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A completely positive master equation describing quantum dissipation for a Brownian particle is de-
rived starting from microphysical collisions, exploiting a recently introduced approach to subdynamics
of a macrosystem. The obtained equation can be cast into Lindblad form with a single generator for
each Cartesian direction. Temperature dependent friction and diffusion coefficients for both position and
momentum are expressed in terms of the collision cross section.
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The issue of quantum dissipation, and in particular of
quantum Brownian motion, is a long-standing one, which
has attracted physicists for decades (for general references
see [1,2]) and still seems to be unsolved. Its relevance,
however, is growing, especially in connection with deco-
herence and the relationship between classical and quan-
tum description [3], a field which seems to be now within
reach of experimental tests [4]. The classical understand-
ing of the phenomenon is quite well established, relying
on Langevin or Fokker-Planck equations obtained by con-
sidering a particle typically interacting with a bath of in-
dependent oscillators, so that most of the research has
been influenced by these results, leading to research for a
quantum analog or quantum generalization of these equa-
tions. The difficulty lies in the failure of a Hamiltonian
description for such systems, so that a clear quantization
prescription is missing, and one needs a thoroughly quan-
tum mechanical approach. The most promising results
come from the reduced description of a particle interacting
with some type of reservoir, thus impinging on techniques
and results of open quantum system theory. In this re-
spect the property of complete positivity (CP) has emerged
as a very useful and stringent requirement in the study of
subdynamics inside quantum mechanics [2,5]. The prop-
erty of CP asks that the time evolution semigroup U�t�
for the irreversible dynamics has the structure U�t�� �P

a Ka�t��Ky
a�t� ���

P
a Ky

a�t�Ka�t� � 1��� so that, in par-
ticular, positivity is preserved, and it originates from the
formal requirement that coupling without interaction to an
n-level system does not affect positivity. Indeed, CP ap-
pears somehow more natural if considered in the context
of operations and quantum measurement in which it origi-
nally appeared in physics [6]. According to a famous
paper by Lindblad [5], under suitable mathematical con-
ditions the property of CP allows for the determination
of the general structure of the generators of irreversible
time evolutions, even though a thorough understanding of
the physical limits of validity of this property is still on
its way [7,8], so that satisfaction of CP by itself does not
ensure physically meaningful results, and the connection
to realistic microphysical models is strongly desirable. In
fact recent work has stressed the connection between CP
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of the time evolution and weak coupling, so that, for ex-
ample, an uncorrelated statistical operator can consistently
be considered as an initial condition, as well as coarse
graining in time [9]. Most of the work carried out at a
fundamental level regarding dissipative systems follows
the Feynman-Vernon influence functional formalism (see
[1,10], and references therein) first used by Caldeira and
Leggett [11], who have derived a standard model of quan-
tum Brownian motion, which, however, has the drawback
that it does not ensure the positivity of the statistical opera-
tor [12]. This shortcoming has been cured in various ways
[10,13], and within the independent oscillator model also
a positive though not CP time evolution has recently been
obtained [14]. On the side of CP time evolutions, very little
has been done at a fundamental level, thus also leading to
the conjecture that CP dissipative evolutions could not be
obtained from first principles [15], while most approaches
are either axiomatic or phenomenological [16], so that few
insights about what type of physical systems might consis-
tently be described by the Lindblad-type master equations
can be gained.

In this Letter we give a derivation of CP quantum
Brownian evolution based on some recent work on the
description of coherent and incoherent particle-matter in-
teraction [17], which has already been successfully applied
to neutron optics [18]. This work relies on the introduc-
tion of a time scale for the description of the subdynamics
of slowly varying degrees of freedom in the Heisenberg
picture, in this specific case the heavy particle with respect
to the background of thermal particles. The interaction is
in terms of two-particle collisions described by the full
T matrix, and the structure ensuring CP naturally arises
from the resolvent identity of scattering theory.

Derivation and structure of the master equation.—Let
H � H0 1 Hm 1 V be the Hamiltonian of the whole
confined system in second quantization, H0 �

P
h Eha

y
h ah

describing the particle (either a fermion or a boson in the
state uh, Hm matter, and V their mutual interaction. We
intend to describe a single particle, thus considering for the
total system the statistical operator � �

P
kh a

y
k �mah�kh,

where �m describes matter, �kh is a positive matrix with
trace one, and we have ah�m � 0, �ma

y
h � 0, ;h. In
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order to consider the subdynamics of the microsystem we
exploit the following reduction formula, which connects
the expectations of operators in the total Fock space HF

with those of operators in the one-particle Hilbert space
H �1�:

TrHF �A� � �
X

Ahk�kh � TrH �1� �Â�̂ � ,

h,k
where A has the typical structure A �
P

h,k a
y
h Ahkak �P

h,k a
y
h �hjÂjk�ak . We intend to work on a time scale t

much longer than microphysical collision time, being in-
terested only in the slow dynamics of the particle, and we
shall therefore approximate the time derivative with the fol-
lowing coarse-grained one:
Dt�kh�t�
t

�
1
t

��kh�t 1 t� 2 �kh�t�� �
1
t

�TrHF �ay
h ake2�i� h̄�Ht� �t�e�i� h̄�Ht� 2 �kh�t�� .
By exploiting the cyclic invariance of the trace, we are led
to consider H-picture operators a

y
h �t�ak�t�, to be evalu-

ated on the given time scale using a superoperator for-
malism, so that, e.g., H �

i
h̄ �H, ?�, using the integral

representation

ak�t� � eH tak �
Z 1i`1h

2i`1h

dz
2pi

ezt�z 2 H �21ak .

Introducing the superoperator T �z� � V 1 V �z 2

H �21V , which is the analog of the T matrix, we have

�z 2 H �21 � �z 2 H0�21

1 �z 2 H0�21T �z� �z 2 H0�21,

so that in the considered structure a
y
h �t�ak�t�, bilinear in

the field operators, the emergence of a typically incoher-
ent term having the CP structure Ka�Ky

a bilinear in the
T matrix naturally appears, thus confirming recent phe-
nomenological approaches [19,20]. Using the fact that
�H,

P
h a

y
h ah� � 0 (the interaction potential being bilinear

in the particle field operators), the restriction of T �z�ak

to the case of a single particle may be generally writ-
ten ih̄T �z�ak �

P
h Tk

h �ih̄z�ah, where Tk
h �z� is an opera-

tor in the Fock space of the macrosystem only. This
matrix, which according to the introduction of the time
scale should exhibit a slow energy dependence, plays a
central role, accounting for the peculiarities of the inter-
action between the particle and the considered medium.
The master equation we finally obtain has the following
Lindblad form:

d�̂

dt
� 2

i
h̄

�Ĥ, �̂�

1
1
h̄

X
l,j

∑
L̂lj�̂ L̂y

lj 2
1
2

	L̂y
ljL̂lj , �̂ 


∏
, (1)

where Ĥ � Ĥ0 1 V̂ and V̂ � 1
2 �Q̂ 1 Q̂y� with

�kjQ̂jh� � TrHF �Tk
h �Ek 1 i´��m�

�kjL̂ljjh� �
q

2´pj

�ljTk
h �Ek 1 i´�jj�

Ek 1 El 2 Eh 2 Ej 2 i´
,

with �m �
P

j pjjj� �jj being the statistical operator
describing matter at equilibrium, and jl�, jj� denoting
eigenvectors of Hm with eigenvalues El, Ej , while jk�,
jh� denote eigenvectors of H0 with eigenvalues Ek , Eh.
A detailed derivation of this master equation is given
in Refs. [17,18]. In considering many-particle systems,
important corrections due to statistics of identical particles
appear. A generalization of the formalism to cope with
dilute many-particle systems, in which statistic effects
have been accounted for, has been considered in Ref. [21].

Completely positive quantum Brownian motion.—
Following [18] we will make the general Ansatz
Tk

h �z� �
R

d3x
R

d3y cy�x�u�
k� y�t�z, x 2 y�uh� y�c�x�,

where we have supposed translation invariance in the
interaction kernel, and cy, c denote field operators for the
macrosystem. Introducing creation and destruction opera-
tors by, b in the Fock space of the macrosystem, we may
write Tk

h �z� �
P

hm by
hTkhhm�z�bm. Being interested in lo-

cal dissipation effects we may safely suppose that, at least
far away from the boundaries, the system is homogeneous
so as to use as quantum numbers momentum eigenvalues,
thus obtaining Tkhhm�z� � dph1pk ,ph1pm

t̃�z, jpm 2 phj�,
depending on the Fourier transform of the interaction
kernel, and therefore

Tk
h �z� �

X
hm

dph1pk ,ph1pm
by

h t̃�z, jpm 2 phj�bm . (2)

We may now insert this expression in (1) to evaluate the
different contributions, starting from the last, typically in-
coherent term. In doing this we consider the medium as
composed of free gas particles, so that the energy eigen-
states jl�, jj� of �m may be obtained by the repeated ac-
tion of b

y
l on the vacuum, and we can write jl� � j	nl

l 
�,
l labeling the different momenta. We therefore simply
have �ljby

hbmjl� � dh,mnl
m and, taking the slow energy

dependence of t̃ into account, the contributions with l �
j cancel out in the master equation and we need only
consider the primed sum for l fi j. Using, for l fi

j, �ljby
hbmjj� � �

Q
nfim,h dnl

n ,n
j
n
�d�nl

h21�,nj
h
dnl

m,�nj
m21��1 2

dh,m�
p

nj
m

p
nl

h , we come to, setting Qmh � pm 2 ph ,
1
h̄

X
l,j

L̂lj�̂ L̂y
lj �

2´

h̄

X
pp0

X
hm

0

�nm�1 6 nh��
t̃��p 1 Qmh�2�2M 1 i´, Qmh�

p2
m

2m 2
�pm2Qmh�2

2m 1
p2

2M 2
�p1Qmh �2

2M 1 i´

3 e�i� h̄�Qmh?x̂jp� �pj�̂ jp0� �p0je2�i� h̄�Qmh?x̂ t̃���p0 1 Qmh�2�2M 1 i´, Qmh�
p2

m

2m 2
� pm2Qmh �2

2m 1
p0 2

2M 2
� p01Qmh �2

2M 2 i´
,
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where M denotes the mass of the Brownian particle, whose
position operator is x̂, while m is the mass of the gas par-
ticles. The Brownian particle is immersed in a nondegener-
ate gas, so that �nm�1 6 nh�� � �nm� �1 6 �nh�� � �nm�.
Considering now the quasidiagonality of the density ma-
1376
trix, linked to its slow variability, we substitute in the T
matrix and the denominators p, p0 with the symmetric
expression 1

2 �p 1 p0�; furthermore, we use the variables
pm, q � Qmh , and put into evidence the ratio a � m�M
between the masses, thus coming to
4pm
h̄

X
pp0

X
q

0 1
q

Ç
t̃

µ∑
p 1 p0

2
1 q

∏2 ¡
2M 1 i´, q

∂ Ç2 X
m

�nm�d
∑

�1 1 a�q 1 a�p 1 p0� ?
q
q

2 2pm ?
q
q

∏
3 e�i� h̄�q?x̂jp� �pj�̂ jp0� �p0je2�i� h̄�q?x̂.

The anticommutator term can be treated in an analogous way, so that the final expression for the dissipative contributions
in (1) becomes, neglecting for simplicity the slow energy dependence of the T matrix,

4pm
h̄

X
q

0 jt̃�q�j2

q

X
m

�nm�

( X
pp0

d

"
�1 1 a�q 1 a�p 1 p0� ?

q
q

2 2pm ?
q
q

#
e�i� h̄�q?x̂jp� �pj�̂ jp0� �p0je2�i� h̄�q?x̂

2
1
2

X
p

d

"
�1 1 a�q 1 2ap ?

q
q

2 2pm ?
q
q

#
	jp� �pj, �̂


)
.

We can now go over to the continuum limit in pm and q, evaluating the integral with respect to pm in the case of a
Boltzmann gas, using �nm� � nl3

m exp�2b�p2
m�2m��, lm being the thermal wavelength of the gas particles, n their

density, and b � 1��kBT � giving the temperature dependence. We thus obtain, in the Brownian limit a ø 1,

4p2m2

bh̄
nl3

m

Z
d3q

jt̃�q�j2

q
e2�b�8m�q2

∑
e�i� h̄�q?x̂e2�b�4M�q?p̂�̂e2�b�4M�q?p̂e2�i� h̄�q?x̂ 2

1
2

	e2�b�2M�q?p̂, �̂ 

∏

.

To get to the master equation describing quantum dissipation we want to extract the temperature dependence of this
expression, in the limit of small momentum transfer q. We therefore expand the exponential operators up to second order
in q, which is also equivalent to keeping terms at most bilinear in the operators x̂ and p̂. Because of symmetry properties
of the coefficients, only terms bilinear in q and of the form q2

i (i denoting Cartesian coordinates) need be retained, so
that we have

2
2p2m2

bh̄
nl3

m

Z
d3q

jt̃�q�j2

q
e2�b�8m�q2

3X
i�1

q2
i

Ω
1
h̄2 ���x̂i , �x̂i , �̂ � ��� 1

b2

16M2 ���p̂i , �p̂i , �̂ � ��� 1
i
h̄

b

2M
�x̂i , 	p̂i , �̂
�

æ
.

Let us note that in the derivation important cancellations
and compensations arise between the terms coming from
the anticommutator and incoherent part of (1), necessary in
order to obtain the final structure, thus confirming the fact
that in quantum theory we cannot have separate friction
and diffusion terms [22]. Decisive for the determination of
the final structure of the equation is also the Brownian limit
a � m�M ø 1. Supposing, without loss of generality,
the medium to be isotropic, so that q2

i � 1
3q2, we can

define the following coefficient:

Dpp �
2
3

p2m2

bh̄
nl3

m

Z
d3q jt̃�q�j2qe2�b�8m�q2

, (3)

depending on the collision cross section through the T
matrix, and obtain the compact expression

3X
i�1

Ω
Dpp

h̄2 ���x̂i , �x̂i , �̂� ��� 1
Dqq

h̄2 ���p̂i , �p̂i , �̂ � ���

1
i
h̄

g�x̂i , 	p̂i , �̂ 
�
æ

,

where Dqq � �bh̄�4M�2Dpp and g � �b�2M�Dpp .
Exploiting (2) for the T matrix we simply obtain,
for the potential term in the continuum limit, V̂ �
2n 2p h̄2

m

R
d3p jp� �pjRef�Ep , u � 0�, n being the den-

sity of the gas particles, so that it essentially depends
on the forward scattering amplitude f�Ep , u � 0� as
expected, and vanishes if the latter does not depend on
energy. The complete master equation then becomes

d�̂

dt
� 2

i
h̄

�Ĥ0 1 V̂, �̂ � 2
Dpp

h̄2

3X
i�1

���x̂i , �x̂i , �̂ � ���

2
Dqq

h̄2

3X
i�1

���p̂i , �p̂i , �̂ � ��� 2
i
h̄

g

3X
i�1

�x̂i , 	p̂i , �̂ 
� .

(4)

This is the main result of this Letter: a CP time evolution
for a quantum Brownian particle derived at a fundamen-
tal level, using a different, new approach with respect to
the usual independent oscillator model. The equation ob-
tained is translationally invariant and has the correct Lind-
blad form [22,23]. In particular, the requirement for CP
amounts to checking that DppDqq $ h̄2g2�4, which in our
case is verified with the equal sign, thus uniquely deter-
mining the different coefficients in a structure such as (4)
apart from an overall multiplying factor. Let us note that
the requirement of a stationary thermal equilibrium solu-
tion determines only the ratio between Dpp and g, and
also CP simply indicates that the coefficient Dqq should
be different from zero and within some range, without
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actually fixing it. This explains the wide variety of dif-
ferent contributions that have been added to the Caldeira
equation to make it preserve positive definiteness. The fact
that DppDqq � h̄2g2�4 has, as a consequence, the fol-
lowing interesting distinctive feature: in order to write (4)
in a manifest Lindblad form, only one generator for each
Cartesian direction has to be introduced, instead of two. In
fact, using the thermal wavelength lM �

p
h̄2�MkT asso-

ciated with the Brownian particle and defining the opera-

tors âi �
p

2
lM

�x̂i 1
i
h̄

l
2
M

4 p̂i�, satisfying �âi , â
y
j � � dij, we

can rewrite (4) in the form

d�̂

dt
� 2

i
h̄

�Ĥ0 1 V̂, �̂� 2
Dpp

h̄2

l
2
M

4

3X
i�1

i
h̄

�	x̂i , p̂i
, �̂�

1
Dpp

h̄2 l2
M

3X
i�1

∑
âi�̂ ây

i 2
1
2

	ây
i âi , �̂ 


∏
. (5)

This makes an important qualitative difference with a more
phenomenological model derived by Diósi [20], also linked
to the fact that he obtains an equation with the asymmetric
expression pm instead of the momentum transfer q. This
connection between the number of generators and rela-
tionships among the coefficients in a master equation of
the form (4) has not been stressed in the literature, even
though it provides an important qualitative feature, help-
ful in providing clear-cut distinctions. In this spirit our
work also sheds some light on the recent phenomenologi-
cal work of Gao [24] and the subsequent following de-
bate [25,26]. Gao works from the very beginning with
a single generator V � mx̂ 1 inp̂ and this automatically
leads him to obtain a generalized Caldeira equation with
Dqq � g��8MkBT �, so that DppDqq � h̄2g2�4 is veri-
fied. This explains the difference from the diffusion coeffi-
cient Dqq � g��6MkBT � found in Ref. [13]. Despite the
fact that the coefficients in the master equation with which
Gao starts are actually completely fixed by the requirement
of thermal equilibrium and his choice of a single generator,
our work provides some fundamental evidence in favor of
this structure, giving through (3) the quantitative estimate
g � �b�2M�Dpp for the relaxation coefficient. The heav-
ily criticized [25] Hamiltonian term 2

g

2 	x̂, p̂
 which Gao
obtains, however, does not appear in (4), so that no ficti-
tious counterterm is necessary: Its appearance in rewriting
(4) in the form (5) clarifies why the initial choice of Gao
led to this trouble.

We have thus obtained a new fundamental derivation of
CP dissipative evolution, driven by collisions with the en-
vironment, with temperature dependent friction and diffu-
sion coefficients expressed in terms of physical quantities
such as the collision cross section. The associated master
equation has the peculiarity of being expressible in Lind-
blad form with only a single generator for each Cartesian
direction, thus giving some evidence in favor of a recent
phenomenological model [24], though being deprived of
its unphysical features [25,26]. The underlying calcula-
tions, even though recovering a single-particle description
by tracing over matter, are rooted in a second quantization
formalism conceived for the description of a subset of re-
duced degrees of freedom slowly varying on a given time
scale [17,21].
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