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Abstract
In this work, we set up a theory of p-adic modular forms over Shimura curves
over totally real fields which allows us to consider also non-integral weights. In
particular, we define an analogue of the sheaves of k-th invariant differentials over
the Shimura curves we are interested in, for any p-adic character. In this way,
we are able to introduce the notion of overconvergent modular form of any p-adic
weight. Moreover, our sheaves can be put in p-adic families over a suitable rigid-
analytic space, that parametrizes the weights. Finally, we define Hecke operators.
We focus on the U operator, showing that it is completely continuous on the space
of overconvergent modular forms.
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Introduction

The goal of this work is to develop a geometric theory of p-adic analytic families
of modular forms over certain PEL Shimura curves. A similar problem, for the
elliptic case, is the subject of the work in progress [AIS11]. Some of the basic
ideas of this thesis are taken from [AIS11]. The elliptic case is addressed also in
[Pil09], where slightly different techniques are used, from Hida theory. To motivate
our work, we now briefly review some basic facts about p-adic modular forms.

Let p > 5 be a prime and let N > 4 be a fixed positive integer, with (p,N) = 1.
Let R be a separated and complete Zp-algebra. The first precise definition of the
concept of p-adic modular form, of level N , weight k ∈ Z, with coefficients in R,
was given by Serre in [Ser73]. He identified a modular form with its q-expansion,
and he defined a p-adic modular form as a power series f ∈ R[[q]] such that

f(q) = lim−→
n

fn(q),

where the fn’s are the q-expansions of a sequence of classical modular forms and
the limit is calculated in the p-adic topology of R[[q]]. Let f be such a p-adic
modular form and let {kn} be the sequence of weights of {fn}. It turns out that
the sequence {kn} can be not eventually constant, so it can be not convergent in
Z. This suggests that, in general, the weight of f is not an integer. However, Serre
identified an integer k with the map

k : Z∗p → Z∗p

t 7→ tk

and he showed that the limit χ(t) := lim−→n
tkn exists for all t ∈ Z∗p. Moreover, the

map
χ : Z∗p → Z∗p

is a continuous character. Since any continuous character occurs in this way, it is
reasonable to believe that the weight of a p-adic modular form should be a continu-
ous character Z∗p → Z∗p. To motivate further his definition, Serre also introduced the
notion of an analytic p-adic family of modular forms, parametrized by the weight,
and he showed that the mere existence of the family of the p-adic Eisenstein series
implies the analyticity of the p-adic zeta function.

There is a rigid analytic spaceW over Qp, called the weight space, such that its
K-points, for any finite extension K/Qp, are the continuous characters Z∗p → K∗.
In particular, we see that the continuous characters Z∗p → Z∗p are the Qp-valued
points of W. To work with p-adic analytic families in general, it is then natural
to look for modular forms whose weight is a continuous character Z∗p → K∗. In
this way, a p-adic analytic family of modular forms should be parametrized by the
points of an admissible open subset of W.

Serre’s definition is very natural, but it has two drawbacks. First of all it is
not ‘modular’, i.e. a p-adic modular form is, seemingly, unrelated to elliptic curves
with level structure. Another problem is the fact that it relies essentially on the
q-expansion of a modular form. To generalize the notion of p-adic modular forms
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iv INTRODUCTION

to other Shimura curves, we cannot use cusps, so we do not have q-expansions in
general. In this thesis we are going to consider certain proper Shimura curves, so
we will need a different approach. The first really ‘modular’ definition of a p-adic
modular form was given by Katz in [Kat73]. We are going to briefly recall his
construction, see also [Gou88] for a concise presentation.

Let Y1(N) be the modular curve of levelN , overQp (Γ1(N)-level structure). Let
X1(N) be the compactification of Y (N), so we have a universal semi-abelian scheme
π : A → X1(N). Let ω = ωX1(N) be the sheaf e∗Ω1

A/X1(N), where e : X1(N) → A

is the zero section. Classically, a modular form of level N and weight k could be
defined as a global section of ω⊗k. In [Kat73], Katz gave a geometric interpretation
of the notion of a p-adic modular form of integral weight. To understand Katz’
definition, it is convenient to use rigid geometry. For any rational number 0 ≤ w <
1, let X1(N)(w)an be the affinoid subdomain of the analytification of X1(N) defined
in [Col97a], relative to the Eisenstein series Ep−1 (see Section 1.5 for more details
about Coleman’s construction). We can think about X1(N)(w)an as the subset of
X1(N)an where Ep−1 has valuation smaller than or equal to w. The complement of
X1(N)(0)an is a finite union of discs, called the supersingular discs. Katz introduced
the notion of p-adic modular form of level N , weight k, and growth condition w: it
is a global section of ω⊗k on X1(N)(w)an. A modular form of growth condition 0 is
called a convergent modular form, and one of growth condition w > 0 is called an
overconvergent modular form. Katz defined also the usual Hecke operators acting
on the space of p-adic modular forms, including the U operator, the analogue of the
classical Up operator of Atkin. Finally, Katz showed that his definition of a p-adic
modular form generalizes Serre’s. In particular, if f is a p-adic modular form in
the sense of Serre, of integral weight k, then f can be identified with a convergent
p-adic modular form, and conversely.

The goal of this work is to develop a similar theory for modular forms over
certain PEL Shimura curves, that works for any weight and moreover allows us to
consider analytic families.

To fully develop the theory of p-adic modular forms, an essential tool is Riesz
theory for completely continuous operators on p-adic Banach modules. Let K be
a finite extension of Qp. In [Ser62], Serre developed Riesz theory for completely
continuous endomorphisms of orthonormizable Banach modules over K. An ex-
ample of such a Banach module is provided by the space of p-adic modular forms
over K, of growth condition w and weight any χ : Z∗p → K∗. It is a key fact that,
if we consider only modular forms with growth condition w > 0, the U operator
is completely continuous, so we have a good Riesz theory for it. In [Col97b],
Coleman developed Riesz theory for a completely continuous operator on a family
of orthonormizable Banach modules, generalizing Serre’s work. Coleman defined
p-adic families of modular forms, and using his own theory he was able to study
the Riesz theory of the U operator (see below). In our work we will need a further
generalization of Riesz theory. In [Buz07], Buzzard showed that Coleman’s results
remain true also for Banach modules that are direct summand of an orthonormiz-
able Banach module (we will need this in Chapter 5).

In [Col97b], Coleman was able to prove the following theorem, that generalizes
a previous result of Hida in [Hid86], where only the case v(ap) = 0 is studied.

Theorem. Let f be an overconvergent modular form of weight k that is an
eigenform for the full Hecke algebra and let ap be the U-eigenvalue. If

v(ap) < k − 1,

then f is classical. Furthermore, any such modular form lies in a p-adic family of
eigenforms over the weight space.
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Since Katz’ definition works only for integral weight, the first step needed to
obtain Coleman’s theorem is to define the notion of overconvergent modular form
of any weight.

A natural approach is to generalize the sheaves ω⊗k obtaining the sheaves
ω⊗χ on X1(w), for any p-adic weight χ. Note that, since Coleman is interested
in overconvergent modular forms, it is enough to work with arbitrarily small, but
positive, w. If one has the sheaf ω⊗χ, we can define a modular form of growth
condition w and weight χ as a global section of ω⊗χ. However, Coleman’s approach
is completely different. He made a heavy use of the Eisenstein series to compare
modular forms of different levels. In this way he was able to define the notion
of overconvergent modular form of weight χ through its q-expansion. He then
proved that his definition makes sense, attaching a Galois representation to any
p-adic modular form. Finally he was able to prove the above theorem. Coleman’s
approach is very interesting and powerful, but it seems difficult to generalize.

In [AIS11], Andreatta, Iovita, and Stevens proposed a geometric approach to
this problem, as follows. Let χ : Z∗p → K∗ be a continuous character, where K
is a finite extension of Qp satisfying certain technical conditions. Then there is
a rational number w > 0 and a locally free sheaf Ωχw on X1(N)(w)an, such that
its global sections correspond naturally to p-adic modular forms of weight χ and
growth condition w, with coefficients in K, as defined by Coleman. Furthermore
we have Hecke operators and more importantly these sheaves can be put in p-adic
families over the weight space.

In this work we study the case of modular forms over certain quaternionic
Shimura curves. The notion of p-adic modular form in this context was introduced
by Kassaei in [Kas04]. It is worth to note that Kassaei considered only integral
weight. The definition is similar to Katz’, but, since our Shimura curves are com-
pact, we do not have any Eisenstein series, so passing from elliptic modular forms
to quaternionic modular forms is really non trivial. Since Kassaei considered only
integral weights, he has no families of modular forms. The goal of this work is
to give a geometric definition of quaternionic modular forms of any weight and to
prove that these modular forms can be put in families.

Here is a detailed description of the thesis. We will work with several curves,
corresponding to different level structures. For the convenience of the reader and to
stress the analogy between our curves (called quaternionic curves) and the classical
ones, it is convenient to list now the curves we are interested in (without definition),
with the corresponding classical modular curves. We consider here rigid analytic
curves, but we will also need the integral and formal models.

Quaternionic curve Level Classical curve Classical level
M(H)rig K(H) X1(N)an Γ1(N)

M(H,$n)rig K(H,$n) X1(N ; pn)an Γ1(N) ∩ Γ0(pn)
M(H$n)rig K(H$n) X1(Npn)an Γ1(Npn)

Chapter 1 contains only preliminary material. In Section 1.1 we briefly review
the definition and basic properties of the Shimura varieties of PEL type. In Sec-
tion 1.2, following [Car86], we define the Shimura curves we are interested in, over
C. These are Shimura varieties of PEL type defined as follows. Let p 6= 2 denote
a fixed rational prime. Let F be a totally real field, with [F : Q] > 1, and let B
be a quaternion algebra over F that splits at exactly one infinite place of F and
at P, a prime of F above p. Attached to these data, there is an inverse system of
Shimura varieties {MK(C)}, parametrized by compact open subgroups of G(Af ),
where G is a reductive algebraic group over Q, defined using B. We prove (see
Proposition 1.2.5) that each MK(C) is a compact Riemann surface. By general
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theory (Theorem 1.1.3), the MK(C) are moduli spaces of abelian varieties with
additional structure. In Section 1.3, assuming that K is small enough, we define a
canonical model MK of MK(C) over a suitable number field E (Proposition 1.3.1).
Let FP be the completion of F at P, and let OP := OFP be its ring of integers, with
uniformizer $. We have that FP is an E-algebra. If K has some specific form, we
can give a very explicit description of the moduli problem solved by MK , over FP
(Section 1.3.2). Finally we define integral models of our curves (Theorem 1.3.8).
In Section 1.4 we explain our assumption that F 6= Q, and we show that the case
F = Q is essentially a particular case of our work. In Section 1.5 we explain Cole-
man’s construction of an admissible open subset of a rigid analytic curve associated
with a section of a line bundle. Sections 1.6 and 1.7 contain a brief review of the
theory of $-divisible groups and of Faltings’ theory of groups schemes with strict
OP -action. These theories will be essential for our work. In the particular case
OP = Zp they are just the theory of p-divisible groups and of group schemes.

In Chapter 2 we define p-adic modular forms of integral weight over our Shimura
curves. Section 2.1 is essentially due to Kassaei. We recall the definition of the
analogue of the Hasse invariant in our situation. This allows us to define Eq−1,
an analogue of the Eisenstein series. In this way using Coleman construction of
Section 1.5, we are able to define the space of p-adic modular forms of level K(H),
weight k ∈ Z, and growth condition 0 ≤ w < 1. In Section 2.2, we recall the theory
of the canonical subgroup, as developed in [Kas04]. We also consider canonical
subgroups of higher level (Proposition 2.2.4). We can decompose the pn-torsion
of the objects of our moduli problems, that are abelian schemes, to define a p-
divisible group of dimension 1. In [Kas04], this p-divisible group is used to define
the canonical subgroup. In order to obtain the results we want, we need the theory
of $-divisible group. We study the $-divisible group attached to our abelian
scheme and in Section 2.3 we define p-adic modular forms of level K(H$). Using
the canonical subgroup, we are able to show (Proposition 2.3.5) the important new
result that there is a modular form of level K(H$), called E1, that satisfies

Eq−1
1 = Eq−1.

Chapter 3 contains the most important technical results of the thesis. In Sec-
tion 3.1 we define the map d log, that will be absolutely central in our theory. By
Propositions 3.1.4 and 3.1.7 it is closely related with the canonical subgroup. Fur-
thermore, the map d log permits to link the modular form E1 with the canonical
subgroup. Indeed we have a canonical point γ of the dual of the canonical subgroup,
and we have (Proposition 3.1.10)

d log(γ) ≡ E1 mod $1−w.

These results are inspired by [AIS11], but are more complicated (see below). In
Section 3.2 we use the previous results to construct the so called Hodge-Tate se-
quence. We prove that the homology of this sequence is killed by a certain power
of $ (Theorem 3.2.11). This links the Tate module of our abelian schemes to the
module of invariant differentials in a very precise way. Since an elliptic curve admits
a canonical principal polarization, all the objects studied in [AIS11] are self-dual.
This is not the case in our situation, in particular we need Proposition 3.2.3. This
lack of self duality makes some of the arguments of Section 3.2 more delicate than
those in [AIS11]. In the case OP = Zp, we obtain some results of [AIS11] in a
completely different way.

Chapter 4 is the heart of the thesis. We assume that OP is not too ramified
over Zp (but see Section 4.5, where we explain what can be done without this
assumption). In Section 4.1 we study the continuous characters we are interested
in (see Definition 4.1.1). In particular we define a suitable rigid analytic weight
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space W whose K points, for K a finite extension of FP , correspond to continuous
characters O∗P → K∗. We also define an admissible covering {Wr}r≥0 of W, made
by affinoids that will be needed later on (see Lemma 4.1.7). In Section 4.2 we
consider only a special class of characters, called accessible. We prove that we can
generalize the definition of the sheaves ω⊗k to any accessible character χ : O∗P →
K∗. For any fixed χ, there is a rational w > 0 and a locally free sheaf Ωχw on
M(H)(w)rig (Corollary 4.2.14), such that (Lemma 4.2.21)

Ωχw = ω⊗k if χ(t) = tk.

In this way we are able to define the space of p-adic modular forms of weight χ.
In order to define the sheaves Ωχw, we need to consider the curve M(H$)(w)rig.
We start by defining a sheaf Ω̃χw on M(H$n)(w)rig. We then show that we have
diamond operators acting on the push-forward of Ω̃χw to M(H)(w)rig. Taking in-
variants with respect to these operators, we obtain the sheaf Ωχw. We also describe
our modular forms using ‘test object’ (Section 4.2.2). In Section 4.3 we consider
general characters. This requires working with curves of higher level. In this way
we are able to define the notion of p-adic modular form of any weight. In Section 4.4
we consider analytic families over the weight space W. To show that our definition
of the sheaves Ωχw makes sense, we prove that the Ωχw’s live in families (Proposi-
tion 4.4.4). More precisely, we prove that there are locally free sheaves Ωw,r on
Wr ×M(H)(w)rig, such that Ωχw is the pullback of Ωw,r at the point defined by χ.
Furthermore, the Ωw,r’s satisfy various compatibility conditions. This shows that
our sheaves really ‘interpolate’ the sheaves ω⊗k, for various k. Furthermore, any
modular form of weight χ lives in a p-adic family.

In Chapter 5 we consider Hecke operators. In Section 5.1 we prove (Corol-
lary 5.1.3) that the space of p-adic modular forms of any weight is a Banach mod-
ule that satisfies property (Pr) of [Buz07] (this is a slightly generalization of being
orthonormizable). After that, we introduce the U operator, analogous the the clas-
sical Up operator. We show that it is a completely continuous operator on the space
of overconvergent modular forms (Proposition 5.1.7). In particular, using the work
of Buzzard, we have Riesz theory for U. In Section 5.2 we construct the TL opera-
tors. These are analogous to the classical Tl operators. We also construct families
of both U and TL. The properties of the U operator imply formally (thanks to
the machinery developed in [Buz07]) that a modular form that is an eigenvector
for the U operator (with finite slope) lives in a p-adic analytic family of eigenforms
(Proposition 5.1.11). This gives the analogue of the above theorem of Coleman (see
also Remark 5.1.10).

In the Appendix we make a very detailed study of the canonical subgroup. In
particular we give explicit formulas for the comultiplication and for the module
of invariant differentials (Propositions A.4 and A.10), generalizing some results of
[Col05]. Furthermore, we show that the trivial analogues of the results of [AIS11]
are false in our situation. To be more precise, let A be an object of our moduli
problem, of level K(H$). We have the canonical subgroup C of A[p]. In [AIS11],
it is shown that we have a canonical point γ′ of CD (Cartier dual). One of the
most important technical results of [AIS11] is that the image of γ′ under the map
d log is congruent, modulo p1−w, to E1. Also in our situation we have the canonical
point γ′ (Proposition A.6), but, by Proposition A.8, we have

d log(γ′) = 0

if OP is sufficiently ramified. This show that we need a different approach. The
deep reason for this problem is that all the objects we are interested in are endowed
with an action of OP , and we really need to take this action into account. For
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example, Cartier duality does not work, since Gm does not have a natural action
of OP . This is why we need the theory of group schemes with strict OP -action.

The whole thesis can be seen as the proof of the following two main technical
results. Here K is a finite extension of FP satisfying certain technical conditions.

Theorem. Let χ : O∗P → K∗ be a continuous character and assume that w is
small enough. Then we have an invertible sheaf Ωχw on M(H)(w)rig

K and a completely
continuous operator U on the space of global sections of Ωχw. If χ(t) = tk for all
t ∈ OP , then there is a natural isomorphism, commuting with the action of U,
between H0(Ωχw,M(H)(w)rig

K ) and the space of modular forms of growth condition
w as defined in [Kas04].

Theorem. Let r ≥ 0 be an integer. For any small enough w, we have an
invertible sheaf Ωw,r on Wr ×M(H)(w)rig

K such that its pullback to M(H)(w)rig
K

at any χ ∈ Wr(K) is Ωχw. We have Hecke operators on Ωw,r. Furthermore, any
U-eigenform of finite slope can be analytically deformed.

As an application of our work, we obtain the following theorem (see Theo-
rem 5.3.1).

Theorem. There is a rigid space C ⊆ W ×A1,rig
K , called the eigencurve, such

that its L-points, where L is a finite extension of K, correspond naturally to systems
of eigenvalues of overconvergent modular forms defined over L. If x ∈ C(L), let
Mx be the set of overconvergent modular forms corresponding to x. Then all the
elements of Mx have weight π1(x) ∈ W(L) and the U-operator acts on Mx with
eigenvalue π2(x)−1.

Future developments

As in the classical case, we plan to give a cohomological interpretation of our
modular forms, providing an isomorphism similar to the classical Eichler-Shimura
isomorphism. This should allow us to use the powerful language of modular sym-
bols, as for example in [Bel09].

Using the above mentioned cohomological interpretation, we believe we will
also be able to apply the construction given in [Urb10]. We plan to compare this
construction with the one given in Theorem 5.3.1, proving that they give the same
eigencurve.

We finally hope that our approach to define p-adic families of overconvergent
modular forms can be also used for algebraic groups different from G. We plan to
develop such a theory in a future work.



Notations

We will try to always use standard notations.
All rings are assumed to have a unity element 1, and any morphism of rings

sends 1 to 1. Unless explicitly stated, all rings are commutative.
If R is any ring and n is an integer, we will write µn(R) for the set of n-th roots

of unity in R. We have µn(R) ⊆ R∗, where R∗ is the set of units of R.
If z is a complex number, we will write Re(x) and Im(x) to denote, respectively,

the real and imaginary part of z.
We will use subscript to denote base-change over a fixed object, that will be

clear from the context.
If R is any ring, then we will write Mn(R) for the (non commutative) ring of

n×n matrices with coefficients in R. The transpose of a matrix M will be denoted
with M t.

If L/K is a finite extension of fields, we will write ResL/K for theWeil restriction
functor, i.e. the functor, from L-schemes to K-schemes, that is right adjoint to the
base change · ⊗K L. We set S := ResC /R(Gm,C), so S(R) ∼= C∗ canonically.

We use the symbol
∏′ to denote the restricted product. For example Af , the

ring of finite adele of Q, is defined as Af :=
∏′
pQp.

Let A be an abelian scheme over a ring R. We will write Tp(A) := lim←−nA[pn] for
the Tate module of A, viewed as an étale sheaf over Spec(R) (we will often identify
this sheaf with its stalk at a geometric generic point). We set T̂(A) :=

∏
p Tp(A)

and V̂(A) :=
∏′
p Vp(A), where Vp(A) := Tp(A)⊗Z Q.

If K is a number field, or a local field, we will write OK for its ring of integers.
If K is a local field, with residue field κ, we will write

[·] : κ∗ → µq(OK),

where κ has q elements, for the Teichmüller character. We also set [0] = 0.
The Hamilton quaternions will be denoted with H = 〈1, i, j, k〉.
In Chapter 1, we will write H for the Poincaré half plane, i.e. the Riemann

surface H := {z ∈ C with =(z) > 0}. Starting with Chapter 2, H will have a
complete different meaning (it will be the Hasse invariant, see Section 2.1), but no
confusion should arise.

Our conventions on Hodge structures are those of [Mil05]. In particular, if V
is a real vector space and h : S → GL(V ) is a morphism of algebraic groups, then
the induced Hodge structure on VC satisfies

h(z)v = z−pz−qv,

for any z ∈ C∗ and v ∈ V p,q.
Let k be any field, and let R be any ring. Let V be a k-vector space of finite

dimension, and suppose that R acts on V by k-linear endomorphisms. We define
the map

Trk(·|V ) : R→ A

that sends x ∈ R to the trace of the k-linear map given by x.

ix



x NOTATIONS

We will write Spm(R) for the maximal spectrum of a ring R (we will use this
notations only for rings that are admissible in the sense of [BL93]).

If I is any ideal in a ring R, we say that R is I-adically complete if it is separated
and complete for the I-adic topology on R.

If S is a Noetherian scheme and G→ S is a finite and flat commutative group
scheme, we will write GD for its Cartier dual.



CHAPTER 1

Preliminaries

In this chapter we review some preliminary material. In particular, we define
the Shimura curves we are interested in. They are constructed starting with a
quaternion algebra, and solve a suitable moduli problem, so we call them quater-
nionic modular Shimura curves. They are Shimura varieties of PEL type and have
been introduced by Carayol in [Car86]. We then recall some results of rigid analytic
geometry proved by Coleman in [Col97a]. We also review the theory of $-divisible
and of formal OP -module as in [Mes72]. Finally we introduce the notion of group
scheme with strict OP -action, following [Fal02].

1.1. Shimura varieties of PEL type

We briefly review the theory of Shimura varieties of PEL type. General ref-
erences for Shimura varieties are [Mil05], [Del71], and [Del79]. We assume
some knowledge about algebraic groups, the standard references are [Wat79] and
[Hum75].

Let D be a finite dimensional simple Q-algebra (not necessarily commutative).
We let ∗ : D → D be an involution, i.e. a Q-linear map that satisfies (ab)∗ = b∗a∗

and a∗∗ = a for all a and b in D.
We assume that the decomposition into a product of simple algebras of DC is

the following:

DC =

N∏
i=1

(M2(C)×M2(C)).

We make the further assumption that our involution respects this product and that
on each factor we have, up to an inner automorphism of M2(C),

(a, b)∗ = (bt, at).

In the language of [Mil05], Chapter 8, we are assuming that (D,∗ ) is of type A.
Let E be the center of D and let F be the subalgebra of E fixed by ∗. We

assume that E (and hence F ) is a field. Let V be a free left D-module of finite
rank. We make the assumption that the reduced dimension of V

dimE(V )

[D : E]1/2

is even. In the language of [Mil05], Chapter 8, this means that (D,∗ ) is of type
Aeven, in particular the Shimura varieties we are going to define are moduli spaces
of abelian varieties with additional structure.

Let Θ: V × V → Q be an alternating non-degenerate Q-bilinear form. We say
that Θ is symplectic if

Θ(du, v) = Θ(u, d∗v)

for all d ∈ D and all u, v ∈ V . We fix (V,Θ), with Θ symplectic.
Let g be in AutD(V ). We say that g is a D-linear symplectic similitude of

(V,Θ), if there exists µ(g) ∈ Q∗ such that

Θ(g(u), g(v)) = µ(g)Θ(u, v)

1
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for all u, v ∈ V . We extend this definition to (VR,ΘR), for any Q-algebra R, in the
obvious way. Let G be the algebraic group over Q such that its R-points are

G(R) = {D-linear symplectic similitudes of (VR,ΘR)} .

Proposition 1.1.1. The algebraic group G is reductive. Furthermore, the
adjoint group Gad is simple.

Proof. Everything is proved in [Mil05], Chapter 8. See in particular Propo-
sition 8.7. �

We write C for EndD(V ). Note that ·∗ induces an involution ∗ : C → C given
by

Θ(c(u), v) = Θ(u, c∗(v))

for all u, v ∈ V and all c ∈ C. It follows that, for any Q-algebra R, we have a
functorial isomorphism

G(R) ∼= {x ∈ C ⊗Q R such that xx∗ ∈ R∗} .
We assume that ∗ is positive, i.e. that TrVR/R(d∗d) > 0 for all d ∈ DR \ {0}. By
[Mil06], Chapter 1, Section 1, we have that F is totally real and that E is a
CM-field.

Proposition 1.1.2. There is a D-linear element J ∈ CR such that, for all
u, v ∈ VR, we have

J2 = −1, ΘR(Ju, Jv) = ΘR(u, v), and ΘR(u, Ju) > 0 if u 6= 0.

Furthermore, J is unique up to a conjugation by an element c ∈ C that satisfies
cc∗ = 1.

Proof. This is [Mil05], Proposition 8.12. �

Each J as in the above proposition defines a complex structure on VR, hence
it gives a morphism h : S → GLVR . Since ΘR(Ju, Jv) = ΘR(u, v), we have that h
factors through a morphism

h : S→ GR.

We let X be the G(R)-conjugacy class of any h as above. By Proposition 1.1.2, we
have that X is well defined.

Since (any) h as above is non trivial and Gad is simple, we have that Gad has no
Q-factors on which the projection of h is trivial. This is condition SV3 in [Mil05].
Using the notation of [Del79], this implies that Gad = Gad

1 .
By [Mil05], Proposition 8.14, the couple (G,X) satisfies condition β (hence

condition α) of [Del79]. Since ΘR(u, Ju) > 0 for all u, v ∈ V , we have that J
defines a Cartan involution of Gad = Gad

1 , in particular (G,X) satisfies condition γ
of [Del79] (see also [Mil05], Chapter 6).

For any h as above, we define

t : D → C

d 7→ TrC(d|VC/F 0
hVC)

where F ihVC is the Hodge filtration of VC defined by h. Since condition α is satisfied,
we have that t does not depend on h.

Let K ⊆ G(Af ) be a compact open subgroup. Recall the definition of the
Shimura varieties attached to (G,X), of level K,

MK(C) := G(Q)\(G(Af )×X)/K,

where G(Q) acts by left multiplication on G(Af ) and by conjugation on X, while
K acts by right multiplication on G(Af ) and trivially on X. By general theory, we
have that MK(C) is a complex manifold.
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Theorem 1.1.3. We have that MK(C) classifies the isomorphism classes of
quadruples (A, i, θ̄, ᾱ), where

(1) A is a complex abelian variety, defined up to isogenies, with an action of
D via i : D → End(A)⊗Z Q such that, for all d ∈ D, we have

TrC(i(d)|Lie(A)) = t(d);

(2) θ̄ is a homogeneous polarization (i.e. a class of polarization up to multi-
plication by elements of Q∗) such that the corresponding Rosati involution
sends i(d) to i(d∗), for all d ∈ D;

(3) ᾱ is a K-level structure, i.e. a class, modulo K, of a symplectic D-linear
similitudes α : V̂(A)

∼−→ V ⊗Q Af .
In the last condition, the symplectic form on V̂(A) is given by the Weil pairing
composed with the polarization.

Proof. This is a restatement of [Mil05], Theorem 8.17 and Proposition 8.19.
�

The Shimura varieties obtained in this way are called Shimura varieties of PEL
type, since by Theorem 1.1.3, they classify abelian varieties with polarization (given
by θ̄), endomorphisms (given by D), and level structure (given by ᾱ).

1.2. Quaternion modular Shimura curves over C

In this section we define the Shimura curve we are interested in, over C. These
varieties are particular cases of those consider in Section 1.1. We start with the
field F and we define the algebra D, rather than obtaining F from D, but at
the end the notations of this section will be completely compatible with those of
Section 1.1. The main reference is [Car86] (with some results of [Del71]). We
assume familiarity with basic theory of quaternion algebra, the standard reference
is [Vig80].

We fix F , a totally real field of degree N > 1 over Q. The various embeddings
of F into R will be denoted with τ1, . . . , τN . We set τ := τ1

Let B be a quaternion algebra over F . We assume that B is split at τ and that
it is ramified at τ2, . . . , τN (these assumptions imply that the Shimura varieties we
are going to consider have dimension 1). In particular we fix the identifications

B ⊗F,τ R = M2(R) and B ⊗F,τi R = H for i 6= 1.

Let λ < 0 be a rational number. Since F is totally real, we have [E : F ] = 2,
where E := F (

√
λ) (in other words E is a CM-field). We extend each τi to E by

τi(x+
√
λy) = τi(x) +

√
λτi(y),

where x, y ∈ F . We embed E in the field of complex numbers via τ = τ1.
Let z 7→ z̄ be the non trivial element of Gal(E/F ). On D := B⊗F E, we define

an involution ·̄, that sends b ⊗F z to b′ ⊗F z̄, where ·′ : B → B is the canonical
involution of B. Let δ be any invertible element of D such that δ̄ = δ. We define
an involution ·∗ : D → D by

l∗ = δ−1 l̄δ.

Lemma 1.2.1. We have that D is a simple Q-algebra and satisfies the assump-
tions of Section 1.1. Furthermore, the center of D is E, and F is the subset of E
fixed by the involution ∗.

Proof. Since D is a quaternion algebra over E, we have that D is simple and
E is its center. Note that, by definition, ∗ restricted to E is the unique non trivial
element of Gal(E/F ), so F is the subset of E fixed by ∗. We have D ⊗Q C =
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iDτi ⊗R C, where Dτi := D ⊗F,τi R = B ⊗F,τi R⊗F,τiE. We now consider the

cases i = 1 and i 6= 1.

If i = 1, we have B ⊗F,τ R = M2(R) and
(
a b
c d

)′
=

(
d −b
−c a

)
, so

Dτ = M2(C) and (
a b
c d

)∗
= δ−1

(
d −b
−c a

)
δ.

If i 6= 1, we have B ⊗F,τ R = H and (a + ib + jc + kd)′ = a − ib − jc − kd, so
Dτi = M2(C), and (

a b
c d

)∗
= δ−1

(
a c

b d

)
δ.

It follows that, for any i, we have Dτi ⊗R C = M2(C) × M2(C). By an easy
computation, we have that, on each Dτi ⊗R C,

(a, b)∗ = (b∗, a∗),

for all a, b ∈ M2(C). The lemma follows by [Mil05], Proposition 8.3. �

Let V be the underlying Q-vector space of D. Note that V is a left free (of
rank 1) D-module. Clearly, the reduced dimension of V is 2. We now take any
α ∈ E such that ᾱ = −α, and we define the Q-bilinear form

Θ: V × V → Q

(v, w) 7→ Θ(v, w) = TrE/Q(αTrD/E(vδw∗))

Lemma 1.2.2. We have that Θ is a symplectic form on V .

Proof. Clearly Θ is Q-bilinear. Since δ is invertible, the non degeneracy of
Θ follows by the non degeneracy of TrD/E and of TrE/F . We prove that Θ is
alternating. Let x be in F , we have

TrE/Q(αx) =

N∑
i=1

τi(αx) +

N∑
i=1

τi(αx) =

N∑
i=1

τi(αx)−
N∑
i=1

τi(αx) = 0.

In particular, to prove that Θ is alternating, i.e. that Θ(v, v) = 0 for all v ∈ V ,
we can prove that TrD/E(vδv∗) = TrD/E(vv̄δ) ∈ F for all v ∈ V . Let ·′ : D →
D be the canonical involution of D. Since TrD/E(d) = d + d′, we have that
TrD/E(d) = TrD/E(d̄) for all d ∈ D. We have vv̄δ = δvv̄. In particular, the fact that
TrD/E(vδv∗) ∈ F and that Θ is symplectic follow by TrD/E(d1d2) = TrD/E(d2d1)
for all d1, d2 ∈ D. �

Let Vτi be the R-vector space underlying Dτi , where Dτi is defined in the proof
of Lemma 1.2.1. By definition we have VR ∼= ⊕iVτi .

Thanks to Proposition 1.1.1, we have G, a reductive algebraic group over Q
whose points are the symplectic similitudes of Θ.

Lemma 1.2.3. We can choose δ is such a way that the involution ∗ is positive.

Proof. Since being positive is an open condition and V is dense in VR, it
suffices to prove that we can choose, for all i, an element δτi ∈ Vτi such that
the corresponding involution is positive. By the proof of Lemma 1.2.1, we have
Vτi
∼= M2(C) for all i, while the involution ∗ depends on whether i = 1 or not. By

an explicit computation we see that we can take δτ = Im(τ(α))

(
0 i
−i 0

)
and

δτi = Im(τi(α))

(
1 0
0 1

)
for i 6= 1. �
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From now on we assume that ∗ is positive. It follows by the results of Sec-
tion 1.1, that we have a morphism of algebraic groups

h : S→ GR.

This morphism defines an Hodge structure of type {(−1, 0), (0,−1)} on VR, i.e. a
complex structure on VR (the multiplication by i is given by the action of J = h(i)).
The fact that ∗ is positive implies that Θ is a polarization for the Hodge structure
on VR.

Let X be the conjugacy class of h. It is possible to describe X more concretely.
We now sketch an equivalent, but more explicit, construction of X, see [Car86]
for the details. Let G′ be the reductive algebraic group over Q defined by G′ :=
ResF/Q(B∗) (note that in the literature, G and G′ are often interchanged). By
assumption, we can fix an identification

G′(R) = GL2(R)× (H∗)N−1.

The homomorphism C∗ → G′(R) = GL2(R)× (H∗)N−1 that sends x+ iy to((
x y
−y x

)−1

, 1, . . . , 1

)
,

comes from a unique morphism

h′ : S→ G′R.

We write X ′ for the conjugacy class of h′. We have that X ′ is the union of 2
copies of H, the Poincaré half plane (in particular it has dimension 1). Let T be
ResF/Q(Gm,F ), so T is isomorphic to the center of G′. In particular we have an
exact sequence of algebraic groups

1 −→ G′1 −→ G′
v′−→ T −→ 1,

where G′1 is the derived subgroup of G′ (the morphism v′ is induced by the norm
of B). Let TE be ResE/Q(Gm,E). We define G′′ to be the colimit of the diagram
TE ← T → G′, where T → G′ is given by identifying T with the center of G′. Let
UE be the subgroup of TE defined by the equation zz̄ = 1. We have a morphism
v : G′′ → T × UE , given by v(g, z) = (v′(g)zz̄, z/z̄). Finally, let T ′ be the subtorus
of T × UE defined by T ′ = Gm,Q × UE .

Lemma 1.2.4. We have that G is isomorphic to the inverse image of T ′ under v.
Furthermore, the derived subgroup of G is isomorphic to G′1, the derived subgroup
of G.

Proof. With our assumption, the ring C = EndD(V ) is isomorphic to D. So,
for any Q-algebra R, we have that G(R) can be identified with the set of x ∈ D⊗QR
such that xx∗ ∈ R∗ (see Section 1.1). The lemma follows. �

We have a natural isomorphism

TE(C) ∼= (C∗)N ,

so we can define a morphism hE : S→ (TE)R by the formula (on R-points)

hE(z) = (1, z−1, . . . , z−1).

By universal property, we get a morphism h′ × hE : S→ G′′R, that factors through
h : S → GR. By the uniqueness part of Proposition 1.1.2, we have that the conju-
gacy class of h is our X defined above. Furthermore we see that X is isomorphic
to H. Using the decomposition of VR given in the proof of Lemma 1.2.1, we can
study more explicitly the morphism h. We have that J acts on each Vτi ∼= M2(C)
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as multiplication (on the right) by a matrix in GL2(C). If i = 1 then such a matrix

is equal to
(

0 1
−1 0

)
, while if τ 6= 1 then it is equal to

(
i 0
0 i

)
.

Recall that, for any compact open subgroup K of G(Af ), we have the Shimura
varieties MK(C) associated to the couple (G,X).

Proposition 1.2.5. We have that theMK(C)’s are compact Riemann surfaces.
If K ′ ⊆ K are sufficiently small, the natural map

MK′(C)→MK(C)

is étale.

Proof. By general theory of Shimura varieties we know that MK(C) is a
quotient of X, so, since X has dimension (as complex variety) 1, we have that
MK(C) is a Riemann surface. The compactness follows from the fact that D, being
a division algebra, has no non-trivial nilpotent elements, so G(R) has no non-trivial
unipotent elements (see [Mil05], Theorem 3.3). The last assertion is a general fact
about Shimura varieties, see [Mil05], Remark 5.29. �

1.3. Models of quaternionic modular Shimura curves

In this section we define a canonical model over E of the quaternionic modular
curves. We use this model to base change our varieties to a p-adic field FP . Finally
we work overOP , the ring of integers of FP . Putting some condition onK ⊆ G(Af ),
we also describe more explicitly our moduli problem. In particular, in Section 1.3.2,
we prove that almost every object we are going to consider admits a particular
decomposition, that will be used through the thesis.

1.3.1. The canonical model over the reflex field. For details about the
reflex field of a Shimura variety, see [Del79] and [Del71].

Recall the morphism t, defined in Section 1.1,

t : D → C

d 7→ TrC(d|VC/F 0
hVC)

Proposition 1.3.1. For any sufficiently small K ⊆ G(Af ) compact open, the
reflex field of MK(C) is E. In particular, for such a K, the Riemann surface
MK(C) admits a canonical model, denoted MK , over E. These curves solve the
moduli problem of Theorem 1.1.3, but for E-algebras.

Proof. By [Del71], Section 6, the reflex field of MK(C) is the subfield of C
generated by the t(d)’s, for d ∈ D. We show that this field is E, embedded in C
via τ . First of all note that VC/F 0

hVC = V −1,0
C (using the Hodge structure given by

h). We have (see the proof of Lemma 1.2.1 for the notations)

V −1,0
C =

N⊕
i=1

(Vτi ⊗R C)−1,0,

furthermore the trace we are interested in is the sum of the various traces given by
this decomposition.

If i = 1, then Vτ = M2(C), so Vτ ⊗R C = M2(C) × M2(C). Furthermore,

J = h(i) acts on Vτ as multiplication, on the right, by
(

0 1
−1 0

)
on each M2(C).

In particular (Vτ⊗RC)−1,0, is the set (M1,M2) ∈ M2(C)×M2(C) such thatMkJ =

iMk, for k = 1, 2. This last condition is equivalent to Mk =

(
ak ak
ibk bk

)
, for some

ak, bk ∈ C. An element d ∈ Dτ acts on M2(C)×M2(C) as multiplication on the left
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by d. This implies that the trace of the multiplication by dτ on Vτi ⊗R C is equal
to Tr(dτ ) + Tr(dτ ).

If i 6= 1 a similar argument works. We have Vτi = M2(C) and Vτi ⊗R C =
M2(C)×M2(C). In this case J acts on Vτi as multiplication by i on the first factor,
and by −i on the second one. It follows that (Vτi ⊗R C)−1,0 is equal to the first
copy of M2(C). In particular the trace of the multiplication by dτi on Vτi ⊗R C is
equal to 2 Tr(dτi).

We have proved that t(d) = σ(TrD/E(d)), where

σ := τ + τ̄ + 2τ2 + · · ·+ 2τN .

Let x, y ∈ F . Since E = F (
√
λ), we have

σ(x+
√

(λ)y) = 2 TrF/Q(x) + 2(TrF/Q(y)− y)
√
λ,(1.3.1)

so the image of σ in C generates E. The proposition follows. �

From now on we assume that K is small enough to have the canonical model
MK . We conclude this section with a new version of Theorem 1.1.3.

Theorem 1.3.2. We have that MK represents the functor (E-algebras)op →
set that sends R, an E-algebra, to the set of isomorphism classes of quadruples
(A, i, θ̄, ᾱ), where

(1) A is an abelian scheme over R of relative dimension 4N , defined up to
isogenies, with an action of D via i : D → End(A)⊗ZQ such that, for all
d ∈ D, we have

TrR(i(d)|Lie(A)) = t(d);

(2) θ̄ is a homogeneous polarization, such that the corresponding Rosati invo-
lution sends i(d) to i(d∗), for all d ∈ D;

(3) ᾱ is a K-level structure.

Proof. Since V has the dimension 8N over Q, the existence of the level struc-
ture implies that the dimension of A is 4N . �

1.3.2. The canonical model over a local field. We now start working
p-adically. We are going to define a local field FP that contains E, so we can
base-change our canonical model MK to FP .

Let p 6= 2 be a prime number, fixed from now on. We assume that Q(
√
λ)/Q

splits at p
Let P1, . . . ,Pm be the prime ideals of OF lying over p. The completion of F

at Pi will be denoted with FPi . Let di := [FPi : Qp], so N = d1 + · · ·+ dm. There
is a canonical isomorphism of rings

F ⊗Q Qp ∼=
m∏
i=1

FPi .

We set
P := P1, d := d1, and OP := OFP .

We choose $, a uniformizer of OP . All our results do not depend on this choice.
Let κ := OP/$ be the residue field of OP . The ramification degree of OP will be
denoted with e, so $e = p in OP . We write q = pf for the cardinality of κ. In
particular we have d = ef . Let v(·) be the valuation on OP normalized in such a
way that v($) = 1 (beware, v(p) = e ≥ 1). We choose the absolute value | · | on FP
that satisfies |$| = q−1. We fix FP , an algebraic closure of FP and we denote with
Cp its completion (note that Cp is an algebraically closed field). Both v(·) and | · |
extend to the whole Cp. The residue field of OCp is κ, an algebraic closure of κ.
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We assume that B is split at P. In particular, we fix the identification

B ⊗F FP = M2(FP).

Since Q(
√
λ)/Q splits at p, there is µ ∈ Qp such that µ2 = λ, and we choose

one such µ. There is an isomorphism of rings

E ⊗Q Qp → (F ⊗Q Qp)× (F ⊗Q Qp)(1.3.2)

x+ y
√
λ⊗ 1 7→ (x⊗ 1 + y ⊗ µ, x⊗ 1− y ⊗ µ),

for x, y ∈ F . In particular, the canonical isomorphism F ⊗Q Qp ∼=
∏
i FPi gives

E ⊗Q Qp
∼−→ (FP1 × · · · × FPm)× (FP1 × · · · × FPm).(1.3.3)

Composing twice the natural map E → E ⊗Q Qp with the projection on the first
factor, we get a map E → FP . We use this morphism to define a structure of
E-algebra on FP .

From now on, we will consider the curve MK as a smooth and proper scheme
over FP , via E → FP . We have that MK solves the moduli problem of Theo-
rem 1.3.2, but for FP -algebras. Using the properties of FP , we can be more explicit
about the moduli problem.

The above decomposition of E ⊗Q Qp gives

D ⊗Q Qp ∼= D1
1 × · · · ×D1

m ×D2
1 × · · ·D2

m.(1.3.4)

Here Dk
j
∼= B⊗F FPj as FPj -algebra, so D1

1
∼= D2

1
∼= M2(FP) as FP -algebras. Note

that l 7→ l∗ switches D1
j and D2

j .
Recall that a category C is called preadditive if it has a zero object (i.e. both ini-

tial and terminal), all the Hom-sets are abelian group, and composition is Z-bilinear
(‘C is enriched over the monoidal category of abelian groups’). In particular, if X is
an object of C, then End(X) is a ring (with unit, but not necessarily commutative).

Definition 1.3.3. A category C is called pseudo-abelian or Karoubian, if it is
preadditive and the following holds. Let X be an object of C and let f ∈ End(X)
be an idempotent endomorphism. Then ker(f) exists in C.

Lemma 1.3.4. Let C be a pseudo-abelian category. Let X be an object of C and
suppose that f ∈ End(X) is an idempotent endomorphism. Then id−f ∈ End(X)
is idempotent too and we have X ∼= ker(f)⊕ker(id−f) (existence of the direct sum
is part of the lemma).

Proof. The only non trivial part is the one about the direct sum. We write
i1 : ker(f) → X for the natural morphism, and similarly for i2 : ker(id−f) → X.
We prove that (X, i1, i2) has the universal property of ker(f) ⊕ ker(id−f). The
composition X id−f−→ X

f−→ X is 0, so, by universal property, we get a morphism
π1 : X → ker(f) such that i1 ◦ π1 = id−f . In an similar way, we have a morphism
π2 : X → ker(id−f) such that i2 ◦ π2 = f . Let Y be any object of C, and suppose
we have two morphisms g1 : ker(f) → Y and g2 : ker(id−f) → Y . We define a
morphism g : X → Y by

g = g1 ◦ π1 + g2 ◦ π2.

By diagram chasing, it is easy to verify that

π1 ◦ i1 = id , π2 ◦ i1 = 0, π2 ◦ i2 = id , and π1 ◦ i2 = 0.

This implies that g ◦ i1 = g1 and g ◦ i2 = g2. It is immediate to check that g is
uniquely defined by g1 and g2. �
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As a particular case of the lemma, if C is a pseudo-abelian category and X is
an object of C with an action of D ⊗Q Qp (i.e. a map D ⊗Q Qp → End(X) that is
an homomorphism or an anti-homomorphism of rings), the isomorphism in (1.3.4)
induces a decomposition (in C)

X ∼= X1
1 ⊕ · · · ⊕X1

m ⊕X2
1 ⊕ · · ·X2

m,

where each Xk
j has an action of Dk

j . We can use the idempotents
(

1 0
0 0

)
and(

0 0
0 1

)
of D2

1
∼= M2(FP), to obtain a further decomposition:

X2
1
∼= X2,1

1 ⊕X2,2
1 .

Note that X2,1
1 and X2,2

1 are isomorphic (take a matrix that switches the idempo-
tents). The definitions of X1,1

1 and of X1,2
1 are similar.

Remark 1.3.5. We will use the above notation for the rest of thesis. In partic-
ular we will consider the 2,1

1 -part of various objects to reduce their dimension. The
idea is that, taking this direct factor, we obtain an object of dimension 1, so we
can work as if our abelian schemes were elliptic curves. Note that D does not act
on X2,1

1 , in some sense we have already used its action to get the decomposition.
The idea of taking such a decomposition goes back to Carayol in [Car86], and is
absolutely central to our theory.

We want to state a moduli problem about abelian schemes rather than about
isogeny classes of abelian schemes. To do this, we work with a maximal order in
our quaternion algebra.

Let OB be a maximal order of B. Since B is split at P, we can fix an identifi-
cation, of OP -algebras,

OB ⊗OF OP ∼= M2(OP).

The maximal order of D corresponding to OB will be denoted with OD, or with
VZ if we want to see it as a Z-lattice in the Q-vector space V . The isomorphism
in (1.3.3) implies that we have the following isomorphisms of rings

OD ⊗Z Zp ∼= OD1
1
× · · · × OD1

m
× OD2

1
× · · · OD2

m⋂ ⋂ ⋂ ⋂ ⋂
D ⊗Q Qp ∼= D1

1 × · · · × D1
m × D2

1 × · · · D2
m

(1.3.5)

Let X be an object of a pseudo-abelian category, and assume that O ⊗Z Zp acts
on X. Using the decomposition given in (1.3.5), we extend, in the obvious way, the
definition of Xk

j , X
1,i
1 , and X2,i

1 .
We can choose OB , α, and δ in such a way that the following conditions are

satisfied:
(1) OD is stable under l 7→ l∗;
(2) ODkj is a maximal order in Dk

j and OD2
1
is identified with M2(OP);

(3) Θ takes integer values on VZ;
(4) Θ induces a perfect pairing on VZp := VZ ⊗Z Zp.

From now on, we assume that these conditions are satisfied.
Let V ′Z be the dual lattice of VZ, with respect to Θ. From now on we assume

that every compact open subgroup K is small enough to keep invariant the lattice
V
Ẑ

:= VZ ⊗Z Ẑ.
Let R be an FP -algebra and let A be an abelian scheme over R. Suppose that

OD acts on A. Then Lie(A) is a OD ⊗Q R-module, hence a OD ⊗Z Zp-module. In
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particular, the R-module Lie(A)ji is defined. Since Lie(A) is a projective R-module
and

Lie(A) = Lie(A)1
1 ⊕ · · · ⊕ Lie(A)1

m ⊕ Lie(A)2
1 ⊕ · · · ⊕ Lie(A)2

m,

we have that Lie(A)ji is a projective R-module.
We are now ready to state our version the moduli problem over FP .

Theorem 1.3.6. We have that MK represents the functor (FP -algebras)op →
set that sends R, an FP -algebra, to the set of isomorphism classes of quadruples
(A, i, θ, ᾱ), where

(1) A is an abelian scheme over R of relative dimension 4N with an action
of OD via i : OD → EndR(A) that satisfies:
(a) the projective R-module Lie(A)2,1

1 has rank 1 and OP acts on it via
the natural morphism OP → R;

(b) for j ≥ 2, we have Lie(A)2
j = 0;

(2) θ is a polarization, of degree prime to p, such that the corresponding Rosati
involution sends i(l) to i(l∗);

(3) ᾱ is a K-level structure, i.e. a class modulo K of symplectic OD-linear
isomorphisms α : T̂(A)

∼→ V
Ẑ
.

Proof. We outline the proof, that is contained in [Car86]. The starting point
is Theorem 1.3.2. We write dji for a generic element of Dj

i . Let (A, i, θ̄, ᾱ) be an
object of the moduli problem of Theorem 1.3.2, with A defined over R. In Sections
2.4.1-2.4.3 of [Car86] it is shown that condition (1) of Theorem 1.3.2 is equivalent
to the following conditions:

• TrR(d1
1|Lie(A)1

1) = 2 TrFP/Qp(TrD1
1/FP

(d1
1))− TrD1

1/FP
(d1

1);
• TrR(d1

i |Lie(A)1
i ) = 2 TrFPi/Qp(TrD1

i /FPi
(d1
i )) if i 6= 1;

• TrR(d2
1|Lie(A)2

1) = TrD2
1/FP

(d2
1);

• Lie(A)2
i = 0 if i 6= 1.

By [Car86], Sections 2.4.4 and 2.4.5, the last two conditions imply the others (since
A has dimension 4N). If follows that condition (1) of Theorem 1.3.2 is equivalent
to condition (1) of the statement of the theorem we are proving.

We now want to define a unique abelian scheme A0, rather than a class of
abelian schemes up to isogenies. By our assumption on V

Ẑ
, we have that k−1(V

Ẑ
) ⊆

V̂ (A) does not depend on the choice of α ∈ ᾱ. There is a unique abelian scheme
A0 in the class of A such that T̂(A0) = α−1(V

Ẑ
). Since V

Ẑ
is stable under OD, we

have an action of OD on A0. We can also define a unique θ ∈ θ̄ by requiring that
α−1(V

Ẑ
) is dual to α−1(V ′

Ẑ
), where V ′

Ẑ
= V ′Z ⊗Z Af .

Decomposing V(A) ⊗Q Qp, it is possible to prove (see [Car86], Section 2.5)
that in order to define the symplectic D-linear similitude

α : V̂ (A)
∼→ V ⊗Q Af ,

it is enough to specify:
• a symplectic D-linear similitude αp :

∏′
l 6=p Vl(A)

∼→ V ⊗Q Af ;
• a similitude factor in Qp
• an FP -linear isomorphism k2,1

1 : V(A)2,1
1
∼→ V 2,1

1 .
In this way we can see k̄ as a class of symplectic OD-linear isomorphisms

k : T̂(A)
∼→ V

Ẑ
.

The theorem follows. �

Let V kj := (V ⊗Q Qp)kj . We have that V kj and V hi are orthogonal with respect
to Θ ⊗Q Qp except if j = i and k 6= h. Let f be in G(Qp), so f is a symplectic
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similitude of V ⊗Q Qp. We have that f is uniquely defined by its similitude factor
and its restriction to the V 2

j ’s. This implies that

G(Qp) = Q∗p×(B ⊗F FP1)∗ · · · × (B ⊗F FPm)∗.

In particular we have

G(Af ) ∼= Q∗p×GL2(FP)× (B ⊗F FP2)∗ × · · · × (B ⊗F FPm)∗ ×G(Af,p),

where Af,p is the restricted product of the Ql’s (l prime), with l 6= p. We will
simply write Γ for (B ⊗F FP2

)∗ × · · · × (B ⊗F FPm)∗ ×G(Af,p).
From now on, we assume that K is a compact open subgroup of G(Af ) of the

form
K = Z∗p×KP ×H,

where KP is a subgroup of GL2(FP) and H is a subgroup of Γ.
Let (A, i, θ, ᾱ) be an object of the moduli problem of Theorem 1.3.6. We write

T̂p(A) for
∏
l 6=p Tl(A) and Ẑp for

∏
l 6=pZl (l prime). We denote Tp(A)2

2 ⊕ · · · ⊕
Tp(A)2

m with TPp (A) and
(
VZp

)2
2
⊕ · · · ⊕

(
VZp

)2
m

with WPp . Let Ŵ p be VZ ⊗Z Ẑp.
We can give a more explicit interpretation of ᾱ, that is a class of OD-linear

isomorphisms T̂(A)
∼→ V

Ẑ
. Using the decomposition K = Z∗p×KP × H, we have

that (see the last part of the proof of Theorem 1.3.6) giving ᾱ is equivalent to give
ᾱP and ᾱP , where

• ᾱP is a class, modulo H, of αP = αPp ⊕ αp, with αPp : TPp (A)
∼−→ WPp

linear and αp : T̂p(A)
∼−→ Ŵ p symplectic;

• ᾱP is a class modulo KP of isomorphisms of OP -modules αP : Tp(A)2,1
1
∼→

(VZp)2,1
1
∼= O2

P .
In the case KP has some specific form, we can be even more explicit. We write
A[$]2,11 for the $-torsion of A[p]2,11 (see Section 1.6).

We define
K(H) := GL2(OP),

K(H,$n) :=

{(
a b
c d

)
∈ GL2(OP) s.t. c ≡ 0 mod $n

}
,

and

K(H$n) :=

{(
a b
c d

)
∈ GL2(OP) s.t. a ≡ 1 mod $n and c ≡ 0 mod $n

}
.

In the case KP = K(H), a choice of a level structure is equivalent to a choice of
ᾱP , where:

(1) ᾱP is a class, modulo H, of αP = αPp ⊕ αp, with αPp : TPp (A)
∼−→ WPp

linear and αp : T̂p(A)
∼−→ Ŵ p symplectic.

In the case KP = K(H,$n), a choice of a level structure is equivalent to a choice
of (C, ᾱP), where:

(1) C is a finite and flat subgroup scheme of rank qn of A[$n]2,11 , stable under
the action of OP ;

(2) ᾱP is as above.
In the case KP = K(H$n), a choice of a level structure is equivalent to a choice
of (Q, ᾱP), where:

(1) Q is a point of exact OP -order $n in A[$n]2,11 ;
(2) ᾱP is as above.

In these cases, the curvesMK will be denoted, respectively, withM(H),M(H,$n),
and M(H$n). These are the curves we are mainly interested in.
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Remark 1.3.7. The curve M(H) should be thought of as an analogue of the
classical modular curve X1(M), where p does not divide M (our Shimura curves
are already proper, so there is no need for compactification). In this philosophy, the
curvesM(H,$n) andM(H$n) are the analogue of the curves X(M ; pn) (Γ1(M)∩
Γ0(pn)-level structure) and X1(Mpn).

1.3.3. Integral models. The last models we are interested in are over OP .

Theorem 1.3.8. There are curvesM(H),M(H,$n), andM(H$n) that are
canonical OP -models of M(H), M(H,$n), and M(H$n). These curves solve the
above moduli problems, but for OP -algebras. We have that M(H) is smooth over
OP , while the other curves have semistable reduction.

Proof. This theorem is one of the main results of [Car86], see also [Kas09],
Section 5. �

If we work over OP , the level structure has the same description as above, but
now Q is a point of exact OP -order $n in the sense of Drinfel’d, i.e. a morphism
of OP -modules ϕ : OP/$nOP → A[$n]2,11 (R) such that

∑
a∈OP/$nOP [a] is a finite

and flat OP -submodule scheme of rank qn of A[$n]2,11 . Here (A, i, θ, ᾱ) is an object
of the moduli problem defined over R, [a] is the closed subscheme of A[$n]2,11

corresponding to ϕ(a), and the sum means product of the defining ideals. Note that
Q = ϕ(1) is a canonical R-point of A[$n]2,11 that generates a submodule of order
qn. If n ≥ m, we have morphisms, given by the obvious natural transformations of
functors

M(H$n)→M(H$m),

M(H,$n)→M(H,$m),

M(H$n)→M(H,$n) and
M(H,$n)→M(H).

The universal objects of the moduli problems of the curves M(H), M(H,$n),
and M(H$n) will be denoted with A(H), A(H,$n), and A(H$n). They admit
the canonical integral models A(H), A(H,$n), and A(H$n), that are universal
objects for the moduli problems over OP . The morphism A(H) →M(H) will be
denoted with π, and its zero section with e, we use the same symbols for the other
curves.

We will consider the $-adic completion of these integral models, and after we
take rigidification. Since our curves are proper, we could also analytify the generic
fiber, but in Chapter 2 we will really need the formal model.

1.4. What if F = Q?

One of our first assumptions is that N , the degree of F over Q, is strictly greater
than 1, so F 6= Q. What happens if F = Q? It turns out that all our results remain
true also in this case, but some proofs must be adapted. But note that if F = Q,
then B is a quaternion algebra over Q. In this case, our assumptions about B mean
that B is a division algebra, that is split at p. In particular, the case F = Q is not
the case of the classical modular curves, that is characterized by the fact that the
Shimura curves need to be compactified. Nevertheless, all results of [AIS11] that
involve the formal group of an elliptic curve (for example the property of the map
d log and of the Hodge-Tate sequence) can be deduced by our work.

The most important reason why we have chosen to exclude the case F = Q

is the following. Recall the reductive algebraic group G′ = ResF/Q(B∗) and the
morphism h′ : S→ G′R from Section 1.2. If K ′ ⊆ G′(Af ) is compact open, then we
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can define the Shimura curve M ′K′(C) as usually, as double coset space. It is easy
to prove that the weight morphism wX : Gm,R → G′R is defined over Q if an only
if F = Q (see [Mil05], page 87). So, if F 6= Q, the Shimura curve M ′K′(C) is not
of PEL type (it is not even of abelian type). This lack of interpretation as moduli
space is the main reason to introduce the group G. If F = Q the curve M ′K′(C) is
of PEL type, so there is no need to introduce the algebraic group G, and it is more
natural to work with G′.

If F = Q, the Riemann surface M ′K′ admits canonical smooth and proper
models over Q, denoted again M ′K′ . The study of the curves M ′K′ is done in
[Kas99]. It turns out (with some technical assumptions that we do not recall here)
that M ′K′ classifies isomorphism class of fake elliptic curves with level structure.
This are abelian varieties of dimension 2 (not 4, as one can suppose using N = 1 in
our work). In this case the field FP is equal to Qp, and the ring OP is Zp. There
is nothing like the field E (so there is no D). If C is a pseudo-abelian category and
X is an object of C with an action of OB ⊗Z Zp, then we have a decomposition

X = X1 ⊕X2.

Using X1 instead of X2,1
1 in the following chapters (and the curve M ′K′), we see

that the case F = Q is essentially a particular case of our work. It is worth noting
that the case F 6= Q is essentially more difficult than the case F = Q. Indeed,
since in general OP 6= Zp and $ 6= p, we are forced to use the full theory of group
schemes with a strict action of OP and the theory of $-divisible groups (see below).
Of course, if F = Q, these theories are just the theory of group schemes and of
p-divisible groups. Another source of difficulties is the fact that, for the object we
are interested in, X1 and X2 are isomorphic and also in duality, in particular X1

is self-dual. If F 6= Q, then X2,1
1 and X2,2

1 are isomorphic, as already stressed, but
X2,1

1 is dual to X1,1
1 (See Section 1.7), so we do not know whether X2,1

1 is self-dual.
For example, Proposition 3.2.3 is trivial if F = Q (and also in the elliptic case).

1.5. The wide open subspace associated to a section of a line bundle

We assume some knowledge about rigid analytic geometry, the standard refer-
ence is [BGR84].

LetK be a finite extension of FP , with ring of integers V . LetX be an algebraic
variety over K. By this we mean a reduced scheme X of finite type over Spec(K).
Recall that we have a faithful functor

an : algebraic varieties/K → rigid space/K
X 7→ Xan

This functor extends to coherent sheaves. Furthermore, if X is a projective variety,
then we have an analogue of the GAGA theorem.

Let us suppose that we have X , a model of X over V , that is flat and of finite
type. Associated to X we have X, the formal completion of X along the closed
subscheme defined by $ = 0. We have that X is an admissible formal scheme in
the sense of [BL93], so we have the rigid space Xrig. There is an open immersion

Xan ↪→ Xrig,

that is an isomorphism if X is proper.
The following definition is due to Coleman, see [Col97b].

Definition 1.5.1. Let X be a smooth and proper rigid analytic curve over
FP . We say that a rigid space Y is a wide open subspace of X, if Y is isomorphic
to an admissible open in X whose complement is (after a finite extension of K if
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necessary) isomorphic to a disjoint union of a non-zero number of closed affinoid
disks.

Let X → Spec(V ) be a reduced, flat, and proper scheme of finite type, of
relative dimension 1. We denote with X the generic fiber XK . Suppose that L is
an invertible sheaf on X and that s is a global section of L. Let x be a point of
Xan. The residue field Kx of Xan at x is a finite extension of K, and we denote
with Vx the ring of integers of Kx. By properness, the morphism Spm(Kx)→ Xan

corresponding to x extends uniquely to a morphism fx : Spec(Vx)→ X . Since L is
locally free, we have that f∗xL is free, generated by a section t. In particular, the
pullback f∗xs can be written at, for some a ∈ Rx. We set

|s(x)| := |a|,
that does not depend on the various choices we made. Let w be a rational number
such that 0 ≤ w < 1. We define

Xan(w) =
{
x ∈ X such that |s(x)| ≥ q−w

}
.

Proposition 1.5.2. Using the above notation, suppose that X → Spec(V ) is
smooth. If L 6= sOX , then Xan(w) is an affinoid wide open subspace of Xan.

Proof. This is done in [Col97a], Section 1. �

Remark 1.5.3. Let us suppose that there is an a ∈ V such that |a| = q−w. In
this case it is possible to explicitly describe a formal model of Xan(w) over Spf(V ).
It is the $-adic completion of

SpecX (Sym(L)/(s− a)).

Note that, by general theory, such a formal model is unique only up to a formal
blow-up.

1.6. $-divisible groups and formal OP-modules

In this section we recall the basic properties of $-divisible groups and of formal
OP -modules. A $-divisible group is a generalization of a p-divisible group (see
[Tat67]), and a formal OP -module is a generalization of a formal group (see for
example [Sil09], Chapter IV). Both these generalizations are needed when we want
to take into account the action of OP .

Let X be any OP -scheme. Recall that a $-divisible group H → X is a Barsotti-
Tate group H over X, together with an embedding OP ↪→ End(H) such that
the induced action of OP on Lie(H) is the one given by H → X → Spec(OP).
If X is connected, there is a unique integer ht(H), called the height of H, such
that rk(H[$n]) = qn ht(H) for all n. The basic properties of $-divisible groups
are very similar to those of p-divisible groups. Details can be found in [HT01],
Chapter 2, in [Mes72], Chapters 1 and 2, and in the Appendix of [Car86]. In
particular, if H is a $-divisible group, its height, as p-divisible group, is dht(H),
where d = [FP : Qp]. We have also the notion of $-divisible groups over an OP -
formal scheme, see [HT01], page 60.

Let X be a $-adic formal scheme over Spf(OP), and let G → X be a smooth
formal group (i.e. a group object in the category of formal schemes). We say that
G is a formal OP -module if we have an action of OP on G such that the action
of OP on Lie(G) is given by G → X → Spf(OP). Zariski locally on X, we have
that G is a formal group law (we are interested only in the dimension 1 case). If
X is a formal scheme over Spf(κ), and G → X is a formal OP -module, then there
are morphisms F: G→ G(q) and V: G(q) → G, that generalize the usual Frobenius
and Verschiebung. Similar morphisms exist also for $-divisible groups. Suppose
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that G has dimension 1, with coordinate x (we use x also as coordinate of G(q)).
Let [$]G(x) the power series given by the multiplication by $ on G (we will simply
write [$](x) if no confusion can arise). Then we have that F(x), the power series
given by F, satisfies F(x) = xq and, if V(x) is the power series given by V, we have
V(F(x)) = [$](x) and F(V(x)) = [$]G(q)(x).

We now recall some facts proved in [Mes72], Chapter 2. Let X → Spf(OP)
be a $-adic formal scheme, and let π : H→ X be a $-divisible group. Suppose we
are given e : X → H, a section of π. Attached to these data, there is a (smooth)
formal OP -module Ĥ → X called the completion of H along e. We have that Ĥ is
of $-torsion. Note that, to have this construction, one really needs to work with
formal schemes, see [Mes72]. It is not always the case that Ĥ is a Barsotti-Tate
group (in this assertion, we consider all objects as f.p.p.f. sheaves). This happens
if X is the formal spectrum of an Artin ring (see also Proposition 4.2, Chapter 2 of
[Mes72]). If X is a Spf(κ)-formal scheme and Ĥ is a $-divisible group of dimension
1, then we can recover the height of Ĥ from its (local) structure of formal group
law. Indeed, let x be a coordinate of Ĥ, then ht(Ĥ) is the largest integer n such
that [$](x) is a power series in xq

n

(compare this with [Sil09], Section IV.7). In
general we have ht(Ĥ) ≤ ht(H).

We now attach a $-divisible group to any object of the moduli problems con-
sidered in the previous sections. Let R be a $-adically complete OP -algebra and
let (A, i, θ, ᾱ) be an object of the moduli problem, with A defined over R. We
have that A[pn] has a natural action of OD ⊗Z Zp, for all n. In particular A[pn]kj
is defined, and we also have A[pn]2,k1 , that has a natural action of OP . We write
A[$n]2,k1 for its $n-torsion, and we set A[$n]21 := A[$n]2,11 ⊕ A[$n]2,21 . We use
a similar notation for A[$n]11 := A[$n]1,11 ⊕ A[$n]1,21 . We write A[$∞]2,11 for
lim−→n

A[$n]2,11 and we will call it the $-divisible group associated to A. The height
of A[$∞]2,11 is 2. We will use the same notations for A, the $-adic completion
of A. Since the degree of the isogeny θ is prime to p, it induces an isomorphism
A[pn]1j

∼−→ (A[pn]2j )
D. Since Lie(A)2

j = 0, we have that A[pn]2j is étale for j ≥ 2.
Let (A, i, θ, ᾱ) be an object of the moduli problem, with A defined over a $-

adically complete OP -algebra R. We write A→ Spf(R) for the $-adic completion
of A. Taking completion along the zero section we obtain Â. Since Â has an action
of OD ⊗Z Zp, we can consider Â2,1

1 . It is a formal OP -module of dimension 1. The
formal OP -module associated to A[$∞]2,11 is Â2,1

1 . If Â2,1
1 is a $-divisible group

(this is the case if R is an Artin ring), its height h is either 1 or 2 and satisfies
qh = rk(Â2,1

1 [$]) ≤ rk(A[$]2,11 ). We will write Â for Â, but beware that this is
the completion (along the zero section) of a $-adic formal scheme. We will use the
notation Â[$n]2,11 := Â2,1

1 [$n].

1.7. Group schemes with strict OP-action

In this section we recall the theory of group schemes with strict OP -action, as
developed in [Fal02]. This theory generalizes that of groups schemes. As in the
case of $-divisible groups, we need such a generalization to deal with the action
of OP . In particular, we want a good duality theory that takes into account the
OP -action: since Gm has no action of OP , the usual Cartier duality is not enough.

Throughout this section, R will be a $-adically complete and $-torsion free
OP -algebra.

Definition 1.7.1. Let G be a finite and flat group scheme over R. We say
that G has a strict OP -action if we have a ring homomorphism OP → EndR(G)
such that the action on the Lie algebra of G is the natural one. Homomorphisms
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between group schemes with strict OP -action are homomorphisms that respect the
action of OP .

Remark 1.7.2. Our definition of group scheme with strict OP -action is a par-
ticular case of the one given in [Fal02]. Indeed, by our assumptions on R, we have
that the cotangent complex of G → Spec(R) has non trivial cohomology only in
degree 0 (since G is smooth over RFP ).

Let H be $-divisible group over R. We have that, for any n, the $n-torsion
H[$n] is naturally a group scheme with a strict OP -action.

On the power series ring R[[x]] there is a unique action of OP such that the
multiplication by$ has the form [$](x) = xq+$x and the action on the Lie algebra
is the one induced by OP → R. This is the so called Lubin-Tate $-divisible group,
denoted LT . It is clear that, for any n, the $n-torsion of LT is a group scheme
with strict OP -action. The action of OP on R[[x]]/(xq + $x) factors through κ,
and z ∈ κ sends x to [z]x. We now fix G, a finite and flat group scheme with strict
OP -action.

Lemma 1.7.3. We have that G is killed by $n, for some n. In particular, any
morphism G→ LT factors through LT [$n]

Proof. This is [Fal02], Lemma 7. �

Theorem 1.7.4. The functor

$-adically complete and torsion free R-algebras→ groups

S 7→ Hom(GS ,LT S)

is representable by a finite and flat group scheme over R, with strict OP -action.
We denote this group scheme with G∨.

Proof. This is [Fal02], Theorem 8. �

Remark 1.7.5. If OP = Zp and R contains a primitive p-th root of unity, then
we have an isomorphism LT ∼= Ĝm,R. In particular, the duality above coincides
with the usual Cartier duality.

Example 1.7.6. The following example will be very important for us, see
[Fal02], Section 3 and [Far07], Section 1.1.2. Let E be an element in R such that
$
E ∈ R. By [Far07], page 6, on G = Spec(R[x]/(xq + $

E x)) there is a unique struc-
ture of group scheme with strict action ofOP such that a ∈ κ acts on R[x]/(xq+$

E x)
as x 7→ [a]x (note that, since G has order q, an action of OP must factor through
κ). With this assumptions, we have G∨ = Spec(R[x]/(xq − Ex)). In particular, if
there is a q−1-th root of E in R, we have an R-point of G∨. We will show that the
canonical subgroup of the abelian schemes of our moduli problems (if it exists) is
of this type. To be more precise, let (A, i, θ, ᾱ) be an object of the moduli problem
of level K(H), with A defined over R. With some assumptions (see Section 2.3),
we have that A[$]2,11 has a canonical subgroup C of order q. As a scheme, we have
C = Spec(R[x]/(xq + $

E x)), where E ∈ R. Suppose that in R we have a fixed
q − 1-th root of −$, denoted (−$)1/(q−1). Suppose furthermore that we have a
canonical non-trivial R-point of A[$]2,11 that lies in C (this is what happens at level
K(H$)). We have a canonical solution of xq−1 − $

E = 0 in R and so we have a
canonical q− 1-th root of E in R. In this way we obtain a canonical R-point of C∨.
Explicitly, this point is given by the morphism

C = Spec(R[x]/(xq +
$

E
x))→ LT = Spec(R[[x]])

E1/(q−1)x←[ x



CHAPTER 2

Quaternionic modular forms

We will use the notations of Chapter 1. In particular D is a quaternion algebra
over a CM field E, obtained by base change of B, a quaternion algebra over F ,
the maximal totally real subfield of E. We also have a local field FP , with ring
of integers OP . Recall that in Section 1.3.3, we have defined several curves over
OP that are fine moduli spaces (see Theorem 1.3.6). In particular we have the
universal abelian schemes π : A(H) → M(H), π : A(H,$n) → M(H,$n), and
π : A(H$n) →M(H$n). Recall that all object that are endowed with an action
of OD ⊗Z Zp admit a decomposition as in Section 1.3.2, in particular the 2,1

1 -part
is defined. This allows us to work with one dimensional objects.

The goal of this chapter is to define $-adic modular forms, with respect to
D, of integral weight. We consider p-adic modular form of level K(H), and also
of higher levels. Furthermore, we define, and study, the canonical subgroup of our
abelian schemes. This subgroup will be used in the following chapters to define
p-adic modular forms of non integral weight.

Notation. From now on, we will use the following notation: objects defined
over OP will be denoted using Italics letter, like A. The completion along the
subscheme defined by $ = 0 will be denoted using the corresponding Gothic letter,
like A. For example the $-adic completion ofM(H) will be denoted with M(H),
and so on.

2.1. The Hasse invariant and $-adic modular forms of level K(H)

In this section we study the abelian scheme π : A(H) → M(H). We consider
also its $-adic completion, this allows us to define $-adic modular forms of level
K(H). Throughout this section, we will consider only the moduli problem of level
K(H), but later on we will consider higher levels.

First of all we define classical modular forms. Since the locally free sheaf
π∗Ω

1
A(H)/M(H) has an action of OD ⊗Z Zp, we can define

ω := ωK(H) :=
(
π∗Ω

1
A(H)/M(H)

)2,1

1
.

The definitions of ωK(H,$n) and ωK(H$n) are analogous, we usually drop the sub-
script. By condition (1a) of Theorem 1.3.6, we have that ω is a locally free sheaf
of rank 1. If R is an OP -algebra, the pullback of ω to Spec(R) will be denoted ωR
or ωA/R, where A is the pullback of the universal object to Spec(R).

Definition 2.1.1. Let R be an OP -algebra and k an integer. The space of
modular forms with respect to D, level K(H) and weight k, with coefficients in R,
is defined as

SD(R,K(H), k) := H0(M(H)R, ω
⊗k
R ).

The definitions of SD(R,K(H,$n), k) and SD(R,K(H$n), k) are similar.

This definition is clearly inspired by the elliptic case. The next step is to define
p-adic modular forms, that will have coefficients in R, a p-adically complete OP -
algebra. We want to ‘complete’ (in quotes because we do not just take the p-adic

17
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completion) SD(R,K(H), k), using a modular definition. In other words, we want
to define p-adic modular forms as section of ω on a suitably defined (formal) scheme,
that still parametrizes abelian schemes with additional structure, as M(H) does.
This approach has been introduced by Katz in [Kat73], following ideas of Dwork
(see [Dwo73]).

The following proposition is well known in the case of elliptic curves, see for
example [Sil09], Chapter IV, Corollary 7.5.

Proposition 2.1.2. Let R be a κ-algebra and let (A, i, θ, ᾱ) be an object of
the moduli problem, with A defined over R, and suppose that Â2,1

1 is a $-divisible
group. The height of Â2,1

1 is 1 if and only if A is ordinary.

Proof. We may assume that R is an algebraically closed field. We prove the
claim counting the points of A[p]. By definition of the moduli problem, A[p]2j ,
for j > 1, has p4dj points. Suppose that the height of Â2,1

1 is 1. It follows that
its height, as p-divisible group, is d, so Â2,1

1 [p], that is the connected component
of A[p]2,11 , has rank pd. Again by the definition of the moduli problem, A[p]2,11

has rank p2d, so A[p]2,11 has pd points. Since A[p]2,11 and A[p]2,21 are isomorphic,
A[p]21 has p2d points. The Cartier duality between Â2,1

1 and Â1,1
1 implies that their

heights are equal, so the same argument gives p4d points from A[p]11 ⊕A[p]21. Since
N = d + d2 + · · · + dm, we have shown one implication. The converse follows by
the same argument. �

Definition 2.1.3. Let (A, i, θ, ᾱ) be an object of the moduli problem, defined
over a $-adically complete OP -algebra R, and assume that Â2,1

1 is a $-divisible
group. We say that (A, i, θ, ᾱ), or simply A, is ordinary if Â2,1

1 has height 1. By
Proposition 2.1.2, this is equivalent to the fact that its reduction is ordinary in the
usual sense. Otherwise we say that (A, i, θ, ᾱ) is supersingular.

Remark 2.1.4. Note that, using the 2,1
1 -part, we are reduced to a one dimen-

sional $-divisible group, as in the case of elliptic curves. This is the reason why,
even if we work with abelian schemes, we have ‘ordinary if and only if not super-
singular’.

With the above notations, suppose further that Spf(R) is so small that Â2,1
1 is

coordinatizable (this is the case if ωA/R is a free R-module, see [Mes72], Chapter
2). It is proved in [Kas04], Proposition 4.3, that we can find a coordinate xR on
Â2,1

1 such that the action of $ has the form

[$](xR) = $xR + aRx
q
R +

∞∑
j=2

cjx
j(q−1)+1
R ,(2.1.1)

here a, cj are in R and cj ∈ $R unless j ≡ 1 mod q. If we assume that $ = 0
in R, the various aR glue together to define H, a (classical) modular form of level
K(H) and weight q − 1, defined over κ, that is called the Hasse invariant. If
W = Spec(R) is an open affine of M(H)κ and we denote with ω the differential
dual to the coordinate xR defined above, we have

H|W = aRω
⊗q−1.

Proposition 2.1.5. We have the following Kodaira-Spencer (non canonical)
isomorphism of sheaves

(ωK(H))
⊗2 ∼= Ω1

M(H)/OP .

Proof. This is [Kas04], Proposition 4.1. �
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From now on, we assume that the compact open subgroup K ⊆ G(Af ) is so
small that the curve M(H) has genus g bigger than 1, this is possible by [Shi94],
Proposition 1.40.

By Proposition 2.1.5 and Serre’s duality, we have that

H1(M(H)FP , ω
⊗q−1) = H0(M(H)FP , ω

⊗3−q)∗.

Again by Proposition 2.1.5, we see that deg(ωK(H),FP
) = g − 1. If q > 3, this

implies that deg(ω⊗3−q
K(H),FP

) < 0, hence

H1(M(H)FP , ω
⊗q−1) = 0.

From now on we assume that q > 3.
By the above cohomological calculations and [Har77], Proposition 9.3, we see

that H1(M(H), ω⊗q−1)⊗OP FP = 0, hence

$n H1(M(H), ω⊗q−1) = 0

for some n. Repeating what we have done above, we obtain H1(M(H)κ, ω
⊗q−1) =

0, that implies
H1(M(H), ω⊗q−1)⊗OP κ = 0.

This means that multiplication by $ is surjective on H1(M(H), ω⊗q−1), but this
OP -module is killed by some power of $, hence

H1(M(H), ω⊗q−1) = 0.

Consider now the exact sequence of sheaves onM(H)

0 −→ ω⊗q−1 −→ ω⊗q−1 −→ ω⊗q−1
κ −→ 0,

where the first map is multiplication by $. Taking the associated long exact se-
quence we see, since H1(M(H), ω⊗q−1) = 0, that the map

H0(M(H), ω⊗q−1)→ H0(M(H)κ, ω
⊗q−1)

is surjective. In particular, we can lift the Hasse invariant H to a global section of
ω on M(H). We choose once and for all such a lifting, called Eq−1: in [Kas04],
Corollary 13.2, it is shown that, even if our choice is not canonical, the whole theory
does not depend on this choice. The independence of the theory on the choice of
Eq−1 is a consequence of the following results.

Proposition 2.1.6. The zeros of H onM(H)κ are simple.

Proof. This is [Kas04], Proposition 6.3. �

Proposition 2.1.7. Let R be a κ-algebra and let (A, i, θ, ᾱ) be an object of the
moduli problem, with A defined over R and let z be a geometric point of Spec(R).
Then the pullback of H toM(H)R vanishes at z if and only if the pullback of A to z
is supersingular. Furthermore, the set of supersingular geometric points ofM(H)κ
is finite and not empty.

Proof. We look at the formal OP -module associated to A, at z. If H vanishes
at z, then multiplication by $ in this formal OP -module is given by a power series
[$](x) that satisfies (see Section 1.7) [$](x) = V(F(x)) = V(xq) = cq+1x

q2 +

c2q+1x
q(2q−2) + · · · , where the last equality follows by (2.1.1). This shows that

V(0) = V′(0) = 0, so V(x) = G(xq) for some power series G (this is proved as
[Sil09], Chapter IV, Proposition 7.2). We conclude that [$](x) is a power series in
xq

2

, so A is supersingular. The converse is an immediate consequence of (2.1.1).
Being H a global section of a non trivial line bundle, the set of geometric points
where H vanishes is finite and non empty. �
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By the results of Section 1.5, we know that the set of ordinary points of
M(H$)rig is isomorphic to the complement of a finite number of discs. Propo-
sitions 2.1.7 and 2.1.6 show that Eq−1 can be thought as a parameter on these
discs. On a rigid analytic disc, it is possible to choose several different parameters,
but we will work only in a region of the discs sufficiently near to the edge such that
all parameters are equivalent (see [Buz03], page 36 for the details). This is the
deep reason why our theory does not depend on the choice of the lifting Eq−1. A
similar remark can be done also in the elliptic case, and it is interesting in the case
the Eisenstein series are not defined (i.e. for small p).

The formal completion and the rigidification of Eq−1 will be denoted with the
same symbol.

Remark 2.1.8. As the name suggests, H is the analogue of the classical Hasse
invariant, while Eq−1 is the analogue of the Eisenstein series: in our situation there
are no cusps, so we cannot use the q-expansion to define it.

Remark 2.1.9. Using the above notations, we have Eq−1| Spec(R) = Eω⊗q−1,
for some E ∈ R. By [Kas04], Proposition 6.2, we have aR ≡ E mod $.

We now move on to $-adic modular form. They are defined over $-adically
complete OP -algebras, so it is convenient to work with formal schemes. Let V be
a finite extension of OP and let 0 ≤ w < 1 be a rational number such that there is
an element of V , denoted $w, of valuation w. We define

M(H)(w)V := SpecM(H)V (Sym(ω⊗q−1
V )/(Eq−1 −$w)),

where the V in the subscript means only ‘defined over V ’, it does not mean that it
is the base change to V of a scheme over OP .

Proposition 2.1.10. Let R by any V -algebra. We have thatM(H)(w)V (R) is
naturally in bijection with the set of isomorphism classes of quintuples (A, i, θ, ᾱ, Y ),
where (A, i, θ, ᾱ) is as in Theorem 1.3.6 and Y is a global section of ω⊗1−q

A/R that
satisfies

Y Eq−1 = $w.

Proof. This follows from the moduli theoretic description ofM(H). �

There is a natural morphismM(H)(w)V →M(H)V , we write A(H)(w)V for
the pullback of A(H)V with respect to this map.

Definition 2.1.11. Let V and w as above. The space of $-adic modular forms
with respect to D, level K(H), weight k and growth condition w, with coefficients
in V , is defined as

SD(V,w,K(H), k) := H0(M(H)(w)V , ω
⊗k).

Of course in this definition ω is obtained by taking the formal completion of
the base change of ωK(H),V toM(H)(w)V .

To better understand this definition, it is convenient to use rigid geometry. Let
K be the fraction field of V . First of all note that, by properness, the natural
morphism of K-rigid spaces

M(H)rig
V ↪→M(H)an

K

is an isomorphism.
The following proposition shows that M(H)(w)rig has a very nice description

in terms of the modular form Eq−1.

Proposition 2.1.12. The rigidification of the map M(H)(w)V → M(H)V is
the immersion M(H)rig

V (w) ↪→ M(H)rig
V , where M(H)rig

V (w) is the affinoid subdo-
main of M(H)rig

V relative to Eq−1 and w.
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Proof. This is [Kas04], Proposition 9.7. �

We callM(H)V (0)rig the ordinary locus, it is an affinoid subdomain ofM(H)rig
V :

its complement is a finite union of discs, called the supersingular discs. Their points
correspond to those objects of the moduli problem that are supersingular.

By rigid GAGA, elements of SD(V,K(H), k) ⊗V K correspond to sections of
(the rigidification of) ω⊗k over M(H)rig

V and elements of SD(V,w,K(H), k)⊗V K
correspond to sections over M(H)V (w)rig. Elements of SD(V, 0,K(H), k)⊗V K are
called convergent modular forms over K, and elements of SD(V,w,K(H), k)⊗V K,
for w > 0, are called overconvergent modular forms over K, since they can be,
partially, extended to the supersingular discs.

Remark 2.1.13. SinceM(H)(w) is a moduli space, we have a natural descrip-
tion of M(H)(w)V (R), where R is a $-adically complete V -algebra, in terms of
formal abelian schemes with level structure and a formal section of ω⊗1−q, called
Y , that satisfies Y Eq−1 = $w. We have a similar remark for M(H)(w)rig

V and even
for level K(H$r) (but in this case there is no w).

Proposition 2.1.14. We have that M(H)(w) is normal, with reduced special
fiber.

Proof. This is [Kas04], Propositions 8.2 and 9.5. �

2.2. The canonical subgroup

In this section we review the theory of canonical subgroup of our abelian
schemes, as developed in [Kas04]. This is similar to the theory of the canoni-
cal subgroup of elliptic curves, see [Kat73]. We also prove that the definition of
[Kas04] coincide, at level of points, with the one of [Far07]. At the end of the
section, we consider canonical subgroups of higher rank.

Notation. Let V , K, and w be as above. From now on, we will work over V ,
so we will consider the base change to V , or to K, of the various objects defined so
far. For simplicity we will omit the subscripts V and K . For exampleM(H)V will
be denoted withM(H). We fix π, a uniformizer of V . Beware that the valuation
of V satisfies v($) = 1, not v(π) = 1. We assume that V contains a fixed primitive
p-th root of unity, denoted ζp.

From now on we assume that

0 ≤ w <
q

q + 1
.

Remark 2.2.1. In the following chapters, we will assume that 0 ≤ w is smaller
and smaller, but we never assume w = 0. Geometrically, this means that we will
work in a smaller and smaller, but non trivial, annulus of the supersingular discs,
near the edge. In particular all our objects will be ‘overconvergent’, in the sense
that they can be, partially, extended to the supersingular discs.

Recall that A(H)(w) is the completion of A(H)(w) along the closed subscheme
defined by $ = 0. By Theorem 10.1 of [Kas04], the q-torsion of A(H)(w) admits a
canonical subgroup stable under OP , that we call C(A(H)(w)) or simply C. Given
Spf(R)→M(H)(w), where R is a $-adically complete V -algebra, let (A, i, θ, ᾱ) be
the corresponding object of the moduli problem, so A is defined over R. By base
change we obtain C(A): it extends to a canonical subgroup, denoted with C(A),
or simply C, of the q-torsion of A, and we have that C2,1

1 is killed by $. Since we
will mostly be interested in C2,1

1 rather than C, we will say ‘the canonical subgroup’
meaning also its 2,1

1 -part (this abuse of notation should not create any confusion).
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Since C(A)2,1
1 has order q, we can use it to define a morphism M(H)(w) →

M(H,$), whose formal completion makes the diagram

M(H)(w) //

&&

M(H)

M(H,$)

OO

commutative. Its rigidification is a section, defined over M(H)(w)rig, of the mor-
phism M(H,$)rig → M(H)rig. We define M(H$)(w)rig (at this point, the rig

here is just notation, we have not defined the formal scheme M(H$)(w) yet)
to be the inverse image of (the image of) M(H)(w)rig with respect to the map
M(H$)rig →M(H,$)rig. It is an affinoid subdomain of M(H$)rig with a map to
M(H)(w)rig that is finite and étale since we are in characteristic 0.

The canonical subgroup is defined starting with its 2,1
1 -part, so let us briefly

recall how C2,1
1 is constructed, see [Kas04], Lemma 10.2 for details. Let Spf(R) be

an open affine of M(H$)(w), and let A be the abelian scheme associated to Spf(R).
Suppose that ωR is free. We fix a coordinate x of the formal group associated to
A such that [$](x) = $x + axq +

∑∞
j=2 cjx

j(q−1)+1, and let ω be the differential
dual to x. Since ωR is generated by ω, we can write Eq−1| Spec(R) = Eω⊗q−1, with
E ∈ R. Note that, by Remark 2.1.9, we have E ∼= a mod $. In particular there
is b ∈ R such that E = a + b$, furthermore we can write (a + $b)y = $w, with
y ∈ R. We set r1 := −$/$w ∈ V and t0 := r1y/(1 + r1by) ∈ R. We have that
C2,1

1 , as a scheme, is Spec(R[[x]]/(xq − tcanx)), where tcan = t0(1− t∞). Here t∞ is
an element of r2R, where r2 ∈ V has positive valuation. Since tcan is topologically
nilpotent, we have an isomorphism of schemes

C2,1
1
∼= Spec(R[x]/(xq − tcanx)).

Suppose furthermore that R is a discrete valuation ring, whose valuation ex-
tends the one ofOP . In this case we can give a more explicit description of the points
of the canonical subgroup. Since w < 1 and E ≡ a mod $, we have v(a) = v(E),
and, by the description of the moduli problem of M(H)(w), we have v(E) ≤ w. We
are going to show that C2,1

1 coincides, at level of points, with the canonical subgroup
of Â2,1

1 [$] defined in [Far07], Section 7.1 (of rank and level 1). If A is ordinary
this is trivial since Â2,1

1 [$] has rank 1 and coincides with C2,1
1 , so we assume that A

is supersingular, i.e that Â2,1
1 has height 2. We are going to study P , the Newton

polygon of [$](x).

Lemma 2.2.2. We have that P is the convex hull of the points

(0,+∞), (1, 1), (q, v(a)), and (q2, 0).

Proof. By the explicit description of [$](x), the first two vertices of P are
(0,+∞) and (1, 1). Furthermore (q2, 0) ∈ P since Â2,1

1 [$] has rank 2. The points
corresponding to xi, with q < i < q2, do not belong to P because cj ∈ $R unless
j ≡ 1 mod q. It remains only to show that (q, v(a)) ∈ P . Let ` be the line through
(1, 1) and (q2, 0), so (q, q

q+1 ) ∈ ` and the fact that (q, v(a)) is below ` is exactly our
assumption on w. �

By the lemma, we immediately see that the roots of [$](x) corresponding
to points of C2,1

1 are those with the biggest valuation, so our canonical subgroup
coincides with the one of [Far07]. In particular we see that, if w < q

q+1 and A
has height 2, then [$](x) has q2 − 1 non trivial roots in some extension of R (this
was already clear since Â2,1

1 [$] has rank 2). There are q − 1 roots with valuation
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1−v(a)
q−1 , while the remaining q2 − q roots have valuation v(a)

q2−q <
1−v(a)
q−1 . This shows

clearly that there are q − 1 ‘distinguished’ roots. If w ≥ q
q+1 , all non trivial roots

have valuation 1
q2−1 and there is no way to define the canonical subgroup. This

suggests that our bound w < q
q+1 is the best possible, and this is actually proved

in [Kas09].

6

-

(1, 1)
A
A
A
A
A
A (q, v(a))
Q
Q

Q
Q
Q

Q
Q
QQ

(q2, 0)

Figure 1. The Newton polygon of [$](x)

Remark 2.2.3. In [AIS11], Andreatta, Iovita, and Stevens, use the theory of
canonical subgroup of abelian schemes developed in [AG07a]. For our approach it
is convenient to work with formal OP -modules, in order to take into account the
action of OP . One can prove that, if D is the canonical subgroup of [AG07a], we
have

C2,1
1 = D2,1

1 [$].

In the Appendix, we make a very detailed study of C2,1
1 , obtaining an explicit

formula for the comultiplication and some results about the module of invariant
differentials.

2.2.1. Canonical subgroups of higher rank. In this section we fix an in-
teger r ≥ 1, the case of the canonical subgroup considered above corresponds to
r = 1.

Let us suppose that

w <
1

qr−2(q + 1)
.

Proposition 2.2.4. We have that A(H)(w)[$r] has a canonical subgroup Cr
stable under the action of D. Furthermore (Cr)

2,1
1 has order qr and C1 = C.

Proof. Let A → Spec(R) as above. We prove the proposition by induction
on r, we already know the case r = 1. By assumption, A[$] admits a canonical
subgroup C. In [Kas04], Section 4.4 and Theorem 10.1, it is proved that A/C is
another object of the moduli problem, and that the R-point corresponding to it
lies in M(H)(qw) (this can be proved also using an argument similar to that of
the proof of Lemma 5.1.5). Since qw ≤ 1

qr−3(q+1) , by induction hypothesis we have
a canonical subgroup C′r−1 ⊆ (A/)C[$r−1]. We define Cr to be the kernel of the
composite map

A → A/C → (A/C)/C′r−1.

The required properties of Cr follow from [Kas04]. �
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Note that, using the Newton polygon, one can obtain explicit formulas for the
valuation of the roots of [$r](x) as in the case r = 1. Again, the points of the
canonical subgroup correspond to the roots with biggest valuation.

Example 2.2.5. As an example, let us consider the case r = 2. We use the
assumptions and the notations of Lemma 2.2.2. The roots of [$2](x) are described
by the polygonsQz obtained taking the convex envelop of P and the points (0, v(z)),
where z is a root of [$](x). It is convenient to distinguish three cases

• if z = 0, then Qz = P and we have the trivial root, q − 1 roots with
valuation 1−v(a)

q−1 and q2 − q roots with valuation v(a)
q2−q ;

• if z corresponds to a non trivial point of C2,1
1 , then Qz consists of two seg-

ments (the fact that there are two segments is equivalent to v(a) < 1
q+1 ),

and there are q roots of valuation 1−q v(a)
q2−q and q2 − q roots of valuation

v(a)
q2−q ;

• if z corresponds to a point of A[$]2,11 \C
2,1
1 , then Qz has a single segment,

and there are q2 roots of valuation 1−v(a)
q2(q−1) .

Since there are q−1 possible choices for points of the second type, and q2−q possible
choices for points of the third type, this gives a total of q4 points as expected. In
particular we see that the trivial root, the q − 1 roots of valuation 1−v(a)

q−1 and the

(q − 1)q roots of valuation 1−q v(a)
(q−1)q are the roots with biggest valuation. They

correspond to the q2 points of (C2)2,1
1 .

Using the canonical subgroups of higher rank, everything we have done for level
K(H$) can be repeated for level K(H$r). We have a commutative diagram

M(H)(w) //

&&

M(H)

M(H,$r)

OO

Its rigidification is a section, over M(H)(w)rig, of the morphism M(H,$r)rig →
M(H)rig. Following what we have done for level K(H), we define the rigid space
M(H$r)(w)rig as the inverse image of M(H)(w)rig under the map M(H$r)rig →
M(H,$r)rig.

2.3. Modular forms of level K(H$)

In this section we introduce p-adic modular forms of higher level. We also
continue the study of the canonical subgroup.

From now on we assume that V contains a fixed element whose q− 1-th power
is −$, denoted (−$)1/(q−1) (if $ = p and f = 1 this is automatic since we have the
p-th roots of unity). In the following chapters, we will make several assumptions
on V similar to this one. In particular we will obtain a theory that works well over
OCp (but beware that V will always be a finite extension of OP). We now move on
to modular forms of level K(H$).

Let U = Spf(R) be an open affine of M(H)(w). We write Urig = Spm(RK)
for its rigid analytic fiber. Since the morphism M(H$)(w)rig → M(H)(w)rig is
finite and étale, the inverse image of Urig is an affinoid, Vrig = Spm(SK), with
RK → SK finite and étale. Let S be the normalization of R in SK , and write V
for Spf(S). Note that S is $-torsion free, normal, since SK is integrally closed
by smoothness of M(H$)rig ∼= M(H$)an, and finite over R. In particular S is
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$-adically complete. The various V’s glue together to define a formal scheme
M(H$)(w), with a morphism to M(H)(w). By construction we have the following

Lemma 2.3.1. The rigid analytic fiber of M(H$)(w) is M(H$)(w)rig. Fur-
thermore, the rigidification of M(H$)(w)→M(H)(w) is the map M(H$)(w)rig →
M(H)(w)rig defined above.

By definition M(H$)(w) is the normalization of M(H)(w) in M(H$)(w)rig,
that is a finite extension of its generic fiber: this construction is well behaved, in
particular it satisfies a suitable universal property, see [FGL08], Annexe A, for
more details. We write A(H$)(w) for the base change of A(H)(w) to M(H$)(w).
We do not know whether M(H$)(w) is a formal moduli space (indeed, since we
take the normalization of M(H)(w) in M(H$)(w)rig, we do not have an integral
model as in the case of M(H)(w)), but we have the following

Proposition 2.3.2. Let S be a normal and $-adically complete V -algebra.
There is a natural bijection between M(H$)(w)(S) and the set of isomorphism
classes of quintuples (A, i, θ, ᾱ, Y ), where:

• (A, i, θ, ᾱ) is an object of the moduli problem, with A defined over S, of
M(H$) and the canonical S-point of A[$]2,11 generates, as OP -module,
the canonical subgroup of A[$];
• Y is a section of ω⊗1−q

A/S that satisfies Y Eq−1 = $w.

Proof. This is the analogue of [AIS11] Lemma 3.1. Let x ∈M(H$)(w)(S).
Taking the base change, via x, of A(H$)(w), we obtain a formal abelian scheme
A → Spf(S) endowed with a K(H$)-level structure and Y, a formal section of
ωA/S that satisfies YEq−1 = $w. Using the natural polarization of A, coming
from its level structure, we can embed A in a formal projective space, in particular
we obtain an integral model A → Spec(S) of it. By properness of A → Spf(S)
and GAGA, we see that also Y comes from the required Y . The fact that the
canonical S-point of A[$]2,11 generates the canonical subgroup of A[$] follows from
the fact that the image of xrig lies in M(H$)(w)rig. This gives one direction of the
correspondence.

For the converse, let (A, i, θ, ᾱ, Y ) as in the statement of the proposition. By
Remark 2.1.13, we obtain a morphism grig : Spm(SK) → M(H$)(w)rig. Indeed,
forgetting the point of A[$]2,11 , we have a morphism f : Spf(S) → M(H)(w). We
need to prove that there is a unique formal model of grig that lifts f . Since the prob-
lem is local, we can assume that f(Spf(S)) is contained in an affine of M(H)(w),
say Spf(W ). Let Spm(TK) be the inverse image of Spm(WK) under the natural
map M(H$)(w)rig →M(H)(w)rig. We write T for the normalization of W in TK .
By construction, Spf(T ) is an open affine of M(H$)(w). Let h : S → T be the
induced morphism, that is integral by definition, and let gK : TK → SK be the
morphism given by grig. Since fK = gK ◦ hK , it is enough to prove that gK(T ) is
contained in S. Let t ∈ T . We have that t is integral over W , so gK(t) is integral
over S, hence, by normality, gK(t) ∈ S as required. �

Definition 2.3.3. We define the space of $-adic modular forms with respect
to D, level K(H$), weight k and growth condition w, with coefficients in V , as

SD(V,w,K(H$), k) := H0(M(H$)(w), ω⊗k),

where ω has the obvious meaning. Note that we have

SD(V,w,K(H$), k)K = H0(M(H$)(w)rig, ω⊗k).

We have a natural map SD(V,w,K(H), k)→ SD(V,w,K(H$), k). The image
of Eq−1 will be denoted with the same symbol. We are going to prove that, at
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level K(H$), this modular form admits a canonical q − 1-th root, i.e. a modular
form of weight 1 whose q − 1-th power is Eq−1. We show this locally, so let us
fix an open affine Spf(R) of M(H)(w) with associated abelian scheme A. We can
assume that ωA/R is a free R-module. Recall that there is a coordinate x on
Â2,1

1 such that the action of $ on the formal OP -module has the form [$](x) =

$x + axq +
∑∞
j=2 cjx

j(q−1)+1 (see Section 2.1). We fix such a coordinate and we
denote with ω the differential dual to x, that is a generator of ωA/R. We write
Eq−1| Spf(R) = Eω⊗q−1, with E ∈ R. Let Spf(S) be the base change of Spf(R) to
M(H$)(w), we need to find a q − 1-th root of E in S. This will be done using C,
the canonical subgroup of A.

Lemma 2.3.4. There is a canonical non trivial point of C2,1
1 , defined over S.

Proof. The pullback of A to S is given by an S-point Spf(S)→M(H$)(w),
so the lemma follows by Proposition 2.3.2. �

Proposition 2.3.5. There is E1 ∈ SD(V,w,K(H$), 1) such that

Eq−1
1 = Eq−1.

Proof. Let α :=
∑∞
i=0

(
1/(q−1)

i

)
(−t∞)i, so αq−1 = 1− t∞. The map induced

by x 7→ αx is an isomorphism between R[x]/(xq − tcanx) and R[x]/(xq + $
a x). Let

us write β for
∑∞
i=0

(
1/(q−1)

i

)
(b$a )i, so βq−1 = 1 + b$a . We have an isomorphism

R[x]/(xq + $
a x) ∼= R[x]/(xq + $

E x), induced by x 7→ βx. By Lemma 2.3.4, the
equation xq−1 + $

E = 0 has a canonical solution α ∈ S. Consider the element

E1/(q−1) := (−$)1/(q−1)

α ∈ SK : it is a canonical q−1-th root of E in SK , that lies in
S by normality. For the various R’s, these roots glue together to define the required
modular form. �

Remark 2.3.6. In the proof of Proposition 2.3.5, we have shown that C2,1
1 is,

as a scheme, Spec(R[x]/(xq + $
E x)). By the Jacobian criterion, we have that C2,1

1

is étale over RK . In particular, by Lemma 2.3.4, we have that the base change of
C2,1

1 to SK is a constant group scheme, with associated abstract group κ.

We can repeat what we have done in this section for level K(H$r), for any
integer r ≥ 0. The formal scheme M(H$r)(w) is defined as the normalization
of M(H)(w) in M(H$r)(w)rig. In particular we have the following analogue of
Proposition 2.3.2.

Proposition 2.3.7. Let S be a normal and $-adically complete V -algebra.
There is a natural bijection between M(H$r+1)(w)(S) and the set of isomorphism
classes of quintuples (A, i, θ, ᾱ, Y ), where:

• (A, i, θ, ᾱ) is an object of the moduli problem, with A defined over S, of
M(H$r+1) and the canonical S-point of A[$r+1]2,11 generates, as OP -
module, the canonical subgroup of A[$r+1];
• Y is a section of ω⊗1−q

A/S that satisfies Y Eq−1 = $w.



CHAPTER 3

The Hodge-Tate sequence

In this chapter we obtain some very important technical results. We introduce
the map d log, that will be absolutely central for our work. We use this map to
define the so-called Hodge-Tate sequence. We prove that this sequence is a complex,
whose homology is killed by a power of $. This allows us to define the notion of
overconvergent modular form of non integral weight in the next chapter.

3.1. The map d log

Definition 3.1.1. Let R be a V -algebra. We say that R is small if:
• Spec(R) is connected and R is $-adically complete;
• there is a morphism V {T1, . . . , Ts}/(T1 · · ·Tj − πa) → R that is topo-

logically of finite type and $-adically formally étale, where a ≥ 0 is an
integer.

A small affine is a scheme of the form Spf(R), with R small.

Proposition 3.1.2. There is an open covering of M(H)(w) by small affines.

Proof. By smoothness, we can find {Spec(Si)}i∈I , an open covering ofM(H),
such that, for all i, there is an étale map V [X] → Si. We can assume that each
Spec(Si) intersects the special fiber, and, up to taking a refinement, that the pull-
back of ω to Spec(Si) is trivial, generated by ti. Over Spec(Si), we can write Eq−1 =
aiti, with ai 6∈ πSi (since the set of supersingular geometric points of the reduction
of Spec(Si) is finite). By construction, the pullback of M(H)(w) to Spec(Si) is
Spec(Ti), where Ti := Si[ti]/(aiti − $w). If H does not vanish on Spec(Ti), the
proposition is clear, so let z be a geometric point of Spec(Ti)V/πV that is a zero
of H (in particular we can suppose w > 0). Enlarging V , we can assume that z
is defined over V/πV . Let us consider the morphism V [X,Y ]/(XY − $w) → Ti,
that sends X to ai and Y to ti. It is enough to prove that its reduction modulo
$ is étale at z (since we want $-adic formal étalness). The proposition follows by
looking at the completed local ring of Spec(Ti)V/πV at z, since a is a generator of
the maximal ideal of the completed local ring of Si at the image of z by [Kas04],
Proposition 6.3. �

In this section we mainly work over M(H)(w) and over M(H$)(w). Let
{Spf(Ri)i∈I} be a covering of M(H)(w) by affine irreducible formal schemes (some-
times we will assume that each Ri is small, this is possible by Proposition 3.1.2).
Our local situation will be the following: we choose one of the Ri’s, called simply
R. Note that, by Proposition 2.1.14, we have that R is a normal ring. Its pullback
to M(H$)(w) will be denoted with Spf(S). By construction, Spf(R) is equipped
with A, a formal abelian scheme of dimension 4N . We have that A is the $-adic
completion of an abelian scheme π : A → U , where U := Spec(R). Here A is part of
an object of the moduli problem of Theorem 1.3.6. Up to taking a refinement, we

can assume that ωA/R =
(
π∗Ω

1
A/R

)2,1

1
is a free OU -module, generated by ω, and

we write Eq−1| Spf(R) = Eω⊗q−1. Let η = Spec(K) be a generic geometric point of

27
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U , we write G for π1(UK , η). We denote with R the direct limit of all R-algebras
T ⊆ K which are normal and such that TK is finite and étale over RK . Note that
G = Gal(RK/RK), so it acts continuously on R̂, the $-adic completion of R.

We now give the definition of the map d log in the generality we need. We are
going to use the Lubin-Tate $-divisible group LT = R[[x]], defined in Section 1.7.

Let G be an abelian group with an action of OP . We define the Tate module
of G as T$(G) := lim←−nG[$n]. If G is a $-divisible group, we define T$(G) :=

T$(G(RK)). Note that, if we define the (constant) $-divisible group

FP/OP := lim−→
n≥0

$−nOP/OP ,

then we have

T$(G) = Hom(FP/OP , G).

Let G be a finite and flat group scheme over R with an action of OP (we will always
assume the condition on the action on the Lie algebra), and let us suppose that
G is killed by $n for some integer n. Recall that, by Theorem 1.7.4, the functor
(R-algebras)op → set that sends T to homOP (GT ,LT T ) is representable by G∨.
We have a similar results for $-divisible groups.

Let G be a $-divisible group and let H be a sub OP -module of T$(G∨). By
duality between G and G∨, we obtain H⊥, the orthogonal of H, that is a sub
OP -module of T$(G).

If D ⊆ G[$n](RK) is a sub OP -module, we write Dcl for the schematic closure
of D in G[$n]. If R is a discrete valuation ring, whose valuation extends the one
of OP , we have that Dcl and (D⊥)cl are group schemes. In this case, by [Far07],
Proposition 1, we have

(Dcl)∨ ∼= G[$n]∨/(D⊥)cl.

LetW be a normal Noetherian R-algebra, without $-torsion. Let G be a group
scheme with an action of OP , and let ωG/R be the module of invariant differential
of G. If G is killed by $n, we define a map

d logG := d logG,W : G∨(WK)→ ωG/R ⊗RW/$nW

in the following way: given x, a WK-valued point of G∨, it extends, by normality,
to a W -valued point of G∨, called again x. It gives a group scheme homomorphism
(that respects the action of OP) fx : GW → LT W . We define

d logG,W (x) := f∗x d(T ).

Lemma 3.1.3. Let G be as above.

• Let R′ be an R-algebra, and let G′ be the base change of G to R′. If W is a
normal, Noetherian, $-torsion free R′-algebra, then the following diagram
commutes.

G∨(WK)
d logG,W //

��

ωG/R ⊗RW/$nW

��
(G′)∨(WK)

d logG′,W// ωG′/R′ ⊗R′ W/$nW

• Let G′ be a finite and flat group scheme over R, with an action of OP .
Assume that G′ is killed by $n and suppose we are given a morphism
G′ → G that respects the action of OP . IfW is as above, then the following
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diagram commutes.

G∨(WK)
d logG,W //

��

ωG/R ⊗RW/$nW

��
(G′)∨(WK)

d logG′,W// ωG′/R ⊗RW/$nW

• Let W be as above and let W ′ be a normal, Noetherian, and $-torsion
free W -algebra. Then the following diagram commutes.

G∨(WK)
d logG,W //

��

ωG/R ⊗RW/$nW

��
G∨(W ′K)

d logG,W ′// ωG/R ⊗RW ′/$nW ′

Proof. We prove the first point of the lemma, the other ones are similar. We
write i : R → R′, and we use the same notation for the map G′ → G. Let x be a
point in G∨(WK) and let fx : GW → LT W be the corresponding morphism. We
have d logG,W (x) = f∗x d(T ), so its image in ωG′/R′ ⊗R′ W/$nW is i∗f∗x d(T ). By
definition we have that i∨(x) corresponds to the morphism fx ◦ i : G′W → LT W . It
follows that

d logG′,W (i∨(x)) = (fx ◦ i)∗ d(T ) = i∗f∗x d(T )

as required. �

In particular, we can take G = A[$n]2,11 , and we obtain the map

d logn,W : (A[$n]2,11 )∨(WK)→ ωA[$n]2,11
⊗RW/$nW.

Taking the direct limit over all W as above, we get the map

d logn,A : (A[$n]2,11 )∨(RK)→ ωA/R ⊗R R/$nR.

Finally, taking the projective limit, we obtain the map

d logA : T$((A[$∞]2,11 )∨)→ ωA/R ⊗R R̂.

Suppose that R is a discrete valuation ring, whose valuation extends the one of
OP . In particular we have that Â2,1

1 is a $-divisible group, and so is the formal
OP -module associated to A[$∞]2,11 . From d logA, we obtain the maps d logn,Â and
the map

d logÂ : T$((Â2,1
1 )∨)→ ωA/R ⊗R R̂,

that is denoted αOP
(Â2,1

1 )∨
in [Far07], Section 1. We extend the notation introduced

above for A[$∞]2,11 to any $-divisible group in the obvious way.
We return now to the case of a general $-adically complete R.

Proposition 3.1.4. Let us suppose that that R is a discrete valuation ring and
that A is supersingular. Then d log1,Â has non trivial kernel if and only if w ≤ 1

q .
In this case we have

ker(d log1,Â) = (C2,1
1 (RK)⊥)cl(RK),

where the orthogonal is taken with respect to Â[$]2,11 .
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Proof. Since R is a discrete valuation ring, we have that Â2,1
1 is a formal

$-divisible group. We re-write part of Section 1.2 of [Far07], adapted to our case.
Let y ∈ Â2,1

1 [$]∨(RK) and let D ⊆ Â2,1
1 [$]∨(RK) be the OP -module generated

by y. We have ω(Dcl)∨
∼= R/γR, with v(γ) = 1 −

∑
v(z), where the sum is over

D⊥ \ {0} (we consider everything as a subscheme of R[[x]], so the valuation of a
point makes sense), see [Far07] for details. Since the map

R/γR ∼= ω(Dcl)∨/R ⊗R R/$R ↪→ ωA/R ⊗R R/$R ∼= R/$R

is the multiplication by $
γ , it is injective. In particular, we have a commutative

diagram

Â2,1
1 [$]∨(RK) // ωA/R ⊗R R/$R

Dcl(RK)
?�

OO

// ω(Dcl)∨/R ⊗R R/$R
?�

OO

so we can study the map d log(Dcl)∨,R. We now have that d log(Dcl)∨,R(y) ≡ β mod

γ, with v(β) = 1−v(γ)
q−1 , so d log(Dcl)∨,R(y) = 0 if and only if v(γ) ≤ 1−v(γ)

q−1 , i.e. if
and only if

v(γ) ≤ 1

q
.

If y ∈ C2,1
1 (RK)⊥ \ {0}, we have that D⊥ = C2,1

1 (RK) and v(γ) = v(E) ≤ w. It
follows that C2,1

1 (RK)⊥ is contained in the kernel of d log1,A if and only if w ≤ 1
q . We

now prove that if y 6∈ (C2,1
1 )(RK)⊥ then y 6∈ ker(d log1,Â). If y 6∈ (C2,1

1 )(RK)⊥, the

valuation of the points of D⊥ is v(E)
q(q−1) (by Lemma 2.2.2), so v(γ) = 1 − v(E)

q > 1
q

(since w < q
q+1 ). Since we have Â2,1

1 [$]∨/(C2,1
1 (RK)

⊥
)cl ∼= (C2,1

1 )∨ we obtain
ker(d log1,Â) = (C2,1

1 (RK)⊥)cl(RK). �

From now on we assume that w ≤ 1
q , so, if R is a discrete valuation ring, then

ker(d log1,Â) = (C2,1
1 (RK)⊥)cl(RK).

Remark 3.1.5. Let R be a complete discrete valuation ring. If A is supersin-
gular, then the above proposition shows that ker(d log1,A) = (C2,1

1 (RK)⊥)cl(RK).
Indeed, we have Â[$]2,11 = A[$]2,11 . In general we have that Â[$]2,11 and A[$]2,11

have the same module of invariant differentials. It follows by Lemma 3.1.3 and
[Far07], Lemme 1, that the remark is true also in the case A is ordinary. In
particular we have

ker(d log1,A) = (C2,1
1 (RK)⊥)cl(RK),

where the orthogonal is taken in A[$]2,11 .

Remark 3.1.6. Let D be a subgroup of A[$n]2,11 . Suppose we want to prove
that D ⊆ ker(d logn,A). We need to prove that D(WK) ⊆ ker(d logn,W ), for all big
enough normal R-algebras W ⊆ R. Let ($) ⊆ p be a prime ideal of W of height 1.
If x ∈ D(W ), be Lemma 3.1.3, we can prove that d logn,W (x) = 0 after localizing
at p and taking p-adic completion. It follows that we may assume that W and R
are complete discrete valuation rings, whose valuation extends the one of OP . In
particular we can use Remark 3.1.5, and we obtain a map, denoted again d log1,A,

d log1,A : (C2,1
1 )∨(RK)→ ωA/R ⊗R R/$R.
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From now on we will use the notation

v :=
w

q − 1
.

Proposition 3.1.7. By base change we obtain the map

d log1,A : (C2,1
1 )∨(RK)⊗κ R/$R→ ωA/R ⊗R R/$R.

We have that its cokernel is killed by $v, in particular we have

ker(d log1,A) = C2,1
1 (RK)⊥.

Proof. Fix an isomorphism ωA/R⊗RR/$R ∼= R/$R and let us denote with
a ∈ R/$R a generator of the image of d log1,A. We need to prove that $v is a
multiple of a. To prove this, we can replace R with a normal R-algebraW ⊆ R such
that WK is finite and étale over RK . By normality, we have W = ∩Wp, where the
intersection is over the set of prime ideals ofW of height 1. So wee can assume that
R is a discrete valuation ring, whose valuation extends the one of OP (if ($) 6⊆ p
the proposition becomes trivial over Wp). Taking completion, we may even assume
that R is complete.

We can work with Â2,1
1 . We start by proving the proposition in the case A is

supersingular. We continue the calculations made in the proof of Proposition 3.1.4,
using the same notations. Looking at the map ω(Dcl)∨/R ⊗R R/$R ↪→ ωA/R ⊗R
R/$R, we see that, if y 6∈ (C2,1

1 )(RK)⊥, then d log1,A(y) ≡ β mod $, with

v(β) =
q

q − 1
(1− v(γ)) =

v(E)

q − 1
≤ v

as required. The ordinary case is similar. �

Remark 3.1.8. Looking at the proof of Proposition 3.1.7, we see that the map
d log1,A is surjective if and only if A is ordinary.

Remark 3.1.9. In [AIS11], the condition w < 1
p is used from the very be-

ginning to define the canonical subgroup and it is not directly related to the map
d log. In our situation, before Proposition 3.1.7, it was enough to assume w < q

q+1 .
Looking at the proof of the above propositions, we see that if we want to relate the
map d log with the canonical subgroup, the assumption w ≤ 1

q is really essential.

Recall that Spf(S) is the inverse image of Spf(R) under the map M(H$)(w)→
M(H)(w). Furthermore we have E1/(q−1), a canonical q− 1-th root of E in S, and
we know that C2,1

1 becomes constant over SK . We now consider the morphism (see
Example 1.7.6)

(C2,1
1 )S = Spec(S[x]/(xq +

$

E
x))→ LT S = Spec(S[[x]])

E1/(q−1)x←[ x

By Lemma A.3, it respects the action of OP , so it gives a canonical non trivial
point γ ∈ (C2,1

1 )∨(SK) that, for dimension reasons, is a generator of the κ-vector
space (C2,1

1 )∨(SK). We are now ready to relate the modular form E1 with the map
d log.

Proposition 3.1.10. We have the equality

d log1,S(γ) ≡ E1| Spf(S) mod $1−w.
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Proof. Consider the following commutative diagram

(A[$]2,11 )∨(SK) //

��

ωA/R ⊗R S/$1−wS

��
(C2,1

1 )∨(SK) //

55

ωC2,11 /R ⊗R S/$1−wS

where the horizontal arrows are the corresponding d log maps (base-changed to
S/$1−wS) and the existence of the dotted arrow follows by Remark 3.1.5. Being
h : C2,1

1 → A[$]2,11 a closed immersion, the right vertical map is surjective, but both
its domain and codomain are free S/$1−wS-module of rank 1: indeed ωA/R is free
of rank 1, furthermore ωC2,11 /R

∼= R/$ER by Lemma A.3 and $
E = 0 in S/$1−wS

by our assumption on E. It follows that the right vertical map is an isomorphism,
so we can prove that

d logC2,11 ,S(γ) ≡ h∗(E1| Spf(S)) mod $1−w

By the explicit description of γ, we have d logC2,11 ,S(γ) = E1/(q−1) d(x), so we can
conclude by Proposition A.10. �

3.2. The Hodge-Tate sequence

We now use the results of the previous section to relate the module of invariant
differential of A with its Tate module.

We continue to work locally as in the previous section, using the same notations.
In this section we will work with the further assumption that R is small, so we can
use the results of [Bri08].

By definition we have an isomorphism of Gal(FP/FP)-modules

T$(LT ) ∼= OP(1),

where OP(1) means that the action of Gal(FP/FP) is twisted by the Lubin-Tate
character. We have a map

d log : LT (OP)[$∞]→ Ω1
V /V

x 7→ x∗ d(T ),

where V is the normalization of V in FP . Taking Tate modules, we get a map

d log : OP(1)→ T$(Ω1
V /V

).

By [Fon82], Theorem 1, we have a canonical isomorphism Ω1
V /V

∼= FP/$
−ρV (1),

where $ρ ∈ OOP (the rational number ρ depends on q and on the different of K
over W (k)[$]). This implies that

T$(Ω1
V /V

) ∼= $−ρV̂ (1).

It is immediate to check that, under this isomorphism, the map

d log : OP(1)→ $−ρV̂ (1)

is the natural immersion.
Let G be a $-divisible group over R. By pullback of differentials, we get a

bilinear map

T$(G)× ωG/R ⊗R R→ T$(Ω1
R/R

)

(x, y) 7→ 〈x, y〉
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We also have the perfect pairing, given by duality

T$(G)× T$(G∨)→ OP(1)

(x, y) 7→ 〈x, y〉

Lemma 3.2.1. Let x ∈ T$(G) and y ∈ T$(G∨). Via the map Ω1
V /V

→ Ω1
R/R

,
we have

d log(〈x, y〉) = 〈x, d logG(y)〉+ 〈y,d logG∨(x)〉.

Proof. This is proved in exactly the same way as [Fal87], Lemma 1. �

Remark 3.2.2. Let x and y be as in the above lemma. Suppose further that
x and y are in the kernel of the corresponding d log maps. By the lemma, we see
that d log(〈x, y〉) = 0. But the map d log : OP(1) → $−ρV̂ (1) is injective, so we
have that x and y are orthogonal.

We now need some results about Â2,1
1 [$]∨ ∼= Â1,1

1 [$] (the isomorphism comes
from the polarization of A). Everything we have said until now, in the whole thesis,
can be proved, in exactly the same way, using the 1,1

1 -part instead of the 2,1
1 -part

of the various objects. For example we have the modular form H′, the analogue of
H, and in general we will use the ′ to denote that we are ‘in the 1,1

1 case’. We have

ω′A/R
∼= ωA[$∞]1,11 /R,

and we write ωA∨/R for this R-module. We set E′q−1| Spf(S)
= E′ω′, with E′ ∈ S.

Using E′q−1, that is a global section of an invertible sheaf on M(H)rig, we can define
the affinoid subdomain M(H)′(w)rig, for any rational number w. We are going to
prove that M(H)(w)rig and M(H)′(w)rig are the same subset of M(H)rig. Compare
the following proposition with [Far10], Proposition 2.

Proposition 3.2.3. Let us suppose that R is a discrete valuation ring, whose
valuation extends the one of OP . Then the valuation of E′ is the same as the
valuation of E. Furthermore (C2,1

1 (RK)⊥)cl is the canonical subgroup of Â[$]1,11 .

Proof. If Â2,1
1 has height 1, also its dual must have height 1, so both E and

E′ are units of R, hence we can assume that Â2,1
1 has height 2. We claim that the

map
d log′1,A : A[$]2,11 (RK)→ ω′A/R ⊗R R/$R

has C2,1
1 (RK) as kernel. Indeed, let y ∈ C2,1

1 (RK), since we have a commutative
diagram

A2,1
1 [$](RK) // ω′A/R ⊗R R/$R

C2,1
1 (RK)
?�

OO

// ω(C2,11 )∨/R ⊗R R/$R
?�

OO

to prove that d log′1,A(y) = 0 it suffices to show that d log(C2,11 )∨,R(y) = 0. But by
[Fal02], Section 3, we have (C2,1

1 )∨ ∼= Spec(R[x]/(xq−Ex)), so ω(C2,11 )∨/R
∼= R/ER.

With this isomorphism, we have d log(C2,11 )∨,R(y) = γ, with v(γ) = 1−v(E)
q−1 ≥ v(E)

since v(E) ≤ 1
q . The claim follows since, by Remark 3.2.2 and Proposition 3.1.4,

the kernel of d log′1,A is orthogonal to C2,1
1 (RK)⊥ and hence has κ-dimension at

most 1. By the analogue of Proposition 3.1.4, we see that the fact that d log′1,A has
a non trivial kernel implies that v(E′) ≤ 1

q . The statement about (C2,1
1 (RK)⊥)cl

follows. It remains to bound the valuation of E′, or equivalently, to bound the
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valuation of the points of C2,1
1 (RK)⊥, that is 1−v(E′)

q−1 . Let us consider the isogeny
Â1,1

1 � Â1,1
1 /(C2,1

1 (RK)⊥)cl, by [Far07], Remarque 2, it is given, after a suitable
choice of coordinates, by the map

R[[x]]→ R[[x]]

x 7→
∏

λ∈C2,11 (RK)⊥

(x− λ)

Since the valuation of the points of A[$]1,11 that are not in C2,1
1 (RK)⊥ is v(E′)

q(q−1) ,

that is smaller than 1−v(E′)
q−1 , we have that the valuation of the image of these points

under the isogeny is v(E′)
q−1 . But A[$]1,11 /(C2,1

1 (RK)⊥)cl ∼= (C2,1
1 )∨, whose points have

valuation v(E)
q−1 , so v(E) = v(E′) as required. �

Remark 3.2.4. The above proposition implies that our results about A[$∞]2,11

have an analogue for A[$∞]1,11 , with the same constant w. For example, we have
an analogue of Proposition 3.1.7 and so on.

We have the map

d logA : T$((A[$∞]2,11 )∨)⊗OP R̂→ ωA/R ⊗R R̂,

and also its analogue for (A[$∞]2,11 )∨ ∼= A[$∞]1,11 ,

d logA∨ : T$(A[$∞]2,11 )⊗OP R̂→ ωA∨/R ⊗R R̂.

Let ·∗ mean ‘dual module’, then we have an isomorphism of G-modules (recall that
G = Gal(RK/RK))

T$((A[$∞]2,11 )∨) ∼= T$(A[$∞]2,11 )∗(1),

where (·)(1) means that the action of the whole G is twisted by the Lubin-Tate
character. We define

aA := d log∗A∨(1).

Definition 3.2.5. The Hodge-Tate sequence of A is the following sequence of
R̂-modules with semilinear action of G:

0→ ω∗A∨/R ⊗R R̂(1)
aA−→ T$((A[$∞]2,11 )∨)⊗OP R̂

d logA−→ ωA/R ⊗R R̂→ 0,

where the action of G on ωA∨/R and ωA∨/R is trivial, and on the other objects it
is the natural one.

Proposition 3.2.6. The Hodge-Tate sequence of A is a complex.

Proof. We need to prove that aA ◦ d logA = 0, so it is enough to show that
H0(R̂(−1),G) = 0. This is well known in the case of twist by the cyclotomic
character ([Bri08], Proposition 3.1.8), but all the theory of almost étale extensions
works also in our case, see [Fal02], Section 9. �

In general the Hodge-Tate sequence is not exact, we are going to prove that its
homology is killed by $v.

Lemma 3.2.7. We have that $ is not a 0-divisor in R̂ and that the natural map
R→ R̂ is injective.

Proof. This is [Bri08], Proposition 2.0.3. �
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Proposition 3.2.8. We have that the cokernel of the map d logA is killed by
$v and Im(d logA) is a free R̂-module of rank 1. Furthermore, ker(d logA) is a
projective R̂-module of rank 1.

Proof. We rewrite the proof of [AIS11], Lemma 2.5, adapted to our situa-
tion. Since T$((A[$∞]2,11 )∨) is a free OP -module, the statement about ker(d logA)
follows from the one about Im(d logA). We write ω for ω ⊗R 1, it is a basis of
ωA/R ⊗R R̂. Note that

T$((A[$∞]2,11 )∨)/$T$((A[$∞]2,11 )∨) ∼= (A[$]2,11 )∨(RK)

and that the reduction mod$ of d logA is the map d log1,A extended to R, that
factors through (C2,1

1 )∨(RK) ⊗κ R/$R. By Proposition 3.1.7, the cokernel of this
last map is killed by $v. Recall that γ is a generator of (A[$]2,11 )∨(RK) as κ-vector
space, we write γ also for γ⊗κ 1. Let δ ∈ R/$R be such that d log1,A(γ) = δω and

let δ̃ ∈ R̂ be a lifting of δ. We can write

$vω = $Aω +Bδω

for some A and B in R̂, so, being 1 − $1−vA invertible, we find s ∈ R̂ such that
sδ̃ = $v. Let G by the R̂-module generated by δ̃ω. It is free of rank 1: indeed,
after inverting $, we have just proved that δ̃ is invertible, so any a ∈ R̂ that
kills G becomes 0 in R̂[$−1], hence it is 0 already in R̂ again by Lemma 3.2.7.
Since d logA(sγ̃) = $vω, where γ̃ ∈ T$((A[$∞]2,11 )∨) ⊗OP R̂ is any lifting of γ,
we see that G contains $vωA/R ⊗R R̂, so the proposition follows if we show that

G = Im(d logA). Let x ∈ T$((A[$∞]2,11 )∨) ⊗OP R̂, by definition of δ, there are
C and D in R̂ such that d logA(x) = Cδ̃ω + $Dω, but this element is in G since
$vωA/R ⊗R R̂ ⊆ G, so Im(d logA) ⊆ G. Since by definition G = $G+ Im(d logA),
the conclusion follows by Nakayama’s lemma (($) is contained in the Jacbson
radical of R̂ by completeness). �

Lemma 3.2.9. The map aA is injective.

Proof. By Remark 3.2.4 and Proposition 3.2.8, we know that the cokernel
of d logA∨ is killed by $v, so the same must be true for the kernel of aA, but by
Lemma 3.2.7 this implies that ker(aA) = 0. �

Notation. Let D2,1
1 be C2,1

1 (RK)⊥. From now on we will omit (RK) in the
notation, it should be clear from the context whether we are talking about the
group scheme or about the group of points. We also write Rz for R/$zR (and
similarly for other objects). Note that, by functoriality of d logA, we have that
ker(d logA) and Im(d logA) are G-modules, and similarly for d logA∨ .

Lemma 3.2.10. We have a commutative diagram, with exact bottom row:

ω∗A∨/R ⊗R R1(1) //

��

T$((A[$∞]2,11 )∨)⊗κ R1
// ωA/R ⊗R R1

0 // D2,1
1 ⊗κ R1

// (A[$]2,11 )∨ ⊗κ R1
// (C2,1

1 )∨ ⊗κ R1

OO

// 0

Furthermore we have an isomorphism ker(d logA) ∼= Im(d logA∨)∗(1).
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Proof. This is the second step of the proof of Proposition 2.4 in [AIS11]. By
Remark 3.2.4 and Proposition 3.2.8, we have that Im(d logA∨) is a free R̂-module
of rank 1, and ker(d logA∨) is a projective R̂-module of rank 1. The exactness of
the bottom row is clear, and the right vertical map is given by Remark 3.1.6. Let
h be the isomorphism

h : T$((A[$∞]2,11 )∨)⊗OP R̂→ T$(A[$∞]2,11 )∗ ⊗OP R̂(1).

By Remark 3.2.2, we have that

h(ker(d logA)) ⊆ Im(d logA∨)∗(1),

in particular we obtain a morphism h′ : Im(d logA)→ ker(d logA∨)∗(1). The natu-
ral map

T$(A[$∞]2,11 )∗ ⊗OP R̂(1)→ ker(d logA∨)∗(1)

is surjective, because ker(d logA∨) is a projective module, so h′ is surjective, hence
it is an isomorphism. It follows that h gives the required isomorphism ker(d logA) ∼=
Im(d logA∨)∗(1). Let i be the natural map Im(d logA∨)→ ωA∨ ⊗R R̂, we have

i∗ ⊗
R̂
R1(1) : ω∗A∨/R ⊗R R1(1)→ ker(d logA)⊗κ R1.

Since by Proposition 3.1.7, we have a map

ker(d logA)/$ ker(d logA)→ D2,1
1 ⊗κ R1,

we obtain, by composition, the left vertical map. The lemma follows. �

Theorem 3.2.11. The homology of the Hodge-Tate sequence is killed by $v,
and we have a commutative diagram of G-modules, with exact rows and vertical
isomorphisms,

0 // ker(d logA)1−v //

o
��

T$((A[$∞]2,11 )∨)⊗OP R1−v // Im(d logA)1−v //

o
��

0

0 // D2,1
1 ⊗κ R1−v // (A[$]2,11 )∨ ⊗κ R1−v // (C2,1

1 )∨ ⊗κ R1−v // 0

Furthermore, ker(d logA) is a free R̂-module of rank 1.

Proof. This is the third step of the proof of Proposition 2.4 in [AIS11]. By
Remark 3.2.4 and Proposition 3.2.8, we have $v(ωA/R⊗R R̂) ⊆ Im(d logA∨), so, by

Lemma 3.2.10, we have$v ker(d logA) ⊆ ω∗A/R⊗RR̂(1) ⊆ T$((A[$∞]2,11 )∨)⊗OP R̂,
where the last inclusion is Lemma 3.2.9. By Lemma 3.2.10, we have that ω∗A/R ⊗R
R̂(1) goes to 0 in (C2,1

1 )∨ ⊗κ R1, so the same must be true for $v ker(d logA). But
(C2,1

1 )∨ ⊗κ R1 is a free R1-module and the kernel of the multiplication by $v in
R1 is $1−vR/$R by Lemma 3.2.7, so ker(d logA) goes to $1−v(C2,1

1 )∨ ⊗κ R1, and
hence is 0 modulo $1−v. This gives the map

Im(d logA)1−v → (C2,1
1 )∨ ⊗κ R1−v,

that is a surjective morphism between free modules of the same rank, so it is an iso-
morphism. Being Im(d logA) free, we have, non canonically, T$((A[$∞]2,11 )∨)⊗OP
R̂ ∼= ker(d logA) ⊕ Im(d logA) (this decomposition is not G-equivariant), so the
map ker(d logA)1−v → T$((A[$∞]2,11 )∨) ⊗OP R1−v is injective and its image in
(A[$]2,11 )∨ ⊗κ R1−v must be D2,1

1 ⊗κ R1−v, this gives the required diagram. Since
ker(d logA) is a projective R̂-module by Proposition 3.2.8 and its reduction mod-
ulo $1−v is free, we obtain that it must be free. It remains only to show that
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ker(d logA)/ Im(aA) is killed by $v. This quotient is isomorphic, as R̂-module, to
R̂/aR̂, for some a ∈ R̂ and we need to prove that $v is a multiple of a. But, by
the part of the theorem proved so far, we have $v + x$1−v = ya for some x and y
in R̂, the conclusion follows. �

Proposition 3.2.12. The Hodge-Tate sequence is exact if and only if A is
ordinary.

Proof. This follows by Remark 3.1.8 (see also the calculations made in the
proof of Proposition 3.1.7). �

We now work over S. Let us briefly recall the notations introduced in the proof
of Proposition 3.2.8: δ is an element of R1 that satisfies d log1,A(γ) = δω and δ̃ ∈ R̂
is a lifting of δ. Since γ is defined over S, we see that we can assume δ ∈ S/$S
and δ̃ ∈ S. We write H for Gal(RK/SK): it is a subgroup of G.

Proposition 3.2.13. Let F(S) ⊆ ωA/R ⊗R S be the submodule generated by
δ̃ω ⊗ 1.

(1) We have that F(S) is a free S-module of rank 1, with basis δ̃ω and F(S)⊗S
R̂ ∼= Im(d logA);

(2) the S-module Im(d logA)H is equal to F(S);
(3) there is an isomorphism F(S)1−v ∼= (C2,1

1 )∨⊗κ S1−v, its base change to R̂
gives, via F(S)⊗S R̂ ∼= Im(d logA), the isomorphism of Theorem 3.2.11;

(4) there is an isomorphism F(S)∗(1)⊗S R̂ ∼= ker(d logA).
Furthermore, all the above isomorphisms are H-equivariant.

Proof. This is the analogue of Proposition 2.6 of [AIS11].

(1) The fact that F(S) is free with basis δ̃ω is proved in exactly the same
way of Proposition 3.2.8, where it is also shown that Im(d logA) is the
R̂-submodule of ωA/R ⊗R R̂ generated by δ̃ω as required;

(2) by part (1), we have that F(S) ⊆ Im(d logA)H. Any x ∈ Im(d logA) can
be written as x = aδω, for some a ∈ R̂. Since δ ∈ S, we see that δω is
invariant under H, so if x is invariant under the action of H, we have that
a ∈ R̂

H
= S, where the last equality follows from [Bri08];

(3) this follows from the fact that the map Im(d logA) → (C2,1
1 )∨ ⊗κ R1−v

sends δ̃ω to the reduction of γ;
(4) by taking the H-invariants of ker(d logA) ∼= Im(d logA)∗(1) we obtain

the isomorphism ker(d logA)H ∼= F(S)∗(1), since ker(d logA) is a free R̂-
module, the conclusion follows.

�

The following lemma will be used in the next chapter.

Lemma 3.2.14. Let Spf(R′) be a small affine of M(H)(w) and suppose that R′
is an R-algebra. We write A′ for the base change of A to R′. Let Spf(S′) be the
inverse image of Spf(R′) under the map M(H$)(w)→M(H)(w), then we have a
natural isomorphism F(S)⊗S S′ ∼= F(S′), compatible with ωA/R ⊗R R′ ∼= ωA′/R′ .

Proof. By functoriality of d log, we have a natural morphism

Im(d logA)⊗
R̂
R̂′ → Im(d logA′),
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that is compatible with the isomorphism ωA/R ⊗R R′ ∼= ωA′/R′ . Taking Galois
invariants we obtain, by Proposition 3.2.13, a morphism

F(S)⊗S S′ → F(S′),

that is an isomorphism modulo $1−v by Theorem 3.2.11. The lemma follows since
both F(S)⊗S S′ and F(S′) are free S′-modules of rank 1. �



CHAPTER 4

Modular forms of non-integral weight

This chapter, together with the next one, is the hearth of the thesis. For
any continuous morphism χ : O∗P → K∗, we define a sheaf Ωχw on M(H)(w). Using
Theorem 3.2.11, we prove that Ωχw is locally free of rank 1. Furthermore, if χ(t) = tk

for some integer k, we have that the rigidifications of Ωχw and of ω⊗k are naturally
isomorphic. This allows us to the define the notion of overconvergent modular form
of any weight. We prove that the Ωχw’s, for various χ, can be put in p-adic analytic
families.

4.1. Generalities about continuous characters

In order to define the sheaf Ωχw, we need some technical results about the space
of continuous characters we are interested in. SinceOP can be ramified, this space is
slightly more complicated then the classical one, where OP = Zp (see in particular
Definition 4.1.1).

We assume that e ≤ p− 1 (but see Section 4.5 for an explanation of what can
be done without this assumption). Note that in this case the p-adic logarithm gives
an isometric isomorphism

(1 +$OP) ∼= (1 +$)OP ,

where the first group is denoted multiplicatively and the latter additively.
Recall that $e = p and that the valuation v(·) is normalized in such a way that

v($) = 1. We have an isomorphism of topological groups

O∗P ∼= µq−1 × (1 +$OP).

Notation. Let t ∈ O∗P . We will use the following notation:
• [t] means [·] applied to the reduction of t modulo $ (recall that [·] : is the

Teichmüller character);
• 〈t〉 := t/[t].

Let A be any affinoid OP -algebra and let χ be a continuous morphism of mul-
tiplicative groups χ : O∗P → A∗. Note that χ(1 + $) = 1 + a, where a ∈ A is
topologically nilpotent (so log(1 + a) ∈ A makes sense). Being OP a free Zp-
module of rank d, it is not always the case that χ is uniquely defined by χ|µq−1

and χ(1 +$). To avoid these problems, we will consider only characters as in the
following

Definition 4.1.1. We say that any χ as above is a continuous character if the
Zp-linear map

OP → A

t 7→ log(χ((1 + p)t))

is also OP -linear.

Remark 4.1.2. By definition, if χ is a continuous character, then χ|1+$OP is
completely defined by χ(1+$). If OP = Zp then our notion of continuous character

39
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coincides with the usual one. We use this notion in order to take into account the
action of OP that we have on 1 +$OP .

Definition 4.1.3. If s ∈ Cp satisfies

v(s) >
e

p− 1
− 1

we say that s is good. This is equivalent to require that (1 +$x)s := exp(s log(1 +
$x)) is defined for any x ∈ Cp. More generally, for any integer r ≥ 1, we say that
s is r-good if it satisfies

v(s) >
e

p− 1
− r.

This is equivalent to require that (1 +$rx)s is defined for any x ∈ Cp.

Definition 4.1.4. Following [CM98], Section 1.4, we say that a continuous
character χ : O∗P → K∗ is accessible if it is of the form

χ : O∗P → K∗

t 7→ [t]i〈t〉s

where:
• i ∈ Z /(q − 1)Z;
• s ∈ K is good.

In this case we write χ = (s, i). Given an integer k, we view it as the almost
accessible character t 7→ tk, that is (k, k) in the above notation.

Definition 4.1.5. Let χ : O∗P → K∗ be any continuous character, that in
general will not be almost accessible. We say that χ is r-accessible, where r ≥ 1 is
an integer, if v(〈t〉 − 1) ≥ r implies that χ(t) = [t]i〈t〉s for some i ∈ Z /(q − 1)Z
and some r-good s ∈ K.

Remark 4.1.6. Note that accessible means 1-accessible and that any continu-
ous character is r-accessible for some r.

Let W be the weight space for our continuous characters: it is an FP -rigid
analytic space whose A-points, for any FP -affinoid algebra A, are

W(A) = Homcont(O∗P , A∗).
It is possible to give a more concrete description of W: by the above discussion, we
see that there is a natural bijection between the set of connected components of W
and Hom(µq−1(K),K∗) = Z /(q − 1)Z. Let B be the component corresponding to
the identity. It follows that we have an isomorphism of rigid spaces

W =
∐

Z /(q−1)Z

B.

Let χ be in B(Cp). By our definition of continuous character, we have that the map
χ 7→ χ(1 +$)− 1 gives an isomorphism of rigid analytic spaces

B ∼= D̊(0, 1),

where D̊(0, 1) is the open disc of radius 1 centered in the origin.
Let t1 be |$|

e
p−1 , and, given an integer r ≥ 2, we define tr by the following

condition: for x ∈ Cp, we have |x| < tr if and only if |y| < t1, where y is any element
of Cp that satisfies | log(y)| =

∣∣∣ log(1+$r)
log(1+$) log(x)

∣∣∣. We have tr → 1 as r → ∞. Let
Br be the open ball of radius tr. For r ≥ 1, we fix Dr, a closed (hence affinoid) ball
such that Br−1 ⊂ Dr ⊂ Br. We write Wr for

∐
Z /(q−1)ZDr. Note that each Wr is

an affinoid subdomain of W and that {Wr}r≥1 gives an admissible covering of W.



4.2. THE SHEAVES ΩχW FOR ACCESSIBLE CHARACTERS 41

Lemma 4.1.7. Any χ ∈ Wr(K) is an r-admissible character.

Proof. We may assume χ ∈ Dr(K) ⊆ Br(K). In this case it is enough to take

s :=
log(χ(1 +$r))

log(1 +$r)
.

�

Remark 4.1.8. The definition of the radius of Br is quite complicated, and not
totally explicit. This is not important for us, the only thing to keep in mind is that
Wr is an affinoid subdomain of W and that {Wr}r≥0 is an admissible covering of
W. In particular, any character χ ∈ W(K) lies in some Wr(K). Furthermore we
know that any χ ∈ Wr(K) is r-admissible.

4.2. The sheaves Ωχw for accessible characters

We start by defining the sheaves Ωχw assuming that χ is accessible. This allows
us to define p-adic modular forms of weight χ. We compare modular forms of level
K(H$) with modular forms of level K(H). Finally, we prove that the definition
of p-adic modular forms given in the previous chapters is a particular case of the
one given below, and we also reformulate the definition using ‘test objects’.

We start working over M(H$)(w), but later on we will need to consider curves
of higher level. We write ϑ for the natural morphism

ϑ : M(H$)(w)→M(H)(w).

If Spf(S)→M(H$)(w) is as in the previous chapters, we have F(S), that is a free
S-module of rank 1, contained in ωA/R ⊗R S (see Proposition 3.2.13).

Definition 4.2.1. We write F for the unique locally free OM(H$)(w)-module
of rank 1 that satisfies F(Spf(S)) = F(S), for Spf(S) an open affine of M(H$)(w)
as above.

Recall that at the end of Section 3.1 we have defined γ, that is a non trivial
canonical SK-point of (C2,1

1 )∨. Let (C2,1
1 )∨ be the sheaf on M(H$)(w) associated

to the various groups (C2,1
1 )∨ (here (C2,1

1 )∨ should be thought as group of points).
The various γ glue together, to define a global section of (C2,1

1 )∨, denoted again by
γ. By Theorem 3.2.11, we have an isomorphism of sheaves

F/$1−vF ∼= (C2,1
1 )∨ ⊗κ OM(H$)(w)/$

1−vOM(H$)(w).

Definition 4.2.2. Using the above isomorphism, we define F ′v as the inverse
image of the constant sheaf of sets (C2,1

1 )∨ \ {0} under the natural map F →
F/$1−vF . We will write F ′′v for the inverse image of the sheaf {γ ⊗ 1}.

We can give a more concrete description of this sheaf using Proposition 3.1.10.

Lemma 4.2.3. Let Spf(S) → M(H$)(w) be an open affine, with associated
abelian scheme A → Spec(S), and assume that ωA/S is free, generated by ω. Then
we have that F(Spf(S)) is free, and ωstd := E1| Spf(S) gives a basis.

Proof. We can write E1| Spf(S) = E1/(q−1)ω, for some E ∈ S (we use this
notation to remain coherent with the previous chapters). To prove that E1| Spf(S)

is a basis of F(Spf(S)), we can work locally, so we can assume that Spf(S) is the
inverse image of Spf(R)→M(H)(w), with R small. We write A also for the abelian
scheme over Spec(R). We use the notations of the proof of Proposition 3.2.8. In
that proof, we have shown that F(S) is generated by δ̃ω. By Proposition 3.1.10, we
have δ̃ ≡ E1/(q−1) mod $1−w, so there is A in R̂ such that E1/(q−1) = δ̃+$1−wA.
Since F(S) contains$v(ωA/R⊗RR̂) and 1−w ≥ v, we have that E1/(q−1)ω ∈ F(S).
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Let G be the submodule of ωA/S generated by E1/(q−1)ω. It remains to show that
δ̃ω ∈ G. Since E1/(q−1) = δ̃ +$1−wA, we have F(S) = $1−vF(S) +G, the claim
follows by Nakayama’s lemma. �

Corollary 4.2.4. We have that F is a free OM(H$)(w)-module of rank 1, with
ωstd as basis.

Definition 4.2.5. Let Sv be the sheaf of abelian groups, on M(H$)(w), de-
fined by

Sv := O∗P(1 +$1−vOM(H$)(w)).

Similarly, we define the sheaf S ′′v as

S ′′v := 1 +$1−vOM(H$)(w).

Proposition 4.2.6. We have that F ′v is a Zariski Sv-torsor, and that F ′′v is
a Zariski S ′′v -torsor. Furthermore, both these torsors are generated by ωstd. Fur-
thermore, via the inclusion S ′′v ⊆ Sv, we have that F ′v is the pushed-out torsor
F ′′v ×S

′′
v Sv.

Proof. This follows from part (3) of Proposition 3.2.13 and Lemma 4.2.3. �

We are now ready to consider more general weights.

The morphism ϑrig : M(H$)(w)rig → M(H)(w)rig is finite and étale, and its
Galois group is canonically identified with κ∗. Furthermore, the action of κ∗ on
ϑrig extends to an action on ϑ (this follows from the moduli theoretic description
of M(H$)(w) and M(H)(w)). If c ∈ O∗P we will write c for the image of c in κ∗,
and we view O∗P acting on ϑ via the projection.

Throughout this section, we fix an accessible character χ = (s, i). We will
assume that

w < (q − 1)

(
v(s) + v(log(1 +$))− e

p− 1

)
.

Let x be a local section of Sv over V = Spf(S). We can write x = ub, where u
is a section of O∗P and b is a section of 1 + $1−vOV. Note that bs = exp(s log(b))
makes sense thanks to our assumption on w. We set xχ := χ(u)bs, that is another
section of Sv. Note that, if t ∈ 1 + pOP , we have χ(t) = ts, so xχ is well defined,
in the sense that it depends only on the product ub. We will write O(χ)

M(H$)(w) for
OM(H$)(w) with the action of Sv by multiplication, twisted by χ.

We have a natural action, by multiplication, of Sv on F ′v. In particular we can
consider the sheaf

Ω̃χw := HomSv (F ′v,O
(χ−1)
M(H$)(w)),

where HomSv (·, ·) means homomorphisms of sheaves with an action of Sv. By
Proposition 4.2.6, we have that Ω̃χw is an invertible sheaf of OM(H$)(w)-modules.

Remark 4.2.7. Similarly to the case of Sv, we have that S ′′v acts both on F ′′v
and on O(χ−1)

M(H$)(w). Note that the action of S ′′v on O(χ−1)
M(H$)(w) depends only on

s and not on the whole χ = (s, i). Since F ′v ∼= F ′′v ×S
′′
v Sv, we have a natural

isomorphism of sheaves

Ω̃χw
∼= HomS′′v (F ′′v ,O

(χ−1)
M(H$)(w)).

It follows that, to specify f , a global section of Ω̃χw, it is enough to give f(ωstd).
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Since κ∗ acts on (C2,1
1 )∨\{0}, we have an action of κ∗ on F ′v compatible with the

action of κ∗, by pullbacks, on ωK(H$). Let a be in κ∗. We can write a = (a, a]),
viewing it as the morphism of ringed spaces a : M(H$)(w) → M(H$)(w). We
have that a] is a morphism

a] : O(χ−1)
M(H$)(w) → a∗O(χ−1)

M(H$)(w).

Taking ϑ∗ on both sides, we obtain, since ϑ = ϑ◦a, an action of κ∗ on ϑ∗O(χ−1)
M(H$)(w).

All these actions extend to actions of O∗P , via the projection.
Since ϑ is finite, we have that ϑ∗Ω̃χw is a coherent sheaf of OM(H)(w)-modules.

The action of κ∗ on F ′v and on ϑ∗O(χ−1)
M(H$)(w) gives an action of κ∗ on ϑ∗Ω̃

χ
w.

Explicitly, suppose that a ∈ κ∗ and that f : F ′v |V → O
(χ−1)
M(H$)(w)|V

, where V =

ϑ−1(U), for some open U ⊆M(H)(w). Then af is the map given by the following
diagram

F ′v |V

a−1

��

O(χ−1)
M(H$)(w)|V

F ′v |V
f // O(χ−1)

M(H$)(w)|V

a

OO

Note that κ∗ acts on ϑ∗Ω̃χw by automorphisms of OM(H)(w)-modules. In particular,
we have an action of κ∗ on the global section of Ω̃χw. We will write this action by
f 7→ f|〈a〉, for a ∈ κ∗. These operators will be called diamond operators. As above,
we let O∗P act via the natural projection.

Definition 4.2.8. We define the sheaf Ωχw = Ω
(s,i)
w on M(H)(w) as

Ωχw :=
(
ϑ∗Ω̃

χ
w

)κ∗
.

Let V = Spf(S) → M(H$)(w) be an open affine. We will write Xχ,v for the
unique element of Ω̃χw(V) (see Remark 4.2.7) that satisfies

Xχ,v(bω
std) = b−s,

for all b ∈ S ′′v (V) = 1 + $1−vS. For various V’s, the Xχ,v’s glue together, so we
obtain a global section of Ω̃χw, denoted again Xχ,v.

Lemma 4.2.9. We have that Ω̃χw is a free OM(H$)(w)-module of rank 1, with
Xχ,v as basis.

Proof. This follows from Lemma 4.2.3 and Proposition 4.2.6. �

Remark 4.2.10. Let χ′ = (s, j) be another accessible character (note that we
have the same s for χ and χ′). We have a canonical isomorphism

βχ,χ′ : Ω̃χw
∼−→ Ω̃χ

′

w ,

that sends Xχ,v to Xχ′,v. This isomorphism does not respect the action of κ∗, but
we have that βχ,χ′ induces an isomorphism Ω̃χw

∼= Ω̃χ
′

w [j − i]. Here, by Ω̃χ
′

w [j − i] we
mean Ω̃χ

′

w with the action of κ∗ twisted by [·]j−i.

We can now make the definition of p-adic modular forms of weight χ, of level
K(H$).
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Definition 4.2.11. We define the space of $-adic modular forms with respect
to D, level K(H$), weight χ and growth condition w, with coefficients in K, as

SD(K,w,K(H$), χ) := H0(M(H$)(w), Ω̃χw)K .

Note that, by Lemma 4.2.21 below, we have

SD(K,w,K(H$), χ) = SD(V,w,K(H$), χ)K

in the case χ is an integer.

We now consider modular forms of level K(H).

Proposition 4.2.12. There is a canonical and κ∗-equivariant isomorphism of
OM(H)(w)-modules

ϑ∗Ω̃
χ
w =

⊕
j∈Z /(q−1)Z

Ω(s,j)
w ,

such that Ω
(s,j)
w is identified with the submodule of ϑ∗Ω̃χw on which κ∗ acts via

multiplication by [·]j−i.

Proof. This is the analogue of Lemma 3.3 of [AIS11]. Recall that, by Re-
mark 4.2.10, we have a canonical and κ∗-equivariant isomorphism Ω̃

(s,j)
w
∼= Ω̃χw[i−j].

Hence Ω
(s,j)
w consists of the κ∗-invariants of ϑ∗Ω̃χw[i − j], so it is the submodule of

ϑ∗Ω̃
χ
w where κ∗ acts via [·]j−i. The order of κ∗ is q − 1, that is invertible in all

our rings, so ϑ∗Ω̃χw can be decomposed, locally on M(H)(w), as the direct sum of
eigenspace of κ∗. Since the only characters κ∗ → O∗P are of the form [·]j , for some
j ∈ Z /(q− 1)Z, the action is the one described in the proposition. This concludes
the proof. �

Remark 4.2.13. From now on we will use the above proposition to tacitly
identify Ω

(s,j)
w with the submodule of ϑ∗Ω̃χw on which κ∗ acts via [·]j−i.

Corollary 4.2.14. The rigidification of Ω
(s,i)
w is an invertible sheaf. Further-

more we have a decomposition

SD(K,w,K(H$), χ) =
⊕

j∈Z /(q−1)Z

H0(M(H)(w),Ω(s,j)
w )K .

Proof. The first statement is a consequence of the fact that ϑrig is finite and
étale with Galois group κ∗. The corollary follows from Proposition 4.2.12. �

Remark 4.2.15. Since Ω̃χw is locally free, we have that ϑ∗Ω̃χw is a reflexive sheaf
of modules (see [Har80] for the basic properties of reflexive sheaves). It follows that
Ωχw is also reflexive. Suppose now that $w is a uniformizer of V . Since M(H)(w)
is, locally, of the form Spf(R〈X,Y 〉/(XY −$w)), we have that M(H)(w) is regular.
It follows by [Har80], Corollary 1.4, that Ωχw is locally free.

By Proposition 4.2.12, we see that any modular form of level K(H$) and
weight χ has components that can be identified with global sections of Ω

(s,j)
w , for

various j ∈ Z /(q − 1)Z.

Definition 4.2.16. We define the space of $-adic modular forms with respect
to D, level K(H), weight χ and growth condition w, with coefficients in K, as

SD(K,w,K(H), χ) := H0(M(H)(w),Ω(s,i)
w )K .

Note that, by Proposition 4.2.24 below, we have

SD(K,w,K(H), χ) = SD(V,w,K(H), χ)K

in the case χ is an integer.
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Let w′ be a rational number that satisfies the same conditions of w. We
set v′ := w′

q−1 and we assume that w′ ≥ w. Note that we have a natural mor-
phism fw,w′ : M(H)(w) → M(H)(w′) induced by the inclusion M(H)(w)rig ↪→
M(H)(w′)rig. We also have the morphism gw,w′ : M(H$)(w)→M(H$)(w′), that
comes from M(H$)(w)rig ↪→M(H$)(w′)rig.

Lemma 4.2.17. We have a natural isomorphism of OM(H$)(w)-modules

ρ̃v,v′ : g
∗
w,w′(Ω̃

χ
w′)
∼= Ω̃χw.

We have that ρ̃v,v = id and, if w′′ ≥ w′ satisfies the same conditions of w, we have
ρ̃v,v′′ = ρ̃v,v′ ◦ g∗w,w′(ρ̃v′,v′′), where v′′ := w′′

q−1 . Furthermore, we obtain a canonical
morphism

ρv,v′ : f
∗
w,w′(Ω

χ
w′)→ Ωχw,

that is an isomorphism after rigidification. The ρv,v′ ’s satisfy the same conditions
as the ρ̃v,v′ ’s do.

Proof. This is Lemma 3.5 of [AIS11]. Let Tv′ be the sheaf on M(H$)(w)
defined by

Tv′ := O∗P(1 +$1−v′OM(H$)(w)).

Note that Sv is a subsheaf of Tv′ , and this latter sheaf acts in a natural way on
O(χ−1)

M(H$)(w) (the twisting by χ makes sense, since we are assuming that w′ is small
enough). We define G′v′ to be the sheaf of sets on M(H$)(w) given by inverse
image of (C2,1

1 )∨ \ {0} under the natural map

F → (C2,1
1 )∨ ⊗κ OM(H$)(w)/$

1−v′OM(H$)(w).

Since 1− v′ ≤ 1− v, we have that F ′v is a subsheaf of G′v′ , that is a Tv′ -torsor (this
is proved in exactly the same way as for F ′v). The two inclusions of sheaves just
defined are compatible and we have ωstd, a canonical generator of both torsors.
In particular we have an isomorphism G′v′ ∼= F ′v ×Sv Tv′ . By universal property of
push-out, we have an isomorphism

Ω̃χw = HomSv (F ′v,O
(χ−1)
M(H$)(w))

∼= HomTv′ (G
′
v′ ,O

(χ−1)
M(H$)(w)).

Using g∗w,w′ , we have a natural morphism Sv′ → (gw,w′)∗Tv′ . By adjunction, we have
a natural morphism g−1

w,w′(Sv′) → Tv′ , that is compatible with g−1
w,w′(F ′v′) → G′v′

(given by adjunction too). Using the generator ωstd, we obtain an isomorphism

G′v′ ∼= g−1
w,w′(F

′
v′)×

g−1

w,w′ (Sv′ ) Tv′ ,

so, by universal property, we have an isomorphism

HomTv′ (G
′
v′ ,O

(χ−1)
M(H$)(w))

∼= Homg−1

w,w′ (Sv′ )
(g−1
w,w′(F

′
v′),O

(χ−1)
M(H$)(w)).

The natural morphism

g∗w,w′(Ω̃
χ
w′)→Homg−1

w,w′ (S
′
v′ )

(g−1
w,w′(F

′
v′),O

(χ−1)
M(H$)(w))

is an isomorphism. Indeed, looking at Xχ,v we obtain the surjectivity, and both the
domain and the codomain are free sheaves of rank 1. In particular we have obtained
the isomorphism ρ̃v,v′ : g

∗
w,w′(Ω̃

χ
w′)
∼= Ω̃χw of the statement of the lemma. It easy to

check that ρv,v = (id), and that ρv,v′′ = ρv,v′ ◦ f∗w,w′(ρv′,v′′). One can check that
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this isomorphism, when push-forwarded to M(H)(w), is compatible with the action
of κ∗. We have the commutative diagram

M(H$)(w)
gw,w′ //

ϑw

��

M(H$)(w′)

ϑw′

��
M(H)(w)

fw,w′ //M(H)(w′)

The natural morphism Ψw,w′ : f
∗
w,w′◦ϑw′,∗Ω̃

χ
w′ → ϑw,∗◦g∗w,w′Ω̃

χ
w′ respects the action

of κ∗, and gives the required ρv,v′ taking κ∗-invariants. Since the above diagram
becomes Cartesian after passing to rigid analytic fiber, and the vertical arrows
becomes finite and étale, we have that Ψw,w′ ⊗V K is an isomorphism, the lemma
follows. �

Remark 4.2.18. Note that in the above lemma we have proved that

ρv,v′(Xχ,v′) = Xχ,v.

Definition 4.2.19. Using Lemma 4.2.17, we can define the space of overconver-
gent modular forms with respect to D, level K(H), weight χ and growth condition
w, with coefficients in K, as

SD† (K,K(H), χ) := lim−→
w>0

SD(K,w,K(H), χ).

Note that the direct limit is taken over strictly positive w’s (that satisfy all our
assumptions).

Remark 4.2.20. In this remark we prove a sort of functoriality property of the
sheaf Ωχw. Suppose we are given iA, iB : Spf(S) → M(H$)(w), two affine points
of M(H$)(w). We write A and B for the abelian schemes corresponding to iA
and iB, respectively. Suppose we are given a morphism f : B → A over S. We
obtain, by functoriality of d log, a morphism Im(d logA) → Im(d logB) compatible
with the natural pullback ωA/S → ωB/S . Taking Galois invariants we obtain, by
Proposition 3.2.13, a morphism f∗ : F(iA(Spf(S))) → F(iB(Spf(S))). Let us now
suppose that f : B → A is an isogeny, and that its kernel intersects trivially the
canonical subgroup of B. In this case we have a commutative diagram

F(iA(Spf(S)))1−v

o
��

f∗1−v // F(iB(Spf(S)))1−v

o
��

(C(A)2,1
1 )∨ ⊗κ S1−v

(f2,1
1 )∨// C((B)2,1

1 )∨ ⊗κ S1−v

By assumption, (f2,1
1 )∨ is an isomorphism, so f∗ is an isomorphism, modulo $1−v.

By Nakayama’s lemma, we have that f∗ is surjective. But both its domain and its
codomain are free modules of rank 1, so f∗ is an isomorphism. By definition of F ′v,
this implies that we also have an isomorphism F ′v(iA(Spf(S))) ∼= F ′v(iB(Spf(S))).
In particular we obtain an isomorphism of sheaves

HomSv|iB(Spf(S))
(F ′v |iB(Spf(S)),O

(χ−1)
Spf(S))

∼→HomSv|iA(Spf(S))
(F ′v |iA(Spf(S)),O

(χ−1)
Spf(S)).

As in the proof of Lemma 4.2.17, we can show that

HomSv|iA(Spf(S))
(F ′v |iA(Spf(S)),O

(χ−1)
Spf(S))

∼= i∗AΩ̃χw,

and similarly for B. This gives an isomorphism i∗AΩ̃χw → i∗BΩ̃χw. We will be more
interested in its inverse

f̃χ : i∗BΩ̃χw → i∗AΩ̃χw.
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Note that if we drop the assumption that the kernel of f intersects trivially the
canonical subgroup of B, we still obtain a morphism i∗AΩ̃χw → i∗BΩ̃χw. But in general
we cannot consider its inverse, so we do not have the morphism f̃χ, that goes in
the expected direction (i.e. the direction of the natural pullback of differentials).

All the various maps we have defined, when push-forwarded to M(H), respect
the action of κ∗, so the same must be true for f̃χ. Suppose that Spf(S) is the base
change of Spf(R)→M(H). We write ϑ : Spf(S)→ Spf(R). Since the Galois group
of ϑrig is κ∗, we have a canonical isomorphism ϑrig,∗Ωχw

∼= Ω̃χw obtained inverting
$. In particular, we have the morphism

fχ : (ϑ ◦ iB)∗Ωχw ⊗V K → (ϑ ◦ iA)∗Ωχw ⊗V K.

Note that fχ exists only after having inverted $. In the case χ = (k, k) is an
integer, via the isomorphism of Lemma 4.2.21, fk is the pullback of the k-th power
of the invariant differentials with respect to the isogeny.

4.2.1. Modular forms of integral weight. We now prove that, for inte-
gral weights, our new definition of modular forms agrees with the one given in
Sections 2.1 and 2.3.

Let k be an integer. If V ⊆ M(H$)(w), let φk,V : (Ω̃kw)(V) → (ω⊗kK(H$))(V)

be the map given by
φk,V(f) = f(ωstd)(ωstd)⊗k,

for f ∈ Ω̃kw(V). These maps glue to a morphism of sheaves

φk : Ω̃kw → ω⊗kK(H$).

Lemma 4.2.21. For all integer k, we have that φk⊗V K is an isomorphism. In
particular we have the identification

SD(V,w,K(H$), k)K = H0(M(H$)(w), Ω̃(k,k)
w )K .

Proof. The lemma follows since ωstd ⊗ 1 is a generator of ωK(H$) ⊗V K by
Theorem 3.2.11. �

Remark 4.2.22. By Proposition 3.2.12, we see that φk is an isomorphism if
and only if w = 0. In general, by Theorem 3.2.11, we have that coker(φk) is killed
by $kv.

Recall that we have the modular form E1, of level K(H$) and weight 1, that
is given by ωstd.

Lemma 4.2.23. We have that κ∗ acts on E1 ∈ SD(K,w,K(H$), (1, 1)) via
[·]−1, so E1 is identified with a global section of Ω

(1,0)
w .

Proof. By Remark 4.2.13, it is enough to prove the first part of the propo-
sition. Let Spf(S) ⊆ M(H$)(w) be an open affine. Let f be the element of
Ω̃

(1,1)
w (Spf(S)) corresponding to E1| Spf(S), in particular it gives the morphism

f : F ′′v (Spf(S)) = (1 +$1−vS)E1| Spf(S) → O
(−1,−1)
M(H$)(w)(Spf(S)) = S

E1| Spf(S) 7→ 1

Let a ∈ κ∗. Recall that (see Proposition 2.3.5) E1 is, locally, defined as (−$)1/(q−1)

α ω,
where α ∈ S comes from the canonical S point of C2,1

1 . We have (see the Appendix)
a](α) = [a]α, so a]( (−$)1/(q−1)

α ) = [a]−1 (−$)1/(q−1)

α . Since ω is a section of ωK(H),
we have a∗(ω) = ω. In particular, a−1 sends ωstd to [a]ωstd. It follows that
f|〈a〉 is the map that sends ωstd to a](f([a]ωstd)). But f ∈ Ω̃

(1,1)
w (Spf(S)), so
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f([a]ωstd) = [a]−1f(ωstd) = [a]−1. Since a] is an automorphism of OP -algebras, we
see that f|〈a〉(ωstd) = [a]−1, so

f|〈a〉 = [a]−1f.

�

Since Ω̃kw is locally free, it has no $-torsion, so φk is a monomorphism of
sheaves. In particular we will consider Ω̃kw as a subsheaf of ω⊗kK(H$) via φk. We

have ω⊗kK(H) ⊗V K ⊆ ϑ∗ω
⊗k
K(H$) ⊗V K = ϑ∗Ω̃

k
w ⊗V K = ⊕jΩ(k,j)

w ⊗V K.

Proposition 4.2.24. We have that ω⊗kK(H) ⊗V K = Ω
(k,k)
w ⊗V K, so, inside

⊕jΩ(k,j),rig
w , we have the equality

ω⊗k,rigK(H) = Ω(k,k),rig
w .

In particular
SD(V,w,K(H), k)K = H0(M(H)(w),Ω(k,k)

w )K .

Proof. We need to study the action of κ∗ on ω⊗kK(H) ⊗V K ⊆ ϑ∗Ω̃
k
w ⊗V K.

We work locally, as in the proof of Lemma 4.2.23, using the same notations. Let
f ⊗ 1 ∈ Ω̃kw(Spf(S)) ⊗V K be the element corresponding to ω⊗k ⊗ 1 ∈ ω⊗kR ⊗V
K, where ω is a generator of ωR, that we can assume to be free. We can write
E1| Spf(S) = (−$)1/(q−1)

α ω. It follows that f gives the map

f : F ′′v (Spf(S)) = (1 +$1−vS)E1| Spf(S) → O
(−k,−k)
M(H$)(w)(Spf(S)) = S

E1| Spf(S) 7→
(

α

(−$)1/(q−1)

)k
As in the proof of Lemma 4.2.23, we have that

f|〈a〉(ω
std) = a](f([a]ωstd)) = [a]−ka]

(
α

(−$)1/(q−1)

)k
.

Since a] is an automorphism of V -algebras, it fixes (−$)1/(q−1). Furthermore, we
have a](α) = [a]α, so f|〈a〉(ωstd) = 1, hence f|〈a〉 = f . This shows that ω⊗kK(H$) ⊗V
K ⊆ Ω

(k,k)
w ⊗VK. For the other inclusion, note that any element f of Ω̃kw(Spf(S))⊗V

K can be written as f = sω, for some s ∈ SK . A calculation similar to the one
above shows that, if the diamond operators act trivially on f , then s ∈ RK as
required. �

Remark 4.2.25. By Corollary 4.2.14, we have a decomposition

SD(K,w,K(H$), χ) =
⊕

j∈Z /(q−1)Z

SD(K,w,K(H), (s, j)).

In other words, any modular form of levelK(H$) has components that are modular
forms of level K(H). Note that if f is of level K(H$) and has integral weight,
say k, we cannot identify it with a modular form of integral weight k and level
K(H). Instead, f will have components that are modular forms of level K(H) and
weight x 7→ 〈x〉k[x]j , for various j ∈ Z /(q− 1)Z. We have that f can be identified
with a modular form of weight k and level K(H) if and only if there is only one
non trivial component, corresponding to i = k. This is very similar to the case of
elliptic modular forms (see [Gou88], Sections I.3.4-7).
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Remark 4.2.26. Fix an open affine U = Spf(R) ⊆ M(H)(w), and let V =
Spf(S) be the inverse image of U under ϑ. We write A → Spec(S) for the corre-
sponding abelian scheme. We let κ∗ act on ωS by pullbacks. It follows from the
above discussion that we have κ∗-equivariant isomorphisms

Ω1
w
∼= F and Ω−1

w
∼= F∗.

In particular, we see that there is a ‘corrected’ Hodge-Tate sequence

0→ Ω−1
w (V)⊗R R̂(1)→ T$((A[$∞]2,11 )∨)⊗κ R̂→ Ω1

w(V)⊗R R̂→ 0

that is exact.

Remark 4.2.27. We haveX1,v = E1. Working as in the proof of Lemma 4.2.23,
we see that Xχ,v is a global section of Ω

(s,0)
w . It follows that Xχ,v, when considered

as a modular form of level K(H), has integral weight if and only if s is an integer
congruent to 0 modulo q−1. For example we have that Xq−1,v = Eq−1 has integral
weight q − 1 as one expects.

4.2.2. Katz’ modular forms. We would like to describe our modular forms
in a more familiar way, using ‘test objects’. See [Kat73], for this description in the
case of elliptic modular forms.

Definition 4.2.28. A test object is a sextuple (A/S, i, θ, ᾱ, Y, η), where:

• Spf(S)→M(H$)(w) is an affine point, with S a normal and $-adically
complete V -algebra;
• (A, i, θ, ᾱ) is an object of the moduli problem of level K(H$), with A

defined over S;
• Y is a section of ω⊗1−q

A/S that satisfies Y Eq−1 = $w;
• η is a global section of the pullback of F ′ to Spf(S).

Proposition 4.2.29. To give an element f of SD(K,w,K(H$), χ) is equiva-
lent to give a rule that assigns to every test object T = (A/S, i, θ, ᾱ, Y, η) an element
f̃(T ) ∈ SK such that:

• f̃(T ) depends only on the isomorphism class of T ;
• if ϕ : S → S′ is a morphism of normal and $-adically complete V -algebras,
and we denote with T ′ the base change of T to S′, we have f̃(T ′) =

ϕ(f̃(T )).

Proof. This Lemma 3.10 of [AIS11]. Let us start with a modular form f and
take a test object T as in the statement of the proposition. By the moduli descrip-
tion of M(H$)(w) we know that T comes from a unique morphism i : Spf(S) →
M(H$)(w). It follows that η = ri∗(ωstd), for some r = ub ∈ O∗P(1 + $1−vS).
Furthermore we can write f = cXχ,v, where c ∈ H0(M(H$)(w),OM(H)(w))K . We
set

f̃(T ) := χ(u−1)b−si∗(c).

By the moduli interpretation of M(H)(w), we have that f̃ satisfies the conditions
of the proposition. Conversely, suppose we are given f̃ as above. Let {Vi}i∈I
be an affine covering of M(H$)(w), with Vi = Spf(Si). We assume that each
Si is normal and $-adically complete. The elements ci ∈ Si,K given by f̃ , glue
together to define c ∈ H0(M(H$)(w),OM(H)(w))K . We set f := cXχ,v. It is easy
to verify that the two procedures just described are one the inverse of the other, as
required. �
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Corollary 4.2.30. Let f be an element of SD(K,w,K(H$), χ). We have that
f ∈ SD(K,w,K(H), (s, j)) if and only if, for any test object T = (A/S, i, θ, ᾱ, Y, η),
we have

f̃|〈a〉(T ) = [a]j−if̃(T )

for any a ∈ κ∗.
Proof. This follows from Proposition 4.2.12. �

4.3. The sheaves Ωχw for general characters

We now want to define the sheaf Ωχw for any continuous character χ : O∗P → K∗.
To do this, we use the theory of canonical subgroup of higher rank developed in
Section 2.2.1.

In this section we fix an integer r ≥ 1, the case of an accessible character
corresponds to r = 1. Let us assume that

w <
1

qr−2(q + 1)
,

and let Spf(R) → M(H)(w) be as above. We write A → Spec(R) for the corre-
sponding abelian scheme.

Proposition 4.3.1. The kernel of the map d logr,A : (A[$r]2,11 )∨ → ωA/R ⊗R
Rr is (Dr)2,1

1 := ((Cr(RK))2,1
1 )⊥, where Cr is the canonical subgroup of A[$r].

Proof. We prove the proposition by induction, the case r = 1 follows by
Proposition 3.1.7. We have a commutative diagram with exact rows

0 // (A[$]2,11 )∨ //

����

(A[$r]2,11 )∨ //

����

(A[$r−1]2,11 )∨ //

����

0

0 // (C2,1
1 )∨ // ((Cr)2,1

1 )∨ // ((Cr−1)2,1
1 )∨ // 0

This implies, for dimension reasons, that we have an exact sequence

0→ D2,1
1 → (Dr)2,1

1 → (Dr−1)2,1
1 → 0

By functoriality of d log (see Lemma 3.1.3) we obtain a commutative diagram, with
exact rows

0 // D2,1
1

//

��

(Dr)2,1
1

//

��

(Dr−1)2,1
1

//

��

0

0 // (A[$]2,11 )∨ //

��

(A[$r]2,11 )∨ //

��

(A[$r−1]2,11 )∨ //

��

0

0 // ωA/R ⊗R R1
// ωA/R ⊗R Rr // ωA/R ⊗R Rr−1

// 0

where the bottom row is exact by [Far07], Corollaire 1. We know that D2,1
1 is the

kernel of d log1,A, and by induction hypothesis we have that (Dr−1)2,1
1 is the kernel

of d logr−1,A. The proposition follows. �

Lemma 4.3.2. We have a commutative diagram, with exact bottom row:

ω∗A∨/R ⊗R Rr(1) //

��

T$((A[$∞]2,11 )∨)⊗OP Rr // ωA/R ⊗R Rr

(Dr)2,1
1 ⊗OP Rr

� � // (A[$r]2,11 )∨ ⊗OP Rr // // ((Cr)2,1
1 )∨ ⊗OP Rr

OO
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Proof. This is proved exactly in the same way as Lemma 3.2.10, using Propo-
sition 4.3.1. �

Proposition 4.3.3. We have a natural G-equivariant isomorphism

Im(d logA)r−v ∼= ((Cr)2,1
1 )∨ ⊗OP Rr−v.

Proof. Using Lemma 4.3.2, this is proved exactly in the same way as Theo-
rem 3.2.11. �

We now work over M(H$r)(w). As in the case r = 1, we have a natural
morphism

ϑr : M(H$r)(w)→M(H)(w).

Its rigidification is finite and étale, and its Galois group is canonically identified
with Gr := (OP/$rOP)∗. As above, we have that Gr acts on ϑr too.

Let U = Spf(R) ⊆M(H)(w) be an open affine. We will write Vr = Spf(Sr) for
the inverse image of U under ϑr. Since (Cr)2,1

1 is an extension of (Cr−1)2,1
1 we see,

by induction, that (Cr)2,1
1 becomes constant over Sr,K . Furthermore, by the moduli

interpretation of M(H$r)(w) given in Proposition 2.3.7, we have a canonical point
of (Cr)2,1

1 , defined over Sr (this point is a generator of (Cr)2,1
1 as OP/$r-module). In

particular we can repeat what we have done for C2,1
1 , and we obtain an isomorphism

of sheaves of OM(H$r)(w)-modules

F/$r−vF ∼= ((Cr)
2,1
1 )∨ ⊗OP OM(H$r)(w)/$

r−vOM(H$r)(w).

Recall that LT is the group scheme associated to R[[x]]. It has an action of
OP for which the multiplication by $ has the form [$](x) = xq +$x. We now fix
{ζn}n≥1, a sequence of Cp-points of LT such that the order of ζn is exactly $n. We
assume that $ζn+1 = ζn for each r, and that ζ1 is our fixed (−$)1/(q−1). This is
the analogue of fixing a coherent sequence of primitive pn-roots of unity. As usual
in out theory, we need to use LT instead of Gm.

If ζr ∈ V , we can use it and the canonical Sr-point of (Cr)2,1
1 to obtain γr, a

canonical Sr-point of ((Cr)2,1
1 )∨. The various γr’s glue together to define a canonical

global section of ((Cr)
2,1
1 )∨, denoted again by γr. Note that γ1 = γ.

If w is smaller than 1/(qr−2(q + 1)), we define the sheaf F ′r,v on M(H$r)(w)

as the inverse image of the constant sheaf of sets given by the subset of ((Cr)
2,1
1 )∨

of points of order exactly $r. As in the case of F ′v, we can prove that F ′r,v is a
Zariski Sr,v-torsor, where

Sr,v := O∗P(1 +$r−vOM(H$r)(w)).

We also have the sheaves S ′′r,v = 1 + $r−vOM(H$r)(w) and F ′′r,v, defined using γr.
It follows that F ′′r,v is a Zariski S ′′r,v-torsor.

We now fix χ, an r-accessible character. We assume that ζr ∈ V . Let s be the
r-good element of Cp associated to χ (see Definitions 4.1.3 and 4.1.5). We assume
that w is smaller than 1/(qr−2(q + 1)), so we have the canonical subgroup of level
r. Since we are also assuming that w < (q − 1)

(
v(s) + v(log(1 +$))− e

p−1

)
, we

have in particular

w < (q − 1)

(
v(s) + v(log(1 +$r))− e

p− 1

)
,

so the p-adic exponential below is well defined. Let x be a local section of Sr,v.
We can write x = ub, where u is a section of O∗P and b is a section of 1 +
$r−vOM(H$r)(w). We have that bs := exp(s log(b)) makes sense, so we can write
xχ := χ(u)bs, that is another section of Sr,v. Note that xχ depends only on the
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product ub, as in the case r = 1. We write O(χ)
M(H$r)(w) for the sheaf OM(H$r)(w)

with the action of Sr,v twisted by χ. As in the case of accessible characters, we
define

Ω̃χw := HomSr,v (F ′r,v,O
(χ−1)
M(H$r)(w)).

Since F ′r,v is an Sr,v-torsor, we have that Ω̃χw is a locally free sheaf of rank 1.
There is a natural isomorphism of sheaves

Ω̃χw
∼= HomS′′r,v (F ′′r,v,O

(χ−1)
M(H$r)(w)).

Let Vr = Spf(Sr)→M(H$r) be an open affine. We can define Xχ,v, a canonical
section of Ω̃χw on Vr, by

Xχ,v(bω
std) = b−s,

for all b ∈ S ′′r,v(Vr) = 1 +$r−vSr. In this way we obtain a canonical generator of
the global sections of Ω̃χw, called Xχ,v too.

Since Gr acts on ((Cr)
2,1
1 )∨ \{0}, we have an action of Gr on F ′r,v. Similarly to

the case of accessible characters, Gr acts also on ϑr,∗Oχ
−1

M(H$r)(w). Repeating what
we have done in the case r = 1, we obtain a coherent sheaves of OM(H)(w)-modules

ϑr,∗Ω̃
χ
w

that is endowed with an action of Gr.

Definition 4.3.4. We define the sheaf Ωχw on M(H)(w) as

Ωχw :=
(
ϑr,∗Ω̃

χ
w

)Gr
.

Since ϑrig
r is finite and étale with Galois group Gr, we have that Ωχw ⊗V K is a

locally free sheaf of rank 1.

Definition 4.3.5. We define the space of $-adic modular forms with respect
to D, level K(H), weight χ and growth condition w, with coefficients in K, as

SD(K,w,K(H), χ) := H0(M(H)(w),Ωχw)K .

The space SD(K,w,K(H$r), χ) is defined using the sheaf Ω̃χw.

Everything we have done in the case of an accessible character can be repeated
for χ. In particular we have the analogue of Lemma 4.2.17 and the analogue of
Remark 4.2.20.

Definition 4.3.6. We define the space of overconvergent modular forms with
respect to D, level K(H), weight χ, with coefficients in K, as

SD† (K,K(H), χ) := lim−→
w>0

SD(K,w,K(H), χ).

Let h be an integer with r ≥ h. Suppose that χ is also h-accessible. In this
case we can repeat the above construction starting with M(H$h)(w), obtaining
another sheaf on M(H$)(w) (note that the conditions on w, relative to h, are
automatically satisfied). We are going to prove that, if we invert $, this latter
sheaf is naturally isomorphic to the Ωχw defined above.

For r ≥ h, let ϑr,h be the natural morphism

ϑr,h : M(H$r)(w)→M(H$h)(w),

defined using the canonical generator of (Cr)
2,1
1 . The rigidification of ϑr,h is finite

and étale. Let Gr,h ⊆ Gr be the image of 1 + $hOP . It follows that the Galois
group of ϑrig

r,h is Gr,h, and the latter group also acts on ϑr,h.
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Proposition 4.3.7. Let h ≤ r be integers, and suppose that χ is an h-accessible
character. Let w ≤ 1/(qr−2(q + 1)) be a rational number. We have a natural Gh-
equivariant morphism

HomSh,v (F ′h,v,O
(χ−1)

M(H$h)(w)
)→

→
(
ϑr,h,∗HomSr,v (F ′r,v,O

(χ−1)
M(H$r+1)(w))

)Gr,h
,

that is an isomorphism if we invert $. After the push-forward via ϑh and taking
Gh-invariants, we get an isomorphism of OM(H)(w) ⊗V K-modules

σr,h :
(
ϑh,∗HomSh,v (F ′h,v,O

(χ−1)

M(H$h)(w)
)⊗V K

)Gh ∼=
∼=
(
ϑr,∗HomSr,v (F ′r,v,O

(χ−1)
M(H$r)(w))⊗V K

)Gr
.

Furthermore σr,r = id, and, if t ≤ h is an integer, we have σr,t = σh,t ◦ σr,h.

Proof. This is Lemma 3.20 of [AIS11]. The proof is similar to the one of
Lemma 4.2.17. We write Sr,h,v for the sheaf on M(H$r)(w) defined by

Sr,h,v := O∗P(1 +$h−vOM(H$r)(w)).

Since h ≤ r, we have Sr,h,v ⊆ Sr,v. By Proposition 4.3.3, we have an isomorphism

F/$h−vF ∼= ((Cr)
2,1
1 )∨ ⊗OP OM(H$r)(w)/$

h−vOM(H$r)(w).

Via this isomorphism, we define F ′r,h,v to be the inverse image of ((Cr)
2,1
1 )∨ \ {0}

under the natural map F → F/$h−vF . Since F ′r,h,v is the pushed-out torsor
F ′r,v ×Sr,v Sr,h,v, we have, by universal property, that the natural map

HomSr,v (F ′r,v,O
(χ−1)
M(H$r)(w))→HomSr,h,v (F ′r,h,v,O

(χ−1)
M(H$r)(w))

is an isomorphism. We have a natural isomorphism

F ′r,h,v ∼= ϑ−1
r,h(F ′h,v)×

ϑ−1
r,h(Sh,v) Sr,h,v,

so we obtain ϕ, a natural map

ϑ∗r,h HomSh,v (F ′h,v,O
(χ−1)

M(H$h)(w)
)→HomSr,h,v (F ′r,h,v,O

(χ−1)
M(H$r)(w)).

Looking at ωstd we deduce that ϕ is surjective. But both the domain and the
codomain of ϕ are locally free of rank 1, so ϕ is an isomorphism. All the map
we have defined respects the action of O∗P (and of all of its quotients). Since ϑrig

r,h

is finite and étale with Galois group Gr,h, the first part of the proposition follows
by taking the push forward via ϑr,h and then taking Gr,h-invariants of ϕ. The
proposition follows since ϑh ◦ ϑr,h = ϑr and Gr/Gh = Gr,h. �

Let χ : O∗P → K∗ be a continuous character. The rigidification of Ωχw will be
denoted with the same symbol. We have proved that this sheaf does not depend
on r, if χ is r-accessible and w satisfies the usual conditions. By definition we have
the equality

SD(K,w,K(H), χ) = H0(M(H)(w)rig,Ωχw).
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4.4. The sheaves Ωr,w

We would like to put the sheaves Ωχw in families, defining the sheaves Ωr,w, for
any integer r ≥ 0 and any rational w ≤ 1/(qr−2(q + 1)). The existence of these
sheaves is a strong argument to guarantee that our definition of Ωχw makes sense.

Let πi, for i = 1, 2, be the natural projection from Wr ×M(H$r)(w)rig to the
i-th factor. We write Sr,v also for π−1

2 (Sr,v) and F ′r,w also for π−1
2 (F ′r,w).

There is a natural action of Sr,v on OWr×M(H$r)(w)rig that ‘glues’ the actions
of Sr,v on OM(H$r)(w)rig twisted by various points of Wr. Let x = ub be a section
of Sr,v, where u is a section of O∗P and b is a section of 1 + $r−vOM(H$r)(w). If
A ⊗ B is a local section of OWr×M(H$r)(w)rig , we define x(A ⊗ B) to be the local
section of OWr×M(H$r)(w)rig that corresponds to the function

(χ, z) 7→ χ(a)A(χ)bχB(z),

for χ ∈ Wr(T ) and z ∈ M(H$r)(w)rig(T ), where T is any affinoid K-algebra.
This is well defined by Lemma 4.1.7, and in particular it is an analytic function, so
x(A⊗B) is really a section of OWr×M(H$r)(w)rig . We define the sheaf

Ω̃r,w := HomSr,v (F ′r,v,OWr×M(H$r)(w)).

Remark 4.4.1. It is possible to put also the Xχ,v in families. Let Vr = Spf(Sr)
be an open affine of M(H$r)(w) as always. We write Xr,v for the unique element
of Ω̃r,w(Wr ×Vrig

r ) that satisfies

Xr,v(ω
std) = 1.

In this way we obtain a canonical generator of the global sections of Ω̃r,w.

Proposition 4.4.2. The sheaves Ω̃r,w are invertible sheaves of modules on
Wr ×M(H$r)(w)rig. For any χ ∈ Wr(K), we have a natural isomorphism

(χ, id)∗(Ω̃r,w) ∼= Ω̃χw.

Furthermore, if w′ ≤ w is a rational number, then the restriction of Ωr,w to Wr ×
M(H$r)(w′)rig coincides with Ωr,w′ .

Proof. As for Ω̃χw, the first statement follows from the fact that F ′r,w is a
Zariski Sr,v-torsor. Since Ωr,w is locally free, its construction commutes with base
change, so we obtain the isomorphism (χ, 1)∗(Ω̃r,w) ∼= Ω̃χw. The proposition follows
by Lemma 4.2.17 and its analogue for r-accessible characters. �

As in the case of a single character, we have that Gr acts on (id× ϑr)∗Ω̃r,w.

Definition 4.4.3. Let r ≥ 0 be an integer, and let w ≤ 1/(qr−2(q + 1)) be a
rational number. On Wr ×M(H)(w)rig, we define the sheaf

Ωr,w := ((id× ϑr)∗Ω̃r,w)Gr .

Proposition 4.4.4. The sheaves Ωr,w are invertible sheaves of modules on
Wr ×M(H)(w)rig. For any χ ∈ Wr(K), we have a natural isomorphism

(χ, id)∗(Ωr,w) ∼= Ωχw.

Furthermore, if r1 and r2 are integers greater than 0 and wi ≤ 1/(qri−2(q + 1)),
for i = 1, 2, are rational numbers, then the restrictions of Ωr1,w1

and Ωr2,w2
to

Wr1 ∩Wr2 ×M(H)(w1)rig ∩M(H)(w2)rig coincide.

Proof. As for Ωχw, the first statement follows by the fact that (id × ϑr)rig is
finite and étale, with Galois group Gr. By construction and Proposition 4.4.2 we
have that (χ, 1)∗(Ωr,w) ∼= Ωχw. The last statement follows by Proposition 4.4.2 and
Proposition 4.3.7. �
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Any local section f of Ωr,w should be thought as a p-adic analytic family of
modular forms. By Proposition 4.4.4, we see that the pullback of f to any χ ∈
Wr(K) is a modular form of weight χ. We have that the natural morphism of
sheaves on Wr ×M(H)(w)rig, given by adjunction,

Ωr,w → (χ, id)∗Ω
χ
w

is an epimorphism. SinceWr×M(H)(w)rig is an affinoid, Tate’s acyclicity Theorem
(see [Tat71]) implies that the natural specialization map

H0(Wr ×M(H)(w)rig,Ωr,w)→ SD(K,w,K(H), χ)

is surjective. In particular, any p-adic modular form of weight χ lives in an analytic
family.

Remark 4.4.5. We have the analogue of Remark 4.2.20 for the sheaves Ω̃r,w
and Ωr,w. Assume we are given an isogeny f : B → A, where A and B are abelian
schemes corresponding to iA, iB : Spf(Sr)→M(H$r)(w). Suppose that the kernel
of f intersects trivially the canonical subgroup of B. We write iA and iB also for
the corresponding maps

Wr × Spf(Sr)
rig →Wr ×M(H$r)(w)rig.

The morphisms f̃χ ⊗V K, for various χ, can be put in families, obtaining a map

f̃r : i∗AΩ̃r,w → i∗BΩ̃r,w.

A similar remark applies to the maps fχ, obtaining

fr : ((id×ϑrig
r ) ◦ iA)∗Ωr,w → (((id×ϑrig

r ) ◦ iB)∗Ωr,w.

4.5. The deeply ramified case

We now briefly explain what can be done without assuming that e ≤ p−1. Let
n be the largest integer such that µpn is contained in OP . By [Rob00], Chapter 5,
we have an exact sequence

0→ µpn → O∗P → OP → 0,

where the last group is denoted additively. By choosing a continuation of the
exponential, we obtain a splitting of the above exact sequence and an isomorphism

O∗P ∼= µq−1 × µpn ×OP .
We can assume that 1+$ maps to 1 under the maps O∗P → OP given by the above
decomposition, so, with a little abuse of notation, we can write OP ∼= (1 + $)OP

(but note that the logarithm is not injective on 1 +$OP). We consider characters
χ such that the map t 7→ log(χ((1 + $)t)) is OP -linear. In this way W becomes
isomorphic to the disjoint union of (q − 1)pn open disks of radius 1. We define the
notion of r-accessible character as above, but only in the case r ≥ e

p−1 . In this
way the definition of Wr can be adapted without problems. More importantly, if
χ is r-accessible and x is a local section of Sr,v, we have that xs is a well defined
section of Sr,v. The rest of the theory goes smoothly. Thus, the real difference is
that we do not have an integral structure for the space of modular forms of level
K(H$r) and weight χ for any r, but only for r big enough. However, if we invert
$ (i.e. if we take rigidification), the maps ϑr and ϑr,h are étale, furthermore we
have a residual action of Gr and Gr,h on our sheaves, so there are no problems in
this case.





CHAPTER 5

Hecke operators

In this chapter we define the analogue of the usual Hecke operators acting on
the space of p-adic modular forms. First of all we define the U operator, showing
that it is a completely continuous operator on the space of overconvergent modular
forms. We finally define the TL operators, that are analogues to the usual Tl
operators.

5.1. The U operator

Let χ : O∗P → K∗ be a character in Wr, where r ≥ 1 is an integer, and let
w ≤ 1/(qr−2(q + 1)) be a rational number. In Chapter 4 we have constructed the
sheaf Ω̃χw on M(H$r)(w)rig and in particular the spaces SD(K,w,K(H$r), χ) and
SD(K,w,K(H), χ) are defined. We are going to prove that SD(K,w,K(H), χ) is
naturally a K-Banach module that satisfies property (Pr) (see [Buz07], Part I)
and to define U, a completely continuous operator on it. As in the classical case,
to obtain that U is completely continuous, we need to restrict to overconvergent
modular forms, so in this section we will assume that w is positive

Let z be a point of M(H$r)(w)rig, and let L be its residue field (it is a finite
extension of K), so z comes from a morphism γz : Spm(L)→M(H$r)(w)rig. We
write γ̃z : Spf(OL)→M(H$r)(w) for the rigid point associated to z. We have

H0(Spm(L), γ∗z Ω̃χw) = H0(Spf(OL), γ̃∗z Ω̃χw)⊗OL L.

We fix an identification H0(Spf(OL), γ̃∗z Ω̃χw) ∼= OL and, if f is an element of
H0(Spm(L), γ∗z Ω̃χw), we define |f |z using the natural absolute value on OL. This
definition is independent of all the choices we made. Let now f be an element of
H0(M(H$r)(w)rig, Ω̃χw), we define

|f(z)| := |γ∗zf |z,
and we set

|f | := sup
z∈M(H$r)(w)rig

{|f(z)|} ,

where a priori this sup could be infinite.

Definition 5.1.1. Let M be a Banach A-module, where A is an affinoid K-
algebra. Following [Buz07], we say that M satisfies the property (Pr), if there is a
Banach A-module N such thatM⊕N is potentially orthonormizable. By [Buz07],
we have the notion of a completely continuous operator on such an M , and we also
have spectral theory.

Proposition 5.1.2. The sup defined above is always finite, and it is a norm
that makes SD(K,w,K(H$r), χ) a potentially orthonormizable K-Banach module.

Proof. Since we have that M(H$r)(w)rig is an affinoid, the proposition fol-
lows by [Kas09], Lemma 2.14. �

Corollary 5.1.3. We have that SD(K,w,K(H), χ) is a K-Banach module
that satisfies the property (Pr).

57
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Proof. This follows by Proposition 5.1.2, since SD(K,w,K(H), χ) is the Gr-
invariant subspace of SD(K,w,K(H$r), χ), and Gr is a finite group. �

To define the U operator we need to introduce another type of curves. We use
the notations of Section 1.3. We define

K(H$r, q) :=

{(
a b
c d

)
∈ K(H$r) s.t. b ≡ 0 mod $

}
.

By [Kas09], Section 5, in the case KP = K(H$r, q), a choice of a level structure
is equivalent to a choice of (Q,D, ᾱP), where (here (A, i, θ, α) is an object of the
moduli problem for FP -algebras):

(1) Q is an R-point of exact OP -order $r in A[$r]2,11 ;
(2) D is a finite and flat OP -submodule of A[$r]2,11 of order q which intersects

the OP -submodule scheme generated by Q trivially;
(3) ᾱP is as always.

In this case, the curve MK will be denoted M(H$r, q), it is a proper and smooth
scheme over K. There is a natural morphism

π1 : M(H$r, q)→M(H$r),

defined by the natural transformation of functors that forgets D. We have that π1

is flat, and, sinceM(H$r)→ Spec(K) is proper, also π1 must be proper. It follows
that π1 is finite, being proper and quasi finite.

Given C, a subgroup scheme of A[q] of rank q4N , stable under the action of
OD, we say, following [Kas04], Section 4.4, that it is of ‘type 2’ if

C2
2 ⊕ · · · ⊕ C2

m = A[q]22 ⊕ · · · ⊕A[q]2m

and the isomorphism θ : A[q]
∼−→ A[q]D sends C ↪→ A[q] to (A[q]/C)D ↪→ A[q]D.

Note that C, if it is of type 2, it is uniquely determined by C2,1
1 . Given D, a finite

and flat OP -submodule of A[$]2,11 , we write t2(D) for the unique subgroup scheme
of A[q], of type 2, such that t2(D)2,1

1 = D. We can now define another morphism
π2 : M(H$r, q)→M(H$r). At level of points, it is defined by taking the quotient
over t2(D): in [Kas04], Section 4.4, it is shown how to put a level structure on
A/t2(D), except for the point of exact OP -order $r, but, since D intersects trivially
the OP -submodule scheme generated by Q, we can take for it the image of Q under
the natural map A → A/t2(D). We are interested in the analytification of π1 and
π2, denoted respectively π1,rig and π2,rig.

The rigid space associated to M(H$r, q) will be denoted M(H$r, q)rig, and
we write M(H$r, q)(w)rig for π−1

1,rig(M(H$r)(w)rig). To define the formal model
M(H$r, q)(w), we can proceed as for the definition of M(H$r)(w), taking the
normalization, via π1,rig, ofM(H$r)(w) inM(H$r, q)(w)rig. In this way we obtain
p1 : M(H$r, q)(w)→M(H$r)(w), a formal model of π1,rig.

Proposition 5.1.4. Let R be a normal and $-adically complete V -algebra.
There is a natural bijection between M(H$r, q)(w)(R) and the set of isomorphism
classes of sextuples (A, i, θ, ᾱ, Y,D), where:

• (A, i, θ, ᾱ, Y ) is an object of the moduli problem, with A defined over R,
ofM(H$r)(w);

• D is a finite and flat OP -submodule of A[$r]2,11 of rank r that intersects
trivially the canonical subgroup of A[$r]2,11 .

Proof. This Lemma 3.11 of [AIS11]. Let x be in M(H$r, q)(w)(R). We
have that p1(x) ∈M(H$r)(w)(R), hence we obtain the quintuple (A, i, θ, ᾱ, Y ) of
the proposition by the moduli description of M(H$r)(w). It remains to construct
D. Let A := AK . Taking the base change of x to RK , we obtain a point of
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M(H$r, q)(w)rig, and in particular we have D ⊆ A[$r], a finite and flat subgroup
scheme that intersects trivially the canonical subgroup of A[$r]. We need to prove
that D extends to D. Let z be the R-point ofM(H) corresponding to (A, i, θ, ᾱ)
(here we are forgetting part of the level structure). We have that D gives tK , an
RK point of M(H,$) that maps to the base change of z to RK . Since the natural
morphismM(H,$)→M(H) is finite and flat (see [Kas09], Section 5), and R is
normal, we have that tK extends to a unique t ∈ M(H,$)(R) that maps to z. In
particular we obtain the required D. Conversely, if we have a quintuple as in the
statement of the proposition, we obtain an RK-valued point of M(H$r, q)(w)rig,
that extends to an R-valued point by normality of R. �

Lemma 5.1.5. Let R be a normal and $-adically complete V -algebra. Fur-
thermore, let (A, i, θ, ᾱ, Y,D) be in M(H$r, q)(qw)(R). Taking the quotient over
t2(D), we obtain an object of M(H$r)(w)(R).

Proof. Using the forgetful morphisms M(H$r, q)(qw)→M(H$, q)(qw) and
M(H$r)(w) → M(H$)(w) we can work with r = 1. We can assume that R is
a discrete valuation ring, whose valuation extends the one of V and that A is
supersingular. Let B be A/t2(D). Forgetting the extra structure, we need to prove
that the R-point corresponding to B lies inM(H)(qw). To prove this, let us consider
the commutative diagram

(A[$]2,11 )∨(RK) // ωA/R ⊗R R1
∼ // R1

(B[$]2,11 )∨(RK) //

OOOO

ωB/R ⊗R R1
∼ //

OO

R1

OO

We use the notation of the proof of Proposition 3.1.7, except that we write EA
and EB to specify whether we are talking about A or B, so we need to prove
that v(EB) ≤ v(EA)

q . The right vertical map is the reduction of the multiplication

by an element of valuation v(EA)
q by [Far07], Remarque 2. Looking at the proof

of Proposition 3.1.7, we see that the image of the compositions of the horizontal
maps are generated by elements of valuation, respectively, v(EA)

q−1 and v(EB)
q−1 , so

v(EB)
q−1 + v(EA)

q = v(EA)
q−1 as required. �

Using Propositions 2.3.2 and 5.1.4, together with Lemma 5.1.5, we define the
morphism

p2 : M(H$r, q)(qw)→M(H$r)(w),

on points, taking the quotient over D.
We write A(H$r, q)(w) for the base change, via p1, to M(H$r, q)(w), of

A(H$r)(w). By definition, we have that A(H$r, q)(w) is equipped with D, a
subgroup of order q of its $r-torsion, that has trivial intersection with the canoni-
cal subgroup. The isogeny

πD : A(H$r, q)(qw)→ A(H$r, q)(qw)/D

is defined over M(H$r, q)(qw). Since A(H$r, q)(qw)/D is the base change, via
fw,qw ◦ p2, to M(H$r, q)(qw), of A(H$r)(qw), we obtain, using Remark 4.2.20
and Lemma 4.2.17, a morphism

π̃χD : p∗2Ω̃χw → p∗1Ω̃χqw.

To define the U operator, we can now follow [AIS11], Section 3.1.1. First of all
consider

Ũ : SD(K,w,K(H$r), χ)→ SD(K,w,K(H$r), χ),
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defined as the composition

H0(M(H$r)(qw), Ω̃χqw ⊗V K)
ρ̃rigqw,w−→ H0(M(H$r)(w), Ω̃χw ⊗V K)

p∗2−→

→ H0(M(H$r, q)(qw), p∗2Ω̃χw ⊗V K)
π̃χD−→

→ H0(M(H$r, q)(w), p∗1Ω̃χqw ⊗V K)
(π1,rig)∗−→ H0(M(H$er+1)(qw), Ω̃χqw ⊗V K),

where (π1,rig)∗ is the map induced by the trace, that is well defined since π1,rig

is finite and flat. All the maps used to define Ũ are Gr-equivariant, so the same
holds for Ũ. Taking Gr-invariants we obtain, from Ũ, a map SD(K,w,K(H), χ)→
SD(K,w,K(H), χ).

Definition 5.1.6. Let χ be an r-accessible character. The map

U: SD(K, qw,K(H), χ)→ SD(K, qw,K(H), χ)

f 7→ f|U

is defined as 1/q times the map induced by Ũ.

Proposition 5.1.7. The operator U is completely continuous.

Proof. We claim that Ũ is completely continuous. Since Ũ factors through
ρ̃rig
qw,w, it is enough to prove that ρ̃rig

qw,w is completely continuous, and this can
be done in exactly the same way as [Kas09], Proposition 2.20. The proposition
follows. �

Remark 5.1.8. Let us suppose that r = 1, so χ is an accessible character. Using
Proposition 4.2.29 and Corollary 4.2.30, we can give a more concrete description
of the U operator, using test objects. Let f be an element of SD(K,w,K(H), χ).
Take any test object T = (A/S, i, θ, ᾱ, Y, η) as in Proposition 4.2.29. Let S′ be a
normal and $-adically complete S-algebra such that

• SK → S′K is finite and étale;
• all finite and flat subgroup schemes of AS,K [$]2,11 are defined over S′K .

Repeating what we have done in the proof of Proposition 5.1.4, we see that any
finite and flat subgroup scheme of AS′,K [$]2,11 extends to a subgroup scheme of
AS′ [$]2,11 . Let D be any such subgroup, and suppose that D intersects triv-
ially the canonical subgroup of AS′ [$]2,11 . We have that T gives a test object
((AS′/t2(D))/S′, i′, θ′, ᾱ′, Y ′, η′). Indeed the only non trivial thing to define is
η′. Let i1, i2 : Spf(S) → M(H$)(w) be the morphisms corresponding to A and
A/t2(D), respectively. In Remark 4.2.20 we showed that there is an isomorphism
between the global sections of i∗1F ′ and i∗2F ′. We define η′ as the image of η under
this isomorphism. We have

f̃|U(T ) =
1

q

∑
D
f̃(((AS′/t2(D))/S′, i′, θ′, ᾱ′, Y ′, η′)),

where the sum is taken over all D’s as above.

For various w’s, the norms defined on SD(K,w,K(H), χ) are compatible, so
SD† (K,K(H), χ) is naturally a Fréchet space, and we obtain a continuous operator

U: SD† (K,K(H), χ)→ SD† (K,K(H), χ).

Using the maps π̃D,r defined in Remark 4.4.5, we can work with families: for any
integer r ≥ 0, we obtain an operator

Ũr : Ω̃r,w(Wr ×M(H$r)(w)rig)→ Ω̃r,w(Wr ×M(H$r)(w)rig),
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such that the pullback (χ, id)∗(Ũr), for χ ∈ Wr(K), is the Ũ operator defined above.
Everything we did above can be repeated for families, in particular we have the Ur

operator and the following proposition, where Ar := OWr (Wr).

Proposition 5.1.9. For any integer r ≥ 1 and any rational w ≤ 1/(qr−2(q +
1)), we have that

H0(Ωr,w,Wr ×M(H)(w)rig)

is a Banach Ar-module that satisfies the property (Pr). Furthermore the operator

Ur : H0(Ωr,w,Wr ×M(H)(w)rig)→ H0(Ωr,w,Wr ×M(H)(w)rig)

is completely continuous.

Remark 5.1.10. Kassaei has proved a result of classicality for modular forms
of level K(H) and integral weight k. Let f be in SD(K,w,K(H), k) and suppose
that f|U = af , for some a ∈ K. If a satisfies v(a) < k − ef , then f is classical, i.e.
it can be extended to a global section of ω⊗k

M(H,$)rig
. See [Kas09], Theorem 5.1.

Let χ : O∗P → K∗ be a continuous character and let ν ∈ R. Let V ⊆ W be an
affinoid that contains the point of W given by χ. We write F for the characteristic
power series of Ur restricted to H0(V ×M(H)(w)rig,Ωr,w). Using the notations of
[Bel09], page 31, we have that F is ν-adapted if V is sufficiently small. In particular
H0(V ×M(H)(w)rig,Ωr,w)≤ν makes sense. Let V = Spm(R). Note that χ gives a
morphism R→ K. We have an isomorphism

H0(V ×M(H)(w)rig,Ωr,w)≤ν ⊗R K ∼= SD(K,w,K(H), χ)≤ν .

In particular we have the following proposition, that, together with Remark 5.1.10,
gives the analogue of Coleman’s Theorem of the Introduction.

Proposition 5.1.11. Let ν be in R and let f be in SD(K,w,K(H), χ)≤v. Then
there is an affinoid V ⊆ W such that f can be deformed to a family of modular forms
over V. Furthermore, the U-operator acts with slope ≤ ν on this family.

5.2. Other Hecke operators

We now sketch the definition of other Hecke operators, see the beginning of
Section 1.3 for the notations. Let l 6= p be a rational prime. We write L1, . . . ,Lk
for the primes of F lying over l. As in the case of the prime p, let L be L1. We
assume that l splits in Q(

√
λ), and that B is split at L. We denote the completion

of F at Li with FLi . We have

G(Ql)
∼= Q∗l ×GL2(FL)×GL2(FL2)× · · · ×GL2(FLk).

Recall that we are only considering compact open subgroups of G(Af ) of the form
K = Z∗p×KP ×H. In this section, we make the further assumption that H is of
the form

H = Z∗l ×GL2(OFL)×H ′,
where H ′ is compact open. Let $l be a uniformizer of OFL . If A is an abelian
scheme that is part of an object of any of the moduli problems we have studied,
our assumptions on L imply that we have a decomposition of A[$l] similar to that
of A[$], so A[$l]

2,1
1 is defined and it has an action of κl, the residue field OFL/$l.

Let χ : O∗P → K∗ be an r-accessible character, so we have the sheaf Ω̃χw on
M(H$r)(w). As in the case of the U operator, we are going to change the level
structure, but this time at L. Let HL be the set of invertible 2 × 2 matrices with
left lower corner congruent to 0 modulo $l. The Shimura curve corresponding to
the case KP = K(H$r) and H = Z∗l ×HL × H ′ will be denoted with X. We
have that X parametrizes objects of the moduli problem of M(H$r) plus a finite
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and flat subgroup of A[$l]
2,1
1 of order |κl|, stable under the action of OFL (see

the description of the level structure in Section 1.3). If D is such a subgroup, we
can define t2(D) as in the case of subgroups of A[$]2,11 , and also the quotient of
A by t2(D) can be defined as in [Kas04], Section 4.4 (since l 6= p, we have that
A and its quotient will have the same degree of overconvergence). We can repeat
everything we have done for the U operator. In particular we obtain, with the
obvious notations, two morphisms

p1, p2 : X(w)→M(H$r)(w).

Furthermore, we have a morphism π̃D : p∗2Ω̃χw → p∗1Ω̃χw.

Definition 5.2.1. We define the operator

T̃L : SD(K,w,K(H$r), χ)→ SD(K,w,K(H$r), χ)

exactly as in the case of Ũ. Taking Gr-invariants and dividing by |κl|+1, we obtain
the operator

TL : SD(K,w,K(H), χ)→ SD(K,w,K(H), χ).

Remark 5.2.2. Note that T̃L is a continuous operator, but, since it does not
change the degree of overconvergence, it is not completely continuous.

Also the operators T̃L can be put in families. Furthermore, if χ is accessible, we
have a description of T̃L in terms of testing objects similar to that of Remark 5.1.8,
taking quotient over subgroups of A[$l]

2,1
1 .

5.3. The eigencurve

Let r ≥ 1 be an integer, and assume that 0 < w is a rational number suffi-
ciently small. Let Zr be the spectral variety associated to the U-operator acting
on H0(Wr ×M(H)(w)rig,Ωr,w). We have proved that all assumptions needed to
use the machine developed by Buzzard in [Buz07] are satisfied, so we have the
following

Theorem 5.3.1. We have a rigid space Cr ⊆ Wr×A1,rig
K equipped with a finite

morphism Cr → Zr. If L is a finite extension of K, then the points of Cr(L)
correspond to systems of eigenvalues of modular forms with growth condition w and
coefficients in L. If x ∈ C(L), letM(w)x be the set of modular forms corresponding
to x. Then all the elements of M(w)x have weight π1(x) ∈ W(L) and the U-
operator acts on M(w)x with eigenvalue π2(x)−1. For various r and w, these
construction are compatible. Letting r → ∞ we have w → 0 and we obtain the
global eigencurve Cr ⊆ Wr ×A1,rig

K .



APPENDIX

Raynaud theory

We will work locally throughout the appendix. We fix a rational number 0 ≤
w < q

q+1 . Let Spf(R)→M(H)(w) be an affine. We denote with Spf(S) the inverse
image of Spf(R) to M(H$)(w). Let A be the abelian scheme associated to Spf(R).
We know that we have a canonical subgroup C2,1

1 ⊆ A[$]2,11 . We are going to obtain
some specific results about the group scheme structure of C2,1

1 . In [Col05], Coleman
studied the canonical subgroup of an elliptic curve in the spirit of the classification
given in [OT70]. We do not need such an explicit study of the canonical subgroup,
but it is interesting in itself. Since our group is of order q, we need to follow the
paper [Ray74]. Recall that V is a finite extension of OP , with field of fraction K.

In this appendix we find it convenient to denote the Teichmüller character [·]
with χ1(·) (see below). Let W be an R-algebra (we will be interested in the cases
W = R, W = S, and W = SK) and let T be a W -algebra such that Spec(T ) is a
κ-vector space scheme of order q over W , in particular we can choose T such that
Spec(T ) = C2,1

1 . We write c : T → T ⊗R′ T for its comultiplication. Let T ′ be the
W -linear dual of T , so Spec(T )D = Spec(T ′). We have that Spec(T ′) is a κ-vector
space scheme too. Indeed, the action of κ is given, on points, as follows. Let U be
a W -algebra and let z ∈ κ. If u ∈ Spec(T )D(U) = Hom(Spec(T )U ,Gm,U ), then zu
is the homomorphism Spec(T )U → Gm,U given by

(zu)(x) = u(zx),

for all U -algebra X and all x ∈ Spec(T )(X). We denote with I and I ′ the augmen-
tation ideal of T and T ′. Since κ acts on Spec(T ), if z ∈ κ, we have a morphism, as
W -algebras, [z] : T → T : these maps satisfy the obvious compatibility properties.
We write [z]′ for the corresponding morphisms for T ′.

Let M be the set of multiplicative characters χ : κ∗ → O∗P , extended to the
whole κ by χ(0) = 0 (we will often see χ as taking values in some OP -algebra,
using the natural morphism from OP). Following Raynaud in [Ray74], we say
that χ ∈M is a fundamental character if the map

κ→ OP → OP/$OP = κ

is a field homomorphism. If χ satisfies this condition, all fundamental characters are
of the form z 7→ χ(z)p

i

, with z ∈ κ. It follows that we can denote all fundamental
characters as χpi , where i ∈ Z /f Z (recall that q = pf ). In [Ray74], χpi is denoted
with χi, the reason why we write the subscript in this way will become clear later
on. Furthermore we can assume that χpi+1 = χppi and that χ1 is the Teichmüller
character. Any χ ∈M can be decomposed as

χ =
∏

i∈Z /f Z

χnipi ,

with 0 ≤ ni ≤ p− 1, and, if χ 6= 1, this decomposition is unique.
Given a character χ ∈M , we define the W -linear operator on T

iχ =
1

q − 1

∑
z∈κ∗

χ−1(z)[z].

63
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We also have its analogue for T ′, denoted in the same way. The operator iχ preserves
both I and I ′, we write Iχ := iχ(I) and similarly for I ′.

Lemma A.1. We have a decomposition, as R-modules,

I =
⊕
χ∈M

Iχ.

Furthermore, Iχ is the set of all a ∈ I such that [z]a = χ(z)a for all z ∈ κ∗, and
similarly for I ′. Each Iχ and I ′χ is a projective R-module of rank 1.

Proof. The various iχ’s are orthogonal idempotents in the group algebra
W [κ∗], whose sum is 1, so we get the decomposition. Since we have [z]iχ = χ(z)iχ,
if a ∈ I satisfies a = iχ(b) for some b ∈ I, we must have [z]a = χ(z)a for all z ∈ κ∗.
Conversely, if a satisfies this condition, we have iχ(a) = a. The last part of the
lemma is [Ray74], Proposition 1.2.2. �

By Remark 2.3.6, we know that C2,1
1 is, as a scheme, Spec(R[x]/(xq + $

E x))

and that the base change to SK of C2,1
1 is a constant group scheme, with associated

abstract group κ. Since κ acts on the SK-points of C2,1
1 , that correspond to 0 and

the q − 1-th roots of −$E , we see that there is χ ∈M such that the action of z ∈ κ
on SK [x]/(xq + $

E x) is given by x 7→ χ(z)x (clearly χ(z), if not 0, is a q− 1-th root
of unity).

Lemma A.2. We have that χ = χ1.

Proof. Let z̃ ∈ OP be a lifting of z ∈ κ, by condition (1a) of the moduli
problem, we have z̃ dx = d(χ(z)x) = χ(z) dx, so z̃ ≡ χ(z) mod $ (we can restrict
to the ordinary locus, so we may assume that E is a unit). Since χ is multiplicative,
the lemma follows. �

The Hopf algebra of (C2,1
1 )SK is isomorphic to the algebra of SK-valued func-

tions on κ. Let εz, for z ∈ κ, denote the characteristic function of {z}, we then
have a natural isomorphism (of SK-modules)

SK [x]/(xq +
$

E
x)→

⊕
z∈κ

SKεz

x 7→
∑
z∈κ

χ1(z)αεz

where α is a chosen q − 1-th root of −$E . The εz’s, with z 6= 0, form a basis of
I. If χ is in M , we write εχ for

∑
z∈κ χ(z)εz: it is the generator of Iχ defined in

[Ray74], page 249. Via the above isomorphism, we have x = αεχ1
.

Lemma A.3. We have that Ω1
C2,11 /R

is generated, as R[x]/(xq + $
E x)-module,

by d(x), with the unique relation $
E d(x) = 0. In particular, ωC2,11 /R, the module of

invariant differentials of C2,1
1 , is isomorphic, as R-module, to R/$ER d(x).

Proof. Let B := R[x]/(xq + $
E x). We have Ω1

B/R = B/$EB d(x). Indeed, let
b ∈ B such that $

E b = q, we have

d(xq +
$

E
x) =

$

E
(1 + bxq−1) d(x).

But (1 + bxq−1)(1− bxq−1

1−q ) = 1, the lemma follows. �

We can now give an explicit formula for the comultiplication. By Lemma A.2,
we have xp

i

= αp
i

εχpi . Let J be the set of all f -tuples of integers n = (n0, . . . , nf−1)

such that 0 ≤ ni ≤ p−1 for all i and n 6= (0, . . . , 0). Using the above decomposition
of χ ∈ M , we have a bijection between M and J , we write χn for the character



APPENDIX. RAYNAUD THEORY 65

associated to n ∈ J . Given n ∈ J , we write −n for the unique f -tuple in J such
that χnχ−n = χ1. By [Ray74], we see that the comultiplication has the form

c(εχ1) = εχ1 ⊗ 1 + 1⊗ εχ1 +
∑
n∈J

wχn,χ−nεχn ⊗ εχ−n ,

where wχ,χ′ ∈ OP are the universal constants defined in [Ray74]. We have

εχn =

f−1∏
i=0

εniχpi =

f−1∏
i=0

εnip
i

χ1
= ε|n|χ1

,

where n = (n0, . . . , nf−1) and |n| =
∑f−1
i=0 nip

i. Note that |n| + | − n| = q ≡
1 mod (q − 1) and that | · | gives a bijection between J and {1, . . . , q − 1}. By
[Ray74], page 257, we have

wχn,χ−n =
whn

wnw−n
,

where w and wn are universal constants in OP and hn is the smallest integer, with
0 < hn ≤ f , such that pf−hn divides |n|. It follows that we can write

c(εχ1
) = εχ1

⊗ 1 + 1⊗ εχ1
+

q−1∑
i=1

whi

wiwq−i
εχi ⊗ εχq−i ,

where χj := χn, with |n| = j, wj = wχj and similarly for hj (this notation is not
used in [Ray74]). Note that χq−1(z) = 1 for all z ∈ κ∗. Now we use xp

i

= αp
i

εχpi :
by the second point of [Ray74], Proposition 1.3.1, there is a unit u ∈ O∗P such that
w = pu = $eu. Since hi ≥ 1, we can write

c(x) = x⊗ 1 + 1⊗ x−$e−1uE

q−1∑
i=1

whi−1

wiwq−i
xi ⊗ xq−i.(A.1)

Proposition A.4. The comultiplication in C2,1
1 is given by formula (A.1).

Proof. Since SK is finite and étale over RK , the above formula gives the
comultiplication of (C2,1

1 )K . By flatness of R over OP , the same holds for C2,1
1 . �

Remark A.5. Do not confuse our wi’s with Raynaud’s ones, that are all equal
and are denoted with w here. Since χpi is a fundamental character for each i, we
have wpi = 1 for i = 0, . . . , f − 1. In general we have that FP 6= Qp, but it is
interesting to see what happens to the formulas in the case $ = p and f = 1 (hence
e = 1 and q = p), that is the situation studied in [OT70]. Let us write w′i for the
universal constants introduced there. We have

wi = (−1)i+1 w′i
(p− 1)i−1

and w =
w′p

(p− 1)p−1
.

Furthermore h1 = 1 for all i in this case. In particular we find that

c(x) = x⊗ 1 + 1⊗ x− 1

1− p

p−1∑
i=1

w′p−1E

w′iw
′
p−i

xi ⊗ xp−i,

so our description of the comultiplication is exactly the same as the one given in
[Col05] for the canonical subgroup of an elliptic curve.

Following [AIS11], we now find an explicit S-point of (C2,1
1 )D. Note that, by

Proposition A.8 below, this point does not allow to develop our theory. As above,
it is convenient to start working over SK . Since (C2,1

1 )SK is constant, the Hopf
algebra of (C2,1

1 )D
SK

is isomorphic to SK [κ], the group algebra of κ with coefficients
in SK . The canonical base of SK [κ] will be denoted {z}z∈κ, so we have z1z2 = z,
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with z = z1 +z2. Using ζp, our fixed primitive p-th root of unity, we can identify Fp
with µp(V ). In particular, the trace map Trκ/Fp can be seen as a morphism Ψ: κ→
µp(V ) ⊆ V ∗. In this way, we obtain a morphism of group schemes (C2,1

1 )SK → µp.
This morphism corresponds to the SK-point of (C2,1

1 )D
SK

given by z 7→ Ψ(z) and
comes from

η : SK [y]/(yp − 1)→
⊕
z∈κ

SKεz ∼= SK [x]/(xq +
$

E
x)

y 7→
∑
z∈κ

Ψ(z)εz

We are going to explicitly write η(y) =
∑
z∈κ Ψ(z)εz in terms of x. Let eχi , with

0 < i < q−1, be
∑
z∈κ χ

−1
i (z)z and let eχq−1

be
∑
z∈κ z−q0. We have that

{
ei
q−1

}
i

is a basis of I ′, dual to {εχi}. It follows that we have

∑
z∈κ

Ψ(z)εz = ε0 +
1

q − 1

q−1∑
i=1

eχi

(∑
z∈κ∗

Ψ(z)εz

)
εχi =

= ε0 + εχq−1
+

1

q − 1

q−1∑
i=1

g(χi)εχi = 1 +
1

q − 1

q−1∑
i=1

g(χi)α
−ixi,

where α is the root of −$E given in the proof of Lemma 2.3.4, and g(χi) is the Gauss
sum associated to the multiplicative character χ−1

i and to the additive character
Ψ, i.e.

g(χi) =

{
−q if i = q − 1,∑
z∈κ χ

−1
i (z)Ψ(z) otherwise.

If 0 ≤ i ≤ q − 1 is an integer, written in base p as i =
∑f−1
k=0 ikp

k, we define s(i) to
be i0 + . . .+ if−1. If i 6= 0, by [Ray74], page 251, we have

wi = wχi = wχ1, . . . , χ1︸ ︷︷ ︸
i0 times

,...,χpf−1 , . . . , χpf−1︸ ︷︷ ︸
if−1 times

=
g(χ1)i0 · · · g(χpf−1)if−1

(q − 1)s(i)−1g(χi)
.

Since g(χpk) = g(χ1) for every k, we obtain

g(χi) =
1

(q − 1)s(i)−1

g(χ1)s(i)

wi
.(A.2)

For k = 0, . . . , f − 1, let

βk := g(χ1)α−p
k

,

so we have

η(y) = 1 +

q−1∑
i=1

1

(q − 1)s(i)
xi

wi

f−1∏
k=0

βikk ,

where i =
∑f−1
k=0 ikp

k.

Proposition A.6. The morphism

η : R[y]/(yp − 1)→ R[x]/(xq +
$

E
x)

induces a canonical S-point of (C2,1
1 )D. Its base change to SK , denoted with γ′, is

a generator, as κ-vector space, of (C2,1
1 )D(SK).
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Proof. First of all we have to show that each βk is in S. By equation (A.2),
we see that the valuation of g(χ1) is e

p−1 , so we can write, in SK ,

βk = g(χ1)α−p
k

= v$
e
p−1−

pk

q−1 ($
1
q−1α−1)p

k

,

where v is a unit of V . Since e
p−1 −

pf−1

q−1 ≥ 0 and $1/(q−1)α−1 ∈ S, we see that
βk ∈ S. All the various relations that our map must satisfy in order to induce a
morphism of group schemes can be checked in SK , so the proposition follows by
the above discussion. �

Remark A.7. Using the relations between our wi’s and the universal constants
of Oort and Tate given in Remark A.5, we see that, in the case f = 1 and$ = p, our
morphism is exactly the one defined in [AIS11], Proposition 5.2 (see also [AG07b]
to relate our formula with the one of [AIS11]).

We did a very detailed study of C2,1
1 the canonical subgroup of A[$]2,11 . The

corresponding results are used, in [AIS11], to relate C2,1
1 with the modular form

E1. In particular, they show that the image of γ′ under the map d log (see Section
2 of [AIS11] or 3.1) is congruent, modulo p1−v, to E1. This is not possible in our
situation.

Proposition A.8. If e is big enough, then γ′ is in the kernel of the map

d log : (C2,1
1 )D(SK)→ ω(C2,11 )S/S

⊗S S/pS.

Proof. First of all note that (C2,1
1 )D, being killed by $, is also killed by

p, so the map in the proposition makes sense. By definition, γ′ comes from the
morphism S[y]/(yp−1)→ S[x]/(xq+$

E x) that sends y to η(y). We have d log(γ′) =
dη(y)/η(y), so to prove the proposition we need to show that dη(y) = 0. By
Lemma A.3, we have that $ d(x) = 0 in Ω1

C2,11 /R
. In particular it is enough to

prove that $ divides βk for each k = 0, . . . , f − 1 (see above for the definition of βk
and η). In the proof of Proposition A.6 we have shown that $

e
p−1−

pk

q−1 divides βk.
If e is big enough, this implies that $ divides βk as required. �

Remark A.9. The above proposition shows that, in general, the analogue of
Proposition 5.2 of [AIS11] is not true in our situation. This is one of the main
reasons to work with $-divisible groups.

Recall that in section 2.1 we have fixed a coordinate x on the formal group Â2,1
1

and we have denoted with ω a differential dual to x.

Proposition A.10. Let h : C2,1
1 → Â[$]2,11 be the natural map. In Ω1

C2,11 /R
, we

have the equality

h∗(ω) =
d(x)

1−$e−1uE wf−1

wq−1
xq−1

.

Furthermore, if we write ωC2,11 /R
∼= R/$ER d(x) as in Lemma A.3, we have

h∗(ω) = d(x).

Proof. It is convenient to write the comultiplication c(x) of C2,1
1 as F (X,Y ),

where X = x ⊗ 1 and Y = 1 ⊗ x. Let f(X) d(X) be an invariant differential, we
have

f(X) d(X) + f(Y ) d(Y ) = f(F (X,Y ))(
∂

∂X
F (X,Y ) +

∂

∂Y
F (X,Y )),
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so comparing the coefficients of d(Y ) in the two sides of the equation and setting
Y = 0 we find, by Lemma A.3,

f(0) ≡ f(X)(1−QXq−1) mod
$

E
,

where

Q := $e−1uE
wf−1

wq−1
.

Since w = g(χ1)p−1

(q−1)p−1 ([Ray74], page 251), with some calculations we find that

(1− (q − 1)QXq−1)(1−QXq−1) = 1,

so any invariant differential on C2,1
1 has the form

r d(x)

1−Qxq−1
,

for some r ∈ R/$ER (note that a priori it is not clear whether any r is possible).
The canonical subgroup was originally defined as Spec(R[x]/(xq − tcanx)), since
with this presentation ω is a differential dual to x, we have ω = f(x) d(x), with
f ≡ 1 mod x. The isomorphisms we used to write C2,1

1
∼= Spec(R[x]/(xq + $

E ))
(see the proof of Proposition 2.3.5) preserve this property, so the first part of the
proposition follows. The last statement is a consequence of the fact that the counit
of C2,1

1
∼= Spec(R[x]/(xq + $

E x)) is the map x 7→ 0. �

Remark A.11. If $ = p and f = 1, we have ω = d(x)

1+ E
p−1

(see Remark A.5),

but p d(x) = 0, so h∗(ω) = d(x)
1−E . In particular we see that our results generalize

part of [Col97a].
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