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0.1 Legislative framework 

Food industry is characterized by a complex legislative framework and the difficulty to 

move into web of rules and to differentiate between foods for particular nutritional 

uses, food added with vitamins and minerals and food supplements, at first glance is 

high.  

At national level the Decreto Ministeriale 27 January 1992 n. 111, implementing 

Directive 89/398/EC, for the first time included food supplements and food added with 

vitamins and minerals in the area of food for particular nutritional uses. Afterwards 

specific rules for each of them occurred: Directive 2009/39/EC on foods for particular 

nutritional uses (dietary products and food for infants); Directive 2002/46/EC on food 

supplements (now replaced by Regulation (EC) 1170/2009) and Regulation (EC) 

1925/2006 on food added with vitamins and minerals. The Regulation (EC) 1924/2006 

on nutrition and health claims made on foods is placed transversely. 

Food supplements 

The “Directive 2002/46/EC of the European Parliament and of the Council of 10 June 

2002 on the approximation of the laws of Member States relating to food 

supplements”, implemented in Italy by Decreto 21 May 2004, n. 169, establishes 

harmonized rules for the labeling of food supplements and introduces specific rules on 

vitamins and minerals in food supplements. The aim is to harmonize legislation and to 

ensure that these products are safe and appropriately labeled so that consumers can 

make informed choices. 

Food supplements are considered as concentrated sources of nutrients or other 

substances with a nutritional or physiological effect, whose purpose is to supplement 

the normal diet. They are marketed in dose form as pills, tablets, capsules, liquids in 

measured doses etc. An adequate and varied diet could, under normal circumstances, 

provide all necessary nutrients for normal development and maintenance of a healthy 

life. However, surveys show that this ideal situation is not being achieved for all 

nutrients and by all groups of the population across the Community.  

Inside Annex I, the Directive indicates which vitamins or minerals are allowed to be 

used in the food supplements, and in Annex II in which form they may be used. 

Vitamins and mineral substances may be considered for inclusion in the lists following 

the evaluation by the European Food Safety Agency (EFSA) of an appropriate scientific 

dossier concerning the safety and bioavailability of the individual substance.  

However, in the Directive only the rules applicable to the use of vitamins and minerals 

in the manufacture of food supplements are laid down. The use of substances other 

than vitamins or minerals in the manufacture of food supplements therefore continues 
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to be subject to the rules in force in each national legislation. Directorate General 

Health and Consumer Protection has commissioned a study on the use of these 

substances and taking into account all the available information, the Commission, in 

accordance with the requirement set out in Article 4(8) of Directive 2002/46/EC on food 

supplements, has prepared a report to the Council and the European Parliament on the 

use of substances other than vitamins and minerals in food supplements. In this report, 

the Commission concludes that laying down specific rules applicable to substances 

other than vitamins and minerals for use in food supplements is not justified 

(http://ec.europa.eu/food/food/labellingnutrition/supplements/index_en.htm). 

The use of vitamins and mineral supplements together with their sources, and its 

addition to food, is currently governed by Regulation (EC) 1170/2009 of 30 November 

2009 amending Directive 2002/46/EC and Regulation (EC) 1925/2006 "regarding the 

lists of vitamins and minerals and their forms that can be added to food, including 

food supplements."  

Consequently, for food supplements, Annex I and Annex II of Directive 2002/46/EC are 

replaced, respectively, in Annex I and Annex II of Regulation (EC) 1170/2009.  

Food supplements are used from people for improving the support of a normal diet; 

therefore vitamins, minerals or substances other than vitamins or minerals have to be 

present in the product in significant amount. At the same time their assumption at 

excessive levels may cause adverse health effects; that’s why minimal and maximal 

levels present into food supplements have to be fixed: to ensure that the normal use of 

the product, in the way suggested from the producer, will be safe for costumers. The 

Community advice is to assume levels within safe limits (upper safe level: UL) as a 

general reference, taking into account the RDA (recommended dietary allowances) 

reported in the Annex I of the Directive 2008/100/EC. 

Market 

The total European market in 2004 was at approximately 15 billion Euros, and the 

world market 45 billion Euros (revised from France Product Brief French Market for 

Food Supplements 2005 – Gain Report). 

In Italy the food supplements market in 2008 was valued at approximately 1400 

million Euros, with an 11.2% increase compared to 2007. Of these 1400 million Euros 

over 1200 were sold at pharmacies and 108 million at GDO (Grande Distribuzione 

Organizzata). Referring to the number of sold packages, 116 million of units were sold 

in 2008, with  an 8% increase, compared to 2007. Pharmacies are the leading 

distributors of food supplements in Italy, followed by GDO and drugstores (Fig. 0.1). 

 

http://ec.europa.eu/food/food/labellingnutrition/supplements/documents/2007_A540169_study_other_substances.pdf
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Figure 0.1. Distribution of Italian food supplements market in terms of value and volumes. 

 

Among the different channels of sale, there is variability also in the types of product 

chosen: most of the food supplements sold in pharmacies are probiotics, 

multivitamins, laxatives and saline supplements, while food supplements sold in the 

GDO are healthy meals and sport supplements. 

The analysis of the types of supplements consumed shows that people use food 

supplements in order to improve psycho-physical wellness or as an answer to health 

problems. At the first place in the choices there are vitamins and mineral supplements 

followed by supplements with probiotics and energetic sport supplements containing 

vitamins, minerals, amino acids and proteins. 

The consumption of food supplements regards 32% of people and this isn’t a passing 

trend: 6.1% of them declare to use them from at least two years. 

A FederSalus study shows that two thirds of users are women with a middle-high 

level of education. Doctor remains the reference point in choosing the most suitable 

supplements (51.7%) even if 33% people rely upon “self-made”. Reported market data 

do not take into account sales by the e-commerce that should be quite significant: 6 

million Italians use web to obtain information about health and wellness (AC/Nielsen 

for FederSalus, December 2010). 

 

0.2 Micronutrients 

The improvement of human diet has undergone a transition over the past 50 years. The 

first half of 20th century was focused on the discovery and characterisation of  

constituents indispensable of an healthy diet such as essential nutrients, vitamins, 

amino acids and cofactors. In the second half of 20th century, environmental factors 

Pharmacy GDO Drugstore

86.2% 

7.7% 

6.1% 

Values 

77.9% 

16.3% 

5.8% 

Volumes 
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became important determinants of human health, and scientists began to explore the 

relationship between diet and disease. First, many of these new associations were 

related to nonessential dietary constituents, like fibre or cholesterol, then the question 

moved from insufficient intake of some nutrients, such as the relation of fibre with 

colon cancer, to the excess of some of them, like relation of fat intake and 

cardiovascular disease (CVD) (Caballero, 2003).  

Even if clinical deficiency of micronutrients is uncommon in the developed world, 

suboptimal status of micronutrients such as vitamins C and E and folate, has been 

proposed to play a role in the development of CVD, cancer at various sites, chronic 

renal failure and age-related macular degeneration (Fairfield & Fletcher, 2002; 

Woodside et al., 2005). 

Many countries have developed recommendations for intake of micronutrients in the 

normal diet. Values have been set for the intake of each micronutrient below which a 

clinical deficiency state is increasingly likely, or above which a toxicity state is likely to 

develop. Although these are relevant for populations, the difficulty is to determine 

how adequate is the intake for a particular person (Shenkin, 2006). Moreover there are 

a number of situations where the intake may be poor or inadequate even in healthy 

population. This may be due to socio-economic circumstances and so people from a 

poorer background may well take less fresh fruit and vegetables. It may be also related 

to social groups like adolescents and teenagers that have an inadequate intake of milk 

and other sources of calcium, or like elderly people in nursing homes and residential 

care that are particularly at risk for vitamins B12 and D deficiency, alcohol-dependent 

individuals are at risk for folate, B6, B12, and thiamin deficiency (McKay et al., 2000; 

Fairfield & Fletcher, 2002; Shenkin, 2006). Other groups have increased requirements: 

pregnant women require increased folate; smokers require additional vitamin C and 

people who are recovering from an acute illness or after surgery probably have 

multiple requirements.   

Nutritional status is profoundly affected by most disease states by reduced intake, 

such as anorexia (consequence of chronic inflammation, acute infection or neoplastic 

disease), chronic alcohol misuse or during inadequate parental nutrition; increased 

requirements or increased losses such as blood loss, diarrhea, fistulas, dialysis 

(Shenkin, 2006). 

Inadequate intake or subtle deficiencies in several vitamins are risk factors for chronic 

diseases such as cardiovascular disease, cancer, and osteoporosis; according to this 

information a summary of major vitamin-disease relationships are reported in Tab. 0.1 

(Fairfield & Fletcher, 2002). 
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Table 0.1. Summary of cohort studies and randomized trials of major vitamin-disease 

relationships (Fairfield & Fletcher, 2002). 

 

The case of folate 

Folate is a water-soluble B vitamin found in fortified cereal grains, leafy green 

vegetables, legumes, various seeds, and in liver. There are two forms of folate, the 

naturally occurring form (folate, also used as the generalized term), and the 

synthetically produced form (folic acid). Bioavailability of folic acid is higher than 

folate because folic acid is non-conjugated and more stable than folate (Johnson et al., 

2011). The polyglutamate chain of food folate must be cleaved to monoglutamate form 

before absorption, so bioavailability of food folate is approximately 50%. When folic 
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acid monoglutamate is consumed without food (as a supplement), it is nearly 100% 

bioavailable; when it is consumed with food (fortified food) bioavailability decreases 

to approximately 85%. For this reason data are often reported as Dietary Folate 

Equivalents (DFE), which would take the higher bioavailability of folic acid compared 

to food folate into account (1 DFE=1 µg food folate =0.6 µg folic acid added to food= 0.5 

µg folic acid taken without food) (Suitor et al., 2000). 

Folate plays a critical role in DNA synthesis, methylation and repair, and an imbalance 

in these three functions may contribute to carcinogenesis. In particular, a deficiency in 

folate has been implicated in increasing the risk of pancreatic cancer due to 

hypomethylation of DNA. Although most studies suggest that increased intake of 

folate may help reducing the risk of pancreatic cancer in both men and women, a 

recent prospective study conducted by Oaks et al. suggests that only women benefit 

from higher folate intake (Johnson et al., 2011) 

In humans, folate is needed as methyl-group transfer in the conversion of 

homocysteine to methionine. Inadequate folate intake leads to elevated homocysteine 

concentrations, which have been associated with an increased risk for cardiovascular 

diseases. Folate also supplies one-carbon units for the synthesis of deoxyribonucleic 

acid (DNA). Therefore, folate deficiency can cause single- and double-strand breaks in 

the DNA, which can contribute to increased cancer risk (Dietrich et al., 2005). 

The case of copper 

Copper is a transition metal with three oxidation states: Cu0, Cu1+ and Cu 2+ and the 

cupric one is the most common in biological systems. Transition metals are 

indispensable for life because of their ability to donate and accept electrons. 

Consequently, copper is a micronutrient that plays a pivotal role in cell physiology, 

serving as a cofactor for enzymes that modify neuropeptides, generate cellular energy, 

detoxify oxygen-derived radicals, mobilize iron, coagulate blood, and cross-link 

connective tissue (Linder et al., 1996; Peña et al., 1999; Lee et al., 2001).  

However, these metal ions can be toxic to cells when present in excess. Again, due to 

the special redox chemistry of this metal ion, Cu participates in reactions that result in 

the production of highly reactive oxygen species (ROS) (Peña et al., 1999). In addition 

to the generation of ROS, Cu may manifest its toxicity by displacing other metal 

cofactors from their natural ligands in key cellular signaling proteins. To maintain 

levels of metal ions in tight homeostasis, organisms have evolved complex regulatory 

mechanisms that have been conserved through evolution (De Freitas et al., 2003). 

The importance of maintaining this critical balance is highlighted by the existence of 

two human genetic diseases in Cu transport, Menkes and Wilson’s diseases. The 
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entrapment of Cu in intestinal cells in Menkes disease patients leads to Cu deficiency 

as ascertained by defects in the activities of Cu containing enzymes. Patients with 

Wilson disease accumulate Cu in the liver, resulting in liver cirrhosis and 

neurodegeneration (Peña et al., 1999; Lee et al., 2001). 

Cells defend themselves against oxidative damage by tightly controlling the activity of 

free copper, as well as by detoxifying ROS. Cu, Zn-superoxide dismutase (SOD) is a 

primary enzyme in the defense against oxidative stress by catalyzing the dismutation 

of superoxide radicals (O−2) into hydrogen peroxide (Fridovich, 2001). Peroxidases 

such as catalase, glutathione peroxidase, and cytochrome-c oxidase help eliminate the 

excess of hydrogen peroxide (H2O2). 

In mammals, absorption of copper probably occurs primarily in the small intestine, 

after digestion of food in the stomach and duodenum (Linder et al., 1996; Peña et al., 

1999). The efficiency of absorption of the metal ion is high; values for apparent 

absorption by adult humans average between 55% and 75%. Data from animal studies 

(mainly rats) as well as from studies of humans indicate that in the range of normal 

intakes there is some adaptation of absorption relative to need: higher percentages of 

the available copper are absorbed at lower intakes (over days and weeks) and vice 

versa (Linder et al., 1996). 

Copper is differently distributed in the food: shellfish and organ meats are the richest 

source of copper, whereas muscle meets have a lower content; seeds have a high 

abundance of copper while fruit and vegetables tend to have less (Linder et al., 1996). 

Copper deficiency is more frequent in preterm infants, especially those with very low 

birth weights. Copper deficiency has been reported in subjects with malabsorption 

syndromes, such as celiac disease, tropical and non-tropical sprue, cystic fibrosis and 

short bowel syndrome. The most common clinical manifestations of this deficiency are 

anemia, neutropenia and bone abnormalities. 

 

The case of iron 

Iron (Fe) exists in two biologically relevant states: the reduced ferrous form (Fe2+) and 

the oxidized ferric one (Fe3+). As well as copper, iron is an efficient catalyst for electron 

transfer and free-radical reactions, meaning also that it is potentially toxic and 

organism needs to minimize its exposure.  

Iron, as a component of hemoglobin in erythrocytes (red blood cells), is required for 

transporting oxygen around the body and, in the form of myoglobin, for oxigen 

storage and use in muscles.  
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Oxygen released in tissues from hemoglobin is used in oxidative metabolism. 

Hemoglobin binds carbon dioxide in tissues and carries it to lungs, where it is 

discarded by exhalation. Iron is also present as a component of iron-sulfur complexes, 

in enzymes that are responsible for electron transport and energy generation in 

mitochondrial respiration and the citric acid cycle, and for ribonucleotide reductase, 

which is essential for DNA synthesis. Body iron content is approximately 4.0 g in men 

and 3.5 g in women. In adults, most body iron is present in hemoglobin (60-70%), in 

circulating erythrocytes where it is essential for oxygen transport, and in muscle 

myoglobin (10%). The remaining body iron (20–30%) is found primarily in storage 

pools located in liver and endothelial-reticulum (macrophage) system as ferritin and 

hemosiderin. Only about 1% of body iron is incorporated in the range of iron-

containing enzymes and less than 0.2% of body iron is in the plasma transport pool 

where it is bound to transferrin (Geissler & Singh, 2011). 

Dietary iron as well as copper is absorbed in the upper small intestine. Dietary non-

heme iron is predominantly in the ferric oxidation state and must be reduced for 

absorption. This may occur by cytochrome B reductase 1 (CYBRD1). After reduction, 

ferrous iron (Fe2+) is transported into enterocytes by DMT1, coupled to the 

electrochemical H+ gradient from outside to inside cells. In enterocytes, ferrous iron 

enters in a labile or ‘exchangeable’ iron pool from which it can enter three different 

pathways, depending on body requirements: taken into the local mitochondria for 

heme synthesis; sequestered into ferritin iron depots (and shed into the gut lumen at 

the end of the enterocyte’s lifespan); or transferred to the basal transporter (ferroportin 

1) for translocation into the body. 

Dietary iron can also be in the heme form, obtained principally from meat sources, but 

the mechanism of heme iron absorption remains unclear. A recent report described the 

identification of an apically expressed intestinal heme transporter (heme carrier 

protein 1, HCP1), but current evidence suggests it functions mainly as an intestinal 

folate transporter. However, once in enterocytes, the heme molecule is degraded by 

heme oxygenase to release ferric iron which then enters the enterocytic exchangeable 

pool (Collins et al., 2010; Geissler & Singh, 2011). 

Dietary reference values (DRVs) for iron are based on estimates of the amount of iron 

required to replace basal and menstrual iron losses, and for growth. The European 

estimates are based on an assumed absorption of 15% from the diet. 
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0.3 Antioxidants 

Many physiological and pathological conditions are associated with oxidative stress 

(Leichert et al., 2007). Reactive oxygen species (ROS), especially hydrogen peroxide, 

superoxide anions and hydroxyl radicals, are generated in cells through the normal 

metabolic activity (Benaroudj et al., 2001). These ROS readily react with and damage 

vital cellular structures. Among them ROS may damage proteins causing 

modifications of amino acids chains and formation of cross-links. Furthermore ROS 

can cause lipid peroxidation in cell membrane and modify sugars and bases in DNA 

(Benaroudj et al., 2001; Leichert et al., 2007). 

Nevertheless, lots of factors can cause the body to produce more ROS than are needed. 

These include smoking, alcohol drinking, an hiperlipidic diet, sun over-exposure, too 

many pollutants in the air and even too much exercise (Wahlqvist, 1999). The 

physiological defense systems to counteract free radicals comprises endogenous 

enzyme systems, such as catalase, glutathione reductase and superoxide dismutase, as 

well as glutathione, urate and coenzyme Q, or exogenous factors (β-carotene, vitamin 

C, vitamin E, selenium). All these molecules have an antioxidant effect due to their 

ability to transform ROS into stable and harmless compounds or by scavenging ROS 

with a redox-based mechanism (Valko et al., 2006; Brambilla et al., 2008). 

One currently recognized characteristic of a healthy diet includes components that 

counteract oxidative stress and oxidative damage to cell components. Oxidative stress 

in fact has been linked to the aging process and the etiopathogeny and progression of 

chronic diseases, including heart disease and cancer (Wahlqvist, 1999; Benaroudj et al., 

2001; Herrera et al., 2009). 

Many compounds in food have antioxidant properties by interacting with the reactive 

molecules. Antioxidants from food include not only vitamins, but also some elements 

such as selenium and copper, respectively part of glutathione peroxidase and 

superoxide dismutase, and other compounds found in plant foods such as flavonoids 

and polyphenols. Any factors (excessive dietary fat intake, smoking or alcohol 

consumption, pollution exposure, intensive exercise), could increase the requirement 

for antioxidant nutrients (Wahlqvist, 1999). 

However, when large amounts of antioxidant nutrients are taken, they can also act as 

pro-oxidants by inducing oxidative stress and have harmful effects in biologic systems.  

For some antioxidants there are conflicting data in relation to their adverse effects. For 

example, favorable effects of vitamin E have been observed in relation to Alzheimer’s 

disease and prostate cancer, but the use of high doses of vitamin E is also associated 

with increased risk of mortality from some cancers, possibly fatal as opposed to non-
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fatal myocardial infarction, and hemorrhagic stroke (Stephens et al., 1996; Brambilla et 

al., 2008). Another question is how much suppression of oxidation may be compatible 

with good health, as toxic free radicals are required for defense mechanisms 

(Wahlqvist, 1999). 

Although the role of oxidative stress in aging, neurodegenerative and vascular 

diseases, cancer, diabetes, and other related diseases is largely accepted, the value of 

antioxidant strategies is still debatable, above all considering antioxidant 

supplementation (Herrera et al., 2009). 

The case of glutathione (GSH) 

Glutathione (GSH) is a biologically active tripeptide consisting of L-glutamate, L-

cysteine and glycine (Fig. 0.2). It is the most abundant intracellular thiol compound 

(0.2-10 mM) widely distributed in living organisms, from prokaryotes to eukaryotes 

(Meister & Anderson, 1983; Anderson, 1998). 

 
Figure 0.2. The structure of glutathione (GSH) (Anderson, 1998). 

 

It is synthesized intracellularly in two ATP-dependent steps by the consecutive actions 

of -glutamylcysteine synthetase (-GCS) (1), feedback inhibited by GSH, and 

glutathione synthetase (GS) (2). The exceptional peptidic γ-linkage is thought to 

protect the tripeptide from degradation by aminopeptidases (Anderson, 1998; Sies, 

1999). 

 

L-Glu + L-Cys + ATP       L-γ-Glu-L-Cys + ADP + Pi     (1) 

L-γ-Glu-Cys + Gly + ATP GSH + ADP + Pi     (2) 

 

In cells, tissues and plasma, glutathione can exist under the reduced GSH form, the 

glutathione disulphide GSSG one (oxidized glutathione) and other forms of mixed 

disulphides GSSR, for example GS-S-CoA and GS-S-Cys (Sies, 1999; Penninckx, 2002) 

and GSS-protein which is formed via glutathionylation (Li et al., 2004).  
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Intracellularly, GSH is kept in its thiol form by glutathione disulphide (GSSG) 

reductase, a NADPH-dependent enzyme (Anderson, 1998). The GSSG/GSH ratio is 

often used as indicator of cell oxidative stress (Parris, 1997), and values >10 are 

considered normal physiological conditions (Wu et al., 2004). 

Degradation into the constituent amino acids occurs via γ-glutamyltranspeptidase and 

cysteinyl-glycine dipeptidase. Many important reactions involves GSH on the thiol 

group, relating to redox reactions, i.e., disulphide formation, and to thioether and 

thiolester formation. The redox reactions are catalyzed by several GSH peroxidases 

and GSSG reductases, whereas a major class of enzymes in thioether formation is given 

by the glutathione transferases (GST). This is a class of enzymes that utilize GSH to 

generate products (glutathione S-conjugates) that are usually involved in 

detoxification and elimination (Sies, 1999). 

GSH has lots of important cellular functions, summarized in Fig. 0.3 that are related to 

amino acid transport, protection against oxidative stress, xenobiotic and endogenous 

toxic metabolite detoxification, enzyme activity and sulphur and nitrogen metabolism 

(Anderson, 1998; Penninckx, 2002). GSH has a role in signal transduction, in gene 

expression, and in apoptosis. There are links between the thiol redox state, glutathione-

protein interactions, and cell proliferation, thus, protein glutathionylation may have a 

role in control of such processes. Human immunodeficiency virus (HIV)-1 protease 

activity is regulated through cysteine modification, and there are relationships 

between GSH levels and outcome in HIV patients (Sies, 1999). 

 

 
Figure 0.3. Overview of glutathione metabolism (Anderson, 1998). 
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GSH has been found to be committed to many physiological processes and thus it 

plays many important roles, however the major GSH function may be summarized in 

three main topics: antioxidant, immunity booster and defence molecule (Li et al., 2004). 

These characteristics make GSH an important biochemical drug for the treatment of 

numerous diseases, such as HIV infections, liver cirrhosis, gastrointestinal and 

pancreatic inflammations, as well as neurodegenerative diseases and aging. In fact 

cellular GSH concentrations are reduced markedly in response to protein malnutrition, 

oxidative stress, and many pathological conditions (Li et al., 2004; Wu et al., 2004) such 

as Chrohn’s disease, artherosclerosis, diabetes and also neurodegenerative diseases, 

several tumours and liver diseases. Studies evidenced that GSH may be therapeutically 

effective when given in high doses to depleted subjects (Perricone et al., 2009). 

GSH production 

GSH was discovered in 1888 while its molecular structure was established in 1921. The 

first approach to GSH recovery consisted in solvent extraction from animal or plant 

tissue, but this approach gives an expensive end-product. Besides being extracted from 

some active tissues, GSH may be produced by chemical method, enzymatic reaction 

and microbial fermentation. Harington and Mead in 1935 demonstrated that GSH 

could be chemically synthesized but the final product was a racemic mixture that 

needed an optical resolution for separating the active L-form from its D-isomer (Li et 

al., 2004). Increased knowledge on GSH and its biosynthetic pathway induced 

investigations to explore the enzymatic and fermentative GSH production. 

The GSH enzymatic production involves: the enzymes involved in GSH synthesis that 

are -GCS and GS, the precursor amino acids (L-glutamic acid, L-cysteine and glycine), 

ATP, the enzymes cofactors (Mg2+) and a proper pH (usually 7.5) (Li et al., 2004). 

The ATP requirement in the enzymatic production of GSH makes the entire process 

too expensive to scale-up. This problem was partially solved employing Saccharomyces 

cerevisiae cells in which ATP regeneration, during glycolysis, compensates ATP 

consumption as a self-coupling ATP regeneration system. A further evolution dealing 

with enzymatic GSH production concerned a co-coupled ATP regeneration system in 

which two or more organisms are employed. Murata et al. (1981) used immobilized 

cells of S. cerevisiae for ATP generation through glycolytic pathway and immobilized 

Escherichia coli and Brevibacterium ammoniagenes for GSH synthesis and NADP 

production. Nevertheless the requirement to enhance the activities of -GCS and GS 

accelerated the application of molecular cloning and genetic engineering approaches in 

GSH biosynthesis (Li et al., 2004). 
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GSH fermentative production is currently the most common method employed on 

industrial scale and S. cerevisiae and Candida utilis are the most commonly used 

microorganism employed obtaining a GSH content of 0.1-1% dry cell weight. 

Fermentative GSH production furnishes yields lower then enzymatic one (up to 9 g/L, 

Miwa, 1978) but the sugar materials employed as substrates make the fermentative 

process to be cheaper than enzymatic one. As well as for enzymatic process, higher 

GSH yields (3-5% dry cell weight) can be obtained using mutants. 

To improve GSH volumetric yields means to increase intracellular GSH content and 

cell density. However, in high-cell-density cultivation, oxygen supply, by-products or 

other factors may inhibit cell growth. For these reasons biotechnological process 

optimization is required.  

Lots of papers report different process optimization strategies taking into account 

culture conditions, i.e. selection of nutrient and their concentration. For example 

Santos et al. (2007) used experimental designs to find the best conditions of 

temperature, agitation rate, initial pH, inoculum concentration and glucose 

concentration for GSH production by S. cerevisiae. Different strategies to enhance GSH 

production were applied and generally fed-batch culture is one of the most efficient 

method for achieving high-cell-density (Li et al., 2004; Shang et al., 2008). Wei et al. 

(2003) reported to enhance GSH production with Candida utilis (till 2.5% w/w) 

employing a two-stage temperature control strategy: a higher temperature for cell 

growth (30°C) and a lower one (26°C) for increasing GSH production. Liang et al. 

(2009) enhanced GSH production inducing H2O2 multiple oxidative stress in Candida 

utilis and obtained up to a 2-fold increase respect to the control.  

Although sugars were the principal substrate in the fermentative production of GSH, 

the addition of precursor amino acids required for GSH, was found to increase its 

production (Wen et al., 2005; Nisamedtinov et al., 2010). In particular cysteine was 

confirmed to be a key amino acid for increasing the specific GSH production rate, but 

it showed a growth inhibition effect (Li et al., 2004). In this context several papers have 

dealt with optimisation of cysteine addition to increase GSH production without 

causing growth inhibition. Alfafara et al. (1992) found that single-shot additions of L-

cysteine furnished better yields than a continuous feeding. Cysteine is not the only 

amino acid influencing GSH accumulation: Wen et al. (2005) indicated glycine as the 

most important amino acid after cysteine in GSH synthesis (for more details see 

Chapters 1 and 5). 
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0.4 Saccharomyces cerevisiae 

The yeast Saccharomyces cerevisiae is one of the most studied microorganisms and it is 

considered a model for eukaryotes especially for molecular genetic research. In fact its 

basic mechanisms of replication, recombination, cell division and metabolism are very 

similar to those of higher eukaryotes, including mammals (Waites et al., 2001). A 

model organism should have several important traits. Among these are size, 

generation time, manipulation, genetics, and economic benefit. S. cerevisiae has 

developed as a model organism having several appreciable characteristics, as follows: 

1. It is a unicellular eukaryotic organism with a relatively uncomplicated and short life 

cycle (Gershon & Gershon, 2000): asexual cell division involves budding of a daughter 

cell from a mother cell. S. cerevisiae cells are generally ellipsoidal in shape with a large 

diameter ranging from 5-10 µm and a small one 1-3 to 1-7 µm (Walker, 1998) having a 

doubling time of 1.25–2 hours at 30 °C (Goffeau et al., 1996). 

2. It has a small genome comprising about 6000 genes, which has been completely 

sequenced (Goffeau et al., 1996) and extensively mapped (Gershon & Gershon, 2000). 

3. Special characteristics of this organism have enabled the development of essential 

molecular genetic tools that contribute significantly to the understanding of some of 

the major processes in cell biology as signal transduction, control of cell cycle 

progression, the basis of the switch from mitosis to meiosis, genetic recombination, 

intracellular trafficking of proteins, response to stress, and protein degradation 

(Gershon & Gershon, 2000). 

4. Many yeast genes have been shown to have orthologs in the human genome, 

including some disease-causing genes. Several human proteins can functionally 

substitute for their yeast analogs following transfection of human genes into yeast 

(Gershon & Gershon, 2000). 

5. It is relatively cheap to grow in large quantities on simple medium (Gershon & 

Gershon, 2000) and so easy to study. 

Technological applications 

The yeast S. cerevisiae is used from ancient times, it is one of the oldest food microbial 

starters employed in the production of food and alcoholic beverages. Each of these 

traditional process converts substrates into ethanol, carbon dioxide and biomass 

Demirci et al., 1999) differently exploited. Nowadays it is also used in many other 

processes, exploiting the same metabolic characteristics, such as the production of 

fermentation products, particularly fuel ethanol, single cell protein, enzyme and 

hetereologus proteins., e.g. human insulin (Waites et al., 2001); inactivated yeast and 

yeast derivatives have been used as nutritive complements and as food ingredients for 
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the formulation of a variety of industrial food products (Yamada & Sgarbieri, 2005). In 

Fig. 0.4 a summary of traditional and modern/emerging yeast technologies is reported. 

 

 

Figure 0.4: Summary of yeast technologies (Walker, 1998). 

 

Among traditional technologies, alcoholic beverages are produced throughout the 

world from locally available fermentable sugar materials derived from fruit juices, 

plant sap and honey, or from hydrolysed grains and root starch. The fermentation 

products are ethanol, a range of desiderable organoleptic (flavour and aroma) 

compound and CO2 (Waites et al., 2001). The alcoholic beverage obtained can be drunk 

fresh, or aged to modify its flavour or distilled to increase alcoholic strength. Although 

bacteria may be involved in some processes, yeasts are primarily used and mostly 

strains of S. cerevisiae.  

Among modern technologies, increasing interest has been addressed in the production 

of bioethanol as a source of renewable energy and as alternative to petroleum. 

Generally the fermentable sources employed for bioethanol production comes from 

plant biomasses and lignocellulosic hydrolysates. Numerous genetic and physiological 

approaches have been applied aimed at improving yeast fermentation performance 

that in the scale of bioethanol industry would be economically significant (Walker, 

1998). 

 

Besides ethanol, S. cerevisiae metabolism naturally leds to biomass production. Baker’s 

yeast, represent the largest bulk production of any single-celled microorganism 

throughout the world (Walker, 1998). 

Baker’s yeast production involves a multi stage propagation of selected S. cerevisiae 

strains on sugar cane and sugar beet molasses supplemented with additional sources 

of nitrogen (ammonium salts or urea), phosphorus and essential mineral ions such as 
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magnesium. The objective is to obtain a high biomass yield characterized by high 

fermentative activity and good storage properties. Thus, to preserve yeast fermentative 

ability, only the last stages are performed in high aerobically conditions and molasses 

medium is delivered incrementally to the growing cells in a feed-batch manner to 

avoid the Crabtree effect and maximize respiratory growth. 

Yeast cells, originating from freeze-dried sample or agar-medium culture, are initially 

transferred to small liquid culture flasks, then to larger intermediate vessels before 

being finally used to inoculate the large production fermenters of 50-350 m3 capacity. 

The process is conducted at 28-30°C and pH adjusted to 4.0-4.5. The obtained culture 

(containing normally 60 g biomass/L) is centrifuged and harvested cells are washed 

and differently dried according to the required yeast commercial forms: liquid (having 

about 18-20% dcw) compressed (about 30% dcw) and dried form ( 90% dcw). 

 

Beside the direct food use as baking agent, S. cerevisiae may be employed  as whole cell 

because of its proteins and micronutrients source for animal and food nutrition. 

Moreover, yeast extracts are used in food industry for their flavour or in the 

preparation of microbiological growth media. Yeast cell walls, end-product of yeast 

extract production, may be used as biosorbents for removal of heavy metals from 

industrial wastewaters. Recently, great interest has been aroused by this last 

application, biosorption, which exploits microbial cell envelopes to remove metals 

from water solutions (Volesky, 2001; De Philippis et al, 2007). 

GSH and S. cerevisiae 

GSH is the major (95%) nonprotein thiol compound in S. cerevisiae where it plays 

several important roles in response to nutritional and oxidative stress (Penninckx, 

2000).  

Nutritional stresses - The work of Penninckx (2000) demonstrated that most of the 

excess sulphur is incorporated into GSH, while it may serve as an endogenous sulphur 

source when cells were starved for sulphate. Moreover nitrogen starvation provokes 

the shift of more than 90% GSH toward the vacuolar compartiment and a strong 

decrease in cellular GSH with a release of the constituent amino acids of GSH in the 

cytoplasm by vacuolar γ-glutamyltranspeptidase (γ-GT) and cytoplasmic 

cysteinylglycine dipeptidase. In strains deficient in GSH biosynthesis (mutant strains), 

no accumulation of GSH in the central vacuole was observed, thus the GSH in these 

strains may serve as an endogenous source of amino acids for growth and 

maintenance. 
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Environmental stresses – This mechanism deals with the presence of xenobiotics and 

heavy metal ions in the culture medium. Glutathione S-transferase catalyses (GST) the 

formation of GSH-conjugates then sequestrated in the vacuole. 

Oxidative stresses – GSH, thanks to its sulphydryl group, acts as a radical scavenger 

with oxidants to produce oxidised glutathione (GSSG). GSH is an electron donor for 

glutathione peroxidase (GPx) reaction, and GSSG is reduced to GSH by glutathione 

reductase (GR) in the presence of NADPH (Izawa et al., 1995).Penninckx demonstrated 

that most of the excess sulphur is incorporated into GSH, and it may serve as an 

endogenous sulphur source when cells were starved for sulphate. Moreover, nitrogen 

starvation provokes the shift of more than 90% GSH toward the vacuolar 

compartiment and a strong decrease in cellular GSH with a release of the constituent 

amino acids of GSH in the cytoplasm by vacuolar γ-glutamyltranspeptidase (γ-GT) 

and cytoplasmic cysteinylglycine dipeptidase (Fig. 0.5). In strains deficient in GSH 

biosynthesis (mutant strains), no accumulation of GSH in the central vacuole was 

observed, thus GSH in these strains may serve as an endogenous source of amino acids 

for growth and maintenance. 

S. cerevisiae sulphate assimilation pathway 

The biosynthesis of organic sulphur compounds first requires sulphate to be taken up 

and reduced (Fig 0.5 and 0.6 reaction 13). 

 

 

Extracell.   Intracell. 

 

           SO42- 

    SO42-             APS         PAPS      SO32-  S2- 
                3H+                       3H+      ATP         PPi       ATP      ADP          NADPH      PAP       3 NADPH     3 NADP+ 

                       NADP+ 

 

 

Figure 0.5. Yeast sulphate assimilation pathway. 

 

Sulphate is co-transported into the cells with 3 H+ by specific plasma membrane 

permeases and it is activated to adenylyl sulphate (APS) by ATP sulphurylase (ATPS). 

Then APS is phosphorylated by an APS kinase using ATP to produce 

phosphoadenylyl sulphate (PAPS) (Mendoza-Cózatl et al., 2005). PAPS is then reduced 

to sulphite by PAPS-reductase and then further reduced to sulphide by sulphide 

reductase. At the end of this process, the reduced sulphur atom can be incorporated 

into carbon chains (Thomas & Surdin-Kerjan, 1997).  
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S. cerevisiae can grow both on inorganic sulphur sources and on organic ones (Thomas 

& Surdin-Kerjan, 1997) as methionine, homocysteine, cysteine or GSH as a sole sulphur 

source because of its metabolic systems, in which these compounds can readily 

exchange their sulphur atom (Fig. 0.6) (Miyake et al., 1999). These systems are the 

trans-sulphuration pathways that allow the interconversion of homocysteine and 

cysteine via the intermediary formation of cystathionine (Thomas & Surdin-Kerjan, 

1997; Ono et al., 1999). 

 

 

Figure 0.6. A model for the main fluxes of sulphur in S. cerevisiae: (1) Serine acetyltransferase; (2) 

cysteine synthase; (3) homoserine acetyltransferase; (4) homocysteine synthase; (5) γ-

cystathionine synthase; (6) γ-cystathionase; (7) P-cystathionase; (8) P-cystathionine synthase ; (9) 

homocysteine methyltransferase; (10) S-adenosylmethionine synthetase; (11) S-adenosyl 

methionine demethylase; (12) adenosylhomocysteinase; (13) sulphate-reducing pathway; (14) γ-

glutamylcysteine synthetase; (15) GSH synthetase; (16) γ-GT; (17) cysteinylglycine dipeptidase 

(Elskens et al., 1991). 
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Metals transport in S. cerevisiae: copper and iron 

Some heavy metals such as Cu2+, Co2+, Fe2+, Mn2+ and Zn2+ are essential in trace amount 

for cell metabolism, acting both as enzyme cofactors, mediating redox reactions, and 

interacting with nucleic acids and proteins. Others metals instead enter into the cell 

through the same transport systems used by essential heavy metals, but altering cell 

functions. GSH may bind to a variety of metals in the cytosol and metal-(GSH)2 

complexes are actively transported into the vacuole (Mendoza-Cózatl et al., 2005). 

 

Figure 0.7. Trafficking pathways for copper. The cell surface transporters (blue boxes), copper 

chaperone-like molecules (green boxes) and detoxification factors (pink boxes) for copper are 

shown, based on pathways established for baker’s yeast. CTR1, being a major high-affinity 

transporter, is the predominant source of environmental copper under physiological conditions 

(depicted by heavy arrow). When environmental copper becomes more available, low-affinity 

transporters such as FET4 and other unknown molecules (‘‘???’’), can also contribute to the pool 

of intracellular copper. Once the metal enters the cell, a substantial fraction is subjected to 

detoxification (red arrows) by factors such as metal-binding metallothioneins (MT) or 

glutathione (GSH). Another pool of copper is reserved by copper chaperone molecules for 

copper utilization pathways (green arrows), i.e. delivery of the metal to copper-requiring targets 

in the cytosol, mitochondria (mito) or Golgi (from Luk et al., 2003). 

 

 

Copper largely enters the cell (Fig. 0.7) through the action of one or more high-affinity 

cell surface transporters (CTRs); it can also enter via one or more low-affinity 

transporters (generally not specific for copper) when the medium is supplemented 

with elevated, but non-toxic, copper concentration (Luk et al., 2003). Under low copper 

conditions, transcription of high affinity transporters is enhanced, facilitating copper 

uptake. Conversely, copper overloaded cells cause high affinity transporters to be 

down-regulated to decrease copper uptake (De Freitas et al., 2003). 

Iron can be transported into yeast cells bound to low molecular weight compounds or 

as ions. The high affinity system is specific for iron. As well as copper, reduced iron is 
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also transported through a less specific, lower affinity plasma membrane transporter 

(De Freitas et al., 2003). Once copper enter the cells it may be detoxified, and in this 

case sequestered by metal-binding factors such as metallothioneins or GSH, 

alternatively used from copper enzymes in different cellular districts, delivered by 

chaperons (De Freitas et al., 2003; Luk et al., 2003). How iron is safely carried within 

the cytosol to subcellular compartments is not fully understood (De Freitas et al., 2003). 
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0.6 Outlines of the thesis 

This research concerns nutritional and microbiological aspects. The final aim of this 

project is to obtain new food supplements formulations containing Saccharomyces 

cerevisiae, enriched with micronutrients and antioxidant molecules, by biotechnological 

processes. 

This idea is supported by the fact that even if clinical deficiency of micronutrients is 

uncommon in the developed world, a suboptimal intake of certain micronutrients has 

been linked with an increased risk of chronic diseases such as CVD (cardiovascular 

disease), cancer and osteoporosis. Moreover external factors, such as smoke, UV 

radiations and pollution, contribute to oxidative stress and to the formation of free 

radicals that are considered to contribute to the risk of cancer. 

The yeast S. cerevisiae is one of the most studied microorganisms and it is considered a 

model for eukaryotes. It is used both in industrial productions and in human diet. As 

well as leavening agent for baking products and fermenting agent for alcoholic 

beverages such as wine and beer, S. cerevisiae is used in the industrial production of 

ethanol, enzymes and dried yeast both for animal-feed and food supplement. 

From an overlook of the information reported in the State of the Art section, it can be 

concluded that both antioxidant and micronutrients play very important roles for 

human health. S. cerevisiae may represent an efficient delivery system for these 

compounds, suitable for human nutrition and therapeutic treatments. In particular 

subsequently to the identification of some potential molecules, with which the yeast 

might be enriched, the research focused mainly on cell enrichment with reduced 

glutathione (GSH) and Copper-conjugated glutathione, with particular regard to the 

set-up of biotechnological processes in order to increase product yields. The research 

also investigated biological activity of the obtained enriched biomass, in particular the 

fate of GSH when the biomass is swallowed, by determining GSH stability during 

gastro-intestinal digestion and any possible protective role of the yeast cell; GSH 

transport/absorbtion by intestinal cell lines and any possible toxicity has been also 

analysed. The final goal of the research was to obtain GSH and copper-enriched cells of 

S. cerevisiae furthering the range of application of yeast cell cultures. 
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1.1 State of the art  

Several studies have been performed in bacteria and yeast related to glutathione 

production. Many of them reported different strategies to increase GSH production in 

a high-cell-density cultivation of Saccharomyces cerevisiae varying culture media, 

incubation time, addition of amino acids and/or precursors at different times and 

concentrations. Here follows some examples. 

Alfafara et al. (1992a) reported that cysteine addition increased specific GSH 

production rate of about two-fold compared with cultures grown without cysteine; a 

single shot addition of cysteine proved also to be better than a continuous feeding. 

Wang et al. (2007) reported that cysteine addition would cause growth inhibition, 

while the simultaneous introduction of glutamic acid and glycine, that are cheaper 

than cysteine, can weaken the inhibition effect. Authors obtained the best results in 

flasks by adding 4 mM of the three precursor amino acids, with an intracellular GSH 

content of about 1.12% dry cell weight (dcw). When only cysteine was added, 

intracellular GSH content was about 0.94% dcw, so the increase in GSH yield was 

respectively 87 and 56% (0.60% dcw obtained without any amino acids addition, 

control). In process carried out in fermenter, when amino acids were added after 32 h 

cultivation, GSH productivity was maximized: intracellular GSH was found 1.53% 

dcw with an increase of about 32% respect to the control (1.16% dcw), without amino 

acids supplementation.  

Results obtained from Alfafara et al. (1992b) showed that cysteine was the only amino 

acid that could enhance GSH production. Wen et al. (2005) and Wang et al. (2011) 

reported that the addition of glutamic acid was not necessary to improve GSH 

production. Wei et al. (2008) investigated the effects of cysteine in combination with a 

temperature-shift strategy on GSH production in Candida utilis; applying these 

strategies in a fed-batch culture, they enhanced GSH production content up to 3.75%, 

which was 90% higher than in control trials.  

In this preliminary phase of the research, the effect of cysteine addition on GSH 

production was investigated. Trials were initially performed in flask and only after 

scale-up studies were performed in fermenter. The aim of this part of the study was to 

produce GSH enriched yeast cells by optimize culture conditions during cell growth. 
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1.2 Materials and Methods 

Strains  

In the first part of the study different commercial baker’s yeast were considered with 

the aim to individuate the most suitable strain to be employed. S. cerevisiae is a strain 

that naturally produces intracellular GSH as defense mechanism that cells use when in 

stress conditions, i.e. in fermentation process during leavening or alcoholic beverage 

production. Generally strains employed for large scale baker’s yeast production 

resulted from a selection and isolation procedure among S. cerevisiae strains able to 

accumulate levels of intracellular GSH of about 1% on cell dry weight. Commercial 

baker’s yeast is sold in different forms: compressed, dried and recently liquid, anyway 

in Italy it is mainly purchased in compressed form (30-35% dcw) (Fig. 1.1). 

 

 

Figure 1.1. Commercial baker’s yeast in compressed form. 

 

Baker’s yeast is obtained in large scale multistep processes, in which each phase is 

conducted in adequate aeration condition. In particular the first stages run in semi 

anaerobic condition (limited air flux) to retain yeast-fermentative ability. Only the last 

two stages (generally about 150 and 400 m3) are managed in total aerobic conditions. 

Moreover the inoculum of these stages is high (up to 20-30% v/v) and the fermentation 

time is not more than 15 hours. With these strategies, the obtained biomass has high 

fermentative capacity. In the last stage cells accumulate metabolites such as glycogen, 

trehalose and GSH, molecules related to both yeast performance and resistance to 

technological stress.  

In the preliminary steps of the research, the characteristics of different S. cerevisiae 

strains were evaluated. In particular GSH content, both in reduced (GSH) and oxidized 

form (GSSG) was determined, in strains belonging to official collections and in isolated 

ones. Among the tested S. cerevisiae, the isolated from commercial compressed Fala 

baker’s yeast (Lesaffre Italia, Trecasali Parma, Italy) presented the highest attitude to 

produce glutathione, in particular in reduced form (GSH). Due to its interesting GSH 

intracellular content, this type of yeast was employed for the research (Fig. 1.2). 
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Figure 1.2. Culture  isolated from Fala commercial baker’s yeast: a) Petri dish, b) microscope 

image (1000x). 

 

Culture conditions 

Different media were employed according to the experiment plan; the composition of 

each media is reported below (g/L). 

 Ti: bacto peptone 20, yeast extract (Costantino, Turin, Italy) 10, glucose 20, pH 

6.0; 

 Tf: (NH4)2SO4 8, MgSO4 0.25, yeast extract (Costantino) 1, glucose 30, pH 6.0; 

 TN: (NH4)2SO4 5, K2HPO4 1, MgSO4 0.2, yeast extract (Costantino) 1, glucose 

10, pH 5.8; 

 MEB: malt extract (Costantino) 20, soybean peptone (Costantino) 1, glucose 20, 

pH 5.8. 

Media were sterilized at 118 °C for 20 min. Trials were performed in 1 L Erlenmeyer 

flasks containing 100-200 mL of the selected medium, inoculated (10% v/v) with an 

overnight-old liquid pre-culture obtained by inoculating 5 mL cell suspension from a 

24 h-old solid culture (MEA, Malt Extract Agar). Cultures were incubated on an 

alternative shaker (60 spm, 4 cm run) at different temperatures and time. Trials were 

subsequently carried out in a 14 L fermenter (OMNITEC, Sedriano - MI) with a 10 L 

working volume equipped with two Rushton impellers (4 blades, 8 cm diameter, 0.32 

impeller/fermenter internal diameter). The following conditions were employed: 10% 

(v/v) inoculum from overnight-old culture, 30°C temperature, 1 vvm aeration rate and 

300 rpm agitation speed. 

 

a) 

b) 
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Analytical procedures 

Intracellular GSH was determined according to Rollini & Manzoni (2006). Briefly, 

samples were centrifuged (7,000 rpm, 7 min) and collected cells, washed with distilled 

water, were suspended in a solution of 0.5 g ascorbic acid/L HPLC-grade H2O. The 

suspension was then thermally treated at 100°C for 10 min. After cooling in ice bath, 

samples were centrifuged (12,000 rpm, 12 min) to eliminate cell residues and, on 

obtained supernatant fractions, intracellular GSH was evaluated. 

GSH identification and quantification were carried out by HPLC, equipped with a UV 

detector (210 nm), at 30°C using a (250 × 4) mm Purospher® RP-18 endcapped column 

(Merck), eluted with 25 mM NaH2PO4 pH 2.8, at 0.3 mL/min. Standard of GSH in 

reduced form was purchased by Sigma and HPLC-grade H2O was obtained by a Milli-

Q A10 Gradient System (Millipore Corporation). 

Results were expressed in terms of percent intracellular GSH content with respect to 

dry cell weight: 

                          (    )  
                  (

  
 
)

   (
 
 
)    

      

Determination of dry cell weight was performed by drying cells at 105°C (CEAL, 

Milano mod. SC4) to constant weight (thermobalance Gibertini mod. TB2). 

 

1.3 Results 

Cysteine addition and temperature shift  

In this first part of the research, trials were performed taking into account the 

promising results obtained by Wei et al. (2008) by adding cysteine and applying a 

temperature shift procedure for GSH production in Candida utilis. Fala yeast strain pre-

culture grown on Ti medium, was inoculated (10% v/v) in 1 L flasks containing the Tf 

medium. All cultures were incubated overnight (16 h) at 30 °C in an alternative shaker 

and then added or not (control culture) with 8 mM cysteine (CYS). Cultures were 

subsequently incubated at two different temperature, 25 or 30°C, for further 8 h, for a 

total of 4 combinations of experiments: 

 CYS-25°C 

 CYS-30°C 

 NO CYS-25°C 

 NO CYS-30°C 
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Table 1.1. Intracellular GSH content (% dcw) and DCW (g/L) of Fala yeast. 

 

 25°C 30°C 

GSH (% dcw) DCW (g/L) GSH (% dcw) DCW (g/L) 

CYS  0.93 ± 0.11 3.1 0.83 ± 0.09 3.4 

NO CYS  0.70 ± 0.04 4.1 0.64 ± 0.04 3.7 

Obtained results (Tab. 1) showed that with cysteine addition a slight growth inhibition 

was evidenced (3.1-3.4 g/L) with respect to no-cysteine added cultures (3.7-4.1 g/L). On 

the contrary, higher GSH levels (0.8-0.9% dcw) were evidenced in samples obtained 

with cysteine addition, with respect to control cultures (0.6-0.7% dcw). As regards 

temperature no significant difference were found. 

This behavior made it possible to highlight that cysteine addition produced a little 

increase in GSH accumulation, even if a partial inhibition of biomass production was 

seen.  

Subsequent experiments were carried out employing Tf medium in an automated 

fermenter (Fig. 1.3), in the conditions described in the previous section.  Culture was 

inoculated with 10% (v/v) of a 16 h-old culture obtained in flasks with Ti medium.  

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Yeast culture for GSH production in automatized fermenter. 

 

After overnight growth (16 h) cysteine was added to the culture to reach a final 8 mM 

concentration. Intracellular GSH and biomass yield (g/L dcw) were evaluated at 

different incubation times (16, 20 and 24 h). 

Obtained results from these experiments evidences in this scale-up phase a 20% 

increase of GSH accumulation was produced by overnight cysteine addition (from 0.65 

to 0.85% dcw at 20 h), with a biomass growth of about 4.7 g/L. The subsequent 

monitoring of GSH level evidenced that it was maintained by further incubation for up 

to 24 h. 
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Culture medium formulation and cysteine addition  

As before, in this part of the research experiments were preliminary performed in 

flasks (1 L with 200 mL medium), employing TN and MEB culture media (see Materials 

and Methods section), for comparative purpose, both supplemented with 4 mM 

cysteine. Again intracellular GSH and biomass yield (g/L dcw) were evaluated. 

Results reported in Tab. 1.2 show that biomass production was higher employing MEB 

medium than TN. Cysteine addition caused a decrease in biomass yield in both the 

media, more evident in TN medium. However, as reported in Fig. 1.4 when cysteine 

was added, intracellular GSH increased and this was much more evident in TN media. 

From these results it was possible to conclude that biomass yield and GSH production 

appear to be inversely correlated: the higher the biomass, the lower the GSH content. 

 
Table 1.2. Biomass yield (g dcw/L) in TN and MEB media 

with or without cysteine addition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Intracellular GSH accumulation (% dcw) in TN and MEB media with or without 

cysteine addition (data are means of three replicates, Coefficient of Variation, CV, 3-5% in “no 

cys” trials and 7-10% in “cys” trials).  

 

Medium 
Biomass (g/L dcw) 

NO CYS CYS 

TN 2.4±0.2 0.7±0.1 
MEB 4.2±0.3 2.7±0.2 
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On the basis of the fact that the highest GSH yields were obtained with TN, 

optimization of cultural condition was carried out employing this medium. Trials were 

performed in 1 L flasks, and cysteine comparatively added (4 mM) directly to the 

medium (t0) or overnight (16 h) (Fig. 1.5).  

 

 

Figure 1.5. Biomass yield (g/L dcw) and intracellular GSH accumulation (% dcw) employing TN 

medium in different condition: no cysteine (TN), with cysteine at t0 (TN+CYS) and cysteine 

added at 16 h (TN O/N + CYS). Data are means of three replicates, CV between 5 and 10%. 

 

As evidenced in previous experiments, results confirm that cell growth was partially 

inhibited when cysteine was added directly to the medium (sample TN+CYS), with a 

cell yield of 0.76 g/L with respect to 1.90 g/L of the control (TN). This effect was 

practically not present when the addition was done overnight, after 16 h (1.70 g/L, TN 

O/N+CYS) in fact at that incubation time cell growth was almost completed. 

Again GSH accumulation was in inverse relation with growth levels, in fact the highest 

GSH accumulation (2.40% dcw) was evidenced in the sample obtained with cysteine 

directly added to the medium (TN+CYS), while a lower level was obtained in sample 

with cysteine added overnight (TN O/N+CYS). The lowest GSH production (0.82% 

dcw) was observed in control (TN) sample. 
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In conclusion, cysteine addition at overnight growth seemed a good compromise to 

reach a satisfactory cell growth associated to GSH accumulation. This condition 

allowed to obtain 1.70 g dcw/L of biomass with a content of GSH 1.40% dcw. 

Trials were then repeated in fermenter. 5 L TN culture medium was inoculated with 

10% (v/v) of a 16 h-old culture obtained in flasks with the same medium. After 

overnight growth, cysteine was added (4 mM). Intracellular GSH and biomass yield 

were evaluated at overnight, 20 and 24 h of incubation. Results are reported in Tab. 1.3. 

 

Table 1.3. Intracellular GSH (% dcw) and biomass yield (g/L) obtained in 

fermenter at different incubation time (O/N, 20 h and 24 h). 

Incubation time (h) Biomass (g/L dcw) GSH (% dcw) 

16 cysteine addition 1.9±0.4 0.75±0.09 

20 2.0±0.5 1.02±0.07 

24 2.1±0.3 1.17±0.06 

 

 

An increase of GSH accumulation with respect to previous experiments carried out in 

flasks was evidenced. A nearly 30% GSH increase was found already after 4 h cysteine 

addition (20 h sample), and reached +40% after 8 h (24 h sample). GSH levels increased 

from 0.75% before cysteine addition (16 h) to 1.02% at 20 h, to reach 1.17% at 24 h.  

 

 

1.4 Conclusions 

From an overall view of the obtained results it was possible to evidence cysteine role to 

enhance GSH intracellular accumulation, anyway taking also in account its inhibition 

effect on cell growth. Results are in agreement with those reported by other authors 

(Alfafara et al., 1992a-b; Wen et al., 2005 and Wei et al., 2008), which describe cysteine 

growth inhibition, effect associated with an increased GSH production.  

To overcome this limitation a biotechnological strategy of adding cysteine after a well-

defined growth time may represent the solution. From the obtained results cysteine 

addition after overnight incubation (16-18 h) represents a good compromise to 

maximize yeast growth and GSH accumulation.  
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2.1 Post-growing procedure: activation 

Activation is a term generally employed on industrial scale to identify a post growing 

procedure in which microbial cells are allowed to increase/accumulate a metabolite as 

a function of the incubation conditions. When applying this strategy for GSH 

production, yeast cells were suspended in a solution containing substances directly or 

indirectly involved in GSH synthesis with the aim to increase its physiological 

intracellular content. 

For this purpose, different molecules and minerals, involved in GSH biosynthesis with 

different roles, were considered: 

 glutamic acid (GLU), cysteine (CYS) and glycine (GLY), GSH precursors; 

 glucose, for ATP generation in the glycolytic pathway; 

 minerals, essential in several steps of the metabolic pathways. In particular, 

magnesium takes part in ATP-dependent reactions and is the cofactor of γ-

glutamylcysteine-syntetase (γ-GCS); magnesium also stabilizes yeast 

phospholipid membrane. 

 

2.2 Materials and Methods 

In this part of the study, trials were carried out employing the following commercial 

baker’s yeast, both in compressed and dried forms. 

 Compressed form 

  

 

  

Zeus 

(ZEUS IBA, Firenze) 

Fala 

(Lesaffre, Trecasali, Parma) 
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 Dried form 

  

Fermipan Brown Fermipan Red 

(GB Ingredients, Casteggio, Pavia) 

 

This approach was justified by the fact that, as previously reported (par. 1.2), 

commercial baker’s yeasts are obtained employing selected S. cerevisiae strains in 

which GSH physiological level is higher than that present inside conventional strains 

obtainable from official collections. This aspect might be related to a specific attitude 

to synthetize GSH. 

Yeast cells were suspended (5% dcw) in an activation mixture, generally set-up in tap- 

water, containing glucose, sodium citrate, ammonium sulphate, KH2PO4, magnesium 

sulphate, cysteine (CYS), glycine (GLY), glutamic acid (GLU) and when present, other 

ingredients, differently combined according to the detailed arrangement of each 

experiment. The appropriate composition (g/L) of the activation mixture is reported in 

each section.  

Trials were carried out in 100 mL Erlenmeyer flasks, each containing 10 mL reaction 

mixture, incubated at 28°C on an alternative shaker (60 spm, 4 cm run). Samples were 

collected at appropriate intervals, and intracellular GSH determined as previously 

reported (1.2). Results were expressed in terms of GSH percent related to dry cell 

weight (% dcw).  

 

2.3 Preliminary trials 

In the first part of the research trials were carried out to evaluate the influence of some 

factors on GSH accumulation, taking into account the different attitudes of 

compressed and dried yeasts, the influence of incubation temperature and the type of 

water employed. The aim of these preliminary trials was to screen different 

commercial yeasts and discard from the investigation irrelevant factors. 

 



40 

 

Commercial baker’s yeasts in compressed and dried form 

Biosynthetic attitude of different commercial baker’s yeast form to accumulate GSH 

was investigated, employing the compressed and dried forms. 

GSH levels were evaluated at 24 h incubation time employing a named CYS-GLY 

mixture, considered as reference (control). This mixture is composed as follows (g/L): 

glucose 80, sodium citrate 10, ammonium sulphate 7, KH2PO4 3.5, magnesium 

sulphate 0.5, cysteine 4 and glycine 4. 

Results, reported in Fig 2.1, highlighted that the compressed yeasts Fala and Zeus were 

characterized by near the same initial GSH content (0.5%) and a similar GSH 

production attitude, with a 2-fold increase (about 1%) respect to the initial level. 

Otherwise the dried yeasts (Fermipan Brown and Red) with a not negligible different 

initial GSH levels (0.46 and 0.65% respectively), showed different activation 

behaviour, with the highest GSH levels (1.15%) reached by Fermipan Red. The sample 

Fermipan Brown showed a limited activation attitude and reached only 0.71% 

intracellular GSH content at 24 h incubation. 

 

 
 

Figure 2.1. Intracellular GSH content (% dcw) of commercial compressed and dried baker’s 

yeasts before and after activation (24 h incubation time). 

In this set of trials the reproducibility of results was accurately verified. This aspect 

resulted important in the prosecution of the study, because not always the same type 

of yeast was found commercial available. This is the reason why part of the 

subsequent study was performed with Zeus yeast, while other with Fala. 
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Influence of incubation temperature: 28-37°C 

With the aim of evaluating the influence of temperature on GSH accumulation during 

the activation procedure, experiments were carried out by incubating samples at 28 

and 37°C comparatively; GSH production was evaluated at 24 and 48 h incubation. In 

these trials the commercial yeast Zeus was employed as compressed yeast. 

Highest yields were generally evidenced at 24 h incubation, while at 48 h a decrease 

occurred with exception of Fermipan Red yeast (at 28°C) that from about 1% at 24 h 

increased to 1.2% at 48 h incubation time (Fig. 2.2). 

Figure 2.2. Intracellular GSH (% dcw) at 24 and 48 h activation (28-37°C) (t0 GSH content: 

Fermipan Brown 0,46%, Fermipan Red 0.65%, Zeus 0.49%). Data are means of three replicates, CV 

between 8 and 12%. 

 

Results confirm that at 24 h the dried yeast Fermipan Red and the compressed Zeus had 

similar performances while the dried yeast Fermipan Brown had different and lower 

ability to accumulate GSH. 

No significant evidences were obtained considering the different incubation 

temperature; only Fermipan Brown seemed to be negatively affected by a higher 

temperature. 
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Influence of water composition: tap- and oligomineral- water 

Ingredients present in CYS-GLY activation mixture were then dissolved both in tap- 

and oligomineral-water for comparative purposes, to evaluate the influence of 

minerals on yeast ability to accumulate GSH.  

Results, reported in Fig. 2.3, underline that for each yeast sample no significant 

differences occurred in the two employed conditions. Furthermore results confirmed 

previous behaviour: Fermipan Red and Zeus had similar performances (1.1-1.3% dcw), 

while Fermipan Brown (0.7-0.8% dcw) had a lower GSH accumulation ability. 

 

Figure 2.3. Intracellular GSH (% dcw) at 24 h; mixture CYS-GLY set up in tap- or oligomineral- 

water (t0 GSH content: Fermipan Brown 0,46%, Fermipan Red 0.65%, Zeus 0.49%). 

Considerations 

Results obtained in this part of the research represented an interesting starting point 

for the prosecution of the study, in particular: 

 Fermipan Brown dried yeast shows a low sensitive towards activation 

procedure, having reached GSH level of only 0.86±0.05% dcw at 24 h, starting 

from 0.46±0.04% dcw, so far it was not considered in subsequent trials; 

 the two compressed yeasts had the same initial GSH level and also reached 

similar final GSH yields; 

 Fermipan Red and Zeus presented similar performances, from 1 and 1.3%dcw, 

reaching highest yields at 24 h; 
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 temperature and water composition seem not to be relevant factors for GSH 

accumulation during activation. For this reason a temperature of 28°C and 

tap- water were selected for the prosecution of the research. 

 

2.4 Compressed and dried yeast: comparative experiments 

Fermipan Red dried yeast and Zeus as compressed were comparatively employed. 

Influence of activation mixture formulation 

The aim of this set of trials was to evaluate the behaviour of the dried and compressed 

yeast according to the different activation mixtures employed. They had the same 

glucose and mineral (ammonium sulphate, sodium-citrate, magnesium sulphate and 

potassium phosphate) content as in the control mixture, but differed for amino acids, 

yeast extract and biotin content, as follows: 

 tested amino acids: cysteine-CYS, glycine-GLY, glutamic acid-GLU, serine-

SER; 

 presence or absence of yeast extract (YE) and biotin (BIO); 

 cysteine replacement with N-acetyl-cysteine (NAC). 

The schematic organization of the trials is reported in Tab. 2.1. 

Table 2.1. Organization of the trials to evaluate the influence of some ingredients (g/L) present 

in activation mixtures. 

Activation mixture GLY CYS SER GLU BIO* YE NAC 

CYS-GLY 4 4 - - - - - 

CYS-GLY-SER 1 1 2 - - - - 

CYS-GLY-GLU 4 4 - 4 - - - 

CYS-GLY+YE 4 4 - - - 1 - 

CYS-GLY-SER+YE 1 1 2 - - 1 - 

CYS-GLY-GLU+YE 4 4 - 4 - 1 - 

CYS-GLY+BIO 4 4 - - 0.01 - - 

CYS-GLY-SER+BIO 1 1 2 - 0.01 - - 

CYS-GLY-GLU+BIO 4 4 - 4 0.01 - - 

NAC-GLY 4 - - - - - 4 

½NAC-½CYS 4 2 - - - - 2 

*Biotin expressed as mg/L 

Significant differences were evidenced in activation with dried and compressed 

yeasts, depending on amino acid combinations and yeast extract or biotin absence 
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(Fig. 2.4). Employing CYS-GLY-SER mixture, at 24 h Fermipan Red reached 0.89 GSH % 

dcw (with respect to 0.6-0.69% t0), while Zeus 1.44% dcw (0.52-0.59% t0). Employing 

CYS-GLY and CYS-GLY-GLU mixtures no significant differences were observed 

between the two yeasts (1-1.2% dcw) at 24 h incubation. 

Furthermore for both yeasts the partial substitution of cysteine with N-acetyl-cysteine 

(1/2 NAC-1/2 GLY samples) did not affect GSH yields (about 1% dcw) respect to the 

control CYS-GLY, but the complete substitution of cysteine limited GSH accumulation 

(0.7-0.8% dcw).  

As expected, results obtained in this set of trials showed that amino acids composition 

affected in different extent yeast ability to accumulate GSH. Even if yeasts had similar 

initial GSH level of about 0.5-0.6% (Tab. 2.2), Fermipan Red accumulated the highest 

GSH level with the mixture CYS-GLY-GLU (1.24% dcw) while Zeus employing the 

mixture CYS-GLY-SER (1.44% dcw). 

 

Figure 2.4. Intracellular GSH content (% dcw) at 24 h incubation in activation trials with amino 

acids differently combined, Fermipan Red and Zeus yeasts (t0 GSH content: Fermipan Red 0.60-

0.69%, Zeus 0.52-0.59%). 
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Table 2.2. Intracellular GSH (% dcw) means and standard deviations at 0 and 24 h activation 

time employing mixtures with amino acids differently combined (Fermipan Red and Zeus).  

 

Yeast Mixture GSH (% dcw) 

t0 24 h 

 CYS-GLY 0.61±0.06 1.11±0.00 

 CYS-GLY-SER 0.60±0.02 0.89±0.08 

Fermipan Red CYS-GLY-GLU 0.66±0.06 1.24±0.08 

 NAC-GLY 0.66±0.09 0.70±0.03 

 ½NAC-½CYS 0.69±0.05 0.98±0.05 

 CYS-GLY 0.56±0.05 0.98±0.13 

 CYS-GLY-SER 0.59±0.09 1.44±0.12 

Zeus CYS-GLY-GLU 0.69±0.04 1.24±0.10 

 NAC-GLY 0.58±0.01 0.80±0.09 

 ½NAC-½CYS 0.52±0.08 0.96±0.13 
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Figure 2.5. Intracellular GSH content (%dcw) at 24 h incubation in activation mixture (A: CYS-

GLY; B: CYS-GLY-SER; C: CYS-GLY-GLU) added with yeast extract (YE) or biotin (BIO). 

Fermipan Red and Zeus yeasts. 
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As regards the use of yeast extract (YE) or biotin (BIO), GSH yields were found not to 

significantly increase (Fig. 2.5 and Tab. 2.3), with respect to the control mixtures (CYS-

GLY, CYS-GLY-SER, CYS-GLY-GLU). A slight GSH increase, due to YE and BIO 

addition, was only evidenced for Fermipan Red employing the mixture CYS-GLY-GLU. 

In these trials employing control mixture GSH yield was about 1.24% dcw, while with 

YE and biotin addition yields were about 1.49 and 1.41% dcw respectively. This 

increase however is marginal respect to the costs attributable to the introduction of 

these ingredients in the activation mixture formulation. 

 

Table 2.3. Intracellular GSH content (% dcw): means and standard deviations at 0 and 24 h 

activation employing mixtures added with yeast extract (YE) or biotin (BIO), Fermipan Red and 

Zeus. 

 

 

 

 

 

 

 

 

 

 

 

 

These trials led to assess different yeast sensitivity towards activation mixture 

composition, even if they had similarly initial GSH levels. In particular they showed 

different sensitivity to the presence of serine. This amino acid is not directly involved 

in GSH synthesis, but in sulphate metabolism of yeasts. Moreover both yeasts showed 

Yeast Mixture GSH (% dcw) 

t0 24 h 

 CYS-GLY 0.61±0.06 1.11±0.00 

 CYS-GLY-SER 0.60±0.02 0.89±0.08 

 CYS-GLY-GLU 0.66±0.06 1.24±0.08 

 CYS-GLY+YE 0.60±0.01 0.96±0.06 

Fermipan Red CYS-GLY-SER+YE 0.64±0.06 0.86±0.01 

 CYS-GLY-GLU+YE 0.72±0.09 1.49±0.15 

 CYS-GLY+BIO 0.62±0.05 0.97±0.03 

 CYS-GLY-SER+BIO 0.65±0.03 0.81±0.01 

 CYS-GLY-GLU+BIO 0.66±0.01 1.41±0.01 

 CYS-GLY 0.56±0.05 0.98±0.33 

 CYS-GLY-SER 0.59±0.19 1.44±0.35 

 CYS-GLY-GLU 0.69±0.04 1.24±0.30 

 CYS-GLY+YE 0.66±0.06 1.11±0.01 

Zeus CYS-GLY-SER+YE 0.52±0.00 1.22±0.01 

 CYS-GLY-GLU+YE 0.65±0.02 1.35±0.02 

 CYS-GLY+BIO 0.76±0.00 0.98±0.13 

 CYS-GLY-SER+BIO 0.69±0.02 1.25±0.09 

 CYS-GLY-GLU+BIO 0.73±0.06 1.31±0.09 
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better results with the mixture CYS-GLY-GLU, that contains all the GSH precursor 

amino acids, respect to the mixture CYS-GLY.  

These results underline the relevance of amino acids for activation efficacy to 

accumulate intracellular GSH. This behaviour is in agreement with data reported in 

literature; in fact many authors consider amino acids, and in particular cysteine, as 

key ingredients for GSH synthesis (Alfafara et al., 1992; Wang et al., 2007; Wen et al., 

2005; Liang et al., 2009).  

Influence of carbon source 

The aim of these trials was to evaluate the influence of glucose addition during 

activation of dried and compressed yeast. For comparative purposes the mixtures 

CYS-GLY, CYS-GLY-SER and CYS-GLY-GLU were employed, and a shot of 50 g/L of 

glucose was added at 4 or 6 h incubation time. The general schematic organization of 

trials is reported in Fig. 2.6. Samples were collected at 0, 24 and 48 h activation.  

 

Figure 2.6. General schematic organization of trials, employing Zeus and Fermipan Red yeasts. 

 

In general at 48 h incubation, GSH yields were found of the same or lower levels than 

at 24 h (Fig. 2.7). Again, a different ability of the two employed yeasts was 

highlighted.  

Only the Zeus strain appeared to be sensitive to glucose shots and this behaviour 

varied depending on the mixture employed. In samples with CYS-GLY mixture and 

glucose addition at 4 and 6 h (Fig. 2.7 A), at 24 h activation an interesting GSH 

increase to about 1.7-1.8% was obtained, with respect to 1.1% without glucose shots.  
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Employing CYS-GLY-SER mixture (Fig. 2.7 B), then in presence of serine, the sample 

without glucose reached about 1.7% already al 24 h, while glucose addition did not 

produce GSH increase in all tested samples (about 1.4-1.5%).  

At 24 h, with CYS-GLY-GLU mixture and glucose added at 4 h, a GSH increase from 

1.45% to 1.92% was observed (Fig. 2.7 C). To be noticed in this case that glucose 

addition at 6 h did not produce any GSH increase, neither at 24 nor at 48 h. 

In general Zeus yeast accumulated much more than three times its initial GSH content 

(0.52% dcw). 

As regards to Fermipan Red, glucose addition did not affect GSH accumulation neither 

at 4 nor 6 h, in all the tested activation mixture. Maximum GSH level gained was 

about 1.11% with CYS-GLY, 0.84% with CYS-GLY-SER and 1.29% with CYS-GLY-

GLU mixtures, starting from an initial GSH level of about 0.6% (Fig. 2.7 A, B, and C). 

These trials in general confirmed what previously obtained. Moreover it was possible 

to conclude that Zeus, yeast in compressed form, was generally able to produce GSH 

in higher yields with respect to Fermipan Red, yeast in dried form, and so subsequent 

research investigations were focused on compressed yeast applications. 
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Figure 2.7. Intracellular GSH (% dcw) at 24 and 48 h in presence/absence of glucose shots. 

Activation mixtures CYS-GLY (A), CYS-GLY-SER (B) and CYS-GLY-GLU (C); Zeus and 

Fermipan Red. 
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2.5 Yeast in compressed form: set up of the activation conditions  

On the basis of previously obtained results the prosecution of the study was focused 

on the effect of glucose addition, during activation procedure, employing yeast in 

compressed form. 

Glucose addition at different incubation time (Zeus yeast) 

In this part of the research trials were carried out by employing several combinations 

of glucose additions. In particular activations with CYS-GLY-80 (80 g/L glucose, 

reference condition) and CYS-GLY-65 (65 g/L glucose) mixtures were comparatively 

employed. Consequently, with the aim to supply to the yeasts 130 g/L total glucose 

during the process, shots with different glucose concentrations were done: 65 g/L for 

CYS-GLY-65 and 50 g/L for CYS-GLY-80, at individually 2, 4, 6 and 8 h incubation 

times. Samples were collected at 0, 24 h incubation times and before each glucose 

addition (2, 4, 6 and 8 h). Results are reported in Fig. 2.8. 

 

 

Figure 2.8. Effect of glucose addition (2, 4, 6, 8 h) on intracellular GSH (% dcw) levels. 24 h 

incubation time, Zeus yeast. 

Glucose additions at 2 and 8 h in any combinations were ineffective respect to control 

trials (without glucose shots) (GSH about 1-1.1% dcw). 

On the contrary, additions at 4 and 6 h led, at 24 activation, to a GSH increase in CYS-
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gained respectively 1.46 and 1.42%. In the CYS-GLY-65 mixture (65 g/L initial glucose) 

only addition at 6 h was effective and produced an interesting GSH yield of 1.34%. 

Results obtained in these trials confirmed that Zeus compressed yeast was sensitive to 

glucose addition, above all at 4 and 6 h of incubation. The best condition was the 

activation in the mixture CYS-GLY with 80 g/L of glucose (control mixture) at the 

beginning and sequent shot of 50 g/L. It was noticed that generally in this series of 

trials obtained yields, about 1.45% dcw, were generally lower than previous one, 

about 1.8% dcw. Moreover this aspect could be attributable to the yeast characteristics 

that, as later verified, are dependent to storage conditions during market distribution 

and shelf life.  

Comparison among trademarks performance 

With the aim to understand/evaluate experimental results variability, in subsequent 

experiments other commercial baker’s yeasts were considered (Fala, Primo and GB). 

Experiments were carried out with the CYS-GLY mixture (80 g/l glucose) in 

presence/absence of 50 g/L glucose shot, added at 4 and 6 h of incubation time. 

Samples were collected at 0, 24 h of incubation and before each glucose addition (4 

and 6 h). 

Results reported in Fig. 2.9 allowed to better understand the evidenced variability. 

First of all the three yeasts presented very different initial GSH levels: 0.86% Fala, 

0.63% Primo and 1.11% GB. Moreover glucose additions seemed to be more effective 

for Fala yeast in which yields gained 1.19-1.56% in samples with glucose additions, 

with respect to 0.93% in the control mixture sample (without glucose shot). 

In the other yeasts, GSH increase due to glucose shot was less evident at 24 h and 

higher GSH levels were generally evidenced at 6 h incubation time.  
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Figure 2.9. Intracellular GSH (% dcw) at 24 h in CYS-GLY mixture with/without glucose (50 

g/L) shot (4 and 6 h). Yeasts: Fala (A), Primo (B), GB (C). 
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From the analysis of obtained results it appeared evident that in Primo and Fala yeasts 

the initial GSH level doubled, while for GB it increased of only about 30%; 

nevertheless the final levels in the best conditions were analogous, about 1.4-1.5%. 

These results contradict some previous obtained data as for in these trials compressed 

yeasts presented different responses to activation procedure. This behaviour could be 

due to the physiological state of the yeast related to storage conditions, its 

technological production process and also shelf-life, as previous hypotheses. For this 

reasons this aspect was matter of the prosecution on the study. 

Activation mixture: amino acids combinations 

Three GSH precursor amino acids (cysteine, glycine and glutamic acid) were 

differently combined with the aim of investigating their influence on GSH 

accumulation. Samples were collected at 24 h incubation. The general schematic 

organization of trials and the corresponding yields are reported in Tab. 2.4. In general, 

no significantly different yields were found, with final GSH levels of about 1% dcw, 

1.5-fold increase respect the initial GSH content. On the contrary, differences were 

evident when employing mixtures with/without glutamic acid (trials 5-6 and 1-4 

respectively). In presence of glutamic acid higher yields were obtained, especially 

when all the precursors were set at 4 g/L, GSH level of 1.25% dcw was reached. 

 

Table 2.4. Schematic organization of trials to evaluate the influence of amino acid combinations 

(g/L) in the activation mixtures and intracellular GSH (% dcw); means and standard deviations 

at 24 h activation time, Fala yeast. 

 

Trials CYS GLY GLU GSH (% dcw) 

1 4 4 - 0.96±0.09 

2 2 4 - 1.02±0.08 

3 4 2 - 0.93±0.05 

4 2 2 - 0.93±0.01 

5 4 4 4 1.25±0.05 

6 2 2 2 1.12±0.02 

 

 

It has to be noted that trials 1 and 5 correspond to the previously employed CYS-GLY 

and CYS-GLY-GLU mixtures, and obtained data confirmed the previous ones. 
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Energetic aspects 

A critical analysis of the obtained results suggested some hypothesis. First of all it was 

evident that glucose addition might increase GSH accumulation. This aspect is 

probably attributable to an energy block limiting GSH synthesis, although precursor 

amino acids are present. However glucose addition did not always ensure high GSH 

yields. 

Taking in account these considerations, trials were carried out for evaluating if GSH 

accumulation might be limited by an ATP deficiency. ATP regeneration was 

promoted adding adenine (ADE) or adenosine (ADO) and/or dithiotreitol (DTT) to 

biotransformation solution. Adenine and adenosine are directly involved in ATP 

regeneration while dithiotreitol is an adenosin-triphospatase (ATP-ase) inhibitor. 

Biotransformation trials were set-up employing CYS-GLY-GLU mixture added with 

adenine (0.5 g/L) or adenosine (1.5 g/L) and/or dithiotreitol (3 g/L) (Tab. 2.5). Results 

are reported in Fig. 2.10. 

Table 2.5.  Schematic organization of trials with addition (g/L) of adenosine (ADO), dithiotreitol 

(DTT) and adenine (ADE) to CYS-GLY-GLU mixture, Fala yeast. 

trials ADO DTT ADE 

1 - - - 

2 1.5  - - 

3 - 3 - 

4 - - 0.5 

5 1.5 3 - 

6 - 3 0.5 
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Figure 2.10. Intracellular GSH level (% dcw) at 24 h in CYS-GLY-GLU mixture added with ADO 

or ADE and/or DTT, Fala yeast. For legend refer to Tab 2.5. 
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So far, it was supposed that during shelf-life modifications might took place inside 

yeast cells at molecules/characteristics levels, involved in stress resistances and 

influencing GSH metabolism (see 1.2). 

Trials were then carried out with the CYS-GLY-GLU mixture (control) added with 

glucose (50 g/L at 4 h) and/or adenine (0.5 g/L), employing compressed yeast at 

different storage times (1, 10, 20 and 30 days). Samples were collected at 4, 8 and 24 h 

reaction incubation.  

Results confirmed that not only the ability to accumulate GSH, but also its 

intracellular levels decreased during yeast storage. To better understand this 

behaviour, results have been reported as ratio between GSH obtained at 24 h and the 

initial content (t0) (Fig. 2.11). As expected, during storage the ability to produce GSH 

reduced progressively, reaching about a 1.2-1.5 ratio at 20 days storage; this condition 

was maintained until 30 days. The highest ratio of about 3 (i.e. a 3-fold GSH increase 

with respect to the initial content) was evidenced on fresh yeast (1 day storage) in 

activation carried out in presence of adenine, adenine-glucose and glucose; for the 

control CYS-GLY-GLU sample the ratio was 2. The situation changes from 10 days 

afterwards, when GSH ratio decreased from 3 to 2, a lower value of 1.2 being again 

obtained for the control CYS-GLY-GLU sample. 

In general employing the mixture CYS-GLY-GLU with glucose added at 4 h a GSH 

increase was evident in all the samples. Yeast showed different attitude according to 

the mixture employed, however when prolonging its shelf life, a general decrease of 

GSH intracellular levels was found. 

In this phase of the research a possible key role of trehalose (molecule involved in 

yeast stress resistance during fermentative process), one of carbohydrate molecules 

starved in the cells, was evaluated. In Saccharomyces cerevisiae, trehalose plays a double 

role: as carbon and energy reserve when in particular conditions, and as stress 

protectant (Lillie and Pringle, 1980; Attfield, 1997; Malluta et al., 2000). In fact, this 

molecule in some strains and as a consequences of defined cultural conditions 

employed during baker’s yeast production, accumulates up to 15% dcw. Accumulated 

trehalose is utilized by cells during nutrient starvation and under stress conditions; 

moreover it protects biological membranes and proteins (Plourde-Owobi et al., 2000; 

Jules et al., 2008). 
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Figure 2.11. Ratio between GSH at 24 and initial t0 levels obtained with glucose (CYS-GLY-

GLU+glucose), adenine (CYS-GLY-GLU+ADE), and adenine + glucose (CYS-GLY-

GLU+ADE+glucose) added at 4 h to CYS-GLY-GLU control mixture. Sample at 1, 10, 20 and 30 

storages days, Fala yeast. 

 

Trehalose content was then determined in yeast cells during storage and activation 

reactions. A general trehalose decrease from 10.3% dcw at 1 day to 8.58, 7.81 and 

7.73% dcw respectively at 10, 20 and 30 days of storage was evidenced. During 

activation, trehalose yeast content rapidly decreased in the first hours, to reach 3-5% 

dcw, to partially recover till 6-8% dcw (regained trehalose). Cell ability to regain 

trehalose levels was lost during yeast storage time. 

With the aim to find out a correct correlation between GSH and trehalose levels, 

results were elaborated and compared with GSH accumulation ability (Fig. 2.12). The 

correlations between GSH ratio between 24 h and t0 and trehalose ratio at 24 h and t0 

were always positive; anyway during yeast storage the coefficient estimate decreases 

from 2.0987 at 1 day to 1.4206, 0.9558 and 0.7619 respectively at 10, 20 and 30 days. 

These results are very important because they highlight that not only storage time, but 

also trehalose content is a very important factor for determining GSH accumulation 

ability of yeasts. 
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Figure 2.12. Correlations between GSH 24 h/t0 and trehalose 24h/t0 ratio during yeast storage (1, 

10, 20 and 30 days). 

 

2.6 Conclusions 

From an overlook of the obtained results it can be concluded that activation was 

found an efficient procedure to obtain GSH enriched yeast. 

Dried yeast led to only modest GSH yields; cells also do not seem to be sensitive to 

glucose addition during the activation procedure. Compressed yeast, instead, 

possesses different responses towards the applied activation procedure in relation to 

its energy storage conditions, its technological production process and also shelf-life. 

All trials performed revealed that many factors are involved in the activation for GSH 

accumulation, as follows: 

 yeast physiological condition  

 type and amino acids concentration added during activation 

 carbon and energy source added at the beginning or during the activation. 

Applying different strategies (amino acids combinations, addition of ATP-related 

compound) high intracellular GSH levels can be obtained (1.6-1.9% dcw) with a 3-fold 

increase respect to initial GSH content. 
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Reported below is the poster exhibited during the Congress THIOL 2008, Glutathione 
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Abstract  

The present research was aimed at inducing, in a post fermentative procedure 

(biotransformation) and by modifying cell permeability, GSH accumulation and 

subsequent release from Saccharomyces cerevisiae cells. ]. With the aim of limiting 

process costs, research considered also the possibility of employing different 

commercial baker’s yeasts, available on the marked at a reasonable price, in 

comparison with a collection strain.  The tested yeast showed different sensitivity to 

the chemical/physical treatments performed to alter cell permeability. The use of 

Triton gave the lowest effects, being effective only with Zeus yeast samples (1.7 g 

GSH/l, near 60% of which in extracellular form). Sarcosine showed an interesting 

action on GB Italy sample (2.8 g GSH /l, near 80% extracellular). Lyophilisation 

evidenced good performance with Lievitalia yeast strain (2.9 g GSH/l, 90% 

extracellular). The possibility of obtaining GSH directly in extracellular form 

represents an interesting opportunity of reducing GSH production cost and furthering 

the range of application of this molecule. 

Keywords: glutathione, Saccharomyces cerevisiae, extracellular metabolite, cell 

permeabilisation, baker’s yeast, extracellular release 

 

1. Introduction 

Glutathione (GSH, L--glutamyl-L-cysteinyl-glycine) is the most abundant non-

protein thiol compound widely present in living organisms, from prokaryotes to 

eukaryotes [1]. It is synthesised intracellularly by the consecutive actions of -

glutamylcysteine synthetase, feedback regulated by GSH content, and GSH synthetase. 

This tripeptide’s very low redox potential gives it the properties of a cellular redox 

buffer [2]. In living tissues, GSH plays a pivotal role in bioreduction, protection against 

oxidative stress, xenobiotic and endogenous toxic metabolite detoxification, enzyme 

activity and sulphur and nitrogen metabolism [3,4]. 

These characteristics make this active tripeptide an important biochemical drug for 

the treatment of numerous diseases, such as HIV infections, liver cirrhosis, pancreatic 

inflammations and aging. In addition, GSH is of interest in the food additive industry 

and sports nutrition [5,6]. GSH is widely used in pharmaceutical, food, and cosmetic 

industries, and the commercial demand for GSH is expanding [7]. 

Saccharomyces cerevisiae and Candida utilis are the most commonly used 

microorganisms on an industrial scale for GSH fermentative production; however GSH 

contents is usually variable among strains (0.1 – 1% dw) and always present in 

intracellular form [8,9]. Considering a single yeast strain, intracellular GSH content 

always remains at a stable level, since the first enzyme committed in its biosynthesis is 

feedback regulated by GSH [10]. Although GSH is widely distributed in nature, 

extraction of this tripeptide from yeast cells seems to be the only commercial available 

biotechnological production method to date [11]. Therefore, research projects have 
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been mainly focused on how to increase as much as possible, the intracellular GSH 

content of yeast through optimisation of biotechnological culture conditions [9,12,13]. 

Little has up to now been reported about extracellular GSH release from cells. Nie 

et al. (2005) studied the effect of low pH stress on GSH synthesis and excretion 

capability in growing cells of Candida utilis [14]. Wei et al. (2003) for the first time 

investigated the effects of surfactants (SDS and CTAB) on S. cerevisiae cell growth, 

intracellular GSH biosynthesis and extracellular release [15].  Results showed that cells 

growth was affected by the addition of high surfactant concentrations. Only when low 

concentrations of surfactants were added to the medium, total GSH concentration, 

taking into account both GSH synthesis and excretion, was increased. 

The present research was aimed at inducing, in a post fermentative procedure 

(biotransformation), GSH accumulation and subsequent release from Saccharomyces 

cerevisiae cells, achieved by modifying cell permeability. In this paper the effect of 

different procedures, such as permeabilizing agent and lyophilisation, on yeast cells 

are reported. The possibility of obtaining GSH directly in extracellular form, avoiding 

the downstream cell extraction step, represents an interesting opportunity of reducing 

GSH production cost and furthering the range of application and utilization of this 

molecule [16]. With the aim of limiting process costs, research considered also the 

possibility to carry out the biotransformation by employing different commercial 

baker’s yeasts, available on the marked at a reasonable price.  Baker’s yeast are in fact 

obtained by strains in which mechanisms involved in stress response, as those based 

on GSH presence, are particularly efficient and reactive. Moreover, the use of 

surfactants on already pre-grown cells may avoid the risk of a detrimental effect of 

these molecules on cell enzymatic activity.  

 

2. Materials and methods 

2.1 Microrganisms 

For GSH production Saccharomyces cerevisiae NCYC 2959 (National Collection of 

Yeast Cultures, Aberdeen, UK) was comparatively employed together with three 

commercial baker’s yeast in compressed form (GB Italy, Lievitalia Spa and Zeus 

Industria Biologica Alimentare SpA).  

As regards S. cerevisiae NCYC 2959, cells were pre-grown in MEB culture medium, 

having the following composition (g/l): malt extract 20 (Costantino, Turin), soybean 

peptone (Costantino, Turin) 1, glucose 20, pH adjusted to 5.8, sterilization at 118°C for 

20 min.  Cells production was carried out in 1000 ml Erlenmeyer flasks, each 

containing 100 ml of the culture medium MEB. Cultures were inoculated (10% v/v) 

with a 24 h-old culture prepared in the same medium, and then incubated at 28 °C for 

48 h. The obtained culture was centrifuged at 10000 rpm for 10 min. Supernatant was 

discharged and separated cells were washed twice with distilled water and 

subsequently employed in biotransformation trials, after having determined cell dry 

weight. 
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2.2 Biotransformation conditions 

Cells were suspended (10% dry weight) in a reaction solution having the following 

composition (g/l): glucose 80, sodium citrate 10, cysteine 4, glycine 4, ammonium 

sulphate 7, KH2PO4 3.5, magnesium sulphate 0.5, tap water. Biotransformation trials 

were carried in 1000 ml Erlenmeyer flasks, each containing 100 ml reaction mixture, 

incubated at 28°C on an alternative shaker (60 spm, 4 cm run).  Experiments involving 

modified cell permeability were performed by adding to the reaction mixture (0.2 - 0.5 

g/l) CTAB, Digitonin, Mega 10, Octyl glucoside, Tweens (20, 40 and 80), Triton-X 100 or 

Lauroyl Sarcosine (Sigma), for comparison purposes.  Lyophilised cells were also 

employed. Lyophilisation was carried out for 30 h at 25 °C and 1.33 Pa (Edwards 

Minifast MFD 01, UK). 

 

2.3 Analytical procedures 

Intracellular GSH was determined according to Rollini and Manzoni (2006) [8]. 

Samples at different incubation time were centrifuged (10,000 rpm, 6 min), and 

obtained cells were washed twice with H2O, then thermally treated at 100 °C for 12 

min. After cooling in ice bath, samples were centrifuged (12,000 rpm, 15 min) and on 

obtained supernatant fractions, intracellular GSH was evaluated. Extracellular GSH 

was directly determined on supernatants obtained from cell-culture separation, the 

first centrifugation step.  GSH identification and quantification was carried out by 

HPLC, equipped with a UV detector (210 nm), at 30 °C using a (250 - 4) mm Purospher 

RP-18 endcapped column (Merck), eluted with 25 mM NaH2PO4 pH 3.5, at 0.3 ml/min. 

 

2.4 Transmission electron microscopy (TEM) 

Samples (2 ml) obtained at different biotransformation reaction times were 

centrifuged (7000 rpm for 10 min) and the obtained cells were prepared for 

transmission electron microscopy as previously reported [8]. Ultrathin section (90 nm) 

were examined in a Leo912ab transmission electron microscope (Zeiss) at 80 kV using 

Omega filter. Digital images were acquired by Esivision CCD-BM/1K system. 

 

3. Results 

3.1. Intracellular GSH production 

In the preliminary part of the research, a set of biotransformation reactions were 

performed in order to evaluate GSH physiological accumulation by a Saccharomyces 

cerevisiae collection strain and commercial baker’s yeasts, employing a post-

fermentative procedure. Trials were performed suspending cells at a final 

concentration of 10% dw in an appropriate reaction solution, containing cysteine and 



67 

 

glycine, as GSH precursors, glucose as energy source, and ammonium and magnesium 

salts [16]. Figure 1 reports intracellular and extracellular GSH levels (g/l) obtained at 24 

and 48 h incubation. For evaluation purposes of the equilibrium between intra- and 

extracellular GSH forms, intracellular GSH levels were expressed as concentration (g 

GSH/l biotransformation solution) and not as content percent of dry cell weight, as 

usually reported in the literature. The aim of this phase was to evaluate the ability of 

the tested yeast to accumulate GSH at highest levels, to be extracted for commercial 

purposes. 

 

Figure 1. GSH production (g/l) by S. cerevisiae cells and commercial baker’s yeast, at 24 and 48 h 

incubation time in post-fermentative conditions (dark bars indicate extracellular GSH, white 

bars intracellular GSH). 

From obtained results GSH was mainly found as intracellular metabolite at 

interesting levels, in all yeast samples. The best results were obtained at 24 h reaction 

with GB Italy compressed baker’s yeast (1.4 g/l, corresponding to 2.8 % dw), and at 48 

h with Zeus (1.7 g/l, 3.4 % dw). For the reference collection S. cerevisiae strain, yields of 

0.7-0.8 g GSH/l were obtained. Extracellular GSH was found always in the range 0-0.2 

g/l, thus confirming GSH intracellular physiological nature. Results obtained in this 

phase were considered as reference data, and used to evaluate GSH release from the 

cells. 
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Table 1.  GSH production  levels (g/l) either as total, intra- and extracellular forms, obtained at 

24 and 48 h employing Triton-X 100 (0.5 g/l) in the reaction mixture (data reported as mean ± 

standard deviation). 

Sample Time  (h) GSH (g/l) 

Total Intracellular Extracellular 

NCYC 2959 
24 

48 

0.7 ± 0.2 

0 

0.7 ± 0.1 

0 

0 

0 

GB Italy 
24 

48 

1.5 ± 0.1 

2.3 ± 0.2 

1.2 ± 0.2 

1.7 ± 0.1 

0.3 ± 0.1 

0.6 ± 0.1 

Lievitalia 
24 

48 

1.6 ± 0.1 

1.7 ± 0.2 

0.9 ± 0.1 

0.4 ± 0.1 

0.7 ± 0.2 

1.3 ± 0.2 

Zeus 
24 

48 

1.5 ± 0.2 

2.9 ± 0.3 

1.2 ± 0.2 

1.2 ± 0.2 

0.3 ± 0.1 

1.7 ± 0.2 

 

3.2 Extracellular GSH production  

The addition of surface-active agents to the reaction solution can be considered a 

strategy to alter cells properties, in particular the transport mechanisms across the 

structure surrounding the cell, and obtain metabolites release from yeast, without 

altering the metabolic pathways [17]. GSH release was investigated by adding different 

substances to the biotransformation mixture, with the aim of modifying 

membrane/wall permeability. CTAB, Digitonin, Mega 10, octyl-glucoside, Tweens (20, 

40 and 80), Triton-X 100 and lauroyl sarcosine were employed for comparison 

purposes. CTAB is a cationic surfactant, acting as a membrane-modulating agent [18]. 

Octylglucoside, Mega -10 and Triton-X are mild non-ionic detergents used for 

solubilisation of cytoplasmatic membrane proteins. Digitonin, non-ionic detergent, 

permeabilises plasma membranes of eukaryotic cells by complexing with membrane 

cholesterol and other conjugates hydroxysterols. Lauroyl sarcosine does not precipitate 

and is commonly used instead of SDS for solubilisation of proteins [19-22]. 

Interesting GSH release levels were evidenced only in experiments carried out in 

presence of Triton (0.5 g/l) and lauroyl sarcosine (0.2 g/l). No interesting results were 

obtained with the other agents, as extracellular levels were found in the range 0-0.2 g/l, 

similar to those evidenced in reference samples (data not shown).  

As regards the effect of Triton on the tested Saccharomyces, Table 1 reports GSH 

yields, as total, intra- and extracellular forms. The reference strain NCYC 2959 was 

found not to be  influenced by the Triton presence. No GSH release was observed, 

moreover the GSH referred to the only intracellular form was 0.7 g/l, in accordance 

with that evidenced at 24 h in the first research phase, for untreated cells. At 48 h 

reaction, GSH was not present intracellularly anymore, but was completely consumed 

http://en.wikipedia.org/wiki/Surfactant
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presumably because of cell metabolism [23]. Commercial yeasts instead showed 

different behaviour, being all sensible to the presence of Triton. GSH in extracellular 

form was evidenced in levels ranging from 0.3 to 1.7 g/l, being the highest yield 

reached at 48 h incubation time. The best result was obtained employing Zeus, with 1.7 

g GSH/l in extracellular form, about 60% of the total GSH produced. 

By comparing total GSH produced, sum of the intra- and extracellular forms, GB 

Italy and Zeus samples evidenced that the GSH yields in presence of Triton resulted 

significantly higher at 48 h, 2.3 and 2.9 g/l, with respect to 24 h, about 1.5 g/l.  Lievitalia 

total GSH remained almost constant during 24-48 h incubation time (1.6-1.7 g/l), but 

the compartimentation changed from mainly intracellular at 24 h, to mainly 

extracellular at 48 h. From the obtained results it was possible to highlight that in 

Lievitalia samples, no new GSH biosynthesis occurred from 24 to 48 h incubation time, 

while in GB Italy e Zeus cells, GSH increased with respect to untreated cells. This 

behaviour suggested the hypothesis that GSH extracellular release outside the cells 

allowed the same cells to become less sensible to the feed-back inhibition, mechanism 

controlling GSH biosynthesis and accumulation. 

Table 2 shows GSH production levels obtained employing sarcosine. GSH was 

mainly detected outside the cells in all samples and the highest GSH levels were 

obtained at 48 h incubation time, similarly to experiments carried out with Triton.  

Table 2. GSH production levels (g/l) either as total, intra- and extracellular forms, obtained at 24 

and 48 h employing L-lauroylsarcosine (0.2 g/l) in the reaction mixture (data reported as mean ± 

standard deviation). 

 Sample Time (h) GSH (g/l) 

Total Intracellular Extracellular 

NCYC 2959 24 

48 

1.3 ± 0.3 

1.1 ± 0.2 

0.1 ± 0.1 

0 

1.2 ± 0.2 

1.1 ± 0.3 

GB Italy 24 

48 

2.1 ± 0.3 

3.2 ± 0.2 

0.5 ± 0.2 

0.4 ± 0.1 

1.6 ± 0.1 

2.8 ± 0.3 

Lievitalia 24 

48 

1.5 ± 0.1 

2.2 ± 0.2 

0.2 ± 0.1 

0.4 ± 0.1 

1.3 ± 0.2 

1.8 ± 0.2 

Zeus 24 

48 

1.5 ± 0.1 

1.9 ± 0.2 

0.3 ± 0.1 

0.3 ± 0.2 

1.2 ± 0.2 

1.6 ± 0.2 

 

Among the tested yeasts, GB resulted the most sensitive, having obtained 2.8 g 

GSH/l in extracellular form, about 90% of the total GSH produced. The reference strain 

NCYC 2959, insensible to Triton action, employing sarcosine was found to release 

outside the cells almost all GSH produced, 1.1-1.2 g/l, even if at levels lower with 

respect those obtained for the other yeasts (1.6-2.8 g GSH/l). When comparing data as 
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total GSH produced, results evidenced that GB Italy yeast produced a total amount of 

3.2 g GSH/l, while 2.2 and 1.9 g/l were obtained respectively from Lievitalia and Zeus. 

The hypothesis that cells lyophilisation, carried out at temperature-controlled 

conditions, may produce weak alterations of cell structures, causing GSH release, 

without altering or interfering with metabolic activity, was considered as alternative to 

the use of surface-active agents. Generally, the use of lyophilised cells furnished good 

results (Table 3).  Lyophilised cells were found to release GSH at interesting levels 

even at 24 h reaction, the best results being obtained by Lievitalia yeast, reaching 2.3 g 

extracellular GSH/l at 24 h and 2.9 g/L at 48. To be noted also the performance of 

NCYC 2959 strain, employing which GSH production gave higher extracellular GSH 

yield, 1.6-2.0 g/l, with respect to those evidenced in trials with Triton or Sarcosine (1.1-

1.2 extracellular GSH/l). GB Italy and Zeus yeasts instead gave only modest GSH yield, 

both in term of total (0.8-1.4 g GSH/l) and extracellular GSH (0.6-1.3 g/l), with respect 

to results evidenced in presence of Triton and Sarcosine (Tables 1 and 2). 

Table 3. GSH production levels (g/l) either as total, intra- and extracellular forms, obtained at 24 

and 48 h employing lyophilised cells in the reaction mixture (data reported as mean ± standard 

deviation). 

Sample Time (h) GSH (g/l) 

Total Intracellular Extracellular 

NCYC 2959 24 

48 

1.7 ± 0.3 

2.2 ± 0.2 

0.1 ± 0.1 

0.2 ± 0.1 

1.6 ± 0.2 

2.0 ± 0.2 

GB Italy 24 

48 

1.4 ± 0.1 

1.0 ± 0.2 

0.1 ± 0.1 

0.3 ± 0.1 

1.3 ± 0.1 

0.7 ± 0.1 

Lievitalia 24 

48 

2.5 ± 0.2 

3.2 ± 0.1 

0.2 ± 0.1 

0.3 ± 0.2 

2.3 ± 0.3 

2.9 ± 0.2 

Zeus 24 

48 

0.8 ± 0.2 

1.0 ± 0.2 

0.2 ± 0.1 

0.4 ± 0.2 

0.6± 0.2 

0.6 ± 0.1 

 

3.3. Relationships between extracellular and total GSH 

Fig. 2 reports the extracellular/total GSH ratios determined from results obtained in 

experiments. From an overall look at the obtained data it is possible to notice a 

different cell susceptibility to the tested molecules/treatment, and consequently 

different degree in GSH release by the tested yeasts. 

Employing Triton (0.5 g/l), the extracellular GSH fraction resulted limited with 

respect to the total GSH present in samples (Fig. 2A). Only for Lievitalia yeast a ratio of 

0.76 was reached at 48 h. Moreover the reference S. cerevisiae NCYC strain resulted 
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insensitive to triton effect. Experiments carried out with decreasing or increasing 

Triton concentration did not produce any interesting results for all the tested strain 

(data not shown).  

 

Figure 2. Extracellular/total GSH ratio obtained in biotransformation trials performed 

employing Triton X-100 (A), sarcosine (B) and lyophilized cells (C). 
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Sarcosine addition gave a meaningful increase of GSH release from cells (Fig. 2B). 

Generally, the extracellular/total GSH ratio was higher than 0.8, reaching 1, the 

maximum value, for the reference yeast strain, at 48 h incubation time. By considering 

both the GSH ratio, index of reached GSH release, and the GSH yield, production 

index, it is possible to conclude that GB Italy yeast coupled with sarcosine addition 

resulted a good starting point (0.9 extracellular/total GSH and 2.8 ± 0.3 g GSH/l 

respectively) to develop an applied process to produce extracellular GSH.  

The use of lyophilized cells gave fluctuant effects on GSH release, and did not 

prove to be a suitable procedure for the tested yeasts (Fig. 2C). Extracellular vs total 

GSH ratio was found higher at 24 h, ranging from about 0.7 (Zeus) to over 0.9 for the 

other yeasts. Lievitalia yeast maintained a similar value, 0.9, also at 48 h with a total 

yield of about 2.9 g GSH/l. 

 

3.4. Electron microscopy 

Fig. 3A shows ultrastructure of GB Italy cells after 48 h incubation in 

biotransformation experiments in which GSH was mainly found in intracellular form 

(1.5 g/l, about 90% of the total produced GSH) (sect 3.1). These cells represented the 

reference control sample. In this case GSH accumulation was related to the presence of 

several intracellular inclusion bodies, visible as dark vescicles as previously reported 

[8]. Fig. 3B shows again GB Italy yeast cells, after 48 h incubation in experiments 

carried out employing sarcosine (sect. 3.2). In this sample GSH resulted mainly 

extracellular, 2.8 g/l, with respect to the total GSH yield, 3.2 g/l, evidenced in this trial. 

Here cells surroundings appeared less defined and compact, with respect to the control 

samples, and inside the cell no inclusion body, associated to intracellular GSH 

production, was present.  

The correlation between cellular structure and its integrity, related to extracellular 

GSH production are at present the object of ongoing investigation. 

 

4. Discussion 

In growing cells or in post fermentative processes, GSH is physiologically 

accumulated intracellularly, in concentration generally not higher than 0.7% cell dry 

weight. In this context GSH release out of the cells may represent a strategy to by-pass 

the fed-back mechanism present in the cells, which controls the levels of intracellular 

GSH. This approach represented the starting point to develop a process to obtain GSH 

in extracellular form, in higher yields with respect to those obtainable by extraction 

from yeast cells. To obtain extracellular GSH in the research reported in this paper the 

application of chemical/physical procedures able to modify the cellular permeability 

was considered. 
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From an overall look at the obtained results it can be highlighted that tested yeast 

showed different sensitivity to chemical/physical treatments, performed to alter cell 

permeability. The use of Triton gave the lowest effects, being effective only with Zeus 

yeast samples (1.7 g GSH/l, near 60% of which in extracellular form). Sarcosine showed 

an interesting action on GB Italy sample (2.8 g GSH /l, near 80% extracellular). 

Lyophilisation evidenced good performance with Lievitalia yeast strain (2.9 g GSH/l, 

90% extracellular). 

Few papers are present in the literature related to the possibility of obtaining 

extracellular GSH. The effect of surfactants on extracellular GSH accumulation was 

investigated with S. cerevisiae in growing conditions [15]. Cell growth resulted not 

inhibited by the use of SDS and CTAB at low concentration, allowing the accumulation 

of extracellular GSH at levels up to 50 m/l. A research on GSH secretion studied the 

effect of low pH stress on GSH synthesis and excretion from Candida utilis [14]. In fed-

batch production, 198 mg GSH/l were secreted into the medium, the total GSH 

concentration being 737 mg GSH/l. 

Under physiological conditions, GSH intracellular content in yeast cells is kept at 

relative stable levels through a feed-back regulation of the first enzyme committed in 

its synthesis [10] . In feed-back regulated reactions, a common strategy to increase its 

production lies in product removal from the reaction mixture. In the present case, 

alteration of cell permeability causes GSH to be removed outside the cell, thus shifting 

the reaction equilibrium towards GSH synthesis. Results showed that when 

extracellular GSH was present, total GSH yields (max 3.2 g GSH/l) were found higher 

that those obtained without cell treatment (max 1.8 g GSH/l). This demonstrates that 

GSH release from yeast cells may represent an interesting way of by-passing the 

problem of feed-back regulation.  

The present paper relates to the possibility of obtaining high extracellular GSH 

levels in a post-fermentative procedure employing commercial baker’s yeast. Chemical 

or physical procedures can be applied to alter cell permeability, being different the 

sensitivity of S. cerevisiae yeast strains to treatments. Research trials are now are now in 

progress with the aim of understanding the meaning of such different sensitivity, that 

seems to be due to the fact that these strains possess difference in cell wall and/or 

membrane structures. The possibility of obtaining GSH in extracellular form at high 

levels (near 3 g/l) can represent a valid alternative to the extraction procedure from 

yeast cells. The achieved results are of great commercial interest because they will 

simplify GSH downstream procedures, thus lowering production cost and furthering 

the range of application of this molecule. 
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(A) 

 

  

(B) 

 

Figure 3. Transmission electron micrographs of ultrathin section of baker’s yeast cells (GB Italy) 

obtained at 48 h incubation in post-fermentative GSH production trials: control sample (A) and 

in presence of sarcosine (B).  
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4.1 Aim of the study 

This section of the research was aimed at investigating the possibility to obtain copper-

enriched yeast cells and develop an efficient and non-toxic metal delivery system for 

human nutrition, according to recommended daily allowances (RDAs) (Annex I of the 

Directive 2008/100/EC amending Directive 90/496/EEC). 

 

4.2 Materials and Methods 

Samples 

Commercial baker’s yeast Fala in compressed fresh form was employed. The yeast was 

maintained at 4 °C and tested at the same shelf life (10  1 days). 

HPLC-grade H2O was obtained through a Milli-Q A10 Gradient System (Millipore 

Corporation) as previously reported (1.2), EDTA, and HCl were supplied from Merck. 

GSH and copper acetate were obtained from Sigma.  

Activation with copper acetate 

Bakers’ yeast was suspended (5% dcw) in the CYS-GLY-GLU+ADE mixture (see 

section 2.3 for mixture composition) containing 0.3 mg/mL copper acetate. 

Experiments were performed in 100 mL and 1 L Erlenmeyer flasks, each containing 

respectively 10 and 100 mL reaction mixture, incubated at 28 °C and 200 rpm up to 48 

h incubation time. 

Determination of intracellular GSH and GSH-copper conjugate content was carried out 

on samples (1 mL), obtained at different incubation times as reported by Rollini et al. 

(2011) exceeding for washing procedure. Briefly, samples were centrifuged (10,600 x g 

for 10 min) and collected cells were comparatively washed with distilled water twice 

(treatment A) or with 10 mM (EDTA) first and then with distilled water (treatment B). 

Cells were then suspended in a solution of ascorbic acid and thermally treated at 100°C 

for 10 min for achieving cell permeabilization; samples were then cooled in ice and 

subsequently centrifuged to eliminate cell residues.  

Biomass treatments 

For comparative purpose ten different treatments were employed: 

1. Control activation: cells suspended in the CYS-GLY-GLU+ADE mixture; 

2. Activation with copper: cells suspended in the CYS-GLY-GLU+ADE mixture 

added with 0.3 mg/mL copper acetate; 
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3. Cells suspension in copper solution: cells suspended in 0.3 mg/mL copper 

acetate solution; 

4. Copper addition at 24 h activation: as trial 1 (control) for 24 h, then addition of 

0.3 mg/mL copper acetate 

5. Copper addition to 24 h activated cells: as trial 1 (control) for 24 h, then cells 

were centrifuged, washed with distilled water and subsequently suspended in 

0.3 mg/mL copper acetate solution; 

6. Acid treatment and suspension of 24 h activated cells in copper solution: as 

trial 5, but collected cells were suspended for 1 h in 0.3% HCl before 

resuspension in copper acetate; 

7. Acid treatment before activation with copper: as trial 2, but cells were pre- 

treated for 1 h in 0.3% HCl; 

8. Acid treatment before activation: as trial 1, cells were pre- treated for 1 h in a 

0.3% HCl; 

9. Acid treatment before suspension in copper solution: as trial 3, cells pre- 

treated for 1 h in 0.3% HCl; 

10. Acid treatment before activation and subsequent copper addition: as trial 4, 

cells pre- treated for 1 h in 0.3% HCl. 

Determination of intracellular GSH and GSH-copper conjugate content was carried out 

on obtained samples (1 mL), at different incubation times as previously reported. 

Biomass copper content 

Results obtained in conjugate production were verified, in particular trial 4 (direct 

addition of copper acetate at 24 h), 5 (centrifugation and suspension in copper acetate) 

and 6 (centrifugation, acid treatment and resuspension in copper acetate). Samples 

collected at 28 h (that is 4 h after copper contact) and at 48 h incubation, were analysed 

for GSH and GSSG/GSH-Cu conjugate content. Cells were lyophilized for copper 

content determination. 

Analytical procedures 

Intracellular GSH and GSH-conjugate content was determined on supernatant samples 

by HPLC as reported by Rollini et al. (2011). Results were expressed in terms of 

percent dry cell weight (% dcw) as previously described (1.2).  

Copper content was determined by inductively coupled plasma atomic emission 

spectroscopy (ICP-AES) after a microwave acid digestion. Samples of lyophilized yeast 

were placed in a Teflon vessel, treated with 1 mL of concentrate HNO3 (14 mol/L) and 

1 mL H2O2 (30% v/v) and irradiated at 800 W (15 min at 180 °C) in the microwave 
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system. At the end of the digestion program, samples were filtered through Whatman 

No. 1 paper and made up to volume with water. Results were expressed mg/Kg dcw. 

 

4.3 Results 

Activation with copper acetate 

From obtained results (Tab. 4.1) no significant differences were observed with respect 

to the washing treatment employed.  

In general GSH-copper conjugate content at 24 h was about 1% dcw in trials carried 

out in 100 mL flasks and slightly higher, 1.3%, in 1 L ones. By prolonging incubation 

time to 48 h, GSH level was maintained in samples obtained in 100 mL flasks while it 

reached 1% in 1 L trials.  

In this experimental phase each trial was carried out also in control conditions (data 

not shown), without copper acetate, to verify the effect of each treatment on yeast cells 

apart conjugate production. In trials activated with copper, cells accumulated higher 

GSH levels with respect to the control ones, with a GSH content reaching 1.1% at 24 h 

(starting from 0.8% dcw), that then decreased to 1% at 48 h incubation time. 

 

Table 4.1. Intracellular GSH and GSH-copper conjugate content (% dcw) obtained in trials 

carried out with two different cells washing treatments. Yeast: Fala (data are means of three 

replicates, for GSH content Coefficient of Variation, CV, between 5 and 9%, and between 4 and 

8% for conjugate).  

 Cells washed with H2O 

 24 h 48 h 

 GSH  Conjugate GSH  Conjugate  

100 mL flask 1.32 0.90 1.84 1.04 

1 L flask 1.29 1.32 1.71 1.07 

 Cells washed with EDTA and H2O 

 24 h 48 h 

 GSH Conjugate GSH  Conjugate  

100 mL flask 1.05 1.07 1.51 1.02 

1 L flask 1.46 1.31 1.74 1.06 

 

Biomass treatment effects 

Samples from trials 1, 4, 5 and 6, carried out till 24 h in control conditions with CYS-

GLY-GLU+ADE mixture, reached the same GSH and GSSG levels, of about 1.4% and 

0.2% dcw, respectively. At 48 h incubation, GSH and GSSG levels in samples from 
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trials 5 and 6 remained unchanged, while in cells from trial 1, the control without any 

copper addition, GSH intracellular content decreased from 1.38 to 0.75%, while GSSG 

level doubled from 0.18 to 0.39% dcw.  

Different behaviour was evidenced when, after 24 h activation, 0.3 mg/mL copper 

acetate were added (trial 4), where a significant GSH decrease was found together with 

a significant increase in HPLC of the peak attributable to GSSG/GSH-Cu conjugate. 

The acid pre- treatments with HCl performed in trials 7, 8, 9 and 10, did not produce 

significant differences at 24 h, with respect to the corresponding ones without the acid 

pre- treatment (trials 1, 2, 3 and 4). To be noticed that at 48 h incubation in cells 

obtained from trials 7 and 8, GSH no further accumulated, while in samples from trial 

10, as well as trial 4, an increase of both GSSG/GSH-Cu conjugate level and GSH 

contents were found. 

 

 

Figure 4.1. Intracellular GSH and GSSG/Conjugate content (% dcw) obtained in trials at 24 and 

48 h employing Fala yeast (data are means of three replicates, CV for GSH content between 3 and 

7%, and between 5 and 8% for conjugate).  
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Biomass copper content 

On samples from trial 4, (direct addition of copper acetate at 24 h), 5 (centrifugation at 

24 h activation and suspension in copper acetate) and 6 (centrifugation at 24 h 

activation, acid treatment and resuspension in copper acetate) obtained at 24 (no 

copper contact), 28 (4 h copper contact) and 48 h (24 h copper contact), GSH and 

GSSG/GSH-Cu conjugate levels were determined. Results highlighted that at 24 h 

(data not shown) intracellular GSH levels were in the range 1.2-1.5% dcw, while at 28 

and 48 h these levels decreased to 0.5-1% dcw.  

To confirm the supposed presence of GSH-Cu conjugates in yeast cells, samples were 

analysed by atomic spectroscopy. 

As regards intracellular copper levels, centrifugation and resuspension in the copper 

solution (treatment 5) allowed obtaining the highest copper intracellular levels; in 

particular at 24 h a content of 707 mg Cu/kg dcw was reached. Copper directly added 

to the samples at 24 activation time (treatment 4) led, at 24 h, to the lowest level, 183 

mg Cu/kg dcw with respect to the other tested conditions (Tab. 4.2). These obtained 

results were in accordance with HPLC determination and allowed to evaluate GSH-Cu 

conjugate intracellular content. 

 

Table 4.2. GSH, Cu-conjugate (% dcw) and Cu content (mg Cu/kg dcw) in samples obtained at 

28 and 48 h incubation (4: direct addition of copper acetate at 24 h activation; 5. centrifugation at 

24 h activation and suspension in copper acetate; 6. centrifugation at 24 h activation, acid 

treatment and resuspension in copper acetate). Data are means of three replicates, for GSH and 

Cu-conjugate CV between 5 and 9%, and between 2 and 5% for Cu determination. 

 

Sample 
Time  GSH Cu-conjugate  Cu 

(h)  (% dcw)  (mg/kg dcw) 

4 24  1.04 0.19  183 

 48  0.59 0.11  102 

5 24  0.5 0.75  707 

 48  0.38 0.63  589 

6 24  0.53 0.41  390 

 48  0.1 0.48  455 
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4.4 Conclusions 

Intracellular GSH-copper conjugate was obtained by applying a biotransformation 

procedure, in which cells are driven first to accumulate GSH, and then to conjugate it 

with copper.  

Analysis performed by ICP-AES evidenced the presence of very interesting amount of 

intracellular copper, in particular when activated cell are separated and suspended in 

copper acetate (trials 5 and 6). In these conditions 390-707 mgCu/Kg dcw 

(corresponding to 0.4-0.7 mg/g dcw or 6-11 µmol copper/g dcw) were accumulated. 

This intracellular copper level, linked to GSH, can be considered of great interest for 

the formulation of nutraceuticals based on yeast biomass: the 2008/100/EC Directive 

related to recommended daily allowances (RDAs) of food supplements, indicates 1 mg 

as RDA for copper. 

 

Results obtained in subsequent experiments were the object of the paper reported in 

the following section. 
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Abstract 

The research was aimed at obtaining copper-enriched cells of Saccharomyces cerevisiae, 

developing an efficient metal delivery system for human nutrition and therapeutic 

treatments. To produce glutathione (GSH)-copper conjugates, four samples of 

commercial baker’s yeasts (S. cerevisiae) were employed in biotransformation trials 

with copper acetate. GSH production was found variable, ranging from 0.15 to 1.2 % 

cell dw. Trials carried out with copper-adapted cells resulted in GSH and conjugate 

limited biosynthesis. The highest copper conjugate level (1.7 % dw) was instead 

obtained in experiments set up by employing not adapted cells. Cell disruption by 

sonication and subsequent analysis by atomic absorption evidenced the presence of 

very interesting amount of intracellular copper, 1.8 ± 0.2 mg/g cell dw (i.e. 28 mol 

copper/g cell dw). The proposed procedure can be considered an interesting 

opportunity to further the range of application of yeast cells culture, for the set-up of a 

copper delivery system for therapeutic treatments. 

Keywords: glutathione, S. cerevisiae, copper conjugates, atomic absorption 

 

1. Introduction 

Glutathione (GSH, L--glutamyl-L-cysteinyl-glycine) is the most abundant non-protein 

thiol compound widely present in living organisms, from prokaryotes to eukaryotes 

[1,2]. It is synthesised intracellularly by the consecutive actions of -glutamylcysteine 

synthetase (GSH I), feedback inhibited by GSH, and GSH synthetase (GSH II). This 

tripeptide’s very low redox potential (E’0 = -240 mV) gives it the properties of a cellular 

redox buffer [3,4]. In living tissues, GSH plays a pivotal role in bioreduction, protection 

against oxidative stress, detoxification of xenobiotics as well as of endogenous toxic 

metabolites, enzyme activity and sulphur and nitrogen metabolism [5]. GSH is 

potentially produced in many body areas, especially in the liver, and is involved in 

defence systems [6]. GSH is thus considered to be a powerful, versatile and important 

self-defence molecule [7].  

These characteristics make GSH an important biochemical drug for the treatment of 

numerous diseases, such as HIV infections, liver cirrhosis, pancreatic inflammations, as 

well as in aging [8]. In addition, GSH is of interest in the food additive industry and 

sports nutrition [9, 10].  

High GSH concentrations have been found in some yeasts species, where this molecule 

seems to be involved in cell-defence mechanisms against nutritional and oxidative 

stresses [11-13].  

Heavy metals (Mn, Cu, Co, Ni, Zn, and Fe), even if toxic at relatively low 

concentration, have a great significance for living cells, as they are essential in minute 

amounts and their deficiency can be associated with a range of pathological conditions 
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[14,15]. In particular zinc and copper ions, whether or not in combination with 

cysteine, are able to keep HIV-1 protease inactivated and are effective natural 

inhibitors. This enzyme is able to cleave serially linked virus elements that can 

combine to form new infectious virus particles. So far, zinc and copper ions are 

effective natural inhibitors of (AIDS) viruses, thereby preventing the development of 

chronic virus diseases that can lead to AIDS and autoimmune illness [16]. 

GSH facilitates the reduction of Cu++ to Cu+ ions, and subsequently sequesters Cu+ ions 

under the form of copper-GSH conjugates. Several studies suggest that the copper-

GSH complex plays a copper-transferring function by permitting a safe and efficient 

delivery of metal in the apo-form of cupro-enzymes (i.e. superoxide dismutase), 

copper storing (i.e. metallothioneins) and copper transporting (i.e. ceruloplasmines) 

proteins. In addition to playing a role in normal copper metabolism, GSH may also be 

of importance in defining the susceptibility of copper-overloaded cells to copper-

associated toxicity [17]. 

 The present research was aimed at investigating the possibility of obtaining copper-

enriched cells of Saccharomyces cerevisiae, thus developing an efficient and less toxic 

copper delivery system for therapeutic treatments. 

 

2. Material and Methods 

2.1 Microorganisms and reagents 

Saccharomyces cerevisiae commercial baker’s yeasts in compressed fresh form were 

employed:  Primapak (PRK, Pak Ihracat A.S., Turkey), Lievitalia (LVI, Lesaffre Italia 

S.p.A., Italy), La Parisienne (OS, Casteggio lieviti s.r.l., Italy), Lievito di Vienna (VIE, 

Lallemand Gmbh, Austria). Commercial yeasts were maintained at 4 °C and tested at 

the same shelf life (10  1 days). 

HPLC-grade H2O, EDTA, suprapur H2O2 and HCl were supplied from Merck. 

Glutathione and copper salts were obtained from Sigma.  

 

2.2 Biotransformation conditions 

Bakers’ yeasts were suspended (10% cell dry weight) in a reaction solution, as 

previously reported [18]. Experiments were carried out employing copper salts 

(acetate, carbonate and sulphate) at different concentration (0 – 2.5 mM), in 100 ml 

Erlenmeyer flasks, each containing 10 ml reaction mixture, incubated at 28°C and 200 

rpm up to 72 h incubation time. 

To obtain copper-adapted cells, yeast cells isolated from each commercial samples 

were transferred in Malt Extract Agar (MEA - composition in g/l: malt extract 20, 

glucose 20, soybean peptone 1, agar 15, pH 5.8) plates, containing increasing 

concentration of copper acetate, from 0.1 to 0.6 mg/ml. Colonies grown in presence of 

the highest copper concentration were isolated, and subsequently maintained on 
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copper-MEA medium (MEA added with 0.6 mg/ml copper acetate). To obtain biomass 

for biotransformation trials, these isolated strains were inoculated Malt Extract liquid 

(MEB – same composition as in MEA without agar) medium containing 0.3 mg/ml 

copper acetate (1.6 mM), and incubated at 28°C up to 72 h. Culture broth was then 

centrifuged (10600 x g for 15 min) and obtained cells employed in biotransformation 

trials. 

Biomass dry weight was determined after drying the cells at 80°C for 24 h. 

 

2.3 Analytical procedures 

Determination of intracellular GSH content was carried out on biotransformation 

samples (1 ml), obtained at different incubation times; samples were centrifuged 

(10600 x g for 10 min) and collected cells were washed twice with distilled water, 

suspended in 1 ml of 0.5 g ascorbic acid/l in ultrapure H2O, and thermally treated at 

100°C  for 6 min; samples were then cooled in ice and subsequently centrifuged (10600 

x g for 10 min) to eliminate cell residues.  

Intracellular GSH, GSSG and GSH- conjugate content was determined on supernatants 

by HPLC equipped with a UV detector (210 nm), at 30 °C using a (250 x 4 mm) 

Purospher RP-18 endcapped column (Merck), eluted with 25 mM NaH2PO4 pH 3.5, at 

0.3 ml/min [18,19]. 

 

2.4 Cell rupture by sonication 

Cells from samples obtained in presence of copper were broken through sonication to 

obtain the intracellular fraction, on which quantification of copper conjugates was 

carried out. Cell pellet obtained after centrifugation of biotransformation samples was 

suspended (final concentration 10% dw) in 5 ml solution having the following 

composition (mM): tris-HCl 20, MgCl2 10, ammonium sulphate 300, glycerol 5 % (w/v), 

pH 7.6. EDTA was added (1 mM final concentration) to chelate any non-conjugated 

copper that can interfere with the analysis. Cell rupture was performed by sonication 

(Soniprep 150 Plus MSE, 23 KHz frequency, 50 Hz), applying 4 cycles of 8 pulses for 45 

s and 60 s interval, in ice. The level of disintegration (not less than 90%) was evaluated 

as the number of residual intact cells after sonication with respect to the initial cell 

content, determined either by direct total count and plate count. Samples were then 

centrifuged at 12000 x g for 15 min at 4 °C to remove cell debris.  

 

2.5 Copper quantification by atomic absorbtion spectrometry 

Copper was determined by atomic absorption spectrometry (IL 551 Instrumentation 

Laboratory, Wilmington, MA, USA). After cell rupture, samples were centrifuged and 

intracellular copper was determined on supernatants. They were initially lyophilised, 
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incinerated overnight at 550 °C and finally suspended in 0.5 ml of 30% (v/v) suprapur 

H2O2 for atomic absorption. Samples were dehydrated again at 100 °C for 5 h and 

again incinerated overnight at 550°C. Obtained samples were finally suspended in 0.5 

ml of suprapur 30% (v/v) HCl and appropriately diluted with HPLC-grade H2O.  

Separated cell debris was analysed by atomic absorption to determine copper content 

accumulated in cell walls. They were incinerated overnight at 550 °C. The residue was 

treated with 0.5 ml of 30% (v/v) H2O2 and then 1 ml 30% (v/v) HCl was added; samples 

were finally diluted to 10 ml with HPLC-grade H2O. 

Copper quantification was performed through comparison with a standard curve 

obtained with copper solutions in the range 0.5-  

 

2.6 Transmission electron microscopy (TEM) 

Samples obtained at different incubation times were centrifuged and obtained cells 

prepared for transmission electron microscopy as previously reported [19]. Ultrathin 

sections (90 nm) were examined in a Leo912ab transmission electron microscope 

(Zeiss) at 80 kV using Omega filter. Digital images were acquired by Esivision CCD-

BM/1K system. 

 

3. Results and discussion 

3.1 Formation of GSH-copper conjugates  

Preliminary investigations were carried out to identify the optimal conditions for the 

formation of GSH-copper conjugates. Different copper salts (acetate, carbonate and 

sulphate) were tested for their ability to form complexes with GSH. These salts 

(concentration range from 0.05 to 5 mM) were added to GSH standard solutions 

(concentration from 0.2 to 20 mM).  Copper sulphate, having low solubility, produced 

an insoluble residue in all the tested conditions, as well as copper carbonate, 

producing the formation of a persistent opalescence, even at the lowest concentrations. 

Instead, copper acetate was soluble in the employed conditions and then chosen for the 

prosecution of the research. 

Trials were then performed by adding copper acetate to GSH standard solution (0.2 

mM), from copper excess (0.5 mM) to copper deficiency (0.005 mM). Copper added at 

low concentration only moderately increased a peak with Retention time (Rt) of about 

22 min attributable to GSH-copper conjugate, with respect to GSH standard peak (Rt: 

12 min) (Fig. 1a and b). When higher amount of copper was added to GSH standard 

solution, the conjugate level increased (Fig. 1c).  

EDTA was then added to copper acetate solution before the addition of GSH.  In these 

conditions, no increase of the peak having Rt 22 min was observed (Fig. 1d). This 

behaviour was directly attributable to the EDTA chelating effect on copper, that was 

no longer available to form conjugates with GSH. On the contrary, when EDTA was 
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added after copper and GSH mixing, the peak related to GSH-copper conjugate was 

present (Fig. 1e). This result is related to the fact that copper primarily reacts with 

GSH, and not with EDTA.  

 

 

Figure. 1. HPLC chromatograms: 0.2 mM GSH (a), 0.2 mM GSH and 0.005 mM Cu acetate (b), 

0.2 mM GSH and 0.5 mM Cu acetate (c), 10 mM EDTA and 0.5 mM Cu acetate added to 0.2 mM 

GSH (d), 0.2 mM GSH and Cu acetate 0.5 mM  added to 10 mM EDTA (e). 

 

3.2 GSH production in baker’s yeast samples 

The possibility to employ S. cerevisiae as GSH source was considered because 

intracellular GSH accumulation in high levels is a specific metabolic characteristic of 

this specie [3, 5, 7, 12]. 

Four samples of baker’s yeast in compressed form were tested for their ability of 

accumulating GSH. They were used at the same shelf life (10 ± 1 days) from 

production, considering the commercial life (generally 30 days). 
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Yeast biomass was suspended in an appropriate saline solution, containing glucose, 

glycine and cysteine, aminoacids present in GSH structure, as previously reported 

[18,19]. GSH time course was monitored for up to 72 h, time after which no increase of 

GSH levels was observed.  

Results highlighted that intracellular GSH accumulation is a variable characteristic 

among yeasts, ranging generally from 0.15 to 0.7 % cell dw; only the commercial yeast 

VIE resulted in GSH accumulation up to 1% dw, with a 6-fold increase with respect to 

the physiological initial content (Fig. 2). Oxidised glutathione (GSSG) content, not an 

interesting compound so far for the present research, but index of cell stress level,  was 

revealed only in LVI and PRK samples, with levels ranging from 0.1 to 0.2 % dw. 

 

 

Figure 2. Time course of intracellular GSH content (% cell dry weight) in biotransformation trials 

employing the four tested baker’s yeast strains.  

 

3.3 Formation of GSH-copper conjugates with adapted cells 

Yeast cells were isolated from each considered commercial bakers’ yeast sample, and 

transferred in solid media containing increasing concentration of copper acetate. In 

plates with low copper concentration (0.1-0.3 mg/ml), colonies appeared darker than 

the control creamy ones. In the highest copper presence, a low cell growth was 

observed, due to the toxic effect of copper on yeast metabolism during the growth 

phase [20]. 

Yeast colonies grown on copper were subsequently maintained on solid copper-MEA 

medium. To obtain biomass to be used in biotransformation trials, these isolated 

strains were then inoculated in liquid cultures, employing malt extract (MEB) medium 

containing 0.3 mg copper acetate/ml. Harvested copper adapted cells were then used 
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in biotransformation trials in absence (control samples) and in presence of copper, for 

comparison purposes. Biotransformation trials were carried out for 72 h.  

Samples without copper (control), did not evidence any significant GSH production 

(Fig. 3a); only OS strain accumulated GSH (0.2-0.3 % dw) at 48 and 72 h. 

Biotransformations in presence of copper evidenced low GSH formation (from 0.1 to 

0.2 % dw) at 48 h, with the maximum level of 0.4% dw only for the copper-adapted 

PRK strain (Fig. 3b). 

 

  
 
Figure 3. Time course of intracellular GSH content (% cell dry weight) of copper adapted yeast 

cells. Biotransformation trials carried out in copper absence (a) and presence (b) (0.3 mg copper 

acetate/ml). 

 

As regards the production of GSH-copper conjugate, adapted cells showed different 

behaviour. In absence of copper in biotransformation phase, three strains did not 

produce conjugate; only the OS strain accumulated conjugate in a range of about 0.5-

0.6% dw at 72 h. These results may be related to peculiar osmotolerance characteristics 

of this strain that can accumulate copper in growing phase due to its ability of growing 

in hyperosmotic conditions (Fig.4a). 

Biotransformations carried out with copper evidenced limited levels of copper 

conjugate (0.1-0.2% dw); again only the OS strain resulted the best conjugate producer 

(0.6-0.7% dw) (Fig. 4b). 

Results obtained applying this two-step procedure, in which cells were first grown in 

presence of copper and then subjected to biotransformation procedure, showed both 

limited GSH accumulation and GSH-copper conjugate levels. The analyses of this 

behaviour are still ongoing and more detailed experiments are needed to clarify the 

mechanisms involved in cell response to copper exposure. In particular S. cerevisiae 

seems to be sensitive to the toxic effect of copper when cells are in growing conditions 

rather than when they are kept in contact with copper only in a post-fermentative 

procedure. This situation may be the cause of GSH production in very low levels and 

consequently of no conjugate formation. 
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Fig. 4. Time course of intracellular GSH-copper conjugate (% cell dry weight) of four samples of 

copper adapted yeast cells. Biotransformation trials carried out in copper absence (a) and in 

presence (b) (0.3 mg copper acetate/ml).  

 

3.4 Formation of GSH-copper conjugates with not adapted cells 

As copper-adapted cells did not prove to be suitable for the formation of copper 

conjugates, experiments were then set up by employing not adapted cells. The aim of 

these experiments was to verify if yeasts, not adapted or not preliminary exposed to 

copper, produced a significant amount of conjugate.  

At first, the most suitable copper concentration to be employed for the production of 

GSH-copper conjugates, was evaluated; the best results were obtained with 0.3 mg 

copper acetate/ml, corresponding to 1.6 mM (data not shown). Higher concentrations 

were found toxic for cells, as previously reported. 

Baker’s yeasts were suspended in biotransformations trials in which 0.3 mg copper 

acetate/mL were added, and reactions monitored for up to 72 h. As regards GSH 

content, all samples showed similar increasing time course, even if final levels reached 

were different (Fig. 5a). The maximum GSH level (1.2 % dw) was evidenced 

employing PRK yeast at 72 h. The same yeast was found to produce also the highest 

GSH-copper conjugate level (1.7 % dw) (Fig. 5b), while in the other samples this 

product accumulated in the range 0.4 - 0.7 % dw. 
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Figure. 5. Time course of intracellular GSH (a) and GSH-copper conjugate (b) of four samples of 

not-adapted yeast cells. Biotransformation trials carried out with 0.3 mg copper acetate/ml. 

 

3.5 Evaluation of copper conjugates by atomic absorption 

Samples of PRK yeast incubated for 72 h with 0.3 mg copper acetate/ml, in which the 

maximum conjugate formation was observed, were subjected to atomic absorption 

analysis. 

In supernatants samples obtained by cell permeabilization procedure, 1.2 ± 0.1 mg 

copper conjugate/g cell dw was evidenced, corresponding to 19 mol copper/g cell dw. 

However, morphological analysis of cells exposed to copper evidenced a more 

compact structure covering the cells, with respect to the control ones. These differences 

were confirmed by the transmission electron microscopy (TEM) (Fig. 6). This aspect 

was similar also in cell residues from the permeabilization procedure. Assuming that 

this behavior could be attributable to the presence of copper, which makes the cell 

recalcitrant to permeabilization procedure, a series of experiment on mechanical 

disruption of residual cells was set up.  In the soluble fraction, separated by 

centrifugation after sonication, 1.8 ± 0.2 mg copper conjugate/g cell dw was evidenced, 

corresponding to 28 mol copper/g cell dw. Analysis of cell debris proved the presence 

of residual copper, that was estimated about 0.17 mM.   

The overall findings confirm data present in the literature, when S. cerevisiae cells are 

employed as heavy metal bioremediator [20]. Yeast metal uptake occurs in two steps: 

the first step (biosorption) is fast (it occurs in the first few minutes of contact with the 

metal), is independent of metabolism and happens in live and dead cells; the second 

step (bioaccumulation) is generally considered metabolism-dependent (it occurs only 

in live cells) and is attributed to intracellular metal uptake across the cell membrane. 

Using S. cerevisiae, authors reported a copper absorption of 7.6 and 9.6 mol copper/g 

cell dw for live and dead cells (inactivated at 45°C), respectively [20]. In the present 

study a maximum of 28 mol copper/g cell dw was reached employing a post 

fermentative procedure. 
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Employing growing cells of Candida intermedia, the two steps procedure of metal cell 

surface adhesion and metal entrance inside cells was also highlighted, and a total 

amount of  1443 g copper/g cell dw was obtained (corresponding to 23 mol copper/g 

cell dw) [21].  

As regards filamentous fungi, trials performed with Trichoderma reesei evidenced that 

copper accumulated on wall surface, and only the construction of a transformant strain 

led to copper accumulation (13 mg copper/g biomass) inside cell vacuols [20]. 

 

Figure 6. Transmission electron micrographs of ultrathin sections of S. cerevisiae PRK baker’s 

yeast cells at 72 h incubation in biotransformation trials: control sample (a) and in presence of 

copper acetate (b). 

4. Conclusion 

Samples of baker’s yeast (S. cerevisiae) in compressed form were employed to obtain 

copper-enriched cells in biotransformation trials in presence of copper.  
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Cells adaptation through a two-steps procedure (grow adapted cells in presence of 

copper and then use this biomass in biotransformation trials to increase conjugates 

levels) demonstrated that cells are not stimulated to increase their intracellular GSH 

levels. On the contrary high GSH-copper conjugate levels (up to 1.7 % dw) were 

observed in experiments carried out employing not adapted cells. Cell disruption by 

sonication and analysis by atomic absorption evidenced the presence of very 

interesting amount (28 mol copper/g cell dw) of intracellular copper conjugate. In 

conclusion the applied procedure can be considered an interesting opportunity to 

further the range of application of yeast cell cultures for nutraceutical application in 

therapeutic treatments. 
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5.1 Design of Experiments  

In chapters 1 and 2 different parameters were evaluated for enhancing GSH 

intracellular accumulation. In summary the main important factors are GSH-precursor 

amino acids and energy source, as well as yeast physiology including its shelf-life. 

However nothing is known neither about the most amino acids influencing GSH 

accumulation, nor about possible interactions between amino acids and/or other 

factors.  

As reported by Mandenius and Brundin (2008), the Design of Experiments (DoE) 

methodology provides powerful and efficient ways to optimize biotechnological 

processes using a reduced number of experiments. Its strength is that it also reveals 

how interactions between the input factors influence the output responses. These 

interactions are often difficult to discover and interpret with other methods. In 

optimization, the DoE methodology is clearly preferable to methods which vary one 

variable at a time.  

The key elements of a DoE optimization methodology encompass planning the study 

objectives, screening of influential variables, experimental designs, postulation of 

mathematical models for various chosen response characteristics, fitting experimental 

data into these model(s), mapping and generating graphic outcomes, and design 

validation using model-based response surface methodology (Singh et al., 2005).  

The selection of the variables and their levels is very important, since inappropriate 

choices will limit the usefulness of the results and making it necessary to carry out new 

experiments with other variables and levels. The reduced set of experiments can be 

described mathematically as 2 n-k, where n is the number of factors to be investigated, 2 

represents the low and high levels and k is the number of steps to reduce the 

experimental design. The screening will be further improved by replicates in the center 

point of the experimental domain: in the FCCD case, additional values of the variables 

are included in the surface central points between the corners of the experimental 

space. The reduction of factor experiments decreases the statistical quality and should 

consequently be applied with caution (Mandenius and Brundin, 2008). 

For all these reasons the DoE methodology has been applied in this phase of process 

improvement. 

5.2 References 

Mandenius CF, Brundin A. 2008. Bioprocess optimization using design-of-experiments 

methodology. Biotechnol Prog 24:1191-1203. 
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Abstract 

The study was aimed at investigating the best biotransformation conditions to increase 

intracellular glutathione (GSH) levels in samples of baker’s yeast (S. cerevisiae) 

employing either the commercially available compressed and dried forms. Glucose, 

GSH precursors amino acids, as well as other cofactors, were dissolved in a 

biotransformation solution and yeast cells were added (5% dcw). Two response surface 

central composite designs (RSCCD) were performed in sequence: in the first step the 

influence of amino acid composition (cysteine, glycine, glutamic acid and serine) on 

GSH accumulation was investigated; once setup their formulation, the influence of 

other components was studied. Initial GSH content was found  0.53 and 0.47% dcw for 

compressed and dried forms. GSH accumulation ability of baker’s yeast in compressed 

form was higher at the beginning of shelf life, i.e. in the first week, and a maximum of 

2.04% dcw was obtained. Performance of yeast in dried form was not found 

satisfactory, as the maximum GSH level was 1.18% dcw. When cysteine lacks from the 

reaction solution, yeast cells did not accumulate GSH. With dried yeast, the highest 

GSH yields occurred when cysteine was set at 3 g/L, glycine and glutamic acid at least 

at 4 g/L, without serine. Employing compressed yeast, the highest GSH yields occurred 

when cysteine and glutamic acid were set at 2-3 g/L, while glycine and serine higher 

than 2 g/L. Results allowed to setup an optimal and feasible procedure to obtain GSH-

enriched yeast biomass, with up to 3-fold increase respect to initial content.  

 

Keywords: S. cerevisiae, glutathione, cysteine, serine, response surface. 

 

Introduction  

Glutathione (GSH) is a biologically active tripeptide consisting of L-glutamate, L-

cysteine, and glycine. It is the most abundant non-protein thiol compound widely 

mailto:manuela.rollini@unimi.it
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distributed in living organisms, from prokaryotes to eukaryotes [1, 2],  and is 

synthesized intracellularly in two ATP-dependent steps by the consecutive actions of 

-glutamylcysteine synthetase (-GCS), feedback inhibited by GSH content, and 

glutathione synthetase (GS). GSH biosynthesis is thus closely related to precursors 

amino acids supply, -GCS activity and ATP availability [3, 4]. 

In living tissues, GSH plays a pivotal role in bioreduction, protection against oxidative 

stress, xenobiotic and endogenous toxic metabolite detoxification, enzyme activity and 

sulphur and nitrogen metabolism [5]. GSH is potentially produced in many body 

areas, especially in the liver, and is involved in defense systems [6].  

These characteristics make GSH an important biochemical drug for the treatment of 

numerous diseases, such as HIV infections, liver cirrhosis, gastrointestinal and 

pancreatic inflammations, as well as neurodegenerative diseases and aging [7, 8]. 

Besides being extracted from some active tissues, GSH may be produced by chemical 

method, enzymatic reaction and microbial fermentation [9].  

GSH microbial production using yeasts is currently the most common method 

employed on industrial scale [8, 10, 11], through Saccharomyces cerevisiae and Candida 

utilis [12-14]. Most of the works focused on GSH accumulation with growing cells, 

employing sugar materials as carbon and energy source, with or without precursor 

amino acids addition [15]. Employing growing cells, cysteine is considered a key 

amino acid for GSH production and, because of its growth-inhibiting nature, optimal 

time for its addition is at stationary phase [15, 16].  

To date only Rollini et al [17] and Benedetti et al [18] have applied a post-growing 

procedure (biotransformation) for GSH accumulation, by employing commercial 

baker’s yeasts in compressed form, an inexpensive cells source available on the market. 

In the present research the performance of baker’s yeast in compressed and dried form 

was compared, and the influence of amino acids and the other components present in 

biotransformation mixture on GSH accumulation level was investigated. The research 

would pave the way to develop a simple and feasible procedure to obtain a GSH-

enriched S. cerevisiae biomass to be used for nutraceutical applications.  

 

Materials and Methods 

Microorganism and Biotransformation conditions 

Samples of commercial baker’s yeast (S. cerevisiae) in compressed form, identified as 

Zeus (Zeus Industria Biologica Alimentare Spa, Firenze, Italy), and in dried form, 

identified as Fermipan red (GB Ingredients, Casteggio, Pavia, Italy) were employed in 

the research. Yeast cells were suspended (5 %dcw) in a biotransformation solution, set-

up in tap water, containing glucose, sodium citrate, ammonium sulphate, KH2PO4, 

magnesium sulphate, cysteine, glycine, glutamic acid and in some cases serine, 

differently combined according to the detailed arrangement of each experiment, 

described below.  
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Biotransformation trials were carried out in 100 mL Erlenmeyer flasks, each containing 

10 mL reaction mixture, incubated at 28 °C and 200 rpm. Samples aliquots were 

collected at 0 and 24 h. 

Compressed baker’s yeast was stored at 4 °C until expiring date (35-40 days shelf life at 

refrigerated temperature) and biotransformations performed on yeast samples of the 

same age, i.e. 1, 10, 20 and 30 days. Differently, dried yeast is considered stable for one 

year at room temperature, and samples were taken during the first 2 months of shelf-

life.  

 

Experimental designs and data analysis 

Two experimental designs were performed; the response y was always defined as GSH 

content in yeast cells (% dcw), computed as ratio between intracellular GSH content in 

the permeabilized solution (g GSH/L) and dry cell weight (g/L) [19]. 

In the first step, the influence of amino acid presence and concentration (cysteine, 

glycine, serine, glutamic acid) was investigated employing both compressed and dried 

yeast samples. A response surface central composite design (RSCCD) (face centered) 

with 4 variables, each tested at 2 levels for a total of 30 trials, was performed (triplicate 

trials). Variables were: cysteine (X1-CYS), glycine (X2-GLY), serine (X3-SER) and 

glutamic acid (X4-GLU); they were tested between 0 (level -1) and 4 g/L (level +1). The 

other ingredients were set as follows (g/L): glucose 80, sodium citrate 10, (NH4)2SO4 7, 

KH2PO4 3.5 and MgSO4 0.5. The complete scheme of the experimental design, with 

levels in natural units, is given in Table 1. 

Subsequently, the influence of other components present in activation mix, i.e. glucose, 

sodium citrate, MgSO4 and (NH4)2SO4, was evaluated. As before, a response surface 

central composite design (RSCCD) with 4 variables tested at 2 levels (for a total of 30 

trials), with three replicates for each trial, was performed. Variables were (g/L): X5-

glucose tested between 80 (-1) and 120 (+1), X6-sodium citrate between 10 (-1) and 15 

(+1), X7- magnesium sulphate between 0.5 (-1) and 1.5 (+1), X8-ammonium sulphate 

between 7 (-1) and 9 (+1). Amino acids were all fixed at 3 g/L and KH2PO4 at 3.5 g/L. 

The complete scheme of the design is given in Table 5. In this phase only yeast in 

compressed form was used. 

Results were analyzed employing the Design Expert 7.0 (Statease, Minneapolis) 

software. 

 

Analytical procedures 

Intracellular GSH was determined according to Rollini et al [19]. Briefly, samples (1 

mL) were centrifuged (10,600 x g, 10 min) and collected cells washed with distilled 

water, suspended in 1 mL of 0.5 g ascorbic acid/L in HPLC-grade H2O then thermally 

treated at 100°C for 10 min. After cooling in ice bath, samples were centrifuged (10,600 

x g, 15 min) to eliminate cell residues and, on obtained supernatant fractions, 

intracellular GSH was evaluated. 



102 

 

GSH identification and quantification were carried out by HPLC, equipped with a UV 

detector (210 nm), at 30°C using a (250 x 4 mm) Purospher® RP-18 endcapped column 

(Merck), eluted with 25 mM NaH2PO4 pH 2.8 at 0.3 mL/min.  

Standard GSH (reduced form) was purchased by Sigma and HPLC-grade H2O was 

obtained through a Milli-Q A10 Gradient System (Millipore Corporation). 

Results were expressed in terms of GSH content as referred to dry cell weight (%dcw). 

Determination of dry cell weight was performed by drying cells at 105 °C (CEAL, 

Milano mod. SC4) to constant weight and samples were weighted using a 

thermobalance (Gibertini mod. TB2). 

 

 

Results 

Influence of baker’s yeast shelf life (compressed form) on GSH accumulation 

Time course of yeast performance was evaluated during shelf life of compressed yeast, 

that  is usually between 35 and 40 days at refrigerated temperature. Biotransformation 

trials were performed employing a mixture containing GSH amino acids precursors 

that are cysteine, glycine and glutamic acid (CYS-GLY-GLU mixture).  

 
 
Figure 1. Intracellular GSH ratio between 24 h and t0 during biotransformation trials, employing 

yeast in compressed form at 1, 10, 20 and 30 days of shelf life.  

 

Data, reported in Figure 1, have been expressed as ratio between GSH content at 24 h 

reaction with respect to the initial level (GSH t24/t0). Results highlighted that GSH 

accumulation is high at the beginning of shelf life, when yeast is able to double its 

intracellular GSH content (GSH ratio + 1.94±0.09), and decreases during storage, when 

cells retain GSH without further accumulation (ratio around + 1).  
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Differently, yeast samples in dried form can be considered an almost stable product 

with a shelf life of 1 year at room temperature. Nevertheless, for the present research, 

samples were used during the first 2 months in order to assure the best cell enzymatic 

activity/performance. 

 

Influence of amino acids 

The complete scheme of the experimental design performed with the two yeast forms, 

together with GSH production levels are shown in Table 1.  

For both yeasts, the lowest GSH contents (0.55-0.68 and 0.51-0.59 %dcw for the 

compressed and the dried yeast, respectively) were obtained in all the cysteine-free 

trials, i.e. n° 1, 3, 6, 8, 11, 12, 17, 18 and 26, where GSH was not found significantly 

different from the initial content (0.53±0.06 and 0.47±0.05 %dcw respectively). It must 

be noted that the highest GSH yields were not obtained with the richest amino acid 

mixture, in fact trial n° 15 with all factors at +1 level furnished only 1.12 and 0.85 GSH 

%dcw employing compressed and dried yeast, respectively. Furthermore trial n° 10, 

corresponding to the CYS-GLY-GLU mixture, confirmed the ability of compressed 

yeast (see previous paragraph) to double its GSH intracellular level.  

In the case of compressed yeast, the highest GSH levels (up to 1.38 %dcw), were 

obtained in trials where amino acids were set at 2 g/L (central points), i.e. n° 2, 7, 15, 20, 

28 and 30. Otherwise, in the case of dried yeast, the highest GSH levels (up to 1.18 

%dcw), were obtained when serine was absent and the other amino acids were set at 2 

or 4 g/L (level 0 or +1), i.e. trials 10 and 24. In those cases both the yeasts were able 

increase GSH up to 2.5-fold their initial level. 

 

The following second-order polynomial model (Equation 1) was used to describe the 

obtained results: 

 

(1) 

 

 

 

 

In the case of compressed yeast with confidence intervals set at 95%, ANOVA analysis 

(Table 2) identified the following significant terms: X1–cysteine (p-value < 0.0001) and 

its quadratic term X12 (p-value < 0.0001), X2–glycine (p-value < 0.0001), X3–serine (p-

value 0.0054), X4-glutamic acid (p-value 0.0004) and its quadratic X42 (p-value 0.0039), 

as well as interactions X1X3 (p-value < 0.0001) and  X2X3 (p-value 0.0013).  
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Table 1. Scheme of the experimental factorial design RSCCD Face Centered: arrange of the 

experiments (X1 cysteine, X2 glycine, X3 serine, X4 glutamic acid) (in terms of g/L) and GSH 

production for compressed and dried yeast (GSH %dcw) 

Trial number Block X1      X2      X3  X4  GSH * 

Compressed Dried 

1 1 0 4 4 4 0.61±0.02 0.57±0.01 

2 1 2 2 2 2 1.23±0.09 0.87±0.01 

3 1 0 0 4 0 0.55±0.01 0.51±0.01 

4 1 4 0 4 4 1.21±0.15 0.84±0.05 

5 1 4 4 4 0 1.07±0.03 0.89±0.06 

6 1 0 4 0 0 0.62±0.03 0.56±0.00 

7 1 2 2 2 2 1.21±0.17 0.98±0.03 

8 1 0 0 0 4 0.59±0.02 0.51±0.02 

9 1 4 0 0 0 0.75±0.01 0.83±0.03 

10 1 4 4 0 4 1.06±0.01 1.18±0.06 

11 2 0 0 0 0 0.57±0.02 0.51±0.03 

12 2 0 4 0 4 0.68±0.05 0.56±0.01 

13 2 4 4 0 0 0.93±0.03 0.88±0.06 

14 2 4 0 4 0 0.97±0.08 0.76±0.02 

15 2 4 4 4 4 1.12±0.06 0.85±0.02 

16 2 2 2 2 2 1.15±0.06 0.85±0.02 

17 2 0 4 4 0 0.60±0.01 0.50±0.05 

18 2 0 0 4 4 0.59±0.00 0.49±0.02 

19 2 4 0 0 4 0.75±0.01 1.06±0.02 

20 2 2 2 2 2 1.29±0.20 0.93±0.03 

21 3 2 2 2 0 0.98±0.07 0.95±0.06 

22 3 2 2 4 2 1.23±0.30 0.94±0.02 

23 3 2 2 2 4 1.24±0.10 1.00±0.05 

24 3 2 2 0 2 1.08±0.10 1.10±0.01 

25 3 4 2 2 2 1.05±0.13 0.95±0.01 

26 3 0 2 2 2 0.65±0.07 0.59±0.00 

27 3 2 0 2 2 1.02±0.03 0.90±0.00 

28 3 2 2 2 2 1.26±0.23 1.01±0.03 

29 3 2 4 2 2 1.28±0.28 1.03±0.08 

30 3 2 2 2 2 1.38±0.08 1.00±0.02 

*: mean ± standard deviation (three replicates) 
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Table 2. ANOVA response and effect estimates of the experimental design reported in Table 1 

(compressed yeast) applying Equation 2 ( out: 0.05) 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

The model was identified as significant and after power transformation (lambda = -1.6) 

recommended by the Box–Cox plot, the following equation (Equation 2) was identified 

(coded factors): 

 
                                                                     

  

      
          (2) 

 

The software estimated model adaptation goodness (R2 0.9851, predicted R2 0.9599 and 

adjusted R2 0.9789), measures of variability (standard deviation 0.093, % confidence 

variation 7.15) and noise ratio (adequate precision 34.4897). Proceeding to diagnostics, 

attention was focused on Normal probability plot of studentized residuals for 

normality of residuals. Model acceptability was evaluated using studentized residuals 

versus predicted values plot, to evidence constant error. The analysis of these plots 

showed linearity of the data points on normal probability plot, as well as normality in 

the error term and a very good model prediction (data not shown). 

Results evidenced that cysteine (X1) induced the highest GSH levels when set at 

concentrations between 2-3 g/L (Figure 2).  

 

 

 

Sum of Squares df Mean of Squares F p (p>F) 

Block 2.18 2 1.09   

Model 10.90 8 1.36 157.48 < 0.0001 

X1-CYS 6.16 1 6.16 711.79 < 0.0001 

X2-GLY 0.41 1 0.41 47.72 < 0.0001 

X3-SER 0.085 1 0.085 9.85 0.0054 

X4-GLU 0.16 1 0.16 18.01 0.0004 

X1X3 0.33 1 0.33 38.09 < 0.0001 

X2X3 0.12 1 0.12 14.20 0.0013 

X12 1.83 1 1.83 210.87 < 0.0001 

X42 0.093 1 0.093 10.75 0.0039 
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Figure 2. 3-D Surface of X1X3 interaction (CYS-SER). Actual factors: X2 -GLY 4 g/L, X4 -GLU 2 g/L.  

 

 

Also glycine (X2) significantly affected GSH yields, that were higher when using 4 g/L 

of this amino acid (Figure 3). The presence of serine (X3), that is not part of GSH but is 

involved in sulphur metabolism of yeast cell [20, 21], increased GSH synthesis when 

present at least at 2 g/L, above all when glycine was not at 4 g/L. 

 

 

Figure 3. X1X3 interaction (CYS-SER). a) actual factors X2 -GLY 2 g/L, X4 -GLU 2 g/L; b) actual 

factors X2 -GLY 4 g/L, X4 -GLU 2 g/L. 

 

To confirm model robustness, other set of biotransformation trials were then 

performed. Results, shown in Table 3 confirmed that serine and glycine are important 

for obtaining high GSH levels; nevertheless, even if glycine is present at 4 g/L, serine 

cannot disappear from the formulation (see trial n° 4); glycine instead can be omitted 

but only if serine is present at 4 g/L (trial n° 1).  
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Table 3. Confirmation trials performed with compressed yeast: amino acid content (g/L), 

predicted (pred.) vs obtained (obt.) GSH yields, expressed as %dcw 

 

Trials CYS GLY SER GLU GSH pred. GSH obt.* 

1 2.5 0 4 2.5 1.45 1.38±0.03 

2 2.5 4 0 2.5 1.24 1.22±0.02 

3 2.5 4 4 2.5 1.72 1.63±0.05 

4 4 4 0 4 1.07 1.08±0.04 

*: mean ± standard deviation (three replicates) 

 

In the case of dried yeast with confidence intervals set at 95%, ANOVA analysis (Table 

4) identified the following significant terms: X1–cysteine, and its quadratic term X12, X2–

glycine, X3–serine and X4-glutamic acid.  

 
Table 4. ANOVA response of the experimental design reported in Table 1 (dried yeast) applying 

Equation 3 ( out: 0.05) 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

The model was identified as significant and, after inverse transformation (lambda = -1), 

the following equation (Equation 3) was identified (as coded factors):  

 

 
 

   
                                            

            (3)                               

 

 

 

Sum of Squares df Mean of Squares F p (p>F) 

Block 0.82 2 0.41   

Model 3.59 5 0.72 145.44 <0.0001 

X1-CYS 2.69 1 2.69 543.30 <0.0001 

X2-GLY 0.068 1 0.068 13.80 0.0012 

X3-SER 0.066 1 0.066 13.40 0.0014 

X4-GLU 0.039 1 0.039 7.95 0.0100 

X12 0.74 1 0.74 148.75 <0.0001 
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Model adaptation goodness (R2 0.9706, predicted R2 0.9385 and adjusted R2 0.9640), 

variability (standard deviation 0.070 %, confidence variation 5.35) and noise ratio 

(adequate precision 30.585) were found satisfactory.  

 

 
Figure 4. 3-D Surface: X1X2 (CYS-GLY) interaction, X3 -SER 0 g/L, X4 -GLU 4 g/L. 

 

3-D surface plot shows that, when employing dried yeast, cysteine (X1) induced the 

highest GSH levels when set at 3 g/L, while serine (X3) should be minimized (Figure 4). 

Also, the use of glycine (X2) and glutamic acid (X4) significantly affected GSH yield, 

that was found higher when using at least 4 g/L of these amino acids.  

From an overlook at the results, it can be concluded that the use of baker’s yeast in 

compressed form allowed to obtain the highest GSH intracellular accumulation levels 

(max 1.63 %dcw), so far this type of commercial yeast was chosen for the prosecution 

of the research. 

 

Influence of other mixture components 

The influence of the other activation mixture components on GSH production by 

compressed yeast is shown in Table 5. 
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Table 5. Scheme of the experimental factorial design RSCCD: arrange of the experiments (X5: 

glucose, X6: sodium citrate, X7: magnesium sulphate, X8: ammonium sulphate) (in terms of g/L) 

and results (GSH %dcw) 

Trial number Block X5  X6   X7  X8   GSH * 

1 1 80 15 1.5 9 1.57±0.05 

2 1 120 15 0.5 9 1.46±0.14 

3 1 120 15 1.5 7 1.24±0.05 

4 1 120 10 0.5 7 1.44±0.13 

5 1 100 12.5 1 8 1.47±0.14 

6 1 80 10 0.5 9 1.38±0.08 

7 1 100 12.5 1 8 1.49±0.14 

8 1 120 10 1.5 9 1.33±0.15 

9 1 80 15 0.5 7 1.35±0.34 

10 1 80 10 1.5 7 1.47±0.10 

11 2 120 15 1.5 9 1.38±0.07 

12 2 80 15 1.5 7 1.38±0.27 

13 2 80 15 0.5 9 1.67±0.02 

14 2 120 10 1.5 7 1.37±0.04 

15 2 120 15 0.5 7 1.49±0.15 

16 2 120 10 0.5 9 1.52±0.16 

17 2 80 10 1.5 9 1.65±0.10 

18 2 80 10 0.5 7 1.73±0.03 

19 2 100 12.5 1 8 1.64±0.01 

20 2 100 12.5 1 8 1.56±0.11 

21 3 100 7.5 1 8 2.04±0.00 

22 3 100 12.5 2 8 1.43±0.05 

23 3 100 17.5 1 8 1.66±0.11 

24 3 100 12.5 1 8 1.51±0.02 

25 3 100 12.5 1 6 1.28±0.10 

26 3 100 12.5 0 8 1.28±0.06 

27 3 60 12.5 1 8 0.98±0.04 

28 3 100 12.5 1 8 1.61±0.03 

29 3 100 12.5 1 10 1.43±0.04 

30 3 140 12.5 1 8 1.01±0.03 

*: mean ± standard deviation (three replicates) 

 

 

High GSH yields were generally obtained, with a maximum GSH level of 2.04 %dcw in 

trial 21. The lowest GSH levels (0.98-1.01 %dcw) were obtained in trials n° 27 and 30, 

with glucose present either at 60 or 140 g/L (–α or +α level). 

With confidence intervals set at 95%, ANOVA analysis identified the following 

significant terms (Table 6): X6–sodium citrate (p-value 0.03883) and its quadratic term 

X62 (p-value 0.0006) as well as  X52 – glucose as quadratic term (p-value < 0.0001).  
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Table 6. ANOVA response of the experimental design reported in Table 5 (compressed yeast) 

applying Equation 4 ( out: 0.05)  

 

 

The model was identified as significant and it allowed the identification of the 

following equation (Equation 4) (coded factors): 

 

                                      
          

    (4) 

 

Although the term X5 (glucose) was not significant, it had been added into the model 

equation for hierarchical reason. In the present case, even if the model was identified 

as significant the software estimated a not nice model adaptation goodness (R2 0.7079, 

predicted R2 0.3124 and adjusted R2 0.6571), with a low predicted R2, not close to the 

adjusted R2, as a good model might expect. This behavior is due to the fact that the 

model confirms that the analyzed ingredients are less important than the previously 

investigated amino acids, and no strong influence had been evidenced. To maximize 

GSH yields, glucose should be set at 100 g/L (0 level) and sodium citrate at 10 g/L (-1), 

independently from magnesium and ammonium sulphate levels.  

 

Discussion and conclusions 

Saccharomyces cerevisiae is one of the most studied microorganisms, and together with 

Candida utilis is the most commonly used microorganism on industrial scale for GSH 

fermentative production. Lots of strategies for enhancing GSH yields had been applied 

till now, but all employed growing yeast cells.  

This study was instead aimed at investigating the best conditions to increase 

intracellular GSH levels present in samples of baker’s yeast, employing  already grown 

cells in a biotransformation procedure. GSH accumulation ability of baker’s yeast in 

compressed form was found higher at the beginning of shelf life, i.e. in the first week, 

and a maximum of 2.04 %dcw was obtained. Performance of yeast in dried form was 

not found satisfactory, as the maximum GSH level was 1.18 %dcw. 

To obtain high GSH levels, in the biotransformation solution the followings are 

needed: i) GSH precursors, i.e. cysteine, glycine, glutamic acid, but also serine, 

involved in sulphate metabolism and in cysteine synthesis; ii) cofactors such as 

 

 

Sum of Squares df Mean of Squares F p (p>F) 

Block 0.099 2 0.049   

Model 0.78 4 0.19 13.93 < 0.0001 

X5-GLUCOSE 0.035 1 0.035 2.48 0.1289 

X6-SODIUM CITRATE 0.067 1 0.067 4.83 0.03883 

X52 0.38 1 0.38 27.16 < 0.0001 

X62 0.22 1 0.22 16.02 0.0006 



111 

 

magnesium and ammonium sulphate, potassium phosphate, sodium citrate and iii) 

glucose as energy source, necessary for ATP regeneration in GSH synthesis. Results 

confirmed that cysteine is a key amino acid for GSH accumulation, not only during cell 

growth, as reported by Wen et al [16] and Nisamedtinov et al [11], but also in the 

presented post-growing procedure. Nevertheless, applying a post-growing procedure, 

cysteine negative effect as growth inhibitors, as reported by Wang et al [22], is 

undoubtedly countered.  

Cysteine is not the only amino acid influencing GSH accumulation: all the tested 

amino acids were found significant and, in the case of compressed yeast, also cysteine-

serine and glycine-serine interactions. Glycine is a direct precursor of GSH and also 

Wen et al [16] indicated it as the most important amino acid after cysteine in GSH 

synthesis.  

Serine is not a direct GSH precursor but in S. cerevisiae two pathways exist for cysteine 

synthesis, and in both of them serine is involved [20, 21]. One route proceeds by serine 

acetylation to yield O-acetylserine (OAS), that is subsequently sulphydrylated to 

cysteine; the second one involves the presence of homocysteine, through the 

cystathionine biosynthesis cycle. As suggested by Penninckx and Elskens [20], the 

presence of sulphates and serine may induce the yeast to incorporate sulphur present 

in excess into GSH, during cell growth. Results obtained in the present paper highlight 

that this mechanism seems to be present also in post-growing GSH accumulation, 

above all with compressed yeast. 

All literature data related to GSH accumulation in yeasts have been collected 

employing growing cells. Wen et al. [16] found that while cysteine and glycine 

significantly affected GSH accumulation, glutamic acid did not. In our study, in 

biotransformation condition with already-grown cells, also glutamic acid showed to 

significantly affect GSH accumulation.  

The second response surface CCD applied revealed that only glucose and sodium 

citrate showed to have significant effect on GSH accumulation, meaning that all the 

other parameters can be minimized with an economic advantage. Note that sodium 

citrate showed to have an inverse correlation towards GSH accumulation. 

To minimize GSH production costs, future goals should be aimed at reducing 

biotransformation incubation time. This reduction would probably lead to a re-

modulation of the concentration of amino acids added into the biotransformation 

reaction. Glucose substitution with others sugar matrix may led the process to be less 

expensive, even if it has to be taken in consideration that Cha et al [23], when 

comparing different carbon sources, found that in growing cells, glucose was the best 

substrate for GSH production. Also, as yeast has to be at the beginning of its shelf life, 

biotransformation step may be directly performed in baker’s yeast production plant 

using yeast culture at the end of the biomass production step, before processing in the 

final compressed form, thus reducing GSH production costs.  

The biotransformation procedure applied allowed to obtain high GSH levels, till 2.04 

%dcw in the best case, and however, in general, levels higher than 1.5 %dcw at 24 h 

incubation. Considering an initial GSH intracellular level of 0.53 %dcw, a 3-fold 
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increase was obtained. Zhang et al. [10] reported GSH levels of 1.81 times higher than 

the control in terms of mg/L, but the increase in terms of intracellular content (%dcw) 

was lower. Cha et al [23] obtained high GSH levels (204 mg/L) that in terms of 

intracellular content means a 1.37-fold increase with respect to the control culture.  

In conclusion we propose a post-fermentative biotransformation procedure as an 

economic alternative to the more traditional GSH biomass enrichment during cell 

growth; in this contest, we found the use of experimental designs, and in particular of 

CCD, an efficient approach for investigating and optimizing biotransformation 

processes. These results should be taken into account for a future up-scale of GSH-

enriched yeast biomass production. 
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6.1 Bioavailability 

The bioavailability of a compound involves different and subsequent processes: 

ingestion, release during digestion, absorption by intestinal epithelium and first pass 

metabolism. Bioavailability indicates the fraction of an ingest compound that is 

solubilized during gastrointestinal digestion and reaches the systemic circulation, 

following absorption from the gastrointestinal lumen (Calatayud et al., 2010). 

Glutathione (GSH) bioavailability has been studied by several authors. Hagen et al. 

(1990) and Rahman & MacNee (1992) affirmed that plasma GSH concentration in rats 

increased from approximately 15 to 30 microM after administration of GSH, that can 

be absorbed intact increasing blood plasma GSH concentration. This indicates that oral 

supplementation may be useful to enhance GSH tissue availability. Likewise, Aw et al. 

(1991) reported that in mice oral GSH intake can increase GSH concentrations in 

several tissues following its depletion. On the contrary, Witschi et al. (1992) reported 

that in man systemic GSH availability is negligible and it is not possible to increase 

GSH circulating to a clinical beneficial extent by the oral administration of a single 

dose of 3 g. 

The aim of this section was to better understand GSH bioavailability in vitro, 

employing model systems. Caco-2 intestinal cell line is one of the most commonly used 

models, established from human colon adenocarcinoma cells. These cells are able to 

differentiate spontaneously, giving rise to a monolayer possessing most of the 

functional and morphological features of mature human enterocytes. The 

differentiated cell monolayer is polarized, with microvilli on the apical border, 

intercellular tight junctions, secretion of enzymes inherent to the brush border 

membrane, expression of transporters, characteristic of the small intestine, in the apical 

and basolateral membranes (Maubon et al., 2007). For this reason, Caco-2 cell 

monolayer represents a valuable transport model system for the small intestinal 

epithelium (Hidalgo et al., 1989; Calatayud et al., 2010). 

To further investigate the role of mucus on drug transport across the intestinal barrier, 

the human adenocarcinoma HT29-MTX model has been developed. This cell line is 

derived from the parental cell line HT29 and adapted to a medium containing 10-6 M 

methotrexate for 6 months to acquire the morphological and mucin-producing 

characteristics of goblet cells (Lesuffleur et al., 1991; Pontier et al., 2001). To take 

advantage of this mucin-secreting ability of HT29-MTX cells, recent efforts have been 

focused on developing co-cultures of these two human intestinal cell lines (Caco-2 and 
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HT29-MTX) to produce a more physiological and real model mimicking the intestinal 

epithelium (Pontier et al., 2001; Laparra et al., 2009). 

A further aim of this section was to verify if ingested GSH, together with GSH coming 

from the normal biliary efflux, may protect intestinal cells during oxidative stress 

conditions and contribute to normal intestinal functions (Valencia et al., 2001). 

 

6.2 Materials and Methods 

Samples 

Reduced and oxidized glutathione standards (GSH and GSSG, respectively) were 

supplied from Sigma. In these set of trials three different yeast samples were 

employed, as follows: 

 Control - Commercial baker’s yeast in compressed form Fala, with a low GSH 

content (0.45±0.05% dcw); 

 Yeast A - Fala yeast with a GSH content of 1.09±0.13% dcw, obtained after 

activation procedure employing CYS-GLY-GLU mixture (Tab. 2.1); 

 Yeast B - Fala yeast with a GSH content of 1.49±0.01% dcw, obtained after 

activation procedure employing CYS-GLY-GLU+ADE mixture (Tab. 2.5). 

All the three yeast samples were lyophilised and employed for gastrointestinal 

digestion test as well as transport and permeability experiments. Lyophilisation was 

carried out as follows: yeast cells were suspended in distilled water (20% dcw), placed 

in stainless steel trays as a thin layer, and then frozen at - 40 °C for 4 h; cell 

disidratation phase was carried out at 25 °C and 1.33 Pa for 30 h (Edwards Minifast 

MFD 01, UK) (maximum residual humidity 5–8% dcw).  

In vitro gastro-intestinal digestion 

Aliquots of standard GSH (40-200 mg/L) and samples of lyophilised baker’s yeast (1 g) 

were digested using a simulated digestion process proposed by Laparra et al. (2003) 

and modified for a yeast biomass.  

The digestion comprises two stages: the gastric stage with pepsin at pH 2.0 and the 

intestinal step, with pancreatin and bile extract at pH 6. Samples were weighed, and 

cellular grade water (25 mL) was added. The pH was adjusted to 2.0 with 6 M HCl. 

Then pepsin solution (prepared in 0.1 M HCl) was added to provide 2 mg of pepsin/g 

sample. Water was then added to reach 30 g and obtained samples were incubated in a 
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shaking bath (120 strokes min-1) at 37 °C for 2 h. Afterward, pH was raised to 6.0 by 

addition of 1 M NaHCO3. Then the pancreatin-bile extract mixture (prepared in 0.1 M 

NaHCO3) was added to provide respectively 0.5 mg pancreatin/g sample and 3 mg bile 

extract/g sample; reaction mixtures were then incubated at 37 °C for 2 h. Digested 

samples were centrifuged (15000 rpm, 30 min, 4°C) to obtain the bioaccessible fraction; 

the soluble fraction was heat treated (100°C, 4 min) to inactivate enzymes and then 

cooled in an ice bath. 

Cell culture grade water (B. Braun Medical, S.A.) was used throughout the in vitro 

digestion assay. Enzymes and bile salts for in vitro gastrointestinal digestion were 

purchased from Sigma: porcine pepsin (enzymatic activity 944 U/mg protein), porcine 

pancreatin (activity equivalent to 4 x US Pharmacopoeia specifications/mg pancreatin) 

and bile extract (glycine and taurine conjugates of hyodeoxycholic and other bile salts). 

Cell cultures 

GSH transport through the intestinal epithelium was carried out using the Caco-2 cell 

line model and a co-culture Caco-2:HT29-MTX (ratios 50:50 and 70:30). Caco-2 cells 

were obtained from the European Collection of Cell Cultures (ECACC, n. 86010202, 

Salisbury, UK), while HT29-MTX were kindly provided by Dr. T. Lesuffleur (Institut 

National de la Santé et de la Recherche Médicale, INSERM UMR S938, Fr). 

Caco-2 cell maintenance was performed in 75 cm2 flasks to which 10 mL of Dulbecco’s 

modified Eagle’s medium (DMEM) with glucose (4.5 g/L) at pH 7.4 were added. The 

DMEM was supplemented with 10% (v/v) fetal bovine serum, 1% (v/v) non-essential 

amino acids, 1 mM of sodium pyruvate, 10 mM HEPES (N-2-hidroxyethylpiperazine-

N'-2-ethanosulfonic acid), 100 U/mL of penicillin, 0.1 mg/mL of streptomycin, 0.0025 

mg/mL of fungizone, and (complete Dulbecco’s modified Eagle’s medium, DMEMc), 

as reported in Calatayud et al. (2010).  

HT-29-MTX maintenance was performed in 25 cm2 flasks to which 5 mL of medium 

was added, consisting of DMEM at pH 7.4 containing glucose (4.5 g/L) and 

supplemented with 10% (v/v) fetal bovine serum, 100 U/mL of penicillin, 0.1 mg/mL of 

streptomycin, 0.0025 mg/mL of fungizone, and 1 mM of sodium pyruvate (HT-

DMEMc).  

Both cell lines were incubated at 37 °C, in a humidified atmosphere of 95% air and 5% 

CO2. The medium was changed every 2–3 days. When the cell monolayer reached 80% 

confluence, the cells were detached with a solution of trypsin (0.5 mg/L) and EDTA 

(0.22 g/L), followed by reseeding at a density of 5 x 104 cells/cm². All the reagents used 

were purchased from PAA Laboratories GmbH (Germany). 
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Transport and permeability experiments 

Cell differentiation and transport tests were carried out in double chamber wells (24 

mm diameter, pore size 0.4 m; Transwell®, Costar Corp, NY) equipped with a porous 

support on which cell lines form monolayers, allowing the diffusion chamber to be 

divided into two compartments: apical (upper) and basal (lower) (Fig. 6.1).  

 

Figure 6.1. Scheme of the double chamber wells employed for transport and permeability 

studies. 

 

Cells were seeded at a density of 6.5 x 104 cells/cm² in the following Caco-2/HT29-MTX 

proportions: 100/0; 70/30; 50/50; adding 1.5 mL of culture medium (DMEMc for Caco-2 

and HT-DMEMc for co-colture) to the apical compartment and 2 mL to the basal side. 

Cells were then incubated at 37 °C in a humidified atmosphere of 95% air and 5% CO2 

replacing the medium every 2-3 days until cell differentiation was reached (13-14 

days). All cell cultures were used between passages 20 and 40.  

Transport experiments and apparent permeability (Papp) tests were conducted in 

Hanks buffered solution salts (HBSS), supplemented with 20 mM o-2-(N-morpholine) 

ethanesulfonic acid (MES) (pH 5.5) in the upper chamber, and with 10 mM HEPES (pH 

7.2) in the lower compartment. Digested samples of GSH and yeast were added of 

glucose (5 mM final concentration) and HEPES (50 mM final concentration) to facilitate 

cell viability, whereas water or NaCl (Merck, Barcelona, Spain) were added to adjust 

the osmolarity to 310±10 mOsm/kg using a freezing point osmometer (Osmometer 

Automatic type 15, Löser Messtechnik, Berlin, Germany). Samples were added to the 

acceptor compartment, apical or basal, according to the direction of the transport 

studied, i.e. basolateral or basolateral-apical, respectively.  

To calculate apparent permeability coefficients, at appropriate intervals (15, 30, 60 min 

and 2, 3 and 4 h) samples (300 μL) were removed from the acceptor compartment and 

were replaced with an equal volume of fresh medium. GSH determination was carried 

out in the aliquots obtained at each time point as well as in the donor medium 

collected at the end of the experiment.  

 

 

   

    Apical compartment  
Cell monolayer   

Basal compartment 
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The apparent permeability coefficients (Papp) were calculated from Equation 1: 

 

                      

 

where dC/dt is the flux (μmol/s) determined by the slope of the cumulative 

concentration of GSH in the receptor chamber over time, Vr is the acceptor 

compartment volume (basal, 2 mL), A is the surface area occupied by the cell 

monolayer (4.67 cm2), and Co is the initial GSH concentration in the donor 

compartment. 

When experiments regarded GSH transport at the final time, GSH determination was 

carried out in the aliquots obtained at the end of the experiment from the acceptor 

compartments and in the donor medium. GSH transport percentages were calculated 

with respect to the initial quantity of GSH added to the cell cultures. 

During the period of growth and differentiation of the cultures on the Transwell 

membranes, cell monolayer integrity was assessed daily from the sixth postseeding 

day onward by measuring the Transepithelial Electrical Resistance (TEER) using a 

Millicell®-ERS (Millipore Corporation, Madrid, Spain). During the tests of GSH cell 

transport in Transwell, cell monolayer integrity was evaluated by measuring a) TEER 

at various points in the study, including the start and end times of the experiment, and 

b) the Papp of the paracellular transport marker lucifer yellow (LY), added at a 

concentration of 100 µM to the apical compartment in the control wells and the wells 

treated with GSH. The fluorescence of the LY transported to the basal side was 

measured with a fluorescence microplate reader (PolarSTAR OPTIMA, BMG-Labtech, 

Germany) at excitation/emission wavelengths of 485/520 nm. To evaluate possible 

interactions of LY with uptake and transport of GSH, parallel experiments were 

performed with and without paracellular marker, which demonstrated the absence of 

interference. 

Antioxidant effect of GSH in intestinal epithelial cells 

Cell viability assays were performed employing sodium resazurin (7-hydroxy-3H-

phenoxazin-3-one-10-oxide sodium salt, Sigma). The assay is based on the ability of 

viable, metabolically active cells to reduce resazurin to resorufin and dihydroresorufin, 

measurable by colorimetric methods. This conversion is intracellular, facilitated by 

mitochondrial, microsomal and cytosolic oxidoreductases (O’ Brien et al., 2000; Rocha 

et al., 2011). 

Eq.1 

http://www.sciencedirect.com/science/article/pii/S0378427411001226#bib0100
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Caco-2 cells were inoculated at a density of 6.25x 104 cells/cm2 in 96-well plates for 5 

days and subsequently exposed to GSH standard solutions (3-10-30 mM prepared in 

HBSS), Yeast A and Yeast B (after in vitro digestion) for 1 h at 37°C. Afterwards, 2, 10 

and 20 mM H2O2 were added to cells and the reaction mixture incubated for further 2 

h. After exposure, the medium was withdrawn and 150 µL of resazurin solution (10 

µg/mL in MEM) were added. Well plates were incubated for 2 h at the same 

conditions. 100 µL for each reaction mixture were transferred to a 96-well plate and 

resazurin reduction was measured colorimetrically (570 and 600 nm) using a 

microplate reader (PolarSTAR OPTIMA, BMG-Labtech, Germany). 

Analytical procedures 

GSH identification and quantification in the soluble fraction obtained during in vitro 

gastrointestinal digestion and in samples collected during transport and apparent 

permeability tests, were carried out by HPLC as previously reported (1.2). 

Intracellular GSH of lyophilised baker’s yeast was determined according to Rollini & 

Manzoni (2006) as previously reported (1.2).  

 

6.3 Results 

Yeast lyophilisation 

Lyophilisation is a dehydration process consisting in freezing the material and 

reducing the pressure to allow the water to sublimate directly from the solid phase to 

the gas phase. 

Yeast samples (control, Yeast A, Yeast-B) were freeze-dried in order to faithfully 

reproduce the digestion of an yeast-based food supplement as normally present on the 

market, i.e. a lyophilised product. Samples were lyophilised suspending yeast cells in 

distilled water or in a solution containing skimmed milk (10% w/v) as cryoprotectant 

for comparative purpose. 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Freezing
http://en.wikipedia.org/wiki/Pressure
http://en.wikipedia.org/wiki/Sublimation_(chemistry)
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Figure 6.2. Microscope images of lyophilised yeast cells with cryoprotectant (A) and in water (B) 

colored by Trypan blue (0.4%) at 1000x. 

 

Cell membrane was found to loose its integrity due to the lyophilisation treatment, in 

particular when no cryoprotectant was employed (Fig. 6.2). Microscope images of cells 

colored employing Trypan blue solution, confirmed that when cells were suspended in 

water the damage was increased (trypan blue colored all yeast cells) more than in 

presence of cryoprotectant. 

From these observation it was hypothesized that GSH, previously accumulated 

intracellularly, could be released in the medium in which the yeast was suspended. For 

verifying this hypothesis intracellular and extracellular GSH were determined. Results 

(data not shown) confirmed that most of the GSH stored inside yeast cell after 

lyophilisation is released extracellularly and only in the case of yeast freeze-dried with 

cryoprotectant this release is lower. 

In vitro gastro-intestinal digestion  

Two GSH standard solutions, 40 mg/L and 200 mg/L, were digested employing the 

previously described process. All trials were performed in triplicate. Results of GSH 

and GSSG contents in gastric and intestinal stage are reported in Fig. 6.3.  

A B 
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Figure 6.3. GSH and GSSG levels (mg/L) at different steps of the in vitro gastrointestinal 

digestion: t0, gastric and intestinal phases at 120 min. GSH standard solution at 40 mg/L and 200 

mg/L. 

 

Results evidenced that in general GSH levels were not affected by the applied 

treatment: at the highest concentration (200 mg/L) a very limited amount of GSH (up 

to 10%) was found to oxidize to GSSG, while increased oxidation (up to 25%) occurred 

when GSH was used at 40 mg/L. This oxidation mainly occurred after the intestinal 

digestion phase and may be due to normal oxidation of GSH caused by temperature 

(37°C for 2+2 h). 

At the end of the process, after the final heat treatment, a further oxidation occurred 

(data not shown) at both tested levels: 40% in the case of GSH at 40 g/L and 25% in the 

case of GSH at 200 g/L. Anyway, even if this is a necessary step during the in vitro 

procedure before use in cell culture studies, it cannot be considered a part of an in vivo 

gastrointestinal digestion. 

Summarizing, by applying this simple simulated digestion process, an average of 75% 

of the ingested GSH (as reduced standard) may overcome the gastrointestinal barrier 

and reach the intestinal epithelium.  
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Trials were then performed employing both Fala yeast (control) in compressed form 

and after lyophilisation, with the aim of evaluating whether yeast structure influenced 

GSH bioaccessibility and stability during gastrointestinal digestion. All trials were 

performed in duplicate. Results showed that during gastrointestinal digestion GSH 

levels were found stable, both when GSH was mainly inside yeast cells (compressed 

yeast) and when most of the GSH was extracellular (lyophilised yeast) (Fig. 6.4). 

Figure 6.4. GSH intracellular and extracellular levels (mg/L) at different steps of an in vitro 

gastrointestinal digestion: t0, gastric and intestinal phases at 120 min. Fala yeast in compressed 

and lyophilised form. 

 

To be noticed, in the case of the compressed yeast, a limited amount of GSH partially 

released outside cells during the gastric phase of digestion (Fig. 6.4). This behaviour 

was probably due to the acidic pH (pH 2) of this phase that may have altered the 

membrane permeability and this is shown also in Fig. 6.5. 

 

 

 

 

Figure 6.5. Microscope images of Fala compressed yeast colored by Trypan blue (0.4%) at 1000x 

at t0 (A) and at 2 h of gastric digestion (B). 
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Regarding lyophilised yeast, as the cell structure was already damaged because of the 

lyophilisation process, GSH was not retained into the cell but released in the digestion 

solution. This explains the presence at the beginning of the digestion (t0) of most of the 

GSH in the digestion solution.  

Due to the fact that lyophilised cells are commonly used to commercialize yeast-like 

food supplements, and that GSH, released from cells and thus considered 

bioaccessible, was found stable during digestion, Fala yeast sample, lyophilised in 

absence of cryoprotectant was selected for the prosecution of the research. The 

presence of skimmed milk as cryoprotectant had been considered an altering factor 

during GSH transport trials. 

In detail, gastrointestinal digestion of lyophilised Fala yeast (control) produced a very 

limited GSH oxidation, above all during the intestinal step (Fig. 6.6). Results confirmed 

what previously evidenced for the 200 mg/L standard GSH solution (to be noted that 

GSH content in this yeast was found 0.61±0.09% dcw, corresponding to 201 ± 30 mg/L).  

Figure 6.6. GSH and GSSG levels (mg/L) at different steps of an in vitro gastrointestinal 

digestion: t0, gastric and intestinal phases at 120 min; Fala lyophilised yeast. 

Subsequently, two GSH- enriched yests were used, named A and B, having a GSH 

content of 1.09±0.13% dcw and 1.49±0.01% dcw respectively. These cells were enriched 

employing two different activation mixtures (CYS-GLY-GLU and CYS-GLY-

GLU+ADE). All trials were performed in triplicate and bioaccessible (released in the 

medium) and not bioaccessible (retained inside cells) are reported in Fig. 6.7. 
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Figure 6.7. Bioaccessible and not bioaccessible GSH levels (mg/L) at different steps of an in vitro 

gastrointestinal digestion: t0, gastric and intestinal phases at 120 min. Yeast A and Yeast B. 

Results showed that also in the case of GSH enriched-yeasts, lyophilisation damaged 

cell structure and GSH became bioaccessible (that is, released in the medium) already 

at the beginning of the process. Only a small amount of total GSH, between 6.5 and 

13.5%, was not considered bioaccessible because of its intracellular nature (retained 

inside cells). Regarding oxidation, as previously seen only a limited amount of GSH 

was oxidized (data not shown).  

In conclusion, the applied treatment of gastrointestinal digestion did not affect GSH 

levels, neither when present as standard solution nor when it is accumulated inside 

yeast cells; also, a limited GSH oxidation was evidenced. 

GSH apparent permeability coefficient (Papp) 

In vitro GSH transport trials through the intestinal epithelium were carried out to 

calculate apparent GSH permeability.  

Using Caco-2 cell line, GSH was tested at three different levels (3, 10 and 30 mM). GSH 

solutions were loaded on the apical transwell chambers and from 15 to 240 min contact 

time, samples were collected from the basal compartments. GSH determination and 

Papp coefficient were performed as previously reported (see section 6.2). Yee (1997) 

classified compounds as poorly absorbed (0-20%) when Papp < 1 x 10-6 cm/s, 

moderately absorbed (20-70%) when Papp = 1-10 x 10-6 cm/s and well absorbed (70-

100%) when Papp > 10 x 10-6 cm/s. Results reported in Fig. 6.8 showed that GSH, at the 

3 levels, is poorly absorbed, having an apparent permeability around 1x10-6 cm/s, that 
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correspond to a percentage of GSH transported at 120 min of 1.83±0.05 when GSH 3 

mM was employed, 2.28±0.15 with GSH 10 mM and 2.00±0.01 with GSH 30 mM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.8. Apparent permeability (Papp) of GSH at 3 (A), 10 (B) and 30 (C) mM calculated 

employing Caco-2 cell line.  
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Using co-cultures of Caco-2 and HT29-MTX (ratio 50:50 and 70:30), the apparent 

permeability of 10 mM GSH was evaluated. Again, results reported in Fig. 6.9 showed 

that GSH is poorly absorbed in both the co-culture cell employed, having an apparent 

permeability < 1x10-6 cm/s. The percentage of GSH 10 mM transported at 120 min in co-

cultures experiments were found 1.23±0.15 with ratio 50:50 and 1.73±0.21 with ratio 

70:30.   

The obtained Papp coefficients, calculated employing different cell cultures, were 

found of the same order and no significant differences were evidenced between Caco-2 

cell and co-cultures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9. Apparent permeability (Papp) of GSH at 10 mM calculated employing co-culture of 

Caco-2 and HT29-MTX at ratio 70:30 (A) and 50:50 (B). 
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From the obtained data, GSH transported in 120 min both employing Caco-2 cells and 

co-coltures was about 2%. Again data confirm that GSH is a poorly absorbed 

compound. 

GSH transport  

Further GSH transport trials through the intestinal epithelium were carried out with 

the Caco-2 cell line model and co-cultures of Caco-2:HT29-MTX (ratios 50:50 and 

70:30). GSH standard solution, tested at three different levels (3, 10 and 30 mM) or 

enriched-yeast samples (Yeast-A and Yeast-B, characterized by GSH level of about 3 

mM) were loaded on the apical transwell chamber. At the end of exposure (120 min), 

samples were collected from the apical and basal compartments and GSH content was 

evaluated. Data related to the percentage of GSH transported (%) from the apical to the 

basal chamber at final time of 120 min are reported in Tab. 6.1 (data are mean of three 

replicates). 

Table 6.1. GSH transported (expressed as %) after 120 min from the apical to the basal chamber. 

 

Results showed that GSH transport from the upper to the basal compartment in 120 

min is low, either when present in form of a standard GSH solution (between 2.10 and 

2.33 %) and as enriched yeast (Yeast A 1.11 % and Yeast B 1.23 %). Nevertheless, it 

must be noted that in co-cultures, more similar that the monoculture of Caco-2 to the in 

vivo system, GSH transport was found higher than in Caco-2 cell line. 

Antioxidant effect of GSH in intestinal epithelial cells 

In this set of trials the possible protective role of GSH and GSH-enriched yeast on 

Caco-2 cells against oxidative stress was evaluated, studying cell viability with 

resazurin. The tested combinations were as follows: 

Cell line 
 GSH Transport (%) 

GSH (3 mM) GSH (10 mM) GSH (30 mM) Yeast-A Yeast-B 

Caco-2 2.16±0.06 2.33±0.18 2.10±0.13 1.11±0.11 1.23±0.05 

Co-culture 

70:30 
3.25±0.31 3.35±0.33 3.82±0.06 4.16±0.31 3.92±0.36 

Co-culture 

50:50 
6.96±0.40 7.58±0.25 6.68±0.23 5.20±0.53 7.93±0.84 
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i. Cells, not added with GSH or GSH-enriched yeast, treated with 2-10-20 mM 

H2O2. 

ii. Cells added with standard GSH (3, 10 and 30 mM), and then treated with 2-10-

20 mM H2O2. Trials should investigate any GSH protective role (as standard 

solution) on cells exposed to H2O2. A control trial was also set up with cells not 

treated with H2O2. 

iii. Cells added with GSH-enriched yeast (Yeast A or B) and then treated with 2-

10-20 mM H2O2. Trials should investigate any protective role of GSH-enriched 

yeasts, on cells exposed to H2O2. A control trial was also set up with cells not 

treated with H2O2.  

 

Figure 6.10. Viability of Caco-2 cells after H2O2 different dose exposure (2-10-20 mM), measured 

using resazurin. 

Results reported in Fig. 6.10 showed that Caco-2 cells viability decreased after H2O2 

exposure, and that this decrease is concentration dependent. In fact employing  2 mM 

H2O2 cells viability was 85.77±4.22%, with 10 mM viability decreased to 68.02±4.98% 

and with 20 mM H2O2 there was a viability decrease to  51.68±2.60%. 

Relating to Caco-2 cells added with GSH aquose solution before H2O2 exposure (Fig. 

6.11), when H2O2 was employed at 2 and 10 mM, cell viability reduction was similar to 

those obtained in control sample (non added with GSH). On the contrary, cell viability 

reduction was significantly lower in samples where H2O2 was present in high 

concentration (20 mM) and in these trials the GSH protective role was evident: the cell 

viability reduction of samples added with GSH 3-10 mM was found lower then those 

0

25

50

75

100

125

no H2O2 H2O2 2 mM H2O2 10 mM H2O2 20 mM

C
el

l 
v

ia
b

il
it

y
 (

%
 o

f 
co

n
tr

o
l)

 

  no H2O2            H2O2 2 mM          H2O2 10 mM       H2O2 20 mM 



130 

 

obtained with control cells untreated with GSH (about 65% and 59% for GSH 3 mM 

and 10 mM respectively, 52% for control without GSH addition).  

To be noted that the addition of 30 mM GSH to cell line caused a general decrease of 

cells viability, even when H2O2 was not added (from 69.74±0.25% for control to 

37.30±4.21% in presence of 20 mM H2O2). 

 

 

Figure 6.11. Viability of Caco-2 cells after 1h treatment with GSH (3, 10 and 30 mM) and 

subsequent H2O2 different dose exposure (2-10-20 mM), measured using resazurin. 

 

Fig. 6.12 reports the results obtained by adding GSH-enriched yeasts (1 h contact time), 

before H2O2 addition; for comparison purposes a pre-treatment with 3 mM standard 

GSH solution was set up. Results showed that GSH-enriched yeasts pre-treatment did 

not negatively affect cells untreated with H2O2. Moreover, Yeast A pre-treatment 

increaseed cells viability up to to 119.41±3.07, probably not only for the GSH content 

but also because of the presence of other yeast components, such as vitamins...  

When H2O2 was added, Yeast A and Yeast B protected cells viability reduction much 

more than the equivalent GSH standard 3 mM. In particular, when 2-10 mM H2O2 was 

added, cell viability with yeast pre-treatment was about 94-98% (vs 69-86% of the 

control), and when 20 mM H2O2 was added, viability was found 70-76% (vs 52% of the 

control). 
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Figure 6.12. Viability of Caco-2 cells (measured using resazurin) after 1 h treatment with 3 mM 

GSH or GSH-enriched yeast (Yeast A and B) and subsequent addition of 2-10-20 mM H2O2. 

 

6.4 Conclusions 

From an overlook of the results it can be concluded that gastrointestinal static 

digestion does not negatively affect GSH levels and only induces a limited oxidation 

(10-25%); thus, at least 75% of the hypothetical GSH ingested should arrive at 

gastrointestinal lumen for its absorption in the reduced form. The use of a lyophilised 

GSH-enriched biomass is crucial because the lyophilisation process contributes to GSH 

bioaccessibility. In fact lyophilised yeast cells have a damaged structure and their 

intracellular content, comprising GSH, can be readily solubilized in the medium. 

Regarding GSH transport and Papp coefficient evaluation in model systems, results 

showed that GSH is poorly absorbed, having an apparent permeability around 1x10-6 

cm/s in all the tested conditions (Caco-2, co-culture Caco-2: HT29-MTX at ratios 70:30 

and 50:50). Although in a context of a limited absorption, the highest GSH transport 

was obtained at final time (2 h) in the co-culture Caco-2:HT29-MTX 50:50. Further 

studies should be performed both in vitro and in vivo for elucidating how GSH is 

transported and in which proportion is transported intact or degraded into its 

constituent amino acids. 

Important results were obtained in experiments regarding the protective effect of GSH 

in intestinal cells exposed to an inducer of oxidative stress (H2O2). Cell viability 
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reduction was lower in samples added with GSH when employing H2O2 at high 

concentration (10-20 mM); moreover the use of Yeast A and Yeast B was found to 

prevent cells viability reduction much more than the equivalent standard GSH (3 mM). 

In conclusion even if GSH can be considered a poorly absorbed compound, and a 

limited amount of the ingested GSH can reach the systemic circulation, however the 

ingested GSH, especially GSH-enriched biomass, could protect intestinal cells, 

particularly during oxidative stress conditions. Thus, ingested GSH may have a local 

effect acting together with the GSH coming from the biliary efflux, for important 

functions in the intestine, i.e. detoxification of fatty-acid hydroperoxides in intestinal 

epithelium, maintainance of the luminal thiol-disulfide balance and absorption of iron 

and other trace elements (Valencia et al., 2001). 
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