to opposite if the universe is contracting. Experimentally, the observations are in

extremely good agreement with the predictions of an expanding Robertson-Walker

universe.

The Hubble's law

In an expanding Robertson-Walker universe one expects that the further away

from us an object is, the more redshifted it appears to us. Roughly speaking, this

is due to the fact that the more distant an object is, the more time it takes for
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its radiation to reach us: therefore, the cosmological redshift is bigger. However,

to be precise we have to re�ne this argument, since the concept of distance is not

so well de�ned in cosmology: in fact, to measure the physical distance dF de�ned

above we should perform an instantaneous measurement, while the only thing we

can do in cosmology is to study the light signals which reach us after travelling

throughout the universe. Therefore we de�ne the luminosity distance of a light

source

d2
L ≡

L

4πF
(1.42)

where L is the absolute luminosity of the source and F is the energy �ux measured

by the observer. This de�nition is motivated by the fact that, in a Minkowski

spacetime, the �ux of incoming light is the ratio between the intrinsic luminosity

and the surface area of a sphere of radius dF , where dF is the (instantaneous) spatial

distance between the emitter and the observer: this is just a consequence of energy

conservation. Therefore in a Minkowski spacetime the luminosity distance and the

instantaneous spatial distance are coincident. While in the Minkowski spacetime

the cosmological redshift is by de�nition vanishing, we expect that in an expanding

universe there is a relation between the luminosity distance of an object dL(z) and

its (cosmological) redshift, and we expect that the bigger the distance the bigger

the redshift.

Let's consider for simplicity the case of a spatially �at universe. As we will

see in section (1.3), the luminosity distance of an object of redshift z and whose

comoving distance from us in the coordinate system (1.9) is χ can be expressed as

dL = a0χ(1 + z) (1.43)

where a0 is the value of the scale factor today (when the radiation is received).

However, the comoving distance χ itself is determined by the redshift: χ is linked

to ∆t = t0 − te by the conservation of the quantity (1.41) which implies

χ =

∫ t0

te

dt

a(t)
(1.44)

and therefore

χ = a−1
0

[
∆t+

1

2
H0 ∆t2 +O

(
∆t3
)]

(1.45)
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On the other hand, ∆t is linked to z by the Friedmann equation: by Taylor

expanding a(t) around t = t0 we have

1

1 + z
=
ae
a0

= 1−H0 ∆t− 1

2
q0H

2
0 ∆t2 +O

(
∆t3
)

(1.46)

and inverting this relation and inserting in (1.45) we arrive at

χ =
1

a0H0

(
z +

1

2
(1− q0)z2 +O(z3)

)
(1.47)

Using this expression in (1.43) one �nally gets

dL = H−1
0

(
z +

1

2
(1− q0)z2 +O(z3)

)
(1.48)

We notice that, when the redshift is small, the luminosity distance-redshift rela-

tionship is linear

dL = H−1
0 z (1.49)

This relation is known as Hubble's Law, and is indeed con�rmed by observations:

the geometrical explanation of the distance-redshift relation is one of the major

successes of the Standard Cosmological Model. Notice furthermore that measure-

ments of luminosity distances and redshifts of many objects in a suitable range

of redshifts allows us to estimate both the present value of the Hubble parameter

and the present value of the acceleration parameter.

Horizons

A fundamental concept in Cosmology is the one of horizon. Since interactions

cannot propagate faster than light, which would violate causality, it is important

to know if the physical con�gurations at two di�erent spacetime points had the

possibility to in�uence each other, or if they are causally disconnected. This is

crucial in cosmology since, as we will argue in the next section, the universe may

not be in�nitely old, and therefore we cannot assume that every spatial point ~x

has been able to communicate via light signals with any other spatial point ~x′

during the entire cosmic history. Taken an event labelled by the coordinates (~x, t),

we de�ne particle horizon of the event the surface which divides the part of the

universe with which the event had been able to communicate with light signals
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since the birth of the universe (i.e.with which the event is in causal contact), from

the rest of the universe. In a Friedmann-Robertson-Walker spacetime, the horizon

of an event (~x, t) is (by symmetry reasons) a 3-sphere, whose physical radius is

the physical distance travelled by the light since the birth of the universe till t.

Considering for simplicity the case of a spatially �at universe, the trajectory of a

light ray propagating radially obeys −
(
dt
dλ

)2
+ a2

(
dr
dλ

)2
= 0 , and if we assign t = 0

as the time of the birth of the universe we have that the physical radius of the

particle horizon is

dH(t) = a(t)

t∫
0

dt′
1

a(t′)
(1.50)

If the universe if radiation- or matter-dominated we have respectively dH(t) = 2t =

H−1(t) e dH(t) = 3t = 2H−1(t) : in this cases the inverse of the Hubble parameter

�xes the scale of the causal horizon.

Another information (related to causality) which is very useful to know is if,

during a time interval [t1, t2], the (instantaneous) physical distance between two

spatial points has grown more or less than the distance travelled by the light in

that time interval. Light has travelled a equal or bigger distance if

dF (t2)− dF (t1) ≤ a(t2)

t2∫
t1

dt′
1

a(t′)

and, in the limit t2 → t1 = t where the time interval becomes in�nitesimal, we get

dF (t) ≤ H−1(t) (1.51)

We say that a physical distance dF (t) is inside the horizon at the time t if dF (t) ≤
H−1(t), while we say it is outside the horizon if dF (t) > H−1(t). It follows that, if

the physical distance between two particles is outside the horizon in a time interval

[t1, t2], then these two particles did not have the possibility to communicate via

light signals during that time interval, or more realistically no physical process had

the possibility to correlate the physical states of the two particles during [t1, t2].

This concept turns out to be very useful when studying cosmological perturba-

tions, since the time evolution of Fourier modes of the perturbations evolve in a
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qualitatively di�erent way according to whether the physical length scale associ-

ated to the wavevector is inside or outside the horizon. Considering the Fourier

transform of a quantity δ(t, ~x) with respect to the comoving coordinates ~x

δ(t, ~x) =

∫
dk3 δ(t,~k) ei

~k·~x (1.52)

where the vector ~k is the comoving wavevector of the mode δ(t,~k), while the

physical wavevector at time t is de�ned as ~kF (t) = ~k/a(t). Correspondingly, the

physical length scale corresponding to ~k is

λF (t) =
2πa(t)

k
=

2π

kF (t)
(1.53)

where k ≡ ‖~k‖ is the wavenumber. Therefore the mode δ(t,~k) is said to be inside

the horizon if
k

2πa(t)
> H(t) (1.54)

while is said to be outside the horizon if

k

2πa(t)
< H(t) (1.55)

1.2.3 The Hot Big Bang cosmology

As we shall discuss in detail later on, the cosmological observations have reached

a degree of precision which enables us to characterise precisely the values of the

cosmological parameters, and therefore determine the composition of our universe.

In fact, the observations tell us that

H0 ' 70 km/s/Mpc ΩM0 ' 0.3 ΩR0 ' 10−4 ΩΛ0 ' 0.7 ΩK0 ' 0

We will discuss in the next section the implications of these results in relation to

our understanding of the universe. For the time being, we just want to use our

knowledge about the composition of the universe to study qualitatively the past

evolution of the universe and point out the main prediction and successes of the

Standard Cosmological Model.
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Qualitative evolution of the scale factor

The information about the composition of the universe summed up above implies

that the energy density is positive de�nite: this means that the scale factor is a

monotonically increasing function of cosmic time. Note that, as already mentioned,

the densities of the di�erent components of our universe scale di�erently with the

scale factor, and more precisely we have

ΩΛ

ΩM

∝
( a
a0

)3

,
ΩM

ΩR

∝ a

a0

(1.56)

Therefore, apart from the transition periods when the energy density of two (or

in principle several) components are comparable, one of the components is always

much bigger than the others, and so e�ectively dominating the total energy density.

It is then useful to solve approximately the equations for the scale factor neglecting

the energy density of the components which are not dominating, and to patch

together these solutions at the transition times. We will say that the universe

is matter dominated when ΩΛ, ΩR and ΩK are negligible with respect to ΩM ,

and analogous de�nitions hold for radiation dominated, curvature dominated and

vacuum dominated universe. Under this approximation, we can explicitly solve

the Friedmann and continuity equations for the di�erent domination cases, and

for example for a spatially �at universe we obtain

radiation ρ ∝ a−4 a(t) ∝ t1/2 H(t) =
1

2
t−1 (1.57)

matter ρ ∝ a−3 a(t) ∝ t2/3 H(t) =
2

3
t−1 (1.58)

vacuum ρ = cost a(t) ∝ eHt H(t) = cost (1.59)

The observations then tell us that the universe was radiation dominated in

the past, then at redshift z = zeq ∼ 3 × 103 it became matter dominated, and it

has (just) passed the transition between matter and vacuum domination, which

happened at z ∼ 0.3. Note furthermore that the pressure of matter and radiation

is non-negative, while a positive energy vacuum has negative pressure: the second

Friedmann equation tells us that the second derivative of the scale factor has been

negative in the past till z ∼ 0.7, and is now positive (equivalently, the deceleration
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parameter q was positive in the past and is now negative). Therefore, the universe

has been expanding in a decelerated way until very recently, and is now expanding

in an accelerated way.

Following the evolution of the scale factor backwards in time, the universe seems

to approach a singular state, since a→ 0, ρ→ +∞ and the curvature of spacetime

diverges: this singularity is usually called Big Bang. Note that the Big Bang is a

�ctitious singularity, in the sense that we do not expect General Relativity to be

a reliable description of gravity and of the geometry of spacetime when curvature

and energy are so high. We expect in fact GR to be the e�ective theory of a

quantum theory of gravity, whose details are not clear yet, and that at least at

energies higher than the Planck energy Epl ' 1.2 × 1019 GeV we cannot make

reliable calculations without taking into account the quantum aspects of gravity.

Nonetheless, it is useful to �x the origin of time assigning the value t = 0 to the

�ctitious singularity: with this convention, if we assume that quantum gravity

e�ects are under control for energies below the Planck energy, then the Standard

Cosmological Model describes our universe for t ≥ tpl , where tpl = 10−43 s is the

Planck time. Even if we don't know what happens before the Planck time, we may

think that in some sense the Big Bang actually marks the birth of our universe.

From this point of view, we can use the Friedmann equations to estimate the age

of our universe. We can get an upper limit to this value extrapolating linearly

the evolution of the scale factor back in time (since ȧ(t) is negative for most of

time in the past, the actual age will be lower): this procedure gives the value

H−1
0 , which corresponds roughly to 1010 years. A more careful treatment using the

actual solutions of the Friedmann equations shows that this rough estimate gives

the correct timescale for the age of the universe.

The Cosmic Microwave Background

From the study of the kinematics of particles and radiation in a Robertson-Walker

universe, we expect that a gas of particles which is now at a temperature T0

becomes hotter and hotter as we go back in time, and that photons belonging to

the cosmological backgrounds we see today were more and more energetic. This

implies that, going enough back in time, we reach a time tdec when the photons are
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energetic enough to ionize the atoms: before that time, the universe was forcefully

made by a sea of ions (nuclei) and electrons coupled to photons. Reversing this

argument and now going forward in time starting from t < tdec, when tdec is reached

the photons decouple from the electrons, and go on propagating in the universe

with their energy redshifting as 1/a(t) because of the cosmological redshift. Since

before decoupling the electrons and photons were in thermodynamic equilibrium

at every point in space, the photons had a Planck spectrum which should remain

untouched apart the overall redshift which make the temperature of the spectrum

decrease. Therefore, if this model is correct we should observe a cosmological

background radiation with nearly perfect Planckian spectrum at some very low

temperature: such a radiation at a temperature T ' 2.73K has indeed been

observed by Penzias and Wilson in 1967 [6] and successively studied in detail by

several missions including the Wilkinson Microwave Anisotropy Probe (WMAP)

and the ongoing mission PLANCK. This radiation is usually called the Cosmic

Microwave Background (CMB): the prediction of its existence is one of the major

successes of the Standard Cosmological Model, and is nowadays one of the most

powerful tools in understanding our universe.

Deviations from homogeneity and isotropy

So far we have dealt mainly with the homogeneous and isotropic approximation

of the universe, however for the model to be really successfull it should also qual-

itatively explain why and how there are (huge) deviations from homogeneity and

isotropy on smaller scales. It is for example essential to understand if these struc-

tures were present also in the far past or has formed during the universe evolution,

and to identify the mechanism responsible for their formation. The CMB gives

unvaluable indications in this sense. In fact, the photons at the decoupling had

a Planck spectrum which however may have had a di�erent peak temperature

at di�erent places in space: the presence of any structure should have been re-

�ected in local variations of the temperature of the Planckian spectrum, which

should have been remained imprinted in the CMB we see today (apart from being

overall redshifted). In fact the CMB is not perfectly uniform, but is incredibly

smooth: relative variations of temperature at di�erent directions in the sky are
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as small as δT/T ' 10−5. This fact tells us that the structures we see nowadays

were not present at decoupling, but there were very small density perturbations.

In other words, the deviations from homogeneity and isotropy were small at all

scales at the decoupling. This suggests the following general picture: small den-

sity perturbations which were already present at decoupling grew because of their

self-gravity and eventually formed the huge inhomogeneities we observe nowadays

via gravitational instability. This picture also justi�es a posteriori the choice to

study the evolution of the universe singling out an �homogeneous and isotropic�

evolution from the exact evolution.

The formation of structures

Since the deviations from homogeneity and isotropy were small on all scales, we

can safely study their evolution at �rst order in perturbations. There are two

di�erent kinds of perturbations: adiabatic perturbations, which are perturbations

in the total energy density, and isocurvature perturbations, where the total energy

density is not modi�ed but the ratio between the densities of di�erent species is

perturbed. The study of the spectrum of temperature anisotropies in the CMB

reveals that isocurvature perturbation, if present, were very suppressed compared

to adiabatic perturbations, so we consider only the latter ones in what follows.

Performing a Fourier decomposition, qualitatively we can distinguish between su-

perhorizon modes and subhorizon modes: to study the former modes one needs

to use the relativistic equations, while for the latter modes one can safely use the

Newtonian equations. The Newtonian analysis reveal that the stability properties

of subhorizon perturbations is in�uenced by two di�erent e�ects: the gravitational

attraction, which favors the growth of perturbations, and the pressure due to the

photons, which obstacolate it. As a result, there is a characteristic wavenumber,

the (comoving) Jeans wavenumber kJ , which discriminate between perturbation

modes which are unstable and can grow (k < kJ), and modes which oscillate

acoustically and do not grow (k > kJ). Indicating with cs the sound speed6 of

perturbations and with ρ̄ the density of the homogeneous and isotropic solution

6The sound speed is de�ned as c2s = ∂p/∂ρ.
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(the unperturbed density), we have

k2
J =

4πGρ̄ a2

c2
s

(1.60)

Although the expansion rate of the universe does not in�uence the stability of a

mode, it does in�uence the growth rate of the unstable modes. It can be shown

in fact that when the universe is radiation dominated even the unstable modes

does not grow appreciably (they grow logaritmically), because the expansion of

the universe suppresses the growth of perturbations. Therefore, roughly speaking

only after the matter-radiation equality can unstable modes indeed grow [2].

Note that the Jeans wavenumber depends on the e�ective sound velocity of per-

turbations. If we assume that di�erent species of particles are present, each one

will have its own sound velocity and therefore its own Jeans scale. If we assume

that after the matter-radiation equality the matter is composed of baryonic matter

and cold dark matter (CDM, to be introduced shortly), the two Jeans scales will

be very di�erent since the baryons are still strongly coupled to the photons, while

the CDM is not. As a result, before the electron-photon decoupling the physical

Jeans length for baryons is outside the horizon, while the physical Jeans length for

density perturbations of CDM is inside the horizon; after the decoupling, instead,

the sound velocity for baryons drops abruptly, since the photons cannot provide

pressure anymore, and the Jeans length for baryons drops inside the horizon as

well. Therefore the picture is roughly the following: CDM density perturbations

start growing as soon as the universe becomes matter dominated, while density

perturbations in baryonic matter start growing ony after decoupling. After that,

their growth is �guided� by the potential wells created by CDM density perturba-

tions and their amplitude soon reach the same amplitude of the latter ones, and

then the pertubations in the two species grow together [2].

When the amplitude of the perturbations ceases to be very small, the analysis

above is not accurate enough since we should take into account nonlinear e�ects.

Roughly speaking, when a perturbation reaches the amplitude δ ' 1 it ceases to

behave as a perturbation in the expanding �uid (expanding means that it follows

the expansion of the universe), and becomes a virialized system which decouples

from the overall expansion [7]. Each separate system undergoes gravitational col-

lapse, and starts forming the high density structures we observe nowadays. This
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general picture has proved to be self-consistent and seem to link naturally the fea-

tures of the CMB with the presence of structures in the large scales homogeneous

and isotropic universe suggested by observations today. Note that the presence or

CDM is crucial in the picture, because the baryon perturbations feel the potentials

wells created by CDM perturbations and grow more rapidly then they would oth-

erwise: without CDM, they growth of baryon perturbations wouldn't have been

rapid enough to be able to form structures now.

1.3 The late time acceleration problem

The ΛCDM model

In the framework of the cosmological model we described in the previous sections,

the evolution of the scale factor and so the large scale evolution of our universe

is determined once we specify the composition of our universe and the Hubble

parameter today. However, apart from the macroscopic equation of state of the

perfect �uid components of the energy-momentum tensor, to study the thermody-

namic history of the universe and the evolution of inhomogeities it is important to

know also the details of how di�erent components interact (the interaction rates

between di�erent species, for example). It turns out to be very useful to sepa-

rate two components inside the (nonrelativistic) matter �uid: the baryonic matter

and the dark matter, which have the same macroscopic equation of state (p = wρ

with w = 0) but have very di�erent interaction properties. The former indicates

matter whose building blocks are baryons (protons and neutrons at low energy),

which is the matter we are most familiar with, and comprises all particles we have

observed in colliders so far and are nonrelativistic today (therefore, despite the

name, it comprises also electrons, which however does not contribute appreciably

to the �baryonic� mass). The latter instead is a type of matter which interacts

very weakly with all the other species via the electromagnetic, weak and strong

interactions, and shows its existence basically only through its gravitational ef-

fects. Despite the fact that there is no observed particle (yet) which has the right

properties to consistently provide a realization of dark matter (although there are

several candidates), its existence is strongly suggested by several observations. In
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fact, the presence of dark matter has �rst been proposed to explain puzzling ob-

servational features of galaxies, and (as we mentioned in the previous section) it

later turned out to be crucial in the cosmological structure formation mechanism.

Therefore, we split the matter component ΩM = ΩB+ΩC as a sum of a baryonic

matter component ΩB and a dark matter component ΩC . The dark matter is

furthermore assumed to be �cold�, which means that it was non-relativistic when

it decoupled from the thermal bath. The phenomenological model of the universe

that results from the assumptions we made so far is usually termed the ΛCDM

cosmological model: it is basically the combination of the observational evidence

for large scale homogeneity and isotropy and the laws of physics we formulated

to explain phenomena on earth and in the solar system, with the addition of cold

dark matter and a (possibly nonzero) cosmological constant. It is a remarkable

success that such a model is indeed able to account for almost all the existing

observational data in cosmology.

1.3.1 The composition of our universe

The estimation of the cosmological parameters

H0 ΩB0 ΩC0 ΩR0 ΩΛ0 ΩK0 (1.61)

is something that has to be done observationally, comparing theoretical predictions

with observations. The observational estimation of these parameters has recently

become a very active �eld of research: on one hand this is due to the fact that

the theoretical framework just described is �exible enough to account for di�erent

kinds of observations, but at the same time simple enough to permit its predictions

to be tested with precision. On the other hand, it is due to the fact that the amount

and precision of observational data has recently reached a previously undreamed-of

level. It is also a quite technical �eld, therefore we give in following just the basic

underlying ideas.

Standard candles and standard rulers

One of the most important concepts in modern observational cosmology is the

notion of standard candle and standard ruler. A standard candle is an (astrophys-
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ical) object whose absolute luminosity is precisely known, while a standard ruler

is an absolute length scale which is accurately known and which is imprinted in

one or several cosmological features. By absolute luminosity we mean the �ux of

energy (in form of light) per unit time across a sphere which closely surrounds

the emitting object, divided by the surface area of the sphere. The importance of

standard candles in cosmology lies in the fact that the observed luminosity of a

source is in�uenced both by its absolute luminosity and by the evolution history of

the Hubble parameter, so if we know the absolute luminosity we can gain informa-

tions on the evolution history. Likewise, the observed length scale corresponding

to the absolute length of a standard ruler is in�uenced by the evolution history of

the Hubble parameter, and therefore a precise knowledge of the absolute length

enables us to characterise the evolution history.

The astrophysical objects which come closer to be standard candles are Type

Ia supernovae. They are quite rare objects, since we expect to see few of them per

century in a Milky-Way-sized galaxy, but have the advantage to be very bright

(their brightness is comparable to their host galaxy's one) and so potentially ob-

servable at high redshift (z ∼ 1). This is important to test the evolution history of

the Hubble parameter, as can be seen looking at (1.48): low redshift supernovae

(z � 1) enables to estimate just the Hubble parameter today, while observing

also high redshift ones enables to estimate also the deceleration parameter. They

are however not perfect standard candles, since nearby type Ia supernovae dis-

play a scatter of about 40% in their peak brightness [8]. However, the observed

di�erences in their peak luminosities turns out to be very closely correlated with

observed di�erences in the shapes of their light curves: type Ia supernovae explo-

sions can then be considered a one-parameter family of events, and observing both

the peak brightnesses and the light curves enables to compensate for the di�erence

and standardize their peak brightness, signi�cantly reducing the scatter. In this

sense, type Ia supernovae are �standardizable candles�.

The standard ruler in cosmology is instead provided by the characteristic scale

of acoustic oscillations in the photon-baryon �uid. As we already mentioned,

before decoupling the nuclei and electrons were tightly coupled with photons: in

this regime, baryons and photons moved in unison and can be treated as a single

�uid [9]. Since the perturbations from homogeneity and isotropy were small, it is
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su�cient to work at �rst order in perturbations, and it is useful to decompose the

relative perturbation δ of the density of the baryon-photon �uid in Fourier modes

δ(η, ~x) =

∫
dk3 δ(η,~k) ei

~k·~x (1.62)

where η indicates the conformal time. For modes inside the horizon, a Newtonian

analysis su�ces and it can be shown that every mode δ(η,~k) obeys a forced and

damped harmonic oscillator equation, where the damping is due to the expansion

of the universe, the forcing to the gravitational potential, and the harmonic force

to the pressure exerted by the photons. Neglecting the damping term, the solution

to the associated homogeneous equation is approximately given by

δ(η,~k) ⊃ Ak sin(k csη) +Bk cos(k csη) (1.63)

where cs is the sound speed of the baryon-photon �uid, while for modes inside the

horizon the damping term introduces only a smooth modulation which does not

signi�cantly distort the oscillating pattern of the solution (1.63). The coe�cients

Ak and Bk are to be determined by the initial conditions, and comparison with

the CMB anisotropy spectrum tells that Ak � Bk and Bk is nearly independent of

k. Therefore we approximately have a pure oscillating contribution in the density

perturbations

δ(t,~k) ⊃ B cos(k csη) (1.64)

Focusing on a �xed mode k, this tells us that the amplitude of every mode oscillates

periodically in time. Focusing on a �xed time, on the other hand, this contribution

to the amplitudes of the modes displays a periodic oscillation in k. The acoustic

oscillations of the baryon-photon �uid therefore �x a characteristic scale in Fourier

space when the density perturbation is studied at a �xed time: this scale is set

by the physics of a tightly coupled baryon-photon plasma, which is quite well

understood, and therefore we can predict this scale with great accuracy. The

periodicity scale set by acoustic oscillations remains imprinted in both the CMB

anisotropies spectrum and in the large scale distribution of galaxies.

Observations and cosmological parameters

To understand why standard candles and standard rulers can allow us to determine

observationally the cosmological parameters, suppose to begin with that we are
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able to observe several objects which have di�erent redshifts and belong to the same

class of standard candles. From Earth, we can determine the redshift z and the �ux

of light F received from each object, but not its instantaneous physical distance.

The �ux F , apart from the absolute luminosity L which is the same for every

object by hypothesis, depends both on the comoving distance between the object

and us, and on the expansion history of the universe during the propagation of the

light signal. Since the comoving distance is determined by the redshift (neglecting

peculiar velocities), informations on the dependence F (z) allows us to probe the

expansion history and therefore the value of the cosmological parameters.

To be quantitative, we consider the (square root of the) ratio between the

absolute luminosity and the received �ux

dL =

√
L

4πF
(1.65)

which we've already encountered in section (1.2.2) and is called the luminosity

distance of the source, since in �at space is exactly equal to the physical distance.

In an expanding universe, instead, it is a function of redshift and is di�erent from

the instantaneous physical distance. The �ux of energy across a spherical surface

of comoving radius χ due to isotropic radiation can be expressed as

Fχ =
EχNχ

∆tχAχ
(1.66)

where Nχ is the number of photons (which for simplicity we assume to have the

same energy) which pass across the surface in a time ∆tχ, Aχ is the area of the

surface and Eχ is the energy of every photon. The number of photons is conserved

during the propagation, however the time it takes for N photons to pass across

the surface Aχ is higher of a factor 1 + z compared to the time it takes for them

to pass across a surface surrounding the source. Furthermore, the energy gets

redshifted of a factor 1 + z during the propagation. Therefore, the ratio between

the absolute luminosity of a source and the �ux of energy detected by an observer

whose comoving distance from the source is χ reads

L

Fχ
=
ES
Eχ

∆tχ
∆tS

N

N
Aχ = (1 + z)2Aχ (1.67)
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where ES is the energy of the photons when emitted while ∆tS is the time interval

needed for the N photons to pass across a surface which closely surrounds the

source. Since the area of a surface of comoving radius in the system of coordinates

(1.9) is Aχ = 4π a2
0 S

2
k(χ), we get

dL(z) = (1 + z) a0Sk(χ) (1.68)

The comoving radial distance χ is in turn determined by the redshift, in fact we

have

χ =

∫ tr

te

dt

a(t)
=

∫ ar

ae

da

a2H(a)
= a−1

0

∫ z

0

dζ

H(ζ)
(1.69)

where, in deriving these identities, we have changed variables twice, used the fact

that a and t are in one to one correspondence and used a/a0 = 1/(1 + z). We then

have

dL(z) = (1 + z) a0 Sk

(
1

a0

∫ z

0

dζ

H(ζ)

)
(1.70)

In the spatially �at case the a0 factors cancel out, while in the spatially curved

cases we can use the de�nition of curvature density parameter ΩK = −k/a2H2 to

get

dL(z)


= (1 + z)

∫ z

0

dζ

H(ζ)
k = 0

= (1 + z)
H−1

0√
|ΩK0|

Sk

(√
|ΩK0|

∫ z

0

H0

H(ζ)
dζ

)
k = ±1

(1.71)

Each choice of cosmological parameters gives a unique evolution history H(z):

therefore, if we know dL(z) we can characterise exactly the cosmological param-

eters, and if we have just some experimental points about dL(z) we can still put

constraints on the values of the parameters.

For standard rulers, the situation is very similar. Considering an astrophysical

object, we can never measure its real length l just observing the light which comes

from it, but we can measure the angle ϑ subtended by the object. Suppose we

can measure the angle subtended by the same length scale l at di�erent redshifts:

analogously to the case of standard candles, the angle ϑ depends on the length l as

well as from the expansion history of the universe, so informations on the depen-

dence ϑ(z) allow us to probe the expansion history of the universe and therefore
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the value of the cosmological parameters. Again, to be quantitative we consider

the ratio between the length scale l and the subtended angle ϑ

dA =
l

ϑ
(1.72)

This quantity is called the angular diameter distance, since in �at space a source of

length l whose distance from us is D, subtends an angle ϑ = l/D. In an expanding

universe, the angular diameter distance is a function of redshift and is di�erent

from the instantaneous physical distance. It turns out that the angular diameter

distance and the luminosity distance are related, in fact we have [10]

dL(z) = (1 + z)2dA(z) (1.73)

so formulas very similar to (1.71) hold also for dA(z). Therefore, if a length scale

is imprinted in some features of the universe and we are able to observe it a

di�erent redshifts (in practice, we observe the footprint of the baryon acoustic

oscillations in the large scale structure of galaxies at di�erent redshifts), we can

gain information on the evolution history of the universe and therefore on the value

of the cosmological parameters.

As we already mentioned, the �eld of observational cosmology is at present very

active. A real breakthrough came at the end of last century, when the Supernova

Search Team [11] and the Supernova Cosmology Project [12] using data on the

luminosity distance-redshift relation for type Ia supernovae indipendently provided

evidence for a nonzero cosmological constant and a negative value of q0. For this

very surprising and important result the Nobel Prize in Physics 2011 was awarded

to S. Perlmutter, B. P. Schmidt, and A. G. Riess. Using data from luminosity

distance of type Ia supernovae [13], from the large scale distribution of galaxies

[14] and from the angular spectrum of anisotropies of the CMB from the satellite

WMAP [15] it is possible to rigorously test the ΛCDM cosmological model, and the

model shows to provide a consistent �t to the data. Recently a general agreement

in the community has been reached on the values of the cosmological parameters,

providing the values [15]

h ∼ 0.702 ΩB0h
2 ∼ 0.02246 ΩC0h

2 ∼ 0.1120

ΩR0 ∼ 10−4 ΩΛ0 ∼ 0.728 ΩK0 ∼ 0 (1.74)
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where we have de�ned H0 = 100h km/s/Mpc.

1.3.2 The acceleration problem

We may conclude that the ΛCDM model is very satisfactory since it gives a consis-

tent description of all the cosmological observations up to date. Note that, as we

already mentioned, the observed values of the cosmological parameters (1.74) imply

that the universe is at present vacuum dominated, and it is expanding in an accel-

erated way q0 < 0. A closer look to (1.74), on the other hand, gives a somewhat

strange feeling. It seems in fact that 70% of the energy density in the universe is in

the form of a mysterious component with negative pressure, a property which we

never observe in particle colliders and in earth-based labs experiments. Also, the

elusive dark matter hasn't been observed in colliders yet, but nevertheless seems

to be the dominant component of nonrelativistic matter and in fact signi�cantly

more abundant that the �normal� baryonic matter (ΩDM ∼ 6.5 ΩB). Instead of

con�rming the picture we had about how nature works, and enriching it with new

details, the recent cosmological observations suggest a radically di�erent picture.

This, although unexpected, is not a priori wrong or worrying, and we may just

accept it as an observational evidence.

However, if we are to accept a radically new picture of how nature works, we

would like to understand it both from the phenomenological and the fundamental

point of view. The problem is that we don't understand at a fundamental level

why the ΛCDM model should be correct. As we said, we haven't yet observed

directly the particles which should constitute the dark matter. More importantly,

the observed value of the cosmological constant ΩΛ 6= 0, ΩΛ ∼ ΩM is actually very

puzzling and di�cult to understand, as we will see soon. It is therefore reasonable

to wonder if instead some of the assumptions at the core of the ΛCDM model are

maybe not correct, and if we are maybe misinterpreting the observational data.

It is in fact possible that gravity is not described by GR at very large scales, or

that there exist new degrees of freedom (or even new laws of nature!) which show

up only when we increase enormously the length scales and the complexity of the

system under study. Or it may be that the Copernican principle is not really valid

(which however would be puzzling from a philosophical point of view). If one or
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several of this things are true, then the conclusion that Λ is nonzero maybe ill

based. It seems indeed worth exploring these other routes, before concluding that

the picture of the universe drawn by the ΛCDM model is reliable.

The cosmological constant problem

The invariance with respect to general coordinate transformations and the energy

conservation, which are at the heart of the formulation of GR, allow the addition of

a term Λ gµν to the (1915) Einstein equations [4] which does not alter the structure

of the theory, as �rst recognized by Einstein himself [5]. Although we are not forced

to keep such a term, since we don't observe its e�ects in the solar system or on

earth, it is not obvious that we should set it to zero either: it may in fact describe

a second characteristic constant of the gravitational force [16]. A nonzero value of

Λ introduces into the theory a length scale

rΛ ∼

√
1

|Λ|
(1.75)

above which the cosmological constant term would strongly a�ect the spacetime:

the gravitational interaction would then be characterised by two parameters, one

which describes the strength of the interaction (Newton's constant G) and one

which describe its large scale behavior (Λ). There is however a problem, coming

from the fact that cosmological observations imply that today ΩΛ0 ∼ ΩM0 . The

energy density of matter and vacuum scale very di�erently with the scale factor

ρΛ/ρM = a3, so the time when these densities are comparable is a very special and

rare one in the history of the universe: for most of the time, vacuum energy is either

dominating or negligible compared to matter. On the other hand, the time when

astrophysical structures form is another very special moment is the cosmic history,

and is correlated with the time of matter-radiation equality. The fact that ΩΛ0 ∼
ΩM0 today means that matter-vacuum equality and the formation of structures

happens roughly at the same time: however this is a priori highly unlikely to

happen, since we don't expect correlations between ΩΛ/ΩM and ΩR/ΩM . To say

the same thing di�erently, an extreme �ne tuning in initial conditions would be

necessary for this to happen: this problem is known as the coincidence problem

(or also as the �new� cosmological constant problem). It is fair to say that, in this
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approach, the small and �ne tuned value of Λ is no more a mystery than the �ne

tuning in other constants of nature [17]. Furthermore, anthropic arguments may

provide a way out of this problem [18, 19].

The situation is in any case deeply worsened by the fact that we expect a

contribution of exactly the same form coming from the source term of the Einstein

equations. As we already mentioned, in Quantum Field Theory the vacuum state

|0〉 seems to possess a nonzero energy and pressure, and if the �eld theory is Lorentz

invariant it should produce a contribution to the energy momentum tensor of the

form

T (vac)
µν = 〈0 | T̂µν |0〉 = −ρvac gµν (1.76)

Despite the fact that this is an expectation value in quantum theory, while GR is

a classical theory, we expect that such a term should be included as a source in

the Einstein equations, since vacuum energy has shown to have measurable e�ects

at classical level (consider for example the Casimir e�ect). To understand what

may be a reasonable value for ρvac, let's consider as an example a free (i.e. non

interacting) scalar �eld in a Minkowski spacetime. In a canonical quantization

approach, every Fourier mode ~k of the �eld is equivalent to a quantum harmonic

oscillator, which is known to possess a nonzero vacuum energy E0(~k) = ~ω(~k)/2

where ω(~k) =
√
m2 + k2. Therefore, summing up the contributions of every single

mode, we �nd that the total vacuum energy of the �eld diverges. However, we

may assume that the quantum �eld theory description is reliable only below a mo-

mentum cut-o� scale kcut: we de�nitely expect the description not to be adequate

for energies above the Planck energy Epl =
√

~c5/G ∼ 1019 GeV, but to be con-

servative we may lower the cuto� at the TeV energy scale ∼ 10−16Epl. Summing

the vacuum energy of the modes up to the cuto�, we have that the vacuum energy

scales as the cuto� energy scale at the fourth power [18]

ρvac ∼
E4
cut

~3c3
(1.77)

where we have explicitly shown the c and ~ coe�cients for dimensional clarity. Note

that if we assume that the value of Λ estimated by the cosmological observations

is due to vacuum energy, we have

ρ
(obs)
Λ ∼ 10−8 erg/cm3 (1.78)
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while using (1.77) we get the theoretical estimates

ρ(th)
vac ∼ 10112erg/cm3 (Planck) ρ(th)

vac ∼ 1048erg/cm3 (TeV) (1.79)

We can see that, if we take the cuto� to the Planck scale, there is a di�erence

of about 120 orders of magnitude between the observed value and the theoretical

expectation, and even in the case of the TeV cuto� scale the di�erence is nearly 60

orders of magnitude. This extreme clash between predictions and observations is

sometimes called the �old� cosmological problem, and can be restated as the fact

that vacuum energy seems to gravitate much less then expected.

In general, we expect that the only observable signature of both vacuum energy

and a �true� cosmological constant is its e�ect on spacetime, and therefore the two

in principle very di�erent contributions cannot be distinguished by observations

[17]. Therefore, we should write the cosmological constant present in the Einstein

equations as an �e�ective� constant which is the sum of a �bare� cosmological

constant and of a vacuum energy contribution

Λeff = Λ + 8πGρvac (1.80)

To match the observed value, we need that the two term cancel with a relative

precision which is almost incredible: (Λ−Λvac)/Λ ∼ 10−56 in the TeV scale cuto�

case, and even more so in the Planck scale cuto� case. Therefore an extreme

�ne-tuning between the two contributions is needed to be consistent with the

observations.

It is natural to wonder whether the two problems we have highlighted above are

two faces of the same problem or are two di�erent problems. It may well be that

the reason why vacuum energy does not gravitate (almost), and the reason why

cosmological observations suggest a nonzero Λ are in some sense independent. It is

in fact reasonable to expect that, since vacuum energy gravitate so much less than

expected, it may actually does not gravitate at all. This may be due to a symmetry

which prevents that or to a completely di�erent reason, and understanding that

seems one of the most di�cult problems in contemporary physics. Nevertheless,

we may take the point of view that, however di�cult to solve, this problem is

disentangled from the implications of cosmological observations. This is the point

of view we take in this thesis: without addressing the problem of why vacuum



1.3 The late time acceleration problem 37

energy does not gravitate, we try to understand why in cosmology we observe a

nonzero and �ne tuned Λ.

Backreaction, dark energy and modi�ed gravity

If we want to explain the cosmological observations without resorting to a nonzero

cosmological constant, some of the hypothesis which underlie the ΛCDM model

have to be relaxed. Despite the fact that all of them may not be correct, for

simplicity we can study what happens if we relax in turn just one of these assump-

tions, namely the large scale homogeneity and isotropy, the assumption that the

universe is �lled only with CDM and standard model particles, and the fact that

gravity is described by GR at all scales. In the following, we describe brie�y the

main advantages/disadvantages of the di�erent cases.

As we said previously, while large scale isotropy is very well tested observa-

tionally, homogeneity is not. It is usually assumed that we don't occupy a special

place in the universe (the Copernican principle), which implies homogeneity, but

since this is a philosophical assumption, it may be wrong after all. In fact, if the

Earth was situated near the center of a huge, nearly spherical structure, the su-

pernovae observations may be explained as an due to the inhomogeneity, without

having a nonzero Λ ([20, 21]). However, apart from being philosophically puzzling,

this scenario poses another �ne tuning problem, regarding the characteristic of the

spherical structure and our position inside it. Moreover, it is not so clear whether

it is consistent with all the cosmological observations, not just supernovae [17]. A

di�erent possibility is that the fact that inhomogeneities go nonlinear produce a

sizable e�ect on the evolution of the scale factor. As we said in section (1.2), the

time evolution does not commute with the averaging procedure on the Einstein

equations. Therefore, the �real� scale factor that describe our universe is di�erent

from the one we get by solving the Friedmann equations, and it may be that this

di�erence is crucial in judging if Λ is zero or not: the universe may seem to ac-

celerate at late times just because we don't take into account properly this e�ect.

The in�uence of inhomogeneities on the evolution of the scale factor is known as

backreaction (see for example [22]) and references in [17]): this would provide a

dramatic resolution of the coincidence problem, since in this case the formation
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of structures and the apparent acceleration are correlated since they are both a

consequence of the fact that inhomogeneities go nonlinear. However, there is no

convincing demonstration that the backreaction is indeed able to explain the ap-

parent acceleration. It should be noted anyway that it may signi�cantly a�ect the

estimation of cosmological parameters, even if it does not lead to acceleration [17].

Alternatively, if we take Λ = 0, neglect backreaction and assume that large

scale homogeneity and isotropy hold, we are forced to admit that either gravity

is not described exactly by GR, or that there is a new degree of freedom whose

contribution to the energy-momentum tensor is responsible for the acceleration of

the universe. The situation is somewhat similar to what happened when deviations

from the predicted orbits were observed for some planets in the solar system: in

the case of the anomalies of the orbits of Uranus and Neptune, the existence of a

new, unobserved planet was postulated. Pluto was indeed discovered later on. On

the other hand, the anomalous precession of the perihelion of Mercury could not

be explained as the e�ect of a yet unobserved object (originally called Vulcan):

the discrepancy was shown to be due to the inadequacy of the Newtonian theory

of gravity, and the resolution of the problem was the result of the development of

a new theory of gravity, General Relativity. If we consider GR to be the correct

theory of gravitational interaction, even at extremely large scales, then the cos-

mological observations can be explained by adding a source term in the Einstein

equations, which by equation (1.26) have to satisfy ρ + 3p < 0. This is a very

unusual property, since at the classical level the matter we observe in Earth-based

experiments has positive energy and non-negative pressure. Therefore, not only

we have to introduce an ad-hoc matter which we don't observe on Earth and in

the solar system, but this matter has to have very exotic properties. On the other

hand, at quantum level such a property is not so strange, and can be enjoyed also

by a very simple system such as a (classical) scalar �eld. This new component of

the energy-momentum tensor is usually termed dark energy, and there are several

di�erent models/scenarios (such as for example quintessence models, K-essence

and others, see [22]) which address the late time acceleration problem following

this idea. However, most of them are not well motivated (so far) from the point of

view of fundamental physics, and in general do not solve the coincidence problem,

since some sort of �ne tuning seems to be required anyway [17].
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Finally, we may assume that there is not such a thing as dark energy, but

the observations just signal the breakdown of the validity of GR at ultra large

scales. From this point of view, the explanation of the apparent acceleration

is to be found in formulating a new theory of gravity, which should reproduce

very well the results of GR at scales from a micron up to astrophysical scales,

but should deviates from it at ultra large scales. This approach is usually called

modi�ed gravity : for an extensive review, see [23]. There are several modi�ed

gravity scenarios which have been studied, among which f(R) gravity, braneworld

models, and massive gravity. Braneworld models have the appealing feature to

be in a loose sense motivated by fundamental physics, since the existence of extra

dimensions and �branes� where matter is localised is a important ingredient in

string theory. However, quite in general, braneworld models which modify gravity

at large distances are mainly phenomenological, in the sense that there are usually

no precise indications about how to embed them into string theory. Overall, one

of the crucial points is that it is very di�cult to modify gravity at large distances,

without introducing changes at intermediate and small distances: typically, the

modi�cations can be traced back to the presence of new (gravitational) degrees of

freedom, which however seems to contribute also at small scales. In order this not

to happen, it is necessary that there is a �screening� mechanism which e�ciently

suppresses the contributions of the new degrees of freedom in the contexts where

GR results have to be reproduced. Another problem is that modifying gravity

at large scales quite often produces new degrees of freedom which have (at least

in some con�gurations) negative kinetic energy (in which cases they are called

ghosts). This is usually regarded as unacceptable, since at quantistic level the

vacuum would be unstable.

1.4 Thesis summary

In this thesis, we adopt the modi�ed gravity approach to tackle the late time accel-

eration problem. In particular we focus on the problem of �nding a model which

exibits an e�cient screening mechanism which permits to recover GR results at

small and intermediate scales. For de�niteness, we consider the massive gravity
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approach to modify gravity. The thesis is therefore structured as follows: in chap-

ter 2 we introduce braneworld models and the DGP models, which, although not

providing itself a modi�ed gravity solution to the late time acceleration problem,

have been studied extensively and provided ideas and tools which turned out to

be useful to propose new models. We then consider the case of massive gravity,

which we discuss in detail in chapter 3, and concentrate on the recently proposed

class of models known as ghost-free massive gravity, which as the name suggests

have been shown to be free of ghost instabilities. Finally, in chapter 4 we study in

detail the e�ciency of the screening mechanism known as �Vainshtein mechanism�

in this class of models. We consider spherically symmetric solutions, and select

one of the two branches of solutions which have been found. We provide a com-

plete characterisation of the phase space of these theories in relation to the way

the Vainshtein mechanism works, which is an important step in establishing the

viability of such theories.



Chapter 2

Braneworlds and the DGP model

In the framework of modi�ed gravity, theories with extra spatial dimensions and in

particular the so called braneworld models have attracted a lot of attention. Apart

from providing a geometrical mechanism of modifying gravity at large distances,

they have played a crucial role in the recent construction of a class of ghost-

free massive gravity theories. Therefore, we dedicate this chapter to a general

introduction to braneworld theories and in particular to the DGP model.

2.1 Introduction to braneworlds

2.1.1 Historical introduction

Kaluza-Klein theories

The idea that there may be some spatial dimensions in addition to the three

we have experience of is in fact not a recent one. Already in 1921, Theodor

Kaluza [24] (reprinted with English translation in [25]) studied a �ve dimensional

extension of General Relativity, and noticed that the degrees of freedom of the

metric associated with the extra dimension could be interpreted as a vector �eld in

our four dimensional world (plus an additional scalar). Recognizing in this vector

the 4-potential of electromagnetic theory, the Einstein equations for the 5D metric

would produce respectively the Einstein equations and the Maxwell equations for

gravity coupled to the electromagnetic �eld, thereby geometrically giving a uni�ed

41
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description of these two forces. Oskar Klein in 1926 [26] (also reprinted with

English translation in [25]) proposed that, if the extra dimension is compact and

of radius r, deviations to the known laws would not show up for length scales larger

than r, or for energies less than 1/r, thereby we wouldn't be able to observe them

if r is small enough (say r < 10−19m, corresponding to an energy E ∼ 1TeV). This

idea of the extra dimensions being rolled up and small is usually referred to as

the Kaluza-Klein (KK) scenario: it has been almost universally adopted for a long

time to explain why we don't observe the extra dimensions, despite their existence,

and tipically the characteristic radius of the extra dimensions was assumed to be

incredibly small, of the order of the Planck length lpl =
√

~G/c3 ∼ 10−35 m. The

very idea of the existence of extra dimensions had a big push by the discovery in

the 1970's that string theory, one of the most promising candidates for unifying

general relativity and quantum mechanics as well as providing a uni�cation of all

the forces, is only consistent if there is a suitable number of extra dimensions (10

for superstring theory).

Braneworlds and large extra dimensions

A conceptual revolution began around 1960 [27, 28] when the idea that matter and

force �elds, instead of propagating in all the space, could be con�ned to a surface

in a higher dimensional space started being discussed. At the beginning of the

1980's, Akama [29] and independently Rubakov and Shaposhnikov [30] proposed

an explicit particle physics realisation of the localization phenomenon, while Visser

[31] proposed a gravitational realization of the same phenomenon. The idea of

matter being localized on a surface, or on a �brane�, became much more popular

with the discovery in the 1990's that extended objects, called p-branes, are of

fundamental importance in string theory. In particular there are objects called

D-branes to which the ends of open strings are attached, while closed strings

can propagate in the bulk. The idea that gravity could propagate in the extra

dimensions (in string theory it is described by closed strings) while matter and

standard model interactions could be con�ned to a brane, led Arkani-Ahmed,

Dimopolous and Dvali [32, 33] (ADD) to propose that the characteristic length

of compact extra dimensions could be much bigger than the Planck length, and
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in fact macroscopic (even at at millimeter scale). The crucial observation is that

while particle interactions are probed by high energy colliders at energies up to the

TeV scale, and therefore for length scales down to 10−19 m, gravity is tested only

for length scales down to 10−6 m. This idea led to the proposal that the observed

Newton constant G may not be the fundamental strength of gravity, but it is an

e�ective strength related to the fundamental strength G? via the relation G ∝
G?/V where V is the volume of the compact extra dimensions. This idea opened

up the fascinating possibility of having a fundamental (Planck) scale for gravity

as low as 1 TeV (with the possibility of realistically observing quantum gravity

e�ects in particle colliders) [34], and from another point of view of explaining the

observed weakness of gravity compared to the other interactions as an e�ect of the

ability of gravity to propagate in all the spatial dimensions.

Non factorizable geometry and localization of gravity

In the braneworld picture, more often than not it is assumed that some mecha-

nism (the presence of a bulk soliton in QFT, or the very existence of D-branes

in string theory) localizes matter and the standard model interactions. Once as-

sumed the existence of such a mechanism, explaining why the extra dimensions are

not observed reduces to explain why gravity behaves as in the (4D) GR despite

propagating in more than four dimensions. Despite the widespread belief that

compact (although not necessarily extremely small) extra dimensions are needed

to reproduce 4D gravity in a suitable distance range, it was shown by Randall

and Sundrum in a famous series of two papers [35, 36] that, if the bulk metric is

not factorizable, this is not the case. In particular, a �at 4D brane with nonzero

tension T in a 5D bulk with negative cosmological constant Λ causes the bulk to

become an anti-deSitter space (if T and Λ are appropriately tuned), with warped

metric ds2 = e−|y|/Lηµνdx
µdxν+dy2 where y is the extra dimension and L ∝

√
1/Λ.

In particular, they showed how the warping in the bulk metric between two �at

branes could be used to explain the hierarchy between the electroweak mass scale

and the gravitational Planck scale [35], and how the warping could e�ectively local-

ize gravity on one brane even if the extra dimension is not compact [36]. However,

in the Randall-Sundrum model the extra dimension is not truly in�nite since its
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volume is still �nite due to the warping. As a result, the relation between the

fundamental Planck scale of gravity and the 4D e�ective one is very similar to

the one which holds in the ADD model, with the radius of the extra dimension

replaced by the characteristic length L of AdS5. Likewise, in both ADD and RS

models the modi�cations to the Newton law happen at small distances, where the

critical length is set by the characteristic length of the extra dimensions.

In�nite volume extra dimensions

In 2000, Gregory, Rubakov and Sibiryakov (GRS) [37] instead showed that it is

possible to construct a braneworld model where gravity looks like GR at observable

scales, but behaves di�erently both at smaller and larger scales. In their system,

made up of three �at 4D branes with negative bulk cosmological constant between

the branes and zero outside, the metric is �at outside the branes and therefore

the extra dimension is truly in�nite (its volume is in�nite indeed). Soon after

that, it was proposed [38, 39] that the ability of some theories with one in�nite

volume extra dimension to reproduce 4D gravity can be understood as if gravity

were mediated by a metastable 4D graviton, or in other words by a continuous

superposition of 4D massive gravitons peaked around m = 0 with a �nite width.

The GRS model in fact was shown to belong to this class of models. Later in the

same year, the celebrated DGP model [40] was proposed. In this case, there is just

one 4D brane in an in�nite 5D bulk, and its distinctive feature is the presence of

an induced gravity term localized on the brane, which is responsible for the peaked

pro�le in the mass space.

The DGP model inspired a lot of activity, both to establish its phenomenolog-

ical viability [41, 42, 43, 44, 45, 46] and to explore its potential ability to address

long standing theoretical problems like the cosmological constant problem [18] and

more recent ones as the late time acceleration problem of cosmology (see section

1.3). In the cosmological context, a breakthrough came when De�ayet [47] showed

that the DGP model admits �self-accelerating� solutions, opening the door to the

idea of explaining the late time acceleration as a purely geometric and �modi�ed

gravity� phenomenon [48], without resorting to the idea of dark energy. Con-

cerning the cosmological constant problem, it has been shown [49] that in�nite
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volume extra dimensions provide a way to bypass the no-go theorem formulated

by Weinberg [18], and therefore are extremely appealing from that point of view.

However, the attempts were not crowned by success. It has been shown that

the self accelerating cosmological solution contains a ghost [50, 45, 46, 51] and

therefore cannot be quantum mechanically stable. Furthermore, a careful analysis

has shown that there is strong tension between the theoretical predictions and the

cosmological data, which in practice rule out the DGP self-accelerating solution

as an explanation for the late time acceleration [52]. From another point of view,

it has been shown that the DGP model cannot solve the Cosmological Constant

problem by �degravitating� sources with very large characteristic length scales,

since its gravitational potential does not decay fast enough at large distances [53].

Generalizations of the DGP model

Nevertheless, the richness of ideas and approaches to several problems of modern

physics which were conceived by studying the DGP model, even if it is not suc-

cessful itself, suggest that it may be worth trying to �nd generalizations of the

DGP model which may be similar enough to its original formulation to preserve

the good features, and di�erent enough to be free of its shortcomings. For ex-

ample, it is conceivable that a generalization of the DGP model may still contain

cosmological self-accelerated solutions, but the e�ective Friedmann equations in

this case will be necessarily modi�ed and may �t the data better. Furthermore,

more so�sticated constructions may provide a mechanism to get rid of the ghost.

A quite natural way to generalize the DGP model is to consider a higher codi-

mension setup. Higher codimension branes are notoriously very delicate to deal

with since the thin limit of a brane is not well de�ned for codimension ≥ 2 [54].

In fact, di�erent regularization procedures give di�erent answers in the thin limit,

which is then not unique, or in other words any e�ective description in which the

internal degrees of freedom are not excited, nevertheless remembers of the details

of the internal structure of the brane, and displays distinctive features. This is not

necessarily a problem as long as one keeps in mind that the regularization proce-

dure is a important and central part of the model [55]. On the other hand, the

ultra large distance behavior of the gravitational �eld depends markedly on the
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codimension, which is promising both for the degravitation phenomenon and for

the cosmological solutions. Furthermore, pure codimension-2 models are known to

possess the peculiar feature that pure tension on the brane (equivalent to vacuum

energy) does not produce curvature on the brane, but merely create a de�cit angle

in the extra dimensions (in other words, it curves just the extra dimensions). This

is extremely interesting for the cosmological constant problem.

In reality, increasing the codimension seems to worsen the problem of appear-

ance of ghosts, since a codimension-2 formulation of the DGP model seems to have

a ghost even among perturbations around the �at Minkowski solution [56]. How-

ever, this is not necessarily a general feature of any codimension-2 extensions of

DGP, since a model de�ned by a di�erent regularization of the same codimension-2

setup has been shown to be ghost free [57]. An intriguing possibility has been pro-

posed few years ago, in which there is a recursive embedding of branes into branes

of increasing dimensionality, and which produces a gravitational �eld which �cas-

cades� from N -D to (N − 1)-D and so on down to 4D going from large to small

distances (N here is the dimension of the ambient space) [58]. This model, named

Cascading DGP, has been shown to admit self-accelerating solutions [59] and seem

to provide a promising setup for the degravitation mechanism [60, 61]. Further-

more, it has been claimed that, in the minimal setup where the bulk is 6D, there

is a critical value for the brane tension above which there are no ghosts around the

Minkowski-�at solution [62]. However, it is not so clear it these results are general

or depend on the regularization procedure chosen to perform the thin limit.

2.1.2 Mathematical preliminaries

Let M be a N -dimensional (N ≥ 4) manifold. We call a D-dimensional brane

(or a (D − 1)-brane for short) a D-dimensional submanifold Σ of M . We de�ne

codimension of the brane the number N − D. Despite being a subset of M , we

can equivalently consider Σ to be a separate manifold equipped with an embedding

function

ϕ : Σ→M (2.1)

which speci�es the �position� of Σ inside M when seen as a subset. Being the

dimensionalities of M and Σ di�erent, ϕ is not invertible, and can be used to pull-
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back to Σ tensors of type (0, k) de�ned on M and push-forward to M tensors of

type (n, 0) de�ned on Σ. In particular, for every p ∈ Σ, if
{
w(j)

}
j
(j = 1, . . . , D)

is a basis of tangent vectors in TpΣ, then
{
ϕ?(w(j))

}
j
is a linearly independent

set of vectors in Tϕ(p)M , where ϕ? indicates the push-forward with respect to the

embedding function. We de�ne the D-dimensional subset of Tϕ(p)M spanned by

this set of vectors to be the tangent space to Σ (seen as a subset of M ) and we

will denote it as Tϕ(p)Σ.

We will in general consider two di�erent atlases of maps, one which de�nes

coordinates on M and another one which de�nes coordinates on Σ. Indicating

with XM the coordinates on M and with ξm the coordinates on Σ, the embedding

function reads in coordinates ϕM(ξm), and a basis of Tϕ(p)Σ ⊂ Tϕ(p)M is given by

the directional derivatives of the embedding function

vA(a)(p) ≡
{

∂

∂ξa

∣∣∣
p
ϕA
}
a

a = 0, . . . , D − 1 (2.2)

where the derivative is evaluated in the coordinates corresponding to p. If the

ambient manifold M is a metric manifold (M ,g), the embedding induces a metric

structure on the brane Σ as well: we de�ne the induced metric g̃

g̃ : TΣ× TΣ→ R g̃ ≡ ϕ?(g) (2.3)

where ϕ? indicates the pullback with respect to the embedding function. In coor-

dinates the previous relation reads

g̃ab(ξ
·) = g

(
v(a),v(b)

)
(ξ·) (2.4)

and explicitly

g̃ab(ξ
·) =

∂ϕA(ξ·)

∂ξa
∂ϕB(ξ·)

∂ξb
gAB(X ·)

∣∣∣
X·=ϕ·(ξ·)

(2.5)

where we used the notational convention of indicating the set of coordinates XM

and ξm respectively with X · and ξ·, while the embedding function ϕa is indi-

cated with ϕ·. We assume here that the metric g is nondegenerate and pseudo-

Riemannian.

In the following we will be mostly interested in codimension-1 brane, for which

there is a fair amount of dedicated terminology and geometrical concepts to which

we now turn.
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Codimension-1 braneworlds

We denote in general with a tilde ˜ quantities pertaining to the codimension-1

brane. Taken a basis
{
b(a)

}
a
(a = 1, . . . , D) of TΣ ⊂ TM , we can de�ne the

vector n(ξ·) normal to the cod-1 brane in the following way

n(ξ·) :

 〈n(ξ·)|b(a)(ξ
·)〉g = 0

|〈n(ξ·)|n(ξ·)〉g| = 1

where 〈 | 〉g indicate the scalar product associated to the metric g. There are

two possibilities, depending on the sign of the squared modulus of n: if the normal

vector is spacelike ‖n‖ > 0, the brane is said to be timelike, while if the normal

vector is timelike ‖n‖ < 0, the brane is said to be spacelike. We will consider

only the case of a spacelike normal vector, which corresponds to having a �spatial�

extra dimension. Even �xing the sign of ‖n‖, the system above does not de�ne

uniquely the normal vector since there are two possible choices which de�ne the

local orientation of the brane. Note that we can uniquely decompose a vector w

into an orthogonal component w⊥ = w⊥n and a parallel component wq such that

〈wq|n〉g = 0.

Using the normal vector we can de�ne the �rst fundamental form of the cod-1

brane

P(ξ·) ≡ g − g(n,_)⊗ g(n,_) (2.6)

where g is evaluated in X · = ϕ·(ξ·), and n is evaluated in ξ·. Acting on two vectors

c and d the �rst fundamental form give as a result the scalar product computed

with g between the parallel components of the two vectors

P
(
c,d
)

= P
(
cq,dq

)
= g

(
cq,dq

)
(2.7)

and therefore extracts the notion of metric on the brane from the bulk metric

g. To get an intrinsic object which de�nes metric concepts on the brane we can

pull-back the �rst fundamental form to the brane using the embedding function,

obtaining the (already introduced) induced metric

g̃ ≡ ϕ?(g) = ϕ?(P) (2.8)
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From the induced metric we can construct the associated symmetric and metric

compatible connection, and the curvature tensors and scalar, which characterise

the intrinsic geometry of the brane.

The second fundamental form of the cod-1 brane is de�ned as

K ≡ −1

2
Ln P (2.9)

and instead characterises the extrinsic geometry of the brane. Like the �rst fun-

damental form, it is a brane parallel object in the sense that it acts only on the

parallel components of the vectors

K
(
c,d
)

= K
(
cq,dq

)
(2.10)

To obtain from the second fundamental form an intrinsic object which describes

the extrinsic geometry we can pull-back K to the brane, obtaining the extrinsic

curvature K̃(ξ·)

K̃ ≡ ϕ?
(
K
)

= −1

2
ϕ?
(
Ln g

)
(2.11)

Using the expression (0.6) for the Lie derivative, and taking advantage of the fact

that n and v(a) are orthogonal for every a, we can express it as

K̃(ξ·) = K̃[og](ξ·) + K̃[pg](ξ·) + K̃[b](ξ·) (2.12)

where we de�ned

K̃
[og]
ab (ξ·) ≡ −1

2

((
∂n g

)(
v(a),v(b)

))
(2.13)

K̃
[pg]
ab (ξ·) ≡ 1

2

((
∂v(a)

g
)(

n,v(b)

)
+
(
∂v(b)

g
)(

n,v(a)

))
(2.14)

K̃
[b]
ab (ξ

·) ≡ 1

2

(
g
(
n, ∂ξav(b)

)
+ g
(
n, ∂ξbv(a)

))
(2.15)

where g, ∂v(a)
g and ∂n g are evaluated in X · = ϕ·(ξ·). The �rst two pieces are

named �orthogonal gradient� and �parallel gradient� as they are nonzero when the

bulk metric has nonzero derivative respectively in the directions orthogonal and

parallel to the cod-1 brane, even when the cod-1 brane is not bent. The third piece



2.1 Introduction to braneworlds 50

is instead due to the bending, since it is nonzero when the brane is bent even if

the bulk metric is constant. The three contributions read in coordinates

K̃
[og]
ab (ξ·) ≡ −1

2

∂ϕA(ξ·)

∂ξa
∂ϕB(ξ·)

∂ξb
nL(ξ·)

∂ gAB
∂XL

∣∣∣
X·=ϕ·(ξ·)

(2.16)

K̃
[pg]
ab (ξ·) ≡ 1

2
nA(ξ·)

∂ϕB(ξ·)

∂ξ(a

∂ϕL(ξ·)

∂ξb)
∂ gAB
∂XL

∣∣∣
X·=ϕ·(ξ·)

(2.17)

K̃
[b]
ab (ξ

·) ≡ nL(ξ·)
∂2ϕL(ξ·)

∂ξa∂ξb
(2.18)

where nM(ξ·) = gLM(ϕ·(ξ·))nM(ξ·).

Note that it is always possible, at least locally, to use (N-1) of the N bulk coor-

dinates to parametrize the brane: for de�niteness we can indicate the coordinates

on the brane with ξ·, and the bulk coordinates as X · = (ξ·, z), so essentially we

recognize z as the extra dimension. In this case all the components of the embed-

ding function are trivial but ϕz, and (with a little abuse of notation) we call ϕ the

nontrivial component

ϕ·(ξ·) = (ξ·, ϕ(ξ·)) (2.19)

Using this gauge �xing between the bulk coordinates and the brane coordinates, the

system is now characterised by the bulk metric gAB(X ·) and by one scalar function,

the nontrivial component of the embedding ϕ. We can express the objects which

de�ne the geometrical properties of the brane using these quantities: the induced

metric takes the simpli�ed form

g̃ab(ξ
·) =

∂ϕ(ξ·)

∂ξa
∂ϕ(ξ·)

∂ξb
gzz
(
ϕ·(ξ·)

)
+
∂ϕ(ξ·)

∂ξ(a
gz|b)

(
ϕ·(ξ·)

)
+ gab

(
ϕ·(ξ·)

)
(2.20)

and a 1-form orthogonal to the brane can be found as

NA(ξ·) ≡
(
− ∂ϕ

∂ξa
(ξ·), 1

)
(2.21)

Normalizing N we obtain the normal form to the cod-1 brane

nA(ξ·) ≡ 1√
gLM NLNM

(
− ∂ϕ

∂ξa
(ξ·), 1

)
(2.22)

where gLM is evaluated in X · = (ξ·, ϕ(ξ·)) and NL is evaluated in ξ·. Using the

results above we can express the extrinsic curvature in a simpli�ed way as well,
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and for example the bending contribution to the extrinsic curvature reads

K̃
[b]
ab (ξ

·) =
1√

NLNL

∂2ϕ(ξ·)

∂ξa∂ξb
(2.23)

2.2 The DGP model

The DGP model [40], in its original formulation, is a codimension-1 braneworld

model in �ve dimensions. The complete spacetime M = B ∪ Σ is made up of a

�ve dimensional bulk B = B− ∪B+ constituted by the two disjoint pieces B−

and B+, which have in common a four dimensional boundary Σ = ∂B− = ∂B+.

We assume that the topology of B− and B+ is the same as R4 × R. The action
of the model is

S = 2M3
5

∫
B

d5X
√
−g R + 2M2

4

∫
Σ

d4x
√
−g̃ R̃ +

∫
Σ

d4x
√
−g̃LM+

+ SGH(Σ−) + SGH(Σ+) (2.24)

where SGH(Σ−) and SGH(Σ+) are the Gibbons-Hawking terms1 [63, 64] on the two

sides of the brane, and LM is the matter Lagrangian. Here g is the determinant

of the bulk metric and R is the Ricci scalar constructed from it, while g̃ is the

determinant of the induced metric on the brane and R̃ is the Ricci scalar con-

structed from it. We assume that the mass scales M3
5 and M2

4 obey the hierarchy

M2
4/M

3
5 � 1. The distinctive feature of this action is the induced gravity term

2M2
4

∫
Σ

d4x
√
−g̃ R̃ (2.25)

which as we shall see is responsible for the recovery of the correct 4D Newtonian

behavior of gravity on the brane, for small and intermediate distances. This piece of

the action can be introduced at classical level purely on phenomenological grounds,

but can be also understood as contribution coming from loop corrections in the

low energy action of a quantum description where matter is con�ned on the brane

[40].

1SGH = −4M3
5

∫
d4x
√
−g̃ K̃, where K is the trace of the extrinsic curvature of the brane.
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The equations of motion for this system are

G = 0 (bulk) (2.26)

M3
5

[
K̃− g̃ tr K̃

]
± +M2

4 G̃ = T̃ (brane) (2.27)

where G and G̃ are the Einstein tensors constructed respectively from g and g̃,

K̃ is the extrinsic curvature of the brane and T̃ is the energy momentum tensor of

the matter localized on the brane. Equation (2.26) is simply the vacuum Einstein

equation in the bulk, while (2.27) is the Israel junction condition [65] on the brane.

The notation [ ]± indicates the jump across the brane of the quantity in square

parenthesis, or equivalently [ ]± = [ ]Σ+ − [ ]Σ− .

It is customary to assume that B− and B+ are di�eomorphic and to impose a

re�ection symmetry across the brane (Z2 symmetry). In this case it is enough to

solve the equations of motion in one of the two pieces to know the solution in all

the bulk. Assuming that the Z2 symmetry holds, the equations of motion become

G = 0 (bulk) (2.28)

2M3
5

(
K̃− g̃ tr K̃

)
+M2

4 G̃ = T̃ (brane) (2.29)

where for de�niteness the bulk equation is considered in B+ and the extrinsic

curvature is evaluated in Σ+. Note that assigning the energy-momentum tensor

on the brane is not enough to �x univoquely the solution of the system above,

so an additional condition is needed to render the model self-consistent. This is

tipical of codimension-1 braneworld models: apart from the junction conditions,

a condition on the behavior of the bulk metric at spatial in�nity (in the normal

direction to the brane) is to be imposed. It is standard to ask that, in the spatial

in�nity asymptotic region, the metric is a superposition of outgoing waves only,

formalizing the idea that nothing can enter our universe from the extra dimension.

We will call Xm = (xµ, y) the coordinates in the bulk. Although we could use a

generic coordinate system on the brane, we will use four of the �ve bulk coordinates

to parametrize the brane (for the sake of precision xµ), which is always possible

(at least locally). Following the terminology of subsection (2.1.2), the embedding

function reads

ϕm(x·) =
(
xµ, ϕ(x·)

)
(2.30)
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The system is completely determined once we know the bulk metric g(X ·) and the

brane embedding function ϕ(x·). Using the relations (2.28)-(2.29), it is straight-

forward to see that if the brane is empty (T̃ = 0), the con�guration

g(X ·) = ḡ(X ·) = η (2.31)

ϕ(x·) = ϕ̄(x·) = 0 (2.32)

is a solution of the equations of motion, since all the curvature tensors (constructed

from the bulk and from the induced metric) vanish. In fact using (2.20) it is easy

to see that the induced metric is �at as well

¯̃g(x·) = η (2.33)

Therefore, a straight brane in a �at bulk is a vacuum solution of the theory. This

vacuum solution is quite di�erent from the warped solution of an empty (but of

course tensionful) Randall-Sundrum brane, and it may seem surprising that gravity

on a DGP brane can be very similar to 4D GR. We turn now to the analysis of

weak gravity in the DGP model.

2.2.1 Weak gravity in the DGP model

Let's study perturbations around the �at-Minkowski solution. We indicate with

π(x·) the perturbation of the embedding function and with hab(x
·, y) the pertur-

bation of the bulk metric, explicitly

ϕ(x·) = π(x·) (2.34)

gab(x
·, y) = ηab + hab(x

·, y) (2.35)

We de�ne the perturbation in the induced metric as

h̃µν(x
·) ≡ g̃µν(x

·)− ηµν (2.36)

and we indicate with T̃µν the perturbation of the energy-momentum tensor local-

ized on the brane.

While the above de�nitions do not assume that π, hab and Tµν are small, we

now focus on studying perturbative solutions to (2.28)-(2.29) at �rst order. It is
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very useful to choose a gauge which simpli�es the expressions as much as we can: a

common choice is to use Gaussian Normal Coordinates (GNC), where the brane is

placed at y = 0 and the only nonzero components of the bulk metric perturbations

are the 4D ones. This reference system is therefore de�ned by

π(GN)(x·) = 0 h
(GN)
5a (X ·) = 0 (2.37)

and have the good property that the induced metric is exactly the bulk metric

computed in y = 0+

g̃(GN)
µν (x·) = g(GN)

µν

∣∣
y=0+

(x·) (2.38)

We will use instead a di�erent gauge choice, introduced by [66], where we do not

�x the position of the brane, and so the bending becomes a physical perturbation

mode. On one hand, this is mathematically useful since it simpli�es the bulk

equations. On the other hand, it is also physically useful because the bending

mode has a direct geometrical interpretation and its dynamics turns out to be

characterised by a di�erent length scale compared to the bulk perturbations, which

is important at nonlinear level. Without �xing the bending, it is possible to impose

more gauge conditions on the bulk metric, and in fact it is possible to impose

h55(X ·) = h5ν(X
·) = 0 ηµνhµν(X

·) = ∂µ h
µ
ν(X

·) = 0 (2.39)

where indices are raised with the background inverse metric ηµν . In this gauge,

the only nonzero components of the bulk metric perturbations are the 4D ones and

the bulk metric is transverse-traceless (TT-gauge), which is the 5D equivalent of

what is usually done in GR to study gravitational waves [3]. Note that this gauge

conditions can be imposed only in source-free regions, which is always true in our

case since we consider an empty bulk.

We can now derive the the dynamical equations for the relevant degrees of

freedom in this gauge. First, note that the trace of the junction conditions (2.29)

gives

�4π = − 1

6M3
5

T̃ (2.40)

where T̃ = ηµν T̃µν , and we use the notations ∂µ = ∂
∂xµ

, �4 = ηµν∂µ∂ν and �5 =

�4 + ∂2
y . The latter equation con�rms that π is not a gauge mode but instead a
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physical perturbation mode which is sourced by the trace of the energy momentum

tensor. The junction condition reads

−1

2

(
2M3

5 ∂y +M2
4 �4

)∣∣∣
y=0+

hµν = T̃µν + 2M3
5 ηµν �4π − 2M3

5∂µ∂νπ (2.41)

and we see that the bending mode acts as a source for the bulk metric hµν along

with the energy momentum tensor. Using the trace equation (2.40) we can write

the equations of motion for the bulk metric in a suggestive way: the bulk equation

(2.28) reads

�5hµν = 0 (2.42)

while the junction condition becomes

−1

2

(
2M3

5 ∂y +M2
4 �4

)∣∣∣
y=0+

hµν = T̃µν −
1

3
ηµν T̃ − 2M3

5∂µ∂νπ (2.43)

The DGP propagator

A powerful way to study solutions to linear di�erential equations in presence of

sources is to derive the propagator, which roughly speaking is the solution corre-

spondent to a perfectly localized source (Green's function). More precisely, it can

be de�ned as the object

D αβ
µν (x, y;x′) (2.44)

such that the solution to the linear di�erential equation correspondent to a source

con�guration T̃µν(x) is

hµν(x, y) =

∫
d4x′D αβ

µν (x, y;x′) T̃αβ(x′) (2.45)

Note that we can neglect the term 2M3
5∂µ∂νπ in equation (2.43) since it produces

in momentum space a contribution ∼ pµpν , which have no e�ect at �rst order if

we consider (as we do) test bodies whose energy-momentum tensor is conserved.

Therefore the propagator for our system obeys

�5D αβ
µν (x, y;x′) = 0 (2.46)

−1

2

(
2M3

5 ∂y +M2
4 �4

)∣∣∣
y=0+
D αβ
µν (x, y;x′) =

[1

2

(
δ αµ δ

β
ν + δ αν δ

β
µ

)
− 1

3
ηµνη

αβ
]
δ(4)(x− x′)

(2.47)
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To �nd a solution to this system, we can factorize a scalar part DS(x−x′, y) which

depends on the coordinates (where we have made manifest that the propagator

can depend only on the di�erence of the coordinates, due to the 4D translational

inveriance of the model) and a purely numerical part which carries the tensor

structure S αβ
µν

D αβ
µν (x− x′, y) = S αβ

µν DS(x− x′, y) (2.48)

Roughly speaking, the tensor part gives the relative weight between the di�erent

components of the resulting metric hµν , while the scalar part �xes the dependence

of the components from the distance. Substituting this expression into (2.46)-

(2.47) one gets that the tensor structure is

S αβ
µν =

1

2

(
δ αµ δ

β
ν + δ αν δ

β
µ

)
− 1

3
ηµνη

αβ (2.49)

while the scalar propagator obeys

�5DS(x− x′, y) = 0 (2.50)

−1

2

(
2M3

5 ∂y +M2
4 �4

)∣∣∣
y=0+
DS(x− x′, y) = δ(4)(x− x′) (2.51)

In the case where the source is static T̃αβ(x′) = T̃αβ(~x ′), the metric hµν evalu-

ated on the brane (from equation (2.45)) takes the form

hµν(~x, 0) = S αβ
µν

∫
d3~x ′ T̃αβ(~x ′)V (~x− ~x ′) (2.52)

where V (~x− ~x ′) is the (static) potential

V (~x− ~x ′) =

∫
dt′ DS(~x− ~x ′, t′, 0) (2.53)

Note that the potential actually depends only on the module r = ‖~x− ~x ′‖, due to
the rotational symmetry of the system. The potential for the DGP model can be

found exactly, and reads [40]

V (r) = − 1

2π2M2
4

1

r

[
sin
( r
rc

)
Ci
( r
rc

)
+

1

2
cos
( r
rc

)(
π − 2 Si

( r
rc

))]
(2.54)

where Ci(z) ≡ γ + ln(z) +
∫ z

0
(cos(t)− 1)dt/t and Si(z) ≡

∫ z
0

sin(t)dt/t are respec-

tively the Cosine integral function and the Sine integral function, γ ' 0.577 is the
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Euler-Mascheroni constant and the distance scale rc is de�ned as follows

rc ≡
M2

4

2M3
5

(2.55)

It can be seen that rc is a �crossover� scale where the behavior of the gravitational

potential changes from 4D to 5D. In fact, at short distances r � rc the potential

behaves as

V (r) ' − 1

2π2M2
4

1

r

[
π

2
+
(
− 1 + γ + ln

( r
rc

))( r
rc

)
+O(r2)

]
(2.56)

and at leading order it has the 4D Newtonian 1/r scaling, while at large distances

r � rc we obtain

V (r) ' − 1

2π2M2
4

1

r

[
rc
r

+O
( 1

r2

)]
(2.57)

so at leading order it has now the 5D behavior 1/r2. This results suggests that we

may hope to reproduce GR results using the DGP model as long as we set rc to

be much bigger than the length scales we are interested in, and tune

1

M2
4

∼ G (2.58)

Note that this implies the following hierarchy of scales

rg ≡
M

M2
4

≪ rc (2.59)

Weak GR gravity vs. weak DGP gravity

The story is however more complicate than that. Let's consider for de�nite-

ness a static and spherically symmetric point source of mass M : T̃αβ(~x ′) =

M δ 0
α δ

0
β δ

(3)(~x ′) (which may model a star or a planet). In this case the metric

on the brane reads

hµν(‖~x‖, 0) = S 00
µν M V (‖~x‖) (2.60)

and one can easily see from (2.49) that the o�-diagonal components of S 00
µν are

zero while S 00
00 = 2/3 = 2S 00

ii . Note furthermore that at �rst order we have for

the induced metric

h̃µν(t, ~x) ' hµν(t, ~x) (2.61)
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Therefore, indicating r = ‖~x‖ and writing the induced metric in terms of the

gravitational potentials Ψ and Φ

h̃00(r) = −2 Φ(r) (2.62)

h̃0i(r) = 0 (2.63)

h̃ij(r) = −2 Ψ(r) δij (2.64)

we have that for r � rc

Φ(r) = −1

3

M

2πM2
4

1

r
Ψ(r) =

1

2
Φ(r) (2.65)

The situation is quite di�erent from GR, where one has [1]

Φ(r) = −GM/r Ψ(r) = Φ(r) (2.66)

Despite the fact that (for r � rc) the two potentials in the DGP model scale as

1/r, it is apparent that in DGP we can never reproduce the complete GR line

element. In fact, suitably tuning the value of M2
4 we can reproduce one of the

two potentials, but never both of them. The fact is that, experimentally, we can

test both the potentials independently: non-relativistic test bodies (realistically

a planet orbiting around a star) are in fact in�uenced only by Φ(r), while the

propagation of light is in�uenced by both of the potentials. Therefore if we put

right the orbits of planets then the light de�ection comes out wrong, and conversely

if we reproduce the correct light de�ection then the orbit of planets does not agree

with observations anymore: the relative error we get is as big as 25% (see e.g.

[67]). It seems then that the weak �eld gravity in the DGP model is irreparably

di�erent from the weak �eld gravity in GR. This di�erence can be traced back to

the fact that in GR the tensor structure is

S αβ
µν =

1

2

(
δ αµ δ

β
ν + δ αν δ

β
µ

)
− 1

2
ηµνη

αβ (2.67)

and, as a consequence of the coe�cient of the last term being 1
2
instead of 1

3
, one

has

S 00
00 = S 00

ii (2.68)

Regarding the bending mode, as we already saw in the linear approximation it

obeys equation (2.40). Considering the same form for the source term T̃αβ(~x ′) =
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M δ 0
α δ

0
β δ

(3)(~x ′) we used to �nd the gravitational potentials, we �nd the following

pro�le for the bending mode in presence of a static, spherically symmetric and

point-like source

π(r) = − M

6M3
5

1

4πr
(2.69)

where (the notation is not a happy one in this case) the π in the denominator of

the right hand side is the number 3.1415926 . . ., while the π in the left hand side

is the bending mode.

2.2.2 Nonlinearities and the Vainshtein mechanism

From what we said above, it may seems that solar system observations rule out

the DGP model for every choice of parameters. However, this conclusion relies

on the implicit assumption that, since the motion of planets and light in the

solar system are described by weak �eld (i.e. linearized) GR, in the DGP model it

should be described by the weak �eld approximation of DGP. In GR, the scale at

which nonlinearities become important around a spherically symmetric source is

rs = GM : we are then implicitly assuming that the scale at which nonlinearities

become important in DGP is the scale rg ≡ M/M2
4 ∼ rs correspondent to the

scale at which nonlinearities become important in GR, or at least much smaller

than the length scales we can probe in earth-solar system measurements. This is

however not obvious.

To verify this, we should evaluate all the nonlinear terms when the dynamical

variables take on their weak �eld value, and recognize at which length scales such

nonlinear terms become comparable to the linear ones. Naively, we may in fact

expect the presence of a di�erent scale where nonlinearities become important in

the DGP model: following [44], we notice that the pro�le for the bending mode in

the linear approximation (2.69) becomes very large even for r � rg, since

π(r) = −rc rg
1

12πr
(2.70)

This can be traced back to the fact that, at linear level, hµν receives contributions

both from the extrinsic curvature term (multiplied by M3
5 ) and from the induced

gravity term (multiplied by M2
4 ): as a result of the competition between these two
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terms, there is a crossover scale rc above which hµν couples to T̃µν with e�ective

strength G5 = 1/M3
5 , while below rc it couples with e�ective strength G4 = 1/M2

4 .

At �small� scales the behavior of hµν is then dictated byM2
4 G̃, which sets the scale

rg = M/M2
4 where nonlinear terms in hµν become important. The bending mode

π, instead, at linear order receives contributions only from the extrinsic curvature

term, and therefore couples to T̃ with e�ective strength G5 = 1/M3
5 at all scales:

as a result, the solution (2.69) contains only M/M3
5 ∼ rcrg. However, at quadratic

order we have

h̃µν = hµν

∣∣∣
y=0+

+ ∂µπ∂νπ +O(hπ) (2.71)

so the equation of motion for the bending mode acquires a contribution from the

induced gravity term as well: the competition between the linear term controlled

by M3
5 and the quadratic one controlled by M2

4 may introduce a new scale where

nonlinearities become important.

The Vainshtein radius

It is actually not di�cult to see that, for a static, spherically symmetric point-

like source of mass M , the term ∂µπ∂νπ (evaluated with the linear pro�le (2.69))

becomes of the same order of hµν(y = 0+) at the Vainshtein radius

rV = 3

√
MM2

4

M6
5

∼ 3
√
rg r2

c (2.72)

and therefore below this radius the linear approximation cannot be trusted. The

hierarchy between rg and rc implies that rg � rV � rc: we conclude that the

linear approximation for the DGP model breaks down at distances which are much

bigger than the distance where the linear approximation breaks down in GR. To be

quantitative, using H0 ∼ 70 km/s/Mpc and rc ∼ c/H0 we get
2 rc ∼ 4.3× 103 Mpc

and for the sun3 we get rsung ∼ 1.5 km and �nally rsunV ∼ 3×1015 km ∼ 102 pc. Note

that the average distance between Pluto and the sun is ∼ 6 × 109 km ∼ 10−6 rV :

in practice, the light de�ection experiments and the orbits of planet and satellites

take place in the range rg < r < rV , so the analysis of the previous section does not

21 MegaParsec (Mpc) is approximately 1Mpc ' 3.09× 1019 km
3Msun ∼ 2× 1030 kg
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apply. Note that we have not shown that above rV the linear approximation holds:

in the complete perturbative expansion there will be interaction terms containing

all powers of π, h and mixed terms πnhm, each of which, when evaluated on the

linear solutions, may become important at a di�erent scale. In principle some

nonlinear terms may become of the same order of the linear ones at scales which

are even higher then rV .

However, it has been shown [41, 42, 43, 44, 45, 46] that the approximation

where hµν is treated at �rst order while we keep nonlinear terms in π is consistent,

and rV is indeed the highest of the scales where nonlinearities become important.

To �nd out what happens below rV (i.e. for radii smaller than rV but bigger than

the scales where other nonlinear terms become important), we can consider the

approximated equations of motion where we keep the linear terms in h and the

quadratic terms in π. This is equivalent to postulate the following ordering of

amplitudes

hµν ∼ ε2 π ∼ ε (2.73)

and truncate the equations at the ε2 level. This does not change the extrinsic

curvature part since corrections start at ε3 level (hπ terms), and changes just the

induced gravity term which becomes

G̃µν = −1

2
�4hµν

∣∣∣
y=0+

+�4π ∂µ∂νπ − ∂µ∂λπ ∂ν∂λπ−

− 1

2
ηµν

(
�4π�4π − ∂α∂λπ ∂α∂λπ

)
+O(ε3) (2.74)

Note that, despite the fact that calculating the Einstein tensor from ∂µπ∂νπ one

would expect terms with three derivatives, all these terms cancel leaving out an

expression which is of second order in derivatives. This property is highly nontrivial

and very restrictive, and de�nes a very interesting class of Lagrangians of which

the Lagrangian for the bending mode in the DGP model is just a particular case,

as we will see in section (3.5.1). Taking the trace of the junction conditions, we

obtain the nonlinear equation for the bending mode

�4π +
rc
3

(
(�4π)2 − ∂α∂λπ ∂α∂λπ

)
= − 1

6M3
5

T̃ (2.75)

which for a static, spherically symmetric, point-like source of mass M can be
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exactly integrated [68] to give

π′

r
+

2rc
3

(π′
r

)2

=
M

6M3
5

1

4πr3
(2.76)

where we indicate derivatives with respect to r with a prime. Inserting the linear

pro�le (2.69) in the previous equation one recognizes that the nonlinear term

becomes comparable to the linear term at the radius r = rV : the Vainshtein radius

is therefore not only the radius where nonlinearities in π become comparable to hµν

in the induced metric, but also the radius where nonlinearities become important

in the equation of motion for π itself. Equation (2.76) is an algebraic equation in

π′/r, in fact a quadratic equation at �xed r: we can then solve it exactly obtaining

[π′(r)
r

]
±

= − 3

4rc

(
1±

√
1 +

2

9π

r2
crg
r3

)
(2.77)

There are two branches of solutions, characterised by the sign + or −: the −
solutions is decaying at in�nity, while the + one is not (we have π ∝ r2 for very

large radii). The solution we are interested in here is the decaying one, since it

has to reduce to (2.69) when r � rV : from the previous equation we can obtain

the asymptotic behaviors (note that r2
crg = r3

V /4)

π′(r)


=

1

12π

rcrg
r2

for r � rV

=

√
1

8π

√
rg
r

for r � rV

(2.78)

The Vainshtein mechanism

We can pictorially sum up the situation in the following way. The presence of a

static point source on the brane has (in our language/gauge choice) two separate

e�ects: it creates a nontrivial pro�le for the embedding π of the brane, and it

creates a nontrivial metric hµν in the 5D spacetime. The latter e�ect can in

turn be split in the presence of a signi�cant leaking of the gravitational force

into the bulk (encoded in ∂yhµν in the junction conditions) and the presence of

a signi�cant gravitational force on the brane (encoded in �4hµν in the junction

conditions). The situation we described so far is then the following: there are two
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relevant length scales, the crossover radius rc and the Vainshtein radius rV � rc.

Above the crossover scale, the leaking of the gravitational force into the bulk is

non-negligible (the extra dimension �opens up�) so gravity on the brane has a 5D

behavior. Below rc the gravitational leaking is instead negligible, and gravity on

the brane is essentially 4D. Above the Vainshtein radius, the bending does not

contribute appreciably to the induced gravity term, but acts as a source for hµν in

such a way that the tensor structure of gravity on the brane is di�erent from the

one characteristic of GR. When we approach rV , instead, nonlinearities in π start

becoming important and it starts contributing signi�cantly to the induced gravity

term.

Nonlinearities in π change the bending pro�le (as we saw) with respect to the

linear case, and in�uence the induced metric since at order ε2 we have

h̃µν = hµν

∣∣∣
y=0+

+ ∂µπ∂νπ (2.79)

Furthermore, quadratic terms in π are likely to modify the way the bending sources

the metric hµν , and so the behavior of the gravitational potentials may be signif-

icantly di�erent from what we found in the context of the linear approximation.

To study that, we focus on length scales around rV , which in practice means (as

we already said) length scales smaller than the crossover scale and larger than the

scales where other nonlinear terms become important. This implies that we can

work at order ε2 (in the sense of (2.73)), and at the same time safely neglect the

∂yhµν term in the junction conditions. Therefore we have

M2
4 G̃µν = T̃µν −

1

3
ηµν T̃ − 2M3

5∂µ∂νπ −
M2

4

3
ηµν R̃ (2.80)

where

R̃(r) = (�4π)2 − ∂α∂λπ ∂α∂λπ (2.81)

Let's consider as we did before a static, spherically symmetric, point-like source

of mass M : the spherical symmetry allows us to write the induced metric in the

same form (2.62)-(2.64) used at linear level, where now the gravitational potentials

Φ and Ψ contain a contribution from the bending mode as well as a contribution

from hµν , according to (2.79). Using the fact that R̃00 = 43Φ and G̃00 = 243Ψ,
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where 43 is the laplacian operator, we have

M2
443Φ = T̃00 +

1

3
T̃ − 1

6
M2

4 R̃ (2.82)

M2
443Ψ =

1

2

(
T̃00 +

1

3
T̃
)

+
1

6
M2

4 R̃ (2.83)

where the induced curvature scalar takes the form

R̃(r) =
2

r2

d

dr
(rπ′2) (2.84)

We then see that the two gravitational potentials couple di�erently with the

energy-momentum tensor (which is the origin of the factor of two di�erence be-

tween the potentials in (2.65)), but at the same time the nonlinear contributions

from the bending mode have opposite sign in the two cases. Integrating the equa-

tions above on a sphere of radius r and centered on the point-like mass we get

Φ′

r
=

2

3

rg
4πr3

− 1

3

(π′
r

)2

(2.85)

Ψ′

r
=

1

3

rg
4πr3

+
1

3

(π′
r

)2

(2.86)

and using the r � rV and r � rV behaviors (2.78) we arrive at

r � rV


Φ′

r
= 2

rg
12πr3

Ψ′

r
=

rg
12πr3

(2.87)

and

r � rV


Φ′

r
=

rg
8πr3

Ψ′

r
=

rg
8πr3

(2.88)

It is apparent that for r � rV the �linear� DGP behavior (2.65) is reproduced,

with the factor two di�erence between the potentials, while well inside the Vain-

shtein radius the potentials are equal one to the other and therefore linear GR is

reproduced. This is due to the fact that the quadratic contributions in π′ have

opposite signs for the two potentials, and counterbalance the di�erent way the two

potentials couple with the energy-momentum tensor. We can conclude then that
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(quadratic) nonlinearities in the bending mode restore the agreement with GR on

length scales where nonlinearities in GR are still negligible.

The fact that agreement with GR is restored via (derivative) self-coupling of a

light degree of freedom is known as Vainshtein mechanism, and has been proposed

for the �rst time by A. Vainshtein [69] in the context of massive gravity (which

will be treated in the next two chapters).

2.2.3 Cosmology in the DGP model

Let's study now cosmological solutions in the DGP model. Following [47], we

consider con�gurations where the 5D metric in the Gaussian normal coordinates

reads

ds2 = −N2(τ, y)dτ 2 + A2(τ, y)γijdx
idxj +B2(τ, y)dy2 (2.89)

where γij is a metric on a three dimensional space of constant curvature, and (as

in section (1.1.1)) a parameter k = +1, 0,−1 identi�es the three possible cases for

the sign of the spatial curvature. The brane is located at y = 0, where y is the

extra dimension, and the induced metric reads

ds2 = g̃µνdx
µdxν = −n2(τ)dτ 2 + a2(τ)γijdx

idxj (2.90)

where we denote the values of the bulk metric components on the brane with lower

case letters

n(τ) = N(τ, 0) a(τ) = A(τ, 0) b(τ) = B(τ, 0) (2.91)

We assume that the matter content of the brane have the usual cosmological form

T̃ ν
µ (τ) = diag

(
− ρ(τ), p(τ), p(τ), p(τ)

)
(2.92)

Note that it is always possible to set n(τ) = 1 using the gauge freedom and

rescaling the time coordinate τ → t. Using this freedom the Hubble parameter on

the brane takes the usual form

H(t) =
ȧ(t)

a(t)
(2.93)

We will make the further assumption that the bulk is �at, or equivalently that the

bulk metric (2.89) can be transformed into the 5D Minkowski metric by a suitable

change of coordinates.
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The modi�ed Friedmann equations

These assumption imply that we can derive an evolution equation for H(t) without

having to solve the full equations and �nd the exact metric in the bulk. It can be

shown that the Friedmann equations in this case take the form [47]

H2 +
k

a2
− ε 1

rc

√
H2 +

k

a2
=

1

3M2
4

ρ (2.94)

where rc = M2
P/2M

3
5 is the DGP crossover scale, and also that the usual conser-

vation equation holds for matter on the brane

ρ̇+ 3H(p+ ρ) = 0 (2.95)

Note that there are two branches of solutions, identi�ed by the the value ε = ±1

of the parameter ε in (2.94), which corresponds to the sign of the jump of ∂yA

across the brane.

Inspecting the Friedmann equation, we can see that the usual 4D Friedmann

equation is reproduced whenever the square root term in (2.94) is subdominant

with respect to the other two terms. Explicitly this happens when√
H2 +

k

a2
� 1

rc
(2.96)

and, neglecting the curvature term, we �nd

H−1 � rc (2.97)

so the usual 4D cosmological evolution is reproduced when the Hubble radius is

smaller than the crossover scale. Taking as initial condition at a certain t = t̄

a con�guration where the universe is expanding and satis�es (2.97), we want to

study how the late time cosmology predicted by this model looks like. We assume

that the 4D universe is �lled with matter whose energy density is non-negative and

goes to zero when a → +∞, or equivalently that the equation of state of matter

is p = wρ with w ≥ −1.

Late time cosmology

It turns out that the late time cosmological evolution is quite di�erent depending

on which branch we consider. To see it more clearly, it is useful to recast the
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Friedmann equation in the following form√
H2 +

k

a2
=

1

2rc

(
ε+

√
1 +

4rc
3M2

4

ρ

)
(2.98)

Let's start by considering the branch of solutions de�ned by ε = −1. Consid-

ering just the cases k = 0 and k = −1, where the universe expands forever (i.e.

a(t) → +∞ for t → +∞), we have that at late times the matter density goes to

zero, so we can expand the square root in the right hand side of (2.98) to obtain√
H2 +

k

a2
=

1

6M3
5

ρ (2.99)

which is called the 5D regime. In this branch, the universe continues expanding

with H → 0 for t → +∞, but at late times the expansion rate changes from

(H2 + k
a2

) ∝ ρ to (H2 + k
a2

) ∝ ρ2. In practice, when the Hubble radius reaches

the crossover scale rc the universe starts feeling the extra dimension, and there is

a transition in the expansion rate. This branch is usually called the conventional

branch.

Now consider the branch de�ned by ε = +1. Also in this case we restrict the

analysis to the cases k = 0 and k = −1, where a(t) → +∞ for t → +∞ and

we have that at late times the matter density goes to zero. Di�erently from the

conventional branch, in this case we have√
H2 +

k

a2
> Hself ≡

1

rc
(2.100)

and we have that the Hubble parameter is bounded from below

H > Hself =
1

rc
(2.101)

This means that, for t → +∞, the energy density goes to zero and the scale

factor goes to in�nity, but the Hubble parameter asymptote the �nite and nonzero

value Hself . Therefore, when the Hubble radius reaches the crossover scale rc and

the universe starts feeling the extra dimension, the universe enters an accelerating

phase. This branch is usually called the self-accelerating branch.

It can be shown explicitly [47] that these solutions can be embedded in the 5D

Minkowski spacetime, and therefore the treatment is self-consistent.
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Acceleration as self-acceleration and its problems

We have seen that in the DGP model there is a branch of cosmological solutions

which displays a transition form the usual 4D cosmological evolution to an acceler-

ated one. This happens without the need of introducing dark energy or a nonzero

cosmological constant: it happens for geometric reasons. This results motivated

the hope to explain the late time acceleration of the universe by geometrical means

[48], where the transition to the accelerated phase is a consequence of the fact that

the correct theory of gravity is not GR, and the di�erence starts to be felt when

the Hubble radius reaches the critical scale rc. Despite being a very appealing pos-

sibility, this does not solve the �ne tuning problem which is present in the case of

the cosmological constant, since to explain the cosmological observations we have

to tune the 5D mass scale M3
5 (and therefore rc) such that the transition happens

(in cosmological terms) very close to the matter-radiation equality.

Beside this unsatisfying aspect, there are much serious problems which cast

doubts on the viability of this explanation of the late time acceleration. It has in

fact been shown [52, 70, 71] that the predictions of the DGP cosmological models

are in strong tension with the observational data, and so these models �ts the data

signi�cantly worse than ΛCDM. Since DGP and ΛCDM have the same number

of free parameters, and both of them need to be �ne tuned, we can conclude

that the observational data strongly disfavor DGP in comparison to ΛCDM as a

description of the late time acceleration phenomenon. Furthermore, it has been

shown [72, 73, 50, 45, 46, 51] that there is a ghost excitation in the self-accelerating

branch: this implies that such a solution is unstable from a quantum point of view.

These issues are serious enough to force us to abandon the (original) DGP

model as an explanation of the cosmic acceleration. However, there is still the

possibility that some generalizations of the DGP model, involving higher codi-

mensions for example, may be ghost-free and �t the data signi�cantly better than

the original version, thereby providing a geometrical explanation for the late time

cosmic acceleration.



Chapter 3

dGRT massive gravity

We have seen in the previous chapters that a way to try to explain the apparent late

time acceleration of the universe is to modify gravity in the infrared, i.e. at large

distances. In particular, we have seen that the DGP model provides an interesting

way to do that, and in that model gravitational potentials behave like 1/r below

a crossover scale rc and like 1/r2 above it. However, in particle physics it is not

unusual to have a theory which behaves like 1/r below a scale and decays much

faster above it: Yukawa long ago proposed a model, which ought to describe the

pion, in which a scalar �eld has exactly this property. This is linked with the idea

that the mass of a particle �xes the range of the interaction it mediates: massive

particles mediate �nite range forces, while massless particles mediate in�nite range

forces. Considering a scalar �eld, the relativistic �eld equation for a massless �eld

is the D'Alembert equation

�φ = T (3.1)

where T is the source. Considering a static, spherically symmetric source, the

solution outside the source is

φ ∝ 1

r
(3.2)

However, giving a mass to the particle one obtains the equation of motion

(�−m2)φ = T (3.3)

69
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which is the Klein-Gordon equation, and admits a static, spherically symmetric

vacuum solution

φ ∝ e−mr

r
(3.4)

This is known as the Yukawa potential, and we can see that it behaves like ∼ 1/r

for r � rc while it decays exponentially for r � rc, where rc = 1/m is called the

Compton radius. We then see that the interaction mediated by a massive scalar

�eld has a �nite length, set by the Compton radius or equivalently by the inverse

mass.

It is quite natural to wonder if we could use this simple idea to modify gravity in

the infrared, �giving a mass� to the graviton. This relies on the fact that GR can be

considered as a theory of a massless �eld: we will see in fact that GR can be thought

as an interacting theory of a massless helicity-2 �eld, which is consistent with the

fact that gravitational interaction in GR have in�nite range. More precisely we

could try to formulate an interacting theory of a massive spin-2 �eld, and set its

Compton radius of the order of the Hubble radius today rc ∼ H−1
0 . The hope is that

we could construct in this way a theory which accurately reproduces GR below rc,

while behaves di�erently above that radius. Once done that, we could investigate

if this modi�ed gravity theory is able to explain the late time acceleration as an

e�ect of the fact that gravity behaves di�erently when the Hubble's radius becomes

comparable to the Compton radius.

The idea of formulating a theory of a massive spin-2 �eld which reduces to

GR below the Compton radius is actually quite old, and can be traced back to

the works of Fierz and Pauli (FP) in 1939 [74]. They formulated a theory of a

free massive spin-2 �eld, whose action reduces to the one of linearized GR in the

m→ 0 limit. However, the program we sketched above proved to be very di�cult

to implement. On one hand, it was argued that any nonlinear extension of the

FP theory leads to the appearing of an additional �sixth� degree of freedom and

the reintroduction of ghosts [75], and therefore the is no sensible way to formulate

an interacting theory of a massive spin-2 graviton (apart from considering Lorentz

violating theories [76]). On the other hand, it was shown that at linear level the

FP theory does not reproduce GR, even below the Compton radius [77, 78, 79].

A possible way out of the latter problem has been suggested by Vainshtein [69],
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who proposed that nonlinearities could be crucial in restoring the agreement with

GR, a mechanism which is known as Vainshtein mechanism. Recently, a class of

nonlinear completions of the Fierz-Pauli theory which are Lorentz invariant and

propagate exactly �ve degrees of freedom has been proposed [80, 81]. Even before

considering cosmological solutions, it is crucial to establish if this class of theories

reproduces GR in a suitable range of length scales, and therefore if the Vainshtein

mechanism is e�ective or not.

The main aim of this thesis is to investigate the e�ectiveness of the Vainshtein

mechanism in the class of theories known as dRGT Massive Gravity [80, 81]. In

this chapter we therefore introduce the theory in its generality, while in the next

chapter we focus on static, spherically symmetric solutions and on the Vainshtein

mechanism. This chapter is largely based on the recent review [82].

3.1 GR as an interacting massless helicity-2 �eld

Let's consider the action of GR

SGR[gµν , ψ(i)] =
M2

P

2

∫
d4x
√
−g R + SM [gµν , ψ(i)] (3.5)

where the ψ(i) are matter �elds while the matter action is

SM =

∫
d4x
√
−gLM (3.6)

The energy momentum tensor is de�ned as

Tµν ≡ −
2√
−g

δ

δgµν
SM (3.7)

so the equations of motion are the Einstein equations

Gµν =
1

M2
P

Tµν (3.8)

where M2
P = 1/8πG.
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3.1.1 Linear GR as a free massless spin-2 �eld

Let's study perturbations around the Minkowski solution

gµν = ηµν + hµν (3.9)

The linearized equations of motion can be deduced by expanding the equations of

motions, or equivalently by varying the quadratic part of the action obtained by

the expanding (3.5) in terms of hµν , which reads

S
(2)
GR =

∫
d4x

M2
P

2

(
− 1

2
∂λhµν∂

λhµν+∂µhνλ∂
νhµλ−∂µhµν∂νh+

1

2
∂λh∂

λh

)
−hµνT µν

(3.10)

where indices has been raised using ηµν . To study the vacuum dynamics of per-

turbation from Minkowski spacetime, we can set to zero the energy momentum

tensor in the action above: the vacuum equations of motion for hµν can be then

deduced from the action

S(2) =

∫
d4x

(
− 1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ − ∂µhµν∂νh+

1

2
∂λh∂

λh

)
(3.11)

We could pretend to forget for a moment where this action comes from, and just

study its properties. In general, �elds living in Minkowski spacetime can be cate-

gorized regarding their transformation properties with respect to Lorentz transfor-

mations: in particular, they can be decomposed in components of �xed mass and

spin. It can be shown that action (3.11) describes exactly a massless helicity-2 �eld

[82]. As a consistency check, we can show that a �eld whose dynamic is described

by (3.11) propagates two degrees of freedom (d.o.f.): to do that, it is useful to use

the Hamiltonian formalism.

Degrees of freedom count

Let's review some de�nitions of Lagrangian and Hamiltonian mechanics: for a

dynamical system with n degrees of freedom {qi} described by the Lagrangian

L(q, q̇, t), the conjugate momenta are de�ned as

pi(q, q̇, t) ≡
∂L

∂q̇i
(3.12)
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If the matrix of second derivatives with respect to the coordinates is nonsingular

det

[
∂2L

∂qi∂qj

]
6= 0 (3.13)

then we may invert (3.12) to express q̇i in terms of q, p and t. In this case we can

de�ne the Hamiltonian of the system as the Legendre transform of the Lagrangian

H(q, p, t) =
∑
i

pi q̇i(q, p, t)− L
(
q, q̇(q, p, t), t

)
(3.14)

and the equations of motion take the form

dqi
dt

=
∂H

∂pi
(3.15)

dpi
dt

= −∂H
∂qi

(3.16)

Given a function f(q, p, t), its time evolution satis�es

df

dt
= {f,H}P +

∂f

∂t
(3.17)

where the curly brackets are named Poisson brackets and are de�ned as

{f, g}P =
∑
i

( ∂f
∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi

)
(3.18)

We want to do a Hamiltonian analysis of the theory described be the action

(3.11). In this case, the dynamical variables are the �eld components hµν , but

it can be seen that the condition (3.13) is not satis�ed, since ḣ00 and ḣ0i appear

linearly. However, since total derivatives in the action do not change the physics

of the system, it is possible to integrate by parts in the action: using this freedom,

we end up with an action where ḣ00 and ḣ0i do not appear, and instead h00 and h0i

appear linearly. We can do the Legendre transform of the new action with respect

just to the spatial components: the conjugate momenta are then [82]

πij =
∂L
∂ḣij

= ḣij − ḣkkδij − ∂(ihj)0 + 2∂kh0kδij (3.19)

and we can invert this relation to get

ḣij = πij −
1

2
πkkδij + ∂(ihj)0 (3.20)
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Note that, since we are splitting space and time, it makes sense to perform purely

spatial transformations and so the Kronecker delta δij is indeed a tensor. Moreover,

note that we are using the convention of implicit sum on repeated indices, but now

the indices do not need to �up and down�, so for example ḣkk means
∑3

k=1 ḣkk. We

can then write the Lagrangian as [82]

L(h, π, h00, h0i) = πij ḣij −H + 2h0i

(
∂jπij

)
+ h00

(
4hii − ∂i∂jhij

)
(3.21)

where H depends only on hij, πij and their spatial derivatives. Note that h00

and h0i indeed appear linearly, and they are multiplied by terms with no time

derivatives: we can interpret h00 and h0i as Lagrange multipliers which enforce the

(primary) constraints

∂jπij = 0 4hii − ∂i∂jhij = 0 (3.22)

and so consider the system described by (3.11) as a constrained Hamiltonian sys-

tem. It can be checked that the matrix whose elements are the Poisson brackets

of the constraints between themselves is vanishing when the �elds satisfy the con-

straints, so each of the four constraints generate a gauge transformation, and that

the Poisson bracket of the constraints with the Hamiltonian vanishes, so the con-

straints are conserved by the time evolution. To count the number of degrees of

freedom, the hij and πij are 3 × 3 symmetric matrices, so have 6 independent

components each. Of these 12 degrees of freedom, 4 can be eliminated using the

constraints, and other 4 can be �xed using the gauge transformations. So in the

end we are left with 4 phase space degrees of freedom, which correspond to 2

physical degrees of freedom.

Massless helicity-2 and gauge invariance

It is remarkable that, even if we didn't start from the complete GR action, we

could have arrived at the action (3.11) following other paths. As we just said, the

request that the action describes a massless, helicity-2 �eld singles out (apart from

a multiplicative constant) the action above. Even if we just ask that the action

describes a massless �eld which, upon decomposition in helicity-2, helicity-1 and

helicity-0 components, contains a helicity-2 part, then the request of absence of
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ghost instabilities �xes the action to be (3.11) [83]. Therefore, if we started from

a more �eld theoretical perspective, we would have singled out this action just

asking that a massless helicity-2 �eld plays a role in the gravitational interaction.

Note that there is yet another way of deriving this action, this time from the point

of view of symmetries. The action (3.11) is invariant with respect to the (gauge)

transformation

hµν → hµν + Lξ(η)µν = hµν + ∂µξν + ∂νξµ (3.23)

where ξµ(x) is an arbitrary 1-form �eld. From the perspective of GR, this is just a

consequence of di�eomorphism invariance of the full theory, and the transformation

above is the linearized form of an in�nitesimal coordinate transformation. On the

other hand, considering the most general quadratic, local and Lorentz invariant

action for a symmetric �eld hµν on Minkowski spacetime, with no more than two

derivatives, the request of invariance with respect to the transformation (3.23) �xes

the action to be (3.11) [82, 84], again up to a multiplicative constant. Once again,

we may have found the action above just asking reasonable physical properties

plus gauge invariance, without knowing anything about GR. It is tempting to

wonder if it is not just a chance that the action which describes linear GR has

these properties, and if they may be considered instead the core of GR as a �eld

theory of gravitation.

3.1.2 GR as an interacting massless spin-2 theory

It can in fact be seen that locality, Lorentz invariance, no higher derivatives and

gauge invariance actually �x the theory also at nonlinear level. Let's start again

from the complete action of GR (3.5): the theory is invariant with respect with

general coordinate transformations, which for in�nitesimal transformations read

Xµ → Xµ − ξµ(X) (3.24)

hµν → hµν + ∂µξν + ∂νξµ + Lξ(h)µν (3.25)

Here, the full metric is gµν = ηµν+hµν , ξ
µ is an in�nitesimal vector �eld and indices

are lowered/raised with the �at metric ηµν/η
µν . However, hµν is not necessarily

small. Expanding around Minkowski space, we can write the full action in terms
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of powers of hµν : the quadratic piece give the action (3.10), while higher powers

of hµν can be interpreted as self-interaction pieces. The full action in vacuum

schematically will be of the form

S =

∫
d4x

[
∂2h2 + ∂2h3 + · · ·+ ∂2hn + · · ·

]
+ (3.26)

where ∂2hn means that this piece contains two derivatives and n factors coming

from hµν (not that there is a second derivative of h to the third power). The

fact that this is an expansion of GR around Minkowski spacetime is encoded in

the precise form of the terms which enter at every order, and in the values of the

numerical coe�cients which stand in front of each term.

GR as a resummed theory

However, we may take the opposite perspective: we may start with the action

(3.11) for a free massless helicity-2 graviton, and ask what higher power interac-

tion terms can be added. The possible terms can be arranged in powers of the

perturbations h and their derivatives, so the general nonlinear extension of (3.11)

will contain the type of terms present in (3.26) as well as many others. We may

ask that the full action resulting from such an operation enjoys gauge invariance:

the gauge transformations should reduce to (3.23) at linear order, but may have

higher order corrections. It can be shown [82, 84] that these requirements are

strong enough to force the interaction terms to be exactly the ones of full non-

linear GR. Therefore, we may equivalently see the full action of GR not as the

starting point, but as the result of the summation of all the terms allowed by

gauge invariance for an interacting theory of a massless helicity-2 �eld.

A note of caution is in order: this �bottom-up� construction which allows to

see GR as an interacting theory of a massless helicity-2 �eld relies on the fact that

we chose Minkowski space as the starting point. However, from this perspective a

�miracle� happens when we add up all the interaction terms: despite the fact that

we explicitly started from a de�nite background (ηµν), which is not dynamical (it

is not determined by the theory itself), the �eld rede�nition hµν → gµν−ηµν in the

resummed theory completely eliminates the background metric from the action.

Therefore, the fully interacting action turns out to be background independent, or
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in other words there is not a prior geometry in the theory.

3.1.3 Propagator and relevant scales

Propagator

Let's study the linear approximation of GR in presence of sources. As we already

said, the theory is de�ned by the action (3.10) which gives the equations of motion

E ρσ
µν hρσ = M−2

P Tµν (3.27)

where

E ρσ
µν =

1

2

[
δ σ(µη

λρ∂λ∂ν) − ηρσ∂µ∂ν h− δ ρµ δ σν �− ηµν
(
ηλρηασ∂λ∂α − ηρσ�

) ]
(3.28)

We would like to �nd the propagator of the (linear) theory, which roughly speaking

is the solution of the equation above when the source is perfectly localized. How-

ever, the gauge invariance enjoyed by the theory implies that, for every con�gura-

tion of the source term, there are an in�nite number of solutions of the equation

above and therefore the operator E ρσ
µν is not invertible. To �nd the propagator, we

have to �x the gauge and render the di�erential operator invertible: once found the

propagator in a particular gauge, the solution of (3.27) will be given by the sum

of the gauge �xed solution and a pure gauge contribution. We choose to impose

the harmonic gauge condition

∂µhµν −
1

2
∂νh = 0 (3.29)

and using this condition the equation of motion (3.27) can be simpli�ed to give

O ρσ
µν hρσ = M−2

P Tµν (3.30)

where

O ρσ
µν = −1

2

[
δ ρµ δ

σ
ν �−

1

2
ηµνη

ρσ�
]

(3.31)

The propagator D αβ
µν (x;x′) is then de�ned as the solution to the equation

O ρσ
µν D αβ

ρσ (x;x′) =
1

2

(
δ αµ δ

β
ν + δ αν δ

β
µ

)
δ(4)(x− x′) (3.32)
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and as in the previous chapter we can factorize a scalar part DS(x;x′) and a purely

numerical part which carries the tensor structure S αβ
µν (note that the propagator

depends only on the di�erence (x − x′) because of translational symmetry). One

has then

S αβ
µν =

1

2

(
δ αµ δ

β
ν + δ αν δ

β
µ

)
− 1

2
ηµνη

αβ (3.33)

−1

2
�DS(x− x′) = δ(4)(x− x′) (3.34)

which con�rms the formula (2.67) of the previous chapter.

Static spherically symmetric solutions and nonlinearity scales

Considering now a static, spherically symmetric source point source of mass M :

Tαβ(~x ′) = M δ 0
α δ

0
β δ

(3)(~x ′), we get analogously to section (2.2.1)

hµν(r) = S 00
µν

M

M2
P

VGR(r) (3.35)

and so we have that hµν is diagonal and

h00(r) =
M

M2
P

1

4πr
=

2GM

r
(3.36)

hii(r) =
M

M2
P

1

4πr
=

2GM

r
(3.37)

Remembering the de�nition of gravitational potentials

h00(r) = −2 Φ(r) (3.38)

hii(r) = −2 Ψ(r) δij (3.39)

we have that in GR

Φ(r) = − M

M2
P

1

8πr
= −GM

r
(3.40)

Ψ(r) = − M

M2
P

1

8πr
= −GM

r
(3.41)

which gives (2.66). Note that this solution indeed satis�es the harmonic gauge

condition (3.29).
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To �nd the scale where nonlinearities become important in GR, we should

insert the linear solution (3.40)-(3.41) in the full action (3.26), and see at what

radius(es) the nonlinear terms become comparable with the linear ones. Due to

the dependence ∝ 1/r of the components of hµν , any term ∂2hn will be, apart from

numerical factors, ∂2hn ∼ hn/r2 and so become comparable to ∂2h2 ∼ h2/r2 at

r ∼M/M2
P . We see that all the nonlinear terms become comparable to the linear

ones at the same scale

rg ∼ GM ∼ M

M2
P

(3.42)

which is therefore the only scale where nonlinearities become important in presence

of a spherical body of mass M .

3.2 The Fierz-Pauli theory

3.2.1 The Fierz-Pauli action

Having seen that GR can be considered in some sense as an interacting theory

of a massless helicity-2 �eld on Minkowski spacetime, the �rst step in building a

nonlinear theory of massive gravity is to �nd the action which describes the dy-

namics of a free massive spin-2 �eld on Minkowski spacetime. In the perturbative

approach to construct the full theory, once found this free action we should add

interaction terms which extend the theory at full nonlinear level. The problem of

�nding the action which describes a free massive spin-2 �eld on Minkowski space-

time has been solved already in 1939 by Fierz and Pauli [74] who proposed the

following action for a symmetric tensor hµν

S
(2)
FP =

∫
d4x

[
− 1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ − ∂µhµν∂νh+

+
1

2
∂λh∂

λh− m2

2

(
hµνh

µν − h2
)]

(3.43)

which is therefore called the Fierz-Pauli action. Analogously to the quadratic

action for GR, there are several ways to look at it. We may notice in fact that it is

a linear combination of all the possible contractions of two powers of hµν with up

to two derivatives, which are the terms appearing in (3.11) plus two non-derivative
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terms. The coe�cients of this linear combination are such that the derivative part

exactly reproduces the quadratic GR action (3.11), while the relative coe�cient

between the two non-derivative terms is �xed to be −1: this is known as the Fierz-

Pauli tuning. However, the most distinctive property of this action is seen from

the point of view of the representations of the Lorentz group: this is exactly the

action which describes the dynamics of one free massive spin-2 �eld. Any change in

this action would either introduce other degrees of freedom along with the massive

spin-2 �eld, or disrupt the fact that there is a massive spin-2 in the theory. The

overall coe�cient of the non-derivative terms plays the role of mass of the �eld,

and the part m2(hµνh
µν − h2)/2 is then called the mass term. As we did for the

quadratic GR action, we can count the degrees of freedom as consistency check

of the fact that the Fierz-Pauli action propagates the 5 degrees of freedom of a

massive spin-2 �eld.

Degrees of freedom count

Analogously to the case of linear GR, the �elds ḣ00 and ḣ0i appear linearly in the

action, and the condition (3.13) is not satis�ed. Also in this case we integrate

by parts to have an action where ḣ00 and ḣ0i do not appear at all. However, in

this case the h0i do not appear linearly, since the mass term produces quadratic

terms in h0i, while h00 still appears linearly, despite the mass term. We can do

the Legendre transform of the (integrated by parts) action with respect just to

the spatial components, and the conjugate momenta have the same form as in the

m = 0 case [82]

πij =
∂L
∂ḣij

= ḣij − ḣkkδij − ∂(ihj)0 + 2∂kh0kδij (3.44)

and inverting this relation we get as in the m = 0 case

ḣij = πij −
1

2
πkkδij + ∂(ihj)0 (3.45)

The contributions from the mass term show up in the Lagrangian, which can be

written as [82]

L(h, π, h00, h0i) = πij ḣij −H + 2h0i

(
∂jπij

)
+m2h2

0i + h00

(
4hii − ∂i∂jhij −m2hii

)
(3.46)
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where again H depends only on hij, πij and their spatial derivatives, and h2
0i is

a shorthand for
∑

i h
2
0i. It is apparent that, as we said, h00 still appears linearly,

and still multiply a term with no time derivatives, but now the �elds h0i appear

quadratically. They can be interpreted as auxiliary variables: in this case they

don't enforce any constraint, and their equations of motion give

h0i = − 1

m2
∂jπij (3.47)

which can be plugged back into the action (3.46) to give [82]

S =

∫
d4x

[
πijḣij −H + h00

(
4hii − ∂i∂jhij −m2hii

)]
(3.48)

where

H = H +
1

m2

(
∂jπij

)2
(3.49)

The �eld h00 instead enforces the (primary) constraint C1 = 4hii−∂i∂jhij−m2hii =

0. However, this constraint is not automatically preserved by the time evolution

of the system, since its Poisson bracket with the Hamiltonian C2 ≡ {C1,H }P
is neither zero nor proportional to C1. Therefore, we have to impose also the

(secondary) constraint C2 = 0. The Poisson bracket of C2 with H is instead linearly

dependent with C1 and C2, so we don't need to impose any more constraints: in

total the number of constraints we need to impose is therefore two. Since the

Poisson bracket of the two constraints does not vanish, they don't generate any

gauge symmetry. The degrees of freedom are then the 6 + 6 = 12 of hij and πij

minus one for each constraint: we have in total 12 − 2 = 10 phase space degrees

of freedom which correspond to 5 physical degrees of freedom.

Massive spin-2 and absence of gauge invariance

Using the Hamiltonian formalism, it is actually quite easy to see why the Fierz-

Pauli tuning is necessary: a generic mass term a hµνh
µν + b h2 contains h2

00 in the

form (a+ b)h2
00, so only if a = −b we have that h00 appears linearly. Explicitly

ahµνh
µν + bh2 = (a+ b)h2

00 − 2ah2
0i − 2bh00hii + ahijhij + bh2

ii (3.50)

We see that if a = 0 then h0i appear linearly in the action (due the derivative

part), so there are at least 3 constraints and it is impossible to have 10 phase
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space degrees of freedom. Therefore, if a = 0 the action can never propagate the 5

physical degrees of freedom of a massive spin-2 graviton. However, if a 6= 0 the h0i

become auxiliary variables: if b 6= −a then h2
00 appears in the action, and so it is a

auxiliary variable as well meaning that there are no constraints at all. Therefore,

in the latter case the number of physical degrees of freedom is 6. Only if a 6= 0

and a = −b there can be 5 degrees of freedom, which describe the massive spin-2

�eld.

Note that this action is not invariant with respect to the gauge transformation

(3.23): the gauge symmetry is broken by the mass term. Therefore, we cannot

construct a nonlinear extension by enforcing a nonlinear version of the gauge sym-

metry, as can be done to construct (nonlinear) GR from the linear approximation.

However, it can be shown that every modi�cation at linearized level of (3.43) which

still propagates a massive spin-2 �eld, have ghost instabilities [83]: necessarily the

additional (sixth) degree of freedom turned on by the modi�cation is a ghost. The

Fierz-Pauli action is therefore the only quadratic action for a symmetric tensor on

Minkowski spacetime which contains a massive spin-2 �eld and is ghost-free. This

is a property we may hope to use as a criterion to build a nonlinear extension of

the Fierz-Pauli action.

3.2.2 The VDVZ discontinuity and Vainshtein mechanism

We would like now to derive the weak �eld solution correspondent to a static,

point-like mass in the Fierz-Pauli theory. The full Fierz-Pauli action including the

source is

S
(2)
FP =

∫
d4x

M2
P

2

[
− 1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ − ∂µhµν∂νh+

+
1

2
∂λh∂

λh− m2

2

(
hµνh

µν − h2
)]
− hµνT µν (3.51)

and performing the variation with respect to hµν we obtain the equation of motion

− 1

2

(
�hµν − ∂λ∂(µh

λ
ν) + ηµν∂λ∂σh

λσ + ∂µ∂νh−

− ηµν�h−m2(hµν − ηµνh)
)

= M−2
P Tµν (3.52)
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We consider conserved sources, for which ∂µT
µν = 0. Acting on the equations of

motion (3.52) with ∂µ, we �nd

∂µhµν − ∂νh = 0 (3.53)

and, plugging this back into (3.52) and taking the trace, we �nd

−3

2
m2h =

1

M2
P

T (3.54)

Using the last two relations, we can show that the equations of motion (3.52) are

equivalent to the following system of di�erential equations

−1

2

(
�−m2

)
hµν =

1

M2
P

[
Tµν −

1

3

(
ηµν −

∂µ∂ν
m2

)
T

]
(3.55)

∂µhµν = −2

3

1

M2
Pm

2
∂νT (3.56)

h = −2

3

1

M2
Pm

2
T (3.57)

The general solution to (3.52) can be expressed in general as the sum of the

general solution of the homogeneous equation plus a particular solution. The

former is therefore the general solution of the system(
�−m2

)
hµν = 0 (3.58)

∂µhµν = 0 (3.59)

h = 0 (3.60)

and so is a transverse-traceless �eld. For the particular solution of the sourced

equation, we impose boundary conditions which imply that the operator
(
�−m2

)
is invertible, and so the second and third equations (3.56) and (3.57) are implied

by the �rst one (3.55). Therefore, in order to �nd a particular solution of the

sourced �eld equations (3.52), it is su�cient to �nd a solution of

−1

2

(
�−m2

)
hµν =

1

M2
P

[
Tµν −

1

3

(
ηµν −

∂µ∂ν
m2

)
T

]
(3.61)
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To solve this equation, it is useful to go to momentum space. We express hµν(x)

and Tµν(x) via their Fourier transforms

hµν(x) =

∫
d4p eipαx

α

hµν(p) (3.62)

Tµν(x) =

∫
d4p eipαx

α

Tµν(p) (3.63)

and so we obtain

hµν(p) =
2

M2
P

1

pαpα +m2

[
1

2
δ ρ

(µ δ
σ

ν) −
1

3

(
ηµν +

pµpν
m2

)
ηρσ
]
Tρσ(p) (3.64)

Note that a static source Tµν(x) = Tµν(~x) has a Fourier transform of the form

Tµν(p) = δ(p0)T (3)
µν (~p) (3.65)

and in particular, for a point-like source of mass M we have

Tµν(~x) = M δ 0
µ δ

0
ν δ

(3)(~x) −→ Tµν(p) =
δ(p0)

(2π)3
M δ 0

µ δ
0
ν (3.66)

Indicating r ≡
√
~x 2 and using the formulas∫
d3~p

(2π)3
ei~p·~x

1

~p 2 +m2
=

1

4π

e−mr

r
(3.67)∫

d3~p

(2π)3
ei~p·~x

pipj
~p 2 +m2

= −∂i∂j
∫

d3~p

(2π)3
ei~p·~x

1

~p 2 +m2
(3.68)

we have [82]

h00(x) =
4

3

M

M2
P

e−mr

4πr
(3.69)

h0i(x) = 0 (3.70)

hij(x) =
2

3

M

M2
P

e−mr

4πr

[
1 +mr +m2r2

m2r2
δij −

1

m2r4
(3 + 3mr +m2r2)xixj

]
(3.71)

where xi = δikx
k.
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The VDVZ discontinuity

Note that, neglecting the term ∂µ∂νT in (3.61) and therefore the term pµpν T (p)

in (3.64), we would obtain the following solution

h00(x) =
4

3

M

M2
P

e−mr

4πr
(3.72)

h0i(x) = 0 (3.73)

hij(x) =
2

3

M

M2
P

e−mr

4πr
(3.74)

The term pµpν T (p) produces a contribution to the metric �eld which has no ob-

servable consequences on a test body whose energy-momentum tensor obeys the

conservation equation: in fact, the interaction amplitude
∫
d4xhµνT

µν
tb between

such a contribution to the metric and the conserved energy-momentum tensor

of a test body vanishes. Therefore, regarding measurements like light de�ection,

planets orbits and so on, the metric (3.69)-(3.71) give the same predictions as the

metric (3.72)-(3.74). Let's consider then the metric (3.72)-(3.74): the gravitational

potentials reads

Φ(r) = −2

3

M

M2
P

e−mr

4πr
Ψ(r) =

1

2
Φ(r) (3.75)

For distances larger than the Compton length rc ≡ 1/m, the potentials decay

exponentially, with the tipical (Yukawa) behavior of massive �elds e−mr/r. On the

other hand, for distances smaller than the Compton wavelength r � rc, both of the

gravitational potentials have the 1/r dependence of GR, but their ratio Φ(r)/Ψ(r)

is twice the GR value. The situation is completely equivalent to the weak �eld

solution of the DGP model inside the crossover scale: this mismatch is responsible

for a 25% relative error in light de�ection or planet orbits predictions compared

to the GR ones. Note that this conclusion is not a�ected by taking m as small as

we like, since this will only make the Compton radius bigger and bigger without

altering what happens well inside the Compton radius itself. However, if we set

m to be exactly zero, then the theory is exactly GR and trivially the predictions

agree with the GR ones: therefore, there seems to be a discontinuity in the physical

predictions of the theory when m → 0. This has been noted and pointed out
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independently by Iwasaki [77], van Dam and Veltman [78] and Zakharov [79], and

is known as the VDVZ discontinuity. This is a priori unexpected, since there

seems to be no discontinuity in the m→ 0 limit in the action (3.51), and it usually

assumed that if a theory is continuous in a parameter, then its physical predictions

should be continuous in that parameter as well. However, the key point here is that

taking the limit m→ 0 in the action is not the correct way to perform the m→ 0

limit in the theory: for example, the action (3.51) for every m 6= 0 propagates 5

degrees of freedom, as we saw, while the m = 0 action propagates only two degrees

of freedom. Also, the m = 0 theory enjoys a gauge invariance which does not hold

as soon as m becomes di�erent from zero. Therefore, the number of degrees of

freedom and the symmetry properties of the action (3.51) are not continuous in

the m→ 0 limit. We may conclude that the m→ 0 limit of the Fierz-Pauli theory

is not described by the m → 0 limit of the Fierz-Pauli action, and in particular

the m→ 0 limit of the Fierz-Pauli theory is not GR. To elucidate this, it is useful

to construct a di�erent action which enjoys gauge invariance even in the m 6= 0

case and gives the same physical predictions of the FP one: this is achieved using

the Stückelberg language, as we shall see in the next subsection.

The Vainshtein mechanism

The conclusion that the m → 0 limit of the Fierz-Pauli theory is not GR seems

to put an end to our hope to use a very small mass for the graviton as a way to

explain the cosmological observations which indicate a late time acceleration: it

seems that massive gravity is not a modi�ed gravity theory in the sense of section

(1.3.2). However, from the modi�ed gravity perspective the FP theory is just the

starting point: since the FP theory is linear (at the level of the �eld equations),

it can never reproduce the strong �eld behavior of GR. The hope was that the

FP theory reproduces the weak �eld limit of GR for distances smaller than the

Compton length, and that a suitable nonlinear completion of the FP theory is

able to reproduce also the strong �eld behavior of GR in the same range of length

scales. Instead, we found that the FP theory does not reproduce GR either inside

or outside the Compton radius. However, it has been proposed by Vainshtein

[69] that interaction terms added to the FP action may be e�ective to restore
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agreement with GR also at length scales where the weak �eld approximation in

GR is valid. This idea relies on the fact that nonlinear terms in the nonlinear

extension of the FP theory may become relevant at a scale which is much larger

than the scale rg = GM ∼M/M2
P where nonlinear terms become relevant in GR,

somewhat similarly to what happens in the DGP model.

Vainshtein considered a speci�c nonlinear extension of the Fierz-Pauli theory,

namely the one obtained adding the mass term m2(hµνh
µν − h2)/2 to the full

nonlinear GR action expressed in terms of ηµν and hµν = gµν − ηµν . Considering
a static and spherically symmetric source, he used the following ansatz for the

metric

ds2 = −B(r)dt2 + C(r)dr2 + A(r)r2dΩ2 (3.76)

which at linear order (i.e. keeping only the quadratic terms in the action) have

the vacuum solutions [82]

B1(r) = −8GM

3

e−mr

r
(3.77)

C1(r) = −8GM

3

e−mr

r

1 +mr

m2r2
(3.78)

A1(r) =
4GM

3

e−mr

r

1 +mr +m2r2

m2r2
(3.79)

which are equivalent to (3.69)-(3.71). We can ask how these solutions are modi�ed

if we keep also the nonlinear terms in the equations of motion (or equivalently the

interaction terms in the action). We can write

B(r) = B0(r) + εB1(r) + ε2B2(r) + · · · (3.80)

C(r) = C0(r) + εC1(r) + ε2C2(r) + · · ·

A(r) = A0(r) + εA1(r) + ε2A2(r) + · · ·

where A0 = B0 = C0 = 1 and ε is a parameter that keeps track of which order

in nonlinearities we are working at. Solving recursively the vacuum equations at

each order in ε shows [69, 82] that the expansion in powers of nonlinearities shows

up in the solutions for A, B and C as an expansion in the parameter rV /r, where

rV ≡
5

√
GM

m4
= 5
√
rgr4

c (3.81)
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is called the Vainshtein radius. It follows that nonlinearities become important

(i.e. comparable to the linear terms) when r ≈ rV , so the Vainshtein radius

is the scale around a mass M below which the linear approximation cannot be

trusted. Note that, since we assume that rc/rg � 1, it follows that the Vainshtein

radius is much bigger than the Schwarzschild radius rV /rg � 1 and so the scale

where nonlinearities become important around a spherical object for the Fierz-

Pauli theory is indeed much bigger than the scale where this happens in GR. In

fact, setting m = H0, for an object like the sun the Vainshtein radius (3.81) is

rV ∼ 105 pc, which is bigger than the diameter of the Milky Way1: therefore the

linear solution cannot be used to calculate the light bending and the planets' orbits

in the solar system. Note also that the de�nition (3.81) for the Vainshtein radius

in this nonlinear extension of Fierz-Pauli is di�erent from the de�nition (2.72) of

the Vainshtein radius in the DGP model: this is not strange, since the Vainshtein

radius of a theory depends on the structure of the interaction terms, and theories

which have di�erent nonlinear structures are likely to have di�erent Vainshtein

radiuses.

To understand if this nonlinear extension of the Fierz-Pauli theory reproduces

or not the GR predictions inside the Vainshtein radius, we should then solve the

full equations (with all the nonlinear terms). Note that we have to solve necessarily

for three unknown functions, we cannot reduce to just two unknown functions as

we do in GR. In fact, reparametrising the radial coordinate according to

r → ρ(r) = r
√
A(r) (3.82)

we can eliminate the function A from the metric and write the line element in

terms of just two functions

ds2 = −B̃(ρ)dt2 + C̃(ρ)dρ2 + ρ2dΩ2 (3.83)

In GR, performing this change of variables in the equations of motion results in

the function A disappearing also from them, as a consequence of the fact that the

theory is invariant with respect of reparametrisations, and so indeed we can reduce

the problem to solving for just two functions. However, the Fierz-Pauli theory is

1The diameter of the Milky Way is approximately 3× 104 pc.



3.2 The Fierz-Pauli theory 89

not invariant with respect to reparametrisations, and as a consequence the function

A→ Ã(ρ), despite disappearing from the metric, remains present in the equations

of motion along with B̃ and C̃ when we reparametrise the radial coordinate. Of

course, nothing prevents us from performing the change of coordinate and work

with the unknown functions Ã, B̃ and C̃ instead of A, B and C. In fact, Vainshtein

suggests that this is a convenient thing to do to study the m → 0 limit, since,

regarding the functions B̃ and C̃, he suggests that the e�ects of nonlinearities inside

the Vainshtein radius is just to rescale the numerical factors so that B̃/C̃ = 1, while

preserving the ∝ 1/r dependence. Instead, the e�ect of nonlinearities changes Ã

quite dramatically. He then concludes [69] that for m� 1 the functions B̃ and C̃

coincide to a very good approximation with their GR (m = 0) values inside the

Vainshtein radius, and have a smooth m→ 0 limit. In other words, the nonlinear

terms in the equation of motion modify all the three functions A, B and C, but in

such a way that, rede�ning the radial coordinate to get rid of A in the metric, the

nonlinear solutions for B̃ and C̃ inside the Vainshtein radius agree with the GR

solutions, and so the nonlinear interaction terms restore the agreement with GR.

Further studies on the recovery of GR results in the same nonlinear extension of

the Fierz-Pauli theory considered by Vainshtein can be found in [85, 86, 87, 88, 89].

The mechanism of restoring agreement with GR via nonlinear interactions is named

after Vainshtein and is known as the Vainshtein mechanism.

Note �nally that, as the mass m approaches 0, the Vainshtein radius grows

and tends to in�nity: in the limit m → 0 the predictions of GR are recovered

everywhere, and so the m → 0 limit is indeed smooth for the theory. Therefore,

while the linear Fierz-Pauli theory does not reduce to (linear) GR in the m →
0 limit, it is possible that a nonlinear extension of the Fierz-Pauli theory does

reduce to (nonlinear) GR in the same limit, and therefore that there is no VDVZ

discontinuity at nonlinear level.

3.2.3 The Fierz-Pauli theory in the Stückelberg language

We have mentioned that the weak �eld predictions of the FP theory are signi�-

cantly di�erent from the ones of linearized GR, no matter how small is the mass

of the FP graviton. Therefore, since the m → 0 limit of the FP action is smooth
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and gives the GR action, the physical predictions of the FP theory seem not to be

continuous in the m → 0 limit. This is very surprising, since it usually assumed

that if a theory is continuous in a parameter, then its physical predictions should

be continuous in that parameter as well. However, as we already mentioned, a

deeper look at the structure of the FP theory and of GR casts doubts on the fact

that m → 0 limit of the FP theory is given by the m → 0 limit of the Fierz-

Pauli action: in fact, the FP theory propagates �ve degrees of freedom, while GR

propagates just two degrees of freedom; conversely, GR enjoys gauge invariance,

which is instead broken in the Fierz-Pauli theory. Therefore, regarding the sym-

metry properties and the number of degrees of freedom, the m → 0 limit of the

Fierz-Pauli action is not continuous. It is tempting to conjecture that the VDVZ

discontinuity and the discontinuity in symmetry properties and degrees of freedom

are linked, and that the m→ 0 limit of the Fierz-Pauli theory is not described by

the m→ 0 limit of the Fierz-Pauli action.

To understand the relation between the m→ 0 limit of the Fierz-Pauli theory

and GR, thereby possibly sheding light on the origin of the VDVZ discontinuity,

we would like to formulate a new theory which gives the same physical predictions

of the Fierz-Pauli theory, but whose action in the m → 0 limit still has the same

symmetry properties and number of degrees of freedom of the m 6= 0 action. This

task is achieved using the Stückelberg formalism.

The Stückelberg formalism

Starting from the Fierz-Pauli action (3.51), we want to formulate a di�erent the-

ory which is invariant under gauge transformations, yet gives the same physical

predictions of the FP action. This is achieved introducing auxiliary �elds, called

Stückelberg �elds, whose transformation properties are de�ned exactly to render

the action invariant. Let's in fact perform in the action (3.51) the substitution

hµν(x)→ Hµν(x) = hµν(x) + ∂(µZν) : (3.84)
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if we impose that the �eld Zµ shifts under gauge transformations

x′µ = xµ − ξµ(x) (3.85)

Z ′µ = Zµ − ξµ (3.86)

h′µν = hµν + ∂(µ ξν) (3.87)

we have that the resulting action is invariant. Note that, given any �eld con�gu-

ration (hµν , Zµ) of the new theory, we can always perform a gauge transformation

with parameter ξµ = Zµ in the new action and reobtain the original FP action.

Therefore, despite the fact that the new action contains more �elds that the orig-

inal one, the physical prediction of the original action and of the �covariantized�

one are precisely the same. On the other hand, the �eld Zµ does not transform as

a 1-form, but have an unusual transformation property.

Performing the substitution (3.84) inside the FP action, the kinetic part of

the action does not change since the substitution (3.84) has the same form of a

gauge transformation, and that part of the action is invariant (it is the action for

linearized GR in fact). The only thing that changes is the mass term, and modulo

total derivatives we get

S =

∫
d4xM2

P

[
hµνE ρσ

µν hρσ −
m2

2

(
hµνh

µν − h2
)
−

− m2

2
FµνF

µν − 2m2
(
hµν∂

µZν − h∂µZµ
)]
− hµνT µν (3.88)

where Fµν = ∂[µZν] and we raise/lower indices with the Minkowski metric ηµν/ηµν .

We can rede�ne the �eld Zµ → 1
m
Zµ to render canonical its kinetic term: if we

take the m→ 0 limit, we obtain an action for a massless graviton and a massless

vector, which in total have four degrees of freedom. So at this point, we still lose

one degree of freedom in the m→ 0 limit.

We can remedy to this problem by introducing an additional substructure in

Zµ by singling out explicitly a derivative part: we then write

Zµ = Aµ + ∂µφ (3.89)

and in terms of Aµ and φ the tensor Hµν reads

Hµν = hµν + ∂(µAν) + 2 ∂µ∂νφ (3.90)
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Note that the decomposition (3.89) is invariant with respect to the additional

internal symmetry

φ(x)→ φ(x)− Λ(x) (3.91)

Aµ(x)→ Aµ(x) + ∂µΛ(x) (3.92)

and so there are now two gauge transformation under which the action is invariant

x′µ = xµ − ξµ(x) (3.93)

h′µν = hµν + ∂(µ ξν) (3.94)

A′µ = Aµ − ξµ + ∂µΛ (3.95)

φ′ = φ− Λ (3.96)

In terms of the �elds Aµ and φ, the action (3.88) takes the form

S =

∫
d4xM2

P

[
hµνE ρσ

µν hρσ −
m2

2

(
hµνh

µν − h2
)
− m2

2
FµνF

µν−

− 2m2
(
hµν∂

µAν − h∂µAµ
)
− 2m2

(
hµν∂

µ∂νφ− h∂µφ∂µφ
)]
− hµνT µν (3.97)

where now Fµν = ∂[µAν] and again we have discarded total derivatives. Note that

the quadratic piece in ∂∂f and the mixed term ∂A∂∂f does not appear precisely

for this reason: these terms rearrange in total derivatives, and therefore have no

e�ect on the dynamic. As we will mention later, this is a consequence of the

Fierz-Pauli tuning, since any other choice for the mass term of hµν in the starting

action produces a quadratic piece in ∂∂f and a mixed piece ∂A∂∂f which does

not arrange themselves into total derivatives.

The VDVZ discontinuity in the Stückelberg language

Note that, in the action (3.97), the �eld φ does not have a kinetic term on its

own, but is kinetically mixed with hµν . To be able to see more clearly the physical

meaning of this action, it is useful to perform a �eld rede�nition which demix

kinetically the �elds hµν and φ, and at the same time creates a proper kinetic term
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for the latter �eld. The rede�nition

h̄µν = hµν −m2φ ηµν (3.98)

Āµ = Aµ (3.99)

φ̄ = φ (3.100)

has precisely this e�ect, and creates a coupling between φ̄ and the trace of the

energy-momentum tensor as well. It is convenient to further rede�ne the �elds to

render the kinetic terms canonical

ĥµν = MP h̄µν (3.101)

Âµ = MPmĀµ (3.102)

φ̂ = MPm
2φ̄ (3.103)

and in terms of the �hatted� �elds the action (3.97) reads

S =

∫
d4x

[
ĥµνE ρσ

µν ĥρσ −
1

2
F̂µνF̂

µν − 3 ∂µφ̂∂
µφ̂− 1

MP

ĥµνT
µν − 1

MP

φ̂ T + . . .

]
(3.104)

where the dots stand for terms which are multiplied by m or m2. The m→ 0 limit

of this action describes a theory of a massless graviton, a massless vector and a

massless scalar, and so propagates �ve degrees of freedom exactly as the m 6= 0

theory.

Note that, in the m → 0 limit, the action for the �eld ĥµν is exactly the GR

action (apart the 1/MP rescaling); furthermore, the coupling of the �eld φ̂ with

the trace of the energy-momentum tensor remains �nite in the limit. Going back

to the �eld hµν (whose dynamic is described by the action (3.97)) we can express

it in terms of ĥµν and φ̂ as

hµν =
ĥµν
MP

+
φ̂

MP

ηµν : (3.105)

in them→ 0 limit, it receives contributions both from a tensor �eld which satis�es

the GR equations and a scalar �eld which couples with T with �nite strength. Since

by construction the action (3.97) gives the same physical prediction of the Fierz-

Pauli theory, we can conclude that indeed the m→ 0 limit of the FP theory is not

equivalent to GR, but rather to a scalar-tensor theory.
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Note �nally that it is possible to impose gauge conditions which eliminate all the

terms in the action (3.104) which are linear in m [82]. This gauge transformation

completely diagonalizes the action, and in the resulting action all the �elds have a

canonical kinetic term and a mass term, while only ĥµν and φ̂ couple to the energy-

momentum tensor. Therefore, if we consider a static and spherically symmetric

source of mass M , the pro�le (in this gauge) for the �elds ĥµν and φ̂ inside the

Compton wavelength rc = 1/m reads

ĥµν ∼
M

MP

1

r
φ̂ ∼ M

MP

1

r
(3.106)

apart from numerical factors.

3.3 Nonlinear extensions of the Fierz-Pauli theory

Having discussed the linear theory of a massive graviton, we would like to formulate

now a nonlinear theory of massive gravity which reproduces the predictions of GR

in a suitable range of length scales. To be more precise, we are looking for a

theory which can be seen as an interacting theory of a massive graviton: therefore

we ask that it reduces to the Fierz-Pauli theory in the weak �eld approximation,

and that it propagates the same number of degrees of freedom (�ve) as the Fierz-

Pauli theory. In the linear case, we can formulate the theory of a massive graviton

by starting from the action of a massless graviton (linearized GR), and adding a

suitable term (the mass term) which is weighted by a parameter which sets the

range of the interaction, and does not contain derivatives of the �eld: we want to

do the same also at nonlinear level. Therefore, we consider the full (nonlinear) GR

Lagrangian and add a �mass� term, which in general we take to be nonlinear as

well: this is to be a term which is weighted by a mass parameter, and contains no

derivatives of the metric.

3.3.1 Generic nonlinear extension

In full generality, considering a Lorentz-invariant theory, such a mass term cannot

be built from one metric tensor alone [75]: in fact, the identity gµλg
λν = δ νµ implies

that it is impossible to construct a nontrivial scalar function out of gµν and gµν
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without using derivatives. Therefore, the theory will contain (at least) two metric

tensors: there will be a physical metric g, which is the metric test bodies feel

and which determine in general the causal structure of the spacetime, and an

absolute background metric g(0), which is necessary to create nontrivial traces and

contractions. To respect the equivalence principle, we postulate that matter �elds

couple only to the physical metric. Therefore the action will have the following

structure

S =

∫
d4x
√
−g
[
M2

P

2

(
R[g]− m2

2
U [g,g(0)]

)
+ LM [g, ψ(i)]

]
(3.107)

where the ψ(i) are matter �elds. Note that the mass term can equivalently be

written as a function of the absolute metric g(0) and of the physical metric g, or as

a function of the absolute metric g(0) and of the di�erence between the two metrics

h ≡ g − g(0), or as a function of the physical metric g and of the di�erence h.

Despite the fact that we may use any absolute metric g(0), a natural choice is to

use the Minkowski metric as the absolute metric, and so in the following we assume

g
(0)
µν = ηµν . Assuming that the function U is analytic, we can therefore write the

mass term as an (a priori) in�nite sum of terms where each term contains a �xed

number of powers of hµν , and therefore we can write

√
−g U [g,g(0)] =

√
−det(η)

+∞∑
k=2

Vk[η,h] (3.108)

where each term Vk[η,h] is a linear combination of all the possible contractions of

k factors hµν with k factors ηαβ

Vk[η,h] =
∑
p∈Pk

c(k)
p ηµ1p(ν1) · · · ηµkp(νk) hµ1ν1 · · ·hµkνk (3.109)

where Pk is the group of permutations of k elements, and the sum runs on all the

permutations p belonging to Pk. Introducing the notation[
hn
]
≡ ηµα1 hα1β1 η

β1α2 hα2β2 · · · ηβn−1αn hαnµ (3.110)



3.3 Nonlinear extensions of the Fierz-Pauli theory 96

for the cyclic contraction of n tensors hµν , we can write the terms in the following

more compact way

V2[η,h] = B1

[
h2
]

+B2

[
h
]2

(3.111)

V3[η,h] = C1

[
h3
]

+ C2

[
h2
][
h
]

+ C3

[
h
]3

(3.112)

V4[η,h] = D1

[
h4
]

+D2

[
h3
][
h
]

+D3

[
h2
]2

+D4

[
h2
][
h
]2

+D5

[
h
]4

(3.113)

V5[η,h] = F1

[
h5
]

+ F2

[
h4
][
h
]

+ F3

[
h3
][
h
]2

+ F4

[
h3
][
h2
]

+ F5

[
h2
]2[
h
]
+

+ F6

[
h2
][
h
]3

+ F7

[
h
]5

(3.114)

...

and the requirement that the weak �eld limit should reproduce the Fierz-Pauli

action implies that B2 = −B1. Inserting this expression in (3.107) and expanding

also
√
−g R[η,h] in powers of hµν , we can see that the resulting action is the one

we would obtain in a perturbative approach adding interaction terms to the Fierz-

Pauli action (3.43), with the condition that the derivative interaction terms are

exactly the same as in (interacting) GR.

Degrees of freedom and the Boulware-Deser ghost

The values of the numerical coe�cients Ci, Di, Fi, . . . (or at least consistency

conditions on their values) are to be found imposing the condition that the theory

be a viable theory of an interacting massive spin-2 �eld. This condition translates

in several requirements, both of theoretical and phenomenological nature: from the

theoretical point of view, we ask that the theory does not have ghost instabilities

and that it propagates exactly 5 degrees of freedom, which match the degrees of

freedom of the Fierz-Pauli theory. From the phenomenological point of view, we

ask that GR predictions are reproduced in the range of length scales where GR

is well tested. Note that, since the FP theory is not gauge invariant, we cannot

use the requirement of gauge invariance as a guide to build the nonlinear theory:

unlike in GR, whose nonlinear structure is completely �xed by this requirement,

we have to implement directly the conditions relating to the absence of ghosts and

the number of degrees of freedom. These are in fact quite strong requirements, and

it has been actually claimed that any nonlinear extension of the Fierz-Pauli theory
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necessarily propagates six degrees of freedom and the Hamiltonian is not bounded

from below [75], meaning that the �sixth� degree of freedom is a ghost (usually

called the Boulware-Deser ghost). Although this conclusion is premature, it has

been shown explicitly that any nonlinear completion of FP where the (nonlinear)

mass term is of the form

U [g,g(0)] = U
((
ηµαηνβ − ηµνηαβ

)
hµνhαβ

)
(3.115)

with2 U ′(0) = 1, propagates six degrees of freedom and has an Hamiltonian which

is unbounded from below. The nonlinear completion originally considered by Vain-

shtein in [69] (see section (3.2.2)) falls in this category, and is therefore plagued

by ghost instabilities.

We could try to tackle the problem in full generality using the Hamiltonian

formalism, and try to �nd consistency relations between the numerical coe�cients

Ci, Di, Fi, . . . above imposing that the theory does not propagate a sixth degree

of freedom. However, this approach turns out to be very di�cult to implement.

Another approach is to �rst use appropriate limits and approximations of the

theory to try to guess what a reasonable nonlinear extension could be, and restrict

the domain of possible values for the coe�cients Ci, Di, Fi, . . . : only in a second

moment would we use the Hamiltonian formalism, with the hope that the analysis

of the selected class of actions turns out to be less cumbersome than the general

analysis. We follow the latter approach: the tools we use to simplify the analysis of

the nonlinear massive actions are provided by the Stückelberg language in its full

nonlinear form, and the use of a �decoupling� limit which select relevant subsets of

nonlinear operators and focus on speci�c aspects/scales of the nonlinear dynamics.

To apply the Stückelberg formalism to interacting massive gravity, it will be more

useful to write the action (3.107) in terms of the physical metric g and the di�erence

between the physical and absolute metric h ≡ g− g(0). In complete analogy with

what has been done above, we can write

√
−g U [g,g(0)] =

√
−g

+∞∑
k=2

Uk[g,h] (3.116)

2This condition enforces the fact that the weak �eld limit is the Fierz-Pauli theory.
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where each term Uk[g,h] has exactly the same structure of (3.109) with the only

di�erence that each index raised factor ηαβ is now substituted with gαβ. Also,

introducing the notation

〈hn〉 ≡ gµα1 hα1β1 g
β1α2 hα2β2 · · · gβn−1αn hαnµ (3.117)

we can write the terms Uk in the more compact way

U2[g,h] = b1〈h2〉+ b2〈h〉2 (3.118)

U3[g,h] = c1〈h3〉+ c2〈h2〉〈h〉+ c3〈h〉3 (3.119)

U4[g,h] = d1〈h4〉+ d2〈h3〉〈h〉+ d3〈h2〉2 + d4〈h2〉〈h〉2 + d5〈h〉4 (3.120)

U5[g,h] = f1〈h5〉+ f2〈h4〉〈h〉+ f3〈h3〉〈h〉2 + f4〈h3〉〈h2〉+ f5〈h2〉2〈h〉+

+ f6〈h2〉〈h〉3 + f7〈h〉5 (3.121)

...

where again the requirement that the weak �eld limit should reproduce the Fierz-

Pauli action implies that b2 = −b1. These two formulations (i.e. in terms of η and

h or g and h) are completely equivalent, and the upper case numerical coe�cients

Ci, Di, Fi, . . . are biunivocally related to the lower case numerical coe�cients ci, di,

fi, . . . : it is possible to see it explicitly expressing the inverse and the determinant

of the full metric in terms of the inverse and determinant of the absolute metric

gµν = ηµν − ηµαηνβ
(
hαβ − ηλρhαλhρβ + ηλρηστhαλhρσhτβ + · · ·

)
(3.122)

√
−g = 1 +

1

2
ηµνhµν −

1

4

(
ηµνηαβ − 1

2
ηµαηνβ

)
hµαhνβ + · · · (3.123)

and substituting in (3.116)-(3.121) and �nally comparing with (3.108)-(3.114).

3.3.2 The nonlinear Stückelberg formalism

We have seen in section (3.2.3) that the introduction of auxiliary �elds which

restore gauge invariance is a powerful tools in studying the Fierz-Pauli theory,

since it elucidates the origin of the VDVZ discontinuity and allows to perform the

m → 0 limit of the theory without losing degrees of freedom. We would like to
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apply the same formalism to the full nonlinear massive gravity, as �rst proposed by

[90]. As we already mentioned, the theory contains two metrics, the physical metric

g which transforms covariantly with respect to general coordinate transformations

x′µ = (f−1)µ(x) (3.124)

g′µν(x
′) =

∂fα(x′)

∂x′µ
∂fβ(x′)

∂x′ ν
gµν(f(x′)) (3.125)

and the absolute metric g(0) (which we choose to be the Minkowski metric) which

transform invariantly

g(0) ′
µν = g(0)

µν = ηµν (3.126)

To construct a new action which is physically equivalent to (3.107) and enjoys

invariance with respect to general coordinate transformations, we �rst promote

the absolute metric to a covariant tensor

ηµν → Σµν(x) ≡ ηαβ
∂φα(x)

∂xµ
∂φβ(x)

∂xν
(3.127)

using four scalar �elds φα(x) which are called the Stückelberg �elds. It can be

checked that the chain rule for the derivative of composite functions gives the cor-

rect tensorial transformation law for Σµν(x). We then de�ne the covariantisation of

the di�erence between the physical and the absolute metric hµν(x) = gµν(x)− ηµν
as

Hµν(x) ≡ gµν(x)− Σµν(x) (3.128)

Now, remembering the expression

S =

∫
d4x
√
−g
[
M2

P

2

(
R[g]− m2

2
U [g, h]

)
+ LM [g, ψ(i)]

]
(3.129)

where U [g, h] =
∑+∞

k=2 Uk[g,h] has the structure (3.118)-(3.121), we can construct

a theory which is di�eomorphism invariant by replacing

hµν(x)→ Hµν(x) (3.130)

By construction, for every con�guration of the Stückelberg �elds φα we can perform

a suitable coordinate change such that the covariantized absolute metric Σµν(x)

becomes the Minkowski metric: in this reference system, the covariantized the-

ory and the original theory are equal, and so the two descriptions are physically

equivalent.
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Perturbative expansion

In order to perform a perturbative analysis, it is useful to de�ne a new object Zα

which can be considered the perturbation in the Stückelberg �elds

φα = xα − Zα (3.131)

and so we can express Hµν in terms of hµν and Z
µ (we raise/lower indices with the

Minkowski metric, so Zν = ηναZ
α)

Hµν = hµν + ∂(µZν) − ηαβ∂µZα∂νZ
β (3.132)

Note that Zµ does not transform as a vector with respect to general coordinate

transformation: under in�nitesimal coordinate transformations with gauge param-

eter ξα we have

x′µ = xµ − ξµ(x) (3.133)

Z ′µ = Zµ − ξµ + ξλ ∂λZ
µ (3.134)

h′µν = hµν + ∂(µ ξν) + Lξ(h)µν (3.135)

and we can see that at linear order Zµ simply shifts. As we did in the linear case,

it is useful to introduce an additional substructure in Zµ singling out explicitly a

derivative part and writing

Zµ = Aµ + ∂µφ (3.136)

and in terms of Aα and φ the tensor Hµν reads

Hµν = hµν + ∂(µAν) + 2 ∂µ∂νφ− ∂µAα∂νAα−

− ∂(µA
α∂ν)∂αφ− ∂µ∂αφ ∂ν∂αφ (3.137)

Note that the decomposition (3.136) is invariant with respect to the internal sym-

metry

φ(x)→ φ(x)− Λ(x) (3.138)

Aα(x)→ Aα(x) + ∂αΛ(x) (3.139)
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and so the �elds transform under the joint action of the two symmetries in the

following way

x′µ = xµ − ξµ(x) (3.140)

h′µν = hµν + ∂(µ ξν) + Lξ(h)µν (3.141)

A′µ = Aµ − ξµ + ξλ ∂λAµ + ∂µΛ (3.142)

φ′ = φ+ ξλ ∂λφ− Λ (3.143)

At linear order, the relations (3.132)-(3.143) reduce to the analogous relations

introduced in section (3.2.3) to study the Fierz-Pauli theory with the Stückelberg

language. Note �nally that Aµ and φ does not transform respectively as a vector

and as a scalar with respect to general coordinate transformation, as a consequence

of the fact that Zµ does not transform as a vector. We will use in the following

the notation

Πµν ≡ ∂µ∂νφ (3.144)

3.4 Stückelberg analysis of nonlinear massive grav-

ity

We want now to study the theory de�ned by the action (3.107)

S =

∫
d4x
√
−g
[
M2

P

2

(
R[g]− m2

2
U [g,g(0)]

)
+ LM [g, ψ(i)]

]
(3.145)

from a perturbative point of view, similarly to what we did in section (3.1.2) when

we interpreted the full theory of GR as a resummation of an in�nite expansion in

powers of perturbations of the metric around Minkowski spacetime. Expanding

the action (3.145) around the vacuum solution gµν = g
(0)
µν = ηµν , we would indeed

obtain an interacting theory of the �eld hµν . However, since we want to work with a

gauge invariant formulation, we �rst introduce the Stückelberg �elds by expressing

the potential part
√
−g U [g,g(0)] as in (3.116) and performing the replacement

(3.130). Expanding also the inverse physical metric gµν in terms of hµν , we then

obtain an interacting action expressed in terms of the �elds hµν , Aµ, φ, where the



3.4 Stückelberg analysis of nonlinear massive gravity 102

interaction terms are expressed as linear combinations of powers of hµν , Aµ, φ and

their derivatives. In the following, we raise/lower indices on perturbation �elds

with the Minkowski metric.

3.4.1 Interaction terms

Note �rst of all that the introduction of the Stückelberg �elds have no e�ect on

the �Einstein-Hilbert� part of the action, since it has the same form of a gauge

transformation and the Einstein-Hilbert term is gauge invariant. Therefore, the

nonlinear terms coming from this piece of the action do not contain the Stückelberg

�elds A and φ and are exactly the same as in GR

M2
P

2

√
−g R[g] ∼M2

P

+∞∑
k=2

∂2hk ∼
+∞∑
k=2

M2−k
P ∂2h̃k (3.146)

where h̃µν = MPhµν . On the other hand, the mass term is not gauge invariant:

since Aµ appears always derivated once in the Stückelberg formalism and φ appears

always derivated twice, the interaction terms coming from the mass term will be

of the form

M2
P m

2

4

√
−g U ⊃M2

P m
2 hi (∂A)j (∂∂φ)r ∼M2−i−j−r

P m2−j−2r h̃i (∂Ã)j (∂∂φ̃)r

(3.147)

with i, j, r ≥ 2 and the tilde �elds are de�ned as follows

h̃µν = MP hµν (3.148)

Ãµ = MP mAµ (3.149)

φ̃ = MP m
2 φ (3.150)

To be more precise, note that every Uk for k ≥ 2 contains a piece
[
Hk
]
which

contains all the combinations of the form hi (∂A)j (∂∂φ)r with i + j + r = k.

Therefore, if we don't assume the Fierz-Pauli tuning, the most general mass term

actually contains all the possible combinations of terms of the type (3.147) with

i + j + r ≥ 2 and i, j, r non-negative. If we assume the Fierz-Pauli tuning, the

quadratic part have a special form, while the interaction part (terms which are

cubic or higher in the �elds) contains all the possible combinations of terms of the

type (3.147) with i+ j + r ≥ 3 and i, j, r non-negative.
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Quadratic term

Let us look at the quadratic terms �rst, assuming the Fierz-Pauli tuning. They

can be obtained using only the part of Hµν which is linear in hµν , ∂Aµ, ∂∂φ (which

we indicate with H̄µν) and replacing gµν with ηµν so it reads

−M
2
P m

2

4

([
H̄2
]
−
[
H̄
]2)

(3.151)

and is therefore equivalent to the mass term obtained in the Stückelberg analysis of

the Fierz-Pauli action. Using the tilde �elds, it contains (modulo total derivatives)

a canonic kinetic term for Ãµ, the FP mass term for h̃µν , a mixing term mh̃∂Ã

and a kinetic mixing between h̃ and φ̃. Note that the quadratic terms in φ̃ appear

in the combination [
Π̃2
]
−
[
Π̃
]2

(3.152)

which is indeed a total derivative, however if we don't assume the Fierz-Pauli

tuning we would get the term

b1

[
Π̃2
]

+ b2

[
Π̃
]2

(3.153)

instead. This term is not a total derivative if b1 6= −b2, and would give rise to

higher derivative terms (i.e. terms with derivatives of order three or higher) in the

equation of motion for φ̃. Higher derivative terms in the equation of motion are

usually associated with ghost instabilities, by Ostrogradski theorem [91, 92]. This

is consistent with the already mentioned result that any violation of the Fierz-Pauli

tuning imply that the theory propagates also a sixth degree of freedom, which is

a ghost [83]. The Fierz-Pauli mass term can therefore be uniquely identi�ed in

the Stückelberg language at quadratic order by the request that the scalar mode

φ does not have higher derivative terms in the equations of motion.

3.4.2 Strong coupling scales and decoupling limit

Let us now turn to the interaction terms. As we already mentioned, a general

nonlinear extension of the Fierz-Pauli theory contains all the possible combinations

of terms

M2−i−j−r
P m2−j−2r h̃i (∂Ã)j (∂∂φ̃)r (3.154)
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with i, j, r non-negative and i + j + r ≥ 3. Note that each of the terms

h̃i(∂Ã)j(∂∂φ̃)r is suppressed by a dimensionful factor

M i+j+r−2
P mj+2r−2 (3.155)

where MP appears with positive power since i + j + r ≥ 3. This factor sets a

(mass) scale Λ(ijr)

Λi+2j+3r−4
(ijr) = M i+j+r−2

P mj+2r−2 (3.156)

and, since the kinetic terms are in canonical form, the lowest of this mass scales is

the strong coupling scale of the system, which is the scale where quantum correc-

tions become non-negligible and need to be taken into account. Note that, despite

the fact that MP appears always with positive power in the suppressing factor,

m appears with negative or zero power if 0 ≤ j + 2r ≤ 2 : in these cases (which

comprise the non-derivative self interaction of h̃ for example) the associated scale

Λ is bigger than MP . For the other cases (for which j + 2r > 2) the associated

scale Λ is smaller than MP , and to see more clearly which is the lowest of these

mass scales it is useful to write them in the following way

Λλ = λ
√
MP mλ−1 (3.157)

where (as it follows from (3.156)) we have

λ = λ(i, j, r) =
i+ 2j + 3r − 4

i+ j + r − 2
(3.158)

Since we assume m�MP , we have that the bigger λ the lower the scale Λλ. Note

that in general λ is a rational number: λ ∈ Q. The strong coupling scale of the

system is therefore set by the biggest allowed λ, which we call λmax: once found

λmax, we can immediately read the strong coupling scale Λsc = Λλmax from (3.157).

Strong coupling scales

To see which are the allowed values for λ, we note that at �xed i, j the function

λ(i, j, r) becomes a function of r only which is a hyperbola

λi,j(r) =
3r − (4− i− 2j)

r − (2− i− j)
, (3.159)
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apart from the cases (i, j) = (1, 0) and (i, j) = (0, 2) where λi,j(r) = 3 and is

independent of r. For the other cases, the hyperbola λi,j(r) has the horizontal

asymptote λ = 3 and the vertical asymptote λ = 2 − i − j. Since we have

i+ j + r ≥ 3, at �xed (i, j) (which must be positive) only the values r ≥ 3− i− j
are allowed, and since they are bigger that the position of the vertical asymptote,

it follows that the allowed points (r, λ(r)) lie on the branch of the hyperbola which

extends to r → +∞. It is easy to see that this branch is a decreasing function for

the cases (i, j) = (0, 0) and (i, j) = (0, 1), while is an increasing function in the

other cases (apart the particular cases (i, j) = (1, 0), (i, j) = (0, 2) as mentioned

above). Furthermore, in the cases (i, j) = (0, 0), (i, j) = (0, 1) for which λi,j(r) is

a decreasing function, the biggest value for λ is set by the lowest possible value for

r, which is respectively r = 3 and r = 2. Therefore we conclude that the allowed

values for λ in the case (i, j) = (0, 0) lie in the range

(i, j) = (0, 0) ⇒ 3 < λ0,0(r) ≤ 5 , r ≥ 3 (3.160)

and in particular we have

(i, j) = (0, 0) r → 3 4 5 6 · · ·
λ(r) → 5 4 11/3 7/2 · · ·

while for (i, j) = (0, 1) the allowed values for λ lie in the range

(i, j) = (0, 1) ⇒ 3 < λ0,1(r) ≤ 4 , r ≥ 2 (3.161)

and in particular we have

(i, j) = (0, 1) r → 2 3 4 5 · · ·
λ(r) → 4 7/2 10/3 13/4 · · ·

As already mentioned, for the cases (i, j) = (1, 0) (i, j) = (0, 2) we have

(i, j) = (1, 0) or (0, 2) ⇒ λi,j(r) = 3 = constant (3.162)

while for the other cases we have

(i, j) 6= {(0, 0), (0, 1), (1, 0), (0, 2)} ⇒ λi,j(r) < 3 (3.163)
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since in the latter cases the relevant branch of the hyperbola is a monotonically

increasing function and asymptotes the value λ = 3.

We then conclude that for a generic nonlinear mass term (or equivalently for

a generic choice of the coe�cients ci, di, fi, . . .) we have λmax = 5 and the strong

coupling scale of the system is

Λ5 = 5
√
MP m4 (3.164)

which is carried only by the cubic self-interaction term of φ̃

1

Λ5
5

(
∂2φ̃
)3

(3.165)

The second lowest scale is instead

Λ4 = 4
√
MP m3 (3.166)

which is carried by the quartic self-interaction term of φ̃ and by the interaction

term which is quadratic in φ̃ and linear in Ã

1

Λ8
4

(
∂2φ̃
)4 1

Λ4
4

∂Ã
(
∂2φ̃
)2

(3.167)

We then have the higher order self-interaction terms of φ̃ with or without a term

which linear in Ã

∝
(
∂2φ̃
)n ∝ ∂Ã

(
∂2φ̃
)l

(3.168)

with n ≥ 5 and l ≥ 3, which carry scales Λλ such that 3 < λ < 4, and �nally terms

of the type
1

Λ
3(s−1)
3

h̃ (∂∂φ̃)s
1

Λ3p
3

(∂Ã)2 (∂∂φ̃)p (3.169)

with s ≥ 2 and p ≥ 1, which carry the scale

Λ3 = 3
√
MP m2 (3.170)

All the remaining terms carry scales Λλ such that λ < 3.
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The Vainshtein radius

Having found the scale where quantum correction become important, we turn

now to the scale where classical nonlinearities become important. Let's consider

a static spherically symmetric source of mass M : as we saw in section (3.2.3),

in terms of the rede�ned �elds ĥµν , Âµ and φ̂ the kinetic terms are in canonical

form, and a gauge can be chosen so that there are no mixed terms at quadratic

order. Therefore, the �elds pro�le at linear order are (∼ here means �apart from

dimensionless factors�)

ĥµν ∼
M

MP

1

r
φ̂ ∼ M

MP

1

r
(3.171)

which is to be expected since the �hatted� �elds, as well as the tilded ��elds�, has

dimension (length)−1. In particular this implies that also the tilded �elds have the

same behavior, modulo a gauge mode which has no e�ect since the theory is now

gauge invariant. Therefore it is quite simple to see at which radius each interaction

term become comparable to the quadratic terms in the action. An interaction term

of the form

M2−i−r
P m2−2r h̃i (∂∂φ̃)r (3.172)

gives a contribution

∼M2−i−r
P m2−2r

(
M

MP

)i+r (
1

r

)i+3r

(3.173)

while the quadratic terms give a contribution

∼
(
M

MP

)2(
1

r

)4

(3.174)

so the interaction term (3.172) become comparable to the quadratic ones at the

radius

r(ir) ∼

[
m2−2r

(
M

M2
P

)i+r−2
]1/(i+3r−4)

(3.175)

The largest of these radiuses is the one where the linear theory breaks down (at

a classical level), and is therefore the Vainshtein radius of the theory. The inter-

action terms which correspond to this radius are the ones which �rst go nonlinear



3.4 Stückelberg analysis of nonlinear massive gravity 108

when from spatial in�nity we move towards the source, and this happens at the

Vainshtein radius: they are the only relevant interaction terms when we consider

scales close to the Vainshtein radius. To see more clearly which is the biggest

radius r(ijr) de�ned by (3.175) when i+ j+ r ≥ 3, we write it in the following form

r(ijr) = rµ =
µ

√
rgr

µ−1
c (3.176)

where we have introduced the Compton radius of the theory rc = 1/m and the

gravitational radius rg = M/M2
P (which depends on the mass of the source). The

hierarchy MP � m implies rg � rc, and so the bigger µ the bigger rµ: the

Vainshtein radius is set by the maximum allowed value for µ, which we indicate

with µmax. Comparing (3.175) with (3.176) we �nd

µ = µ(i, j, r) =
i+ 2j + 3r − 4

i+ j + r − 2
= λ (3.177)

and so µ is precisely equal to the number λ associated to the interaction term

individuated by (ijr) which we have introduced when studying the strong coupling

scales. In particular, it follows that µmax = λmax. Therefore, the interaction terms

which set the strong coupling scale are also the terms which set the Vainshtein

radius: for the most general mass term the strong coupling scale is Λ5 and the

Vainshtein radius is

rV = 5
√
rgr4

c (3.178)

where the only term which goes nonlinear at this scale is the cubic self-interaction

term for φ̃
1

Λ5
5

(
∂2φ̃
)3

(3.179)

We recover then the result (3.81) obtained in a somewhat di�erent way in section

(3.2.2). In that case we were considering the particular nonlinear extension of

the Fierz-Pauli theory obtained adding the quadratic Fierz-Pauli term to the full

nonlinear GR action: this action in fact contains the cubic self-interaction term

for φ̃, and so the Vainshtein radius is indeed (3.178).

The decoupling limit

We have seen that there exists in the theory a special subclass of interaction terms

which set both the strong coupling scale and the Vainshtein radius. We would like
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to de�ne a formal limit of the theory which kills all the other interaction terms,

and leaves us with a theory which contains only the kinetic terms and this special

class of interaction terms.

We notice that, if we formally send m→ 0 and MP → +∞ while keeping Λsc

�xed, all the scales Λ bigger than Λsc diverge. Therefore, taking this formal limit

in the action, we have that all the interaction terms suppressed by scales larger

than the strong coupling scale disappear. However, also the source term disappears

since it is suppressed byMP . If we want to construct a theory which contains only

the desired interaction terms, but where the �elds are still sourced by the energy

and momentum of matter �elds, we have to ask that also the energy-momentum

tensor scales in some way in the limit, in order to compensate the fact that MP

diverges. Therefore, we de�ne the so called decoupling limit (�rst introduced by

[45] in the context of the DGP model) as

m→ 0 , MP → +∞ , Tµν → +∞ , Λsc and
Tµν
MP

fixed (3.180)

By construction, this limit does not change the strong coupling scale of the

theory, but it is easy to check that it leaves untouched the Vainshtein radius as

well. Therefore, we could see this formal limit as a way to focus on the behavior

of the complete theory at the scales correspondent to the strong coupling and the

Vainshtein radius: it seems likey that the decoupling limit should be appropriate

to study the e�ectiveness of the Vainshtein mechanism.

3.5 dGRT massive gravity

We have so far introduced a very general class of actions (3.107) which can be

seen as nonlinear extensions of the Fierz-Pauli theory. We have then restored

gauge invariance using the Stückelberg language, and identi�ed the scales where

quantum corrections and nonlinearities become important. In this section and in

the next chapter, we want to select a subset of actions which ought to describe

a phenomenologically viable theory of an interacting massive spin-2 �eld. As we

already mentioned, to be viable these actions have to be meet several requirements:

they must propagate exactly �ve degrees of freedom (as many as the free theory
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of a massive spin-2 �eld), they have to be free of ghost instabilities, and they have

to reproduce GR in the range of scales where GR is well tested, which practically

translates to the requirement that there have to be an e�cient screening mechanism

at work (the Vainshtein mechanism in this case). In this section we deal with the

�rst two requirements, namely the number of degrees of freedom and absence of

ghosts, which are anyway closely related [75]. We will select a two-parameters

class of actions, which are shown to propagate the correct number of degrees of

freedom. We dedicate the next chapter, instead, to the study of the e�ectiveness of

the Vainshtein mechanism in this restricted class of theories, with the aim to select

the range of parameters for which the correspondent theory is phenomenologically

viable.

3.5.1 The Λ3 theory

As we have already mentioned, to impose the condition of having just �ve degrees

of freedom in principle we could perform a Hamiltonian analysis of the general

action (3.107), and see for which values of the parameters ci, di, fi, . . . there are

constraints which kill one degree of freedom. This idea turns out to be very di�cult

to implement, so we instead try to reach the goal in two steps: �rst we select a

subclass of actions which we expect to be good candidates for propagating �ve

degrees of freedom, and only after that we apply the Hamiltonian formalism to

properly count the numer of degrees of freedom.

Arranging self-interactions in total derivatives

We saw that, at quadratic level, the Fierz-Pauli action is the only action (apart an

overall numerical factor) which has no ghosts and propagates exactly �ve degrees

of freedom. We have also seen, using the Stückelberg language, that this require-

ment is precisely equivalent to the requirement that the scalar component φ of

the Stückelberg �elds have no higher derivative terms in the equations of motion

(which is in turn linked to the absence of ghosts by Ostrogradski theorem [91, 92]),

which implies that quadratic terms in ∂∂φ in the action rearrange themselves to

produce a total derivative term. We decide to follow this guideline also at full

nonlinear level, and therefore we look for actions of the form (3.107) where, at
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every order, self-interaction terms in ∂∂φ rearrange themselves to produce total

derivative terms. This is also consistent with the indications in [90, 93, 94] that

the nonlinear interactions of the scalar mode are related to sixth degree of freedom

at full nonlinear level.

Since we are (for the time being) only interested in self-interacting terms in φ,

we may set

hµν = 0 Aµ = 0 Hµν = 2 Πµν − Π α
µ Παν (3.181)

where indices are raised/lowered with ηµν/ηµν and Πµν is de�ned in (3.144). The

only terms which survive are the ones belonging to the nonlinear mass term, and

the action takes the form

S = −M
2
Pm

2

4

∫
d4x

+∞∑
k=2

Uk[Π] (3.182)

where

U2[Π] =
[
H2
]
−
[
H
]2

(3.183)

U3[Π] = c1

[
H3
]

+ c2

[
H2
][
H
]

+ c3

[
H
]3

(3.184)

U4[Π] = d1

[
H4
]

+ d2

[
H3
][
H
]

+ d3

[
H2
]2

+ d4

[
H2
][
H
]2

+ d5

[
H
]4

(3.185)

U5[Π] = f1

[
H5
]

+ f2

[
H4
][
H
]

+ f3

[
H3
][
H
]2

+ f4

[
H3
][
H2
]
+

+ f5

[
H2
]2[
H
]

+ f6

[
H2
][
H
]3

+ f7

[
H
]5

(3.186)

...

and here Hµν contains only the Π tensor as explicitly said in (3.181).

The idea is now to work perturbatively order by order, starting at order 3

and choosing (if possible) the coe�cients c1, c2, c3 such that the cubic piece in Π

contained in U2[Π]+U3[Π] is a total derivative, then going to order 4 and choosing

(if possible) the coe�cients d1, d2, d3, d4, d5 such that the quartic piece in Π

contained in U2[Π] + U3[Π] + U4[Π] is a total derivative, and so on. The �rst

attempt to realize this program has been done in [93], where it is was mistakenly

concluded that there is no way to tune the free coe�cients in (3.183)-(3.186) in

order to produce total derivatives at fourth order and above. Later, it has been
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proved in [80] (building on previous works [95, 96, 97]) that it is indeed possible to

carry on successfully this procedure at every order. It can be shown [68] that, at

every order in Π, there is essentially only one linear combination of contractions

of Π which is a total derivative, which at order n is explicitly

LTDn (Π) =
∑
p∈Pn

(−1)p ηµ1p(ν1) · · · ηµnp(νn) Πµ1ν1 · · · Πµnνn (3.187)

where the sum runs on all the permutations p of n elements. �Essentially� means

that all the other linear combination of contractions of Π at order n which are total

derivatives, are actually proportional to LTDn (Π). Note that, for n ≥ 5, the sum in

(3.187) vanishes identically by symmetry reasons: therefore, at each order n there

is a one-dimensional variety of total derivative terms if n = 2, 3 and 4, while for

n ≥ 5 the variety is zero-dimensional: the total derivative structures have in total

three free parameters.

It is actually not di�cult to see that the system is compatible, meaning that it

is always possible to tune the coe�cients in (3.183)-(3.186) to rearrange the terms

in total derivatives at all orders: if we �x n and insert in Un(Π) only the part

of Hµν which is linear in Π, we generate the most general linear combination of

contraction of n tensors Πµν with n inverse metrics ηαβ. Therefore we can always

use the free coe�cients in Un(Π) to compensate exactly for the terms of order

n in Π which come from the lower orders of the potential, and create the total

derivative combination (3.187) at each order. Furthermore, since there are three

free parameters in the total derivatives combinations correspondents to the orders

n = 2, 3 and 4, there will be a three-parameters class of Lagrangians where the φ

self-interactions are removed at all orders: the parameter coming from order two

is reabsorbed in the overall mass parameter m in the action, so we end up with

a genuinely two-parameters class of actions. Explicitly, the values of the tuned

coe�cients in (3.183)-(3.186) are [80] to fourth order

c1 = 2c3 +
1

2
c2 = −3c3 −

1

2
(3.188)

d1 = −6d5 +
1

16
(24c3 + 5) d2 = 8d5 −

1

4
(6c3 + 1) (3.189)

d3 = 3d5 −
1

16
(12c3 + 1) d4 = −6d5 +

3

4
c3 (3.190)
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The effect on the strong coupling scale

Considering now the strong coupling scale of the theory, from what said in section

(3.4.2) we can immediately conclude that the removal of all φ self-interaction terms

raises the strong coupling scale to Λ4, which is carried by the term

1

Λ4
4

∂Ã
(
∂2φ̃
)2

(3.191)

However, it can be shown [90, 80] that the choice of coe�cients in the nonlinear

mass term which remove the self-interaction terms in φ, automatically remove also

the terms of the form

M1−l
P m1−2l ∂Ã (∂∂φ̃)l (3.192)

with l ≥ 2, which carry the strong coupling scales Λλ with 4 ≥ λ > 3. Therefore,

removing the scalar self-interactions actually raises the strong coupling scale to

Λ3 = 3
√
MP m2 (3.193)

which is carried by terms of the form

1

Λ
3(s−1)
3

h̃ (∂∂φ̃)s
1

Λ3p
3

(∂Ã)2 (∂∂φ̃)p (3.194)

with s ≥ 2 and p ≥ 1. Note that these terms are the only terms which survive in

the decoupling limit, since we proved in section (3.4.2) that all the other interaction

terms are suppressed by scales Λλ with λ < 3. The two-parameter theory de�ned

by tuning the interaction terms so to remove the φ self-interactions is usually called

the Λ3 theory.

Note that the vector �eld Aµ does not couple directly to T µν , and therefore

setting it to zero and solving for hµν and φ always give a consistent solution of

the theory. This however does not means that Aµ does not play any role, since

the most general solution of the theory contains also the Aµ �eld since it couples

to hµν and φ, and in fact the Aµ sector may contain ghost instabilities (at least

around some backgrounds) [98]. Setting anyway Aµ to zero for the time being, the

decoupling limit Lagrangian up to total derivatives is given by the kinetic term for

h̃µν plus the part of the mass term which is linear in h̃µν . As shown in [80], it has
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at most quartic couplings in h̃µν and φ̃ and explicitly reads

S =

∫
d4x

[
h̃µνE ρσ

µν h̃ρσ −
1

2
h̃µν
(
− 4X̃(1)

µν (φ̃) +
4(6c3 − 1)

Λ3
3

X̃(2)
µν (φ̃)+

+
16(8d5 + c3)

Λ6
3

X̃(3)
µν (φ̃)

)
− 1

MP

h̃µνT
µν

]
(3.195)

where the operator E ρσ
µν has been de�ned in (3.28) and the tensors X̃

(n)
µν are of order

n in Π̃ and are de�ned in the Appendix (A). Note �nally that, in the decoupling

limit, the Lagrangian has a �nite number of interaction terms between h̃µν and φ̃,

while it has an in�nite number of interaction terms between h̃µν and Ãµ.

Demixing in the decoupling limit and galileons

In the decoupling limit Lagrangian (3.195), the scalar mode φ̃ does not have a

kinetic term on its own but is kinetically mixed to h̃µν : furthermore, all the inter-

action terms are in mixed form. To make more transparent the physical meaning

of this action, we would like to disentangle as much as we can the dynamics of h̃µν

and that of φ̃.

First of all, we kinetically demix h̃µν and φ̃ by rede�ning the �elds, as we did

in section (3.2.3), and going to the �hatted� �elds: this transformation creates

a canonical kinetic term for φ̂, as well as coupling φ̂ to the trace of the energy-

momentum tensor T . At this point there are still couplings ĥ Π̂2 and ĥ Π̂3 between

ĥ and φ̂, while derivative self-interaction terms for φ̂ has appeared. It is possible

to further demix the action and remove the cubic ĥ Π̂2 coupling, performing the

�eld rede�nition

ȟµν = ĥµν +
2(6c3 − 1)

Λ3
3

∂µφ̂ ∂νφ̂ (3.196)
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After this operation the Lagrangian reads

S =

∫
d4x

[
ȟµνE ρσ

µν ȟρσ +
C1

Λ6
3

ȟµνX̌(3)
µν +

1

MP

ȟµνT
µν−

− 3 (∂φ̌ · ∂φ̌) +
C2

Λ3
3

(∂φ̌ · ∂φ̌)�φ̌+
C3

Λ6
3

(∂φ̌ · ∂φ̌)
(

[Π̌]2 − [Π̌2]
)

+

+
C4

Λ9
3

(∂φ̌ · ∂φ̌)
(

[Π̌]3 − 3[Π̌2][Π̌] + 2[Π̌3]
)

+

+
1

MP

φ̌ T +
C5

Λ3
3MP

∂µφ̌ ∂νφ̌ T
µν

]
(3.197)

while it is instead not possible to demix further the action and remove the quartic

mixing ȟ Π̌3 keeping the action local, since only a nonlocal �eld rede�nition could

remove that mixing term. The notation
(
∂φ̌ · ∂φ̌

)
here stands for

(
∂αφ̌ ∂

αφ̌
)
, while

the numerical coe�cients C1, C2, C3, C4 and C5 depend only on c3 and d5, and their

explicit expression can be found for example in [82]

C1 = −8(8d5 + c3) (3.198)

C2 = 6(6c3 − 1) (3.199)

C3 = −4
(
(6c3 − 1)2 − 4(8d5 + c3)

)
(3.200)

C4 = −40(6c3 − 1)(8d5 + c3) (3.201)

C5 = 2(6c3 − 1) . (3.202)

Note that they are all written in terms of the combinations 6c3 − 1 and 8d5 +

c3, so they all disappear from the action when both these combinations vanish.

Furthermore, the coupling ȟµνX̌
(3)
µν disappears when 8d5 + c3 = 0, irrespectively

of whether 6c3 − 1 = 0 vanishes or not, while the coupling ∂µφ̌ ∂νφ̌ T
µν disappear

when 6c3 − 1 = 0, irrespectively of the value of d5.

The action (3.197) has several interesting features. First, note that, beside the

coupling φ̌ T of the scalar mode with the trace T of the energy-momentum tensor,

there is a new form of coupling between φ̌ and the energy-momentum tensor which

involves the derivatives ∂φ̌ and not the trace T . This implies in particular that the

scalar mode φ̌ couples also to the electromagnetic �eld, whose energy-momentum
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tensor is traceless. Second, turning to the interaction terms, apart from the mixed

term ȟµνX̌
(3)
µν ∼ ȟ Π̌3 (which disappear from the action when 8d5 + c3 = 0), the

scalar mode has now three self-interaction terms, respectively at order 3, 4 and 5.

Dropping the symbol ˇ for clarity, the kinetic and the self-interaction terms have

the structure

L2 = −1

2

(
∂φ · ∂φ

)
(3.203)

L3 = −1

2
(∂φ · ∂φ)

[
Π
]

(3.204)

L4 = −1

2
(∂φ · ∂φ)

([
Π
]2 − [Π2

])
(3.205)

L5 = −1

2
(∂φ · ∂φ)

([
Π
]3 − 3

[
Π
][

Π2
]

+ 2
[
Π3
])

(3.206)

These terms are known as Galileon terms [68], and have the de�ning property that

they give rise to equations of motion where the �eld appears only derivated twice,

and that they are invariant with respect to the �galilean� transformation

φ→ φ+ bµx
µ + c (3.207)

(for the sake of precision, the Lagrangians are not invariant themselves but the

galilean transformation produce a total derivative, therefore the action is invari-

ant). It can be shown [68] that at each order in φ they are the only terms with these

properties, up to total derivatives. Historically, apart from the quadratic term, the

�rst of these terms to be studied was the cubic galileon term, which describes the

dynamic of the brane bending mode in the decoupling limit of the DGP model

(see section 2.2.2). It has later been recognized that, in general, an action which

produces nonlinear equations of motion in which the �eld appears only through its

second derivatives, can be used to modify gravity at large distances since the �eld

may shield itself around a spherical source via the Vainshtein mechanism [68].

Note that the scalar mode of the Stückelberg �elds trivially enjoys the galilean

symmetry, since by construction it appears only derivated twice. Instead, the

absence of higher derivatives in the equations of motion (despite the Lagrangian

containing second derivatives already) is highly nontrivial. The fact that the de-

coupling limit of the Λ3 theory produces only self-interactions of galileon type,

which are ghost free, is a promising signal that the full theory may be indeed free
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of the BD ghost. Even more, it has been argued in [80] that the complete decou-

pling limit Lagrangian (containing also ȟµν and its coupling with φ̌) is indeed free

of ghosts. Note �nally that the galileon interaction terms arise in the decoupling

limit only when we demix the �elds h̃µν and φ̃: in particular, the �rst transforma-

tion (h̃, φ̃)→ (ĥ, φ̂) (which demixes the kinetic terms) create the cubic and quartic

galileon terms, and the second trasformation (ĥ, φ̂)→ (ȟ, φ̌) (which eliminates the

ĥ Π̂2 coupling) creates also the �fth galileon term. The demixing procedure is on

the other hand responsible for the coupling of φ to matter: initially, the �eld φ̃

in fact does not couple with Tµν ; the �rst rede�nition (which removes the kinetic

h̃Π term) creates the �trace� coupling φ̂ T , while the second rede�nition (which

removes the ĥ Π̂2 term) creates the �derivative� coupling ∂µφ̌ ∂νφ̌ T
µν .

3.5.2 Resummation of Λ3 massive gravity

In the previous sections we saw that there is a way to tune order by order the

coe�cients of a generic nonlinear extension of the Fierz-Pauli action, in order to

avoid the appearence of higher derivatives in the equations of motion for the scalar

mode of the Stückelberg �elds. Although the theory is uniquely de�ned (once we

specify the values of the free parameters), and we could be just satis�ed with this

perturbative formulation, we may like to reformulate it in a more compact and

manageable form.

Let's consider for example the case of GR. As we already mentioned, we can

formulate GR as a theory of a massless helicity-2 �eld, specifying the value of

all the coe�cients which enter the in�nite expansion in powers of the di�erence

hµν between the physical metric gµν and Minkowski metric ηµν . This �xes the

theory in a unique way. Expressing the action in this form is indeed suitable

and very useful if we want to study perturbatively the metric �eld produced by

a source, for example if we want to focus on the weak �eld regime, at �rst or

even second order. However, suppose we want to �nd the exact metric produced

by a source. If we express the theory via an in�nite perturbative expansion, we

have to solve iteratively the coupled equation at each order, obtaining the full

solution as an in�nite expansion: in the case of a static, spherically symmetric

source, we are luckily able to sum the series and express the solution as a unique
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nonlinear function, obtaining the Schwarzschild metric. However, if the source is

less symmetric, it is unlikely that we are able to sum the series, and we have to

work with a metric expressed as an in�nite sum.

On the other hand, we know we can express the action of GR in terms of

two quantities, the scalar curvature and the square root of the determinant of

the metric, which themselves contain all powers of hµν : in this �resummed� form,

the action is made of one term only,
√
−gR, instead of an in�nite sum. If we

want to �nd the exact metric correspondent to a source con�guration, varying the

action we obtain just a �nite number of equations, corresponding to the di�erent

components, which are however intrinsically nonlinear. We could say that the

expanded form and the resummed form are both useful, depending on what we

want to use them for. However, in general it is easier to perform a Taylor expansion

of an object than to resum a perturbative expansion.

The square root formulation

We would like then to provide a resummed form of the theory of nonlinear massive

gravity we de�ned so far. To do that, we should identify an object which make it

possible to express the full action as the sum of a �nite number of terms. Looking

back to the problem of rearranging the φ self-interaction terms in total derivatives,

we notice that the reason why the tuning of coe�cients goes on to an in�nite

number of orders is that, in the Stückelberg language, the generic nonlinear mass

term is expressed as a power series of Hµν , which is quadratic in Πµν . As a

consequence, every order n of the potential generates terms in Πµν which are of

orderm > n, and, as we construct the total derivative at order n, we are generating

higher order terms which will need to be taken care of. We could try instead to

express the generic mass term (3.116)-(3.121) of a nonlinear extension of FP in

terms of an object which is linear in Π, at least when hµν and Aµ are vanishing

since the condition we want to impose involves φ self-interactions only.

In fact, this is possible if we de�ne the object [81]

Kµν(g,H) ≡ δµν −
√
δµν −Hµ

ν (3.208)

where Hµ
ν = gµλHλν and the square root of a matrix Aµν is de�ned as the matrix

Rµ
ν such that Aµν = Rµ

αRα
ν . Since Kµν can be expressed (at least perturbatively,
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when its components are small) as power series of Hµ
ν

Kµν =
∞∑
n=1

β̃n (Hn)µν β̃n = − (2n)!

(1− 2n)(n!)24n
, (3.209)

the most general nonlinear extension of the Fierz-Pauli theory (3.107) can be

expressed as an expansion in powers of the tensor Kµν

√
−g U [g,g(0)] =

√
−g

+∞∑
k=2

Wk[K] (3.210)

where

W2[K] = 〈K2〉 − 〈K〉2 (3.211)

W3[K] = c̃1〈K3〉+ c̃2〈K2〉〈K〉+ c̃3〈K〉3 (3.212)

W4[K] = d̃1〈K4〉+ d̃2〈K3〉〈K〉+ d̃3〈K2〉2 + d̃4〈K2〉〈K〉2 + d̃5〈K〉4 (3.213)

W5[K] = f̃1〈K5〉+ . . . (3.214)

...

and where the angled brackets here mean

〈Kn〉 = Kµα2
Kα2

α3
· · · Kαnµ (3.215)

On the other hand, if we set hµν = 0 and Aµ = 0, remarkably the powers of the

linear and the quadratic pieces in Π which constitute Hµν nearly cancel out, when

the power expansion of the square root (3.209) is performed, leaving only the linear

term

Kµν
∣∣∣
h=0,A=0

= δµν −
√
δµν −

(
Πµ

ν − Πµ
α Πα

ν

)
= Πµ

ν (3.216)

and so Kµν is precisely equal to Πµ
ν when hµν = 0 and Aµ = 0. Therefore, it is

much simpler to impose the condition that the self-interaction terms of φ rearrange

in total derivatives when we express the nonlinear mass term in terms of Kµν , since
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it reduces to the conditions

W3[Π] = α3 LTD
3 (Π) (3.217)

W4[Π] = α4 LTD
4 (Π) (3.218)

W5[Π] = 0 (3.219)

W6[Π] = 0 (3.220)

...

without any higher order tuning. Comparing with (A.6)-(A.7), we deduce

c̃1 = 2α3 c̃2 = −3α3 c̃3 = α3 (3.221)

d̃1 = −6α4 d̃2 = 8α4 d̃3 = 3α4 d̃4 = −6α4 d̃5 = α4 (3.222)

while f̃i and all the coe�cients of the orders of Wk higher than four are vanish-

ing. The coe�cients α3 and α4 are free parameters, and correspond to the free

parameters c3 and d5 in the other formulation.

The resummed action

To get the complete action of nonlinear massive gravity, we have to reintroduce

in some way the �elds hµν and Aµ. Since the tensor Kµν naturally contains them,

we can de�ne the complete action of nonlinear massive gravity to be expressed in

terms of Kµν precisely in the same way as it is in the case hµν = 0 and Aµ = 0:

the action in the resummed form then reads

S =

∫
d4x
√
−g
[
M2

P

2

(
R[g]− m2

2
U [K]

)
+ LM [g, ψ(i)]

]
(3.223)

where

U [g,K] = U2[K] + α3 U3[K] + α4 U4[K] (3.224)

and

U2 = (trK)2 − tr(K2) (3.225)

U3 = (trK)3 − 3(trK)(trK2) + 2 trK3 (3.226)

U4 = (trK)4 − 6(trK)2(trK2) + 8(trK)(trK3) + 3(trK2)2 − 6 trK4 (3.227)
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The in�nite series of terms which made up the mass term in the previous for-

mulation is expressed, in the resummed form, with just three terms. Note that

in (3.208) we have de�ned the tensor K in terms of Hµ
ν = gµαHαν , where Hµν is

the �covariantization� of the di�erence hµν between the physical metric gµν and the

absolute metric g
(0)
µν . To construct the theory, we found more convenient to express

the theory in terms of hµν and gµν , but now we want to express the full resummed

action in terms of the absolute and physical metrics themselves. Remembering

that Hµν is de�ned as

Hµν = gµν − Σµν , (3.228)

where the Σ tensor is the �covariantization� of the absolute metric g
(0)
µν = ηµν and

is de�ned as

Σµν(x) = g
(0)
αβ

∂φα(x)

∂xµ
∂φβ(x)

∂xν
, (3.229)

we have that

δµν −Hµ
ν = gµαΣαν . (3.230)

We can therefore express the K tensor in terms of the physical metric g, the

absolute metric g(0) and the Stückelberg �elds φα as

Kµν = δµν −
[√

g−1 ·Σ
]µ

ν
(3.231)

where the dot stands for the matrix multiplication operation.

The last expression, together with (3.223) - (3.227), de�nes the theory in the

resummed form. Note that, by construction, the theory is reparametrization-

invariant, by means of the Stückelberg �elds φα. The introduction of the Stückel-

berg �elds and the restoration of gauge invariance proved in fact to be very helpful

in clarifying the analysis of a general non-linear extension of the Fierz-Pauli theory.

However, as we stressed above, a theory with gauge invariance restored by means

of Stückelberg �elds is completely equivalent from a physical point of view to a

theory without Stückelberg �elds where gauge invariance is broken. Without using

the Stückelberg formalism, the non-linear theory of massive gravity we obtained

is described by the action

S =

∫
d4x
√
−g
[
M2

P

2

(
R[g]− m2

2
U
[
g,g(0)

])
+ LM [g, ψ(i)]

]
(3.232)
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where

U
[
g,g(0)

]
= U2

[√
g−1 · g(0)

]
+α3 U3

[√
g−1 · g(0)

]
+α4 U4

[√
g−1 · g(0)

]
(3.233)

and the explicit form of the potentials can be obtained plugging in (3.225)-(3.227)

the expression

Kµν = δµν −
[√

g−1 · g(0)
]µ

ν
(3.234)

Absence of the Boulware-Deser mode and prior geometry

We go back now to the problem of the number of degrees of freedom. As we

already mentioned, a legitimate interacting theory of a massive graviton has to

propagate �ve degrees of freedom, as many as a massive spin-2 �eld propagates.

The absence of a sixth degree of freedom is also important from the point of view

of the stability of the theory, since the additional degree of freedom is usually

associated with ghost instabilities (Boulware-Deser ghost). The number of degrees

of freedom can in principle be established recasting the theory in Hamiltonian

form, however (as we said above) performing a full Hamiltonian analysis on the

most general nonlinear extension of Fierz-Pauli action is very hard. By restoring

gauge invariance and asking that the scalar component of the Stückelberg �elds

does not have higher derivatives in the equations of motion, it has been possible to

single out a two-parameters class of non-linear extensions of the Fierz-Pauli theory.

The hope is that the Hamiltonian analysis of this restricted class of theories turns

out to be easier to perform.

A full Hamiltonian analysis on this restricted class of actions has indeed been

performed in [99, 100, 101, 102], with the result that it has been con�rmed that

these actions propagate exactly �ve degrees of freedom. Therefore, the theories

de�ned by (3.225) - (3.227) and (3.232) - (3.234) are legitimate interacting theories

of a massive graviton, and are known as dRGT Massive Gravity (from the name of

the authors de Rham, Gabadadze and Tolley) or also Ghost-Free Massive Gravity.

The latter denomination is due to the fact that in these theories the Boulware-

Deser ghost is absent. However, it is fair to say that the absence of the BD
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ghost does not imply that the theory is ghost-free, since some of the �ve degrees of

freedom may still be a ghost, at least on some backgrounds [98]. Leaving aside this

issue, a necessary condition for these theories to be phenomenologically viable is

that they reproduce GR results on length scales/con�gurations where these results

are experimentally tested. This implies that they have to admit static spherically

symmetric solutions where the Vainshtein mechanism is e�ective. In the next

chapter, we will systematically study static spherically symmetric solutions in the

dGRT massive gravity theories, to characterise in which part of the phase space

of theories spanned by (α3, α4) we can �nd solutions which display the Vainshtein

mechanism. This is a crucial step in establishing the phenomenological viability

of non-linear massive gravity.

Note that the absolute metric g(0) is explicitly present in the resummed action

(3.232) - (3.234), therefore the dRGT Massive Gravity has a prior geometry, which

is set by the absolute metric. This is in stark constrast with GR, where the

absolute metric disappears from the resummed action when we substitute hµν

with gµν − g
(0)
µν , and so there is no prior geometry. It follows in particular that

each choice for the absolute geometry generates a di�erent theory of non-linear

massive gravity. On the other hand, we can see that the theory really depends on

the absolute geometry, and not on the coordinates chosen to express the absolute

metric. In fact, let's consider two absolute metrics g
(0)
µν and g

(0)′
µν which describe

the same absolute geometry, and so are linked by a change of coordinates: we may

introduce an absolute metric manifold M(0), and two system of references yµ and

y′µ on M(0), so that

g(0)′
µν =

∂yα

∂y′µ
∂yα

∂y′ν
g

(0)
αβ (3.235)

The physical metric in general is determined by the absolute metric and the energy-

momentum tensor. Let's consider on one side the theory associated with the

absolute metric g
(0)
µν , and consider a source term Tµν in this theory, and on the

other side the theory associated with the absolute metric g
(0)′
µν , and consider in this

second theory a source term T ′µν which is linked to Tµν by the same relation which

links g
(0)
µν and g

(0)′
µν

T ′µν =
∂yα

∂y′µ
∂yα

∂y′ν
Tαβ . (3.236)

Let's call gµν the solution for the physical metric in the �rst theory and g′µν the
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solution for the physical metric in the second theory. If gµν and g
′
µν are not linked

by the same relation which links the absolute metrics and the source terms, then

we may say that the dRGT massive gravity depends not only on the absolute

geometry, but also on the coordinate system chosen to express the absolute metric.

Conversely, if gµν and g
′
µν are indeed linked by the relation

g′µν =
∂yα

∂y′µ
∂yα

∂y′ν
gαβ , (3.237)

then we may say that the dRGT massive gravity depends only on the absolute

geometry, and not on the coordinate system chosen to express the absolute metric.

It is in fact not di�cult to see that the latter case is the correct one. In fact,

despite the fact that the action (3.232) is not invariant with respect to coordinate

changes (which change the physical metric and the energy-momentum tensor but

leaves untouched the absolute metric), the action is invariant with respect to the

formal transformation

gµν → g′µν =
∂yα

∂y′µ
∂yα

∂y′ν
gαβ g(0)

µν → g(0)′
µν =

∂yα

∂y′µ
∂yα

∂y′ν
g

(0)
αβ Tµν → T ′µν =

∂yα

∂y′µ
∂yα

∂y′ν
Tαβ

(3.238)

as a consequence of the structure
√

g−1 · g(0) in the potential. This is more in

general a consequence of the fact that we started from the general action (3.107)

whose potential term is written in terms of contractions of the inverse of the

physical metric gµν and of the di�erence between the physical and absolute metric

hµν = gµν − g(0)
µν .



Chapter 4

The Vainshtein mechanism in dRGT

massive gravity

In the previous chapter we introduced a class of non-linear completions of the

Fierz-Pauli action, known as dRGTmassive gravity, which are free of the Boulware-

Deser ghost and so seem to be potentially phenomenologically viable. To provide

a reliable description of the gravitational interaction, they necessarily have to pass

stringent experimental constraints, and agree with the predictions of GR which

have been tested to a very high accuracy. A necessary condition for this to happen

is that the vDVZ discontinuity is cured by non-linear interactions, or in other

words that the Vainshtein mechanism is e�ective. In particular, since this class of

non-linear completions of the Fierz-Pauli action has two free parameters (the Fierz-

Pauli action has already a free parameter, the mass), it is crucial to understand

for which values of the free parameters the Vainshtein mechanism works, and so

to identify the regions in the phase space of free parameters which correspond to

phenomenologically viable theories. The aim of this chapter is to �nd a precise

answer to this problem. Therefore, we study static, spherically symmetric vacuum

solutions in the dGRT massive gravity model with �at absolute geometry, and

classify the types of solutions that the theory admits. We then determine in which

regions of the two parameters phase space the Vainshtein mechanism is e�ective.
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4.1 Spherically symmetric solutions

We consider the theory de�ned by equations (3.225) - (3.227) and (3.232) - (3.234)

in the case where the absolute geometry is �at. To study static and spherically

symmetric solutions in this case, we start by expressing the absolute metric g(0)

in spherical coordinates, which are more suited to the symmetry of the problem

ds2 = g(0)
µν dy

µdyν = −dt2 + dr2 + r2dΩ2 (4.1)

where yµ = (t, r, θ, ϕ) indicates collectively the spherical coordinates. The most

general form for the physical metric allowed by the condition of staticity and

spherical symmetry is

ds2 = −C(r) dt2 + A(r) dr2 + 2D(r) dtdr +B(r)dΩ2 (4.2)

and, varying the action (3.223) and considering vacuum regions, we obtain the

following equations of motion

Gµν =
m2

2
T Uµν (4.3)

where we have de�ned

T Uµν =
1√
−g

δ
√
−g U
δgµν

(4.4)

4.1.1 The two branches

For metrics of the form (4.2), the Einstein tensor Gµν satisfies the identity

D(r)Gtt + C(r)Gtr = 0 (4.5)

which implies the following algebraic constraint on T Uµν

D(r)T Utt + C(r)T Utr = 0 (4.6)

This last equation reduces to

D(r)
(
b0r −

√
B(r)

)
= 0 (4.7)

where b0 is a function of α3 and α4 only [98]. This constraint is solved in two possi-

ble ways, defining two class of solutions: either the metric is diagonal D = 0, which
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de�nes the diagonal branch, or B = b2
0r

2, which de�nes the non-diagonal branch.

Note that it is possible to map a physical metric belonging to the diagonal branch

into one of the non-diagonal branch via a change of coordinates, and viceversa:

however, in dRGT massive gravity these two branches are physically distinct. To

see it, it is convenient to restore gauge invariance by using the Stückelberg for-

malism. Consider, before introducing the Stückelberg �elds, a con�guration where

the absolute metric has the form (4.1) and indicate with ḡµν a solution of the

equations of motion belonging to the diagonal branch, while indicate with ¯̄gµν a

solution of the equations of motion belonging to the non-diagonal branch. We

then introduce the Stückelberg �elds φµ and form the �covariantized� version of

the absolute metric

Σµν(x) = g
(0)
αβ

∂φα(y)

∂yµ
∂φβ(y)

∂yν
(4.8)

where (analogously to section 3.3.2) we decompose the Stückelberg �elds φµ in the

following way

φt = t− Z̃t (4.9)

φr = r − Z̃r (4.10)

φθ = θ − Z̃θ (4.11)

φϕ = ϕ− Z̃ϕ (4.12)

Substituting the absolute metric g(0) with Σ in the action restores gauge invari-

ance in the theory, and it is customary to call unitary gauge the situation when

Z̃µ = 0. Therefore, the con�gurations
(
ḡµν , g

(0)
µν

)
and

(
¯̄gµν , g

(0)
µν

)
we introduced

above correspond, upon introducing the Stückelberg �elds, to a situation where

the physical metric is respectively ḡµν and ¯̄gµν in the unitary gauge. Suppose

we now change coordinates and map ḡµν into a metric ḡ′µν which belongs to the

non-diagonal branch: the change of coordinates excites some components of the

Stückelberg �elds. Both ḡ′µν and ¯̄gµν are non-diagonal metrics, but in the �rst case

the Stückelberg �elds are non-zero, while in the second case they vanish. Since the

Stückelberg �elds explicitly appear in the equations of motion, we conclude that

ḡ′µν and ¯̄gµν obey di�erent equations of motion, and therefore are di�erent. This

implies that there are indeed two physically distinct branches of static and spher-

ically symmetric solutions. This is in stark contrast with the GR case, where the
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theory is gauge invariant without the need to introduce the Stückelberg �elds. In

that case, ḡ′µν and ¯̄gµν obey the same equations of motion, and so the two branches

are physically identical.

As we shall see shortly, the Vainshtein mechanism in the diagonal branch is

related to the role of non-linearities for the radial component of the Stückelberg

�elds. However, it has been shown [103] that, in the non-diagonal branch, the scalar

mode of the Stückelberg �elds does not couple directly to the energy-momentum

tensor in the decoupling limit. In fact, the results of GR in this branch are re-

produced without the need of the Vainshtein mechanism: the non-diagonal branch

is very interesting and it can be shown that in this branch static, spherically

symmetric solutions leads to Schwarzschild or Schwarzschild-de Sitter solutions

[104, 105, 106, 107, 108, 109, 110]. Other interesting discussions on the non-

diagonal branch can be found for example in [111, 112, 98].

Anyway, we conclude that the only branch which is relevant for the Vainshtein

mechanism is the diagonal one: therefore, from now on we will consider only the

diagonal branch.

4.1.2 The diagonal branch

To study the diagonal branch, let's start from the following ansatz for the physical

metric

ds2 = −Ñ(r)2dt2 + F̃ (r)−1dr2 + r2H̃(r)−2dΩ2 , (4.13)

and the form (4.1) for the absolute metric. To derive the equations of motion,

we have to compute the form of the potential U
(
g,g(0)

)
in terms of Ñ(r), F̃ (r)

and H̃(r): this amounts to evaluate the trace of
√
M,M,

√
M 3

andM2, where

M = g−1g(0). Note that, if a matrix D is diagonal, we have

tr
√
D

k
=
∑
i

√
λi

k
(4.14)

where λi, i = 1, · · · , 4 are the eigenvalues of D and k is a natural number. Fur-

thermore, if a matrixM is diagonalizable (i.e. M = ADA−1, for some invertible

matrix A), then we have

trM = tr
(
ADA−1

)
= trD (4.15)
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and using these relations we �nd

tr
√
M

k
= tr

(
A
√
DA−1 · · · A

√
DA−1

)
= tr

(
A
√
D

k
A−1

)
=
∑
i

√
λi

k
(4.16)

Therefore, to compute U
(
g,g(0)

)
one has to �nd the eigenvalues of the matrix

g−1g(0) and plug them in (3.225)-(3.227) : this has been done in [105], where it

was found that

√
−g U

(
g,g(0)

)
= − r2√

F̃ H̃2

[
2
[√

F̃
(
(2H̃−3)Ñ+1

)
+H̃2Ñ+H̃(2−6Ñ)+6Ñ−3

]
−

− 6α3(H̃ − 1)
[√

F̃
(
(H̃ − 3)Ñ + 2

)
− 2H̃Ñ + H̃ + 4Ñ − 3

]
−

− 24α4(1−
√
F̃ )(1− Ñ)(1− H̃)2

]
(4.17)

Varying the action with respect to Ñ(r), F̃ (r) and H̃(r), one obtains the exact

equations of motion for static, spherically symmetric solutions in the diagonal

branch [105]. These equations are however very complicated, and to solve them it

will be convenient to do some approximations.

Note that, in order to study the Vainshtein mechanism, we need to compare the

solutions of this theory with the ones of GR: it may turn out to be convenient to

rescale the radial coordinate r → ρ to recast the physical metric in a form where the

angular components of the metric are just the square of a radial coordinate, since

the linearized Schwarzschild solution has this form. It is crucial to notice, however,

that it is impossible to eliminate completely the �eld H̃ from the equations. In

fact, if we don't use the Stückelberg formalism the theory is not invariant with

respect to reparametrizations, and if we perform the coordinate change the �eld

H̃ disappears from the line element but does not disappear from the equations

of motion. Using the Stückelberg formalism, instead, the theory is invariant with

respect to reparametrizations and the �eld H̃ itself disappears when we rescale the

radius; however, the transformation excites a component of the Stückelberg �elds,

which is related to H̃ and appears explicitly in the equations of motion. This is

analogous to what happens in the non-linear extension of the Fierz-Pauli action

considered by Vainshtein in [69], as explained in section (3.2.2).
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Vainshtein [69] in fact suggested that the behavior of the system below the

Vainshtein radius is in some sense more transparent with the second coordinate

choice, in which the angular components of the metric are just the square of the

radial coordinate. In particular, he suggested that, inside the Vainshtein radius,

the e�ect of non-linearities on the two remaining components of the physical metric

is just to rescale them by a numerical factor, so that they remain small even around

and inside the Vainshtein radius. Instead, the Stückelberg �eld is strongly a�ected

by the non-linearities. Therefore, we perform a coordinate change in the radial

coordinate r → ρ so that in the new coordinate system we have

ds2 = −N(ρ)2dt2 + F (ρ)−1dρ2 + ρ2dΩ2 , (4.18)

and we de�ne H̃
(
r(ρ)

)
= 1 + h(ρ). We also write

N(ρ) = 1 +
n(ρ)

2
F (ρ) = 1 + f(ρ) , (4.19)

which for the time being is just a �eld rede�nition.

As we said above, this change of coordinates excites the perturbations of the

Stückelberg �elds Zµ. Since the Stückelberg �elds φµ transform as scalars, after

changing coordinates we have1

y′µ(y)− Zµ
(
y′(y)

)
= yµ − Z̃µ(y) (4.20)

and since, before changing coordinates, we were in the unitary gauge, we have Z̃µ =

0. The fact that only the the radial coordinate is involved in the transformation

implies then

Zt = 0 (4.21)

Zρ(ρ) = ρ− r(ρ) (4.22)

Zθ = 0 (4.23)

Zϕ = 0 (4.24)

1We indicate with yµ and Z̃µ the coordinates and Stückelberg �elds in the (t, r, θ, ϕ) coordinate

system, while we indicate with y′µ and Zµ the coordinates and Stückelberg �elds in the (t, ρ, θ, ϕ)

coordinate system.
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and, remembering the internal decomposition Zµ = Aµ + ∂µφ and the fact that

ρ2 = r2/H̃2, we have that Aµ = 0 and the only non-zero component of ∂µφ is

∂ρφ = −ρ h(ρ) . (4.25)

We conclude that the �eld h and the scalar component of the Stückelberg �elds

φ play exactly the same role in this case: we can then work equivalently with the

�elds n, f and h, or with n, f and φ̇ ≡ ∂ρφ. It will turn out to be more convenient

to work with h instead of φ̇, so from now on we will work with the �elds n, f and

h.

4.1.3 Focusing on the Vainshtein mechanism

Let's �rst study the behavior around and above the Compton radius rc = 1/m

of solutions which decay at in�nity. At linear order in the �elds n, f and h, the

physical line element reads

ds2 = −(1 + n) dt2 + (1− f) dρ2 + ρ2dΩ2 (4.26)

and the equations of motion read [105]

0 =
(
m2ρ2 + 2

)
f + 2ρ

(
ḟ +m2ρ2ḣ+ 3m2ρh

)
(4.27)

0 =
1

2
m2ρ2(n− 4h)− ρ ṅ− f (4.28)

0 = f +
1

2
ρ ṅ (4.29)

where we have indicated derivatives with respect to ρ with an overdot ˙ . The

solutions for n and f are

n = −8GM

3ρ
e−mρ (4.30)

f = −4GM

3ρ
(1 +mρ) e−mρ (4.31)

where we fixed the integration constant so that M is the mass of a point particle

at the origin, and 8πG = M−2
pl . It is apparent that the solutions display the
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Yukawa exponential suppression for scales larger than the Compton radius, and

for scales smaller than the Compton radius exhibit the vDVZ discontinuity, since

the ratio between n and f is 2 in the massless limit m→ 0. This results agree with

the spherically symmetric solutions in the Fierz-Pauli model we found in section

(3.2.2), and are exactly what we expected: since the dRGT massive gravity is

a non-linear completion of the Fierz-Pauli theory, the linearized solution of the

equations of motion in the former theory should reproduce the solutions of the

latter.

We now want to focus on the Vainshtein mechanism. As we already mentioned,

the �ndings of Vainshtein [69] suggest that, when we focus on scales around and

below the Vainshtein radius rv, the e�ects of non-linearities show up mostly in

the Stückelberg �eld, while the gravitational potentials n and f remain small.

Therefore, to study the Vainshtein mechanism we decide to treat the gravitational

potentials at �rst order in the equations of motion, and instead keep all the non-

linearities in the �eld h. It can be shown [105] that in this approximation the

equations of motion reduce to the following system of equations

f = −2GM

ρ
− (mρ)2

[
h− (1 + 3α3)h2 + (α3 + 4α4)h3

]
(4.32)

ṅ =
2GM

ρ2
−m2ρ

[
h− (α3 + 4α4)h3

]
(4.33)

GM

ρ

[
1− 3(α3 + 4α4)h2

]
= −(mρ)2

[
3

2
h− 3(1 + 3α3)h2 +

+
(

(1 + 3α3)2 + 2(α3 + 4α4)
)
h3 − 3

2
(α3 + 4α4)2h5

]
(4.34)

Note that the �eld h obeys a decoupled equation, since the gravitational potentials

are not present in (4.34): this equation is in fact an algebraic equation, and for

the sake of precision is a polynomial of �fth degree in h. In the following, we will

refer to this equation as the quintic equation.

There is another way to derive the system of equations above, starting from

the decoupling limit Lagrangian (3.195) [105]. As we mentioned in the previous

chapter, the decoupling limit leaves the Vainshtein radius �xed and sends the
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Compton radius to in�nity, while sends the gravitational radius to zero: in some

sense, this limit focuses on the scales above the gravitational length and below

the Compton wavelength. Also, the decoupling limit selects a subclass of the

interaction terms which appear in the action, and sends to zero all the others:

these terms can be thought to be the ones which are more relevant regarding

the e�ect of non-linear interactions on the linearized solutions when we focus on

scales comparable to the Vainshtein radius. We then expect that there should

be a connection between the equations for static, spherically symmetric solutions

obtained from the decoupling limit Lagrangian and the equations obtained above.

To see it, it is actually more convenient to work with the �elds ȟµν and φ̌ ,

because their dynamics is coupled by just one interaction term, as is apparent in

the Lagrangian (3.197). Apart from the interaction term ∝ ȟµνX̌
(3)
µν , the dynamics

of the �eld φ̌ is described by a Galileon Lagrangian: as shown in [68], for static

and spherically symmetric con�gurations the equations of motion for a Galileon

�eld can be integrated exactly, obtaining an algebraic equation for ∂ρφ̌/ρ

a1

(
∂ρφ̌

ρ

)
+ a2

(
∂ρφ̌

ρ

)2

+ a3

(
∂ρφ̌

ρ

)3

∝ M

4πr3
. (4.35)

The coe�cients a1, a2 and a3 depend on the coe�cients of the Galileon terms in

the Lagrangian (3.197): therefore, if we neglect the interaction term ∝ ȟµνX̌
(3)
µν ,

the equation for φ̌ is polynomial in ∂ρφ̌/ρ and it is at most a cubic. As shown in

[105], the e�ect of the interaction term ∝ ȟµνX̌
(3)
µν is to add to the left hand side

of the cubic equation above a contribution proportional to(
8d5 + c3

)(∂ρň
ρ

)(
∂ρφ̌

ρ

)2

(4.36)

where ň = ȟtt, and 8d5 + c3 is proportional to α3 + 4α4. Varying the action with

respect to ȟµν , instead, one obtains that the equations of motion for ň and f̌ :

these equations imply that ∂ρň/ρ can be expressed as a linear combination of a

Newtonian term GM/ρ3 and of a term ∝
(
α3 + 4α4

)(
∂ρφ̌/ρ

)3
, which again comes

from the interaction term ȟµνX̌
(3)
µν in the Lagrangian. Substituting this expression

for ∂ρň/ρ in the equation for φ̌, one obtains the quintic equation (4.34) for h =

∂ρφ̌/ρ: in particular, the h5 term in the quintic is generated by substituting this

expression for ∂ρň/ρ in (4.36). Therefore, the interaction term ȟµνX̌
(3)
µν (which is
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the only one which cannot be removed from the action by a local �eld rede�nition)

is responsible for the fact that the degree of the polynomial equation which ∂ρφ̌/ρ

obey changes from three (as it is in a general Galileon theory) to �ve. Note however

that when (8d5 + c3) ∝ (α3 + 4α4) = 0 this coupling vanishes, and the polynomial

equation becomes a cubic as in a Galileon theory. It is possible to verify [105]

that also the equations (4.32) - (4.33) can be derived from the decoupling limit

Lagrangian: this strongly supports the idea that the system of equations (4.32) -

(4.34) is a good description of the full theory when we focus on scales comparable

to the Vainshtein radius, and therefore this system is the starting point for our

analysis of the Vainshtein mechanism in dRGT massive gravity.

4.2 The quintic equation

For notational convenience, it is useful to define the parameters α ≡ 1 + 3α3 and

β ≡ α3 + 4α4 : in terms of these new parameters, the system (4.32)-(4.34) takes

the form

f = −2
GM

ρ
− (mρ)2

(
h− αh2 + βh3

)
(4.37)

ṅ = 2
GM

ρ2
−m2ρ

(
h− βh3

)
(4.38)

3

2
β2 h5(ρ)−

(
α2 + 2β

)
h3(ρ) + 3

(
α + βA(ρ)

)
h2(ρ)− 3

2
h(ρ)− A(ρ) = 0 (4.39)

where A(ρ) =
(
ρv/ρ

)3
and ρv is the Vainshtein radius defined as ρv ≡

(
GM/m2

)1/3
.

The new parameters have a clear physical interpretation: in fact, the two combi-

nations of the parameters c3 and d5 which appear in the decoupling limit action

(3.197) are easily expressed in terms of α and β

α ∝ 6c3 − 1 β ∝ 8d5 + c3 . (4.40)

In particular, the case β = 0 corresponds to a situation where the coupling ȟµνX̌
(3)
µν

is absent and so the �eld φ̌ is exactly a Galileon, while the case α = 0 corresponds

to a situation where the derivative coupling ∂µφ̌ ∂νφ̌ T
µν is absent and so the �eld
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φ̌ does not couple to the electromagnetic �eld. In the case α = β = 0 all the

Galileon self-interaction terms vanish, and in the decoupling limit we are left with

a Lagrangian for a free tensor �eld ȟµν and a free scalar φ̌ both of which interact

with the energy-momentum tensor via non-derivative couplings.

As we already mentioned, the equation (4.39) does not contain the gravitational

potentials n and f , so h obeys a decoupled equation: furthermore, if we know

the solution for h, the �elds f , n are uniquely determined (up to an integration

constant) by the other two equations (4.37) and (4.38) in terms of h. Therefore,

our aim has been to study all the solutions which the equation (4.39) admits,

for every value of the parameters α and β, and characterize their geometrical

properties using the equations (4.37)-(4.38). Note that in the particular case of

β = 0, the equation for h becomes a cubic equation and it is possible to obtain

solutions for h and the metric perturbations exactly. These solutions were studied

in [104, 105] and it was shown that the solutions exhibit the Vainshtein mechanism.

Therefore, in what follows, we assume β 6= 0. Note that a systematic approach

to Vainshtein effects in theories which have connections with massive gravity have

been performed in [113], regarding covariant Galileon theory, and in [114, 115],

regarding general scalar-tensor theories.

4.2.1 The quintic equation

The equation of motion for h, which we rewrite here

3

2
β2 h5(ρ)−

(
α2 + 2β

)
h3(ρ) + 3

(
α + βA(ρ)

)
h2(ρ)− 3

2
h(ρ)− A(ρ) = 0 (4.41)

is an algebraic equation for h, A, α and β; at fixed ρ, α and β it is, in fact, a

polynomial equation of fifth degree in h (except, as we already mentioned, in the

special case β = 0). In the following, we will refer to it as the quintic equation.

To study the Vainshtein mechanism in this theory, the most convenient thing to

do would be to �nd exact solutions of the quintic equation, derive their physical

predictions inside the Vainshtein radius, and determine if they agree with the ones

of GR. However, �nding exact solutions of this equation is almost impossible: a

general theorem of algebra, the Abel-Ru�ni theorem (see, for example, [116]),
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states that is impossible to express the general solution of a polynomial equation

of degree �ve or higher in terms of radicals (while it possible for quadratic, cubic

and quartic equations). Even if the quintic equation (4.41) lacks of the h4 term,

and so it is not the most general quintic equation, it seems arduous to �nd explicit

solutions as a function of ρ.

However, it is indeed possible to �nd explicitly the number and properties of

solutions which the quintic equation admits in a neighborhood of ρ→ +∞, which

we call the asymptotic solutions, and the number and properties of solutions which

the quintic equation admits in a neighborhood of ρ→ 0+, which we call the inner

solutions. This fact o�ers the possibility to study the Vainshtein mechanism with-

out �nding the complete solutions of (4.41). In fact, suppose for example that we

are able to show that (for some α and β) there exists a global solution of (4.41)

(i.e. a solution which is de�ned on the domain ρ ∈ (0,+∞)) which interpolates be-

tween an inner solution which reproduces GR results, and an asymptotic solution

which displays the vDVZ discontinuity. We can then conclude that the Vainshtein

mechanism is working for the theory de�ned by this choice of parameters. More

in general, we can make precise statement on the e�ectiveness of the Vainshtein

mechanism just by characterizing the properties of asymptotic and inner solutions

in all the phase space of parameters, and by determining if there are global solu-

tions which interpolates between each couple of asymptotic/inner solutions. In the

following, when there is a global solution which interpolates between an inner and

an asymptotic solution, we say that there is matching between the two solutions.

This is precisely the approach we take in studying the Vainshtein mechanism

in dRGT massive gravity: in sections 4.3 and 4.4 we �nd exactly the number and

properties of asymptotic and inner solutions in every point of the phase space, and

in the section 4.5 we discuss the details of the matching between asymptotic and

inner solutions. We will not restrict ourselves to asymptotically decaying solu-

tions and to inner solutions which reproduce GR, but we will study the matching

properties of all kinds of asymptotic and inner solutions.

It is worthwhile to point out that our starting equations (4.37)-(4.39) were

constructed assuming GM < ρ < 1/m, but in the following analysis we use the

whole radial domain 0 < ρ < +∞ . On one hand, this allows us to characterize

exactly the number and properties of solutions on large and small scales. On the
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other hand, the picture we have in mind is that the Compton wavelength of the

gravitational field ρc = 1/m is of the same order of the Hubble radius today, and

that there is a huge hierarchy between ρc and the gravitational radius2 ρg = GM ,

i.e. ρc/ρg ≫ 1. Therefore, we expect that extending the analysis to the whole

radial domain captures the correct physical results.

4.2.2 Symmetry of the quintic and dual formulation

Symmetry of the quintic

To be able to describe how the matching works in all the phase space, in principle

we should study separately every point (α, β). However, this is not necessary since

equation (4.41) obeys a remarkable symmetry: defining the quintic function as

q
(
h,A;α, β

)
≡ 3

2
β2 h5 −

(
α2 + 2β

)
h3 + 3

(
α + βA

)
h2 − 3

2
h− A (4.42)

it is simple to see that

q
(h
k
,
A

k
; k α, k2β

)
=

1

k
q
(
h,A;α, β

)
(4.43)

Therefore if a local solution of (4.41) exists for a given (α, β) within a certain

radial interval, it would also be present for (kα, k2β), for k > 0, with h being

replaced by h/k and the radial interval rescaled by 1/ 3
√
k. As a result, each point

belonging to the α > 0 part of the parabola β = c α2 of the phase space (with

c any non-vanishing constant) shares the same physics, hence having the same

number of global solutions and matching properties. The same is true for the

points belonging the α < 0 part of the parabola. So, to understand the global

structure of the phase space, it is sufficient to analyze one point for each of the

half parabolas present in the phase space.

Dual formulation

In order to �nd the asymptotic and the inner solutions, we need to study the quintic

equation in the limits ρ → +∞ and ρ → 0+. In particular, we will consider both

2We are using units where the speed of light speed has unitary value.
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decaying and diverging solutions. To do this, it is very useful to formulate the

theory in terms of quantities which remain �nite in the limit.

Note that the radial coordinate ρ is de�ned for ρ ∈ (0,+∞): this implies that

the function A(ρ) is always non-zero, and the map ρ→ A(ρ) is a di�eomorphism3

of (0,+∞) into itself. In particular, this means that we can use equivalently ρ and

A as radial coordinates: the latter choice is more convenient to study asymptotic

solutions, since the limit ρ→ +∞ is expressed as the limit A→ 0+. Furthermore,

it will be useful to work with dimensionless radial coordinates, at least as far as

only the solutions of the quintic are concerned, so instead of ρ we will often use

the coordinate x ≡ ρ/ρv and, as we mentioned, A = 1/x3.

The fact that A is always di�erent from zero implies that a solution h of (4.41)

never vanishes in the domain of de�nition, since the quintic function (4.42) for

h = 0 is equal to A. Therefore, we can divide the quintic equation by h5 obtaining

the following quintic equation for v ≡ 1/h

d
(
v, A;α, β

)
≡ Av5 +

3

2
v4 − 3

(
α + βA

)
v3 +

(
α2 + 2β

)
v2 − 3

2
β2 = 0 : (4.44)

since we are considering the β 6= 0 case, every solution to the new quintic (4.44)

is again never vanishing. It follows that, if we �nd a solution h of the �original�

quintic equation (4.41), then its reciprocal 1/h is a solution of the �new� quintic

(4.44), and conversely the reciprocal of every solution of (4.44) is a solution of

(4.41). This implies that it is completely equivalent to work with the �eld h or

with the �eld v: the quintic equation (4.44), together with the equations which we

obtain substituting h = 1/v in the equations (4.37)-(4.38), provides a completely

equivalent formulation of the (decoupling limit) theory de�ned by the equations

(4.37)-(4.39). We will refer to the formulation in terms of v as the dual formulation.

It will be useful, especially when studying inner solutions, to work with the x

coordinate: to derive the quintic equations in terms of x, we can divide the quintic

equation (4.41) by A obtaining the following quintic equation

b
(
h, x;α, β

)
≡ x3

(
3

2
β2 h5−

(
α2 + 2β

)
h3 + 3αh2− 3

2
h

)
+ 3 β h2− 1 = 0 (4.45)

Furthermore, dividing the equation above by h5 we obtain the quintic in the dual

3By di�eomorphism we mean a smooth and invertible function whose inverse is smooth.
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formulation in terms of the radial coordinate x

g
(
v, x;α, β

)
≡ v5 +

3

2
x3 v4−3

(
β+αx3

)
v3 +

(
α2 +2β

)
x3 v2− 3

2
β2 x3 = 0 (4.46)

This four quintic equations provide equivalent descriptions of the same problem,

when β 6= 0. Note that the dual formulation is more suited to discuss the β → 0

limit of our results and the connection with exact results of the β = 0 case [105],

since the quintic equations in the dual formulation remain of degree �ve even in

the β → 0 limit.

4.3 Asymptotic and inner solutions

We turn now to the study of asymptotic and inner solutions of the quintic equation

(4.41), in the β 6= 0 case. Note that interesting results about asymptotic and

inner solutions of the quintic equation have been obtained in [105] and [117],

however the existence of the solution was not proved there. Furthermore, an exact

characterization of the number of asymptotic and inner solutions in the phase space

is missing in these papers. See also [118] for related studies on the phenomenology

of solutions in this branch of massive gravity.

4.3.1 Asymptotic solutions

Let's suppose that a solution h(ρ) of the quintic equation (4.41) exists in a neigh-

borhood of ρ = +∞ , and that it has a well defined limit as ρ → +∞. We can

immediately conclude that this solution cannot be divergent. In fact, suppose that

indeed the solution is divergent | limρ→+∞ h(ρ)| = +∞ : in the dual formulation,

this corresponds to the case limA→0 v(A) = 0. Performing the limit A→ 0 in the

quintic (4.44) one obtains β = 0, which is precisely against our initial assumption.

Therefore, asymptotic solutions of the quintic equation (4.41) have to be �nite.

Suppose now that limρ→+∞ h(ρ) is finite, and let's call it C. Then both of the

sides of the quintic equation (4.41) have a finite limit when ρ→ +∞ , and taking

this limit one gets

3

2
β2C5 −

(
α2 + 2β

)
C3 + 3αC2 − 3

2
C = 0 . (4.47)
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It follows then that the allowed asymptotic values at infinity for h(ρ) are the roots

of the following equation, which we call the asymptotic equation

A (y) ≡ 3

2
β2 y5 −

(
α2 + 2β

)
y3 + 3α y2 − 3

2
y = 0 . (4.48)

Note that y = 0 is always a root of this equation, and in fact a simple root (i.e.

a root of multiplicity one) since d
dy

A (0) = −3/2 6= 0 . Dividing by y, one obtains

that the other asymptotic values for h(ρ) are the roots of the reduced asymptotic

equation

Ar(y) ≡ 3

2
β2 y4 −

(
α2 + 2β

)
y2 + 3α y − 3

2
= 0 . (4.49)

This last equation is a quartic, so it can have up to 4 (real) roots, depending on

the specific values of α and β. Since

lim
y→−∞

Ar(y) = +∞ Ar(0) = −3

2
< 0 lim

y→+∞
Ar(y) = +∞ , (4.50)

we have, by the intermediate value theorem (see, for example, [119]), that the

reduced asymptotic equation has always at least two roots, one positive and one

negative. For the same reason, it cannot have two positive and two negative roots,

since at each simple root the quartic function changes sign.

As we show in the appendix E, in the regions of the phase space below the

parabola β = c− α
2 and above the parabola β = c+ α

2 the asymptotic equation

has three real roots, which are simple roots, while in the regions c− α
2 < β < 0

and 0 < β < c+ α
2 the asymptotic equation has �ve real roots, which are again

simple roots. Note that c+ = 1/4 and c− is the only real root of the equation

8 + 48 y − 435 y2 + 676 y3 = 0. On the two parabolas β = c± α
2 (which we call

the �ve-roots-at-in�nity parabolas) there are four roots, one of which is a root of

multiplicity two. This is summarized in figure 4.1.

We name the roots in the following way: the y = 0 root is denoted as L.

For the phase space points where there are just three roots, the positive root is

denoted as C+ and the negative one as C− . For points in the five-roots regions,

we adopt the following convention. Be (α5, β5) a point where there are five roots.

In the same quadrant of the phase space, take another point (α3, β3) where there

are three roots, and a path C which connects the two points. Following the path

C , two of the four non-zero roots of (α5, β5) smoothly flow to the non-zero roots of
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Figure 4.1: phase space diagram for the number of asymptotic solutions

(α3, β3), and are denoted as C+ and C− themselves. The other two non-zero roots

of (α5, β5), instead, disappear when (following C ) the boundary of the five-roots

region is crossed, and are denoted as P1 and P2. We adopt the convention that

|P1| ≤ |P2|. The definition is independent of the particular choice of the point

(α3, β3) and of the path C used. A careful study of the asymptotic equation and

of its derivatives permits to show that we have C− < C+ < P1 < P2 for α > 0

and P2 < P1 < C− < C+ for α < 0. On the boundaries β = c± α
2 we have

P1 = P2 ≡ P.

4.3.2 Inner solutions

Suppose now that a solution of the quintic equation exists in a neighborhood of

ρ = 0+ (possibly not defined in ρ = 0), and that it has a well defined limit when

ρ → 0+. We can immediately see that such a solution cannot tend to zero as

ρ→ 0+. In fact, suppose that indeed the solution tends to zero limx→0+ h(x) = 0 :

taking the limit in the quintic equation (4.45), we get −1 = 0 which contradicts

our assumption. Therefore, if h(ρ) is an inner solution then limρ→0+ h(ρ) 6= 0.

This means that, in the dual formulation, all the inner solutions v(x) have a
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�nite limit for x→ 0+. Considering the quintic in the dual formulation (4.46), the

permitted limiting values for a inner solution v are then the roots of the equation

obtained performing the limit x→ 0+ in the quintic (4.46), namely

v5 − 3 β v3 = 0 (4.51)

For β > 0 there are three roots, namely v0 = 0, v+ = +
√

3 β and v− = −
√

3 β ;

for β < 0, instead, there is only the root v = 0. Therefore, the permitted limiting

behaviors for h when ρ→ 0+ are

|h(ρ)| → +∞ (4.52)

for β 6= 0, and

h→ F± ≡ ±
√

1

3 β
(4.53)

only for β > 0.

4.3.3 Existence of the asymptotic and inner solutions

Note that so far we have not proved that inner and asymptotic solutions exist,

but just found the values that have to be the limit of these solutions if they exist.

The existence and uniqueness of solutions can be proved applying the implicit

function theorem (known also as Dini's theorem) which we enunciate in appendix

B. Regarding asymptotic solutions, to apply the implicit function theorem we

can arti�cially extend the domain of de�nition of the equation (4.41) to A < 0 as

well: apart from the �ve-roots-at-in�nity boundaries, all the asymptotic roots are

simple roots. Therefore we can apply the implicit function theorem, which tells us

that there exist a local solution of (4.41) associated to every root of the asymptotic

equation: restricting now the domain of de�nition of these local solutions to A > 0,

we obtain the desired asymptotic solutions to the quintic equation. It follows that

to each of the asymptotic roots L, C+, C−, P1 and P2 we can associate a local

solution of the quintic equation in a neighborhood of ρ → +∞, and we indicate

the root and the associate local solution with the same letter.

On the �ve-roots-at-in�nity boundaries, a separate analysis is needed for the

double root P1 = P2 ≡ P. It can be shown that for α > 0 and β = c+ α
2 there
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are no local solutions of (4.41) which tend to P when ρ → +∞, and the same

holds for α < 0 and β = c− α
2. On the other hand, for α > 0 and β = c− α

2

there are two different local solutions of (4.41) which tend to P when ρ → +∞,

and the same holds for α < 0 and β = c+ α
2. Despite having the same limit for

ρ→ +∞, these two local solutions are different when A 6= 0: we then call P1 the

solution which in absolute value is smaller, and P2 the solution which in absolute

value is bigger. Therefore, on the boundaries between the three-roots-at-infinity

regions and the five-roots-at-infinity regions, for α ≷ 0, β = c± α
2 there are three

asymptotic solutions of (4.41), while for α ≷ 0, β = c∓ α
2 there are five asymptotic

solutions of (4.41).

Regarding inner solutions, the existence of local solutions in a neighborhood

of ρ = 0+ associated to the limiting values F+ and F− can be proved extending

the validity of (4.46) to x < 0 and applying the implicit function theorem at

(v = ±
√

3β, x = 0). Restricting then to x > 0 the domain of de�nition of the

solutions obtained this way, we get two local solutions v±(x) of (4.46) which tend

to ±
√

3β as ρ → 0+: the reciprocal h±(ρ) = 1/v±(x(ρ)) of these solutions are

local solutions of the quintic (4.41) in a neighborhood of ρ → 0+, and are the

inner solutions associated to F±. We will use F± to denote both the limiting

values and the inner solutions associated to the limiting values. For the solution

associated to the limiting value v = 0, we cannot apply the implicit function

theorem straightaway, because the function g
(
v, x;α, β

)
is such that ∂g

∂v
= 0 in

(v, x) = (0, 0). However, using the results of appendix C, it can be shown that, for

β > 0, there always exists a neighborhood of A→ +∞ where there is a simple root

of the quintic (4.41) which is < F− and decreases when A increases. Applying the

implicit function theorem to (4.41) in this neighborhood of A→ +∞, we obtain a

local solution of (4.41) which corresponds to the limiting value v = 0, which will be

denoted by D. For β < 0, instead, there always exists a neighborhood of A→ +∞
where there is a simple root of the quintic (4.41) which is > F+ and increases

when A increases. Analogously to the β > 0 case, applying the implicit function

theorem to (4.41) in this neighborhood we obtain a local solution of (4.41) which

corresponds to the limiting value v = 0, which will be denoted as well by D.
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4.4 Characterization of the asymptotic and inner

solutions

We sum up here the results obtained in the previous section on the existence

and properties of asymptotic and inner solutions of eq. (4.41), together with their

leading behaviors and geometrical meaning. We refer to the appendix F for the

derivation of the leading behaviors.

4.4.1 Asymptotic solutions

In a neighborhood of ρ → +∞ there are, depending on the value of (α, β), three

or five solutions to eq. (4.41). In particular:

- There is always a decaying solution, which we indicate with L. Its asymptotic

behavior is

h(ρ) = −2

3

(
ρv
ρ

)3

+ R(ρ) (4.54)

where limρ→+∞ ρ3R(ρ) = 0. This solution corresponds to a spacetime which

is asymptotically flat, as one can see from eqs. (4.37)-(4.38).

- Additionally, there are two or four solutions to eq. (4.41) which tend to a

finite, nonzero value as ρ → +∞. We name these solutions with C+, C−,

P1 and P2. Their asymptotic behavior is

h(ρ) = C + R(ρ) (4.55)

where limρ→+∞ R(ρ) = 0 and C is a root of the reduced asymptotic equation

(4.49). From eqs. (4.37)-(4.38), one can get convinced that these solutions

correspond to spacetimes which are asymptotically non-flat. Interestingly,

the leading term in the gravitational potentials scales as ρ2 for large radii, the

same scaling which we find in a de Sitter spacetime. It is worthwhile to point

out that, since we are working on scales below the Compton wavelength of

the gravitational field, �asymptotically non-flat� really means that (from the

point of view of the full and non-approximated theory) the spacetime corre-

spondent to this solution tends to a non-flat spacetime when the Compton



4.4 Characterization of the asymptotic and inner solutions 145

wavelength is approached. To understand the �true� asymptotic behavior of

this solution, one should use the non-approximated equations. Note that,

even if C (and so h) is much smaller than one, the gravitational potentials n

and f can be very large (as they behave like ∝ ρ2 far from the origin in this

case): therefore, the linear approximation (for the gravitational potentials)

we used to obtain eqs. (4.30)-(4.31) is not valid. Instead, the asymptotic fate

of the solution is dictated by the nonlinear behavior of the non-approximated

equations. This seems not easy to predict without a separate analysis, and

we don't attempt to address this interesting problem.

4.4.2 Inner solutions

In a neighborhood of ρ→ 0+ there are either one or three solutions to eq. (4.41).

For β > 0 there are exactly three inner solutions, while for β < 0 there is only one

inner solution. In particular:

- There is always a diverging solution, which we denote by D. Its leading

behavior is

h(ρ) = − 3

√
2

β

ρv
ρ

+R(ρ) (4.56)

where limρ→0+ (R(ρ)/ρ) is finite. This solution exists for both β > 0 and β <

0, with opposite signs for each case. Using this solution in eqs. (4.37)-(4.38),

one realizes that the h3 term cancels the GM/ρ term, so the gravitational

field is self-shielded and does not diverge as ρ → 0+. This solution is in

strong disagreement with gravitational observations.

- For β > 0, there are two additional solutions to eq. (4.41), which tend to a

finite, non-zero value as ρ→ 0+. We indicate these solutions by F+ and F− .

Their leading behavior is

h(ρ) = ±
√

1

3 β
+ R(ρ) (4.57)

where limρ→0+ R = 0. Notice that for β < 0 there are no solutions to

eq. (4.41) which tend to a finite value as ρ→ 0+.
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The expressions (4.37)-(4.38) for the gravitational potentials imply that the

metric associated to these solutions (F+ and F−) approximate the linearized

Schwarzschild metric as ρ→ 0+.

From the behavior of the inner solutions, one concludes that only in the β > 0

part of the phase space solutions may exhibit the Vainshtein mechanism, but not

necessarily for all values of α. In the next subsection we see more in detail how

this mechanism works.

4.4.3 Vainshtein mechanism and solutions matching

In order to study where in the phase space the Vainshtein mechanism works, it is

useful to compare the gravitational potentials f and n with their counterparts in

the GR case. In the weak field limit, the Schwarzschild solution of GR reads

ds2 = −
(

1− 2GM

ρ

)
dt2 +

(
1 +

2GM

ρ

)
dρ2 + ρ2 dΩ2 (4.58)

so by calling fGR = nGR = −2GM/ρ we obtain

f

fGR
= 1 +

1

2

(
ρ

ρv

)3 (
h− αh2 + βh3

)
(4.59)

n ′

n ′GR
= 1− 1

2

(
ρ

ρv

)3 (
h− βh3

)
(4.60)

Let us now first discuss the asymptotic solutions. For the decaying solution L, we

have that the linear contribution in h rescales the coefficients of the Schwarzschild-

like terms, so we obtain f/fGR → 2/3 and n ′/n ′GR → 4/3 for ρ → +∞. For the

non-decaying solutions C± and P1,2, the leading behavior for f/fGR and n ′/n ′GR

is proportional to (ρ/ρv)
3 in both cases, however the proportionality coefficients

generally differ since they have a different functional dependence on α and β.

There are some special cases for (α, β) where these asymptotic solutions lead to

f/n → 1 as ρ → +∞, and therefore have the same behavior as in a de Sitter

spacetime.

Consider instead the inner solutions. For the finite solutions F± we obtain

(f/fGR) → 1 and (n ′/n ′GR) → 1 as ρ → 0+, where the corrections scale like ρ3.
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On the contrary, for the diverging solution D, the cubic terms in h cancel out the

contribution coming from the Schwarzschild-like terms, as explained above, and so

(f/fGR)→ 0 and (n ′/n ′GR)→ 0 when ρ→ 0+. In this case, corrections are linear

in ρ.

Therefore, any global solution of equation (4.41) which interpolates between L

and F± provides a realization of the Vainshtein mechanism in an asymptotically

flat spacetime, whereas an interpolation between C± or P1,2 with F± exhibits

the Vainshtein mechanism in an asymptotically non-flat spacetime. Furthermore,

notice that any asymptotic solution which interpolates with the inner solution D

does no lead to the Vainshtein mechanism. These matchings will be explicitly

exposed in the next section.

4.5 Phase space diagram for solutions matching

In the previous section, we characterized the number and properties of asymptotic

and inner solutions in all the phase space. As we mentioned in section (4.2), to

make precise statements about the e�ectiveness of the Vainshtein mechanism it is

enough to establish (for every point of the phase space) which asymptotic solution

is connected to which inner solution by a global solution which interpolates between

them. The aim of this section is to study the matching of asymptotic and inner

solutions in all the phase space.

4.5.1 Local solutions and the shape of the quintic

Since �nding exact solutions of the quintic equation is extremely di�cult, we need

another method to determine, given a �xed asymptotic solution and a �xed inner

solution, if there exists a global solution interpolating between them. To explain

how this can be done, let's �rst of all note that we may see the quintic function

(4.42), which is a function of two variables (when we keep α and β �xed), as a

collection of functions of h whose shape depend continuously on a parameter A.

This idea can be formalized introducing the shape function qA
(
h;α, β

)
which is

de�ned as

qA
(
h;α, β

)
= q

(
h,A;α, β

)
: (4.61)
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the shape function is a function of h only, and essentially, given a value of A, it is

the quintic in h which one obtains keeping �xed A in the quintic function (4.42).

At every A, the shape function has a certain set of roots {ri(A)}i, which change

continuously when A changes: if h(A) is a solution of the quintic equation, by

de�nition h(A) describes the continuous �ow with A of a particular zero of the

shape function. Note that we study the �ow with A at α and β �xed, so for

simplicity from now on we will omit to write the dependence from α and β.

We would like to follow the opposite path, and infer the existence of a solution

of the quintic equation from the study of the �ow of the zeros of the shape function.

This is indeed possible thanks to the implicit function theorem (see appendix B).

In fact, if we start from a �xed Ā and �nd a simple zero h̄ of the shape function, the

implicit function theorem tells us that there exists a (local) solution h̄(A) of the

quintic equation, which is de�ned in a neighborhood of Ā, and which describes the

�ow with A of the zero h̄ we started with. Moreover, as we explain in the appendix

B, there is a criterion which permits to infer the existence of global solutions of

the quintic equation: if the �ow of zero h̄ is such that the zero remains simple4

for every value of A, then the local solution h̄(A) can be extended maximally to a

global solution. Therefore, we are in principle able to �nd global solutions to the

quintic equation just by studying how the shape of qA
(
h
)
evolves with A.

4.5.2 Creation and annihilation of local solutions

Let's consider instead what happens when, extending a local solution h(A), we

reach a point Ã when dqA/dh = 0 and so the zero of the shape function is not sim-

ple. This situation geometrically means that the shape function has a stationary

point on the h axis. Consider for example the case where the shape function has

a local minimum below the h axis, and there are two zeros around the minimum.

If this minimum translates upwards when A increases and eventually crosses the

h axis at a certain A = Ã, the two zeros join together and disappear at the axis

crossing: it follows that the two local solutions h12(A) associated to the zeros stop

existing at A = Ã. When this happens, by (B.3) the derivative dh12/dA diverges

4We say that a zero h̄ of the shape function qA (h) is simple if h̄ is a simple root of the equation

qA (h) = 0.
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at A = Ã, but the functions h12(A) remain bounded. The same happens when

a local maximum of the shape function crosses the h axis translating downwards.

We will say in these cases that two local solution �annihilate� at A = Ã. If instead

a local minimum of the shape function translates downwards when A increases

and crosses the h axis at a certain A = Ã, two new zeros appear at A = Ã and

therefore two local solutions h12(A) of the quintic equation start existing at A = Ã:

again, by (B.3) the derivative dh12/dA diverges at the point A = Ã, but the values

of the functions remain bounded. The same happens if a local maximum of the

shape function translates upwards and crosses the h axis. We will say in these

cases that two local solution �are created� at a certain A = Ã. The creation and

annihilation of local solutions and its relation with local maxima and minima of

the shape function is well illustrated in �gure 4.7 and in �gure 4.8.

The phenomenon of creation and annihilation of local solutions is found to be

a general feature of the phenomenology of equation (4.41). In fact, in most part

of the phase space the number of asymptotic solution is di�erent from the number

of inner solutions: the reason why some of these solutions cannot be continued to

all the radial domain 0 < ρ < +∞ is always that they annihilate with some other

local solution. Note that, in general, the solutions are created and annihilated

in pairs, and the pairs of solutions have infinite slope when they are created or

they annihilate. Anyway, a note of caution is in order: the fact that a stationary

point appears on the h axis does not necessarily means that a solution disappears

or is created. For example, if a horizontal in�ection point of the shape function

crosses the h axis, then there is a value A = Ã where there is a stationary point

on the h axis, and the implicit function theorem cannot be applied. Nevertheless,

in this case the solution continues existing, even if at A = Ã it has an in�nite �rst

derivative.

It is crucial to point out that, since the �rst derivative of a local solution of

the quintic equation diverges at a creation/annihilation point, the gravitational

potentials associated with this solution have diverging derivatives themselves at

this point. This implies that, when a creation/annihilation point is approached,

the approximations we used to derive the system of equations (4.37)-(4.39) does

not hold anymore (i.e. the linear approximation on the gravitational potentials),

and to understand what happens to the spacetime described by this solutions we
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should study the full theory. We don't attempt to do this, and therefore we cannot

say anything about what happens to the spacetimes described by local solutions

of the quintic equation which in our analysis cannot be extended to the complete

radial domain.

4.5.3 Analysis strategy

Our analysis strategy is therefore the following: for every point of the phase space,

we start from the zeros of the shape function at in�nity A = 0 (i.e. from the roots

of the asymptotic equation), and we follow the evolution of the shape function when

A goes form zero to +∞. In this way, we determine which asymptotic solutions

�ow into an inner solution, and we determine which asymptotic solutions matches

which inner solution. The study is done in three di�erent ways.

On one hand, we study analytically the evolution of the shape function, in

particular focusing on the evolution of the number and position of its in�ection

points. In many cases, the study of the position of the in�ection points is enough to

establish that in a certain interval of values for h there always (i.e. for every value

of A) exists one simple zero of the shape function, thereby proving analytically the

existence of the global solution of the quintic equation which corresponds to this

zero. For this study it is necessary to characterize precisely the properties of the

shape function at in�nity, and the evolution of its properties when A goes from

zero to +∞: the details of the study of these properties are given in the appendices

C and D.

On the other hand, we plot numerically the shape function and continuously

change the value of A (of course, since it is a numerical procedure the modulation

is not really continuous but procedes by small �nite steps). Despite being less

rigorous than the former procedure, this allows to visualize in a very e�cient way

the evolution of the shape function. Note that, as we explain in the appendix

C, there is no need to follow the evolution till A → +∞ because for every α

and β there is a critical value Acrit (which depends on α and β) such that for

A > Acrit there are no more creations/annihilations of solutions, and so from the

shape function at A = Acrit one can infer unambiguously the matching of the

solutions. Note that, since h is de�ned on (−∞,+∞), we don't plot the shape
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function qA(h) itself but its composition with the tangent function qA
(
tg(h)

)
: this

has the e�ect of compactifying the real axis into the interval (−π/2,+π/2), and

at the same time does not change the number and the relative order of the zeros.

Finally, we check the results of these two (somehow complementary) methods

by solving with the software Mathematica© for symbolic and numeric calcula-

tions5 the condition of the presence of a stationary point on the h axis. More

precisely, we impose the condition that there exist a couple of values (h,A) where

both the shape function qA(h;α, β) and its �rst derivative dqA/dh vanish: solving

this condition gives constraints on the values for α and β, and identi�es the regions

of the phase space where solution can annihilate/be created.

These three di�erent approaches permit us to characterize the solution match-

ing in a detailed way, and in the next section we present our results.

4.5.4 Phase space diagram

The phase space diagram which displays our results about solution matching is

given in figure 4.2. We discuss separately the β > 0 and β < 0 part of the phase

space, and refer to the figure for the numbering of the regions. The notation I↔ A

means that there is matching between the inner solution I and the asymptotic

solution A.

β < 0

In this part of the phase space, there is only one inner solution, D, so there can

be at most one global solution to (4.41). There are three distinct regions which

differ in the way the matching works:

- region 1: D ↔ C+. In this region, there are three or five asymptotic solu-

tions, and only one of them, C+, is positive. This solution is the one which

connects with the inner solutionD, which is also positive, leading to the only

global solution of eq. (4.41). The boundaries of this region are the line β = 0

for α < 0 and the parabola β = c12 α
2 for α > 0, where c12 is the negative6

5http://www.wolfram.com/mathematica/
6The equation −4− 8 y + 88 y2 − 1076 y3 + 2883 y4 = 0 has only two real roots, one positive

and one negative.
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Figure 4.2: Phase space diagram in (α, β) for the solutions to the quintic equation

(4.41) in h, where the different regions show different matching of inner solutions

to asymptotic ones. The lines splitting the regions are half parabolas (β ∝ α2,

with α > 0 or α < 0) due to rescaling symmetry of eq. (4.41).
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root of the equation −4− 8 y+ 88 y2− 1076 y3 + 2883 y4 = 0 (approximately,

c12 ' −0.1124). On the boundary β = c12 α
2 the matching D ↔ C+ still

holds, however the solution h(ρ) displays an inflection point with vertical

tangent.

- region 2: No matching. In this region there are three asymptotic solutions.

However, none of them can be extended all the way to ρ → 0+, and so,

despite the fact that local solutions exist both at infinity and near the origin,

equation (4.41) does not admit any global solution. The boundaries of this

region are the parabola β = c12 α
2 and the (negative) five-roots-at-infinity

parabola β = c− α
2, where c− is the only real root of the equation 8 + 48 y−

435 y2 + 676 y3 = 0 (approximately, c− ' −0.0876).

- region 3: D ↔ P2. This region coincides with the α > 0, β < 0 part of

the five roots at infinity region of the phase space (see fig. 4.1). The largest

positive asymptotic solution, P2, is the one which connects to D, leading

to the only global solution of eq. (4.41). On the boundary β = c− α
2 the

matching D↔ P2 still holds, but the solution h seen as a function of A has

infinite derivative in A = 0.

β > 0

In this part of the phase space, there are three inner solutions, D, F+ and F−, so

there can be at most three global solutions to eq. (4.41). There are six distinct

regions with different matching properties:

- region 4: F− ↔ L , D ↔ C−. This region lies inside the α > 0, β > 0 part

of the five roots at infinity region of the phase space (see fig. 4.1), so there

are five asymptotic solutions. Of the five asymptotic solution, C− and L can

always be extended to ρ → 0+, while C+, P1 and P2 cannot. So there are

just two global solutions to eq. (4.41). The boundaries of this region are the

parabola β = c45 α
2, where c45 = 1/12 ' 0.0833, and the line β = 0. On the

boundary β = c45 α
2 there is the additional matching F+ ↔ C+, and the

correspondent solution is h(ρ) = const = +
√

1/ 3 β .
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- region 5: F+ ↔ C+ , F− ↔ L, D ↔ C−. In this region there are three or

five asymptotic solutions; C− , C+ and L can always be extended to ρ→ 0+,

while P1 and P2 , where present, cannot. So there are three global solutions

to (4.41). The boundaries of this region are the parabola β = c45 α
2 for α > 0

and the parabola β = c56 α
2 for α < 0, where c56 = (5 +

√
13)/24 ' 0.3586.

On the α < 0 boundary β = c56 α
2 the matching works as in the rest of

the region, but the solution F− ↔ L has an inflection point with vertical

tangent.

- region 6: D ↔ C− , F+ ↔ C+. In this region there are three asymptotic

solutions, however only two of them can be extended to ρ → 0+, while L

cannot. Therefore, there are just two global solutions to eq. (4.41). The

boundaries of this region are the parabolas β = c56 α
2 and β = c67 α

2, where

c67 is the positive root of the equation −4−8 y+88 y2−1076 y3 +2883 y4 = 0

(approximately, c67 ' 0.3423). On the boundary β = c67 α
2 the matching

works as in the rest of the region, but the solution D↔ C− has an inflection

point with vertical tangent.

- region 7: F+ ↔ C+. In this region there are three asymptotic solutions,

however only one of them can be extended to ρ → 0+, while L and C−

cannot. The boundaries of this region are the parabola β = c67 α
2 and the

(positive) five-roots-at-infinity parabola β = c+ α
2, where c+ = 1/4. Note

that on the (α < 0) part of the parabola β = 1/3α2 there is the additional

matching F− ↔ C−, so for these points there are two global solutions to

eq. (4.41). On the boundary β = c+ α
2 there are the additional matchings

F− ↔ P1 , D ↔ P2, and the solutions corresponding to both of these

additional matchings, seen as functions of A, display an infinite derivative in

A = 0.

- region 8: F+ ↔ C+ , F− ↔ P1 , D↔ P2. This region lies inside the α < 0,

β > 0 part of the five roots at infinity region of the phase space (see fig. 4.1),

so there are five asymptotic solutions. Only three of them can be extended

to ρ → 0+, while C− and L cannot. The boundaries of this region are the

parabolas β = c+ α
2 and β = c89 α

2, where c89 = (5 −
√

13)/24 ' 0.0581.
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On the boundary β = c89 α
2 the matchings are the same as in the rest of the

region, but the solution h(ρ) correspondent to the matching F+ ↔ C+ has

an inflection point with vertical tangent.

- region 9: F− ↔ P1 , D↔ P2. This region lies inside the α < 0, β > 0 part

of the five roots at infinity region of the phase space (see fig. 4.1), so there are

again five asymptotic solutions. The matching is similar to that of region

8, apart from the fact that C+ cannot be extended to ρ → 0+ anymore;

hence there are just two global solutions to eq. (4.41). The boundaries of

this region are the parabola β = c89 α
2 and line β = 0.

We note that the decaying solution L never connects to the diverging one D,

so we cannot have a spacetime which is asymptotically flat and exhibit the self-

shielding of the gravitational field at the origin. On the other hand, finite non-zero

asymptotic solutions (C± or P1,2) can connect to both finite and diverging inner

solutions. Therefore, one can have an asymptotically non-flat spacetime which

presents self-shielding at the origin, or an asymptotically non-flat spacetime which

tends to Schwarzschild spacetime for small radii. More precisely, for β < 0 there

are only solutions displaying the self-shielding of the gravitational field, apart from

region 2 where there are no global solutions. Therefore the Vainshtein mechanism

never works for β < 0. In contrast, for β > 0 all three kinds of global solutions

are present. Solutions with asymptotic flatness and the Vainshtein mechanism

are present in regions 4 and 5, while solutions which are asymptotically non-flat

and exhibit the Vainshtein mechanism do exist in all (β > 0) regions but region

4. Finally, solutions which display the self-shielding of the gravitational field are

present in all (β > 0) regions but region 7.

4.6 Numerical solutions

We said in the previous sections that, having characterized geometrically the

asymptotic and inner solutions, to study the Vainshtein mechanism it is enough to

know how the matching between asymptotic and inner solutions works. To verify

this assertion and corroborate the validity of our results, we solved numerically

the system of equations (4.37) − (4.39) in several points of the phase space and
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for each of the three di�erent types of matching. Therefore, we present here the

numerical solutions for the h field and the gravitational potentials in some repre-

sentative cases. We choose a specific realization for each of the three physically

distinct cases, namely asymptotic flatness with Vainshtein mechanism, asymptot-

ically non-flat spacetime with Vainshtein mechanism, and asymptotically non-flat

spacetime with self-shielded gravitational field at the origin. In addition, we con-

sider the case in which there are no global solutions to eq. (4.41). This provides

an illustration of what happens, in general, to local solutions of eq. (4.41) which

cannot be extended to the whole radial domain, and give an insight on the phe-

nomenology of the equation (4.41).

4.6.1 Asymptotic flatness with Vainshtein mechanism

Let's consider the case in which the solution of eq. (4.41) connects to the decaying

solution at infinity L and to a finite inner solution (in this case F−). In figure 4.3,

the numerical solutions for h (dashed line), f/fGR (bottom continuous line) and

n ′/n ′GR (top continuous line) are plotted as functions of the dimensionless radial

coordinate x ≡ ρ/ρv. These solutions correspond to the point (α, β) = (0 , 0.1) of

the phase space.

Figure 4.3: Numerical solutions for the case F− ↔ L.
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This plot displays very clearly the presence of the vDVZ discontinuity and

its resolution via the Vainshtein mechanism. For large scales, h is small and

the gravitational potentials behave like the Schwarzschild one, however their ratio

is different from one, unlike the massless case. Note that the ratio of the two

potentials for ρ � ρv is independent of m, so does not approach one as m → 0

(vDVZ discontinuity). However, on small scales h is strongly coupled, and well

inside the Vainshtein radius the two potentials scale again as the Schwarzschild

one, but their ratio is now one even if m 6= 0. So, the strong coupling of the h

field on small scales restores the agreement with GR (Vainshtein mechanism).

4.6.2 Asymptotically non-flat spacetime with Vainshtein mech-

anism

Let's consider now the case in which the solution of eq. (4.41) connects to a finite

solution at infinity and to a finite inner solution. We consider for definiteness the

phase space point (α, β) = (0 , 0.1). In figure 4.4, we plot the numerical results

for the gravitational potentials (normalised to their GR values) and the global

solution of eq. (4.41) which interpolates between the inner solution F+ and the

asymptotic solution C+.

We can see that, on large scales, the gravitational potentials are not only

different one from the other but also behave very differently compared to the GR

case. However, on small scales there is a macroscopic region where the two poten-

tials agree, and their ratio with the Schwarzschild potential stays nearly constant

and equal to one. Therefore, also in this case the small scale behavior of h guaran-

tees that GR results are recovered, even if the spacetime is not asymptotically flat.

This behavior provide then, in a more general sense, a realization of the Vainshtein

mechanism.

4.6.3 Asymptotically non-flat spacetime with self-shielding

We turn now to the case where the solution of eq. (4.41) connects to a finite

solution at infinity and to the diverging inner solution. In figure 4.5, we plot the

global solution h and the associated gravitational potentials, normalized to their
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Figure 4.4: Numerical solutions for the case F+ ↔ C+.

GR values, correspondent to the phase space point (α, β) = (−1 ,−0.5). It is

apparent that there are no regions where the solutions behave like in the GR case.

Figure 4.5: Numerical solutions for the case D↔ C+.
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To see that the gravitational potentials are indeed finite at the origin, we

plot in figure 4.6 the potentials f and n′ themselves, as functions of ρ/ρv. We

choose for definiteness the following ratio between the Compton wavelength and

the gravitational radius ρc/ρg = 106, and plot the potentials for 0.01 < ρ/ρv < 2.

Note that, since in this case ρc/ρv = 3
√
ρc/ρg = 102, the range where the functions

are plotted is well inside the range of validity of our approximations. We can

see that the potentials approach a finite value as ρ → 0+, and so indeed the

gravitational field does not diverge at the origin.

Figure 4.6: Numerical solutions for the gravitational potentials, for the case D↔
C+.

4.6.4 No matching

Finally, we consider the case in which equations (4.37) − (4.39) do not admit global

solutions. We consider for definiteness the phase space point (α, β) = (1 ,−0.092).

In figure 4.7 we plot all the local solutions of the quintic equation (4.41) as functions

of the dimensionless radial coordinate x ≡ ρ/ρv.

For 0 < x < 0.38, there is only one local solution (the top continuous curve),

which connects to the diverging inner solution D. At x ' 0.38 a pair of solutions

is created (dashed and continuous negative valued curves), and at x ' 0.9, an-

other pair of solutions is created (positive valued dashed curve and positive valued
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Figure 4.7: Numerical results for all local solutions of eq. (4.41) in the case where

there is no matching.

bottom continuous curve). However, at x ' 1.3 one of the newly created functions

(the positive valued dashed curve) annihilates with the solution which connects

to the inner solution, so for x > 1.3 there are three local solutions, which finally

connect with the asymptotic solutions C− , L and C+. Therefore, the number of

existing local solutions is one for 0 < x < 0.38, three for 0.38 < x < 0.9, five for

0.9 < x < 1.3 and three for x > 1.3. We can see that, despite the fact that for

every ρ there is at least one local solution, there does not exist a solution which

extends over the whole radial domain.

To clarify the meaning of �gure 4.7, we plot in �gure 4.8 several snapshots

of the quintic function at di�erent values of A, for the same phase space point

(α, β) = (1 ,−0.092). Figure 4.8 shows the creation and annihilation of solutions

from the point of view of the quintic instead of from the point of view of the

implicitly de�ned functions: note that the quintic is plotted for increasing values

of A = 1/x3, while in �gure 4.7 the local solutions are plotted as functions of

x. The plots of the quintic correspond to the following values of A: A = 0,

A = 0.456 ↔ x = 1.3, A = 0.716, A = 1.356 ↔ x = 0.9, A = 2, A = 6.93,

A = 17.9, A = 18.35↔ x = 0.38 and A = 18.68.

At A = 0 there are three roots, one negative, one positive and the zero root,
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Figure 4.8: Quintic function for increasing values of A, no-matching case.

which correspond to the three asymptotic solutions C− , C+ and L. At A =

0.456 ↔ x = 1.3 a new double root appears, and two local solutions are created:

these are the top continuous and dashed curve of �gure 4.7. As is apparent in

the A = 0.716 plot, for 0.456 < A < 1.356 there are �ve roots and so �ve local

solutions. At A = 1.356 ↔ x = 0.9 one of the newly created solutions (the top

dashed curve of �gure 4.7) annihilates with the asymptotic solution C+, which

ceases existing: for 1.356 < A < 18.35 there are three roots and therefore three

local solutions. At A = 18.35↔ x = 0.38 the asymptotic solution C− annihilates

with the asymptotic solution L, and for A > 18.35 only one local solution survives,

the one created at A = 0.456 ↔ x = 1.3 which correspond to the top continuous

curve in �gure 4.7. This solution is the one which connects to the inner solution

D when A→ +∞ ↔ x→ 0+.

Note that, as we discussed in general in section 4.5.2 and in appendix B, the

solutions are created and annihilated in pairs. Furthermore, the pairs of solutions

have infinite slope when they are created and when they annihilate, while their

values remain bounded.
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Recent cosmological observations seem to suggest that the universe is currently un-

dergoing a period of accelerated expansion. Despite being unexpected, this result

can be explained assuming the presence of a nonzero and �ne-tuned cosmological

constant, or the existence of an exotic source of energy which is usually termed

dark energy. However, from another point of view, these observations may indi-

cate the fact that General Relativity is not a good description for gravity at very

large scales. To test this idea, we consider theories whose predictions di�er from

the ones of General Relativity only at very large scales, and see if they can �t the

data satisfactorily. In general, theories which modify gravity at large distances

involve more degrees of freedom than General Relativity, and for these theories to

be phenomenologically viable it is necessary that the extra degrees of freedom are

screened at terrestrial and astrophysical scales. A well known screening mecha-

nism is the Vainshtein mechanism, where derivatives self-interactions of a �eld are

responsible for its screening.

In this thesis, we have considered a speci�c class of theories which modify grav-

ity at large distance, and investigated the e�ectiveness of the Vainshtein mecha-

nism. In particular, we considered a class of nonlinear massive gravity theories,

known as dGRT Massive Gravity: these theories contain a mass parameter, which

sets the Compton radius of the theory, and two additional free parameters. We

established for which values of the two free parameters the Vainshtein mechanism

is working. More in general, we classi�ed the existence and asymptotic properties

of static, spherically symmetric solutions in the branch of con�gurations where the

Vainshtein mechanism can occur.

In chapter 1 we introduced the Standard Cosmological Model, emphasizing in
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particular the hypothesis which lie at its foundations. We presented the problem

of the late time acceleration and the possible ways out of it, suggesting that a

possible way to explain the recent cosmological observations is to abandon the

assumption that General Relativity is a good description of gravity at extremely

large scales.

In chapter 2 we introduced the braneworld models, which provide an appealing

way to construct theories which modify gravity at short and/or large distances,

and focused on the DGP model, discussing both the realization of the Vainshtein

mechanism and the cosmological solutions of the model.

In chapter 3 we introduced the concept of a massive theory of gravity, and

explained why such a theory can be interesting from the point of view of the late

time acceleration problem of cosmology. We then considered generic nonlinear

extensions of the Fierz-Pauli theory, and described how, keeping the mass �xed,

it is possible to select a two-parameters subclass of extensions which propagate

�ve degrees of freedom. These subclass of nonlinear extensions are named dGRT

Massive Gravity theories.

In chapter 4, we studied static, spherically symmetric solutions in the dGRT

Massive Gravity theories. There are two branches of solutions which satisfy this

symmetry requirement, and we considered only the branch where the Vainshtein

mechanism can be e�ective. We focused on scales smaller than the Compton radius

of the gravitational field, and considered the weak field limit for the gravitational

potentials, while keeping all non-linearities of the scalar mode which is involved

in the screening. For every point of the two free parameter phase space, we char-

acterised completely the number and properties of asymptotic solutions on large

scales and also of inner solutions on small scales. In particular, there are two

kinds of asymptotic solutions, where one of them is asymptotically flat and the

other one is not. There are also two kinds of inner solutions, one which displays

the Vainshtein mechanism and the other which exhibits the self-shielding of the

gravitational field near the origin.

We described under which circumstances the theory admits global solutions

interpolating between the asymptotic and inner solutions, and found that the

asymptotically flat solution connects only to inner solutions displaying the Vain-

shtein mechanism, while solutions which diverge asymptotically can connect to
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both kinds of inner solutions. Furthermore, we showed that there are some regions

in the parameter space where global solutions do not exist, and characterised pre-

cisely in which regions of the phase space the Vainshtein mechanism is working.

We showed that there is a signi�cant part of the phase space where the Vainshtein

mechanism is e�ective, which correspond to theories which are phenomenologically

viable.

Our study embraces all of the phase space spanned by the two parameters of

the theory. Notably, we found that, within our approximations, the asymptotic

and inner solutions cannot in general be extended to the whole radial domain. In

particular, we exhibited extreme cases in which global solutions do not exist at all.

This happens because at a finite radius the derivatives of the metric components

diverge, while the metric components themselves remain bounded. When the

derivatives of the metric cease to be small, the approximations we used to derive

the equations under study break down. It would be interesting to study what

happens at this radius in the full theory.

We conclude that the dGRT Massive Gravity class of theories are very promis-

ing candidates for consistently modifying gravity at very large distances. On one

hand, they are very appealing from a cosmological point of view, since they may

provide a way to explain the late time acceleration problem without introducing

dark energy or a nonzero cosmological constant. On the other hand, they are very

interesting also from a purely theoretical point of view, since they may provide a

realization of the idea that it should be possible to deform a theory (in this case

General Relativity) by a continuous parameter (in this case the mass), and obtain

theories whose predictions are continuous in the same parameter. It would be very

interesting to see if it is possible to realize the phenomenon of self-acceleration in

this framework.
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Total derivative combinations

We review here the main de�nitions and properties of total derivative combinations

of the �eld φ and related objects.

A.1 Total derivative combinations of Πµν

Let's remind the de�nition of the object Π constructed from the second derivatives

of the �eld φ

Πµν = ∂µ∂νφ . (A.1)

As already mentioned in the main text, at every order in Π (or equivalently in φ)

there is a unique (up to an overall constant) contraction of Π factors (we raise/lower

indices with the Minkowski metric ηµν/ηµν ) which is in the form of a total deriva-

tive. Explicitly, at order n it takes the form [68]

LTDn (Π) =
∑
p

(−1)p ηµ1p(ν1) · · · ηµnp(νn) Πµ1ν1 · · · Πµnνn , (A.2)

where the sum runs on all the permutations p of n elements. To facilitate the

comparison with the Π structures coming from the nonlinear mass term, we can

group together some of the contractions in (A.2) using the fact that ηµν and Πµν

are symmetric, and using the notation[
Πn
]
≡ ηµα1 Πα1β1 η

β1α2 Πα2β2 · · · ηβn−1αn Παnµ (A.3)
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we obtain

LTD
1 (Π) = [Π] (A.4)

LTD
2 (Π) = [Π]2 − [Π2] (A.5)

LTD
3 (Π) = [Π]3 − 3[Π][Π2] + 2[Π3] (A.6)

LTD
4 (Π) = [Π]4 − 6[Π2][Π]2 + 8[Π3][Π] + 3[Π2]2 − 6[Π4] . (A.7)

Note that the terms LTD
n (Π) vanish identically for n ≥ 5 (in general, they vanish

for n > D, where D is the spacetime dimension), and LTD
2 (h) is the Fierz-Pauli

term. Furthermore, they satisfy a recursion relation

LTD
n (Π) = −

n∑
m=1

(−1)m
(n− 1)!

(n−m)!
[Πm]LTD

n−m(Π) (A.8)

with LTD
0 (Π) = 1.

A.2 The X
(n)
µν tensors

From the total derivative Lagrangians LTD
n (Π), we can construct the tensors X

(n)
µν

by deriving with respect to Πµν

X(n)
µν =

1

n+ 1

∂

∂Πµν
LTD
n+1(Π) (A.9)

obtaining in general

X(n)
µν =

n∑
m=0

(−1)m
n!

(n−m)!
Πm
µν LTD

n−m(Π) (A.10)

The tensors X
(n)
µν satisfy the recursion relation

X(n)
µν = −nΠ α

µ X
(n−1)
αν + ΠαβX

(n−1)
αβ ηµν (A.11)
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and, since LTD
n (Π) vanishes for n > 4, they vanish for n ≥ 4 (n ≥ D in a spacetime

of dimension D). Explicitly they read

X(0)
µν = ηµν

X(1)
µν = [Π] ηµν − Πµν

X(2)
µν =

(
[Π]2 −

[
Π2
])
ηµν − 2 [Π] Πµν + 2Π2

µν

X(3)
µν =

(
[Π]3 − 3 [Π]

[
Π2
]

+ 2
[
Π3
])
ηµν − 3

(
[Π]2 −

[
Π2
])

Πµν + 6 [Π] Π2
µν − 6Π3

µν

The following relations involving the massless kinetic operator (3.28) make clear

which is the form of transformations we can perform on hµν to remove the mixing

terms hµνX
(j)
µν from the Λ3 action in the decoupling limit

E αβ
µν (φ ηαβ) = −(D − 2)X(1)

µν (A.12)

E αβ
µν (∂αφ ∂βφ) = X(2)

µν (A.13)

Finally, it can be shown that the X
(n)
µν tensors are symmetric and identically

conserved

X(n)
µν = X(n)

νµ (A.14)

∂µX(n)
µν = 0 . (A.15)
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The implicit function theorem

The implicit function theorem, also known as Dini's theorem, is used repeatedly

throughout the text. Although the theorem is more general, we give here its

formulation in the speci�c case of a function of two (real) variables. For the proof,

see [120] for the general case and [121] for the particular case treated here.

B.1 Formulation of the theorem

Theorem 1 (Implicit function theorem, or Dini's theorem) Let F (x, y) be

a function de�ned in an open set A ⊂ R2, and let F be derivable with continuous

partial derivatives. Be (x0, y0) ∈ A such that

F (x0, y0) = 0 ,
∂F

∂y
(x0, y0) 6= 0 . (B.1)

Then there exist:

- An open neighborhood U of x0 and an open neighborhood V of y0, such that

U × V ⊂ A ;

- A function f : U → V such that, for all (x, y) ∈ U × V , we have

F (x, y) = 0 ⇔ y = f(x) . (B.2)

168



Appendices

Furthermore, the function x → f(x) is derivable with continuous derivative, and

we have

f ′(x) = −
∂xF

(
x, f(x)

)
∂yF

(
x, f(x)

) (B.3)

Roughly speaking, the implicit function theorem states that, provided the con-

ditions (B.1) are satis�ed, a zero of a function of two real variables de�nes implicitly

a functional relation between the two variables, at least locally. Furthermore, it

says that this functional relation is regular, and gives an expression for the deriva-

tive of the function which links the two variables. Note that the conditions (B.1)

are su�cient but not necessary for the existence of the �implicit� solution.

B.1.1 The quintic equation and implicit functions

The implicit function theorem is crucial for our analysis of the Vainshtein mech-

anism in massive gravity, since (at α, β �xed) the equation which the �eld h(ρ)

obeys (the quintic equation) is of the form F (h(ρ), ρ) = 0. Note that it is equiv-

alent to work with ρ as a radial coordinate or with x = ρ/ρv, or A = 1/x3, since

all these coordinates are related by di�eomorphisms. If we work with the coordi-

nate A, the solutions for the �eld h(A) are then implicitly de�ned by the equation

q
(
h(A), A;α, β

)
= 0, where the quintic function q is de�ned in (4.42).

At α and β �xed, the function q
(
h,A

)
is de�ned on R×(0,+∞) and is derivable

an arbitrary number of times with continuous partial derivatives. Suppose that

we �nd, at a certain A = Ā (i.e. at a certain radius ρ̄ = ρv/
3
√
Ā ), a root h̄ of

the equation qĀ
(
h
)

= 0, where qA
(
h
)
is the shape function (4.61): the condition

∂F
∂y

(x0, y0) 6= 0 translates in this case to the fact that h̄ is a simple root of the

equation qĀ
(
h
)

= 0. Therefore, if we �nd at a certain A = Ā a simple root

h̄ of the equation qĀ
(
h
)

= 0, then the conditions (B.1) are satis�ed, and the

implicit function theorem assures us that there exist a neighborhood of Ā (i.e. a

neighborhood of ρ̄) where there exists a solution h(A) of the quintic equation such

that h(Ā) = h̄.
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B.1.2 Maximal extension of implicitly de�ned solutions

Our aim in the end is to �nd global solutions of the quintic equation, that is solu-

tions h(A) of the quintic equation which are de�ned for A ∈ (0,+∞). Therefore, it

is important to establish when a local solution can be extended to the whole radial

domain. Suppose we have a local solution h(A) of the quintic equation de�ned

on (Ai, Af ) ⊂ (0,+∞). If the conditions (B.1) are satis�ed also at A = Ai and

A = Af , we can extend the solution to an interval (A
(2)
i , A

(2)
f ) ⊃ (Ai, Af ), and we

can iterate this procedure. Therefore, we can extend the local solution until we

reach a point Ã where the conditions (B.1) are not both satis�ed: this can happen

only if one of the following conditions are true

1. limA→Ã |h(A)| = +∞

2.
∂q

∂h
(h̃, Ã) = 0

where in the second case h̃ ≡ limA→Ã h(A). However, it is possible to see that

the �rst case cannot happen. In fact, suppose hypothetically that there exists a

solution h(A) of the quintic equation such that limA→Ã |h(A)| = +∞ with Ã �nite

and non-zero. This means that, in the dual formulation, there is a solution v(A)

of the equation (4.44) such that limA→Ã v(A) = 0, with Ã �nite and non-zero:

this implies that limA→Ã d
(
v(A), A;α, β

)
= 3

2
β2 6= 0, since we are considering

the β 6= 0 case. But, by the continuity of the function d
(
v, A;α, β

)
and the fact

that d
(
v(A), A;α, β

)
= 0 identically since v(A) is a solution of (4.44), we have

that limA→Ã d
(
v,A;α, β

)
= 0. The hypothesis led us to a contradiction, so it

follows that there cannot exist solutions h(A) of the quintic equation such that

limA→Ã |h(A)| = +∞ with Ã �nite and non-zero.

Therefore, a local solution h(A) of the quintic equations can be extended until

we meet a �nite and non-zero Ã where ∂q
∂h

(h̃, Ã) = 0 (with h̃ ≡ limA→Ã h(A)), or

equivalently until we meet a �nite and non-zero Ã where the function qA
(
h;α, β

)
has a stationary point on the horizontal axis. Note that, when this happens, the

derivative h′(A) of the solution diverges as A→ Ã, as can be deduced from (B.3),

while the solution h(A) itself remains bounded.
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Useful properties of the quintic

function

We discuss here some important properties of the quintic function, which are

useful for the analytic study of the solutions matching. In this thesis, we study

the quintic equation in the domain of de�nition h ∈ (−∞,+∞), A ∈ (0,+∞),

α ∈ (−∞,+∞) and β ∈ (−∞,+∞), β 6= 0. However, it is very useful to extend

the domain of de�nition of A to A = 0 as well, which corresponds to the asymptotic

limit ρ→ +∞.

C.1 General properties

The quintic function and its derivatives reads explicitly

q
(
h,A;α, β

)
=

3

2
β2 h5 −

(
α2 + 2β

)
h3 + 3

(
α + βA

)
h2 − 3

2
h− A (C.1)

q′
(
h,A;α, β

)
=

15

2
β2 h4 − 3

(
α2 + 2β

)
h2 + 6

(
α + βA

)
h− 3

2
(C.2)

q′′
(
h,A;α, β

)
= 30 β2 h3 − 6

(
α2 + 2β

)
h+ 6

(
α + βA

)
(C.3)

q′′′
(
h,A;α, β

)
= 90 β2 h2 − 6

(
α2 + 2β

)
(C.4)
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where we indicated the derivatives with respect to h with a prime ′. Note �rst of

all that

lim
h→+∞

q
(
h,A;α, β

)
= +∞ , lim

h→−∞
q
(
h,A;α, β

)
= −∞ (C.5)

and that

q
(
0, A;α, β

)
= −A ≤ 0 (C.6)

q′
(
0, A;α, β

)
= −3

2
< 0 (C.7)

q′′
(
0, A;α, β

)
= 6

(
α + βA

)
(C.8)

Therefore, for the intermediate value theorem, there is always (for every value of

A) a root of the quintic for h ∈ (0,+∞). In particular, if we take into account

the multiplicity of the roots, there is always an odd number of real roots. Note

that q′
(
0, A;α, β

)
is indipendent of A, while q

(
0, A;α, β

)
is linear and decreasing

with respect to A. We may see the evolution with A of the quintic as the sum

of an overall rigid translation due to the constant term of the polynomial, and of

a change of shape due to the contribution 3βAh2 to the quadratic piece of the

polynomial.

C.2 Evolution with A

C.2.1 The quintic function

To study how the quintic function evolves with A, let's consider its partial deriva-

tive with respect to A. It is easy to verify that

∂q

∂A

(
h,A;α, β

)
= 3 βh2 − 1 (C.9)

and this relation implies that, if β < 0, we have

β < 0 ⇒ ∂q

∂A

(
h,A;α, β

)
< 0 (C.10)
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for every h, A, α and β < 0. Therefore, at every h the value of the quintic function

decreases monotonically when A goes from 0 to +∞. On the other hand, if β > 0

we have

β > 0 ⇒



∂q

∂A

(
h,A;α, β

)
< 0 for |h| < 1√

3β

∂q

∂A

(
h,A;α, β

)
> 0 for |h| > 1√

3β

∂q

∂A

(
h,A;α, β

)
= 0 for |h| = 1√

3β

(C.11)

and we conclude that, at every h such that −1/
√

3β < h < 1/
√

3β, the value of

the quintic function decreases monotonically when A goes from 0 to +∞, while it

increases monotonically at every h such that h < −1/
√

3β or h > 1/
√

3β. Finally,

there are two �xed points of the evolution of the quintic with A, which correspond

to the following values for h

h = ± 1√
3β

= F± (C.12)

which (as already indicated above) are precisely the limiting values of the �nite

inner solutions F±.

C.2.2 The �rst derivative

Consider now the �rst derivative of the quintic q′
(
h,A;α, β

)
. We have

∂q′

∂A

(
h,A;α, β

)
= 6 βh , (C.13)

which implies that the only �xed point of the evolution of q′ corresponds to the

value h = 0, and (as already mentioned) we have

q′
(
0, A;α, β

)
= −3

2
(C.14)

independently of α and β. Furthermore, we have that

β < 0 ⇒


∂q′

∂A

(
h,A;α, β

)
< 0 for h > 0

∂q′

∂A

(
h,A;α, β

)
> 0 for h < 0

(C.15)
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so, for β < 0, at every �xed h > 0 the �rst derivative of the quintic decreases when

A goes from 0 to +∞, while it increases at every �xed h < 0. Conversely, we have

that

β > 0 ⇒


∂q′

∂A

(
h,A;α, β

)
< 0 for h < 0

∂q′

∂A

(
h,A;α, β

)
> 0 for h > 0

(C.16)

and so, for β < 0, at every �xed h > 0 the �rst derivative of the quintic increases

when A goes from 0 to +∞, while it decreases at every �xed h < 0.

C.2.3 The second derivative

For what concerns the second derivative of the quintic q′′
(
h,A;α, β

)
, we have

∂q′′

∂A

(
h,A;α, β

)
= 6 β (C.17)

and this implies that there are no �xed points in the evolution with A of q′′. In fact,

from (C.3) it is evident that q′′
(
h,A;α, β

)
translates rigidly when A changes, and

in particular translates towards h → +∞ when β > 0 while translates towards

h → −∞ when β < 0. Note that the value of α sets the value of the second

derivative in h = 0 at A = 0

q′′
(
0, 0;α, β

)
= 6α (C.18)

and that

lim
h→+∞

q′′
(
h,A;α, β

)
= +∞ , lim

h→−∞
q′′
(
h,A;α, β

)
= −∞ . (C.19)

This implies that, for every value of α and β (still with β 6= 0), there is always

a critical value Acrit(α, β) such that the second derivative q′′
(
h,A;α, β

)
has one

and only one root for A > Acrit(α, β). This root is negative when β is positive,

and conversely is positive when β is negative. Therefore, for A > Acrit(α, β), the

quintic has zero in�ection points for h > 0 and one in�ection point for h < 0

in the case β > 0, while has one in�ection point for h > 0 and zero in�ection

points for h < 0 in the case β < 0. Roughly speaking, this critical value for A

can be regarded as the value after which there cannot be anymore creations and

annihilations of local solutions.
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Note that, since the second derivative q′′
(
h,A;α, β

)
translates rigidly when A

changes, it is very useful to characterize completely its shape at in�nity (i.e. at

A = 0) for every value of α and β in the phase space.
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Asymptotic structure of the quintic

function

In this and in the next appendix, we summarize the main properties of the quintic

function (4.42) when A = 0, which corresponds to the asymptotic limit ρ→ +∞.

In these appendices, when we say that a function has some property at in�nity we

mean at radial in�nity, i.e. at A = 0.

As we mentioned above, for A = 0 the quintic function reduces to the asymp-

totic function

A
(
h;α, β

)
=

3

2
β2 h5 −

(
α2 + 2β

)
h3 + 3αh2 − 3

2
h (D.1)

which can be factorized as

A
(
h;α, β

)
= h Ar

(
h;α, β

)
(D.2)

where the function Ar

(
h;α, β

)
is called the reduced asymptotic function and reads

Ar

(
h;α, β

)
=

3

2
β2 h4 −

(
α2 + 2β

)
h2 + 3αh− 3

2
. (D.3)

Note that, as a consequence of the symmetry (4.43) of the quintic function, the

asymptotic function has the following symmetry

A
(h
k

; k α, k2β
)

=
1

k
A
(
h;α, β

)
(D.4)

which, di�erently from the symmetry (4.43), holds also for k < 0. Therefore, we

may restrict the study of the asymptotic function only to the semi-plane α > 0.
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D.1 Study of the second derivative

In order to study analytically the matching of solutions, it is very important to

establish how many in�ection points the quintic function has at in�nity, and where

they are located in relation to the �xed points of the quintic.

D.1.1 In�ection points at in�nity

The second derivative of the quintic at A = 0 is equal to the second derivative of

the asymptotic function which reads

A ′′(h;α, β
)

= 30 β2 h3 − 6
(
α2 + 2β

)
h+ 6α (D.5)

To �nd the number of roots of A ′′, it is enough to study just the case α > 0, since

the symmetry (D.4) implies that the number of roots at (−α, β) and at (α, β) are

equal. Considering then the case α > 0, the function A ′′(h;α, β
)
has the following

properties

lim
h→−∞

A ′′(h;α, β
)

= −∞ A ′′(0;α, β
)
> 0 lim

h→+∞
A ′′(h;α, β

)
= +∞

(D.6)

so for the intermediate value theorem there is always a root of A ′′(h;α, β
)
for

h < 0, which we call r0. To understand if there are other roots, it is useful to

study its �rst derivative

A ′′′(h;α, β
)

= 90 β2 h2 − 6
(
α2 + 2β

)
: (D.7)

it is easy to check that the quadratic equation A ′′′(h;α, β
)

= 0 admits solutions

only if

β ≥ −1

2
α2 (D.8)

in which case the roots are

h± = ±
√
α2 + 2β√
15 |β|

. (D.9)

Therefore, for β ≤ −(1/2)α2 the function A ′′′(h;α, β
)
is positive for all values of

h, and the function A ′′(h;α, β
)
is monotonically increasing. On the other hand,
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for β > −(1/2)α2 the function A ′′(h;α, β
)
has a relative minimum at h = h+ and a

relative maximum at h = h−. The number of roots of the equation A ′′(h;α, β
)

= 0

is determined by the fact that A ′′(h+;α, β
)
is positive or negative: if it is positive,

then the equation A ′′ = 0 has only one root (which has negative value), while if

it is negative the equation A ′′ = 0 has three roots (one root which has negative

value and two roots, r1 and r2, which have positive values). The phase space

boundaries between the regions where A ′′ = 0 has three roots and the regions

where A ′′ = 0 has one root are de�ned by the condition A ′′(h+;α, β
)

= 0: in

this case, the equation A ′′ = 0 has two roots, one simple root and one double

root. The condition A ′′(h+;α, β
)

= 0 is equivalent to the following condition on

y = β/α2

8 y3 − 87

4
y2 + 6 y + 1 = 0 : (D.10)

this equation is a cubic and has positive discriminant, therefore has three real

roots whose approximated values are y1 = in1 ' −0.115898, y2 = in2 ' 0.452816

and y3 = in3 ' 2.38183. It can be checked that for −0.5α2 < β < in1 α
2 and

for in2 α
2 < β < in3 α

2 we have A ′′(h+;α, β
)
> 0, while for in1 α

2 < β < 0,

0 < β < in2 α
2 and β > in3 α

2 we have A ′′(h+;α, β
)
< 0.

Therefore, for β < α2 the function A ′′(h;α, β
)
is monotonic and the quintic

function has one in�ection point at in�nity. For β > α2 the function A ′′(h;α, β
)

is not monotonic, and:

� for −0.5α2 < β < in1 α
2 the quintic function has one in�ection point at

in�nity;

� for in1 α
2 < β < 0 and for 0 < β < in2 α

2 the quintic function has three

in�ection points at in�nity;

� for in2 α
2 < β < in3 α

2 the quintic function has one in�ection point at

in�nity;

� for β > in3 α
2 the quintic function has three in�ection points at in�nity.

This is summarized in �gure D.1, where the parabolas β = −0.5α2, β = in1 α
2,

β = in2 α
2 and β = in3 α

2 are displayed together with the �ve-roots-at-in�nity

parabolas (which are the dashed curves).
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Figure D.1: In�ection points at in�nity and �ve roots parabolas

D.1.2 In�ection points and �xed points

To study analytically the matching of solutions, it is useful to know if the in�ection

points of the asymptotic function are located at a value of h which is larger or

smaller than the �xed points h = F±. We consider here only the case α > 0 and

β > 0, since F± are de�ned only for β positive.

Let's consider �rst the negative root r0. The properties (D.6) imply that A ′′

is negative for β < r0, while is positive for r0 < β < 0: therefore, we have that

if A ′′(F−;α, β
)
< 0, then we have F− < r0, while if A ′′(F−;α, β

)
> 0 we have

F− > r0. Indicating x =
√
β/α, we have explicitly

A ′′(F−;α, β
)

= 2
α2

√
3β

(
x2 + 3

√
3x+ 3

)
, (D.11)

and the roots of the quadratic equation x2 + 3
√

3x + 3 = 0 are both negative.

Therefore, for α > 0 we have A ′′(F−;α, β
)
> 0, which implies that r0 < F−.

Let's consider now the positive roots r1 and r2, and let's introduce the conven-

tion r1 < r2. The properties (D.6) imply that A ′′ is positive for 0 < β < r1

and β > r2, while is negative for r1 < β < r2: therefore, we have that if

A ′′(F+;α, β
)
< 0, then r1 < F+ < r2. On the other hand, if A ′′(F+;α, β

)
> 0

it follows that either F+ < r1 < r2 or r1 < r2 < F+: in particular, we have that
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if A ′′′(F+;α, β
)
< 0 then F+ < r1 < r2, while if A ′′′(F+;α, β

)
> 0 we have

r1 < r2 < F+. Indicating x =
√
β/α, we have explicitly

A ′′(F+;α, β
)

= −2
α2

√
3β

(
x2 − 3

√
3x+ 3

)
, (D.12)

and the roots of the quadratic equation x2 − 3
√

3x+ 3 = 0 are

x12 =

√
3

2

(
3±
√

5
)

. (D.13)

De�ning k1 = (3/4)
(
3−
√

5
)2

and k2 = (3/4)
(
3 +
√

5
)2
, we have

A ′′(F+;α, β
)

:

 < 0 for 0 < β < k1α
2 and β > k2α

2

> 0 for k1α
2 < β < k2α

2
(D.14)

where k1 and k2 have the approximate values k1 ' 0.437694 and k2 ' 20.5623.

Furthermore, we have

A ′′′(F+;α, β
)

= 6
(
3β − α2

)
(D.15)

and so

A ′′′(F+;α, β
)

:


< 0 for 0 < β <

1

3
α2

> 0 for β >
1

3
α2

(D.16)

We can then conclude that

� for 0 < β < k1 α
2 we have the ordering r1 < F+ < r2;

� for k1 α
2 < β < in2 α

2 we have the ordering r1 < r2 < F+;

� for in2 α
2 < β < in3 α

2 there are no in�ection points for h > 0;

� for in3 α
2 < β < k2 α

2 we have the ordering r1 < r2 < F+;

� for β > k2 α
2 we have the ordering r1 < F+ < r2.
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Roots at in�nity

We continue the summary started in the previous appendix about the main proper-

ties of the quintic function (4.42) when A = 0, which corresponds to the asymptotic

limit ρ → +∞. We want to study here how many zeros the asymptotic function

has, in relation to the value of α and β.

E.1 Zeros of the asymptotic function

The asymptotic function (D.1) is a quintic, and therefore can have at most �ve real

zeros. As we explained in section 4.3, h = 0 is always a zero, and in fact a simple

one1. From the factorization (D.2) it follows that, to �nd the other zeros of the

asymptotic function, we can study the zeros of the reduced asymptotic function

Ar

(
h;α, β

)
Ar

(
h;α, β

)
=

3

2
β2 h4 −

(
α2 + 2β

)
h2 + 3αh− 3

2
. (E.1)

This function (see section 4.3) has always two zeros, one positive and one negative,

and can have up to 4 real zeros, depending on the specific values of α and β.

1As we mentioned in section 4.5.1, we say that y is a simple/double zero of a function f if y

is a simple/double root of the equation f = 0
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E.1.1 Five-roots-at-in�nity boundaries

The regions where the asymptotic functions has �ve zeros, if they exist, have to be

inside the regions where there are three in�ection points at in�nity, since it is im-

possible to have �ve zeros and just one or two in�ection points. Since the function

A
(
h;α, β

)
changes smoothly with α and β, the boundaries between regions where

there are five zeros and regions where there are three zeros are found enforcing

that A
(
h;α, β

)
= 0 has a multiple root. In this case the asymptotic function

has to have a stationary point on the horizontal axis, and so if h is the multiple

root then we have A
(
h;α, β

)
= A ′(h;α, β

)
= 0. Asking that this condition is

satis�ed for some h and solving this condition with the software Mathematica,

we get that the asymptotic function has a stationary point on the horizontal axis

only if β = c+ α
2 and β = c− α

2, where c+ = 1/4 and c− is the only real root

of the equation 8 + 48 y − 435 y2 + 676 y3 = 0 which has the approximate value

c− ' −0.0876193. The regions above the positive parabola and below the negative

one have only three zeros, which are simple zeros, while the regions between the

two parabolas (except β = 0) have five zeros, which are again simple zeros. On the

boundaries β = c± α
2 between the three-zeros regions and the five-zeros regions

there are four zeros, one of which is a zero of multiplicity two. Note that this re-

sult implies that for β > in3α
2, where in principle there could be �ve zeros (since

there are three in�ection points), there are only three zeros. This is summarized

in �gure 4.1.

These �ndings have been veri�ed plotting the asymptotic function for many

values of α and β. Note that, because of the symmetry (D.4), we can set α = 1

and vary only the parameter β. In �gure (E.1.1) we plot the asymptotic function

for α = 1 and increasing values of this parameter: because of space constraints,

we plot the function only for �fteen values of β, and precisely for β = −5 , β =

−1 , β = −0.5 , β = −0.2 , β = −0.1 , β = −0.09 , β = c− , β = −0.08 , β =

0.19 , β = c+ , β = 0.38 , β = 0.5 , β = 2 , β = 5 , β = 10 . For the sake of

precision, as already mentioned we don't plot the function itself but its composition

with the tangent function, since this compacti�es the real axis into the interval

(−π/2,+π/2) and at the same time does not change the number and the relative

position of the zeros.
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Figure E.1: Asymptotic function at α = 1 for increasing values of β.
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Leading behaviors

In this appendix we study the leading behaviors of the inner and asymptotic solu-

tions. As previously mentioned we consider only the β 6= 0 case.

F.1 Finite asymptotic and inner solutions

For the finite inner solutions F± and finite non-zero asymptotic solutions C± and

P1,2, the behavior is

h(ρ) = C +R(ρ) (F.1)

where C 6= 0 is their limiting value, and R is respectively such that limρ→0+ R = 0

(inner solutions) and limρ→+∞R = 0 (asymptotic solutions).

F.2 Asymptotic decaying solution L

Let's consider the solution L, which satisfies limρ→+∞ h(ρ) = 0. Dividing the

quintic equation (4.41) by h, we get

3

2
β2 h4 −

(
α2 + 2β

)
h2 + 3αh− 3

2
=

(
ρv
ρ

)3(
1

h
− 3 β h

)
(F.2)

The left hand side has a finite limit when ρ → +∞, so the same has to hold for

the right hand side: taking this limit in the equation above gives

lim
ρ→+∞

(
ρv
ρ

)3
1

h
= −3

2
(F.3)
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which implies that

h(ρ) = −2

3

(
ρv
ρ

)3

+R(ρ) (F.4)

with limρ→+∞ ρ
3R(ρ) = 0.

F.3 Inner diverging solution D

Let's consider now the solution D, which satisfies limρ→0+ |h(ρ)| = +∞. Dividing

the equation (4.46) by v3, one finds that

v2 − 3 β =

(
ρ

ρv

)3
1

v3

(
− 3

2
v4 + 3α v3 −

(
α2 + 2β

)
v2 +

3

2
β2
)

(F.5)

One more time, the left hand side has a finite limit when ρ → 0+, so the same

should hold for the right hand side. Therefore, the ρ → 0+ limit in the equation

above gives

lim
ρ→0+

(
ρ

ρv

)3
1

v3
= − 2

β
(F.6)

and so

v(ρ) = − 3

√
β

2

ρ

ρv
+ R(ρ) (F.7)

with limρ→0+ R(ρ)/ρ = 0. To understand the behavior of the gravitational poten-

tials (4.37)-(4.38) in this case, it is useful to calculate the next to leading order

behavior. In fact, it turns out that, after going back to h = 1/v, the leading

behavior precisely cancels the Schwarzschild-like contribution, so to understand if

the gravitational potentials are finite at the origin it is essential to know how R

behaves for very small radii. Inserting (F.7) into (4.46) and dividing by x5, one

obtains taking the limit ρ→ 0+ that

lim
ρ→0+

R

x3
=

1

9 β

(
α2 +

3

2
β

)
(F.8)

where x = ρ/ρv. We have then

v(ρ) = − 3

√
β

2

ρ

ρv
+N

( ρ
ρv

)3

+R(ρ) (F.9)
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where

N =
1

9 β

(
α2 +

3

2
β
)

(F.10)

and limρ→0+(R(ρ)/ρ3) = 0. Finally, going back to the function h we get

h(ρ) = − 3

√
2

β

ρv
ρ
−M ρ

ρv
+ R(ρ) (F.11)

where

M =
1

9
3

√
4

β5

(
α2 +

3

2
β

)
(F.12)

and limρ→0+(R(ρ)/ρ) = 0. It can be shown that in the special case α2 +3 β/2 = 0,

the next to leading order term scales as ρ2 instead of ρ, and that limρ→0+(R(ρ)/ρ2) =

0.

Therefore, we can conclude that in general the diverging inner solution D is

such that

h(ρ) = − 3

√
2

β

ρv
ρ

+R(ρ) (F.13)

where limρ→0+(R(ρ)/ρ) is finite.
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