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Leukemic transformation by the v-ErbA oncoprotein
entails constitutive binding to and repression of an
erythroid enhancer in vivo
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v-ErbA, a mutated thyroid hormone receptor alpha
(TRα), is thought to contribute to avian erythro-
blastosis virus (AEV)-induced leukemic transformation
by constitutively repressing transcription of target
genes. However, the binding of v-ErbA or any un-
liganded nuclear receptor to a chromatin-embedded
response element as well as the role of the N-CoR–
SMRT–HDAC co-repressor complex in mediating
repression remain hypothetical. Here we identify a v-
ErbA-response element, VRE, in an intronic DNase I
hypersensitive site (HS2) of the chicken erythroid
carbonic anhydrase II(CAII ) gene.In vivo footprinting
shows that v-ErbA is constitutively bound to this HS2-
VRE in transformed, undifferentiated erythroblasts
along with other transcription factors like GATA-1.
Transfection assays show that the repressed HS2 region
can be turned into a potent enhancer in v-ErbA-
expressing cells by mutation of the VRE. Differentiation
of transformed cells alleviates v-ErbA binding concom-
itant with activation of CAII transcription. Co-expres-
sion of a gag–TRα fusion protein in AEV-transformed
cells and addition of ligand derepressesCAII transcrip-
tion. Treatment of transformed cells with the histone
deacetylase inhibitor, trichostatin A, derepresses the
endogenous, chromatin-embeddedCAII gene, while a
transfected HS2-enhancer construct remains repressed.
Taken together, our data suggest that v-ErbA prevents
CAII activation by ‘neutralizing’ in cis the activity of
erythroid transcription factors.
Keywords: carbonic anhydrase II/repression/thyroid
hormone/trichostatin A/v-ErbA

Introduction

Leukemic transformation of hematopoietic cells is mani-
fested as an imbalance between proliferation and differenti-
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ation caused by the combined action of two or more co-
operating oncogenes. Gradually, the concept has emerged
that the decision of a hematopoietic cell to either self-
renew (i.e. proliferate but not differentiate) or to undergo
terminal differentiation is determined by the cooperative
action of receptor tyrosine kinases and nuclear hormone
receptors. In humans, 80% of acute promyelocytic leuke-
mia (APL) patients bear translocations juxtaposing the
RARα gene locus to either thePLZF or PML genes. The
resultant fusion proteins (Borrowet al., 1990; De The´
et al.,1990; Alcalayet al., 1991; Chenet al., 1993) block
differentiation of hematopoietic progenitors (Grignani
et al., 1993; Rousselotet al., 1994). Murine bone marrow
cells expressing a dominant negative RARα lacking its
ligand-dependent activation function, AF-2, are blocked
at the stage of lymphohematopoietic progenitors (Tsai
et al., 1994). In chickens, the avian erythroblastosis virus
(AEV) induces fatal erythroleukemia (for reviews see
Beuget al., 1994; Gandrillonet al., 1995). AEV expresses
two co-operating oncogenes,v-erbA and v-erbB, that
together tip the balance between proliferation and differen-
tiation towards self renewal. v-ErbB is a mutated and
truncated viral variant of the epidermal growth factor
receptor (EGFR) that promotes cell growth. v-ErbA is a
highly mutated variant of chicken thyroid hormone recep-
tor alpha, cTRα (Sapet al., 1986; Weinbergeret al., 1986)
that arrests the differentiation of erythroblast progenitors
by preventing the expression of differentiation stage-
specific erythroid genes (Zenkeet al., 1990; Diselaet al.,
1991). Because v-ErbA requires cooperation with kinases
to arrest differentiation, AEV-transformed cells can be
induced to differentiate in the presence of specific kinase
inhibitors (Choiet al., 1986; Zenkeet al., 1988). Although
it has been postulated that phosphorylation of v-ErbA is
crucial for its oncogenic capacity, little is known about
the consequences of kinase activity on v-ErbA function.

The discovery that v-ErbA is a mutated TRα initiated
an extensive comparative analysis of presumed TR func-
tions that are absent in the v-ErbA oncoprotein. The
oncogenic requirements do not include transcriptional
activation functions, since v-ErbA is severely crippled
with respect to T3 binding (Mun˜oz et al., 1988; Zenke
et al., 1990), dimerization with RXR (Selmi and Samuels,
1991; Barettino et al., 1993) and transactivation
(Saatciogluet al., 1993; Barettinoet al., 1994). The first
clue as to the activity of v-ErbA required for oncogenicity
stems from the observations that v-ErbA antagonizes
ligand-dependent activation by TR (Dammet al., 1989;
Sap et al., 1989; Zenkeet al., 1990). The finding that
overexpression of TR and addition of ligand can overcome
the block of differentiation by v-ErbA lent support to this
notion (Diselaet al., 1991). A v-ErbA variant, td359,
which failed to block differentiation also failed to repress
transcription in transient transfection assays (Dammet al.,
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1987; Damm and Evans, 1993). Recently, the mutation in
td359 causing the transformation defect has been shown
to diminish the affinity of v-ErbA for the co-repressor
SMRT in vitro (Chen and Evans, 1995). These and other
observations have led to the formulation of an occlusion–
repression model for the action of v-ErbA at the molecular
level: v-ErbA occludes TR and/or RAR from binding to
their cognate sites (Dammet al., 1989; Sapet al., 1989)
and represses transcription of target genesin cis (Damm
and Evans, 1993). Repression is assumed to involve a co-
repressor complex (Chen and Evans, 1995; Ho¨rlein et al.,
1995; Heinzelet al., 1997).

Transient transfection experiments revealed that the
ability of v-ErbA to repress transcription is an active
mechanism shared by other unliganded class II nuclear
receptors (Baniahmadet al., 1990, 1992; Damm and
Evans, 1993). Recently, ample biochemical data suggest
that in the absence of a cognate ligand, TR and RAR can
associate with co-factors, termed N-CoR and SMRT, that
have intrinsic transcriptional repression activities (Chen
and Evans, 1995; Ho¨rlein et al., 1995). N-CoR and SMRT
in turn appear to be part of a large complex(es) consisting
of factors that display transcriptional repression activities,
such as SIN3A, or that are thought to stabilize repressive
nucleosomal structures such as the histone deacetylase,
HDAC (Alland et al., 1997; Heinzelet al., 1997; Nagy
et al., 1997). Following treatment with the cognate ligand,
the receptors undergo conformational changes leading to
dissociation of the repressor complexes thus enabling their
interaction with a different set of proteins that include
SRC-1/TIF2 type proteins (On˜ate et al., 1995; Voegel
et al., 1996; Honget al., 1997; Torchiaet al., 1997) and
CBP/p300 (Chakravartiet al., 1996; Kameiet al., 1996).
These factors have intrinsic transcriptional activation activ-
ity as well as histone acetylase activity (Yanget al., 1996).
A picture emerges in which nuclear receptors act as ligand-
operated, molecular on–off switches.

This model is questioned by several observations. A
mutation in the DNA-recognition helix (P-box) of v-ErbA
both diminishes its overall affinity for DNA and alters its
sequence specificity (Bonde and Privalsky, 1990;
Wahlstromet al., 1992; Barettinoet al., 1993; Judelson
and Privalsky, 1996). Reverting that DBD mutation
increases the affinity of that receptor for the canonical
half-site AGGTCA (Nelsonet al., 1994). Unexpectedly,
a v-ErbA variant with restored wild-type DNA-binding
properties does not function as a ‘super-oncoprotein’; on
the contrary, it is now fully impaired in its ability to
transform erythroid cells (Sharif and Privalsky, 1991;
Bauer et al., 1997). Furthermore, a mutation in the
dimerization interface has caused a loss of affinity for
the presumed partner, RXR (Selmi and Samuels, 1991;
Barettinoet al., 1994). Collectively, these results suggest
that v-ErbA binds to a repertoire ofcis-acting elements
that is distinct from, or only partially overlapping with,
natural thyroid hormone response elements (TREs) and
retinoic acid response elements (RAREs). Alternatively,
v-ErbA may be targeted to chromosomal loci via protein–
protein interactions such as described for AP1-GR (Konig
et al., 1992; Reichardtet al., 1998).

An ensuing search for erythroid target genes repressed
by v-ErbA identified the erythrocyte anion transporter
(band 3) andcarbonic anhydrase II(CAII) (Zenkeet al.,
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1990). Repression of these genes by v-ErbA is important
for the v-ErbA-induced leukemic phenotype, and accounts
for the tolerance of AEV-transformed erythroblasts to
wide variations in the pH or HCO3– ion concentration
required for survival of the leukemic cells in peripheral
blood. Re-expression of these genes in transformed eryth-
roblasts revealed that the v-ErbA-induced tolerance to pH
variation was abrogated; however, the v-ErbA-induced
block of differentiation remained largely unaffected
(Fuerstenberget al., 1990, 1992). Transient transfection
experiments involving v-ErbA expression vectors and
either the promoter region of theCAII and/or synthetic
reporters have yielded ambiguous and sometimes con-
flicting results (Diselaet al., 1991; Hermannet al.,
1993; Rascleet al., 1994; G.G.Braliou, D.Barettino and
H.G.Stunnenberg, unpublished observations).

Another wrinkle to the model is that binding of an
unliganded receptor to its cognate response elementin vivo
in a chromosomal context has not yet been demonstrated.
Although in vivo footprinting clearly revealed binding site
occupancy by a ligand-activated retinoid receptor, it failed
to reveal receptor binding in the absence of ligand (Minucci
et al., 1994; Chenet al., 1996). Injection intoXenopus
oocytes of aTRβ A gene minilocus which reconstitutes
chromatin, permitted analysis of the TRβ binding site and
its effect on the chromatin structure (Wonget al., 1995,
1997). These data corroborate and extend the model of
an unliganded receptor that actsin cis to repress transcrip-
tion and to induce changes in the chromatin topology.
More experiments on natural target genes within their
chromosomal lociin vivoare required to elucidate whether
and how a class II unliganded receptor represses transcrip-
tion as well as to ascertain the physiological role of
repression.

To unravel the mechanism of transcriptional repression
by v-ErbA in vivo, we set out to identify the regions
required for transcriptional regulation of theCAII gene
during erythroid differentiation. We assessed whether v-
ErbA acts directly or indirectly through (one of) these
regulatory regions. We identified a novel VRE in an
intronic enhancer and found that this VRE is occupied
in vivo in undifferentiated cells, but not in differentiating,
CAII-transcribing erythroid cells. We discovered that v-
ErbA represses the activity of the intronic enhancer by
‘neutralizing’ the positive action of transcription factors
such as GATA-1. We show that a liganded thyroid receptor
variant, gag–cTRα, overcomes v-ErbA action and
unleashes enhancer activity. Finally, we show that addition
of the histone deacetylase inhibitor, trichostatin A, results
in derepression of the endogenousCAII gene, whereas a
transfected, repressed HS2-enhancer construct remains
unaffected by this treatment.

Results

DNase I hypersensitivity site induction in the CAII
locus during erythroid differentiation
To identify regulatory regions in theCAII locus we explored
the chromatin status using DNase I hypersensitivity assays
in primary chicken erythroid progenitors. In both immature
primaryerythroblastsand in terminallydifferentiatingprim-
ary erythrocytes, prominent DNase I hypersensitive sites
were detected ~5 kb upstream and ~8 kb downstream of the
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transcription start site, designated HS1 and HS2, respect-
ively (Figure 1A and B). Although the putative enhancers,
HS1 and HS2, appear to be fully accessible in immature
primary cells,CAII mRNA could not be detected on North-
ern blots (Figure 1C). Increased DNase I sensitivity was
observed in the promoter region ofCAII, designated prHS,
only in differentiating, primary cells that actively transcribe
the gene but not in non-CAII transcribing, proliferating
erythroid progenitors (Figure 1B and C). We conclude that
in proliferating, primary erythroid progenitors, theCAII
locus is primed for expression.

In the AEV-transformed HD3 cell line, HS1 and HS2
were detectable only at relatively high DNase I concentra-
tions as compared with primary erythroid progenitors
(Figure 1D). Upon induction of differentiation, HS1 and
HS2 became hypersensitive, concomitant with the appear-
ance ofCAII mRNA and ofα-globin mRNA, an estab-
lished differentiation marker (Figure 1D and E). The
opening of chromatin at HS1 and HS2 in the course of
differentiation in HD3 cells was confirmed and corrobor-
ated by restriction enzyme accessibility assays (Figure
1F). The extent of restriction enzyme cutting increased 2-
fold in HS1 from 20% in proliferating erythroblasts to
~40% in terminally differentiating cells, and ~5-fold in
HS2, from 11 to 54%. Taken together, these results identify
HS1 and HS2 as the prime candidate regulatory regions
involved in activation ofCAII transcription and in con-
veying regulation by v-ErbA.

Localization of a v-ErbA response element
We used an unbiased immunoprecipitation approach to
identify putative v-ErbA binding sites. A contiguous
genomic fragment (17 kb) that includes the HS1, HS2 and
CAII promoter regions (Figure 1A) was digested with fre-
quently cutting restriction endonucleases, labeled and
incubated with HD3 extracts. Protein–DNA complexes
were precipitated with an anti-v-ErbA monoclonal antibody
(1G10) coupled to paramagnetic beads. The predominant
immunoprecipitated restriction fragments spanned the HS2
region (Figure 2A).In vitro DNase I footprinting using a
fragment extending over HS2 and the v-ErbA-containing
HD3 extracts yielded a distinct protection (bar) and
enhanced DNase I cutting (arrow heads) (Figure 2B).
Immuno-enrichment of HD3 extracts for v-ErbA prior to
DNase I treatment diminished the enhanced DNase I cutting
but did not affect the footprint (lanes 5 and 6). The comple-

Fig. 1. Analysis of the chickenCAII locus during differentiation of
primary erythroblasts and v-ErbA transformed HD3 cells.
(A) Schematic diagram of theCAII genomic locus. Exons 1–4 (black
boxes) and the relative positions of theXbaI (X), SacI (S) andStuI
(St) sites, and riboprobes used for end-labeling are indicated. The
DNase I hypersensitive regions designated HS1 and HS2 are indicated
by open boxes, with the sizes of arrows indicative of the relative
DNase I sensitivity. prHS indicates the expression-linked DNase I
sensitive sites in the promoter region. (B andC) DNase I
hypersensitive site mapping and corresponding Northern blot analysis
using primary chicken erythroblasts before (day 0) and after induction
of differentiation (day 3). (D andE) DNase I hypersensitive site
mapping and corresponding Northern blot analysis using chicken
erythroid HD3 cells before (day 0) and 1, 2 and 4 days after induction
of differentiation. (F) Restriction enzyme accessibility assay of HS1
and HS2 using nuclei prepared from HD3 cells before (day 0) and 4
days after induction of differentiation. Arrows indicate fragments that
were uncleavedin vivo, with SpeI and StyI, respectively, marking the
cleaved fragments.
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mentary result was obtained using HD3 extracts immuno-
depleted of v-ErbA; the footprint was abolished but the
enhanced DNase I cutting was unaffected (lanes 7 and 8).

Inspection of the sequence encompassing the footprinted
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region revealed a direct repeat consisting of one perfect
and one imperfect half-site spaced by four nucleotides,
designated VRE (Figure 2C). The arrangement of the half-
sites is reminiscent of a conventional thyroid response
element (DR4). Despite the mutation in the dimerization
interface of v-ErbA that reduces the affinity of v-ErbA
for RXR (Selmi and Samuels, 1991; Barettinoet al.,
1993), a v-ErbA–RXR heterodimer complex with an
oligonucleotide containing the VRE was revealedin vitro
by bandshift and antibody-supershift assays (Figure 2D).
Two sequences known to bind v-ErbA, a canonical DR4
sequence and the F2 sequence of the chicken lysozyme
gene (Baniahmadet al., 1990), competed for binding of
v-ErbA–RXR, albeit less efficiently than the VRE probe
itself. In contrast, the M1 oligonucleotide containing a
mutation in the first half-site did not compete (Figure 2D).
Thus, we have identified a novel v-ErbA binding site
located in the second intron of theCAII gene and within
the DNase I hypersensitive region HS2.

v-ErbA binds to the CAII-VRE in vivo
To determine whether v-ErbA binds to this putative HS2-
VRE in vivo, dimethyl sulfate (DMS) and DNase I genomic
footprinting experiments were performed in undifferenti-
ated and differentiating HD3 cells, chicken embryo
fibroblasts (CEF) and on naked genomic DNA. Compar-
ison of the cleavage patterns revealed that two G-residues
in the first, and one G-residue in the second half-site
of the VRE were protected from DMS methylation in
undifferentiated HD3 cells (Figure 3A, lane 2), but not in
naked genomic DNA or CEF cells (Figure 3A, lanes 1
and 4). On the opposite strand, a single G-residue in the
39 half-site was protected from DMS methylation and a
DNase I protection was obtained within the VRE in
undifferentiated HD3 cells (Figure 3B, lanes 2 and 6). In
contrast, in differentiating HD3 cells that transcribe the
CAII locus, DMS or DNase I protections of the VRE
could not be detected (Figure 3, lanes 3 and 7). Western
blot analysis (Figure 5E, lanes 3 and 4) shows that the
absence of a footprint is not due to a reduction in the
concentration of v-ErbA protein in differentiating as
compared with fully transformed HD3 cells.

Fig. 2. Identification and characterization of a v-ErbA binding site in
CAII. (A) Immunoprecipitation of v-ErbA–DNA complexes.32P-
labeled DNA fragments generated byHinfI (H), DdeI (D) and RsaI
(R) digestion ofλ clone pCAIIX/N were incubated with HD3 extracts,
with increasing concentrations of F2 competitor oligonucleotide. gag–
v-ErbA–DNA complexes were immunoprecipitated with anti-gag 1G10
mAb bound to Dynal beads. Arrows indicate the position of the
selected fragments. (In) input; (M) DNA marker and fragment size
(bp). Also shown is a schematic presentation of the selected fragments
with respect to the HS2 region. (B) In vitro DNase I footprinting on
the RsaI fragment (coding strand). Naked DNA (lanes 1–2), incubated
with HD3 extract (lanes 3–4), with anti-gag 1G10 mAb-
immunoenriched (lanes 5–6) or -immunodepleted HD3 extracts (lanes
7–8). The protected region is marked VRE; arrows point to subtle
changes in the DNase I pattern that overlap a putative GATA-factor
binding site; lanes labeled G, A, T and C are dideoxynucleotide
sequencing reactions. (C) Nucleotide sequence of theRsaI–AluI DNA
fragment spanning the HS2. The VRE is marked by arrows and three
putative GATA-factor binding sites are underlined and numbered.
(D) Gel-retardation assay of a32P-labeled synthetic oligonucleotide
containing the VRE sequence using HD3 nuclear extract. The complex
was super-shifted with mAb against v-ErbA (1G10) and RXR (4RX-
1D12) or competed by cold VRE, TRE-DR4, F2 and M1-VRE
oligonucleotides.
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Fig. 3. DMS and DNase Iin vivo footprinting. DMS (lanes 1–4) and DNase I (lanes 5–8)in vivo footprinting of (A) the coding strand, and (B), the
non-coding strand, in HD3 cells before (lanes 2 and 6) and after (lanes 3 and 7) induction of differentiation, in chicken embryo fibroblasts
(lanes 4 and 8) and on naked genomic DNA (lanes 1 and 5). The VRE and putative GATA-sites are boxed; protected G-residues are indicated by
asterisks (*).

Intriguingly, additional G residues outside of the VRE
were found to be protected from DMS methylation in
erythroid cells regardless of their differentiation state. This
protection indicates that the putative regulatory complex on
HS2 may at least be partially assembled in undifferentiated
cells prior to activation ofCAII expression. Two of these
DMS protections are within potential binding sites of
members of the GATA family of transcription factors (Ko
and Engel, 1993), located at nucleotides 31–35 (G1) and
58–61 (G2) (underlined in Figure 2C). Taken together,
the occupancy of the HS2-VREin vivo in undifferentiated
erythroid progenitors correlates with the lack of transcrip-
tion at theCAII promoter and lends support to the notion
that v-ErbA repressesCAII transcription through the
putative HS2 enhancer.

HS2 is an enhancer
To test whether the HS2 indeed functions as an enhancer,
the 137 bpRsaI–AluI fragment spanning the HS2 region
was cloned in front of a tk promoter-CAT reporter and
tested in HD3 cells (Figure 4A). Transcription originating
from the tk promoter was minimally activated ~2-fold by
HS2 (Figures 4B). However, a HS2 fragment carrying a
mutation in the VRE that abolishes v-ErbA binding (Figure
2D and data not shown) and placed in front of the tk
promoter (M1–HS2) boosted the level of transcription
~20- to 30-fold as compared with the level of transcription
obtained with the wild-type HS2 enhancer (Figure 4B).
The very potent activation of transcription from the HS2
enhancer obtained upon mutating the v-ErbA binding site
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can best be explained by the loss of v-ErbA repression.
Placing an oligonucleotide comprising the VRE in front
of tk repressed the level of transcription only ~2-fold
whereas the F2-element from the chicken lysozyme gene
(F2-tk) (Baniahmadet al., 1990) conveyed 5- to 7-fold
repression. A multimerized VRE placed in front of tk did
not result in a significant potentiation of the repressive
activity (data not shown); neither did an oligonucleotide
M1 give significant enhanced activity. Furthermore, HS2
and M1–HS2 did not function as enhancers in the non-
erythroid cell lines tested suggesting that the enhancer may
be erythroid-specific (G.G.Braliou and H.G.Stunnenberg,
unpublished observations). We conclude that HS2
comprises a genuine enhancer whose activity is repressed
by the action of v-ErbA.

We next assessed the identity and biological significance
of the putative GATA factor binding site as identified
by in vivo DMS footprinting in immature as well as
differentiating HD3 cells (Figure 3B). Bandshift assays
revealed the presence of a protein in HD3 extracts that
binds to an oligonucleotide spanning nt 24–44 (comprising
the first putative GATA-factor binding site). This protein–
DNA complex could be supershifted with a monoclonal
antibody directed against GATA-1, but not by antibodies
against GATA-2 and -3 (Figure 4C). To assess the bio-
logical significance of this GATA sitein vivo, a mutation
that abolished GATA binding in bandshift assays (data
not shown) was introduced within the context of the HS2-
and M1–HS2 fragments, yielding G1–HS2 and G1–M1–
HS2 (Figure 4B). Mutation of the GATA-1 site reduced
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Fig. 4. Transcriptional repression in v-ErbA expressing HD3 cells is mediated by the VRE. (A) Schematic diagram of the tk reporter constructs
containing either fragments of HSV or synthetic oligonucleotides. The nucleotide sequence of the VRE, M1-VRE and F2 oligonucleotides are
shown, with arrows indicating the half-sites and the crosses indicating the mutated bases. In addition to theRsaI–AluI fragment spanning HS2, that
fragment carrying mutations in the VRE (M1–HS2) or in a GATA site (G1–HS2) or in both sites (G1–M1–HS2) was tested. (B) Transient
transfection assays of HD3 cells with the above tk reporter constructs. Transcription is expressed relative to that of the tk promoter alone.
(C) Gel-retardation assay of a32P-labeled synthetic oligonucleotide containing the GATA factors binding site using HD3 nuclear extract. mAbs
specific for GATA-1, GATA-2 and GATA-3 transcription factors were added.

the transcriptional activity of the HS2-enhancer from
an ~2-fold activation obtained with HS2-tk to a 2-fold
repression with G1–HS2-tk. Moreover, mutation of this
GATA-1 site in the context of the M1-fragment (mutated
v-ErbA binding site) caused a 15-fold reduction of the
enhancer activity of HS2 as compared with M1–HS2-tk.
This shows that the GATA site is critical for the activity
of the HS2 enhancer.

Taken together, mutation of the v-ErbA binding site in
the context of the HS2 enhancer resulted in a marked
increase in the activity of the enhancer, as would be
expected to occur upon inactivation of a repressor binding
site. Moreover, transcription from the G1–HS2-tk reporter
was lower than that obtained by the HS2-tk alone (Figure
4B), i.e. the balance between activation by GATA-1
and other (erythroid) factors and repression by v-ErbA
is shifted towards repression. Intriguingly, the v-ErbA
binding site does not appear to convey strong repression
on its own outside of the HS2 context because the
level of transcription from the heterologous tk- or any
other tested promoter can only be reduced 2- to 3-fold
(Figure 4B; data not shown). However v-ErbA very
efficiently repressesin cis the activity of the HS2-
enhancer thus ‘neutralizing’ the transcriptional activity
of GATA-1 and presumably other transcription factors
(G.G.Braliou and H.G.Stunnenberg, unpublished obser-
vations).
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Liganded TRα activates transcription through the

HS2 enhancer

We reported previously that HD3-V3 cells expressing a
gag–cTRα fusion protein (V3) to levels similar to that of
v-ErbA (Disela et al., 1991; Figure 5E, lanes 1 and 2)
can be induced to express erythroid-specific marker genes
such asCAII upon addition of T3 (Diselaet al., 1991;
Schroederet al., 1992) without inducing differentiation.
These and other experiments suggested that TR can
overcome v-ErbA repression by binding tocis-acting
sequences that might include theCAII-VRE. We therefore
pursued the possibility that addition of T3, which should
convert the gag–cTRα repressor to an activator, would
revert the v-ErbA block ofCAII expression and might
induce chromatin changes. In undifferentiated HD3-V3
cells, the HS2 site was detectable at relatively high DNase
I concentrations and became more pronounced within 24 h
of T3 addition comparable with the results obtained in
HD3 cells (Figure 5A; data not shown). HS1 and prHS
also became more apparent upon T3 induction concomitant
with the appearance ofCAII mRNA (Figure 5B and C).
The overall effects of T3-activated gag–cTRα are modest
with respect to chromatin alterations, probably due to the
presence of the constitutive repressor v-ErbA. These data
nevertheless suggest that gag–cTRα instigates chromatin
changes upon ligand activation in line with the studies of
Wong and colleagues of the autoregulatedXenopusTRβ
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Fig. 5. Transcriptional activation and chromatin remodeling instigated
by ligand-activated gag–cTRα. (A andB) DNase I hypersensitive site
mapping in HD3 cells expressing gag–cTRα (named HD3-V3) before
or after 24 h of T3 treatment. (C) Northern blot analysis ofCAII and
c-myb in the course of T3 induction in HD3-V3 and the parental HD3
cells. (D) Transient transfection analysis of MoMLV-TRE-, HS2-VRE-
and M1–HS2-tk containing reporter constructs in HD3-V3 cells;
before harvesting transfected cells were incubated 22 h in the absence
(–) or presence (1) of T3. (E) Western blot analysis of gag–v-ErbA
and gag–cTRα using anti-gag antibody 1G10. Lanes 1 and 2 are HD3-
V3 cells 0 and 22 h after T3 treatment; lanes 3 and 4 are HD3 cells
on day 0, and 4 days after induction of differentiation.

gene using anin vivo chromatin reconstitution system
based on injection of single stranded plasmid DNA into
Xenopusoocytes (Wonget al., 1997).

Next, we tested the ability of the HS2-, M1–HS2-tk
and of natural TREs from the Moloney murine leukemia
virus (MoMLV) (Sapet al., 1990) and from the lysozyme
gene (F2) (Baniahmadet al., 1990) placed in front of tk
to mediate a T3 response in transient transfection assays
in HD3-V3 cells. In the absence of ligand, the F2-tk as
well as the MoMLV-tk appeared to be repressed (5- and
3-fold, respectively); addition of T3 boosted their level of
transcription ~5- and 8-fold, respectively. For the HS2-tk
reporter, addition of T3 resulted in a 4-fold activation,
which is significantly lower than the maximal level of
transcription obtained with the M1–HS2 construct that
carries the VRE mutation. This reduced T3 responsiveness
of the HS2-tk reporter is the sum of activation by liganded
gag–cTRα and constitutive repression by v-ErbA, i.e.
positive and negative factors competing for binding to
the VRE.

Trichostatin A fails to induce HS2 activity on
transfected plasmids, but induces transcription
from the endogenous CAII gene
So far, we have demonstrated that the VRE bound by v-
ErbA conveys strong repression of a transfected HS2-
enhancer. Furthermore, ligand-activated gag-cTRα can
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partially relieve the repression of theCAII gene if
expressed to equivalent levels as the constitutive repressor,
v-ErbA (Diselaet al., 1991; Figure 5E). Taken together
with our observations that the VRE is occupiedin vivo in
erythroid cells that do not transcribe theCAII gene and
that v-ErbA binds to the VREin vitro, we tentatively
conclude that v-ErbA acts to repress theCAII gene. A
plethora of biochemical, yeast two-hybrid and transient
transfection assays suggest that an unliganded receptor
represses transcription via the N-CoR–SIN3A–HDAC
complex that possesses intrinsic histone deacetylase
activity (Chen and Evans, 1995; Ho¨rlein et al., 1995;
Alland et al., 1997; Heinzelet al., 1997; Nagyet al.,
1997). Several recent observations have reinforced the
notion that histone deacetylation plays an important role
in repression. For example, trichostatin A (TSA) enhances
the effects of RA on induction of differentiation of myeloid
precursors (HL60, NB4 and U937 cells expressing PML–
RAR and PLZF–RAR), and on activation of transiently
transfected RARE reporters in these cells (Nagyet al.,
1997; Grignaniet al., 1998; Lin et al., 1998). Inhibition
of histone deacetylases can also relieve repression by
unliganded TR–RXR bound on a TRE-containing template
assembled into nucleosomes (Wonget al., 1995, 1997).

We therefore examined whether histone deacetylases
play a role in the repression ofCAII transcription in HD3-
V3 and HD3 cells (Figure 6A; data not shown). In HD3-
V3 cells, addition of T3 resulted in a 3-fold activation of
the HS2-tk reporter, while addition of TSA did not affect
the level of transcription from this promoter. Unexpectedly,
addition of both T3 and TSA reproducibly resulted in a
reduction of transcription rather than an additional
increase, as compared with that obtained with T3 alone.
T3 or TSA treatment activated transcription from the F2-
tk reporter and the combination of T3 plus TSA resulted
in an additional 2-fold enhancement. Whether the additive
effect of T3 plus TSA is relevant remains to be determined,
since T3 plus TSA also caused a 2- to 3-fold activation
of the parental tk-reporter. Transfection of a 33(RAREβ2)-
tk reporter and addition of RA plus TSA resulted in a
very strong synergistic activation of transcription
(G.G.Braliou and H.G.Stunnenberg, unpublished observa-
tions). These data imply that although the HD3-V3 cells
can respond to TSA and T3 or RA treatment as described
for other cell lines, transcription from the HS2-tk reporter
was not similarly affected.

Finally, we performed in parallel Northern blot analysis
of the transfected and TSA and/or T3 treated cells to test
whether the endogenousCAII gene was activated upon
these treatments (Figure 6B). Surprisingly, the TSA treat-
ment alone resulted in significant activation of transcription
from the endogenousCAII locus; in addition, TSA further
boosted the strong activation given by T3 alone. In
contrast, the level of transcription from the endogenous
MYBgene, a marker of undifferentiated erythroid cells, was
weakly reduced upon T3 treatment (see also Figure 5C) and
markedly down-regulated by TSA treatment. A combined
TSA plus T3 treatment enhanced this down-regulation as
obtained with TSA alone. The mRNA levels from a
constitutive gene,band 4.1, were not markedly affected
by T3 and/or TSA. Thus, the endogenousCAII gene was
sensitive to TSA as well as to T3 treatment whereas the
transfected HS2 enhancer only responded to ligand, but
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Fig. 6. Effect of TSA and T3 treatment of HD3-V3 cells. (A) Transient transfection assays with the indicated constructs, with CAT activities
expressed relative to the tk reporter alone. (B) Northern blot analysis of endogenous genes in the treated cells. Cells were treated with the indicated
reagents for 22 h before harvesting.

not to TSA treatment. Similar results were obtained with
the HD3 cells (data not shown).

Discussion

v-ErbA acts in cis to repress CAII transcription
To date, the best-documented biological phenomenon
which correlates with repression by a nuclear receptor is the
block of differentiation of chicken erythroid progenitors
mediated by thev-ErbA and v-ErbB oncogenes (Zenke
et al., 1988, 1990; reviewed in Beuget al., 1996). v-ErbA
is postulated to contribute to erythroleukemia by repression
of erythroid-specific target genes such asCAII (Zenke
et al., 1990; Diselaet al., 1991; Baueret al., 1997). It
has remained unclear whether this presumptive negative
function of v-ErbA is mediatedin cis through a v-ErbA
response element or via protein–protein interactions with
other transcription factors. We and others initially identi-
fied and characterized a TRE in the promoter region of
CAII (Disela et al., 1991; Rascleet al., 1994). Notwith-
standing extensive analysis, we could not demonstrate
unambiguously that this element functioned as a genuine
v-ErbA cis-acting element.

In this study, we have assessed the chromatin state and
the regulation ofCAII expression in primary erythroid
progenitors and in AEV-transformed erythroid cell lines
during the course of differentiation. Usingin vivo DNase
I mapping, we have identified two hypersensitive regions,
one positioned ~5 kb upstream of the transcription start
site and one ~8 kb downstream, in the second intron,
termed HS1 and HS2, respectively. Transient transfection
experiments revealed that the HS2 hypersensitive region
functions as a genuine enhancer that governsCAII expres-
sion. Several lines of evidence suggest that v-ErbA binding
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to the HS2-VRE causes repression of transcription. First,
immunoprecipitation assays identified a high affinity v-
ErbA binding site, VRE, that is located in the HS2.
Secondly, bandshift assays as well asin vitro footprinting
showed that v-ErbA specifically binds to this VRE. Thirdly,
a mutation causing loss of v-ErbA binding to the VRE
in vitro resulted in a marked derepression of the HS2
enhancer activityin vivo. Fourthly, in transient transfection
experiments, ligand activation of a gag–cTRα fusion
protein partially reverted the repression of transcription
from the HS2 enhancer which was dependent on the
presence of the VRE. Finally, DMS and DNase Iin vivo
footprinting revealed that the VRE was protected in
undifferentiated cells, whereas protection was lost in
differentiating cells in which the v-ErbA oncoprotein
is inactive.

Besides v-ErbA, other (erythroid) factors are bound to
the HS2 enhancer in undifferentiated cells, indicating that
an enhancer complex is at least partially assembled on
the HS2 before the onset ofCAII transcription. One of
the bound factors was identified as the erythroid-specific
GATA-1 factor. In undifferentiated cells, that is in the
presence of an active v-ErbA oncoprotein, the pre-
assembled enhancer complex does not instigate productive
transcription. In differentiating cells, v-ErbA binding to
the VRE cannot be detected andCAII is transcribed,
suggesting that v-ErbA prevents the activity of the
enhancer complex by ‘neutralizing’ the activity of tran-
scription factors such as GATA-1. In line with this hypo-
thesis, transient transfection assays in undifferentiated
HD3 cells revealed that mutation of the VRE unleashed
potent enhancer activity. Therefore, transcription factors
capable of driving the HS2 enhancer are present in an
active state in undifferentiated cells.
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The question arises how v-ErbA prevents the activity
of a pre-assembled enhancer complex. The widely accepted
molecular switch model for nuclear receptor action sug-
gests that the unliganded receptor tethers the co-repressor
complex containing N-CoR–SMRT, SIN3A/B and the
histone deacetylase, HDAC (Chen and Evans, 1995;
Hörlein et al., 1995; Allandet al., 1997; Heinzelet al.,
1997; Nagyet al., 1997). An extension of this model
predicts that the v-ErbA–co-repressor complex either parti-
cipates in or instigates the local organization of the
chromatin into a repressive state. Actually, initial studies
suggested that thyroid hormone action was mediated by
a receptor that stably associates with chromatin independ-
ent of the presence or absence of ligand (Perlmanet al.,
1982). This concept was corroborated and extended by
the recent data from Wolffe and co-workers showing that
unliganded TR may indeed assist or even be instrumental
in setting up a repressive chromatin state inXenopus
oocytes (Wonget al., 1995). Our observation that the
DNase I hypersensitivity of the HS2 as well as of the
HS1 region is markedly reduced in fully-transformed,
v-ErbA-expressing HD3 progenitors as compared with
primary erythroid progenitors is consistent with a role of
v-ErbA in setting up or stabilizing repressive chromatin.
Our TSA experiments strongly suggest that histone
deacetylases play a role in repression of the chromatin-
embeddedCAII gene. Similarly, Wong and co-workers
showed that histone acetylation/deacetylation plays a role
in repression and activation by wild-type TR inXenopus
oocytes (Wonget al., 1997). It seems likely that the
histone deacetylase-containing N-CoR–SMRT–SIN3A–
HDAC complex is targeted to theCAII locus by v-ErbA;
however, formal proof is lacking at this stage. Recruitment
of the HDAC activity to the locus is, however, unlikely
to be the only step leading to repression. In fact, our
transient transfection assays performed in the presence of
TSA and/or T3 suggest that v-ErbA can repress the
HS2-enhancer activity independent of histone deacetylase
activity. Hence, v-ErbA binding to its site in the HS2
enhancer may also act directly or via the N-CoR–SMRT
or SIN3A components of the co-repressor complex on
(erythroid) transcription factors bound to theCAII
enhancer to ‘neutralize’ their transcriptional activity. The
observed non-responsiveness from the HS2 enhancer to
TSA or TSA plus T3 treatments is particularly striking in
light of the results with the F2-tk reporter. Furthermore,
a strong synergism between RA and TSA has been
observed in NB4 cells (Linet al., 1998), in U937 cells
stably transfected with PML–RAR and PLZF–RAR
(Grignani et al., 1998), in P19 EC cells (Minucciet al.,
1997) or HD3 cells (G.G.Braliou and H.G.Stunnenberg,
unpublished observation). In all these cases, however,
artificial reporter configurations were tested. One inter-
pretation of our results is that HDACs do not contribute to
repression of the HS2 enhancer by v-ErbA. Alternatively,
acetylation/deacetylation of histones or other (basal) tran-
scription factors may be effective only if the HS2 enhancer
contains a positioned nucleosome. We favor the latter
explanation which is in agreement with the frequent
observations that nucleosomal assembly of transfected
plasmids is anomalous, for example with the MMTV
promoter (Archeret al., 1992). Our findings and those of
Wong and colleagues underscore the importance of the
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topology of the chromatin-embedded TRE to support TR
binding and transcriptional regulation (Wonget al., 1997
and this study).

Intriguingly, induction of HD3 differentiation lead to a
loss of v-ErbA binding to the HS2-VRE, which did not
result from a markedly decreased concentration of v-ErbA
in differentiating versus undifferentiated HD3 cells (Figure
5E). One possible explanation could be that loss of
v-ErbA binding to the VRE was due to changes in
concentrations of auxiliary factors or in the phosphoryla-
tion status of v-ErbA. Phosphorylation of v-ErbA at serine
residues 16 and 17 was previously shown to be critical
for its oncogenic activity (Glineuret al., 1990). Also,
nuclear hormone receptors need to cooperate with receptor
tyrosine kinases to block differentiation of multipotent
hematopoietic cells (Baueret al., 1997). For example, v-
ErbA-expressing primary erythroblasts can only be trig-
gered into differentiation upon omission of stem cell
factor (SCF), whereas AEV-transformed HD3 cells can
be triggered into differentiation only upon inactivation of
the tyrosine kinase oncogene with specific inhibitors and
upon addition of erythropoietin and insulin (Choiet al.,
1986; Zenkeet al., 1988). It therefore seems plausible
that this interruption of tyrosine kinase signaling may
have affected phosphorylation of v-ErbA or associated
(co)factors.

CAII-HS2 enhancer is activated in response to T3
Our previous studies have shown that TRα is likely to
take part in erythrocyte differentiation as well as inCAII
activation (Diselaet al., 1991; Schroederet al., 1992;
Gandrillon et al., 1994). We now show that the HS2
becomes fully open only upon T3 treatment and that
increased DNase I sensitivity can be observed in the
promoter region. This ability of liganded TR to remodel
the chromatin structure is consistent with biochemical
experiments, describing the physical interaction among
nuclear receptors and protein complexes that possess an
intrinsic histone acetyltransferase activity (Yanget al.,
1996). Thus, liganded TR indeed appears to counteract
the repressive action of v-ErbA by destabilizing the
repressive chromatin configuration and setting up active
chromatin, thereby explaining the observation that the
HS1 and HS2 hypersensitive sites ofCAII, which are only
poorly developed in v-ErbA expressing cells, are very
prominent in HD3-V3 cells.

Our transient transfection data with HD3-V3 cells, show
that the CAII-HS2 enhancer can mediate T3-dependent
transactivation. The data corroborate and extend the notion
that v-ErbA occludes TRα from binding to the HS2-
VRE, because in the presence of T3 the enhancement of
transcription by the HS2 is significantly lower compared
with the M1–HS2, i.e. in the absence of a v-ErbA binding
site. In vitro DNA binding studies indicate that the v-
ErbA–RXR heterodimer has a relatively high affinity for
the HS2-VRE as compared with a canonical DR4 or F2
element (Figure 2C). The VRE deviates from the consensus
DR4 in the sequence of the 39 half-site (-AGGGCT-).
Intriguingly, v-ErbA presumably contacts the 39 half-site
and the G-residue at that fourth position was shown to
be preferred by a DNA-binding domain containing the
Gly→Ser mutation present in the P-box of v-ErbA (Nelson
et al., 1994).
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Is repression in cis by unliganded receptors a
general phenomenon?
Our data clearly show that v-ErbA binds to a response
element embedded in chromatin and represses transcription
of CAII in cis. It is tempting to speculate that, in the
absence of their respective ligands, other wild-type class
II receptors function in a manner similar to that observed
for v-ErbA. Up to now, only a few biological phenomena
have been described that may be attributed to repression.
The Xenopus TRβA gene is repressed by unliganded TRβ
through a TRE-DR4 (Wonget al., 1995). Unliganded TR
and v-ErbA repress transcription of the chicken lysozyme
gene in vivo through the TRE-F2 element (Baniahmad
et al., 1990). The 39 hoxb-1gene is reportedly regulated
by an enhancer which contains two activating RAREs and
one repressing RARE (Studeret al., 1994; reviewed in
Marshallet al., 1996). In the latter two cases, however, it
has not yet been demonstrated that the unliganded receptor
indeed binds to its target sitein vivo.

In contrast to the occupancy of the HS2-VRE we
observed in erythroid progenitors,in vivo footprint assays
did not reveal occupancy of the RARE present in the
RARβ2 promoter in the absence of ligand, although a
clear protection was seen upon RA treatment (Minucci
et al., 1994; Chenet al., 1996; Bhattacharyyaet al., 1997).
This result is surprising because theRARβ2 promoter
displays DNase I hypersensitivity in undifferentiated P19
embryonal carcinoma cells (Bhattacharyyaet al., 1997;
our unpublished observations) before the onset of tran-
scription. It is not inconceivable that the binding of
an endogenous RAR receptor may not as readily be
demonstrable byin vivo footprinting as with the highly
expressed oncogenic v-ErbA receptor.

The role of unliganded receptors in hematopoietic
disorders
Although v-ErbA may not be the prototypic unliganded
receptor, the phenomenon of repression linked to hemato-
poietic disorders is a recurring theme. The hybrid proteins
PML–RAR and PLZF–RAR, the causative agents of APL
(Hofmann, 1992), have recently been shown to block
differentiation at a promyelocytic stage by acting as
transcriptional repressors. Intriguingly, APL cells carrying
the PLZF–RAR fusion have lost their response to RA
treatment and do not differentiate; this correlates with the
ability of PLZF to interact, independently from the RAR
hinge region, with co-repressors such as N-CoR or SMRT
(Grignani et al., 1998; Lin et al., 1998). Overexpression
of a dominant negative variant of RARα lacking activation
functions in lymphohematopoietic progenitors reveals the
ability of this truncated protein to block differentiation of
these cells; the repressor activity of RAR seems to
contribute at least in part to this phenotype (Tsaiet al.,
1994). Thus, class II nuclear receptors in the repressive
‘off’ mode may play an important role, both in hemato-
poiesis and in other biological processes. Unraveling the
mechanisms of gene silencing is likely to provide novel
insight into the multifaceted activities of class II nuclear
receptors either as transcriptional repressors or as activ-
ators, in normal and in disregulated differentiation.

Materials and methods

Cell culture
Two derivatives of the AEV-transformed cell line HD, namely HD3-
EpoR and HD3-V3, expressing, respectively, the murine erythropoietin
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receptor or a gag–chicken TRα fusion, were used. Primary erythroblasts
and these cell lines were grown in CFU-E medium (Dolzniget al.,
1995); the medium for primary erythroblasts was supplemented with
SCF to promote proliferation (Mellitzeret al., 1996). Differentiation
was induced in differentiation medium (Dolzniget al., 1995). In HD3-
EpoR cells, 5µM of the tyrosine kinase inhibitor PD 153035 (Fryet al.,
1994) was added to inhibit signaling from the v-ErbB oncoprotein.
Before T3 treatment, HD3-V3 cells were grown for 48 h in medium
containing stripped serum; 150 nM T3 was added to the medium where
indicated. CEF were grown as described (Fuerstenberget al., 1992).

DNase I hypersensitivity assay
In vivo DNase I hypersensitivity assays were performed essentially as
described (Stewartet al., 1991). Briefly, cells were washed twice with
phosphate-buffered saline (PBS) and incubated for 4 min at room
temperature in a buffer containing 0.2% NP-40 and increasing concentra-
tions of freshly prepared DNase I; HD3-EpoR cells with 1, 2, 4, 8, 16
and 32 and primary erythroblasts with 1, 2, 4 U per 106 cells, respectively.
The reactions were stopped by the addition of 20 mM EDTA and
20 µg/ml RNaseA (final concentrations). Cells were lysed by addition
of 1% SDS, 50 mM Tris–HCl pH 8 and 200µg/ml Proteinase K and
incubation overnight at 37°C; DNA was then purified by phenol
extraction and ethanol precipitation. Genomic DNA (20µg) was digested
with XbaI and hybridized with the32P-labeled riboprobes,SacI–XbaI
andStuI–XbaI, as indicated schematically in Figure 1A.

Enzyme accessibility assay
Nuclei were prepared from differentiating and undifferentiated HD3-
EpoR cells, resuspended in the appropriate restriction enzyme buffer
and incubated for 1 h with 200 U ofSpeI or StyI for HS1 and HS2
analyses, respectively. DNA was extracted and analyzed as described in
the above paragraph.

Northern blot
Total RNA was extracted using the guanidium–CsCl method;CAII, c-
myb, band4.1andα-globin mRNA level were detected by Northern blot
analysis as previously described (Zenkeet al., 1990).

Co-immunoprecipitation of v-ErbA–DNA complexes
The λ clone pCAIIX/N containing a 17 kb fragment of theCAII gene
(cloning will be described elsewhere) was digested withHinfI, RsaI and
DdeI, respectively, and labeled. DNA (5 pmol) was incubated with HD3
extracts in 20 mM HEPES pH 7.9, 100 mM NaCl, 5 mM MgCl2, 15%
(v/v) glycerol, 0.1% Triton-X 100, 0.3 mg/ml poly(dI–dC) and 2 mM
dithiothreitol in the presence of increasing amounts (0.1, 1, 10 and
100 ng) of a unlabeled competitor oligonucleotide TRE-F2 containing
the v-ErbA binding site from the chicken lysozyme gene (Baniahmad
et al., 1990). v-ErbA–DNA complexes were immunoprecipitated using
anti-gag 1G10 mAb and goat-anti mouse IgG-coated paramagnetic beads
(Dynal). Precipitated fragments were analyzed in a 6% sequencing gel.

Oligonucleotides used for gel-retardation assays and for
cloning in pBLCAT2 vector
Coding strand:
VRE: 59-TCGACCCAGCAAGGTCACAGCAGGGCTTTTTTTC-39;
M1-VRE: 59-TCGACCCAGCAATTTCACAGCAGGGCTTTTTTTC-39,
F2: 59-TCGACTTATTGACCCCAGCTGAGGTCAAGTTACC-39
GATA: 59-TCGACTCTGACCTATCTCTCTGGAAC-39
Non-coding strand:
VRE: 59-TCGAGAAAAAAAGCCCTGCTGTGACCTTGCTGGG-39;
M1-VRE: 59-TCGAGAAAAAAAGCCCTGCTGTGAAATTGCTGGG-39,
F2: 59-TCGAGGTAACTTGACCTCAGCTGGGGTCAATAAG-39
GATA: 59-TCGAGTTCCAGAGAGATAGGTCAGAG-39
Oligonucleotide used for mutagenesis:
mutagenesis-VRE 59-CCCTGCTGTGAAATTGCTG-39;
mutagenesis-GATA 59-CTGACCTAAATCTCTGGAAC-39.

Gel-retardation assay
Labeled VRE oligonucleotide (20 pmol) was incubated with HD3 protein
extract for 15 min on ice in the same binding buffer as used for the co-
immunoprecipitation assays; in antibody-supershifting experiments, anti-
gag 1G10 mAb, anti-RXR mAb or anti-GATA-1, -GATA-2, -GATA-3
were added and incubated on ice for an additional 15 min; competition
was performed by adding a 100-fold molar excess of unlabeled VRE,
TRE, M1-VRE or F2 oligonucleotides. Reactions were loaded on pre-
cooled 0.53TBE, 5% acrylamide gels.
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Transient transfection assays
HD3, HD3-EpoR and HD3-V3 cells were transfected using the DEAE–
dextran transfection procedure as previously described (Choi and Engel,
1988). In a typical experiment 107 cells were transfected with 5µg of
reporter construct together with 1µg of EF1α-Luc as an internal control,
and harvested after 48 h. CAT and luciferase activity were measured as
described previously (Barettinoet al., 1993). Additions of 150 nM T3
and/or 100 nM TSA were made to HD3-V3 transfected cells grown in
culture medium containing stripped serum for the last 22 h.

Cloning
An RsaI–AluI fragment of 137 bp spanning HS2 was inserted into the
HindII–BamHI site of pBLCAT2 vector, yielding pHS2-tk. The HS2
mutants M1–HS2-tk, G1–HS2-tk and G1–M1–HS2-tk were generated
by oligonucleotide-directed site-specific mutagenesis using the oligo-
nucleotides, M1-VRE and G1-GATA, respectively. pVRE-tk, pM1-
VRE-tk and F2-tk, were constructed by cloning the corresponding
oligonucleotides containing cohesiveSalI andXhoI termini into theXhoI
site of pBLCAT2.

In vitro DNase I solid-phase footprinting
In vitro DNase I solid-phase footprinting was performed as described
(Sandaltzopoulos and Becker, 1994). A 291 bpRsaI fragment spanning
the HS2 was labeled and incubated with HD3 extracts or with HD3
extracts either immunoenriched or immunodepleted for v-ErbA using
mAb 1G10.

In vivo DMS and DNase I footprinting
Cells resuspended in 1 ml media were treated with 2µl DMS for 2 min
at room temperature, washed twice with cold PBS and resuspended in
nuclei buffer (NB: 0.3 M sucrose, 60 mM KCl, 15 mM NaCl, 60 mM
Tris–HCl pH 8.2, 0.15 mM spermine, 0.5 mM spermidine, 0.5 mM
EGTA, 2 mM EDTA, 0.5% NP-40). After incubation at 4°C for 5 min,
nuclei were pelleted, washed twice with NB without sucrose and NP-
40; DNAs were then extracted as described above for the DNase I
hypersensitivity assays. DMS-treated DNA samples were treated with
piperidine (1 M) for 45 min at 96°C, chloroform-extracted and precipit-
ated. DNA samples prepared for DNase I hypersensitive site mapping
were also used for ligand-mediated PCR (LM–PCR) mediated DNase I
in vivo footprinting using a biotinylated oligonucleotide approach as
described (Quivy and Becker, 1993) and 1.2µg of genomic DNA. The
following gene-specific primers sets were used: coding strand: 59-
AGATGTGAACCTGAATGA-39, 59-CCAGTCTGTGCCAAGTAGT-
TC-39, 59-GCTGAGTTGAAATCACTG-39; non-coding strand: 59-TGA-
CAAGCAGGAGAGTAA-39, 59-GAGTAAGAACAGGACGCAA-39,
59-AGCGGATGATGTAGAGAT-39; the PCR cycling was: 1 min dena-
turation at 96°C, 2 min annealing at 50°C and 3 min elongation at 72°C
using Expand Long Template PCR system (Boehringer Mannheim).
Labeled fragments were separated on 6% sequencing gels.
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