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ABSTRACT

Context. Weak lensing is one of the best available diagnostic tootsdasure the total density profiles of distant clusters abdes.
Unfortunately, it sifers from the well-known mass-sheet degeneracy, so that \eeskng analyses cannot lead to fully reliable
determinations of the total mass of the clusters. One plessiaay to set the relevant scale of the density profile woultbh®@ake a
direct measurement of the magnification produced by théarsigas gravitational lenses; in the past this objectivebbas addressed
in a number of ways, but with no significant success.

Aims. In this paper we revisit a suggestion made a few years aghifogéneral purpose, based on the use of the Fundamental Plan
as a standard rod for early-type galaxies. Here we move amefstther, beyond the simple outline of the idea given egriind
quantify some statistical properties of this innovativagtiostic tool, with the final goal of identifying clear guiides for a future
observational test on concrete cases, which turns out tceliewithin the current instrument capabilities.

Methods. The study is carried out by discussing the statistical ptigreof Fundamental Plane measurements for a sample gf earl
type source galaxies behind a massive cluster, for whichak emsing analysis is assumed to be available. Some gepetdis are
first obtained analytically and then tested and extendedédnns of dedicated simulations.

Results. We proceed to study the best strategy to use Fundamenta Rleasurements to determine the mass scale of a given cluster
and find that the optimal choice is that of a sample of earhetgalaxies behind the cluster distributed approximatalfoumnly in

the sky. We discuss the role of the redshift distributionhaf $ource galaxies, in relation to the redshift of the lemsinster and to
the limitations of Fundamental Plane measurements. Sigiplelations are carried out for clusters with intrinsic pedies similar

to those of the Coma cluster. We also show that, within asgaltosmological scenario, substructures do not contimuch to the
magnification signal that we are looking for, but only add alesi amount of scatter.

Conclusions. We find that for a massive cluste¥lgg > 10'° M,) located at redshift.@ + 0.1, a set of about 20 Fundamental Plane
measurements, combined with a good weak lensing analysis|dsbe able to lead to a mass determination with a preci@0 %

or better.
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1. Introduction plane wher&(#) # 1. One can assume that the surface mass den-
Weak Ie_nsing is a powerful t_ool to probe the mass distriluti Slr% \fﬁanlzzzstﬁ;tﬂtfebgbjgrdazréesgzg‘(;‘g‘ﬁg?ﬁ;a;gg;n Otp ?r’]lsn
of massive clusters of galaxies. Based on the study of the dig ot ghservation is zero. However, this assumption negui
tortion induced by t_he lens on images of extended backgroutlilI field of view to be sfiiciently Iarg’e, which is not always
sources, weak lensing technlqu_es have been often used to nﬂ)%%sible. Moreover, current structure formation modeéijmt
SUré masses ofc_:lusters Of_ galaxies (see e.g. Lomb.ardm&(b, that many clusters of galaxies have nonvanishing surfacs ma
Clow_.e & SChUe'def 2002, Broadhurst et[al. 2005; Clowe et ensities far from the lens center, so that such an assumptio
<006; Gavazzi et . 2009)' However, weak lensinfjess from is bound to lead to total mass estimates significantly ursdere
a fundamental limitation set by the so-called mass—shegirde ;.04 Another possibility is to set= 0 at its minimum so
eracy. the projected surface mass density ridpcan be deter- that the mass density is everywhere positive, which migétrse
mined only up to transformations of the form a plausible assumption. The problem with this approachas th
k(0) — ' (6) = Ak(6) + 1— A. (1) noise can produce negative valuesodnd adjusting the overall
density profile on the basis of a noise feature may not be Wise.
In other words, with weak lensing measurements alone ittis ngopular solution is to fit weak lensing measurements to param
possible to constrain the total mass of a lens, unless fuéhe ric model mass distributions, usually NFW (Navarro et ab7)0
sumptions are made. rofiles. This method has the disadvantage that it relieh@sa
Although many strategies have been proposed to break tgiﬁned mass profile for the lens, which migHtei from that of
degeneracy, no definitive solution has been found so fariiA p the actual cluster, thus reducing the power of weak lensing a
ciple, the mass-sheet degeneracy can be removed with tiie dehass measurement technique.
mination of the absolute value efat a single point in the lens
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If we wish to find an assumption-free method to break thite use of numerical simulations. Then we address the proble
mass-sheet degeneracy, additional information must bedaddf identifying the optimal conditions on lens and sourcéagis
to the weak lensing measurements. Several attempts haue be@rder to get a significant measurement in concrete cases.
made in this direction. One possibility is to include magpaifi The structure of the paper is the following. In Sédt. 2 we
tion information in the data set. In fact, measurements ef tlgive the basic lensing equations and present the probletreof t
magnification and of the shear field can lead to a direct detefiass-sheet degeneracy. In SEtt. 3 we show how Fundamental
mination of the surface mass densityBroadhurst et al[ (1995) Plane measurements can be used to infer the magnification and
proposed a method based on the study of the number countprefsent a simple method to use such measurements to break the
faint background galaxies for the determination of the nifiagn mass—sheet degeneracy. In SEtt. 4 the statistical prepeti
cation. Their technique was successfully used in a few cafseghis method are studied. In Selct. 5 we address the issue of how
particularly massive clusters (Fort etlal. 1997, Taylod€1898, substructures can influence the magnification signal we week
Broadhurst et al._ 2005, Umetsu et [al. 2010). However, far thineasure. In Sedil 6 we describe the simulations set up ttheest
method a detailed calibration of nontrivial model quaastisuch method and show the results. Conclusions are drawn in[Sect. 7
as the number counts of unlensed sources, is essentialoMare
the count process in the central regions of rich clustersadem
difficult by bright cluster members that hide the faintest back-: Weak lensing preliminaries
ground galaxies. ) ) )

The form of the invariance transformatidd (1) is referred t-1- Basic notation and equations

a fixed source redshift: the same transformation _referrem tve start by introducing the projected surface mass density o
source at a dierent redshift changes through a fiagent that 5 given lens(d). The nature of the lensing equations make it

multiplies the term % A. In other words, each portion of the gnvenient to introduce thdimensionless surface mass density
redshift space gters from a diferent invariance transforma-ljga 7) for a source at redshif; defined as

tion, so that in principle the mass—sheet degeneracy can a

be broken by combining lensing information from images of ) @ Ds

sources at dierentknown redshifts. Bradat et al. (2004) inves«(0,2) = where X = 2GDDo 2
tigated this possibility in the context of weak lensing, sioier- e (2) 7 Ydds

ing the hypothetical case in which the individual redsfofithe perep,, D, Dy, are angular diameter distances of the lens and
lensed background galaxies are available. They showedaiat o rce with respect to the observer, and of the source with re

der these favourable circumstances, the mass-sheet dagengpect to the lens, respectively. The surface mass densiey is
can be broken for critical clusters (i.e. those that can weed tqrred to a fiducial source at infinite redshift,

multiple images), but still not for subcritical ones.
A significantimprovement can come from the addition of ing(g, 7) = z(2)«(6), ©)
formation from strongly lensed images (i.e. arcs or mugtiph-
ages), provided that the redshifts of the strongly lensetces through the cosmological weight function
differ from the mean redshift of the sources used for the weak
lensing analysis. Indeed, several methods based on the in im0 Zer (Z)
sion of strong lensing information have been devised and T (2)
plied to real cases (Bradac et lal. 2005a, 2005b, Cacciab et
2006, Diego et al. 2007, Merten etlal. 2009). However, styongHereH (z—zs) is the Heaviside step function, to take into account
lensed images can only be produced by critical clusterss,;Ththat images of sources at redshift lower than that of the deas
for subcritical clusters the mass-sheet degeneracyestiliins a not lensed.
fundamental problem in the determination of the total mass. An important quantity that enters the weak lensing problem
Itis in this contextthat Bertin & Lombardi (2006, BLO6 fromis the redshift—dependent reduced shéyr2):
now on) proposed a new method to measure the lensing magni-
fication induced by a cluster, which can be used to break ﬁﬁ@ 2 = Z(2)y(0) (5)
mass-sheet degeneracy. They showed that estimates of the 71— Z(2k(6)°
nification can be obtained by observing background eaghgty
galaxies. Early-type galaxies can be treated as standdsiliro Where theshear y(6) can be expressed as a nonlocal function of
virtue of the empirical law of the Fundamental Plane. From &46):
Fundamental Plane measurement, the intrinfiiecéve radius 1
of an early-type galaxy can be recovered with a 15% accur _z a2
(BLO6). Then, by measuring the observed (magnifigthative ) n fRz DO - 0)()d0, ©)
radius, the magnification can be derived.
In this paper we investigate further the possibilities aggen . 1
by this technique. In particular, we wish to determine whach With  D(6) = T
curacy on the determination of the total mass of a clustebean

achieved by combining Fundamental Plane measurements WifBak lensing consists in the study of the distortion indusgd
a weak lensing study. This is done by prescribing a methodigs ens on the images of background sources. This can be done

_break the d(_agenera_cy anc_j by stgdying its pro_perties, betlyan i, terms of acomplex dlipticity €, defined from the quadrupole
ically and with the aid of simulations. In principle, suhsttures momentsQ;; of the surface brightness as

in the lensing cluster can introduce noise in the magnificati
signal, so that a given measurement might be used to setstter Q11— Q2+ 2IQ12

ing constraints on the amount of substructure rather thathen € = .
mass of the cluster. This issue is also studied in this paptr, Qu1 + Q22+ 2,/Q11Q22 — Q2,

2) = H(z - z). (4)

()

(8)
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Seitz & Schneider(1997) showed that the image ellipticity 3. Breaking the mass—sheet degeneracy
related to the intrinsic (unlensed) source ellipticifyin the fol-

lowing way: In this section we will introduce a mass measurement method
based on the combined use of weak lensing and magnification
S+0(0,2 .
€+96.29 96,2 < 1 measurements.
1+9(6, 2"
€= : (9)
1+ g(6, 2)e> 3.1. The Fundamental Plane
—~—— - Otherwise
€ +9(6,2) The Fundamental Plane (FP from now on; Dressler ét al.|1987,

Djorgovski & Davis[198F) is an empirical scaling law that ap-
plies to early-type galaxies (E0). It relates three well-defined
observable quantities for these objects: ¢ffective radius, Re,
the effective surface brightness, (SB),, and thecentral velocity

Therefore, under the assumption that the intrinsic ediptidis-
tribution of background sources is isotropic, the expémbat
value of the observed ellipticity for sources at redshift

96,2 iflg6,2) <1 dispersion of the stellar component;p. The three quantities are
related in the following way:
E[e(2)] = 1 or (10)
g6, 2) otherwise LogRe = Logre + LogDa(2) = aLogoo +B(SB)e +7y,  (15)

In the general case of sources distributed in redshift,dlevi-

. - . wherea, 8, andy are empirically determined cfiiients that de-
ing approximation holds fot < 0.6: A 4 P y

pend on the waveband of observatiosis the dfective radius in

(Z) y(6) angular units an®a(2) is the angular diameter distance of the
Ele] ~ @) ) (11) galaxy at redshifz. The existence of such a relation has been
1- "z «(6) extensively confirmed by a number of studies on both field and

. . cluster galaxies out to cosmological distances (e.g. heageet
as shown by Seitz & Schneidér (19972") are the moments of | 1993, Bender et 41, 1998, Treu efal. 1999). The measureme
the redshift probability distribution of the backgroundaydes.  of the Fundamental Plane parameters for the most distant sam
ple of objects has been carried out by van der Wel et al. (2005,
2.2. The mass—sheet degeneracy vdWO5 from now on), who examined early-type galaxies out to
z ~ 1.1. This relation is observed to hold within e0@ scatter
By averaging overimage ellipticities of background gad®and on Logre, or 15% orre, rather independently of the position on
identifying (e) with E[e], we can estimate the quantity {11) inthe FP plane (Jgrgensen efal. 1996) and increasing witbaser
the field of observation. Then, singedepends ow through Eq. ing redshift (Treu et al._2005). Treu et &l. (2005) have guant
(©), relation [(I1) can be inverted and the surface masstensified the increase in the scatter in Legof the FP relation as
can be recovered from the observed average ellipticittlRed  do-, /dz = 0.032+ 0.012, which translates into a scatter of 23%
realizations of this picture were provided by Kaiser (19$8)itz in r, atz = 1. It is still not clear if the source of this scatter
& Schneider((1997), Lombardi & Bertin (1999). is totally intrinsic or if it can be reduced by improving the-o
It can be shown that the quantitydtin Eq. (I1), which is servational precision. Auger et &l. (2010) estimated tkrinisic
the observable quantity, is invariant under transfornmestiof the  scatter of the FP to be as low as 11%.

form Observations have pointed out a variation of thefécient

e B v with redshift, quantified adly/dz = 0.58%%4 by Treu et al.

«(6) = 1(6) = 4(B) +w(l - ), (12) (2005). For cluster galaxies there is evider?é)(g for a slowelue
where we introduced tion (see e.g. Wuyts et al. 2004, vdWO05), so that the Fund&hen

74 Plane for cluster galaxies appears tdfal from that of field

= (13) galaxies. In vdWO05 it was shown that thisfdrence is not signif-
(2%) icant for massiveN! > 2x 10'M,) galaxies, and a similar result
as found by van Dokkum & van der Maréel (2007). According
0 vdWO05, the scatter of the FP is also smaller for the more mas
3{)/‘% objects. Evidence for a variation of the fla@entsa andg
with redshift has also been reported (Treu €t al. 2005) Hisii$
Henerally taken to be less significant.

This is the mass—sheet degeneracy for the general caseroéso
distributed in redshift: with ellipticity measurementsistonly
possible to recover the surface mass density up to the ab
transformation. In the simplified case of sources all at thaes
redshift z, the invariance transformation reduces [id (1), wit
x(0,2) = k(6).

In principle, the mass—sheet degeneracy can be broken With, The Fp seen through a lens
a local measurement of the magnification. In fact, the magnifi
cationu(@, 2) is related tox(8) andy(6) through the following As shown inLBLO6, the Fundamental Plane changes in a well

relation: defined way when viewed through a gravitational lens. Bo¢h th
s o o1 surface brightnes&B), and the central velocity dispersiary
(6, 2) = |[1 - Z@x(0))* - Z2ly(0)7| " (14)  are lens-invariant. Therefore, by measuring these two tifiesn

; - - for early-type galaxies and by making use of the Fundamental
By measuringe) andu(z) and by combinin 1) wit 4) we ! o ; ; .
ogtain s twog—quuati (/)lr(] )systemyin terms:@%:r% 3 WPEE c)an Plane relation[(I5) it is possible to obtgF!)n an estimate efeh
be solved for, thus breaking the mass—sheet degeneracy. TH§tive radius of the observed gala_>Fgé . By measuring the
requires that we know which redshifthe magnification mea- redshift of the galaxy it is then possible to convert this mee-
surement is referred to, in order to calculate the cosmotgi ment of the &ective radius to angular units} . By observing

weightZ(2) that enters Eq[{14). the efective radiug ), magnified by the lensfiect, the lens
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magnification will then be given by the square of the ratichaf t wherexo(6) is the surface mass density distribution inferred from

intrinsic size to the observed image size, as the weak lensing reconstruction, angt are suitably chosen
(obs)\2 weights. The minimumy? condition can be found by imposing
_Te dx?/dA = 0, which leads to the determination of the estimator
=~ (16) :
réFP) for the parametet:
With a 15% scatter of the Fundamental Plane relation, the@sam N 1
error will affect our estimate of the intrinsidfective radius, Z —[K»(FP)—W][Ko(a') -
FP) \whi i 0 ificati 217 '
re ’, which translates into a 30% error on the magnification. . 45 o
Actually, the quantity that is lens invariant s the intimsur- 4 = N . (21)
face brightness, which in generaff@irs from the observed sur- Z ko6 — W2
face brightness. Nevertheless, van der Wel et al. (2005estho =0 o?

that the intrinsic surface brightness of galaxies at higtsiét
can be éectively measured by fitting Sersic models convolveghe choice of the weights? that enter thig? function requires

with the PSF. We expect this task to be made easier by the magziicyjar care. Generally, in minimugf-approaches the values

nifying effect of lensing. of o are taken to be proportional to the measurement errors of
the quantity over which the fit is performed: in the preseseca

3.3. A minimum-y? approach the surface mass densif”). By assuming that the errors come
only from the Fundamental Plane measurements (i.e. under th

The method presented here has been developed and teste¢d8fimption of perfect weak lensing measurements), eropr pr
noncritical lenses only, although it can be generalizetiéxctit-  5gation on gives

ical case. Therefore, from now on we will assume that the lens

does not have critical curves, unless stateedintly. This is Z(2)? K \2

also the most interesting case, because it is for subdiigicaes [1-2Z@«)?*- > (1 - —) | (e} %(0)

that the problem of the mass-sheet degeneracy is hardeeto 0y, = gp(2) & d , (22)
come. Z(2)?

Z([1 - Z(2)«] -

K\? 2

Suppose we performed a weak lensing analysis of a cluster, (1 - v_v) (&) 1°(6)

which led to the determination of the average distortjien(6)

within the field of view. By inverting the distortion map (forwhere orp(2) is the scatter inre of the Fundamental Plane.

instance with the nonparametric method of Lombardi & Bertiiherefore Axep depends on the value af which is the quan-

1999) itis possible to recover the surface mass densityedéts  tity we are trying to determine with the fit. This complicates

«(0) up to the invariance transformatidn {12). Then, suppoae thhe definition of the weights. One would be tempted to define

we performed a set di-p Fundamental Plane measurements; = Ax(xFFX(6;)), but by doing so we would introduce a bias in

through which we estimate the magnification in a correspundithe estimate of: this is because a higher weight would be given

number of positiongs;} on the image plane. to measurements in which fluctuations give higher valueb®f t

Among the infinite possible mass density maps compatiligagnification, relative to cases in whighis underestimated.

with the distortion measurements, spanned[by (12), we tsel@aen the fit would yield preferentially higher mass estirsate

the one for which the accordance with the observations ofmag The solution we propose is an iteration procedure, seeded by

nied early-type galaxies is best. To do so, we first transforiile definition of the weights based on the model surface mass

the estimates of the magnification into estimates of theaserf density«o obtained from weak lensing: ifi{22) we identify

mass densitk(FFX(6;), making use of Eq{11) arld{14). This rewith « and define

quires that we know the average distortion in the image joosit

(€) (6), determined from the weak lensing study, and the redshiff = Axep(ko(6h)). (23)

z of each galaxy, which can be measured with the same spectro-

scopic observation necessary to meastyel he expression that We can then minimize thg? function and obtain a new estimate

givesk(FP(6)) in terms ofu(6:), (€) (6;) andz; is the following:  of the density map. I is the value of the parametenbtained
from the fit with [21), then this new model for the surface mass

w(Z)?

JFP) _ —-b— b? ;a(c - 1/#)’ (17) density will be given by
where K1 = A)ko + w(l - /1(0))' (24)
1 Z At this point we can update the weights to this new model by
=721 _ 2 _ > i 2
a=7 (1 W2 <z>2| @I ) b=2 (w<Z>2| @I 1)’ (18) redefiningo; = Axep[k1(6;)] and iterate the procedure. Fig. 1
outlines the basic steps of the method. The method converges
B z? ) _ quickly and the final solution is found to be invariant undens-
c=1- W' ] and Z = Z(z). (19)  formations of the form[{2) of the input surface mass density
map«o.
The minus sign for the square root [N]17) comes from the fact Eq. (20) is only one possible definition ofy@ function for
that the lens was assumed to be everywhere subcritical. our problem. We could have definegin terms of other quan-
The fit is performed by minimizing the following penaltytities, such as the magnificatignor its inverse detA|. The ad-
function: vantage of our choice lies in the fact that the minimyhcondi-
Nee tion dy?/04 = O'is a linear function ofl. This makes it relatively
2 (FP)]2 easy to study the statistical properties of the method, fvivid
= = |ko(@) +W@a-2) -« |, 20 Y y prop '
X Z o2 [ o(8) + Wt =) = 4] (20) be the subject of Sedil 4.

i=1 |
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‘ Weak lensing reconstructic*n where we introduced

o 2
n= i (<77, 40;). 1z)) = — : (27)

\ Nep

S0 - wilk(6) -

A 2
— ‘ oi = Akep(K™, [ (&) |, Z) ‘ JZ_; O'_JZ[K(GI) w]

Iteration Fit We assume that the number of Fundamental Plane measurements
NEp is fixed, and that the image positions are randomly dis-
tributed. We will denote by, ,(6, 2) the probability distribution
in redshift and image position of the observed galaxies.

Given these definitions, we write the quantitigs Rhat en-

ter (28) as

Nep

=] ] f Po(6;,2))d6;dz f PP d;, (28)
j=1

To assess the reliability of the method introduced to bréak twhere P, is the probability distribution for the estimates of
mass-sheet degeneracy, it is necessary to study in detaitdh from a Fundamental Plane measurement. Let us make the as-
tistical properties of the results obtained. In particuee wish  sumption thalPK(Ki(FP)) is a Gaussian function with dispersion

to clarify if the estimate of the total mass resulting froristoro- -, centered on the exact value of the surface mass density:
cedure is biased, and to determine the expected uncertainty
- K(ao]Z}

n=n+1 v

Fig. 1. The fitting process.

4. Statistical properties of the method

In order to do this, we need to discuss the conditions of ob- 29)
202

servation first. Obviously, it would be preferable to workiwi P« (Ki(F Ak, o }) = exp{

a large number of measurements, but a practical limit is im- 27T0'i2 i

posed by the telescope time required to measure velocity dis

persions. We believe that a reasonable number of Fundameiitze validity of this assumption will be discussed in AppenAli
Plane measurements that can Fedively carried out in an ob- We then perform the integration dki(FP) in (28), which yields
servational campaign igp ~ 20. Another important issue is

the possibility of nding a sticient number of sources behind the i[K(O‘) — w2

observed gravitational leris. BLIO6 estimated the numbesitien P (FP 2 '

of practically observable sources to be2 arcmin?. This es- [ AP ()1 = . , (30)
timate was based on a study of magnitude—number counts*of

> Sl —w?

early—type galaxies (Glazebrook et al. 1995). This setmi din o

the field of view required to have aféigiently high statistics of
Fundamental Plane measurements. It also tells us thagsualefrom which, together witH(26), it easily follows that
large field of view is examined, the observer does not havehmuc _
freedom in selecting objects. Our statistical study wikganto E{4} = 1. (31)
acocunt these important factors. . . .

In this section, the weak lensing study will be assumed ®"C€ the input density map was assumed to be the exactsurfac
provide a perfect reconstruction of the surface mass demsip, Mass density of the lengy(6) = «(6)), this result implies that
except for the mass-sheet degeneracy. Since the fit metirod isthe expectation value for the recpnstruqt(_ad SU”.ace masstyle
variant under tranformations of the form{12) on the input-de distribution is the exact onéhe estimator 4 is not biased.
sity mapxo(6), we can also assume without further restrictions, AS @ second step, we study the second moment of the proba-
thatxo(#) is the exact surface mass density of the lens: b.'l'ty d|str|but|0_n for 4, the variance: Van) = E{17} - E*{4). A

similar calculation leads to
ko(0) = kirue(6) = «(0). (25) R R R 1
. : . Var(l) = E{4%) - EX(4) = :

Based on these assumptions, we will study the statisticglgyr Nep )
ties of the estimatol at the first iteration (i.ed ). The results Z — [«(6i) — W]
obtained will provide information on the error in the detéres 7
tion of the mass density ma@(") after .the_ first lteration. Since where angle brackets indicate that the expression mustdye av
the method converges quickly, there is littléfeience between ;0 4 gver the possible image positions and source redshifts
Kll(a) and the final density map, thereforg we will consider the We note that in the limit of high\ep the variance has the
difference betweer; and the exact density mapto evaluate typical behavior~ 1/Nep. We have exactly Va) o 1/Nep in

errors. the case of a uniform sheet of constant surface mass density.

(32)

4.1. Erroron A 4.2. Error on the total mass

We define the expectation value of the estimaltas We have just shown the basic results on the accuracy of the
Nep method in determining the parameterNow we will examine
Ed =) E{l}, (26) the problem of how an error om translates into errors on the
estimated total madyl of the lens.



A. Sonnenfeld et al.: Direct measurements of the lensingnifiagtion by galaxy clusters

The total mass inside the field of view is given by the integrals a function ok (i. e. image position) for a source at redshift

of x over the observed portion of the image plae zs = 0.6,0.8, 1.0. For this and the following examples, the value
of w is computed by assuming a redshift distribution of weak
M =3 Dﬁfk(a)dza, (33) lensing measuremenE{WL)(z) o« Zexp(z/z) with zy = 2/3,
®

as in Bradat et all (2004), while the scatter of the Fundaahen
whereDy is the angular diameter distance of the lens relative Blane is assumed to hgp = 0.15. It can be seen thak in-
the observer. The surface mass density is subject to thei-inva
ance transformatiof.(12). The expectation value of the oveds

massM is 0.4
E(M} = Z¢ DgE{ f |x(6) + w(1 - D)] dza} =M, (34)

[C]
where we made use df{31), aBig = Zq(zs — ). If the es- 0.3

timator for A is not biased, then there is also no bias on the
estimate of the total mass. R

Let us consider the variance bf. A straightforward calcu- ~' 0.2
lation based on Eq._(81) gives

2
Var(M) = E{M?} - E{M} = (M —wZ,D? [ d?9] Var(1).(35) 0.1
d [C]

By taking the square root df (B5) and dividing it M/we obtain
the expected relative dispersionidf . . . .

N 0.2 0.4 0.6 0.8 1.0
a(M) ' 1

= - 1' (), (36)
wherex is the average surface mass density inside the field %lp. 2.y, as defined '!{(37)’ asa functL()ln ofi.e. image pos-
view ando(1) is the square root of{82), namely the dispersioﬁon) for a NIS lens W't.ho"’ = 1000 km s™ andrc = 58.8 kpc,
of 1. or three source redshifts.

This result allows us to calculate, for a given lens, the ac-
curacy with which its mass can be measured. For fixed averageases with increasing although mildly. This result suggests
surface mass density, the only quantity that determines thisthat, for a given lens observed within a given field of view, it
accuracy is the precision in the determinatiomptr(1). This would be preferable to perform Fundamental Plane measure-
quantity might depend on the shape of the lens mass distrilbaents on objects whose images lie where the surface mass den-
tion, so that lenses with certain characteristics may besrsgit- ~ sity is lower, as the expected dispersionis lower. However,
able candidates than others. This issue, which is impoftant it is important to recall the assumptions that underlie tbgult.
determining which are the ideal lens candidates for an e@pli In particular, we are assuming that no error comes from trekwe
tion of the present technique, is addressed in the next stibse lensing analysis. When this assumption is dropped thet&itua
by studyingo-(1) ando-(M) for different lens models. changes. Real cases are more complex: as will be shown in Sect
6, weak lensing reconstructions tend to underestimateuhe s
face mass density in the central parts of lenses and ovesti
it in the outskirts. Therefore, normalizing the overall masale
To better understand the above results, it is useful to focus Of @ lens with Fundamental Plane measurements limited to par

simple situations. We start by discussing the case Wigh= 1 ticular regions of the image plane can be risky, becausesias

4.3. Simple examples

and consider the quantity in brackets[inl(32): can be introduced. Weak lensing errors can be better tabled
sampling the image plane uniformly. This issue is discuésed
Ji = _r (37) ther in Sect. 6.2.

As a second step, we will consider the variation of War(
as a function of the average surface mass dergitythe lens,
. ) ) for two simple lens models, again in the cd$g = 1. As lens
Then, as a first example, we consider an approximate represgiddels we consider NIS lenses with various values-pfnd
tation of the Nonsingular Isothermal Sphere (NIS), withsiBn r put fixed central surface mass density= 1. Equation[(3D)

L 1) - wi?
0y

profile given by shows that NIS lenses with fiérent values of . and fixedx.
o2 1 are rescaled just in the angular dimension. Therefore, firen

o(r) = —= - (38) lens, changing. and keeping. fixed is equivalent to choosing
2nG 2 +r¢ a different field of view.

The projected mass densitf) of a NIS is given by For comparison, we also considered lenses of constant sur-
) face mass density(d) = « and no shear. In Fig] 3 we plot the
gy 1 .y 1 (39) variance of1 as a function ok for these two lens models, for
2GX¢, W e W a single source at fixed redshif = 0.8. The space average in
Eq. [32) was calculated by ignoringfects of the magnification
We takeo, = 1000 km s andr, = 588 kpc and place the on the image position probabilitys(6). The value of the vari-
lens at redshifzy = 0.3, so that the projected surface mass deance of the estimatot is found to be similar for the two kinds
sity at the center ig(0) = 1. In Fig.[2 we plot the quantity; of lens, for fixed average density This result is presumably a

x(6) =
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already mild dependence of Vaj(on the image position (see
Fig.[2), we do not expect our results to change significantly.

5. Substructure effects

In some galaxy-galaxy strong lensing systems it has beexdnot
that while it is relatively easy to build smooth lens modélatt
reproduce well the multiple image positions of distant Q30
same models are unable to reproduce the observed flux rétios o
these images (e.g. Kent & Falco 1988, Hogg & Blandford 1994,
Falco et al[[1997). It is now common belief that these flux ra-
tio anomalies may be due to the presence of substructurés, an
several attempts have been made at providing suitable leds m
, , , , , , els that take substructure into account, such as those by Mao
0.1 02 03 04 05 06 0.7 08 & Schneider [(1998), Metcalf & Madal (2001), Bradac et al.
= (2002), Chibal(2002). Their argument is supported by the fol
lowing reasoning: a substructure having an Einstein ractas-

Fig. 3.Var(}l) as a function of the average surface mass degsitparable to the angular size of the source’s light emittirgjae
for two lens models: a NIS witk(0) = 1 (solid line) and a sheet Can cause a significant change in its apparent size, whjests

of constant surface mass density and no shear (dotted line). tiqn on the lens plar)e can be littlé&ected. This condition is rel-
atively easy to obtain for the case of a compact source suah as

distant QSO being lensed by a(%alaxy; in fact, objects asivgass
. . as atypical globular cluster(10°M;) can change appreciabl
consequence of the mild dependencepbn «, as observed in y,q flalf rece%ved from such (a sourc);e, if propegrly arljignedsT)r/ﬂ
the p_Iot of FigL2. . . effect is enhanced in the proximity of critical curves (i.e.\ag
Finally, we calculate the dispersion on the measurement\%ere| detA| ~ 0). Since
the massg-(M)/M for the two cases considered above, plotting
the results in Fid.J4. The results for the two lenses are bt 1
indistinguishable. This result, which reflects the sinifjeof the # = |detA™ = '(1—K)—Z—||2
values ofo-(1) found for the two lenses, suggests that the shape Y
of the mass distribution plays little role in determining@#ccu- i | detA| ~ 0 a small change ik can produce a large change in
racy of the mass measurement, while the decisive factoreis #e magnification.
average surface mass density within the field of view, Weak lensing is a good tracer of the surface mass density
averaged over finite portions of the image plane, but is nuise
tive to small scale variations of the projected mass distigin.
In fact, weak lensing methods recover the reduced ghbpav-
2.5 ' ' ' ' ' ' eraging the distortion signal over a number of backgroutebga
ies over angular scales of tens of arcseconds (e.g. see Itdimba
et al.[2000). Therefore, they only provide smoothed mass den
sity profiles. If we want to break the mass-sheet degeneracy
with magnification measurements, we must be sure that these
magnification measurements also reflect the propertiesisf th
smoothed mass profile. Substructures modify the lensinakig
in a nontrivial way and can complicate the interpretatiomef-
nification measurements. For the purpose of constrainia¢pth
tal mass of the lens, the contribution from smaller clumps ha
the same #ect of noise.
The problem is addressed with the aid of numerical simu-
. . . . . . Iationsr.] We c_on?tLucl:t a r’godel cluster ?s a s”uperpgrs],itilon cgva
smooth principal halo and a number of smaller subhalos. We
0.1 02 03 04 _ 0.5 0.6 0.7 0.8 generate images of background early—type galaxies, cantipar
observed magnification with that inferred from a smooth lens
Fig. 4.0(M)/M as a function of the average surface mass densWyOdel’ E.ind the_n analyz_e the results.
In this section we will use the terms clump, halo, subclump,

k for two lens models: a NIS witkh(0) = 1 (solid line) and a sheet bhal bstruct IV to refer t P,
of constant surface mass density and no shear (dotted line). SUPNal0, SUDSIrUCIUrE Synonymously to refer {o mass creeen
tions inside a galaxy cluster.

K

: (40)

K

We recall that these results were obtained by assuming tiaf
the image positions are distributed randomly. This may mot b
true if the observer plays an active role in the object selact It is not clear how much substructure is present in clustérs o
For example one may wish to sample the field uniformly, avoigralaxies. Cosmological simulations predict the existenica
ing close pairs of images. In this way the image positionklveil large number of subhalos of mags< 10'°M, but observations
correlated. This will &ect the value of-(1). However, given the have failed to prove their presence, so far. Here we will &4dop

. Modelling substructure in clusters of galaxies
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conservative approach and will take into account the passitcharacteristics. In particular, if we adopt the followingtation
ity that substructures are present in the abundances peddig for the density of a TSIS,

ACDM models. )

\

p(r) = 2rCr°

if r <ry

5.1.1. Masses and spatial distribution of subclumps ’ (43)

N-body simulations of structure formation at cluster ssélased 0 elsewhere

on the ACDM scenario have shown that the dark matter halgge parameter, (often called the velocity dispersion) is given
that maintain their identity after the formation procesa && i\ terms of the mass of the clump by

approximately described by a power-law mass function:

dN 2_Gm_ G

W o M—(1+<Y) (41) Ov = 2r¢ )=

with @ ~ 0.9 + 1, as demonstrated for example in the papers 8y2. Lensing simulations
Tormen et al.[(1998), Ghigna et al. (2000), De Lucia ef alo@)0 -
and Gao et al[(2004). These dark matter subclumps are beliey-2-1- General prescriptions

to account for a few percent of the total mass of the clusteteN A simulated cluster is generated with the procedure destiiip
that the mass fraction in substructure also depends on thefagsect[511. For the main halo we adopt a nonsingular isotHerma
the clus'ger: as a cluster evolve_s_thg subhalos merge to thre Mgbhere[(38). Subhalos with a mass distribution giveri Bl &)
halo until the whole structure virializes and fewer substiltes  cymulative mass that accounts for a fractioof the total mass
are left. _ . ~ of the cluster withirragg are then added to this smooth compo-

Given these results, we will model clusters in a semi-amalyinent. Herer,oo represents the radius of the sphere whose mean
way. A smooth mass density profile for the main halo is chosengensity is 200 times the critical density at the redshifthaf ob-
distribution of subclumps is randomly generated from thesnaject, andM, is the corresponding mass. The total mass in sub-
distribution given by[(411), with the total mass in substwes halos is thenf M,go. A direct use of[41) results in a very large
fixed; these subclumps are randomly distributed with a abathumber of clumps with very small mass. These small clumps are
probability distribution proportional to the mass dengifithe not relevant for the lensing problem because they produge ne
main halo. More details about the practical realizationto$ t jigible effects on the magnification of extended images such as
procedure are given below. those of early-type galaxies. Moreover, the inclusion cdrgé

Numerical simulations have also shown that more massiM@mber of clumps increases the computatioftarerequired to
clumps tend to be located far from the cluster center, wheign the simulations, so that it is useful to introduce a fiuo
only small scale halos survive the merging process (Tormientge lower range of possible masses. A reasonable choickigor t
al.[1998, Ghigna et al. 2000). For simplicity we adopted & unbwer mass cutf is a valuemy,, for which the typical lensing
form spatial distribution of subhalos, as appropriatefierkind  deflection angle is only a small fraction of the angular sizhe
of study we wish to perform. source considered.

To test how the results of our simulations depend on the as-
sumed internal structure of clumps we also adopted an akern
tive (and non realistic) internal profile: we assumed clutogse
For the description of the internal structure of dark mattérha- point masses. Clearly, the TSIS clump will produce a smdker
los we follow the work of Metcalf & Madau (2001), who devel-flection angle up to;. For distances larger thapthe two clumps
oped numerical simulations to study thgeets of subclumps in will produce equal values of the deflection angle, as thely bot
galaxies on the measured lensing magnification of dista@<S as if they were point masses located at the center. For this re
In our work we extend the use of their tools to galaxy clusteg®n, the &ects on magnification produced by a point mass will
environments. Metcalf & Madau modeled subclumps as truhe generally higher than those produced by an extended fens o
cated singular isothermal spheres (TSIS). The advantags-ofthe same mass. Therefore, if we study the problem of the mag-
ing singular isothermal spheres is that their lensing prigge nification induced by substructure by modelling substrieas
can be easily described analytically. On the other handguiin point masses we can obtain an upper limit on tiieats of sub-
isothermal sphere has infinite mass. For this reason a tioncastructure on the magnification.
radius is introduced. For a clump of massat radial distanc®
from the center of the main halo the truncation radius isndke
be equal to théidal radiusr;, which is estimated as (Metcalf &

[BM(R]Y?. (44)

5.1.2. Internal structure of subclumps

5.2.2. Practical realization

Madau_2001) We simulate the observed image of a circular early-typexyala
s with effective radiu_éRe = 5kpc at redshifts = Q.8 being lensed

r~Rr|_M (42) by a NIS cluster with substructures at redshift= 0.3. The pa-

t= 3AM(R)| rameters of the NIS model chosen for the test of the method are

taken from a study of the Coma cluster by De Boni & Bertin

whereM(R) is the mass of the main halo enclosed by the sphg@008), who found the following best fit parameters for the de
of radiusR. With this choice, ifM(R) grows less steeply than scription of the dark matter halo as a NIS modegl:= 88 kpc
R® (both SIS and NFW models have this property) then clump®&do, = 1156 km s2.
closer to the center tend to be more compact than those ¢hat li We fix the mass fraction in substructurend generate sub-
far from the center. structures with the procedure described above, with a lovess

Once the mass and truncation radius of the clump are fixedtoff of my, = 10°M,. This value was chosen because, for the
there is a unique truncated singular isothermal spherethitbe redshift configuration of our system, the Einstein radii ofn
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masses less massive thag, are smaller than.8 kpc, thus with age plane is taken to be equal to the brightness of the corre-
little impact on the distortion of the images chosen for dudg. sponding point of the source plane to which it is mapped.IPixe
Note that in a situation in which all the substructures aotoumapped outside the circle of radiasaround the center of the
for a fractionf of the total mass of the cluster, those with massource do not belong to the observed image. The observed mag-
greater thammy,, will in general account for a lower fraction nification is then defined as the ratio between the total imiggs
f’ of the total mass. A fractiori — f’ will consist of clumps of the image and that of the source. This gives us the flux magni
with m < myin. Since the lensingfiect of these low mass massdfication, which is equal to the size magnification becaus@ef t
clumps is small we simulate them by adding a smooth compmsnservation of surface brightness.
nent for a fractionf — f’ of the total mass. We generated clusters This procedure introduces an error related to the pixétimat
with values off equal to 0.05, 0.10 and 0.15. In these three sitf the definition of the observed image. The relevance ofehis
uations and with the adopted value mof;, the corresponding ror source was checked while running our simulations. Itigpar
value off’ is 0.029, 0.061 and 0.093 respectively. ular we first performed the simulations for a smooth lens aith

To simulate the image formation we proceed as follows, takubstructures, and compared the magnification measuréd wit
ing inspiration from the work by Metcalf & Madal (2001). Wethe above procedure with the theoretical value of the maggifi
define a field of view of 4 4 arcmirf centered on the main halo.tion in the image centroid, given by the model. The results of
We then define a grid over the entire field of view. The resolthis test are the following:

tion of the grid is such that the observdtieetive radius for the ()
early-type galaxy sources in the absence of magnificatidQ is 2H _ o018 — =0.027, (46)
grid cells long. H H

At every grid point the lensing deflection angle is compute@yhereAu/u ando-(1)/u are the average relativéfset and stan-
The contribution of the subclumps is calculated in the foll  dard deviation between the theoretical and measured meanifi
way: the clumps are first assumed to be point masses and fbfis, respectively. The test was performed with a grid reim
deflection angle generated by each clump is calculated & eveych that the length of a pixel is a tenthrgf The resulting typ-
grid point. Then, only for the clumps that lie within the fiedfl ical error in the magnification is of order of a few percentisTh
view considered, the deflection angle inside the circle dfust js much smaller than the 30% error expected for a measure-
ri is corrected with the expression for the deflection angle ofdent of the magnification of an early-type galaxy with the use

TSIS lens (Metcalf & Madau 2001): of the Fundamental Plane relation. Given this result, weptetb

1 1 1 the same grid resolution for the actual simulations.

- = _1iarctan/ = -1 ifa<1 In the simulations with substructures, a small fractionhaf t
() = a0 a Va2 a2 (45) images display strong lensing features (multiple imagess, a

1 or rings). This is made possible by the fact that the deflactio

a ifa>1 angle for a TSIS lens approaches a finite value as the distance

to the center approaches zero, as can be seen frgm (45). For

wherea = xr¢/ri, X = r/re. More simply,a = r/r;. Differently such strongly lensed images the observed magnificatiomi-calc

from the work of Metcalf & Madau (2001), we calculate the delated with the above method is venyigirent from the magnifi-

flection angle once and for all the grid points in the fieldjngk cation obtained with a smooth lens model. Such events drerrat

into account the contribution @ of every subhalo in the lens. rare (typically a few per 1000 images). On the other handighs
Once the map of the deflection angle over the field of viegituation occurred in an actual observation it would belygasc-

is created, images of early-type galaxies are generatddavitognized as a strong lensing feature. A highly distorted imag

uniform distribution on the lens plane. an arc is, would not be suitable for a Fundamental Plane mea-
Effects of the magnification on the image position distrsurement. Therefornese images are removed from our analy-

bution are neglected, i. e. a uniform distribution in the gma sis.

plane is adopted. A rigorous treatment of this aspect woeHd r At the same time we also took care not to make an excessive

quire knowing the luminosity function of our target galassibut use of this procedure, for the following reason. The cajgitof

this is beyond the goals of this paper. Nevertheless, weoes@l a clump of a given mass to form arcs and multiple images de-

different scenarios by applying importance sampling to the opiends on its internal structure. In our model we assumed TSIS

come of our simulations. In particular, we examined twmbesli mass profiles, but the real case is likely to bedient from that.

ent probability distributions: proportional to the magedfiion, In fact, Meneghetti et all (2003) showed that semi-analyiacl-

and inversely proportional to the magnification. The chainge els with NFW subhalos provide a better agreement with the ob-

the results with respect to the uniform case was less than 15%rved statistics of arcs than models with SIS subclumpsn;Th

indicating that our approximation does not alter the cosiolus if in our simulation we observe an arc created by the presehce

of our study. a massive subhalo it could be that the same clump with a more
Sources are described with circular de Vaucouleurs profilesalistic internal structure would have not produced anbatc

truncated ate. Images are then constructed in the following waynly a highly distorted image whose magnification could have

We define a square in the image plane centered on the adofitedn measured. For such images the value of the observed mag-

location for the image center. The size of this square is@mosification is likely to difer significantly from the value inferred

so that the length of its sides are a few times thieative radius by assuming a smooth mass distribution. Thus by eliminating

times the linear stretching(u1*/2) produced by the smooth com-them from the analysis we would bias the results towardstetet

ponent of the lens. In this way the observed image is guagdnt@ccordance between observed magnifications and smootH mode

to lie within this square. Then, each pixel inside the squsre magnifications. This problem is more relevant in the simaoret

mapped to the source plane with the lens equation of the sim-which clumps are treated as point masses, as they are more

ulated cluster, where the deflection angle was calculatéld weapable of producing arcs.

the procedure described above. Since gravitational lgnsie- On the other hand the most significant departures of the ob-

serves surface brightness, the brightness of each pixetimt- served magnifications from the smooth case are for images in
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the proximity of the most massiven(> 10''M,) subclumps.
This is in agreement with the work by Meneghetti et [al. (200
see discussion in 6.2.1). These are galaxy-scale objegts isn 1
unlikely that they exist only in dark form. In other wordscbu —
substructures are likely to be easily identified by the presef
a luminous component. Therefore, for an image that liesén t
proximity of one such object we should immediately susptet t
part of the observed magnification is caused by the presence
this substructure and we would be warned of the bias caused
interpreting this data as tracer of the smooth componertief { . Il
cluster. Moreover, a number of gravitational lensing ssadiave
been presented in which the lensing contribution of indiaid
galaxies was incorporated into the analysis (see e.g. &lataet
al.[2004). Therefore, the same thing could be done for imag
of early-type galaxies close to cluster member galaxieg;nis
the situation discussed here.

When multiple images are observed (such as the pair in Fiy.

6), we take the magnification measurement obtained with thgy 6. Multiple image system. This image (and others with sim-
larger image only. In a realistic situation, if Fundamertine jjar properties) is not discarded, since the shape of thgéma
measurements are carried out on both the images, it woulel-be g, the left is not so strongly distorted and in general it may n

atively easy to label them as a pair and then to infer the pese pe recognized as part of a multiple image system. In suctscase
of a substructure. We decided to adopt the more conservatify the larger image is considered for the analysis.

approach in which the observer does not see the counterimage

Table 1. TSISs subhaloes

f | Au/u oulpp Negj
0.05] 0.005 0.061 4

_‘__.“h 0.10 | 0.014 0.077 6

0.15( 0.018 0.091 20
Notes.Diffefrences between magnifications in the presence and in the
absence of substructure, for three cluster realizatiohsnfs are mod-
eled as TSISs. Each simulation run was performed by gengrafi000

imagesN¢j is the number of strongly lensed images that were rejected
in each run.

each case we generatdd = 10000 sources with the proce-
dure described above. For each source, we studied the edserv
magnification with the presence of substructurgys, and the
magnification that would be observed with a smooth mass dis-
— tribution, gsmeoth. In Tabled L and12 we report thefidirences
between the measured values@f,s andusmootn- IN particular,

we introduce the average relativétdrence, defined as

Ng
A_,U _ 1 Msubsi — Msmooth,i

= )y ——— (47)
H Ns = Hsmooth,i
and the expected mean relative error,
Fig. 5. Strongly lensed image in the proximity of a massive sub-
halo. Such images are removed from our analysis. This is dope 1N o \2
only after making sure that the arc feature would be recadméz —~ = || — Z (M) . (48)
under realistic observing conditions, i.e. that the dte-Bhape Ns Hsmoothi

would not be smeared out by a realistic PSF. In this example th

larger arc is a few arcseconds long and could be easily fihti FO" completeness we also record the numikigy of rejected
images in each simulation run.

The quantity that is most relevant for our study is the disper

sion of observed magnification around the expected vatye,

As expected, this quantity increases with increasing mass f
5.3 Results tion in substructure_. However, the values of this dis_persaice

somehow small. This is rather good news, because it means tha
We studied image magnifications with three realizationsgrof s the magnification of early-type galaxies is more sensitivthe
ulated clusters, with mass fraction in substructucé 0.05,0.10 smooth component of the mass distribution, which accounts f
and 0.15. For each case we adopted twtedent models for the the bulk of the mass, and is therefore a quantity suited te con
internal structures of the subclumps: TSIS and point mass. Ktrain the total mass of the lens.

10
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Table 2. Point mass subhaloes not differ substantially, then it means that weak lensing errors do
not play an important role and that the theoretical treatroén
f | Aulu ou/p N Sect[4 can find applications in practical cases.

0.05]| -0.014 0.052 41 - : e .
010! 0002 0063 104 Before facing the problem in full it is interesting to study

015! 0027 0075 127 hov_v the errors in the weak lensing analysis alone influenee Fh
estimates of the total mass of the lens. In other words, wh wis

Notes. Differences between magnifications in the presence and in teeclarify what is the typical error in the estimate &f in the
absence of substructure, for three cluster realizationsn@s are mod- hypothetical case of perfect Fundamental Plane measutemen

eled as point masses. Each simulation run was performedrigy@ing  This situation is simulated first and a realistic case in u$ f
10000 imagesN; is the number of strongly lensed images that wergspects is studied later.
rejected in each run.

6.1. Simulations

The case of point mass substructures deserves further
cussion. As noted above, point masses are expected to
duce larger dterences between the observed magnification aHll
Hsmooth- From a first look at the results of Tablgs 1 &hd 2, it seems
that the opposite situation is realized. However, in theusition  §.1.1. The lens model
with point mass substructures the number of strongly leimed i i _
ages that is rejected is higher than in the TSIS case. Thissnedhe model adopted to describe the lens is a Nonsingular
that a significant fraction of the sources whose images are fgothermal Sphere (NIS). The choice of a smooth model for
jected in the point mass case would be included in the arsalydje lens is suggested by the results of the analysis deddribe
if lensed by a model with TSIS substructures. Presumaby, tﬁectl} on theféects of subsftructures on the magnification of the
images of these sources are magnified by substructureseyd tages of early-type galaxies. _
contribute significantly to the value of the measured disiper The parameters of the NIS model chosen for this test are the
This means that in the TSIS case the observed higher values@fe adopted for the description of the smooth component of
the dispersion is determined by a small number (less than 1tii¢ lens model used in the simulations of SEtt5+= 88 kpc
100) of images, and by excluding them from the analysis v@@dov = 1156 km s~
would obtain a dispersion not larger than the one observed in
the point mass simulation. This resultis in qualitativeesgnent
with the work by Meneghetti et al__(2007). They showed that
in a more realistic cluster realization the probability @ving For the simulation of weak lensing measurements we take in-
a tangential-to-radial magnification (equivalent to okedraxis spiration from the paper by Bradat et al. (2004). The praoed
ratio for circular sources) larger than 5 is less than 3% fsge7  adopted is the following.
of the cited paper). They also claim that, in their case, tsubs ) ) . o
tures account for 30% of the strong lensing cross sectiam (th— We generate background galaxies with a uniform spatial dis-

gtr!lzf_he following we will describe the ingredients necesgarget
the simulations.

1.2. Weak lensing data

smoothed version of their cluster is still a critical clustenlike tribution in a 4x 4 arcmirf field of view (magnification ef-
our case), meaning that the above percentage must be scaled a fects on the spatial distribution of images are neglected).
cordingly to be compared with our study. Three diferent vaIueg of the number density are chosen:
On the basis of these results we conclude that the magnifi- N = 30. 50, 70 arcmin®. _ _
cation of early-type galaxies is little influenced by thegeece — Each galaxy is assigned a redshift, taken from the following

of substructure. Substructure seems to play a significaatimo distribution:
f[he imagg formation (_)nly when present in large amounts, fvhic PO () oc 2e?% (49)
is an unlikely scenario. Current estimates of the massifnact z ’

in substructure based on numerical simulations give asaypi  \uith 2 = 2/3, as suggested by Brainerd et & (1996). This is
valuesf < 0.10 (Tormen et al. 1998; Ghigna etlal. 2000). These 5 standard choice for weak lensing simulations.

results give more significance to the technique of magnifinat _ g5cp background galaxy is then assigned an intrinsic ellip-
measurement based on the use of the Fundamental Plane relaﬂcity drawn from a truncated Gaussian distribution:

tion, and set a solid base for the adoption of the technigue de

scribed in this paper for the purpose of solving the problém o s 1

the mass-sheet degeneracy. Pes(e”) = 2702[1 — exp (-1/202)]

exp{-leS?/202),  (50)

_ with o = 0.25. This is also a standard choice for weak
6. Testing the method lensing simulations (e.g. see Bartelmann ef al. 1996, Seitz

R L . & Schneidel 1997).
The goal of the study presented in this section is to claofy t For each galaxy, the resulting ellipticity is calculatedrfr

what extent the results obtained in S&¢t. 4 also hold in msre r

alistic situations Eq. (9) . : .
’ — An artificial measurement error is added, so that the regylti

We take a model cluster lens, apply the mass measurement e m
; : . o measured ellipticite™ is

technique to synthetic weak lensing and magnification data s

ulated for this model, and then we analyze the results obtiain =~ ™ _ ¢ o7 (51)

In particular, we compare the dispersion on the measureafient

the mass obtained in these simulations with the dispersien e wheree®" is a random error generated from a Gaussian dis-

pected by considering thefects of Fundamental Plane mea- tribution with dispersiorre, = 0.1. In adding the errors we

surements only, obtained frofi {36): if the two quantitied wi  ensured tha™ < 1.

11
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The data are then processed with the finite-field inversioh-te  Let us consider a mass density mag (6) obtained from
nique of Seitz & Schneider (1997). A grid in the image plane iseak lensing and transformed wifh {12) to reproduce thetexac
defined. At each grid poirit, j}, the average ellipticitye) is es- value of the lens mass within the field of view. Since weak-ens
timated from the observed ellipticitieg of background galaxies ing reconstructions typically produce smoothed densitpsna
as we expecty,(0) to underestimate the surface mass density in
the central parts of the lens, and to be higher than the true va

] in the outer parts. This is indeed what is observed in the sim-
(€= Z &W(16:j — 0l), (52) ulations: in Fig[V we plot the ffierencexw.(0) — «(6) for an

k=1 example case of weak lensing reconstruction.
whereW(6) is a Gaussian with dispersid®, such thanAg? = . This property has some consequences on the process of fit-
12. ting the density map to Fundamental Plane measurement® Sin

the expectation value ofFP) is approximately the true surface
mass density, measurements close to the center will tenigido g
6.1.3. Fundamental Plane measurements estimates< higher thankw(6) and therefore will bias the
. _ . . measurement of the total mass towards higher values (remem-
After the weak lensing reconstruction, which provides a elodyq, thatew, (6) was defined as the density map that corresponds

density mapq(6) up to the invariance transformatidn {12), th§q the correct value of the mass). In contrast, FundameteaéP

simulation proceeds with the generation\ = 20 early-type maasyrements in parts of the lens plane whgge— « > 0 will

galaxies and the related Fundamental Plane measuremarss. fanq to bias the mass towards lower values. Thus. if we digti

is done as follows. _ _the sources uniformly we expect that this potential souftsas
_The position of each galaxy is generated randomly with @n pe overcome statistically. Thiffect is more evident when

uniform distribution on the image plane (again, tHéeets of here is no error ok in that case, the errors in the estimate of

magpnification in the spatial probability distribution of &ages e total mass are only due to errors in the weak lensing aisaly
are not considered). Each galaxy is then assigned a redshift

0.5 < z< 1.0. The upper limit reflects the redshift limit reached
by the Fundamental Plane measurements carried out so far.
lower limit instead is set because the lensing signal forcesu
too close to the lens is too low. The simulation also requéres
specification of the shape of the redshift distribution & tb-
served early-type galaxieﬁ’,gFP)(z). This quantity depends on
the intrinsic luminosity function of early-type galaxieshich
in general varies with redshift, and also on the object sele
tion procedure. Given these uncertainties, for our sinmrat
we adopted a uniform distribution to reduce the computatior
effort. It is also assumed that no error is introduced in therdet
mination of the individual redshifts.

For each early-type galaxy, the quanti{fi/u = r&"/reb
is then generated from a Gaussian distribution with 15%egtisp
sion, centered on the true value given by the model. Thisedisp
sion should reflect the observed scatteriof the Fundamental
Plane relation. In our case we adopted an optimistic estimiat
this latter quantity.

%

6.2. Results

Under the observation conditions described abdig{ = 20) ,
the expected dispersion on the estimate of the total masweof
lens , calculated froni(36) and therefore ignoring weakitens
errors, is

P

Fig. 7. Contour plot of the dferenceqy (6) — «(6), wherex(6)
(M) OFp is the true surface mass density of the lens and#) is a weak
Texp= "1~ = 0~21(m), (53)  lensing reconstruction of the lens yielding the same tota$sn
’ In the central region the reconstructed profile underesésthe
whereogp is the dispersion ime of the Fundamental Plane, av-surface mass density, while in a significant region of thegena
eraged over redshift. plane the opposite case occurs.
To better quantify the féects of weak lensing, the simula-
tions have first been performed in the hypothetical case Bf pe
fect magnification measurement& () = «(6;)), from which we
obtained an estimate of the dispersion in the measuremém ofg 5 1. |deal case: perfect magnification measurements
total mass introduced by weak lensing errors only. The tesul
of the simulations relative to this particular case aregmésd in 1000 simulation runs are performed for thredfatient val-
[6.2.3, while if6.2.2 we report those obtained in a moresaali ues of the number density of background galaxies:=
situation, in which the simulated magnification measuremer80, 50, 70 arcmin?, and two diferent numbers of Fundamental
have a 30% dispersion. Plane measurementsip = 1 andNgp = 20.

12
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Table 3.Weak lensing errors onlyNgp = 1

n(arcmin?)  AM/M  o(M)/M
30 0.010 0.32
50 0.002 0.26
70 -0.007 0.23

Table 5. General casé\gp = 20

n(arcmin?)  AM/M  o(M)/M
30 0.015 0.22
50 0.003 0.22
70 0.011 0.21

Notes. Relative mean error and standard deviation of the measured

value of the total mass of the lens, for thredetient values of num-
ber density of background galaxies,

Table 4. Weak lensing errors onlygp = 20

n(arcmin?)  AM/M  o(M)/M
30 0.010 0.069
50 0.008 0.060
70 0.006 0.055

In Table<B anfl4 the relative mean errafgl/M = (M —

6.2.2. The realistic case

Finally we report the results of the simulations performed i
the most general case, in which realistic conditions fotbot
the weak lensing and the Fundamental Plane measurements are
simulated. In this case the simulations are performedfer
30, 50, 70 arcmin? andNgp = 20. In Tabldb the results relative
to 1000 runs are reported.

The results confirm the picture emerge@in 6.2.1: weak lens-
ing errors play little role in determining the final dispension
the estimate of the total mass. In fact, the observed digpeis
practically equal to the one obtained[in}(53) by assuminfgger
weak lensing measurements. This test, although limitedsin-a
gle lens model, confirms that it is possible, with &®ient num-

M)/M and dispersion(M)/M obtained in these simulations areper of Fundamental Plane measurements uniformly diseébut

reported. As expected, the error in the determination ofdted

on the image plane, to break the mass—sheet degenera@stat le

mass decreases as the number density of background gasaxi@sr Coma cluster—like lenses at intermediate redshift.

increased. However, the dependence-@¥) on n is mild: this

Finally, to better illustrate thefgect of a cluster on lensed

means that the number density of background galaxies is nadgly—type galaxies, we show in Fig. 8 a set of simulated F& me
critical factor in the &ectiveness of the method. It can also beurements, compared with the Fundamental Plane relation ex
seen that with a single magnification measurement the t@asmpected in the absence of lensimge = 20 objects in the redshift

is poorly constrained, as expected. This result shows thhtav
single local estimate of the surface mass density, no masier
accurate, it is dficult to break the mass—sheet degeneracy.

On the other hand, in the case Nfp = 20 Fundamental
Plane measurements the dispersion is only a few percent.

Another significant result is that there is practically nasin
the estimate of the total massNI/M =~ 0). This resultis clearly

interval Q5 < z < 1.0 are generated and placed randomly behind
the same cluster lens used for the previous simulationsoria ¢
structing this plot, we assumed local values of the Fundaahen
Plane cofficients ¢ = 1.25,8 = 0.32,y = —8.970 (Jgrgensen
et al.[1996, recomputed fdfy = 65 km s* Mpc™ by Treu et
al.[2005), corrected for evolution following Treu et al. O5):
v(2) = y(0) + 0.58z. The scatter of the FP is assumed to be 20%

a consequence of the assumption of a uniform spatial distriti Te- The signature of the lensing signal can be clearly seen as
tion for the Fundamental Plane measurements. If we managé@fpupward shiftin the FP space.
pick a sficient number of early-type galaxies more or less uni-

formly distributed in the field of view there are good chanices

the final measurement of the mass to be unbiased. Thisist g
advantage of the present technique with respect to the use

strong lensing information. Strong lensing features apéchily
limited to the central regions of clusters. Then, since tiréase

mass density in the central parts of a cluster obtained freakw

lensing is typically underestimated, the inclusion of stréens-

ing data might lead to higher estimates of the total massh W

the present method thigtect can be kept under control.

In principle, substructures can introduce noise in the wei

lensing signal as well. The nonparametric reconstructiethod
used here can recover features of the scale of the smoc
ing length or larger, as shown by Seitz & Schneider (1997
However, King et al.[(2001) and Clowe et al. (2004) showetl th
the efects of small scale substructures are of modest importar
for weak lensing measurements. Therefore we can concladle 1
the results presented here do not depend on our choice ofa ¢
plified cluster model.

14 1 I I I I I

1.2
1.0
0.8
0.6

Log(R./kpc)

0.4 v

0. Il Il Il Il Il
20.0 02 04 06 08 1.0 1.2 14
aLogog + 5 (SB), + v + 0.582

Additional noise in the weak lensing measurements can pgy. 8. Nep = 20 simulated FP measurements, plotted in FP
introduced by the presence of uncorrelated large scaletstes space. The straight line is the Fundamental Plane expectbd i
along the line of sight. This issue was studied extensivgly Rbsence of lensing, viewed edge-on. Positions in the FRespac

Hoekstra [(2003). He found that the contribution of struesur are corrected for the evolution of the FP with redshift,daling
non associated with the cluster is important at large rdif, Treu et al.[(2005).

is negligible for the relatively small fields of view considd in
our work (a few arcminutes).
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7. Conclusions and discussion

In this paper we presented a new lensing—based method for 15
measurement of the mass of galaxy clusters. This methabsre
on the joint use of weak lensing data and magnification infarm
tion, where the latter is obtained from Fundamental Plana-me
surements on background early-type galaxies.

A statistical study of the method was carried out, and sim
lations were performed to test the importance of the presehc
substructures and of errors in the weak lensing analysithfor
success of the measurement.

Our main conclusions are the following:

10

— The most important quantity on which th&ectiveness of
the method depends is the mean surface mass density wit
the field of view of observation, while little role is played
by the shape of the mass distribution.

— Substructures contribute at most with a scatter of a few p¢
cent on individual magnification measurements.

— Weak lensing errors introduce only a small dispersion on tl

final estimate of the total mass. 02 03 04 05 06 07 08 09 1.0

On the basis of these results, we will now discuss which a Zs
the best lens candidates for an application of the preseht te

nique. . - I L . :
: P . - : : Fig. 9. Critical density (in Kg m®) as a function of source redshift for
An important limit to the applicability of this method is thethree diferent values of the lens redshiti= 0.1, 0.2, 0.4,

difficulty in performing Fundamental Plane measurements, since

they require a significant amount of telescope time. A réalis

number of Fundamental Plane measurements that can be per-

formed in an observational campaign~s20. Given this fact, of 20% or better withNep = 20 Fundamental Plane measure-
we can fixNgp = 20 and discuss which systems are best anaents with uniform distribution in redshift betweer= 0.5 and

Yo (kg -m™?)

lyzed with this number of magnification measurements. z = 1.0, the average surface mass density of the lens should be
One of the most important factors in determining whetherz 0.3. . o
a cluster can be realistically studied with our techniqueatr Clearly, the quantity depends on the mass distribution of

is its redshift. The redshift must be beflciently high for the the lens but also on the size of the field of observation, which
critical density to be low enough, to allow for higher valuss is set by the observer. How critical is the choice of thiselatt
« for a given physical surface mass density. On the other hafigiantity for determining a value = 0.3? One can always re-
the redshift must also be Siciently low so that it is possible to Strict the observations to the inner regions of a given eluso
find an acceptable number of early-type galaxies behindrit fihcrease. However, there is a limit set by the number density of
which Fundamental Plane measurements can be performed. fragkground early—type galaxies for which Fundamentalélan
current observational capabilities and the lack of a catibn measurements can béectively performed. This number den-
of the Fundamental Plane relation at very high redshiftg set Sity was estimated in BL06 to be 2 arcmin®. Therefore, if we
1.0 as the highest redshift for which these measurements careh to findNep = 20 objects suitable for our purposes, we need
performed today. to cover a field of view of 10 arcmfn
Bearing this in mind, we plot in Figurg 9 the value of the Atthis point we can study what is the minimum mass a clus-
critical density as a function of source redshift for thrégied- ter should have in order to have a mean surface mass density
ent values of the lens redshift. It can be seen that with a lens= 0.3 within a circle of areaA = 10arcmiff (and radius
redshiftzg = 0.1 the resulting critical density is significantly®” = V10/x ~ 1.8 arcmin). Fixing the lens redshiy = 0.3,
higher than in the other cases at the source redshifts aestte this value of the surface mass density within the circle cor-
and for this reason this case should be discarded. At the-oppesponds to a value of the enclosed projected mass equal to
site end, for a lens redshig§ = 0.4 the critical density is indeed Menc = 4.2 x 10" M,. For a NFW profile with concentration
the smallest for source redshifts higher thaf.8, but the range parametec = 10, this value corresponds to a limiting virial mass
of source redshifts for which the critical density is sigrafiitly £ _ 4
small is limited tozs > 0.6, and it shrinks rapidly for increasing M0 = 8.0 10 Mo, (54)
Z4. On the basis of these simple considerations we concludle thad similar values hold for fierent values of the concentra-
a suitable redshift range for our lens clustezjs~ 0.2 + 0.4. tion c. The quantityM;, is the minimum mass a NFW cluster
A thorough analysis of the problem would require a detaileshould have in order to satisky > 0.3 within a circle of area
knowledge of the redshift distribution of the observabldyea A = 10arcmir in the sky. In that case the mass of the cluster
type galaxies. within the circle can be measured with a 20% precision oebett
Then we can ask which intrinsic physical characteristicswith 20 Fundamental Plane measurements and a weak lensing
cluster should have to befeiently probed with Fundamentalanalysis.
Plane measurements. If we want to extend the analysis to the outer parts of our
If we assume, conservatively, a mean dispersion of tlekister, we mustincrease the number of Fundamental Plaae me
Fundamental Plane relation of 20%rig it can be shown from surements, to compensate for the reduced value of the averag
(389) that in order to obtain a mass estimate with a precisisnrface mass density ~—
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If we want to improve the sensitivity to less massive clu$e Lucia, G., Katfimann, G., Springel, V., et al. 2004, MNRAS, 348, 333
ters, we must either increase the number of Fundamentad PI&¢go, J. M., Tegmark, M., Protopapas, P. & Sandvik, H. B.20ONRAS, 375,
measurements for fixed aperture or choose a smaller apertgj([)(regg\?ski S. & Davis, M. 1987, ApJ, 313, 42
for fixed NF_p. In any of th_ese cases, a highgr number dens_i ossler, A., Lynden_B'e”"D” Burstein, D., et al. 1987,1A813, 42
of sources is needed, which cannot be obtained without an ipatco E. E., Lehar, J., & Shapiro, 1. 1997, AJ, 113, 540
provement of the observational capabilities. This showstiie Fort, B., Mellier, Y., Dantel-Fort, M. 1997, A&A, 321,353
number density of observable sources is indeed a key fastbr £20. L., White, S. D. M., Jenkins, A., etal. 2004, MNRAS, 3859

X . . Gavazzi, R., Adami, C., Durret, F., et al. 2009, A&A, 498, L33
confirms that the lens redshift should not be too high. Ghigna, S.. Moore, B.. Governato. F., et al. 2000, ApJ, 518, 6

A possible alternative strategy is to select only the beghtglazebrook, K., Ellis, R., Santiago, B. & Giths, R. 1995, MNRAS, 275, L19
objects, since it has been recognized that the FP scatteyab®s Goobar, A., Mortsell, E., Amanullah, R. & Nugent, P. 200&4 393, 25
with increasing mass (Treu et al. 2005; van der Wel &t al 200%5pekstra, H. 2003, 339, 1155
this would allow for a more precise estimate of the magnificat Hglgzg'DD'EW'szo?IaESEO?ég'L2i1994' MNRAS, 268, 889
for a given lens and fixed number of FP measurements. The fegsson. J.. Dahlén, T., Hook, I., et al. 2010, MNRAS, &5
sibility of such an approach also depends critically on then  Jgrgensen, 1., Franx, M. & Kjeergaard, P. 1993, ApJ, 411, 34
ber density of background sources. Jargensen, |., Franx, M. & Kjeergaard, P. 1996, MNRAS, 280, 16

: e : iser, N. 1995, AJ, 439, L1
On the basis of this discussion, we conclude that the value, LS. M. & Falco. E. E. 1988, AJ, 96, 1570

M50 given by [54) is an estimate of the minimum mass a clustRly' || Schneider, P. & Springel, V. 2001, A&A, 369, 1
should have to allow for a mass measurement with the presesthbardi, M. & Bertin, G. 1999, A&A, 348, 38

method. The value is on the high side, but there are indelganbardi, M., Rosati, P., Nonino, M., etal. 2000, A&A, 3694
many clusters that have observed valueslgf, higher than this Mao. S. & Schneider, P. 1998, MNRAS, 295, 587

. eneghetti, M., Argazzi, R., Pace, E., et al. 2007, A&A, 481,
threshold. Well-studied examples are A1689, A1703, A37X, th\:eneghetti, M.. Bartelmann, M., Moscardini, L. 2003, MNRARIO, 105

31347'_11 (see Broadhurs_t etal. 2008 for a review). All tfw_se Merten, J., Cacciato, M., Meneghetti, M., et al. 2009, A&A05681
tems display strong lensing features that allow for a gode esvetcalf, R. B. & Madau, P. 2001, ApJ, 563, 9

mate of the mass distribution in the innér{ 1 arcmin) regions Natarajan, P. & Springel, V., 2004, ApJ, 617, L13

of the clusters. One might think that the availability ofostg Navaro, J- F-'h':re.zk' <% &7WAh'ti' S oy T AApd, 490, 493
lensing data would rule out the need for other observatinnsse'tz’ C, &Schneider P, 1997, A&/, 318, 68

ensing ¢ Taylor, A. N., Dye, S., Broadhurst, T. J., et al. 1998, ApJ}, 5889
such clusters. Nevertheless, a great benefit would cometfrem Tormen, G., Diaferio, A. & Syer, D., 1998, MNRAS, 299, 728
addition of Fundamental Plane measurements as they caaid gireu, T., Stiavelli, M., Casertano, S., et al. 1999, MNRAG3 31037

vide important constraints on the mass distribution withira- reu T.. Ellis, R. S, Liao, T. X., etal. 2005, ApJ, 633, 174
dius at least 2 times larger Umetsu, K., Broadhurst, T., Zitrin, A., et al. 2010, arXiv1103044

i i i van der Wel, A., Franx, M., van Dokkum, P. G., et al., 2005, A§31, 145,
In summary, the method presented in this paper is, because ofydwos

its nonparametric form, a potentially powerful tool to bkehe van Dokkum, P. G. & van der Marel, R. P., 2007, ApJ, 655, 30
mass—sheet degeneracy in lensing studies of clustersafigal Wuyts, S., van Dokkum, P. G., Kelson, D. D., et al. 2004, A5, &77
As shown in Secfl4, it allows also for a relatively easy eatam
of the accuracy of the total mass measurement. — - C

In addition, the method can be extended by allowing for th%ppen_dlx A: Prfobablllty distribution of the
inclusion of magnification measurements obtained froffedi estimates of  krp

ent means, for example from the observation of type |a supgfere we will discuss the choice of a Gaussian probabilitridis
novae (see, e.g., Holz 2001; Goobar ef al. 2002; Jonssdn ehgtion for the estimates:p of the surface mass density obtained

2010). The statistical framework developed in this paper c@y combining Fundamental Plane and weak lensing measure-

be applied with little &ort to such more general situations, an?rhents. The observable quantity is the ratie r&/r© of the

therefore can be used as a reference framework to eSt'mtf?%tlaxy dfective radius inferred from the Fundamental Plane re-
degree of precision of other m_e_thogis that rely on the combingyion 1o the observed (magnifiedfective radius. Of these two
tion of weak lensing and magnification measurements. quantities, the first, with its 15% dispersion, is by far theeo
with the larger uncertainty. Thus, if the probability diktrtion

of the estimate orf(eFP) is Gaussian, the ratiowill have a nearly
Gaussian distribution as well. Let us assume this is the case
Auger, M. W., Treu, T., Bolton, A. S., et al. 2010, ApJ, 724151 The surface mass densi{™) at the image position can be

Bartelmann, M., Narajan, R., Seitz, S. & Schneider, P. 1993, 464, L115 expressed as a function of maanificatioroalaxy redshifz and
Bartelmann, M. & Schneider, P. 2001, Physics Reports, 33D, 2 P 9 Yoy Y
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holds, then the square root can be approximated by
Vb2 —ac+ ar? ~ var (A.3)

and [A.1) becomes linear. As a consequence, the Gaussinity
r translates into the Gaussianity 6fP). At this point, we need
to demonstrate the validity of (A.2). The ratids typically of
order 1, unless in the case of large magnifications. Thus, it i
sufficient to prove thab? — ac < a. We begin by noting that
a ~ Z?[1 - O(I{e) [)]. The quantity| (e} | is typically small, ex-
cept in the proximity of critical curves, while the combiioat

of weights that multiplie$(e) |? in ais of order unity. Similarly,

b ~ Z[1 - O((e)|?)] andc ~ 1 — O(|(e) ). Then, the quan-
tity b? — ac is of orderz?O(| (e) |) < 1 . Since the right hand
side of [A.2) is of order unity[{AJ2) is satisfied. This imgdithat
the dependence ef™™ onr is approximately linear. Then, if the
probability distribution of is Gaussian, which is reasonable, the
same applies teFP),
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