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HYPERCANONICITY, EXTENSIVE CANONICITY,
CANONICITY AND STRONG COMPLETENESS OF

INTERMEDIATE PROPOSITIONAL LOGICS

A b s t r a c t. Canonicity and strong completeness are well-established
notions in the literature of intermediate propositional logics. Here we
propose a more refined classification about canonicity distinguishing
some subtypes of canonicity, we call hypercanonicity and extensive
canonicity. We provide some semantical criteria for the classification
of logics according to these notions and we provide applications to the
logics in one variable, the logics in one variable with bounded depth,
Medvedev logic and the logic of rhombuses.

1. Introduction

Canonicity and strong completeness are well-established notions in the
literature of propositional modal logics (see for instance [5]) and interme-
diate propositional logics (see [3]). Indeed, canonicity implies strong com-
pleteness and strong completeness implies Kripke completeness, while the
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converse of both implications does not hold [2, 20]; thus, such notions play a
central role as concerns the relationships between the syntactical apparatus
of a logic and its semantical counterpart. In the present paper we investi-
gate some questions related to the canonicity and strong completeness of
intermediate propositional logics; the techniques here developed are quite
general and we think they can be easily applied to modal logics, temporal
logics and whenever Kripke semantics is adopted.

We follow and integrate the ideas explained in [10] where an original ap-
proach in the treatment of the subject is proposed. To exemplify, according
to the standard definition, a logic L is canonical if the canonical model of L
is based on a frame for L; equivalently, L is canonical if any Kripke modelK
of L such that (i)K is well separable and (ii)K is full is based on a frame for
L (see Section 2). Roughly speaking, well separability of a model K refers
to the fact that any two points of K can be distinguished by a formula; K is
full if, for every point α of K, for every saturated set ∆ (i.e., a consistent set
of formulas closed under INT-provability and disjunction) containing the
formulas forced in α, there is a point β ≥ α which forces exactly the formu-
las in ∆. As pointed out in [10], in many cases the proof of canonicity of a
logic L can be carried out using weaker properties than the properties (i)
and (ii) mentioned in the definition. This suggests that we can refine the
notion of canonicity, distinguishing some kinds of “subcanonicity”; thus,
following [10], we introduce the stronger notions of hypercanonicity and
extensive canonicity (see Section 3). This does not exhaust the possible
cases and other subclasses may be introduced; for instance, the notions
of Df-persistence and R-persistence investigated in literature (e.g., [2, 18])
fall within this classification; more precisely, Df-persistence is a stronger
notion than hypercanonicity, R-persistence strengthens extensive canoni-
city (see Section 8). On the other hand, we are not interested in a such a
detailed analysis; we think that the relevant gap is between the extensively
canonical logics and the “simple” canonical logics which are not extensively
canonical. For such logics, in the proof of canonicity the fullness hypothesis
cannot be avoided; this means that the proof may be rather involved and
strong mathematical principles must be used (see, for instance, the proof
of Theorem 5.12 and the subsequent discussion).

In our systematic approach, we introduce some simple criteria for hy-
percanonicity, extensive canonicity, canonicity (Section 3) and strong com-
pleteness (Section 4) of intermediate propositional logics. These criteria are
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especially useful when, in classifying logics, negative results are required;
indeed, they turn out to be general (and easily manageable) tools to build
“counterexamples”. Our approach is quite different from [10]: while in the
quoted paper the authors use algebraic-categorical tools, we directly act on
kripkean semantics, using techniques more inspired to the classical Model
Theory. We point out that our canonicity criterion is formally similar to
the one in [10], while our strong completeness criterion is more general
than [10]; the hypercanonicity and extensive canonicity criteria are new.

The most interesting application regards the class of logics in one vari-
able, that is, superintuitionistic logics having as extra axiom a formula
containing only one propositional variable (see Section 5). In [10] the fol-
lowing significant result is proved: all the intermediate logics with extra
axioms in one variable, except four, are not strongly complete1. Here we
supplement this result, giving a more refined classification of this family
of logics; moreover, we also take into account the family of logics in one
variable having models with bounded depth. Finally, we give other original
applications to Medvedev logic MV (Section 6, where it is proved that MV
is not extensively canonical) and to the so called logic of rhombuses RH
(Section 7, where the non canonicity of RH is shown).

For a more comprehensive exposition of the subject, the reader is re-
ferred to [8].

2. Preliminary definitions

As usual, a (Kripke) frame is a pair P = 〈P,≤〉 consisting of a nonempty
set P and a partial order ≤ on P , i.e., P is a partially ordered set (poset).
The elements of P are called the points of the frame P and α ≤ β is read as
“β is accessible from α” or “α sees β”. We write α < β to mean that α ≤ β

and α �= β; we also use the notations β ≥ α and β > α as a synonymous
of α ≤ β and α < β respectively. A subframe of P is a frame P ′ = 〈P ′,≤′〉
obtained by considering a subset P ′ of P and the restriction ≤′ of ≤ to P ′;
the subframe is said to be a generated subframe iff P ′ is upward closed. If α
is a point of P , the cone Pα of P is the generated subframe of P obtained

1The author has also proved a stronger result [9]: all the intermediate logics with

extra axioms in one variable, except eight, are not strongly ω-complete, where strong ω-

completeness is strong completeness relativized to languages generated by finite sets of

propositional variables.
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by considering α and all the points accessible from α.
A point β is an immediate successor of α if α < β and, for all points

γ of P such that α ≤ γ ≤ β, we have either γ = α or γ = β. A final
point of a frame P = 〈P,≤〉 is a maximal point of P ; Fin(α) denotes
the set of all the final points accessible from α. We say that α has depth
n (and we write depth(α) = n) if n is the maximum length of a chain
of points starting from α (namely, there is a sequence of n points of P
α1 ≡ α < α2 < · · · < αn and any other sequence of this kind contains at
most n points). Clearly, a final point has depth 1. The depth of a frame P
is the maximum between the depths of the points of P . With the notation
P = 〈P,≤, ρ〉, we put into evidence the root ρ of P (i.e., ρ is the minimum
point of P ). In the sequel, we will assume to fix a propositional language
LV , containing the propositional connectives ∧,∨,→,¬ and a numerable set
of propositional variables V. The formulas of LV are defined in the usual
way; given a formula A, Var(A) denotes the (finite) set of propositional
variables occurring in A and, if Var(A) ⊆ V (where V ⊆ V), we say that
A is a V -formula. A substitution σ is a map from V to the formulas of LV ;
σA denotes the formula obtained by replacing every propositional variable
p occurring in A with the formula σp.

Let P = 〈P,≤〉 be a frame; a Kripke model K = 〈P,≤,�〉 is obtained by
defining a forcing relation � between any point α of P and any propositional
variable p of V, in such a way that α � p and α ≤ β imply β � p; the forcing
relation is extended to all the formulas of LV in the usual way. When
K = 〈P,≤,�〉, we say that K is based on the frame P = 〈P,≤〉 and that
P is the (underlying) frame of K. Submodels, generated submodels and
cones of models are defined similarly to subframes, generated subframes
and cones of frames. Given a model K = 〈P,≤,�〉 and α ∈ P , ΓK(α) (or
simply Γ(α) if the context is clear) denotes the set of the formulas forced
in α. If V is a set of propositional variables, ΓV

K(α) (or simply ΓV (α) if the
context is clear) denotes the set of V -formulas forced in α.

We say that a formula A is valid in K (and we write K |= A) iff α � A

for all α ∈ P ; a set of formulas ∆ is valid in K (and we write K |= ∆) iff
K |= A for every A ∈ ∆ (in this case we also say that K is a model of ∆).

We say that a formula A is valid in a frame P (and we write P |= A) iff
K |= A for every Kripke model K based on P ; P |= ∆ iff P |= A for every
A ∈ ∆.

Let Γ and ∆ be two sets of formulas and let F be a class of frames. We
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say that ∆ is a consequence of Γ w.r.t. F , and we write Γ |=F ∆, iff, for
all models K = 〈P,≤,�〉 based on the frames of F and all α ∈ P , it holds
that:

α � A for all A ∈ Γ =⇒ α � B for some B ∈ ∆.

We denote by Int and Cl the propositional intuitionistic logic and the
propositional classical logic respectively. An intermediate propositional
logic L in the language LV is any set L of formulas of the language LV
such that Int ⊆ L ⊆ Cl, L is closed under modus ponens and L is
closed under substitutions (i.e., A ∈ L implies σA ∈ L, for every sub-
stitution σ). Given a set V of propositional variables (contained in the set
V), LV denotes the set of V -formulas of L (note that LV satisfies all the
properties of an intermediate logic with respect to the restricted language
LV ). For any two sets of formulas Γ and ∆, with Γ 
L ∆ we mean that
there are some formulas A1, . . . , An in Γ and B1, . . . , Bm in ∆ such that
A1 ∧ · · · ∧An→B1 ∨ · · · ∨Bm ∈ L; 
L A means A ∈ L.

In the sequel, we will adopt essentially two ways to define intermediate
logics. Let ∆ be any set of formulas such that ∆ ⊆ Cl; then Int + ∆
denotes the intermediate logic L which coincides with the closure of the
set of formulas Int ∪ ∆ with respect to modus ponens and substitutions.
The formulas in ∆ are called additional or extra axioms of L (over Int).
If ∆ = {A1, . . . , An}, we write also Int+A1 + · · ·+An instead of Int+ ∆.
If a logic L can be represented as Int + ∆ with ∆ finite, we say that L is
finitely axiomatizable. Given any two intermediate logics L1 and L2, L1+L2

denotes the union of L1 with L2, which is the smallest intermediate logic
including both L1 and L2.

From a semantical viewpoint, we can define an intermediate logic start-
ing from a nonempty class of frames F . As a matter of fact, let us consider
the set:

L(F) = {A : for all P = 〈P,≤〉 ∈ F , P |= A}.

Then, it is well known that L(F) is an intermediate propositional logic;
we call it the logic of F . Whenever L = L(F), the logic L is said to be
characterized (or described) by the class of frames F . If P = 〈P,≤〉 is a
frame for a logic L, then any proper generated subframe of P is a frame
for L; in some cases also the converse holds. For instance, let us say that a
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frame P = 〈P,≤, ρ〉 has the filter property if, for every α, β ∈ P s.t. ρ < α

and ρ < β, there is γ ∈ P such that ρ < γ < α and ρ < γ < β. Then, the
following property holds.

Proposition 2.1. Let L be an intermediate logic, let P = 〈P,≤, ρ〉 be
a frame which has the filter property and suppose that every proper cone of
P is a frame for L. Then P is a frame for L.

Let P = 〈P,≤〉 and P ′ = 〈P ′,≤′〉 be any two frames; a p-morphism
from P onto P ′ is a surjective map f : P→P ′ such that:

- f is order preserving.

- f is open. This means: for every α ∈ P and β′ ∈ P ′, if f(α) ≤′ β′,
then there is β ∈ P such that α ≤ β and f(β) = β′.

Let K = 〈P,≤,�〉 and K ′ = 〈P ′,≤′,�′〉 be any two Kripke models and let
V be a set of propositional variables. We say that f is a V p-morphism
from K onto K ′ iff:

- f is a p-morphism from P onto P ′;

- for every p ∈ V and α ∈ P , α � p iff h(α) �′ p (hence ΓV
K(α) =

ΓV
K′(f(α))).

A set of formulas ∆ is a L -saturated set (in the language LV) if and only
if:

(i) ∆ is consistent (i.e., it is not the case that, for some formulaA, ∆ 
L A

and ∆ 
L ¬A);

(ii) ∆ 
L A (where A ∈ LV) implies A ∈ ∆;

(iii) A ∨B ∈ ∆ implies either A ∈ ∆ or B ∈ ∆.

If L is omitted, it is understood that ∆ is an Int-saturated set. The defini-
tion of L, V -saturated set is the relativisation of the definition of saturated
set with respect to V -formulas; namely, we take into account only the for-
mulas of the language LV . Note that the set of V -formulas of a L-saturated
set ∆ is a L, V -saturated set. We remark that, given a model K and a point
α of K, ΓK(α) is a saturated set and ΓV

K(α) is a V -saturated set. We say
that a saturated set ∆ is realized in K if ∆ = ΓK(α) for some point α of
K (similar definition for V -saturated sets). We now recall an important
lemma about saturated sets (see [3]).
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Lemma 2.2 (Inclusion-exclusion Lemma). Let L be an intermedi-
ate logic and let Γ and ∆ be two sets of formulas such that Γ �
L ∆. Then
there is a L-saturated set Γ∗ such that Γ ⊆ Γ∗ and Γ∗ ∩ ∆ = ∅.

We introduce some natural definitions related to the separability of the
points of a Kripke model by means of formulas (see also [10]).

Definition 2.3. Let K = 〈P,≤,�〉 be any Kripke model and let V be
a set of propositional variables.

(a) K is (simply) separable iff, for every α, β ∈ P , ΓK(α) = ΓK(β) implies
α = β.

(b) K is (simply) V -separable iff, for every α, β ∈ P , ΓV
K(α) = ΓV

K(β)
implies α = β.

(c) K is well separable iff, for every α, β ∈ P , ΓK(α) ⊆ ΓK(β) implies
α ≤ β.

(d) K is well V -separable iff, for every α, β ∈ P , ΓV
K(α) ⊆ ΓV

K(β) implies
α ≤ β.

(e) K is full iff, for every α ∈ P and every saturated set ∆ such that
ΓK(α) ⊆ ∆, there is β ≥ α such that ΓK(β) = ∆.

(f) K is V -full iff, for every α ∈ P and every V -saturated set ∆V such
that ΓV

K(α) ⊆ ∆V , there is β ≥ α such that ΓV
K(β) = ∆V .

We remark that in literature (for instance in [3]) separable models are
also called differentiated or distinguishable, well separable models are called
refined models, and full separable models correspond to descriptive general
frames. It is immediate to see that models which are both V -separable and
V -full are also well V -separable; similarly, separable and full models are
also well separable.
We conclude by reporting some useful properties of finite Kripke models
(i.e., Kripke models having finitely many points).

Lemma 2.4. Let K = 〈P,≤,�〉 be a finite model, let V be a set of
propositional variables, and let K ′ = 〈P ′,≤′,�′〉 be a Kripke model (possibly
K ′ = K); let α ∈ P and α′ ∈ P ′ be such that ΓV

K(α) = ΓV
K′(α′), and let ∆V

be a V -saturated set such that ΓV
K′(α′) ⊆ ∆V . Then there is β′ ∈ P ′ such

that α′ ≤′ β′ and ΓV
K′(β′) = ∆V .
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Proof. By the finiteness of K, we can find a finite set of V -formulas Σ
such that, for every V -formulaH, there is A ∈ Σ such that α � A↔ H. Let
us assume that Σ = {A1, . . . , Am, B1, . . . , Bl}, where A1 ∈ ∆V , . . . , Am ∈
∆V , B1 �∈ ∆V , . . . , Bl �∈ ∆V . By definition of V -saturated set, it follows
that the V -formula Z = A1 ∧ · · · ∧ Am → B1 ∨ · · · ∨ Bl does not belong
to ∆V , hence α′ ��′ Z. This implies that there is β′ ∈ P ′ such that α′ ≤′

β′, β′ �′ A1, . . . , β
′ �′ Am and β′ ��′ B1, . . . , β

′ ��′ Bl. We show that
ΓV

K′(β′) = ∆V . Let H ∈ ∆V ; then, for some 1 ≤ i ≤ m, α � H ↔ Ai,
hence α′ �′ H ↔ Ai. Since β′ �′ Ai, it follows that β′ �′ H. Likewise we
can show that ΓV

K′(β′) ⊆ ∆V ; thus ΓV
K′(β′) = ∆V . �

Taking K = K ′, it is immediately proved that:

Proposition 2.5. Let K = 〈P,≤,�〉 be a finite model and let V be any
set of propositional variables. Then K is V -full.

In particular, taking as V the set of all the propositional variables, we
also get that K is full; this implies that, if in addition K is separable
(V -separable), then K is well separable (well V -separable). Taking into
account all these facts, it follows that:

Proposition 2.6. Let K = 〈P,≤, ρ,�〉 be a finite V -separable model
(where V is any set of propositional variables) and let K ′ = 〈P ′,≤′, ρ′,�′〉
be any Kripke model such that ΓV

K(ρ) = ΓV
K′(ρ′). Let h be a map from

the points of K ′ to the points of K such that h(α′) = α if and only if
ΓV

K′(α′) = ΓV
K(α). Then h is a V p-morphism from K ′ onto K.

Finally, we recall the following well-known property of finite models:

Proposition 2.7. Let L be an intermediate logic and let K = 〈P,≤,�〉
be a finite separable model of L. Then K is based on a frame for L.

3. Canonicity

We introduce the main notions of the paper, which refer to the relationships
between the syntactical and the semantical aspects of a logic. Let L be any
intermediate propositional logic; a frame P = 〈P,≤〉 is said to be a frame
for L if P |= L; Fr(L) denotes the (nonempty) class of the frames for L.
From the definition, it immediately follows that:
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- L ⊆ L(Fr(L));

- Γ 
L ∆ implies Γ |=Fr(L) ∆, for every sets of formulas Γ and ∆.

The converse need not be true, so the following definitions of completeness
are justified.

Definition 3.1. Let L be any intermediate logic. Then:
(a) L is complete (or has Kripke semantics) iff L = L(Fr(L)).
(b) L is strongly complete iff, for any two sets of formulas Γ and ∆, it holds
that:

Γ 
L ∆ ⇐⇒ Γ |=Fr(L) ∆.

We remark that, if we impose ∆ and Γ to be finite, (a) and (b) are equiva-
lent. An equivalent definition of strong completeness is stated in the next
proposition.

Proposition 3.2. Let L be any intermediate logic; L is strongly com-
plete if and only if every L-saturated set ∆ is realized in some (non neces-
sarily separable) Kripke model based on a frame for L.

In our investigation about Kripke completeness, there is no use consid-
ering the class of all frames. Let us say that a frame P = 〈P,≤〉 (a model
K = 〈P,≤,�〉) has enough final points iff, for every α ∈ P , Fin(α) �= ∅. We
point out that a full model K always has enough final points (for α ∈ P ,
take, by Zorn Lemma, a maximal saturated set Φ s.t. ΓK(α) ⊆ Φ; then, the
point β ∈ P such that α ≤ β and ΓK(β) = Φ is final). In [6] the following
fact is proved:

Proposition 3.3. Let F be any class of frames. Then there is a class
FF in, containing only frames with enough final points, such that L(F) =
L(FF in).

It follows that a logic L has Kripke semantics iff L is characterized by some
nonempty class of frames with enough final points. Therefore, there is no
loss of generality if we assume:

Assumption 3.4. All Kripke frames (models) we deal with have enough
final points.
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Notice that the standard tools used in proving the completeness of a logic
(via canonicity, by means of filtration techniques) actually refer to classes
of frames with enough final points.

We can introduce the notion of canonicity as follows (see also [10]).

Definition 3.5 (Canonicity). A logic L is said to be canonical if and
only if every separable and full model of L is based on a frame for L.

As an immediate consequence of the definition, a canonical logic is strongly
complete. As usual, the canonical model CL = 〈PL,≤,�〉 of a logic L is the
Kripke model such that:

- PL is the set of all the L-saturated sets;

- ≤ coincides with the inclusion between sets;

- for every propositional variable p and every ∆ ∈ PL, ∆ � p iff p ∈ ∆.

Using the Inclusion-exclusion Lemma, one can prove that the last condi-
tion holds for all formulas. Clearly, CL is a full model of L, even better, it
contains (up to isomorphisms), as generated submodels, all the full models
of L. Thus, denoting with PL the frame of CL, we can state that L is cano-
nical iff PL is a frame for L, which corresponds to the standard definition
of canonicity. By the above definitions, it immediately follows that:

canonicity =⇒ strong completeness =⇒ (Kripke) completeness

We stress that the converse of both implications does not hold. As a matter
of fact, we will see infinitely many examples of complete logics which are
not strongly complete; examples of strongly complete logics which are not
canonical can be found in [20]. Finally, we recall two important results
about canonicity (see [3]).

Theorem 3.6. If a logic L is axiomatized by disjunction free axioms,
then L is canonical.

Theorem 3.7 (Fine, van Benthem). If a logic L is characterized by
a first-order definable class of frames, then L is canonical.

In proofs of canonicity, not all the properties quoted in Definition 3.5
are used. According to [10], we propose a finer classification of canonical
logics based on the possibility of weakening the requirements to be satisfied
by the models K without affecting canonicity.
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Definition 3.8. Let L be any intermediate logic.

(a) L is hypercanonical iff the underlying frame of any separable Kripke
model (with enough final points) of L is a frame for L.

(b) L is extensively canonical iff the underlying frame of any well sep-
arable Kripke model (with enough final points) of L is a frame for
L.

We postpone to Section 8 the definition of other classes of subcanonicity.
Now, we introduce the key notion of chain of frames. Let, for every

n ≥ 1, Pn = 〈Pn,≤n〉 be a frame; we say that C = {Pn, fn}n≥1 is a chain
of frames if, for every n ≥ 1, fn is a p-morphism from Pn+1 onto Pn. We
now define four different notions of limit of a chain. Let P = 〈P,≤〉 be any
frame and let, for each n ≥ 1, hn be a p-morphism from P onto Pn.

(1) We say that P is a weak limit of C with projections {hn}n≥1 iff the
p-morphisms hn commute with the p-morphisms fn (i.e., hn = fn ◦
hn+1).

This property can be represented by the commutative diagram in Figure 1.
We call hn the projection of P onto Pn.

�

P 1 f1
�

P 2� f2
�

P 3� � � �

� � �

�

P
�������������

h1

�
�

�
�

���

h2

�

h3

Figure 1: Diagram of a chain of frames

(2) We say that P is a separable weak limit of C with projections {hn}n≥1

iff:
- P is a weak limit of C with projections {hn}n≥1;
- for every α, β ∈ P , if, for all n ≥ 1, hn(α) = hn(β), then α = β.

(3) We say that P is a well separable weak limit of C with projections
{hn}n≥1 iff:
- P is a weak limit of C with projections {hn}n≥1;
- for every α, β ∈ P , if, for all n ≥ 1, hn(α) ≤n hn(β), then α ≤ β.
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(4) We say that P is a limit of C with projections {hn}n≥1 iff:
- P is a well separable limit of C with projections {hn}n≥1;
- for every α1 ∈ P1, . . . , αn ∈ Pn . . . , if, for all n ≥ 1, αn = fn(αn+1),
then there is α ∈ P such that hn(α) = αn for every n ≥ 1.

Clearly, each definition is a proper refinement of the previous one; moreover,
the limit of a chain is uniquely determined (up to isomorphisms), as proved
in the next proposition.

Proposition 3.9. Let C = {Pn, fn}n≥1 be a chain of frames Pn =
〈Pn,≤n〉. Then C has one and only one limit (up to isomorphisms).

Proof. To prove the existence of at least one limit, let us define the
frame P ∗ = 〈P ∗,≤∗〉 as follows:

- P ∗ = {α∗ = 〈α1, α2, . . . 〉 : for every n ≥ 1, αn ∈ Pn and αn = fn(αn+1)};
- 〈α1, α2, . . . 〉 ≤∗ 〈β1, β2, . . . 〉 iff, for every n ≥ 1, αn ≤n βn.

It is easy to see that P ∗ is a limit of C having, as projections, the maps
h∗n such that h∗n(〈α1, . . . , αn, . . . 〉) = αn. Suppose now that P ′ and P ′′ are
two distinct limits of C with projections {h′n}n≥1 and {h′′n}n≥1 respectively.
Let us define a map g from P ′ to P ′′ in the following way:

g(α′) = α′′ iff h′n(α′) = h′′n(α′′) for every n ≥ 1 .

Then g is an isomorphism between P ′ and P ′′, and this completes the
proof. �

Hereafter we assume that the limit of a chain is defined as in the proof
of the previous proposition. Now, we pass to define a chain of Kripke
models, which is a natural generalization of the chain of frames. Let C =
{Pn, fn}n≥1 be a chain of frames and let V1 ⊆ V2 ⊆ · · · ⊆ Vn · · · be a
sequence of sets of propositional variables such that

⋃
n≥1 Vn coincides with

the set of all the variables of the language. Then CK = {Kn, Vn, fn}n≥1 is
a chain of models if, for every n ≥ 1, it holds that:

- Kn = 〈Pn,≤n,�n〉 is a Vn-separable model based on the frame Pn;

- fn is a Vn p-morphism from Kn+1 onto Kn.

The latter condition implies that, for every α ∈ Pn+1,

ΓVn
Kn+1

(α) = ΓVn
Kn

(fn(α));
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this means that, passing from α′ ∈ Pn to any preimage of α′ with respect
to fn, the forcing of the Vn-formulas does not change. The chain of frames
associated with CK is the chain C = {Pn, fn}n≥1, where Pn is the frame of
Kn. We can extend the notions of limit of a chain of frames to the case of
chains of models. Let CK = {Kn, Vn, fn}n≥1 be a chain of models, let C be
the chain of frames associated with CK , let K = 〈P,≤,�〉 be any Kripke
model and let P = 〈P,≤〉.

(1) We say that K is a weak limit of CK with projections {hn}n≥1 iff:
- P is a weak limit of C with projections {hn}n≥1;
- hn is a Vn p-morphism from K onto Kn.

(2) We say that K is a separable weak limit of CK with projections {hn}n≥1

iff:
- P is a separable weak limit of C with projections {hn}n≥1;
- hn is a Vn p-morphism from K onto Kn.

(3) We say that K is a well separable weak limit of CK with projections
{hn}n≥1 iff:
- P is a well separable weak limit of C with projections {hn}n≥1;
- hn is a Vn p-morphism from K onto Kn.

(4) We say that K is a limit of CK with projections {hn}n≥1 iff:
- P is a limit of C;
- hn is a Vn p-morphism from K onto Kn.

Proposition 3.10. Let CK = {Kn, Vn, fn}n≥1 be a chain of models and
let K = 〈P,≤,�〉 be a weak limit of CK having projections {hn}n≥1. Then,
for every α ∈ P , it holds that:
(i) ΓVn

K (α) = ΓVn
Kn

(hn(α)), for every n ≥ 1.

(ii) ΓK(α) =
⋃

n≥1 ΓVn
Kn

(hn(α)).

Thus, the modelKn of a chain CK can be viewed as a sort of approximation,
up to the Vn-formulas, of any weak limit of CK . Let CK be a chain of models
and let P = 〈P,≤〉 be a weak limit with projections {hn}n≥1 of the chain of
frames C associated with CK ; then the weak limitK = 〈P,≤,�〉 of CK based
on P and having the same projections {hn}n≥1 is uniquely determined by
the following condition:

for every p ∈ Vn, α � p iff hn(α) �n p
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One can easily check that the above condition actually defines a forcing
relation; in particular, the limit of a chain of models is unique up to iso-
morphisms. Note that, choosing different projections, we obtain different
forcing relations. We now study the properties of the models of CK which
are preserved in weak limits.

Proposition 3.11. Let L be an intermediate logic and let CK = {Kn,
Vn, fn}n≥1 be a chain of models Kn of L.
(i) Every weak limit of CK is a model of L.
(ii) Every separable weak limit of CK is a separable model of L.
(iii) If, for every n ≥ 1, Kn is well Vn-separable, then every well separable
weak limit of CK is a well separable model of L.
(iv) If, for every n ≥ 1, Kn is Vn-full, then the limit K∗ = 〈P ∗,≤∗,�∗〉 of
CK is a separable and full model of L.

Proof. (i) Let K = 〈P,≤,�〉 be a weak limit of CK having projections
{hn}n≥1. Let us take any formula A of L and any point α of P . Let n ≥ 1
be such that Var(A) ⊆ Vn; since hn(α) �n A and ΓVn

K (α) = ΓVn
Kn

(hn(α)), it
follows that α � A, hence K is a model of L.
(ii) Let K = 〈P,≤,�〉 be a separable weak limit of CK having projections
{hn}n≥1. By (i) K is a model of L. To prove the separability, let α, β ∈ P

be such that ΓK(α) = ΓK(β). Then, for every n ≥ 1, ΓVn
K (α) = ΓVn

K (β),
hence ΓVn

Kn
(hn(α)) = ΓVn

Kn
(hn(β)). Since, by definition of CK , Kn is Vn-

separable, we have that hn(α) = hn(β) for every n ≥ 1; by definition of
separable weak limit, it follows that α = β.
(iii) It is proved as (ii).
(iv) By (ii) K∗ is a separable model of L. To prove the fullness, let α∗ =
〈α1, α2, . . . 〉 be a point of K∗ and let ∆ be any saturated set such that
ΓK∗(α∗) ⊆ ∆. Let, for every n ≥ 1, ∆n be the set of all the Vn-formulas
of ∆. Then, for every n ≥ 1, ΓVn

K∗(α∗) ⊆ ∆n, that is ΓVn
Kn

(αn) ⊆ ∆n.
Since ∆n is a Vn-saturated set and Kn is Vn-full, there is βn ∈ Pn such
that αn ≤n βn and ΓVn

Kn
(βn) = ∆n; moreover, since ΓVn

Kn+1
(βn+1) = ∆n =

ΓVn
Kn

(βn) and Kn is Vn-separable, it holds that βn = fn(βn+1). Therefore,
β∗ = 〈β1, . . . , βn, . . . 〉 is a point of P ∗ such that α∗ ≤∗ β∗. We have:

ΓK∗(β∗) =
⋃

n≥1

ΓVn
Kn

(βn) =
⋃

n≥1

∆n = ∆

and this proves the fullness of K∗. �
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Note that (iv) can be used to build “big” full models. Indeed, when we
are concerned with finite models, no problems arise, since finite models
are also full. On the other hand, when we deal with an infinite model
K = 〈P,≤, ρ,�〉, it is not trivial to check that K contains points in cor-
respondence of all the saturated sets containing ΓK(ρ). Point (iv) of the
previous proposition allows us to get over the difficulty, at least when the
full model K can be approximated by means of finite models Kn. To com-
plete the picture, we point out that weak limits (and also limits) do not
preserve, in general, the first-order properties valid in all the frames of a
chain, as we will see later.

Now we formulate some criteria for hypercanonicity, extensive canoni-
city and canonicity respectively.

Theorem 3.12 (Hypercanonicity Criterion). Let L be an hyperca-
nonical logic of and let C = {Pn, fn}n≥1 be a chain of frames Pn = 〈Pn,≤n〉
for L such that Pn is countable. Then every separable weak limit of C is a
frame for L.

Proof. We can define a chain of models CK = {Kn, Vn, fn}n≥1 where
Kn is based on Pn and Kn is Vn-separable (or even well Vn-separable).
Indeed, since the frames involved are countable, we can choose an increas-
ing sequence of countable sets Vn (contained in the countable set of all the
variables of the language) such that any two points of Pn are (well) sepa-
rated by some propositional variable of Vn. Moreover, since Pn is a frame
for L, Kn is a model of L. Let P be a separable weak limit of C having
projections {hn}n≥1 and let K be the separable weak limit model of CK

based on P and having the same projections. By Proposition 3.11(ii), K is
a separable model of L; by the hypercanonicity of L, we can conclude that
P is a frame for L. �

In a similar way, using Proposition 3.11(iii), one can prove:

Theorem 3.13 (Extensive Canonicity Criterion). Let L be an ex-
tensive canonical logic and let C = {P n, fn}n≥1 be a chain of frames Pn =
〈Pn,≤n〉 for L such that Pn is countable. Then every well separable weak
limit of C is a frame for L.

We now state the Canonicity Criterion, which essentially coincides with
the formulation in [10].



18 CAMILLO FIORENTINI

Theorem 3.14 (Canonicity Criterion). Let L be a canonical logic
and let C = {P n, fn}n≥1 be a chain of finite frames Pn = 〈Pn,≤n〉 for L.
Then the limit of C is a frame for L.

Proof. Let us define a chain of models CK = {Kn, Vn, fn}n≥1 where Kn

is a Vn-separable model based on Pn (note that we only need an increasing
sequence of finite sets Vn). Since Pn is a finite frame for L, it follows that
Kn is also a Vn-full model of L. By Proposition 3.11(iv), the limit K∗ of
CK is a separable and full model of L; since L is canonical, the frame P ∗

of K∗ (that is, the limit of C) is a frame for L. �

We remark that the limit P ∗ in the proof of the Canonicity Criterion is
actually a generated subframe of the frame of the canonical model of L.
We also stress that it is not immediate to extend the Canonicity Criterion
to chains of countable frames; to do this, we have to give suitable conditions
on the frame Pn in order to define a full model Kn on Pn.

4. Strong completeness

We pass to the analysis of strong completeness. As the definition suggests,
we have to consider all the models which realize any L-saturated set ∆.
This requires a deeper study of the weak limits of a chain and of the relations
between weak limits and the limit, which is, roughly speaking, the “biggest”
model of ∆. In the following proposition we show that, in some cases, we
can completely characterize all the (non necessarily separable) models of
∆.

Proposition 4.1. Let CK = {Kn, Vn, fn}n≥1 be a chain of finite models
Kn = 〈Pn,≤n, ρn,�n〉, let ∆ =

⋃
n≥1 ΓVn

Kn
(ρn) and let K = 〈P,≤, ρ,�〉 be

any Kripke model. Then, ΓK(ρ) = ∆ if and only if K is a weak limit of
CK .

Proof. The “if” part corresponds to Point (ii) of Proposition 3.10. Sup-
pose now that ΓK(ρ) = ∆ and let us define, for each n ≥ 1, a map hn from
the points of K to the points of Kn in the following way:

hn(α) = α′ iff ΓVn
K (α) = ΓVn

Kn
(α′).

Since, for each n ≥ 1, ΓVn
K (ρ) = ΓVn

Kn
(ρn) and Kn is a finite Vn-separable

model, we can apply Proposition 2.6 and claim that hn is a Vn p-morphism
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from K onto Kn. Moreover, by definition of CK the maps hn commute
with the maps fn; this means that K is a weak limit of CK with projections
{hn}n≥1. �

Theorem 4.2 (Necessary Condition for Strong Completeness).
Let L be a strongly complete logic and let C = {Pn, fn}n≥1 be a chain
of finite frames Pn = 〈Pn,≤n, ρn〉 for L. Then there is a weak limit
P = 〈P,≤, ρ〉 of C which is a frame for L.

Proof. As in the proof of the Canonicity Criterion, we can define a chain
of models CK = {Kn, Vn, fn}n≥1, where the Vn-separable modelKn is based
on the frame Pn. Let us consider the L-saturated set ∆ =

⋃
n≥1 ΓVn

Kn
(ρn);

since L is strongly complete, there must be a model K = 〈P,≤, ρ,�〉 such
that ΓK(ρ) = ∆ and P = 〈P,≤, ρ〉 is a frame for L. Since the models Kn

are finite, we can apply Proposition 4.1 and claim that K is a weak limit
of CK ; this means that P is a weak limit of C. �

This theorem is not of great use if our concern is to disprove the strong
completeness of L; indeed, we should check that all the weak limits of the
chain C are not frames for L. On the other hand, we can limit ourselves
to study particular frames, namely the stable reductions of the limit of C,
which convey useful information about weak limits. Let C = {Pn, fn}n≥1

be a chain of frames and let P ∗ = 〈P ∗,≤∗〉 be the limit of C. We say that
α∗ ∈ P ∗ is stable if we definitively (i.e., for all n greater than some integer
k) have that αn has only one preimage with respect to fn.

Proposition 4.3. Let C = {Pn, fn}n≥1 be a chain of frames Pn =
〈Pn,≤n, ρn〉, let P ∗ = 〈P ∗,≤∗, ρ∗〉 be the limit of C and let P = 〈P,≤, ρ〉
be a weak limit of C. Then there is a map h : P→P ∗ such that:
(i) h(ρ) = ρ∗;
(ii) α ≤ β implies h(α) ≤∗ h(β);
(iii) if h(α) <∗ β∗ and β∗ is stable, then there is β ∈ P s.t. α < β and
h(β) = β∗.

Proof. Suppose that P is a weak limit of C having projections {hn}n≥1

and let us define, for each α ∈ P , h(α) = 〈h1(α), h2(α), . . . 〉. By definition,
hn(α) = fn(hn+1(α)) for every n ≥ 1, hence h(α) is a point of P ∗ and h is
a map from P to P ∗. It is immediate to prove that h(ρ) = 〈ρ1, ρ2, . . . 〉 = ρ∗

and that h is order preserving. Suppose now that h(α) <∗ β∗ (i.e. hn(α) ≤n
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βn for every n ≥ 1) and that β∗ = 〈β1, β2, . . . 〉 is stable. Then there is n
such that, for every k ≥ n, βk+1 is the only preimage of βk with respect to
fk. Since hn(α) <n βn, there is β ∈ P such that α < β and hn(β) = βn;
by induction on j, we can prove that hj(β) = βj for every j ≥ n. This also
implies that hj(β) = βj for every j ≥ 1, thus:

h(β) = 〈h1(β), h2(β), . . . 〉 = 〈β1, β2, . . . 〉 = β∗

and (iii) is proved. �

We remark that the map h of the previous proposition is not, in general,
a p-morphism, since the “openness” property is guaranteed only for the
stable points of P ∗ (thus, in general, it may be not even surjective).
Now we show that the stable points of a full model of a logic have a pri-
mary importance in determining the strong completeness. To this aim, we
introduce the following definition.

Definition 4.4. Let C = {P n, fn}n≥1 be a chain of frames and let
P ∗ = 〈P ∗,≤∗〉 be the limit of C. We say that P = 〈P,≤〉 is a stable
reduction of P ∗ iff there is a p-morphism g from P ∗ onto P such that, for
every α∗ ∈ P ∗ and every β ∈ P , the following holds:
- if g(α∗) < β, then there is β∗ ∈ P ∗ s.t. α∗ <∗ β∗, β∗ is stable and
g(β∗) = β.

Proposition 4.5. Let C = {Pn, fn}n≥1 be a chain of frames Pn =
〈Pn,≤n, ρn〉, let P = 〈P,≤, ρ〉 be a weak limit of C and let P ′ = 〈P ′,≤′, ρ′〉
be a stable reduction of the limit P ∗ of C. Then there is a p-morphism f

from P onto P ′.

Proof. Let P ∗ = 〈P ∗,≤∗, ρ∗〉 be the limit of C, let h : P→P ∗ be the map
defined in Proposition 4.3 and let g : P ∗→P ′ be as in the definition of stable
reduction. We know that h is “almost” a p-morphism, while g is “much
more” than a p-morphism; we show that the composite map f = g ◦ h is a
p-morphism. It is immediate to prove that f is order preserving. Suppose
now that g(h(α)) <′ β′, for some α ∈ P and β′ ∈ P ′. By definition of
g, there is β∗ ∈ P ∗ such that β∗ is stable, h(α) <∗ β∗ and g(β∗) = β′.
By definition of h, there is β ∈ P such that α < β and h(β) = β∗, hence
g(h(β)) = β′. Finally, g(h(ρ)) = g(ρ∗) = ρ′, thus f is also surjective and
the proposition is proved. �
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This can be depicted by the commutative diagram in Figure 2, where we
have put into evidence the arrows which represent p-morphisms. It fol-

�

P 1 f1
�

P 2� f2
�
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�
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�P�������������������

� h
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�P ′

Figure 2: Diagram of weak limits

lows that any stable reduction of the limit of C is representative, in some
sense, of all the weak limits of C; thus, our Necessary Condition for Strong
Completeness can be reformulated in the following more interesting form.

Theorem 4.6 (Strong Completeness Criterion). Let L be a stron-
gly complete logic, let C = {Pn, fn}n≥1 be a chain of finite frames Pn =
〈Pn,≤n, ρn〉 for L, and let P ′ = 〈P ′,≤′, ρ′〉 be a stable reduction of the limit
P ∗ of C. Then P ′ is a frame for L.

Proof. Since L is strongly complete, by the Necessary Condition for
Strong Completeness there must be a weak limit P = 〈P,≤, ρ〉 of C such
that P is a frame for L. By Proposition 4.5, there is a p-morphism from P

onto P ′; since P is a frame for L, we can conclude that also P ′ is a frame
for L. �

Thus, to disprove the strong completeness of a logic, we can restrict our-
selves to study the stable reductions of the limits. We also point out that
the previous criterion is more general than the corresponding one explained
in [10].

5. The logics in one variable

The logics in one variable are the superintuitionistic logics having as ex-
tra axiom a formula in one variable (see for instance [1, 3, 10]). In or-
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der to describe the non intuitionistically equivalent formulas in one vari-
able p, we consider the model Kω = 〈Pω,≤, σω,�〉 defined on the frame
Pω = 〈Pω,≤, σω〉 of Figure 3 (where straight lines represent the immediate
successor relation) and the forcing relation is defined in such a way that
δ � q if and only if δ ≡ σ1 and q ≡ p. Let us consider the following sequence

�p σ1

�σ3

�σ5

�σ7

�
�
�
�
�

� σ2

� σ4

� σ6

� σ8

�
�
�
�
�

������������

�
�

�
�

�
�

�
�

� σω

Figure 3: The model Kω

of formulas:

nf 1 = p nf 2 = ¬p nf 3 = ¬¬p nf 4 = ¬¬p→p

nf k = nf k−1→nf k−3 ∨ nf k−4 for every k ≥ 5.

The formulas nf k (possibly with different enumerations) are also known in
the literature as Nishimura-formulas [17] and have the following properties:

- δ � nf k if and only if σk ≤ δ;

- σm ≤ σn implies 
INT nf n→nf m;

- for every {p}-formula A, there are n,m ≥ 1 such that 
INT A ↔ nf n ∨
nf m.

Therefore every {p}-formula is intuitionistically equivalent to some formula
of the kind nf k or nf k ∨ nf k+1, for some k ≥ 1. In correspondence, we
can give the following list of the logics in one variable.

• Int + (nf 1 ∨ nf 2) = Int + nf 4 = Cl.

• Int + (nf 2 ∨ nf 3) = Int + nf 5 = Jn

(Jankov logic or Weak excluded middle logic).

• NLm = Int + nf m, for every m ≥ 6.

• NLn,n+1 = Int + (nf n ∨ nf n+1), for every n ≥ 3.
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We point out that the logic NL6 corresponds to the Scott logic St [3, 6],
while NL7 is also known as Anti-Scott logic Ast [7]. All these logics have a
simple semantical characterization (see [10]). Let us call P σk

the generated
subframe of Pω having root σk and P σk,k+1

the frame obtained by the union
of P σk

and P σk+1
. For a frame P , let Spl(P ) denote the class of frames P ′

such that, for every generated subframe P ′′ contained in some cone P ′
α of

P ′, there are no p-morphisms from P ′′ onto P . Then:

Proposition 5.1. Let P be any frame.
(i) P is a frame for the logic NLm+1, for m ≥ 3, iff P ∈ Spl(P σm

).
(ii) P is a frame for the logic NLn+1,n+2, for n ≥ 1, iff P ∈ Spl(P σn,n+1

).

As a consequence of a result due to Sobolev [19], the finite frames quoted
in the previous proposition characterize the corresponding logics. In some
cases we can describe the frames characterizing these logics without any
reference to p-morphisms. For instance, let us say that a frame P = 〈P,≤〉
is strongly directed if, for every α, β, γ ∈ P s.t. α ≤ β and α ≤ γ, there is
δ ∈ P such that β ≤ δ e γ ≤ δ. It is easy to prove that the frames for Jn
are just the strongly directed frames (see also [3]).

As regards the logic St and Ast, we can characterize the class of frames
of finite depth. Let P = 〈P,≤〉 be a frame, let α be a non-final point of P
and let ϕ and ψ be two final points of P . We say that α is prefinal iff, for
every δ > α, δ is final. We say that ϕ and ψ are prefinally connected in P

iff either ϕ = ψ or there is a sequence ϕ1, . . . , ϕn (n > 1) of final points of
P satisfying the following conditions:

(1) ϕ1 = ϕ and ϕn = ψ;

(2) for 1 ≤ i ≤ n − 1, there is α ∈ P s.t. α is prefinal and {ϕi, ϕi+1} ⊆
Fin(α).

It is not difficult to see that we can extend the result of [6] regarding the
characterization of the finite frames for Ast in the following way.

Proposition 5.2. Let P = 〈P,≤〉 be a frame having finite depth. P

is a frame for the logic St iff, for every α ∈ P and for every ϕ and ψ

belonging to Fin(α), ϕ and ψ are prefinally connected in Pα.

We remark that the condition of “prefinal connection” cannot be expressed
by a first-order formula, and the problem lies in the unbounded number of
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final points involved in the definition. A formal proof of this fact can be ac-
complished by a standard application of the classical Compactness theorem
(see for instance [4]).

The frames for the logic Ast with finite depth satisfy a condition which
can be expressed by a first-order sentence, as in the statement of the next
proposition (this is a generalization of [7], where such a condition is intro-
duced to characterize the finite frames for Ast).

Proposition 5.3. Let P = 〈P,≤〉 be a frame having finite depth. P is
a frame for the logic Ast if and only if, for every α ∈ P , if α is a non-final
point of P , then one of the following conditions (a) or (b) is satisfied.

(a) For every immediate successor δ of α, |Fin(δ)| = 1.

(b) For any two immediate successors β and γ of α in P , if β and γ are
non-final, then Fin(β) = Fin(γ).

5.1. The canonical logics in one variable

The first four logics in our enumeration turn out to be canonical. Indeed,
Cl is evidently hypercanonical, and it is not difficult to prove that also Jn
is hypercanonical (see Section 8); moreover, the logics NL3,4 and NL4,5 are
hypercanonical and extensively canonical respectively. We only prove the
latter fact (the proof of the former is similar).

Theorem 5.4. The logic NL4,5 is extensively canonical.

Proof. Suppose that, by absurd, such a logic is not extensively cano-
nical; then there is a well separable model K = 〈P,≤,�〉 of NL4,5 whose
frame P = 〈P,≤〉 is not a frame for NL4,5. This implies that there are
some points α, β, ϕ1, ϕ2 of P such that:

- α < β and α < γ;

- β and γ are two distinct non-final points s.t. β �< γ and γ �< β;

- ϕ1 and ϕ2 are two distinct final points s.t. γ < ϕ1, γ < ϕ2 and β �< ϕ2.

By the well separability of K, there are some formulas A,B,C such that:

- β � A and ϕ2 �� A (hence ϕ2 � ¬A);

- ϕ1 � B and ϕ2 �� B (hence ϕ2 � ¬B);

- γ � C and β �� C.
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Moreover, since β is not final, there is a formula D such that β � ¬¬D and
β �� D. Let us take the formula H = ¬¬(A ∨B) ∧ (D ∨C). Then:

- β �� ¬¬H→H (indeed, β � ¬¬H and β �� H);

- γ � ¬¬H→H, γ �� ¬H (indeed, ϕ1 � H) and γ �� H (indeed, ϕ2 � ¬H).

It follows that α �� (¬¬H →H) ∨ ((¬¬H →H) →H ∨ ¬H), which is an
instance of nf 4,5, a contradiction; hence NL4,5 is extensively canonical. �

We show that, in the previous proof, the hypothesis of well separability
(used to separate γ from β) is essential.

Theorem 5.5. The logic NL4,5 is not hypercanonical.

Proof. Let us take the chain of frames C = {P n, fn}n≥1, where the
frame Pn = 〈Pn,≤n, r〉 and the p-morphism fn from Pn+1 onto Pn, for
each n ≥ 1, are defined as follows:

- Pn = {r, a, b1, . . . , bn, β, c, d};
- the ordering relation ≤n is defined as in Figure 4;

- fn(bn+1) = β and fn(δ) = δ for δ �= bn+1.

Clearly, Pn is a frame for NL4,5. Let us consider the infinite frame P =
�c

�β

�bn

�
�
�
�
�

�b2

�b1

�a �
�

�
�

�
�

� d

�r

Figure 4: The frame Pn for NL4,5.

〈P,≤, r〉, where:

- P = {r, a, b1, b2, . . . , β, c, d};
- the ordering relation ≤ is defined as in Figure 5.

We point out that, for every n ≥ 1, bn < c and bn �< β. It is easy to prove
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Figure 5: The well separable weak limit P

that P is a separable weak limit of C with projections {hn}n≥1 defined as
follows:

- hn(bk) = β for every k ≥ n+ 1;

- hn(δ) = δ for all the other points δ.

Since P is not a frame for NL4,5, by the Hypercanonicity Criterion we can
conclude that NL4,5 is not hypercanonical. �

We observe that, in the previous proof, the frame P is not a well sepa-
rable weak limit of C (for instance, it holds that hn(a) ≤n hn(β) for every
n ≥ 1, while it is not true that a ≤ β), as it is expected by the fact that
NL4,5 is extensively canonical and by the Extensive Canonicity Criterion.
To obtain a well separable weak limit with the same projections, we have
to put β over all the points bn (clearly, the frame so obtained is a frame for
NL4,5).

5.2. The Scott logic St

As anticipated in the Introduction, all the other logics in one variable are
not strongly complete. Let us examine the case of St.

Theorem 5.6. The logic St is not strongly complete.

Proof. We show a chain C = {Pn, fn}n≥1 of finite frames Pn = 〈Pn,
≤n, r〉 for St such that the frame P σ5

is a stable reduction of the limit
P ∗ = 〈P ∗,≤∗, r∗〉 of C. Let Pn be defined as follows:
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- Pn = {r, a1, . . . , an, α, b, d1, . . . , dn, δ};
- the ordering relation ≤n is defined as in Figure 6.

The p-morhpism fn from Pn+1 onto Pn is defined as follows:
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Figure 6: The frame Pn for St

- fn(an+1) = α, fn(dn+1) = δ;

- fn(β) = β for all the other points β.

The limit model P ∗ contains the stable points r∗n = 〈r, r, . . . 〉, a∗n =
〈α, . . . , α, an, an, . . . 〉 (where α occurs in the first n − 1 components and
an in the remaining ones), b∗ = 〈b, b, . . . 〉, d∗n = 〈δ, . . . , dn, . . . 〉, and the
non-stable points α∗ = 〈α,α, . . . 〉 and δ∗ = 〈δ, δ, . . . 〉; the ordering relation
between these points is described by Figure 7. Finally, let g be the p-

�

a∗1
�

�
�

�
�

�
�

d∗1

�

a∗2
�

�
�

�
�

�
�

d∗2

�

a∗3

�

d∗3

� � � � �

�

α∗

�

δ∗

�

b∗
�

�
�

�
�

�

� � � � �

�������������������

������������

�
�

�
�

�
�

�
�

�
�

�
�

												

r∗

Figure 7: The limit frame P ∗
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morphism from P ∗ onto P σ5
defined as follows:

- g(d∗n) = σ1, for every n ≥ 1;

- g(α∗) = g(b∗) = g(δ∗) = σ2;

- g(a∗n) = σ3, for every n ≥ 1;

- g(r∗) = σ5.

By definition of g, P σ5
is a stable reduction of P ∗; we can apply the Strong

Completeness Criterion and claim that St is not strongly complete. �

We point out that, if we are only interested in disproving the canonicity of
St, we can limit ourselves to observe that the limit P ∗ of C is not a frame
for St and then apply the Canonicity Criterion. We take advantage of this
example to observe that, in general, the limit of a chain C does not inherit
the first-order properties which hold in all frames Pn of C. As a matter
of fact, in all Pn there is a final point, that is δ, which is an immediate
successor of three distinct points of Pn, and this can be expressed by a first-
order sentence; on the other hand, the limit P ∗ of C does not enjoy this
property. Finally, we observe that all the frames involved in the previous
proof have depth 3; this implies that the proof works also in the case we
consider the family of logics of St of finite depth.
More precisely, let us consider the following sequence of formulas:

bd1 = p1 ∨ ¬p1 bdn+1 = pn+1 ∨ (pn+1→bdn)

and let Bdn be the intermediate logic Int + bdn. It is well known that
Bdn is the logic of the the frames having depth at most n (see [3]); one
can also easily show that Bdn is hypercanonical. Clearly, P is a frame for
the logic St + Bdh if and only if P is a frame for St and P has depth at
most h.

Theorem 5.7. (i) The logics St+ Bdh, for h < 3, are hypercanonical.

(ii) The logics St + Bdh, for h ≥ 3, are not strongly complete.

Proof. (i) Let K = 〈P,≤,�〉 be a separable model of St + Bdh, with
h < 3. Then the frame P of K has depth at most 2, otherwise an instance
of bdh is not valid in K; this immediately implies that P is also a frame
for St.

(ii) It is proved as Theorem 5.6, observing that the frames of the chain
C are frames for the logic St + Bdh. �
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5.3. The logics NLm+1 (m ≥ 7) and NLn+1,n+2 (n ≥ 4)

By the fact that the frames P σm
and P σn,n+1

, for m ≥ 7 and n ≥ 4,
contain P σ5

as generated subframe, we can extend without great effort the
proof of non strong completeness of St to the logics NLm+1 and NLn+1,n+2

(namely, the logics in one variable strictly included in St).

Theorem 5.8. (i) The logics NLm+1, for m ≥ 7, are not strongly
complete.

(ii) The logics NLm+1,m+2, for m ≥ 4, are not strongly complete.

Proof. (i) Let m ≥ 7; we define a chain C = {P n, fn}n≥1 of finite frames
Pn = 〈Pn,≤n, tm〉 for NLm+1 such that P σm

is a stable reduction of the
limit P ∗ = 〈P ∗,≤∗, t∗m〉 of C. Let P ′

n = 〈P ′
n,≤′, t5〉 be the frame defined as

the frame Pn in the proof of Theorem 5.6, where t5 coincides with r; then
the frame Pn is defined as in Figure 8. The p-morphism fn is defined as in
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Figure 8: The frame Pn for NLm+1

the proof of Theorem 5.6 on the points β > t5 and fn(β) = β if β is one of
the points tk. Finally, the limit frame P ∗ of C is defined as in Figure 9, where
P ′∗ coincides with the limit frame in the proof of Theorem 5.6. Since P σm

is a stable reduction of P ∗, by the Strong Completeness Criterion NLm+1

is not strongly complete.

(ii) We can proceed as in (i) taking, as frame Pn = 〈Pn,≤n, t〉 for the logic
NLm+1,m+2 (m ≥ 4), the one in Figure 10. The p-morphisms fn and the
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Figure 9: The limit frame P ∗

limit P ∗ = 〈P ∗,≤∗, t∗〉 are defined similarly to in (i). Let us consider the
frame P σ̃m

in Figure 11. Since P σ̃m
is a stable reduction of P ∗ and P σ̃m

is not a frame for NLm+1,m+2, it follows that NLm+1,m+2 is not strongly
complete. �

As in the case of St, one can observe that the frames used in the previous
proof have minimal depth; thus we can refine the previous theorem as
follows.

Theorem 5.9. (i) Let m ≥ 7 and let hm = depth(P σm
). Then:

- for 1 ≤ h < hm, NLm+1 + Bdh is hypercanonical;
- for h ≥ hm, NLm+1 + Bdh is not strongly complete.

(ii) Let m ≥ 4 and let km = depth(P σm,m+1
) + 1. Then:

- for 1 ≤ h < km, NLm+1,m+2 + Bdh is hypercanonical;
- for h ≥ km, NLm+1,m+2 + Bdh is not strongly complete.

5.4. The Anti-Scott logic Ast

It only remains to analyze the logic NL7 = Ast (not included in St) which
has a peculiar behaviour.

Theorem 5.10. The logic Ast is not strongly complete.

Proof. Let us consider the chain C = {Pn, fn}n≥1 of finite frames Pn =
〈Pn,≤n, a1〉 for Ast such that, for every n ≥ 1, the following holds:
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Figure 10: The frame Pn for NLm+1,m+2

- Pn = {a1, . . . , an+1, α, e, b1, . . . , bn, β, g, d1, . . . , dn, δ};
- the ordering relation is defined as in Figure 12;

- fn(an+2) = α, fn(bn+1) = β, fn(dn+1) = δ;

- fn(γ) = γ for all the other points γ.

The limit model P ∗ contains the stable points a∗n = 〈α, . . . , α, an, an, . . . 〉,
b∗n = 〈β, . . . , β, bn, bn, . . . 〉, d∗n = 〈δ, . . . , δ, dn, dn, . . . 〉, e∗ = 〈e, e, . . . 〉, g∗ =
〈g, g, . . . 〉 and the non-stable points α∗ = 〈α,α, . . . 〉, β∗ = 〈β, β, . . . 〉, δ∗ =
〈δ, δ, . . . 〉; the ordering relation is described by Figure 13. Finally, P σ6

is a
stable reduction of P ∗, as proved by the following map g:

- g(β∗) = g(g∗) = g(δ∗) = σ1;

- g(d∗n) = σ2, for every n ≥ 1;

- g(α∗) = g(e∗) = σ3;

- g(b∗n) = σ4, for every n ≥ 1;

- g(a∗n) = σ6, for every n ≥ 1.

Thus Ast is not strongly complete. �

We observe that the chain used to disprove the canonicity of Ast con-
tains frames of increasing depth, so that the limit has infinite depth. We
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may wonder whether we can use chains of frames of bounded depth, as in
the case of the other non canonical logics in one variable. The answer is
negative since, if we fix an upper bound on the depth of the frames, we
obtain canonical logics. This fact is not surprising since, using suitable
filtration techniques (for instance, the ones explained in [6]), one can prove
that the logic Ast + Bdh is characterized by the class of frames for Ast
with depth at most h and, as seen in Proposition 5.3, such a class is first-
order definable; thus, by Theorem 3.7 (van Benthem), the canonicity of
such a logic follows. Nevertheless, here we give a direct proof of this fact,
which enables us to get a more refined classification.

Theorem 5.11. The logics Ast+ Bdh, for h ≤ 3, are hypercanonical.

Proof. We only consider the non trivial case of the logic L = Ast +
Bd3. Let K = 〈P,≤,�〉 be a model of the logic L; we show that the frame
P = 〈P,≤〉 is a frame for L. We immediately have that P is a frame for
Bd3; let us suppose that P is not a frame for Ast. Then there are some
points α, β, γ, ϕ1, ϕ2, ϕ3 in P such that:

- β and γ are two distinct immediate successors of α;

- ϕ1, ϕ2 and ϕ3 are final points of P such that ϕ2 �= ϕ1 and ϕ2 �= ϕ3;

- β < ϕ1, γ < ϕ2, γ < ϕ3 and β �< ϕ2.

Let V be a finite set of propositional variables such that the points α, β, γ,
ϕ1, ϕ2, ϕ3 are pairwise V -separated, with the only exception that ΓV

K(ϕ1)



CANONICITY AND COMPLETENESS OF INTERMEDIATE LOGICS 33

�

a1

������

�

b1������

�

d1

�

a2

�
�
�
�
�
�
�
�
�
�

������

�

b2������

�

d2

�

a3

�
�
�
�
�
�
�
�
�
�

�

b3

�

d3

��
��

��
��

��
��

�

an

������

�

bn������������

�

dn

�

an+1

�
�
�
�
�
�
�
�
�
�

�������
α

�e

�β

�g

�

δ

Figure 12: The frame Pn for Ast

may coincide with ΓV
K(ϕ3); in particular, we can assume that there is a V -

formula A such that β � A and ϕ2 �� A. Let KV be the quotient model of
K with respect to the V -formulas (namely, w.r.t. the equivalence relation
≡V , where δ ≡V δ′ iff ΓV

K(δ) = ΓV
K(δ′)) and, for each δ ∈ P , let us denote

with δV the class to which δ belongs. By definition, δV < δ′V in KV iff
ΓV

K(δ) ⊂ ΓV
K(δ′); thus αV < βV < ϕ1V , αV < γV , γV < ϕ2V and γV < ϕ3V .

It follows that ϕ1V , ϕ2V and ϕ3V are final, βV and γV have depth 2 and αV

has depth 3, thus βV and γV are immediate successors of αV . Moreover,
since KV is a V -separable finite model of Ast, the frame of KV is a finite
frame for Ast. By Proposition 5.3, since γV sees more than one final point,
βV and γV (which are not final) must see the same final points, hence
βV < ϕ2V . This gives rise to a contradiction, since β � A and ϕ2 �� A in
K, which implies that βV � A and ϕ2V �� A in KV ; therefore P is also a
frame for Ast. �

If we now try to repeat the reasoning for the logics Ast + Bdh, with
h ≥ 4, we encounter some difficulties. Indeed, a key point of the proof is
that βV is an immediate successor of αV in KV . Nevertheless, it is not in
general true that, if β is an immediate successor of α in K, then, for some
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Figure 13: The limit frame P ∗

finite set V , βV is an immediate successor of αV in KV , even if K is full.
Thus, to overcome the problem, more effort is required and the proof is
rather involved.

Theorem 5.12. The logics Ast + Bdh, for h ≥ 4, are canonical.

Proof. Let us suppose that, for some h ≥ 4, the logic L = Ast + Bdh

is not canonical. Then there is a full model K = 〈P,≤,�〉 of L such that
P = 〈P,≤〉 is not a frame for L. As in the proof of Theorem 5.11, since evi-
dently P is a frame for Bdh, we can assume that there are α, β, γ, ϕ1, ϕ2, ϕ3

in P such that:

- β and γ are two distinct immediate successors of α;

- ϕ1, ϕ2 and ϕ3 are final points of P such that ϕ2 �= ϕ1 and ϕ2 �= ϕ3;

- β < ϕ1, γ < ϕ2, γ < ϕ3 and β �< ϕ2.

Let us consider an increasing sequence of finite sets of propositional vari-
ables Vn, for n ≥ 1, whose union is the set of all the variables; let Kn =
〈Pn ≤n,�n〉 be the quotient model of K with respect to the Vn-formulas
and let fn be the map which associates, with each point α in Kn+1, the
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(unique) point of Kn in the same Vn-equivalence class. Since each Kn is
finite, we have that CK = {Kn, Vn, fn}n≥1 is a chain having limit K, with
projections {hn}n≥1 defined in an obvious way. By the well separability
of K and by the fact that α has finite depth, we can assume that there is
n ≥ 1 such that, for every j ≥ n, the following properties hold:

(P1) For any two distinct points δ1, δ2 in the set {α, β, γ, ϕ1 , ϕ2, ϕ3}, hj(δ1)
�= hj(δ2), with the only exception that hj(ϕ1) may coincide with
hj(ϕ3).

(P2) It is not true that hj(β) <j hj(ϕ2).

(P3) The depth of hj+1(α) in Kj+1 does not exceed the depth of hj(α) in
Kj .

We observe that, for each n ≥ 1, Pn is a finite frame for Ast; moreover,
for j ≥ n, it is not the case that all the immediate successors of hj(α) see
only one final point of Kj (for instance, if δ is an immediate successor of
hj(α) such that δ ≤j hj(γ), then δ sees at least the two distinct final points
hj(ϕ2) and hj(ϕ3)); thus, all the non-final immediate successors of hj(α)
see the same final points. In particular:

(P4) For every j ≥ n, for every non-final immediate successor δ of hj(α)
in Kj , it holds that δ <j hj(ϕ2).

Now we show that:

(P5) There is m ≥ n such that hm(β) is an immediate successor of hm(α)
in Km.

Suppose that (P5) does not hold; then, for every j ≥ n, the set

Dj = {δ ∈ Pj : hj(α) <j δ <j hj(β) and δ <j hj(ϕ2)}

is nonempty. Moreover, it holds that:

(P6) For every j ≥ n and every δ ∈ Dj+1, fj(δ) ∈ Dj .

Indeed, since hj = fj ◦ hj+1, we immediately have that hj(α) ≤j fj(δ) ≤j

hj(β) and fj(δ) <j hj(ϕ2). By (P2), it follows that fj(δ) �= hj(β); more-
over, it is not true that fj(δ) = hj(α), otherwise, by definition of p-
morphism, hj+1(α) would have depth greater than the one of hj(α), in
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contradiction with (P3). Thus fj(δ) ∈ Dj and (P6) holds. By (P6) an by
the fact that each Dj is finite, we can choose an infinite sequence of points
δn ∈ Dn, δn+1 ∈ Dn+1, . . . such that:

(∗) δn = fn(δn+1), δn+1 = fn+1(δn+2), · · ·

As a matter of fact, we can see the elements of the sets Dj , for every
j ≥ n, as the nodes of a tree T , where δj+1 is an immediate successor
of δj if and only if δj = fj(δj+1) (we also have to add a root τ having,
as immediate successors, all the elements of Dn). Since T has infinitely
many nodes and each node of T has finitely many immediate successors, by
König Lemma (see for instance [11]) T has an infinite branch; clearly the
points δn, δn+1, . . . of this branch satisfy (*). Such a sequence generates
a point δ∗ of the limit K of CK such that α < δ∗ < β, against the fact
that β is an immediate successor of α in K. Thus (P5) is proved. By (P5)
and (P4) we get that hm(β) <m hm(ϕ2), in contradiction with (P2). This
means that the initial hypothesis is false, hence L is canonical. �

The reader should notice how the above proof is rather complex and
sophisticated mathematical arguments are required. This depends on the
fact that, as we will see below, the logics Ast + Bdh, for h ≥ 4, are
not extensively canonical. Roughly speaking, the proof of canonicity of
an extensively canonical logic L can be accomplished by a “reductio ad
absurdum” in which one, basing himself on separability properties of a
model K of L, singles out “suitable formulas” in order to falsify in K

an instance of an axiom scheme of L (a typical example is the proof of
Theorem 5.4). On the contrary, if L is not extensively canonical, one has
to heavily use fullness hypothesis and “fill up” the modelK with new points
in order to get a contradiction. Thus, passing from extensive canonicity to
“pure” canonicity, there is a relevant increase of complexity in canonicity
proofs.

We conclude by showing that, for every h ≥ 4, L = Ast + Bdh is
not extensively canonical. As a matter of fact, let us take the chain C =
{Pn, fn}n≥1, where Pn = 〈Pn,≤n, r〉 and fn are defined as follows (see
Figure 14).

- Pn = {r, a1, . . . , an, α, b1, . . . , bn, β, g1, . . . , gn, γ}.
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- The immediate successors of the root r are a1, . . . , an, α; the immedi-
ate successors of α are g1, . . . , gn and β; the only immediate successor
of β is γ.

- For 1 ≤ k ≤ n, the immediate successors of ak are g1, . . . , gk−1 (if
k �= 1) and bk; the immediate successors of bk are gk, . . . , gn, γ.

- fn(an+1) = α, fn(bn+1) = β, fn(gn+1) = γ and fn(δ) = δ for all the
other points δ.
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Figure 14: The frame Pn for Ast + Bdh

Since Pn is a frame for Ast (in fact, the immediate successors of r see
the same final points) and since depth(Pn) = 4, we can state that Pn is a
frame for L. Let P = 〈P,≤, r〉 be the infinite frame defined as follows (see
Figure 15).

- P = {r, a1, a2, . . . , b1, b2 . . . , β, g1, g2, . . . , γ}.
- The immediate successors of the root r are the points an, for all n ≥ 1,

and β; the only immediate successor of β is γ.

- For every n ≥ 1, the immediate successors of an are g1, . . . , gn−1 (if
n �= 1) and bn.

- The immediate successors of bn are the points gk, for all k ≥ n, and
γ.
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Figure 15: The well separable weak limit P

Then P is a well separable weak limit of C having projections {hn}n≥1

defined as follows:

- hn(ak) = α, hn(bk) = β, hn(gk) = γ, for every k ≥ n+ 1;

- hn(δ) = δ for all the other points δ.

Since evidently P is not a frame for Ast, by the Extensive Canonicity
Criterion L is not extensively canonical. Clearly P is not isomorphic to
the limit of C since, taking the points α ∈ P1, α ∈ P2, . . . we have that
hn(α) = α for every n ≥ 1, but there is not any point δ of P such that
hn(δ) = α for all n ≥ 1. To obtain the limit, we have to insert in P a
point α such that α is an immediate successor of r and β, g1, g2, . . . are
all the immediate successors of α. One can also check that such a frame is
actually a frame for L, according to the fact that L is canonical and to the
Canonicity Criterion.

6. The Medvedev logic

The Medvedev logic MV is known in literature as the logic of finite prob-
lems [14, 15, 16], and it arises in the framework of algorithmic interpretation
of intuitionistic connectives (see [3] for more references). Here we are in-
terested in the Kripke semantics of such a logic. Let X be a nonempty
finite set; the Medvedev frame (shortly, MV -frame) determined by X is
the frame P = 〈P,≤〉 defined as follows:
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- P = {Y : Y ⊆ X and Y �= ∅};
- Y ≤ Z iff Z ⊆ Y .

Note that X is the root of P , while the sets {x}, for each x ∈ X, are the
final points of P . For instance, for X2 = {a, b} and X3 = {a, b, c}, the
corresponding MV -frames are represented in Figure 16.
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Figure 16: The MV -frames with 2 and 3 final points

Let FMV be the class of all the MV-frames; then we call

MV = L(FMV ).

By definition, it immediately follows that St ⊆ MV. We point out that
no axiomatization for this logic is known, it is only proved that MV is not
finitely axiomatizable (see: [13]); thus the problem of its decidability is still
open.

6.1. Non extensive canonicity of MV

Let, for each n ≥ 1, Xn = {1, . . . , n} and let us consider the chain of frames
C = {P n, fn}n≥1 defined as follows:

- Pn is the MV -frame determined by Xn;

- for every Y ∈ Pn+1, fn(Y ) = {sn(y) : y ∈ Y }
where sn(y) = y if y ≤ n, sn(y) = n otherwise. Note that, by definition
of MV -frame, the possible p-morphisms from Pn+1 onto Pn are trivial
permutations of fn. Let X+ = N ∪ {ω} (where N is the set of natural
numbers) and let P = 〈P,≤〉 be the frame defined as follows:
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- P = {Xn : n ≥ 1} ∪ {{ω}} ∪ {X+};
- for every Y,Z ∈ P , Y ≤ Z iff Z ⊆ Y .

Note that X+ is the root of P and {ω} is the only immediate successor of
X+ (see Figure 17). We claim that P is a well separable weak limit of C
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Figure 17: The well separable weak limit P

with projections {hn}n≥1 defined as follows:

- for every Y ∈ P , hn(Y ) = {s+n (y) : y ∈ Y }
where s+n (y) = sn(y) if y ∈ N, and s+n (ω) = n. One can easily see that P
is not a frame for St; a fortiori, it is not even a frame for MV. By the
Extensive Canonicity Criterion, we can conclude that:

Theorem 6.1. The Medvedev logic MV is not extensively canonical.

Note that, to obtain the limit P ∗ of C, we have to add all the sets of the
kind Xn ∪ {ω}; we can apply Proposition 2.1 and state that P ∗ is a frame
for MV. Thus, we cannot use this kind of chains in order to disprove the
canonicity of MV, and the question, as far as we know, remains open.

7. The logic of rhombuses

The so called logic of rhombuses RH presents some analogies with Med-
vedev logic, even if it is less known and less investigated in literature. As
for MV, we give a semantical characterization (see [2, 3, 7, 12]). Let T be
a linear ordering; an interval of T is a pair [t1, t2], with t1 ≤ t2 (we will
denote the interval [t, t] simply by t). The ordering on T induces, in an
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obvious way, a partial ordering ⊆ on the intervals of T (which intuitively
corresponds to the containment relation) defined in the following way:

[t1, t2] ⊆ [u1, u2] iff u1 ≤ t1 and t2 ≤ u2.

Let T be a finite linear ordering; the RH-frame P = 〈P,≤〉 determined by
T is defined as follows:

- P = {[t1, t2] : t1, t2 ∈ T and t1 ≤ t2};
- [t1, t2] ≤ [u1, u2] iff [u1, u2] ⊆ [t1, t2].

Note that the intervals of the kind [t, t] are the final points of P and the
interval corresponding to the endpoints of T is the root of P . For instance,
if T = {t1, t2, t3, t4}, with t1 < t2 < t3 < t4, the RH-frame determined by
T looks as in Figure 18.
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Figure 18: The RH-frame with 4 final points

Let FRH be the class of all the RH-frames; then we define

RH = L(FRH).

Clearly St ⊆ RH. We point out that the logics MV and RH are incompa-
rable; as a matter of fact, let us consider the formulas kp and bb2 defined
as follows (see also [3]):

kp = (¬p→q ∨ r)→(¬p→q) ∨ (¬p→r)

bb2 =
∧2

i=0((pi→
∨

j �=i pj)→
∨

j �=i pj)→
∨2

i=0 pi

Then one can prove that:

kp ∈ MV kp �∈ RH bb2 ∈ RH bb2 �∈ MV
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We also point out that MV is maximal between the logics closed under
disjunction (see [3]), while RH does not enjoy this property (see [7], where
a logic closed under disjunction which properly extends RH is exhibited).
Also for RH no axiomatization is known.

7.1. Non canonicity of the logic of rhombuses

In this section we prove that RH is not canonical. Let T+ be linearly or-
dered set {1, 2, . . . , n, . . . , ω}. We define a chain of frames C = {Pn, fn}n≥1,
where Pn is the RH-frame defined on the linear ordering Tn = {1, 2, . . . , n,
ω}; the p-morphism fn from Pn+1 onto Pn is defined in an obvious way.
More precisely, let gn be the map on the integers defined as follows:

- gn(k) = k if k ≤ n;

- gn(k) = ω if k > n.

Then, fn([k, l]) = [gn(k), gn(l)]. The limit P ∗ = 〈P ∗,≤∗〉 of C is isomorphic
to the frame P = 〈P,≤〉 defined as follow: (see Figure 19):

- P = {[a, b] : a, b ∈ T+ and a ≤ b};
- [a, b] ≤ [c, d] iff [c, d] ⊆ [a, b].

We point out that [1, ω] is the root of P and the stable points of P are the
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Figure 19: The limit P

ones of the kind [a, b] with b < ω. It is easy to see that P is not a frame
for St, indeed we can define a p-morphism g from P onto P σ5

as follows:

- g(k) = σ1 if k < ω (where k, as usual, denotes the interval [k, k]);
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- g(ω) = σ2;

- g([k, l]) = σ3 if k �= l and l �= ω;

- g([k, ω]) = σ5 if k �= ω.

We stress that g does not produce a stable reduction and, with this kind of
chains, it seems difficult to find a counterexample which allows us to apply
the Strong Completeness Criterion. In the present case, for instance, we
can even find a weak limit P ′ of C which is a frame for RH. As a matter of
fact, let P ′ be the subframe of P obtained by considering the point [1, ω]
and all the stable points of P . Then, it is easy to check that P ′ is a (well
separable) weak limit of C. Moreover, it is immediate to see that P ′ has the
filter property, therefore, by Proposition 2.1, P ′ is a frame for RH. Thus,
as a consequence of Proposition 4.5, all the stable reductions of the limit
P of C are frames for RH. Also in this case, to strengthen the result we
need more knowledge about the semantics of RH.

8. Other notions of subcanonicity

We briefly outline how one can further refine the analysis about canonicity,
if we take into account the class of all Kripke models, including also models
without enough final points. We can strengthen the notion of hypercanon-
icity and extensive canonicity in the following way:

(a′) L is fully hypercanonical iff the underlying frame of any separable
Kripke model (possibly without enough final points) of L is a frame
for L.

(b′) L is fully extensively canonical iff the underlying frame of any well
separable Kripke model (possibly without enough final points) of L
is a frame for L.

We stress that full hypercanonicity corresponds to Df-persistence (persis-
tence for differentiated general frames), while full extensive canonicity cor-
responds to R-persistence (persistence for refined general frames), where
these notions are well-known in the literature of both modal and inter-
mediate logics (see for instance [3, 18]). These “full” notions are actually
stronger than the previous ones. To show this, let Jn be the weak excluded
middle logic described in Section 5; then:
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(1) Jn is hypercanonical (hence extensively canonical);

(2) Jn is not fully extensively canonical (hence neither fully hypercanon-
ical).

To prove (1), suppose by absurd that there is a separable Kripke model
with enough final points K = 〈P,≤,�〉 of Jn such that P = 〈P,≤〉 is not
directed. Then there must be α ∈ P and two distinct final points ϕ1, ϕ2

such that α < ϕ1 and α < ϕ2. By the separability of K, there is a formula
A such that ϕ1 � A and ϕ2 � ¬A; this implies α �� ¬A∨ ¬¬A, against the
fact that K is a model of Jn.
To prove (2), let us consider the model K = 〈P,≤, ρ,�〉, where P =
〈P,≤, ρ〉 is the frame in Figure 20 and � is defined as follows (we assume
that p0, p1, . . . , q0, q1, . . . are all the variables of the language LV):

- δ � pk iff either αk ≤ δ or β0 ≤ δ;

- δ � qk iff either βk ≤ δ or α0 ≤ δ.
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�α1

�α2

�
�
�
�
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� β0

� β1

� β2

�
�
�
�

Figure 20: The non strongly directed frame P

Let Vk = {p0, . . . , pk, q0, . . . , qk}; then, for every k ≥ 0, it holds that:

ΓVk
K (αk) = ΓVk

K (βk).

This implies that, for every formula A, ρ � ¬A∨¬¬A, hence K is a model
of Jn. On the other hand, even if K is well separable, K is not strongly
directed (of course, K is not even full, since the final point realizing the
consistent saturated set Φ =

⋃
k≥0 ΓVk

K (αk) lacks). Thus, Df-persistence and
R-persistence characterize the non-trivial class of canonical logics such that
the hypothesis on final points is essential in canonicity proof. To complete
the picture, we mention other minor results (see also [8]):
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• the logics of bounded depth Bdh are fully hypercanonical;

• Dummett logic (or Chain logic) LC = Int + (p→q) ∨ (q→p) is fully
extensively canonical but not hypercanonical;

• Kreisel-Putnam logic KP = Int+kp is canonical but not extensively
canonical.

Thus, the classes above described do not collapse. Again, we stress that
we are not interested in such a rich classification since the only relevant
gap is the one between extensive canonicity and “pure” canonicity (see the
discussion after the proof of Theorem 5.12).

To conclude, we think that the methods here developed have a general
validity and can be extended in many other cases where Kripke semantics is
used; for instance, there are not real difficulties in adapting the tools here
used to modal logics (see also [10]), and many proofs of non canonicity
and of non strong completeness of modal logics (perhaps, also of temporal
logics) could be simplified.
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