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Abstract

We investigate the quantum interference induced by a relative phase in the corre-
lated initial state of a system which consists in a two-level atom interacting with
a damped mode of the radiation field. We show that the initial relative phase
has significant effects on both the evolution of the atomic excited-state popula-
tion and the information flow between the atom and the reservoir, as quantified
by the trace distance. Furthermore, by considering two two-level atoms inter-
acting with a common damped mode of the radiation field, we highlight how
initial relative phases can affect the subsequent entanglement dynamics.

Keywords: open quantum systems, initial correlations, excitation transfer,
information flow, entanglement dynamics

1. Introduction

Understanding of the time-evolution of open systems is of great relevance
not only in the foundations of quantum mechanics, but also in the rapidly de-
veloping quantum technologies [1, 2]. In most cases, the initial state of the open
system is assumed uncorrelated from its environment, so that the evolution
of the open system can be described by a family of completely positive trace
preserving (CPT) reduced dynamical maps. Nevertheless, in many concrete
experimental situations the investigated system is unavoidably correlated with
the environment also at the initial time, especially in the case of systems which
are strongly coupled to the reservoir. Therefore, initial correlations between the
system and the reservoir represent a fundamental issue, both from a theoretical
and an experimental point of view [3–13]. In particular, if there are initial cor-
relations between an open system and the corresponding environment, the trace
distance of two states of the open system can grow over its initial value during
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the time-evolution [14–16], indicating that the open system can access some
information which is initially outside it. Recently, the trace-distance growth of
open-system states above its initial value has been experimentally verified by
means of all-optical apparata, in which the system under investigation consists
of single photons emitted by quantum dots or couples of entangled photons
generated by parametric down conversion [17].

In this paper, we focus on a general effect induced by initial system-environ-
ment correlations in the subsequent open-system dynamics. Namely, we show
that the quantum interference due to a relative phase in the correlated initial
total state plays an important role in several aspects of the dynamics of the
open system. In particular, we investigate a system composed of a two-level
atom interacting with a mode of the radiation field, which is in turn coupled
to a damping reservoir. First, we study the dynamics of atomic excited-state
population, thus showing how the quantum interference can modify in different
ways the system’s energy gain from the reservoir. Then, we take into account
the evolution of the trace distance between atomic states, characterizing the
information flow between the atom and the reservoir. It is shown that the
initial relative phase plays a basic role in order to maximize the increase of the
trace distance above its initial value, i.e., the amount of information that flows
from the environment to the open system in the course of the dynamics. Finally,
we generalize our model, by taking into account two two-level atoms interacting
with a common damped mode of the radiation field. We study how relative
phases in a correlated initial atom-mode state influence the dynamics of atomic
entanglement, and in particular the steady-state entanglement.

2. Model and solution

In this paper, we consider the damped Jaynes-Cummings model [1], namely
a two level atom interacting via the Jaynes-Cummings Hamiltonian with a mode
of the radiation field, that is in turn coupled to a damping reservoir. Our aim is
to investigate how initial correlations between the atom and the mode influence
the subsequent dynamics of the atom and, in particular, we focus on the role
of the relative phase in the correlated initial state. Thus, we are not assuming
an initial vacuum state of the mode. In the following, we will use the Lindblad
master equation for the atom-mode system given by [18]

dρ(t)

dt
= −i[H, ρ(t)]− Γ

2
[b+bρ(t)− 2bρ(t)b+ + ρ(t)b+b], (1)

with H = ω0σ+σ− + ωcb
+b + Ω(σ−b

+ + σ+b), where ρ represents the density
matrix of the system formed by the atom and the mode, σ± are the raising and
lowering operators and ω0 is the transition frequency of the atom. Moreover,
b (b†) is the annihilation (creation) operator of the mode, with frequency ωc,
Ω is the coupling constant between the atom and the mode, and, finally, Γ
is the damping rate of the mode due to its interaction with the dissipative
reservoir. We focus on the resonant case, i.e. ω0 = ωc ≡ ω. Note that this
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master equation, often introduced on the basis of a phenomenological approach,
can be microscopically justified for a zero temperature flat reservoir [19] relying
on the Born-Markov approximation [1]. It then provides a description of the
atom-mode dynamics on a coarse grained time scale, which does not resolve
the decay time of correlation functions of the damping reservoir. Finally, let us
introduce the basis |α〉A⊗ |n〉M ≡ |α, n〉AM , with α = e, g labeling the states of
the two-level atom, and n = 0, 1, 2, . . . the number states of the field mode.

In the following, we first take into account a correlated initial atom-mode

pure state ρ
(1)
AM (0) = |Ψ(0)〉AM 〈Ψ(0)|, with

|Ψ(0)〉AM = C1(0) |e, 0〉AM + C2(0) |g, 1〉AM . (2)

The reduced states of the atom and the mode are, respectively, ρ
(1)
A (0) =

|C1(0)|2 |e〉 〈e|+ |C2(0)|2 |g〉 〈g| and ρ
(1)
M (0) = |C1(0)|2 |0〉 〈0|+ |C2(0)|2 |1〉 〈1|. To

make a comparison with the uncorrelated situation, we then consider a product
initial atom-mode state in the form

ρ
(2)
AM (0) = ρ

(2)
A (0)⊗ ρ(2)M (0), (3)

with ρ
(2)
A (0) = |B1(0)|2 |e〉 〈e|+ |B2(0)|2 |g〉 〈g| and ρ

(2)
M (0) = ρ

(1)
M (0). Note that

the initial atom-mode states ρ
(1)
AM (0) and ρ

(2)
AM (0) have the same reduced states

for the mode, but they may have different reduced states for the atom.

Now, consider the correlated initial state ρ
(1)
AM (0). Since there is only one

excitation in the total system, we can make the ansatz that the atom-mode
state at time t is of the form [20, 21]

ρ
(1)
AM (t) = (1− λ(t))|ψ(t)〉AM 〈ψ(t)|+ λ(t)|g, 0〉AM 〈g, 0|, (4)

with 0 ≤ λ(t) ≤ 1, λ(0) = 0, and |ψ(t)〉AM = C1(t)|e, 0〉AM + C2(t)|g, 1〉AM . In
the spirit of [20], it is convenient to introduce the unnormalized state vector

|ψ̃(t)〉AM ≡
√

(1− λ(t))|ψ(t)〉AM = C̃1(t)|e, 0〉AM + C̃2(t)|g, 1〉AM , (5)

where C̃k(t) ≡
√

(1− λ(t))Ck(t), for k = 1, 2, and therefore the atom-mode

state at time t can be written as ρ
(1)
AM (t) = |ψ̃(t)〉AM 〈ψ̃(t)|+ λ(t)|g, 0〉AM 〈g, 0|.

Due to Eq.(1) the dynamics of the unnormalized atom-mode state in Eq. (5) is
determined by [20]:

i
d

dt
C̃1(t) = ωC̃1(t) + ΩC̃2(t),

i
d

dt
C̃2(t) =

(
ω − iΓ

2

)
C̃2(t) + ΩC̃1(t), (6)

while λ(t) satisfies dλ(t)/dt = Γ|C̃2(t)|2. By means of the Laplace transforma-
tion, together with the initial condition |Ψ(0)〉AM given by Eq. (2), we get the
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analytical expression C̃1(t) = µ(t)C1(0)− iν(t)C2(0), with

µ(t) = e−(
Γ
4 +iω)t

[
cosh(

at

2
) +

Γ

a
sinh(

at

2
)

]
, (7)

ν(t) = e−(
Γ
4 +iω)t

[
2Ω

a
sinh(

at

2
)

]
, (8)

and a =
√

(Γ/2)2 − 4Ω2. One may distinguish two different dynamical regimes
via Γ and Ω; namely, we will identify the case Γ > 2Ω as the weak coupling
regime and Γ < 2Ω as the strong coupling regime [21]. From Eqs. (4) and (5),
one has that the reduced state of the atom at time t > 0 can be expressed as

ρ
(1)
A (t) = |C(1)

e (t)|2 |e〉 〈e|+ (1− |C(1)
e (t)|2) |g〉 〈g| , (9)

with |C(1)
e (t)|2 ≡ |C̃1(t)|2.

Let us now take into account the uncorrelated initial atom-mode state ρ
(2)
AM (0).

It can be written as the mixture of four pure states, i.e., |e, 0〉 〈e, 0|, |g, 1〉 〈g, 1|,
|e, 1〉 〈e, 1| and |g, 0〉 〈g, 0|. For later convenience, we separately evaluate the
different contributions given by these four terms to the probability of the atom
being in excited state at a time t. By the previous analysis, it is clear that
the contributions due to |e, 0〉 〈e, 0| and |g, 1〉 〈g, 1| are just, respectively, |µ(t)|2
and |ν(t)|2, see Eqs.(7) and (8). The term |g, 0〉 〈g, 0| is invariant, while for the
contribution of |e, 1〉 〈e, 1| we have to come back to the master equation (1) and
set the initial condition ρ(0) = |e, 1〉〈e, 1|, thus getting the system of equations:

%̇11(t) = −i[
√

2%21(t)Ω−
√

2%12(t)Ω]− Γ%11(t)

%̇12(t) = −i[%12(t)ω0 − %12(t)ωc +
√

2%22(t)Ω−
√

2%11(t)Ω]− 3Γ

2
%12(t)

%̇22(t) = −i[
√

2%12(t)Ω−
√

2%21(t)Ω]− 2Γ%22(t)

%̇33(t) = −i[%43(t)Ω− %34(t)Ω] + Γ%11(t)

%̇34(t) = −i[%34(t)ω0 + %44(t)Ω− %34(t)ωc − %33(t)Ω]− Γ

2
[%34(t)− 2

√
2%12(t)]

%̇44(t) = −i[%44(t)ωc + %34(t)Ω− %43(t)Ω]− Γ

2
[2%44(t)− 4%22(t)]. (10)

We indicated the atom-mode state at time t as %(t) to emphasize that it cor-
responds to the specific above-mentioned initial condition, and the matrix el-

ements of %(t) are expressed with respect to the atom-mode states {
∣∣∣0̃〉 =

|g, 0〉 ,
∣∣∣1̃〉 = |e, 1〉 ,

∣∣∣2̃〉 = |g, 2〉 ,
∣∣∣3̃〉 = |e, 0〉 ,

∣∣∣4̃〉 = |g, 1〉}, with the notation

%kl(t) ≡
〈
k̃
∣∣∣ %(t)

∣∣∣l̃〉. By solving these equations, we get the probability %11(t)+

%33(t) for atomic excited-state occupation induced by the term |e, 1〉 〈e, 1|. Sum-
marizing, the reduced state of the atom at time t > 0 for the initial atom-mode

state ρ
(2)
AM (0) reads ρ

(2)
A (t) = |C(2)

e (t)|2 |e〉 〈e|+ (1− |C(2)
e (t)|2) |g〉 〈g| with

|C(2)
e (t)|2 = |B1(0)C1(0)µ(t)|2+|B2(0)C2(0)ν(t)|2+|B1(0)C2(0)|2[%11(t)+%33(t)].

(11)
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3. Dynamics of atomic excited-state population

In this work, we are concerned with the specific effects of initial atom-mode
correlations on atomic dynamics and, in particular, we stress the role of the
relative phase in the correlated initial atom-mode state. Thus, let us reexpress
C1(0) and C2(0) in Eq. (2) as C1(0) = C1(0) and C2(0) = C2(0)eiθ, where C1(0)
and C2(0) are real numbers and θ ∈ [0, 2π]. For the correlated initial state, the
atomic excited-state population is given by, see Eq. (9),

|C(1)
e (t)|2 = |µ(t)|2C21(0) + |ν(t)|2C22(0) + 2µ(t)ν∗(t)C1(0)C2(0) sin θ, (12)

with µ(t) and ν(t) as in Eqs. (7) and (8), respectively. The first term represents
the transfer of excitation that is initially in the atom with probability C21(0),
while the second term represents the transfer of excitation that is initially in
the mode with probability C22(0). These two processes coexist in the whole
course of evolution and, indeed, quantum interference can be induced between
them, which is just denoted by the third term in Eq. (12). Obviously, the
constructive (destructive) quantum interference corresponds to θ ∈ (0, π) (θ ∈
(π, 2π)), while for θ = 0, π, 2π there is no quantum interference. For convenience,
we define a rescaled probability of the atomic excited-state population as P̃e(t) =

|C(k)
e (t)/C

(k)
e (0)|2, where k = 1, 2 refer to, respectively, the initially correlated

and uncorrelated states of the total system.
First, we consider the case without quantum interference. The uncorrelated

initial state ρ
(2)
AM (0) in Eq. (3) is chosen as the tensor product of the marginals

of the correlated state ρ
(1)
AM (0), so that the probability of atomic excited-state

occupation is obtained by puttingB1(0) = C1(0) andB2(0) = C2(0) into Eq.(11).
In Fig.1 (a) and (b), we plot the time-evolution of the rescaled probability of

the atomic excited-state population P̃e(t) for the initial states ρ
(1)
AM (0) (solid

lines) and ρ
(2)
AM (0) (dashed lines) and for different values of C1(0) and C2(0).

In both weak and strong coupling regimes and for both initially correlated and
uncorrelated situations, P̃e(t) > 1 occurs when C2(0) > C1(0). We observe that
the amplitude of the increase of P̃e(t) from the initial value one in the presence
of initial correlations is always larger than that without initial correlations.
Moreover, for C2(0) ≤ C1(0) one can see that P̃e(t) in the presence of initial
correlations is still larger than without initial correlations (the inset in Fig.1
(a) shows an enlarged figure). Initial correlations in the absence of interference
can be identified as a mechanism that increases the excitation transfer from the
mode to the atom and inhibit the opposite process.

Next, we explore the role of quantum interference in influencing atomic
excited-state population. In Fig.1 (c) and (d), we plot the time-evolution of

P̃e(t) for the correlated initial state ρ
(1)
AM (0) for different values of C1(0) and

C2(0) and for θ = π/2 (solid lines), θ = 3π/2 (dotted lines) and θ = 0 (dashed
lines), i.e. for, respectively, constructive, destructive and no quantum interfer-

ence. Indeed, for the corresponding product state ρ
(2)
AM (0) the time-evolution of

P̃e(t) is the same in all the different situations. We observe that, in the case
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Figure 1: (a,b): Time-evolution of P̃e(t) for the correlated initial state ρ
(1)
AM (0) with θ = 0

(solid lines) and for the uncorrelated initial state ρ
(2)
AM (0) (dashed lines) in (a) weak (Γ/Ω = 6)

and (b) strong (Γ/Ω = 1) coupling regimes. (c,d): Time-evolution of P̃e(t) for ρ
(1)
AM (0) under

different relative phases in terms of θ = π/2 (solid lines), θ = 0 (dashed lines) and θ = 3π/2
(dotted lines) in (c) weak (Γ/Ω = 6) and (d) strong (Γ/Ω = 1) coupling regimes. The other

parameters are C1(0) =
√

1
10

< C2(0) =
√

9
10

(black line); C1(0) = C2(0) =
√

1
2

(red line);

C1(0) =
√

9
10
> C2(0) =

√
1
10

(green line), and B1(0) = C1(0), B2(0) = C2(0).

of constructive interference, the rescaled probability P̃e(t) for the correlated
initial state always reaches values greater than one, irrespective of the ratio
C2(0)/C1(0). Moreover, also for C2(0) > C1(0) the amplitude growth of P̃e(t)
has largely increased as compared to the case θ = 0: the constructive interfer-
ence boosts the energy flow from the mode to the atom and inhibits the opposite
process. On the other hand, for a destructive interference, P̃e(t) is always lesser
than one in the weak coupling regime, irrespective of the ratio C2(0)/C1(0) and,
besides, the greater this ratio is, the faster the atom decays. In addition, in the
strong coupling regime P̃e(t) decays on short time scales and then, even if it can
increase up to values greater than one for C2(0) > C1(0) in the later evolution,
its maximum value is clearly smaller than that of θ = 0 and θ = π/2. Therefore,
we can conclude that the destructive interference boosts the energy flow from
the atom to the mode. Summarizing, as far as the ability to facilitate the energy
flow from the mode to the atom and restrain the opposite process is taken into
account, initial correlations turn out to be crucial because of interference effects.
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4. Dynamics of the trace distance between atomic states

In this section, we investigate the influence of initial correlations and relative
phase on the dynamics of the trace distance of atomic states. Trace distance is
one of the most employed quantifiers for the distinguishability of quantum states.
A change of the trace distance between reduced-system states in the course of
the dynamics indicates an information flow between the open system and the
environment [22]. The trace distance D(ρ1, ρ2) between two quantum states ρ1
and ρ2 is defined as [2] D(ρ1, ρ2) = 1

2‖ρ1− ρ2‖1, where ‖X‖1 = Tr
√
X†X is the

trace norm of the operator X. Any positive and trace-preserving map E defined
on the whole space of trace class operators is a contraction for the trace distance,
i.e., D(E(ρ1), E(ρ2)) ≤ D(ρ1, ρ2). In the presence of initial correlations the
contractivity may fail since the trace distance D(ρ1S(t), ρ2S(t)) between two states
of the open system, ρ1S(t) and ρ2S(t) evolved from the initial total states ρ1SE(0)
and ρ2SE(0), can exceed its initial value in the course of time-evolution [14]. One
can further determine an upper bound to the growth of trace distance, which

is I(ρ
(1)
SE(0), ρ

(2)
SE(0)) ≡ D(ρ

(1)
SE(0), ρ

(2)
SE(0))−D(ρ1S(0), ρ2S(0)). This quantity can

be interpreted as the relative information about the total initial states ρ
(1)
SE(0)

and ρ
(2)
SE(0) that is initially outside the open system, i.e., that is inaccessible for

local measurements performed on the open system only [14].
For the case at hand, the evolution of the total system composed by the atom

and the mode is not unitary, but it is given by the family of CPT maps forming
the semigroup fixed by Eq. (1). Then, also in this case, from the contractivity
of the trace distance, one can immediately see that the increase of the trace
distance between atomic states over its initial value is bounded from above by

D(ρ
(1)
A (t), ρ

(2)
A (t))−D(ρ

(1)
A (0), ρ

(2)
A (0)) ≤ I(ρ

(1)
AM (0), ρ

(2)
AM (0)). (13)

For the initial atom-mode states ρ
(1)
AM (0) given by Eq. (2) and ρ

(2)
AM (0) as in

Eq. (3), the quantity I(ρ
(1)
AM (0), ρ

(2)
AM (0)) is given by

I(ρ
(1)
AM (0), ρ

(2)
AM (0)) =

1

2
(
√

(|B2(0)C1(0)|2 − |B1(0)C2(0)|2)2 + 4|C1(0)C2(0)|2

+|B2(0)C1(0)|2 + |B1(0)C2(0)|2)− ||C2(0)|2 − |B2(0)|2|. (14)

When I(ρ
(1)
AM (0), ρ

(2)
AM (0)) > 0 the trace distance of atomic states can increase

above its initial value in the time-evolution, indicating that the information
initially outside the open system is flowing back to it during the dynamics.

The evolution of the trace distance of open system’s states in the presence of
initial correlations was investigated in Ref. [16] for a Jaynes-Cummings model
without dissipation. Here, we extend the study to the dissipative model, in
order to examine the influence of both the dissipation and the relative phase on

the dynamics of the trace distance. For the initial atom-mode states ρ
(1)
AM (0) in

Eq. (2) and ρ
(2)
AM (0) in Eq. (3), the trace distance between the corresponding

atomic states at time t > 0 is simply given by

D(ρ
(1)
A (t), ρ

(2)
A (t)) = ||C(1)

e (t)|2 − |C(2)
e (t)|2|. (15)
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Figure 2: Plot of the trace distance D(ρ
(1)
A (t), ρ

(2)
A (t)) as a function of rescaled time Ωt. In

(a) the parameters characterizing the correlated initial atom-mode state are C1(0) =
√

4
7

,

C2(0) = i
√

3
7

, in (b) C1(0) =
√

4
7

, C2(0) =
√

3
7

, while in (c) C1(0) =
√

4
7

, C2(0) = −i
√

3
7

.

In all the (a), (b) and (c), the parameters characterizing the initially uncorrelated state of
atom-mode are B1(0) = C2(0), B2(0) = C1(0). The top horizontal line in the figures marks
the upper bound due to Eq. (14).

In Fig.2 (a), (b) and (c), we plot the dynamics of the trace distance in
Eq. (15) without dissipation, i.e., for Γ = 0 and with dissipation for various
values of Γ/Ω, and we consider, respectively, θ = π

2 , 0 and 3π
2 for the correlated

initial atom-mode state (2). For the uncorrelated state (3), we set B1(0) =
C2(0), B2(0) = C1(0), the same as in [16]. The trace distance of atomic states
can exceed its initial value for both Γ = 0 and Γ/Ω 6= 0, however only in the
former case it can reach the upper bound in Eq. (14) in the course of time, see
Fig.2 (a) and (c). In the presence of dissipation, because of the coupling with a
larger environment as in Eq. (1), the information flowing from the atom to the
mode can flow into the remaining part of the structured reservoir, as well. But
then, it can no longer flow back to the atom-mode system since the mode leaks
into a Markovian reservoir, i.e., there is a unidirectional flow of information from
the mode to the reservoir [22]. The distinct behaviors of the trace distance in
weak and strong coupling regimes are exhibited, respectively, by asymptotical
decay and damped oscillations.

In Fig.2, one can observe the crucial influence of the initial relative phase on
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the dynamics of the trace distance between atomic states and, in particular, on
the maximum value attained, i.e., the maximum amount of information that is
accessible through measurements performed on the open system only [16]. This
is the case both for the dissipative situation and for Γ = 0, where the presence of
an initial relative phase allows to reach the upper bound in Eq.(14). In the case
of a vanishing relative phase, that is shown in Fig.2 (b), the maximum value
of the trace distance between atomic states is in fact substantially smaller than
the upper bound in Eq. (14), even for Γ = 0. Note that, unlike the excitation
transfer described in the previous section, the back flow of information to the
atom, which is reflected into the maximum value reached by the trace distance,
is strongly amplified by both constructive and destructive interference. Indeed,
this traces back to the specific dependence of the information flow between
the atom and the mode on the the atomic excited-state populations with and
without initial correlations, see Eq. (15). In addition, one can easily find several
examples showing how the initial relative phase plays an indispensable role also
in determining whether the trace distance of atomic states can actually increase
above its initial value, which is indeed a priori not guaranteed by the condition

I[ρ
(1)
AM (0), ρ

(2)
AM (0)] > 0.

5. Enhancement of entanglement

In order to give a further evidence of the role of the initial relative phase, we
focus now on the dynamics of the entanglement between two atoms interacting
with a common structured reservoir. The effect of initial correlations on the
entanglement dynamics have been studied in [23, 24].

Consider two identical two-level atoms A and B interacting with a common
mode of the radiation field, that is in turn coupled to a damping reservoir. We
further assume that the atoms-mode dynamics is determined by the Lindblad
equation (1), where ρ now represents the density operator of the system formed
by the two atoms and the mode. The Hamiltonian H = H0 + Hint + Hdd is
given by the sum of the free Hamiltonian, H0 = ω0σ

A
+σ

A
− + ω0σ

B
+σ

B
− + ωcb

†b,
the coupling term between the atoms and the mode Hint = Ω[(σA− + σB−)b† +
(σA+ + σB+)b], and the term describing dipole-dipole interaction of the atoms,

Hdd = D(σ
(A)
+ σ

(B)
− + σ

(A)
− σ

(B)
+ ). Indeed, σj± (j = A,B) are the raising and

lowering operators, ω0 is the transition frequency of the atom, Ω is the coupling
constant between the atoms and the mode and D is the coupling strength of
the two atoms. Here, we take into account a correlated initial state ρABM (0) =
|Ψ(0)〉ABM 〈Ψ(0)|, where

|Ψ(0)〉ABM = C1(0) |e, g, 0〉ABM +C2(0) |g, e, 0〉ABM +C3(0) |g, g, 1〉AM . (16)

Since there is only one excitation in the total system, we proceed as in Sec.2 and
make the ansatz that the atoms-mode state at time t is of the form ρABM (t) =
|ψ̃(t)〉ABM 〈ψ̃(t)|+ λ(t)|g, g, 0〉ABM 〈g, g, 0|, with 0 ≤ λ(t) ≤ 1, λ(0) = 0 and

|ψ̃(t)〉ABM = C̃1(t)|e, g, 0〉AM + C̃2(t)|g, e, 0〉ABM + C̃3(t)|g, g, 1〉ABM . (17)
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Figure 3: The evolution of the concurrence CAB(t) of atoms A and B for the correlated initial
state ρABM (0) with various relative phases θ1 and θ2. The solid line is referred to the case

with θ1 = θ2 = 0. The parameters characterizing the initial correlated state are C1(0) =
√

1
2

,

C2(0) =
√

1
10

and C3(0) =
√

4
10

. The other parameters are Γ/Ω = 6 and D = 0.

The dynamics of the unnormalized atoms-mode state in Eq. (17) is fixed by:

i
d

dt
C̃1(t) = ωC̃1(t) + ΩC̃3(t) +DC̃2(t),

i
d

dt
C̃2(t) = ωC̃2(t) + ΩC̃3(t) +DC̃1(t),

i
d

dt
C̃3(t) =

(
ω − iΓ

2

)
C̃3(t) + ΩC̃1(t) + ΩC̃2(t), (18)

while λ(t) satisfies dλ(t)/dt = Γ|C̃3(t)|2. To quantify the entanglement of the two
atoms, we adopt Wootters’ concurrence [25], which for any two-qubits density
matrix ρ is defined as C(ρ) = max{0,

√
λ1 −

√
λ2 −

√
λ3 −

√
λ4}, where λi

(λ1 ≥ λ2 ≥ λ3 ≥ λ4) are the eigenvalues of the matrix ζ = ρ(σy⊗σy)ρ∗(σy⊗σy),
with σy the Pauli matrix and ρ∗ the complex conjugation of ρ in the standard
basis. From Eq (17), one has for the concurrence of atoms A and B

CAB(t) = 2|C̃1(t)C̃2(t)|. (19)

In the following, we use the notation C1(0) = C1(0), C2(0) = C2(0)eiθ1 , C3(0) =
C3(0)eiθ2 , where C1(0), C2(0) and C3(0) are real numbers and θ1, θ2 ∈ [0, 2π].

In Fig.3 (a) and (b), we plot the time-evolution of the concurrence CAB(t) for
the correlated initial state (16), with various relative phases θ1 and θ2. We set
D = 0 in order to focus on the entanglement dynamics due to the interaction
with the environment. Fig.3 (a) shows the variations of CAB(t) for different
θ2 with a fixed θ1 = 0. It is worth noting that the entanglement can exhibit a
temporary growth over its initial value, e.g. for θ2 = π/4, π/2, and the amplitude
of the growth is determined by θ2. We also note that, though the phase θ2 affects

10



the dynamics of atomic entanglement, the steady entanglement does not depend
on it. On the other hand, as shown in Fig.3 (b), steady entanglement can be
increased by adjusting the relative phase θ1 with a fixed θ2 and, in particular, it
grows through changing the initial phase θ1 from 0 to π. Interestingly, the steady
entanglement can be greater than the initial entanglement for some values of θ1
(e.g., here θ1 = 3π/4, π). Moreover, for θ1 = π and θ2 = 0, atomic entanglement
starts increasing at the initial time and then it takes values that are always
higher than the initial one. The physical reason for these results can still be
attributed to the quantum interference induced by the initial relative phases.
The only difference between the present situation and that of a single atom is
the increased amount of processes involved in quantum interference.

6. Conclusion

We have investigated the role of the relative phase of a correlated initial total
state in the subsequent open-system dynamics. In particular, we have taken into
account the dynamics of a two-level atom interacting with a structured reser-
voir. The initial relative phase affects the two processes of excitation transfer,
respectively, from the atom to the mode and from the mode to the atom. We
have further shown how this reflects into the dynamics of the information flow
between the atom and the reservoir. The quantum interference induced by an
initial relative phase, in fact, strongly influences the dynamics of the trace dis-
tance of atomic states and in particular the maximum value that it actually
reaches during the dynamics. Finally, we have considered two two-level atoms
interacting with the same structured reservoir. We have shown how relative
phases in the initial correlated total state can enhance atomic entanglement.
As a final remark, let us note that the sensitivity of open system dynamics on
the initial relative phase suggests possible ways to detect it through measure-
ments on the open system only [17]. The trace-distance analysis of reduced
dynamics allows to access, apart from overall correlation properties [22, 26],
specific features of the initial total state, which can be useful, e.g., when this is
only partially controlled during the preparation procedure.
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