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An Efficient Linear Scheme to Approximate

Parabolic Free Boundary Problems:

Error Estimates and Implementation*

By Ricardo H. Nochetto and Claudio Verdi

Abstract. This paper deals with a fully discrete scheme to approximate multidimen-

sional singular parabolic problems; two-phase Stefan problems and porous medium equa-

tions are included. The algorithm consists of approximating at each time step a linear

elliptic partial differential equation by piecewise linear finite elements and then making

an element-by-element algebraic correction to account for the nonlinearity. Several en-

ergy error estimates are derived for the physical unknowns; a sharp rate of convergence

of 0(h1/2) is our main result. The crucial point in implementing the scheme is the

efficient resolution of linear systems involved. This topic is discussed, and the results of

several numerical experiments are shown.

1. Introduction. The aim of this paper is to analyze from both a theoretical

and computational viewpoint the performance of a linear scheme to approximate

the following multidimensional parabolic problem:

nil
— - Aß(u) = f(ß(u))    in Q := fi x (0,T),

(1.1) 0(u) = O ondfix(0,T),

u(0) = u0.

Here, 0 stands for a nondecreasing Lipschitz continuous function defined on R and

fi for a polyhedral and convex domain in Rd (d > 1). The geometrical constraints

upon fi, as well as the type of boundary condition considered, were chosen only for

the sake of simplicity. It is well known that formulation (1.1) is so general as to

include two-phase Stefan problems and porous medium equations.

The usual technique to approximate (1.1) (with or without regularization of 0)

amounts to discretizing a nonlinear elliptic partial differential equation at each time

step. Both, theoretical and numerical results, are now well known for these schemes

[10], [23], [16], [17], [18], [8], [20], [25] which behave rather well in approximating not

only solutions, but also interfaces [19], [20]. However, when dealing with nonlinear

problems, one usually tries to linearize them so as to take advantage of efficient

linear solvers [7], [15]. The success of such a procedure relies on the smoothness of

the solutions u and 9 := ß(u). Consequently, it is not a priori obvious that standard
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28 RICARDO H. NOCHETTO AND CLAUDIO VERDI

techniques for mildly nonlinear parabolic equations apply in this context, because

(1.1) is just a low-regularity problem. Moreover, high-order accuracy schemes in

both space and time may be useless here, again because of the lack of regularity.

So the question is how to linearize (1.1) properly.

Our present purpose is to discuss the stability and approximating properties of

a fully discrete linear scheme associated with the following discrete-time scheme

(which is a nonlinear Chernoff formula):

U° := «o,

(L2) 8n - -A6" = ß(Un~l) + -f(ß(Un~1)),

rjn ._ rjn-1 +     tq« _ ß(Un'1)}, 1 < n < N := -.

T

Here, r > 0 is the time step and p > 0 is the relaxation parameter which satisfies

the stability constraint p < LZ1 (Lß =Lipschitz constant of ß). This discrete-

time algorithm was studied in an abstract and general setting by Brezis and Pazy

[4] and was first used in numerical analysis by Berger, Brezis and Rogers [2] (see

also Verdi [24] and Magenes and Verdi [14]), who showed its convergence. Sharp

energy error estimates for both singular and mildly nonlinear parabolic problems

were recently proved by Magenes, Nochetto and Verdi [13]. The error analysis

has been extended by Magenes [12] to other algorithms suggested by nonlinear

semigroup theory. The nonlinear Chernoff formula (1.2) can be regarded as the

discrete-time phase relaxation scheme introduced by Visintin [27] and Verdi and

Visintin [26]. This point of view was essential in [13], because it exhibits the

variational structure of (1.2). Moreover, it allowed the use of variational techniques,

first applied by Nochetto [16], [17], [18] and Nochetto and Verdi [20] for analyzing

singular parabolic problems and dealing with minimal regularity properties (say,

uo €E Z/2(fi)), respectively. We remark, in addition, that (1.2) is in the same spirit

as the Laplace-modified forward Galerkin method of Douglas and Dupont [7] for

nondegenerate parabolic equations.

The algorithm (1.2) actually gives rise to an effective numerical scheme after

discretizing in space; namely, the variable 0™ is approximated by continuous piece-

wise linear finite elements and the variable Un by piecewise constants. The primary

aim of this paper is to show that the resulting scheme is stable and preserves the

approximation properties of (1.2). The tools in deriving the rates of convergence

are essentially those in [13], [26]. The crucial step in implementing the fully discrete

scheme is the efficient resolution of the linear elliptic partial differential equation

in (1.2). We used an incomplete Cholesky factorization for preconditioning the

resulting matrix, coupled with a conjugate gradient method [1], [15]. We chose

this iterative technique because we had in mind an automatic decomposition of a

general domain fi, rather than a particular geometry. Therefore, we cannot take

advantage of geometrical properties of fi which allow direct methods to be compet-

itive. The numerical experiments confirm the ability of our scheme to approximate

solutions. The observed orders of convergence agree with the theoretical ones. The

approximation of the interfaces is not as good as for the usual nonlinear scheme

[20]; this is due to artificial diffusion added by the linear partial differential equation

in (1.2).
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PARABOLIC FREE BOUNDARY PROBLEMS 29

The outline of the paper is as follows. Section 2 is devoted to stating the assump-

tions and the continuous and fully discrete problems. The stability of the discrete

scheme in energy and maximum norms is proved in Section 3. Several energy error

estimates for both physical unknowns u and 9 = ß(u) are derived in Section 4. Fi-

nally, the implementation of the method, as well as the results of several numerical

experiments, are discussed in Section 5.

2. Formulation of the Problem. In this section we shall establish the hy-

potheses on the data and state the continuous and the fully discrete problems.

2.1. Basic Assumptions, Notation and Finite Element Properties. We make the

following assumptions:

fi C Rd (d > 1) is a polyhedral and convex domain.   Set Q :=

fi x (0,T), where 0 < T < +œ is fixed.
(H

(H/3)
ß: R —► R, ß(0) = 0, is a nondecreasing and Lipschitz continuous

function; more precisely,

(nß)i 0 < ß'(s) < L0 < +00   fora.e. seR;

moreover, ß grows at least linearly at infinity,

(E0)2 3CUC2>0:     VsGR, M<Ci+C2|/?(a)|.

(H/) /: R —► R is a uniformly Lipschitz continuous function,

\f(si) - f(s2)\ < Lf\Sl - «a|   V«i,«a 6 R.

The geometrical constraints on fi, as well as the fact that ß and / are independent

of the space and time variables (x, t), were assumed only for the sake of simplicity.

Consequently, a more general treatment is still possible (see Remark 11). The basic

regularity required on the initial datum is

(HU0) u0EL2(Q).

This assumption will be strengthened later on in order to prove some of our results.

Let {Sh}h be a family of decompositions S^ = {Sfe}^ of fi into closed d-

simplices, so that fi = Ufc=i ^A;; as usual, h stands for the mesh size. We assume

that

(HSJ the family {Sh}h is regular    [5, p. 132].

Since quasi-uniformity is not required, local refinements are allowed. A further

property we need only in Lemma 2 is the acuteness of {S^}/,; this guarantees the

discrete maximum principle to hold [6]. Let us now define the discrete spaces we

shall work with:

Vh1 ~ {X e C°(Ô): xk is linear V* = 1,... ,K, X = 0 on dû},

Vfi ~ {rp: ip\sk is constant Vfc = 1,...,K}.

We denote by (•, •) both the inner product in L2(fi) and the duality pairing between

i/-1(fi) and Hç](U). The corresponding discrete inner product is defined by

K

(2.1) {x,<P)h:=J2       Tlh(x<P)dx
k=lJSk

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



30 RICARDO H. NOCHETTO AND CLAUDIO VERDI

for any piecewise uniformly continuous functions x and (p, where Tlh stands for the

local linear interpolation operator. Notice that the integral in (2.1) can be evaluated

easily by means of the vertex quadrature rule which is exact for piecewise linear

functions [5, p. 182]. It is well known that (•. -)h is an inner product in Vhl which

satisfies [22, p. 260]

(2-2) llxlli»(n)<{x,x)fc<C||xlli»(n)    VXeV¿

where C > 1 is a constant independent of h. The following well-known error bound

takes into account the effect of numerical integration:

(2.3) |(x,0>-(x^)/,|<^2||Vxl|L2(n)l|V<M|L2(n)    Vx^eVj,1.

We now introduce the discrete Hl-projection operator Phl; more precisely, for any

2 G H0l(Q), let Phlz e V¿ be defined by

(VPhiz,VX) = (Vz,Vx)   Vxev,1.

Since {S/j}/j and the Green operator associated with the inner product in Hr)(Fl)

are regular, the following approximation property holds for any z e Hq(U) [5, p.

138]:

(2.4) ||z--Pfcz||H'(n) < C/i||z||//r+i(n),        r = 0,l.

We also introduce the L2-projection operator F° onto Vh° which, for any z € L2(Q),

is defined by

(P°hz,ip) = (z,ip)   VipeV*

and satisfies

(2.5) \\z-P°hz\\H-,{Q)<Chr+s\\z\\Hr(n),        0<s,r<l.

We conclude with some notation concerning the time discretization. Let r := T/N

be the time step (N a positive integer) and set tn := nr, In := (£"_1,£n] for

1 < n < N. We also set

zn := z(-,tn), zn:=- [   z{-,t)dt        (z°:=z°)

T Jl"

for any continuous (resp. integrable) function in time defined in Q, and

dzn :=-, l<n<N,
T

for any given family {zn}^=0.

2.2.  The Continuous Problem: Regularity. We now state the variational formu-

lation of problem (1.1) we shall work with.

Problem (P): Find {u,9} such that

(2.6) ueLoo(0,T;L2(fi))n//1(0,T';i/-1(fi)),        ieiJ(0,T;J/,j(fl)),

(2.7) 9(x,t) = ß(u(x,t))    for a.e. (x,t)eQ,

(2.8) u(-,0) = «o

and for a.e. t € (0, T) and for all <p £ H¿ (fi) the following equation holds,

(2.9) (^,<p\ + (V9,X7<P) = (f(9),cP).
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Existence and uniqueness are well known for (P) (see, e.g., [9], [11] and the refer-

ences given therein).

Next, we recall the further regularity results we shall use in the sequel. Letting

assumptions (Hn), (Rß)i, (H/) and (HUo) hold, we have that

(Rl) if u0 G L°°(fi), then u, 9 G L°°(Q);

(R2) if Aß(u0) 6 L!(fi), then du/dt G L°°(0,T;M(n)), where M(fi) denotes

the set of finite regular Baire measures [10], [23]; [9], [11].

Remark 1. We stress that the assumption on the initial datum in (R2) may be

weakened somewhat by taking Aß(ur>) = I + p, where / G Lx(fi) and p G M(fi),

provided that the set So := d{x G fi: ß(uo(x)) = 0} fl fi is sufficiently smooth and

suppp C So- The proof proceeds as in [11] after a suitable regularization.

2.3. The Fully Discrete Nonlinear Chernoff Formula. Finally, let us state the

fully discrete algorithm precisely. Let 0 < p < LI1 be a fixed number (the so-called

relaxation parameter).

Problem (Pfc>r): For anyl<n<N, find {Un,Qn} such that Un G Vg, 6" G V¿

and, setting

(2.10) U°:=P°hu0,

we have

(2.11) (Sn,X)h + -<V9", VX> = (ß(Un~l) + Lf(ß(Un-1)),x)
P \ P I

for all x G Vhl, and

(2.12) un = un-1+p[Ph3en-ß(Un-1)}.

Since the matrix of the linear system (2.11) is symmetric and positive definite, the

solution of (Ph,r) exists and is unique (see also Section 5). Moreover, since both

Un and F^9n are piecewise constants, Eq. (2.12) may be regarded as an element-

by-element algebraic correction which takes into account the intrinsic nonlinearity.

Remark 2. For computational convenience we would like to take the piecewise

constant interpolant of u0 as initial datum U°, rather than P^Uo- This is simply

impossible, in general, owing to the lack of regularity of uo, but it is still possible in

some cases of relevant interest for both Stefan problems and porous medium equa-

tions. Namely, assume that the phases are initially separated by smooth surfaces,

say Holder continuous, and also that uq is regular in each phase, say ito G C0'1/2.

We then define U° to be either the value of «o at the barycenter yk of the simplex

Sk, whenever yk belongs to the interior of the phases, or any value in the range of

uo restricted to Sk, provided yk lies on the initial interfaces. It is easily seen that

(2.13) \\u0-U°\\L2{Q)=O(h^2);

this error estimate suffices for later purposes.

3. Stability of the Discrete Scheme. We start by combining the equations

(2.11) and (2.12) and rewriting the discrete problem as follows:

(3.1) (dun,x) + (ven,vx) = fi([ii-i}en,x)h + (f(ß(un-1)),x) Vxev¿.
T
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32 RICARDO H. NOCHETTO AND CLAUDIO VERDI

Since the relaxation parameter p is chosen so that 0 < p < LZl, the following

property holds:

(3.2) a := I - pß satisfies 0< a' (s) < 1    for a.e. s G R.

The proof of the a priori estimates proceeds along the same lines as that for the

semidiscrete approximation analyzed in [13]. However, for the sake of completeness,

we present here a detailed proof.

3.1. Stability in Energy Norms. Given an absolutely continuous function A : R —>

R so that A(0) = 0 and 0 < A' < A < oo, $> stands for the convex function defined

by

<pA(s) —  /   \{z)dz    forsGR.

$\ has the properties

(3.3) ¿A2(S)<$A(s)<^S2    for s G R,

which are easily proved. The following elementary relations will be used in the

sequel:

(3.4) 2ab < no? + b2/n    for a, b G R, n > 0;

(3.5) 2a[a - b] = a2 - b2 + [a - b}2    for a, b G R.

LEMMA 1. Assume that (Hn), (Tiß)i, (H/), (HUo) and (HgJ hold. Then there

exists a constant C > 0 independent of the discretization parameters such that

(3.6) msxN \\ß(Un)\\mci) + £ \\Un - U^Whw + E r|l©n|l^(n) < C
n=l n=l

The norm in the middle may be viewed as a discrete 7í1/2(0, T; L2(fi)) norm.

The constant C in (3.6) is proportional to p~l exp(C*Ljp~1T) as p | 0, where

C* > 0 is a universal constant.

Proof of Lemma 1. The function 6" is an admissible test function in (3.1),

because O" G Vhl. So let us take x = T~Qn and sum (3.1) over n from 1 to m < TV.

We proceed to estimate each resulting term. First note that

p°en = -[[/"- i/"-1] + ß(un~x)

(3.7) ^
= \ß{un) - ¿ö(c/n_1)+Ypun+hHun) " a{un'1)]-

Next, using the definition of the L2-projection F°, the convexity of §ß and $Q and

the identity (3.5), we can bound the first term in (3.1) from below; namely,

77i m

2^2(un- t/"-\e") = 2^2(Un - un-l,p%Qn)
n=\ n=l

> / Y,ll*ß(un)-Mun-1)} + -l*«(un-1)-*a(un)})dx

l m

+ ^ \\um\\Un) - \\u0\\2mu) + E Wun - ^"Mli 2(H)

n = l
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Here, we have also used that a is increasing, in order to eliminate the contribution

of the last term in (3.7). The terms involving the functions <frß and $Q can be

further bounded by means of (3.2) and (3.3) as follows:

/ ElW1) - «W"-1)] = / l*ß(um) - $ß(u0)}
Jnn=1 Jn

>
2L, -^WYmn)

rm\\\2
lL*(n)        2

and

- / ¿^«(f/"-1) - $„(£/")] = - Í [$a(E7°) - *Q(tT

>
2p

\*(U°)\\h(o) - j-ßWm\\h(ay

Inserting these estimates into the previous expression and using assumption (HUo )

leads to

rm\||2E(t/"-t/n-\©n>>-C + C7||/?([/   ;ili2(f))  .

m

+ z:Ellc/n-í/n"1l 2
<L2(Q)-

n=l n=l

The next term on the left-hand side of (3.1) provides the iY1-estimate, because

Poincaré's inequality holds. The first term on the right is nonpositive; indeed, the

orthogonality property of the L2-projection P° implies

(3.8)   p E ([p°k - mn, en)fc = /i E <[^° - ^]ön. i1 - phW)h < o.
n=l n=l

We now analyze the contribution due to the source term. In view of the definition

of P® and assumption (H/), combined with the first equality in (3.7) and (3.4), we

get

X></w,-1)).en;
n=l

m

Y,r(f(ß(Un-l)),P^Qn)

n = l

2< c+c e T\\ß(un-i)\\2LHn) + ¿ E IIe7" - un~l\\l*
n=l

(n).
n=l

Since the last term may be absorbed into the left-hand side of (3.1), the assertion

(3.6) follows as a consequence of the discrete Gronwall inequality.    D

Remark 3. From (3.6) and the first equality in (3.7) it is easily seen that

max   ||P°en||L2(n)<a

Remark 4.  lî ß grows at least linearly at infinity, as stated in (Tlß)2, the first

term in (3.6) provides the a priori bound

(3.9) msxJU-Uw^C.

3.2.    Stability in Maximum Norm.   The present goal is to prove an a priori

estimate in L°°(fi). To this end, we need a further assumption on the triangulation,
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34 RICARDO H. NOCHETTO AND CLAUDIO VERDI

namely that S/j is of acute type. In other words,

The projection of the vertices of any d-simplex SeSj onto the

(3.10) hyperplane containing the opposite face lies in the closure of this

face.

Remark 5. In 2-D, the above constraint means that internal angles of any triangle

of the decomposition do not exceed 7r/2.

We then have the following well-known discrete maximum principle for the

Laplace operator [6]:

Let x G V¿ attain its maximum at the internal node Xj and let

(p3 G Vhl be the corresponding basis function.  Then

(3.11) "

/  Vx • V<^ > 0.

Now we are ready to prove the desired L°°-estimate.

LEMMA 2. Assume that (Hr¡), (H^i, (H/), (HSJ and (3.10) hold and in

addition that

(3.12) uoGL°°(fi).

Then there exists a constant C > 0 independent of the approximation parameters

such that

(3.13) max   ||C/n||Loo(n) < C.
l<n<N ^   ' -

Proof. What we actually want to prove is the following estimate,

(3.14) ||i7»||LOO(n)<Cn:=Coe"T^^ + -^-[e"^^-l],        1 < n < N,
LfL0

which obviously implies the assertion (3.13). Here, Cr> stands for a positive constant

such that —C0 < U° = P°«o < Co in fi; this is possible in view of the boundedness

in L°° of the operator P° and the assumption (3.12). Moreover, the constant /o

denotes |/(0)|.

The proof of (3.14) is carried out by induction. In view of (Hß)i, (H/) and (3.2),

the following inequalities hold in fi:

(3.15) ßi-Cn-i) < ß(Un~l) < ß(Cn-i),

(3.16) -/o + Lfß(-Cn-i) < f(ß(Un~1)) <f0 + LfßiCn-!),

(3.17) or(-C„_i) < a(Un-x) < ar(C„_i).

Let i G fi be a point at which 6n attains its maximum. Since 0n is piecewise

linear, x is clearly a node of S/j. Let <p G Vhx be the corresponding shape function.

Now, with the aid of the discrete equation (2.11), inequality (3.11), the definition

(2.1) of the quadrature rule and the elementary property /n </> = | supp0|/(ci + 1),

we arrive at

Qn{i)\jmÈ. = (enJ)h < (ß(un-l),rp) + T-(f(ß(un-l)),$)

supp0|
<  {/3(Cn_!) +  '-[h + LfßiCn-i)]}  l-^j
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Here we have also made use of (3.15) and (3.16) to obtain the last inequality.

The same argument produces a bound from below for 0n when arguing with the

minimum of 6™. Therefore, we get the estimate

(3.18) ß(-Cn-i) - -[/o - Lfß(-Cn-i)] <Qn< ß(Cn-!) + -[/o + Lfß(Cn-1)].
p p

Now, since

IT = U71-1 + p[Ph°Qn - ß(Un-1)} = «(i/""1) +pP^en,

(3.17) and (3.18) yield

-C„_! - r[/0 - Lfß(-Cn-{)] <Un< Cn-i + r[f0 + LfßiCn-i)]    in fi.

By (Hß)i we can rewrite this expression as follows,

l|£HU~(n) < Cn-i + Afo + Lf msx(ß{Cn-i), -0(-C„_i))]

Krfo + Cn-ill + TLfLß}.

Finally, the claim (3.14) is an easy consequence of the inequality 1 + rLjLß <

eTLfLß, which leads to

Tfo + Cn-i[l + TL}Lß\<Cn,

where C„ was defined in (3.14).    D

Remark 6. It is easily seen from Lemma 2 that the function ß may be assumed

to be only locally Lipschitz continuous, provided that / = 0 (see also [2], [13]). For

instance, this happens for the porous medium equation, for which ß(s) := s|s|m_1

(m > 1).

Remark 7. We now consider the particular, but still relevant, case uç, > 0,

/(O) = 0, which includes porous medium equations, as well as one-phase Stefan

problems. Then the continuous physical unknowns u and 9 are clearly nonnegative.

Since we wish this property to be preserved in our fully discrete scheme, we analyze

the sign of the discrete solution. For r > 0 small enough, the function / + f / is

nondecreasing. Therefore, assuming by induction that XJn~x > 0 (which holds

for n = 1 because U° = P%u0 > 0), we get [/ + ^fKß^-1)) > 0. The facts

that the matrix of the linear system (2.11) is an M-matrix and the right-hand

side is nonnegative imply 6" > 0. Finally, we get Un = a(i/n_1) + pP®Qn > 0,

concluding the argument.

4. Error Analysis in Energy Norms. The primary aim of this section is to

analyze the accuracy of the fully discrete nonlinear Chernoff formula (2.11), (2.12)

in approximating the physical unknowns 9 and u. The key ideas were already

explained and successfully used by Magenes, Nochetto and Verdi [13] in studying

the discrete-time analogue of this algorithm. So the present concern is to extend

these ideas to the fully discrete scheme (P/i,T)- However, we believe that the current

results deserve a detailed presentation.

Before establishing the precise statements, let us show what the general strategy

is. We first define the errors e$ and eu by

(4.1) ee(t) :=9(t)-en,    eu(t) := u(t) - Un   for t € In, 1 < n < N.
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Then, after integrating (2.9) on /", we can write the set of discrete-in-time equations

satisfied by the continuous solution; namely,

(4.2) (dun,<p) + (V9n,V<P) = (fn(ß(u)),<P)    V<¿ G Hr)(ü), 1 < n < JV.

We now take the difference between (4.2) and (3.1), sum over n from 1 to i < N

and multiply by r. The resulting expression is the following error equation,

<4-^,x> + (vE^r-ö"],vx)
\     n=l '

(4-3) =p([/-jpö]E©",x)
X n=l I h

+ ( E rifnwu)) - /wn_1))h x) vx g v,1.
\ n = l '

The next step is to choose a suitable test function x- Let us take x := T\Phl9l—Ql\ G

V^1 and sum over i from 1 to m < N. After reordering we get

m      - m i i v

E/  <eu(í),e(,(í)>d< + ET2(VE^-e"]'V[P^"t-0í])=:I + n
i=l ■'/' t=l        \      n=l '

m      - m

= E / no - u<> c»w> dt+E »V - u\ ¡i - piw)
í=i Ji' ¿=i

(4-4) , m s m        , i .

+ (Uo-í/o,Er[/''í10~í-eí]) + ̂ Er([/-p°íEen'p^",-e0
\       »=i /    i=i \       «=1 /fe

m        i     i \

+ Er( E '[/"M«)) - / W-1))]. ^ - 6M =: III + • • • + VIL
¿=i    \n=i '

We now proceed to estimate each one of these terms. To begin with, note that

(4.5) u = p9 + a(u)    and    Un = pP%Sn + a(Un~l),

whence

(4.6) eu(t) = pee(t) + [a(u(t))-a(Un-l)} + p[I-P%}en    for t G /".

Formula (4.5) is the connection with the phase relaxation scheme [26]. Moreover,

we know that

(4.7) ee(t) = lß(u(t))-ß(Un-1)}--{Un-Un-l}-[I-P%}en    foríG/".
P
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Then, in view of (4.6) and (4.7), term I in (4.4) can be split as follows:

|2
\L2(0,tm\L2(n))

^(i))-a(C/I-1),/3(U(i))-/3(t/,-1))di

37

l = v\\ee\\h(

(4.8)

III n

E/>(i=iJi'
771 771        p

-Y^(U\U'-W-l) + Y / (eeWM'-W-^dt
^»=i «tí"'
1       771 « 771

- E / <«(0, [/' - e/-1) di+e *-<[/ - jfle\ ^ -1/*-1)
fli=iJii i=i

m      ~

-E/ (QWí))-a([/-1),[/-p°]eí}rfí
¿=i "'

m      -

+ pE/  (ee(t),[I-P^}el)dt=:lT+h + --- + lS.
i=i Jl'

The fact that both a and ß are increasing functions implies that I2 > 0. Term I3

is handled by means of (3.5) and (HUo); namely,

m

I3 > ¿Dll^Hi'ín) - Iltf^lliW > -¿ll^ll^n, > -Ct.2p

For I4 we use inequalities (3.4) and (3.6) to arrive at

1 m 1

|I4| < jlT+T^WW - C7<-1||i2(n) < -I™ +Cr.
7=1

By virtue of the approximation property (2.5) of P° and the a priori estimates (3.6)

we have

(4.9)

Then,

^Zr\\[i-p°h}&\\2L2{Q)<ch2.
i=l

\h\<-4i?+ch2.

At the same time, using (2.6) and (3.9), we get

E^i 2
¿2(H)

Li=l

1/2'

|I7| <Ch< ||u|U2(o,t'»;i,2(n)) +

and, again by (3.6), we obtain

m

|I6| < T E W - U^Wlirn) + Ch2 <Ct + Ch2.

<Ch;

i = l

The remaining term I5 will be analyzed later, under various regularity assumptions

on uo- Instead, we now bound term II in (4.4). To do so, we need the following

elementary identity, which is an easy consequence of (3.5):

2j2a,
1=1

Ea«
n = l

Ea*
1=1

+ E a?    for a.SR- 1 < t < AT.
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Thus, using the approximation property (2.4) of the Ritz projection Phx together

with the regularity /0 9 G L°°(0,T;H2(Çl)), which comes from integrating the

original partial differential equation (2.9) in time, we easily obtain

m i i \

ii > Er2(vE[p^n -en].v[p^ -&})
¿=1       \     n=l '

(4.10) - 2

- 2

rEvfP^-e1]
7=1

* >1

7Jo

- 2 V I    Phte(t)
Jo

dt

ee(t)dt

mn)

-Ch2 =:IIm -Ch2.

¿2(n)

¿2(H)

Treating III requires a duality argument between i/_1(fi) and Hq(Q). The fact

that e$ is uniformly bounded in //¿(fi), i.e., ||Vee||¿2(o,T-,L2(a)) < C, which results

from (2.6) and (3.6), and again the regularity property (2.6), lead to

r-t'

|III| = m-i— ds,ee(t))dt
ds I

< T
du

~dt
MlL2(0,tm;if¿(n)) < Ct.

L2(0,im;H-1(n))

The other term IV is analyzed by making use of the approximation property (2.4)

as well as (2.6) and (3.9). Indeed, we have

-|i/2"

|IV|   <  C I   ||u||L2(0itm.i,2(r2))   + E'""7||2
L2(a)

7=1

U=l

t\\\i - PlWWhw
1/2

<Ch.

Using now (HUo) and the approximation property (2.5), we easily obtain

|V|<C/i|KllL2(n) vT   Ple6(t)
Jo

dt

mn)

<-\\m + Ch2.

In order to get a bound from above for VI, we first rewrite this term in a suitable

form; namely,

7=1 * 77=1 '

(4.11)
(Een,PlJl-e*) -(Ee"'plh~9i-Ql
^77=1 'h \n=l

+ mEt
7=1

=:VIi+VI2.

The estimate for VIi proceeds along the same lines as for III, with the only difference

that now we exploit the superconvergence error estimate (2.5). Thus,

(4.12) I VIi | <Ch2Y^r Ee«
77=1

h2

h na)

p¿0'-e*||w<c-,
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where again the a priori estimates (2.6) and (3.6) have been used. The other term,

VI2, is an error due to the quadrature rule; so, with the aid of (2.3), we can control

its contribution as follows,

(4.13) |VI2|<C/i2Er
7=1 L2(a)

v[py-e°]||L*(n)<c-vE<s>"
ri=l

It only remains to estimate the source term VII, which obviously satisfies

h2

m      ~     i    1

vn = E / ( E ririßM) - f(ß(un-i))\Mt) + \pi -
l=ijii \„=i

In view of (3.4), (Hy), (4.7), the approximation property (2.4) and (4.9), we can

write

|VII|<il- + ||[/-P¿]o||22(0iim;L2(o))

L2(fi)

(4.14)

+c¿2TET\\fnWu»-fWun~1}
7=1       77 = 1

. m 777

K-l^ + Ch' + C^l+CrJ^WW-U^Wl^
7=1 7=1

m 1 m

+ Cj2r\\[I-P0h]Ql\\î2(a)<Cr + Ch2 + -lT + Cj2rï\,
7=1 ¿=i

where we have also employed (2.6) and the discrete i/1//2-bound in (3.6).

Collecting all the previous estimates, and inserting them into (4.4), gives

Mil     l|2 1
1 llc9|lL»(0,f»;L»(n)) + 4

<

f    eg(t),
Jo

h2] m

CW + h+y\ +CE7"lleellÍ2(0,t.;z,2(n))
L J 7=1

+ -E /  (u^M'-W-^dt.

The last term will be shown to be 0(r2u), where 0 < v < 1/2 depends on the

regularity assumed on uq and ß(uo) (see the theorems below). Then, applying the

discrete Gronwall inequality yields

(4.15)      |M|l2(q) + Í./o ee <C T» + hl'2 +
h_

-ill
=:a(h,r).

lL°°(0,7';i/,(n))

These estimates lead to the following i/-1-error bound for the unknown u,

(4.16) lkti||i,°o(o,:r;A*-i(n)) <Ca(h,r).

In order to prove this result, we introduce the Green operator G : H~l (fi) —> Hq (fi)

associated with the Laplacian; it is defined by

(4.17) (VGç,V0> = (c,0)   V4>eHr)(n), çeH-^U).
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The corresponding discrete Green operator G h : H  1(ty —* Vhl is defined by

(4.18) (VGk,Vx) = (c,x)   VxGV,,1, ceH-HQ).

These operators enjoy the following properties:

(4.19) ||VG„?||L2(n) < ||VGç||L2(n) = \\ç\\H-Hn) = <Ç,Gç)1/2,

(4.20) \\[G-Gh)í\\LHn)<Ch2\\c\\LHn).

Taking x := Gh(ul — U1) as test function in (4.3) allows one to express the desired

//_1-bound as follows:

\\pl II2 — llii* _ rr«i|2 _ iJ   npi\
\\eu\\H-i(n) — Il II//-1 (O) — \eu!°eu/

= (e\, [G - GhK) + (v E ^[Ön - ~en],VGheu)
\        77=1 '

+ p/[/-P°]¿e",G,eA   +(e°u,Ghel)
\ 77=1 'A

+ ( E '[.TOM) - / W1-1))]. Ghcj,\ =: VIII + • • • + XII.
xn=l '

Using the a priori estimates (2.6) and (3.9), together with (4.20), it is easily seen

that |VIII| = 0(h2). In view of (4.15) and (4.19), the next term is bounded by

|IX| < ||VG„elJ|L2(n)
f

7 /    eBIJo
L'(il)

<7\K\\2H-Ha)+Ca2(h,T).

Arguing as in (4.12) and (4.13) with term X gives

|X| < Ch2 Ee"
//■(H)

|VG/le^||L2(n) < -\\elu\YH-i(n)+C(T2(h,T)

because we can assume without loss of generality that a(h,r) < 1, thus h2/r < 1.

By virtue of (HUo) and (2.5), term XI is easily bounded by

1,
|XI| < glKHà-nn) + Ch¿.

The same technique applied in (4.14) can now be used, together with Poincaré's

inequality and (3.6), to arrive at

|XII| < C\\VGhel\\L2{Q) E /   \\ß(u(t)) - ß(Un-')
77=1 J¡"

\L2(a) dt

<l\K\\H-Htt) + Co*{h,T).

In conclusion, we have proved the error bound

max II"'-cPII/z-'in) <Ca(h,r).

The assertion (4.16) follows from the fact that

u G Hl(0,T;H~l(ü)) C C°'l/2(0,T;H-l(ü)).

We are now in a position to state the main result of this paper.
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THEOREM 1.   Let (Hn), (Kß)i, (H/) and (HSJ hold. Assume that

(4.21) uoGL°°(fi),        A/?(w0)GL1(fi)

and in addition that

(4.22) max  ||i/n||Loo(m < C.
l<n<N K   ' -

Let T be chosen so that t = C*h, with C* an arbitrary positive constant.  Then we

have

(4-23) le#IU2(Q) +
Jo

+ lleullL^io.r;//-^")) — 0(h ' ).
L°°(0,T;HHn))

Remark 8. The a priori estimate (4.22) holds, for instance, for triangulations S/,

that are of acute type (see Lemma 2).

Remark 9. The assumption Aß(uc>) G L1(fi) can be slightly weakened according

to Remark 1, because the only property we need is du/dt G L°°(0, T;M(fi)).

Proof of Theorem 1. In view of estimates (4.15) and (4.16), it remains to demon-

strate the bound

(4.24)

777 -

E/  <«(«), tr-tr*-»)
7=1 JI'

dt <Ct.

To this end, we need the following summation by parts formula,
777 777

E0^ -k-l] =ambm -a0b0 - E*>i-i[a« _ <*t-i]-
7=1 7=1

We can then rewrite the sum in (4.24) as follows:

777 - 777

E / («(0. v* - u'-1) dt = E !■<«', u* - u1-1)
i=lJl' 7=1

771

= T(üm,Um) -t(u0,U°) -Yt^ü* -ü'-^U*-1),

7=1

where u° := uq. The assumption uo G í/°°(fi), together with (4.22) and (2.6),

implies that the first and middle term are 0(t). For the last term we note that

ül-Ü1-1 = - f [u(t)-u(t-r)\dt=- f   [     ^(s)dsdt
T Jp T }p Jt_T ds

and the fact that du/dt G L°°(0,T;M(fi)), because Aß(u0) G L1(Q) (see (R2)

in Subsection 2.2). So, what we would like to do is to use a duality argument

between M(fi) and C°(fi); unfortunately, this fails, because U% $ C°(fi). The

remedy consists of regularizing Ul, say by convolution, in such a way that we get

continuous functions U¡ having the properties

max  \\Ul\\Loo(n) <C,        U¡ -► W strongly in L2(fi)

Thus,

Ko» - ü*-1, w-i)\ < !(«•■ - tf-wr1)] + \(ui- tf-w*-1 - uri)\

< Gr + G||u||LoO(0,T;L2(n))||i/'~   -U\~ \\L2(a)-

Finally, taking the limit as e [ 0 and using the a priori estimate (2.6) yields the

assertion (4.24).    D

We now extend the previous error estimate to a weaker situation.
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THEOREM 2.   Let (Hn), (H^), (H/), (HUo) and (Hsh) hold. Let r be chosen so

that t = C*h4'3 for any positive constant C*.  Then we have

(4-25) |eölU2(<3) +
/'■Jo lL°°(0,T;//i(n))

Proof. The present task is that of proving the estimate

+ Heu||L°°(0,T;//-1(n)) = 0(h '   ).

(4-26) ¿Tri^lT-ir-1)
7=1

< Ct1'2,

which implies that v = 1/4 in (4.15). Indeed, the relation between r and h, as well

as the final rate of convergence, are trivial consequences of (4.15) and (4.16). In

order to derive (4.26), we make use of the a priori estimates (2.6) and (3.6), which

lead to

1/2

E^c/'-t/1-1;
7=1

< Cr1/2||u||i,2(0,T;L2(n))

< Ct1'2

Eir-t/^iii2
(H)

.7=1

and complete the proof.    D

As one can easily check, the dominating terms on the right-hand side of (4.15)

are r1/4 and h/r1^2, rather than h1^2. If we are interested in getting a better

balance between these terms, we can simply modify the discrete scheme as follows.

We now look for functions Un G Vfi and 9" G ^' (1 < n < N) so that for all

X G Vtj1 we have

U°:=P°u0, e°:=P°ß(u0),

fA „_,       (en,x>h + ^<ve", vx) = lß(un~l) + T-mun-l)),x
(4.2/J p \ P

+ ([/-p0]9"-1,x)/7,

rjn ._ Tjn-1 + ^[pPQn _ /?([/«-!)].

This scheme is still stable and computationally feasible. Indeed, the proof follows

the same lines as that of Lemma 1, except for the term in (3.8), which is replaced

by

71=1

pf^([P^-i][&n-en-%en)h = pf2(lPh-mn-Qn-1}Ai-P^n)h
1 77=1

= -f ([Jtf - mm, \P°h - mm)h + ^({P°h - /]e°, [p°h - i}e°)h
777

- £ E<[p° - 7ne" -en_1K \ph - n[®n - ö"-1])" < o.
77=1

where we have used the identity (3.5).

Finally, we have the following improved result, which reproduces for the fully

discrete Chernoff approximation the one already shown by Verdi and Visintin for

the phase relaxation scheme [26].
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/   eg +l|e«||i,°°(o,T;//-Mn)) =0(h1/2).
JO L°°(0,T:H'(a))

THEOREM 3. Let (Hn), (H0), (H/), (HUo) and (HSJ hold. Let {Sn,Un}N=1

stand for the discrete solutions associated with the scheme (4.27). Then, for r =

Ch2, where C* denotes any positive constant, we get

(4.28)       |MU2(g) +

This result improves the one in (4.25), but at the expense of a more restrictive

time step.

Proof of Theorem 3. We only have to estimate the contribution coming from

term VI in (4.4), which now is

777/7 >

vi = pEt([7 - p°] Ei0" - e""1],^ - eM
7=1 ' 77=1 '   h

777

= pYiT{[i-p°h]e\p^-Ql)
7=1

777

+ pYir[(el,Ph19i - &)h - (&,Plh~9l - &)\ =: VIi + VI2.

7=1

Then, arguing similarly as in (4.12) and (4.13), yields

777

|VIi|, |VI2| < Ch2Y,r\m\H,{n)\\PhiÔ1 - &l\\Hi(a) < Ch2,
7=1

which implies the desired result.    D

We conclude this section with some comments.

Remark 10. From Eq. (2.12) and the a priori estimate (3.6) it follows that

N

^2r\\P°hQn-ß(Un)\\l2(a)
77=1

N 1

= E TW-lUn - Un~lï - W) - P^-'MÎHa) < Ct.
77=1 ß

By using (4.9) we get ||e/g(u)||i,2(g) < Ca(h,r), where e0(u)(t) := 9(t) - ß(Un) for

tel71.

Remark 11. The error estimates shown above hold also in other situations.

Indeed, assume that 3fi G C1,1 (fi is no longer convex!) and that either a nonho-

mogeneous Dirichlet condition or a linear flux condition is imposed on dû, i.e.,

(4.29) —ß(u)+p(x)ß(u) = g(x,t)   on du,

where 0 < p(x) < P < oo for a.e. x G <9fi. In this case, the domain cannot be

decomposed exactly, and one is forced to analyze the layer fiAfift. The appropriate

techniques to handle such a case were presented by Nochetto and Verdi in [20] and

are omitted here.

Remark 12. Assume that a mixed boundary condition is imposed on the bound-

ary. Thus, there is a lack of regularity, which makes the standard L2-duality ar-

gument fail. However, the error bound ||[7 - P^zIIz^q) < Ci/i1//2_lS||2||#i(n) still

holds. The current analysis applies in this case, provided the surface of separation
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between Dirichlet and Neumann conditions is regular enough, giving in the weak-

est situation of Theorem 2 a rate of convergence 0(h1/,4~6) under the mild relation

r = C*h.

5. Numerical Results. In this section we first describe the implementation

of our scheme and then the results of some numerical tests. These experiments

were performed in collaboration with M. Paolini and G. Sacchi. Further discus-

sions, comparing performances of the present algorithm and other techniques in

approximating both solutions and interfaces, will appear elsewhere, [21].

5.1. Implementation of the Scheme. To begin with, we rewrite the discrete

problem in matrix form. Denoting by {<^}^=1 and {ipk}k=i the canonical basis of

V¿ and V^, respectively, we define the following matrices

M:={(^>,cPl)h}il=1,    K:={{V<P>,VcPl)}il=1,    A := M + -K,

P:={<^fc»/=i, i=i-

Moreover, we denote by yk the barycenter of Sk G S>¡ and by {xj}J-=l the nodes of

S/,. For any rp G Vhl and ip G V° we also denote by $ = {<pj}J=1 and * = {xpk}k=1

the vectors with the nodal values of (p and the barycentric values of ip, respectively.

Setting

K K

ß"-i:=E^(c/r1)^fe and f^-e/w1))^,
k=l k=l

and noting that P°<p = J2k=i <l>(yk)il>k for <P € Vj,1, the discrete problem (Ph,T) can

be written equivalently as follows:

(5.1) A0"
n—1    i        j?n— 1B""1 + -F

P

(5.2) VI = f/JT1 + pW(Vk) - ß(Ur%        k = l,...,K.

Since A is a symmetric and positive definite matrix, the linear system (5.1) admits

one and only one solution. The crucial point in the performance of the method is

the efficient resolution of the linear system (5.1), because Eq. (5.2) is just a set of

scalar algebraic corrections.

Our algorithm has been implemented for general polygonal domains in two di-

mensions by using an automatic grid code to decompose the domain into triangles.

A Cholesky factorization of the matrix A is recommended whenever the bandwidth

is "small" [1]. Indeed, since the matrix A remains unchanged at each time step,

the factorization is made only once at the beginning. Nevertheless, when the use of

an automatic grid code is required, for instance in decomposing a general domain,

the bandwidth might be "large." Then, iterative methods seem to perform better

than direct ones. In particular, since A is positive definite, an incomplete Cholesky

factorization for preconditioning the matrix A, combined with conjugate gradient

iterations, is recommended for solving the linear system (5.1) [1], [15], [21]. More-

over, the matrix A is strictly diagonally dominant in the experiments below, which

makes the preconditioning easier [1], [15], [21].
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We now turn our attention to the approximation of the free boundary. The loca-

tion of this crucial unknown as zero-level set of the solution {0n}^=1 is inaccurate

for two-phase problems and simply impossible for one-phase problems. This is due

to the behavior of the operator [I - JA]-1, which smooths out singularities or,

in other words, which replaces a movement of the interface at finite velocity by a

diffusion at infinite speed. Moreover, the higher the interface velocity is, the bigger

is the artificial diffusion added by [7. — JA]-1. This heuristic explanation tells us

two things. First, we have to seek the discrete interface as a cr-level set for a ^ 0;

this is in the spirit of [19]. Second, the level a should be related to the expected

speed of the free boundary, rather than being kept fixed.

5.2. Numerical Tests. The goals of our numerical experiments were to evaluate

the actual order of convergence of both variables u and 9, as well as the approx-

imation of the free boundary. If Un and 0" are the discrete solutions associated

with a mesh size h, we set

^:=(rEE/ nfc([e"-(H2)dz}
I    n=lk=lJSk )

and analogously for E„, with obvious changes where u is discontinuous. Then,

assuming the relations E„ = ChPu and Eg = Chp>, it follows that

pu = losjE^/EJ') pff = log(üfl'/£fl')
\og(hi/h2) \og(hi/h2)

The space domains in all examples below are rectangles, which are decomposed

uniformly. The discrete initial data are chosen according to Remark 2. Examples

1, 2, 3 are concerned with the two-phase Stefan problem for which the function ß

is

ß(u):=ciu   ifu<0,        ß(u):= 0   if0<u<l,

ß(u) := c2(u- 1)    if u > 1.

Example 4 is the Barenblatt-Pattle solution of the porous medium equation for

ß(u) := u\u\. We also point out that, even if mixed boundary conditions are

prescribed in our examples, both the approximation property (2.4) and the error

estimates (4.23), still hold; indeed, the regularity of the associated Green operator

follows from applying reflection techniques. All experiments were performed on an

IBM 4361, using the relation r = C*h.

Notations. N: number of time steps, Nel: number of triangles, Nn: number of

nodes, CPU: CPU time in seconds.

Example 1 ([2], [20], [24]). Let fi = (0,0.5) x (0,0.25), 0 < t < T := 0.25,

Ci = C2 = 1. The exact enthalpy is

_ J 2[e*(^.0 - 1] + 1    \ï^(x,y,t)>0,
u(x, y, t) .- | e»(l,Vit) _ j .f $(i) ^ Q < 0)

where $(x, y, t) :— —x — y + 2t + 0.1 = 0 is the free boundary. Neumann conditions

are assigned on the sides x = 0.5 and y = 0.25, and Dirichlet data are prescribed

on the sides x = 0 and y = 0. We obtained the results summarized in Table 1 and

Figures 1 and 2.
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TABLE 1

Nel    Nn    N    Eu ■ 102    Eg ■ 103     pu      pe     CPU

100      66    25       5.29 5.89 9

0.17    0.62

196    120   35       4.99 4.77 30

0.30   0.58

400    231    50       4.48 3.88 107

0.25   0.58

900   496    75       4.05 3.06_457

Example 2 ([20], [24]).   Let fi := (-0.22,  0.18) x (0,0.2), 0 < t < T := 0.4,

Ci = 1/2, C2 = 1/3. Trie exact enthalpy is

_(6<ï>(x,y,t) + l    if*(z,y,í)>0,

HX,y,t).    \2*(x,y,t) if<ï>(x,y,t)<0,

where <&(x,y,t) := x2 + y2 — e~4t/4e2A = 0 is the interface. Dirichlet data are

assigned on the sides x — —0.22, x = 0.18 and y = 0.2, and a vanishing flux

condition is prescribed on x = 0. Table 2 contains the computational results.

Discrete and continuous isothermal curves are shown in Figures 3-5.

TABLE 2

Nel    Nn   N    Eu ■ 102    Eg ■ 104     pu      pe     CPU~64      45    20       5.51 12.46 4

0.28    0.44

144      91    30       4.93 10.43 16

0.16    0.52

324    190    45       4.62 8.46 67

0.29    0.43

784    435    70       4.06 7.00_328

Example 3 ([20], [26]). Let fi := (0,0.85) x (0,0.1), 0 < t <T := 1,CX = C2 = 1.

The exact enthalpy u(x,y, t), which does not depend on y, is defined by

(4M*)-*]     if«<M|),    if0<i<0.25;
\ -[x-s2(t)\2 if x> s2(t),

Si(t)2-X2 + 1     \fx<si(t),

A[s2(t)-x\ if si(t) < x < s2(t),      if 0.25 < í < 0.75;

-[x-s2(t)}2     if x>s2(t),

(Sl(t)2-x2 + l if*<»i«,      if075<i<i

\ -[x-Sl(t)}2-2[x-Sl(t)}[t-0.7b}    \íx>Sl(t),      1IU-/0^Î^1'

where sx(t) := t - 0.25 and s2(t) := 0.5[i -f 0.25] determine the mushy region. A

Dirichlet condition is assigned oni = 0.85 and homogeneous Neumann conditions

are imposed on the sides x = 0 and y = 0, y = 0.1. We obtained the results

contained in Table 3.
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Table 3

Nel    Nn      N    Eu ■ 102    Eg ■ 103     pu      pg     CPU

24     26     31       5.38 8.30 4

0.35   0.79

96      75      62       4.22 4.81 42

0.33   0.78

384    245    124       3.35 2.81 439

0.31    0.75

1536   873    248       2.69 1.66_4581

The evolution in time of discrete and continuous free boundaries is shown in

Figure 6, whereas discrete enthalpies for several time steps are drawn in Figure 7

as functions of the space variable.

Example 4. Let fi := (2,3) x (0,0.1), 0 < t < T := 1. The exact density is

i-ijgj)] »««o.
if x > s(t),

where s(t) = [12(t + l)]1^3 determines the interface. The solution does not depend

on y; hence, we prescribe a vanishing flux on y = 0 and y = 0.1. Dirichlet data are

imposed on x = 2 and x = 3. Table 4 sums up the computational results.

Table 4

Nel    Nn   N    Eu ■ 103    Eg ■ 104      pu      pg    CPU

40     33   20      6.97 8.43 ~^7

0.58   0.70

90     64   30       5.51 6.36 26

0.66   0.79

250    156    50       3.92 4.38 162

0.69    0.85

640   369   80       2.84 2.93_825

Figures 8 and 9 illustrate the evolution of the true and approximate interfaces

as well as of the density u for various time steps.

The actual rates of convergence of the variable 9 agree with the theoretical one

shown in Theorem 1. Moreover, the algorithm seems to approximate the variable

u in L2(Q) as well. Even though this is not suggested by theoretical results, the

observed rate is almost 0(h1/4) for the Stefan problem.

The numerical evidence indicates that the present algorithm is not capable of

locating interfaces without any further treatment of the discrete solution; this is

due to the artificial diffusion added by the operator [I — JA]-1. Since the location

of level sets away from the free boundary is quite precise, the correct remedy might

be a sort of local postprocessing of the discrete solution; this is the subject of

current research. However, problems having a smooth free boundary which moves

along a prescribed direction suggested by the initial datum can be simply handled

as follows.   The discrete free boundary at time tn is to be sought as a <7n-level
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set of the variable 0n, where an depends on the discrete interface velocity. More

precisely, we propose the empirical relation

dsn~l
an:=Chx/2    for n= 1,2; cJn := -,an-x    for 3 < n < N,

'n •" dsn~2'

where dsn denotes the average change of the discrete interface location from time

i"-1 to tn and C > 0 is a constant to be determined in dependence of the initial

velocity.

We finally present some pictures illustrating the success of the above procedure

in approximating the exact free boundaries of our four numerical tests. Discrete

and continuous isothermal curves are depicted as well.

Example 1. Nel = 900, Nn = 496, N = 75; h = 2.357 x 10-2, r = 3.333 x 10-3,

ax =a2 = 3.93x 10-2.

Figure l

Discrete and continuous (dotted lines) interfaces at

times t = 0.05, 0.1, 0.15, 0.2, 0.25.

Figure 2

Discrete and continuous (dotted lines) interfaces and

a-isothermal curves for t = 0.15 and a = —0.1, —0.2,

0.2, 0.5.
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Example 2. Nel = 784, Nn = 435, N = 70; h = 2.02 x 10-2, r = 5.71 x 10-3,

ax =a2 = 2.02 x 10-2.

Figures 3-5

Discrete and continuous (dotted lines) interfaces

and a-isothermal curves for t = 0.08, 0.24, 0.4 and

a = 0.03, 0.06.
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Example 3. Nel = 1536, Nn = 873, N = 248; h = 1.53 x 10-2, r = 4.03 x 10-3,

<j\ =a\ = 2.04 x 10-2, a\ = a\ = 0.

Figure 6

Discrete and continuous (dotted lines) interfaces for

y = constant.

•u(x,.,-)

Figure 7

Discrete enthalpy for t = 0., 0.25, 0.5, 0.75, 1. and

y = constant.
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Example 4.  Nel = 640, Nn = 369, N = 80; h = 2.79 x 10-2, r = 1.25 x 10

o-, =ct2 = 2.54 x 10-3.

Figure 8

Discrete and continuous (dotted lines) interfaces for

y = constant.

Figure 9

Discrete and continuous (solid lines) density for t = 0., 0.25,

0.5, 0.75,1. and y = constant.
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