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ABSTRACT 

Human parthenotes have been proposed as a source of embryonic 

stem cells despite the high incidence of aneuploidy described in 

parthenotes of most mammalian species. Through a comparative 

analysis between parthenogenetic and bi-parental cells lines we found 

that parthenogenetic cells are affected by chromosomal instability and 

centrosome amplification. We provide evidence that both alterations 

are determined by the lack of paternal centriole, normally contributed 

by the sperm at the time of fertilization, but parthenogenetic cell lines 

activate a series of adaptive mechanisms that allow them to 

proliferate and differentiate. These include down-regulation of the 

p53/p21 pathway, massive increase of autophagic activity and 

formation of a wide network of intercellular bridges with the 

morphological and molecular characters of blocked cell abscissions. 

These processes are commonly observed in transformed cells 

therefore parthenogenesis may be used to explore the mechanisms 

regulating oncogenesis and their link with self-renewal and 

pluripotency in human cell lines. 
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1. INTRODUCTION 

1.1 Stem cells 

Stem cells are a special kind of cell that have the unique capability 

to make identical copies of themselves (this property is referred to 

as “self-renewal”) for the lifetime of the organism and, under 

appropriate conditions, to give rise to several specialized cell 

types 1,2 (Figure 1).  

 

 

 
 

Figure 1. Symmetric and asymmetric division of stem cells. 

 

 



2 

 

Although most cells of the body, such as heart cells or skin cells, 

are committed to conduct a specific function; stem cells are 

uncommitted and remain uncommitted, until they receive a signal 

to develop into a specialized cell. Their proliferative capacity 

combined with the ability to become specialized makes stem cells 

unique. Recently, stem cells have received much attention 

following their possible use in regenerative medicine. This is a 

new concept in contemporary medical science based on the 

possibility to produce new cells that may be utilized to repair or 

renovate degenerated and damaged tissues.  

 

Three different types of cells exist, based on their differentiation 

capability: 

1. Totipotent cells: zygote; 

2. Pluripotent cells: embryonic stem/germ/carcinoma cells; 

3. Multipotent/unipotent: adult stem cells. 

 

1.1.1 Totipotent cells 

Totipotent cell —from the Latin “totus”, meaning entire— has the 

potential to generate all the cells and tissues that make up an 

embryo and that support its development in utero (fetal 

membranes). Totipotent cells formed during sexual and asexual 

reproduction include spores and zygotes. In some organisms, cells 
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can dedifferentiate and regain totipotency 3. For example, a plant 

cutting or callus can be used to grow an entire plant. Mammalian 

development commences when an oocyte is fertilized by a sperm 

forming a single celled embryo, the zygote. Consistent with the 

definition, zygote is considered the only existing totipotent cell. 

This single cell has the potential to develop into an embryo with 

all the specialized cells that make up a living being, as well as into 

the placental support structure necessary for fetal development. 

Thus, each totipotent cell is a self-contained entity that can give 

rise to the whole organism. This is said to be true for the zygote 

and for early embryonic blastomeres up to at least the 4-cell stage 

embryo (Figure 2). Experimentally, totipotency can be 

demonstrated by the isolation of a single blastomere from a 

preimplantation embryo and subsequently monitoring its ability 

to support a pregnancy following transfer into a suitable 

recipient. This approach was pioneered in rats and has been 

realized in several mammalian species including non-human 

primates 4-6. The results obtained in rhesus monkey confirm the 

ability of isolated blastomeres from 2- and 4-cell stage IVF 

embryos to support pregnancies and to produce live animals, 

demonstrating the totipotency of these cells 7. As embryo 

development progresses to the 8-cell stage and beyond depending 

on the species, the individual blastomeres that comprise the 

embryo gradually lose their totipotency (Figure 2). It is generally 
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believed that this restriction in developmental potential indicates 

irreversible differentiation and specialization of early embryonic 

cells into the first two lineages, the inner cell mass (ICM) that 

includes cells that will give rise to the fetus and the 

trophectoderm (TE), an outer layer of cells that is destined to an 

extraembryonic fate. 

However it is important to note that totipotent cells are not stem 

cells because they lack the property of symmentric division, 

therefore they can indeed differentiate but are unable to self-

renewal. 
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Figure 2. Development. Ontogeny begins from a single cell, the 

zygote. The zygote and each blastomere of the early embryo are 

totipotent with the potential to develop into the whole 

organism. As development unfolds, the developmental 

potential of individual blastomeres gradually declines resulting 

subsequently in pluripotent, multipotent, unipotent and 

terminally differentiated somatic cells. (Modified from 

Mitalipov S. and Wolf D., 2009). 

 

 

1.1.2 Embryonic stem cells 

Embryonic stem cells (ESCs) are pluripotent cells — from the 

Latin “plures”, meaning several or many- derived from the inner 

cell mass (ICM) of preimplantation blastocysts. In vitro, these cells 

are capable of undergoing an unlimited number of symmetrical 

divisions without differentiating (long-term self-renewal) and, 

when exposed to specific conditions, can give rise to cells derived 
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from all three embryonic germ layers: ectoderm, endoderm and 

mesoderm (Table 1).  

 

 

Embryonic 

Germ Layer 

Differentiated Tissue 

Endoderm Thymus 

Thyroid, parathyroid glands 

Larynx, trachea, lung 

Urinary bladder, vagina, urethra 

Gastrointestinal (GI) organs (liver, pancreas) 

Lining of the GI tract 

Lining of the respiratory tract 

Mesoderm Bone marrow (blood) 

Adrenal cortex 

Lymphatic tissue 

Skeletal, smooth, and cardiac muscle 

Connective tissues (including bone, cartilage) 

Urogenital system 

Heart and blood vessels (vascular system 

Ectoderm Skin 

Neural tissue (neuroectoderm) 

Adrenal medulla 

Pituitary gland 

Connective tissue of the head and face 

Eyes, ears 

 

Table 1. Embryonic germ layers from which differentiated 

tissues develop 

 

 

http://en.wikipedia.org/wiki/Ectoderm
http://en.wikipedia.org/wiki/Endoderm
http://en.wikipedia.org/wiki/Mesoderm
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Pluripotent stem cells can give rise to any fetal or adult cell type. 

These include more than 200 kinds of cells, such as nerve cells 

(neurons), muscle cells (myocytes), skin (epithelial) cells, blood 

cells (erythrocytes, monocytes, lymphocytes, etc.), bone cells 

(osteocytes), and cartilage cells (chondrocytes) (Figure 3). 

Consequently ESCs are considered a potential unlimited source of 

transplantation materials for replacement cell therapy. 

 

 

Figure 3. Pluripotent stem cells can give rise to different kind of 

adult cells. 
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It is fundamental to remember that a formally correct definition of 

embryonic stem cells implies the satisfaction of several criteria 

including: derivation without transformation or immortalization; 

stable diploid karyotype, clonogenic ability, unlimited self-

renewal capacity, ability to generate all cell types in vitro and in 

teratomas, incorporation into embryonic development and 

contribution to all germ layers in chimera, germ-line colonization 

and transmission 8. These definitions have been used to qualify 

cell lines derived from ICM of all mammalian embryos as ESCs. 

Any cell line which fails to satisfy all these requirements should 

be defined as stem cell-like or other dubitative descriptions.  
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Marker 

Name 

Mouse ECC/ 

ESC/EGCs 

Monkey 

ESCs 

Human 

ESCs 

Human 

EGCs 

Human ECCs 

SSEA-1 + – – + – 

SSEA-3 – + + + + 

SEA-4 – + + + + 

TRA-1–60 – + + + + 

TRA-1–81 – + + + + 

Alkaline 

phosphatase 

+ + + + + 

Oct-4 + + + Unknown + 

Telomerase 

activity 

+ ES, EC Unknown + Unknown + 

Feeder-cell 

dependent 

ES, EG, some 

EC 

Yes Yes Yes Some; 

relatively low 

clonal 

efficiency 

Factors which 

aid in stem 

cell self-

renewal 

LIF and other 

factors that act 

through gp130 

receptor and 

can substitute 

for feeder layer 

Co-culture 

with feeder 

cells; other 

promoting 

factors have 

not been 

identified 

Feeder cells + 

serum; feeder 

layer + serum-

free medium + 

bFGF 

LIF, bFGF, 

forskolin 

Unknown; low 

proliferative 

capacity 

Growth 

characteristics 

in vitro 

Form tight, 

rounded, 

multi-layer 

clumps; can 

form EBs 

Form flat, 

loose 

aggregates; can 

form EBs 

Form flat, 

loose 

aggregates; can 

form EBs 

Form rounded, 

multi-layer 

clumps; can 

form EBs 

Form flat, 

loose 

aggregates; can 

form EBs 

Teratoma 

formation in 

vivo 

+ + + – + 

Chimera 

formation 

+ Unknown + – + 

 

Table 2. Comparison of mouse, monkey and human pluripotent 

stem cells and their essential characteristics. 

 

 

 

 

javascript:reportglosspop('Marker')
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javascript:reportglosspop('EBs')
javascript:reportglosspop('Teratoma')
javascript:reportglosspop('Chimera')
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1.1.3 Adult stem cells 

Multi/unipotent stem cell - derived from the Latin “multi”, which 

means few and “unus” meaning one- is a term that is usually 

applied to a cell in adult organisms: the adult stem cells. These are 

undifferentiated cell that are present in a differentiated 

(specialized) adult tissue and are capable of differentiating along a 

few or only one lineage. Adult stem cells, in fact, can yield all 

specialized cell types of the tissue from which it originated (Figure 

4) and ensure tissue homeostasis and repair during the individual 

life. This characteristic is an advantage because it makes 

controlled differentiation easier than pluripotent cells. Moreover 

these kind of cells are also capable of self-renewal for the lifetime 

of the organism.  
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Figure 4. Hematopoietic stem cell differentiation. 

Representative picture of multipotent stem cells that are able to 

differentiate in  all specialized cell types of the tissue from 

which it originated. 

 

 

 

During the past decade, scientists discovered adult stem cells in 

tissues, such as in the bone marrow 9, brain, blood stream, cornea 

and retina of the eye 10,11, the dental pulp of the tooth, liver, skin 12, 

gastrointestinal tract and pancreas. Some of these cells are already 

being used for therapeutic applications, thanks to their easy 

isolation and progation in vitro. Unfortunately, not all adult stem 

cells, can be used for therapeutic application. Many of them, in 
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fact, are difficult to access (i.e. central nervous system cells) and/or 

show a limited proliferating ability (i.e. muscle cells) 13. 

 

 

1.2 Embryonic stem cells 

During the last decades the field of stem cell biology has received 

increasing amounts of attention from scientists, ethicists, 

industrialists, politicians and the general public. In particular, 

ESCs are considered of great interest because they are recognized 

as a potential renewable source of specialized cells that can be 

used for therapeutic purposes, replacing diseased or damaged 

cells. 

Here we describe in more detail their characteristics in some 

species relevant for the subjects reported in this thesis. 

 

 

1.2.1 Embryonic stem cells in mouse 

ESCs were first derived by Martin 14 and Evans and Kaufman in 

1981 15. They successfully isolated and characterized ICM-derived 

cells from in vivo-derived mouse blastocyst-stage embryos 

obtained from random bred ICR female mice with SWR/J males 14-

16. Undifferentiated cell colonies show a compact morphology 

with a high nucleus- cytoplasm ratio and prominent nucleoli 

(Figure 5).  
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Figure 5. Representative picture of ESCs colony.  

 

 

They express specific markers or characteristics similar but not 

identical to the transient pluripotent cells of an embryo. This 

includes stage specific embryonic antigens, enzymatic activities 

such as alkaline phosphatase and telomerase, and “stemness” 

genes that are rapidly down-regulated upon differentiation, 

including OCT4 and NANOG 17. Furthermore mouse ESCs 

showed their ability to proliferate indefinitely in an 

undifferentiated state 15, when cultured in specific conditions, 

suggesting that their transcriptional activity and epigenetic 

regulators were capable to support pluripotency also  in vitro 3. 

However, when released from the influence of these culture 

conditions or following their introduction back into a host 
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embryo, ESCs retain their ability to differentiate into any cell-

type, just like ICM cells. Alternatively, when injected in immune-

deficient mice, they can differentiate in vivo in teratomas 

containing cells representing the three major germ layers: 

endoderm, mesoderm and ectoderm 18 or they can be directed to 

differentiate in vitro into any of the 200 cell types present in the 

adult body 19-22. 

All these data obtained in mouse resulted in efforts aimed at 

establishing the same kind of cells in other species, including 

rabbit, hamster, cattle, sheep, goat, in no-human primate and 

human too. Actually human and mouse embryonic stem cell 

(ESC) lines have been the two predominant animal models 

investigated by researchers over the past one and two decades 

respectively.  

 

1.2.2 Embryonic stem cells in human 

In 1994 human ICMs, isolated from blastocysts created for 

reproductive purposes using IVF and donated by patients for 

research, were maintained in culture and generated aggregates 

with trophoblast-like cells at the periphery and ES-like cells in the 

center. These cells retained a complete set of chromosomes 

(normal karyotype) and showed a stem cell-like morphology, 
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although some ICM clumps differentiate into fibroblasts. These 

cultures were maintained only for two passages 23. 

The first research paper that reported ESCs maintenance in 

undifferentiated state for more than 4 or 5 months was published 

in 1998 by James Thomson and colleagues 18. They described 

methods for deriving and maintaining human ESCs and 

demonstrated differentiation their ability producing endoderm 

(gut epithelium), mesoderm (cartilage, bone, smooth muscle and 

striated muscle) and ectoderm (neural epithelium, embryonic 

ganglia, and stratified squamous epithelium) derived cells 18. 

 

 

 

 

Figure 6. Human blastocyst showing distinct ICM and 

trophectoderm. 
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To date, several laboratories have demonstrated pluripotent 

characteristics of human ESCs, like expression of pluripotency 

markers, high telomerase activity, in vitro differentiation ability 

and, when injected into immune-deficient mice, formation of 

teratomas 24,25.  

Obviously, two aspects of in vivo pluripotency typically tested in 

mouse have not been met by human cells: evidence that cells have 

the capacity to be injected into a human embryo and form an 

organism made up of cells from two genetic lineages; and 

evidence that they have the ability to generate germ cells, the 

precursors to eggs and sperm in a developing organism. 

Furthermore it is important to underline that differences are 

emerged comparing mouse and human ESCs. Despite the 

apparent common origin and the similar pluripotency 

characteristics of cell lines obtained from the two species, recent 

studies have revealed that the two cell types use different 

signalling pathways to maintain their pluripotent status. Indeed 

mouse ESCs depend on leukaemia inhibitory factor (LIF) and 

bone morphogenetic protein (BMP), whereas their human 

counterparts rely on activin (INHBA)/nodal (NODAL) and 

fibroblast growth factor (FGF). Moreover, despite having similar 

core transcription factor circuitry, human and mouse ESCs have 

substantially different target genes for Oct-4 and Nanog 17,26. Until 

the last few years these differences between the two cell types had 
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not explanation. Only recent studies carried out on mouse epiblast 

stem cells (EpiSCs) 27,28 explained that these divergences are 

developmental and represented two different stages of embryonic 

development with human ESCs recapitulating the epiblast state 29. 

Interestingly, EpiSCs share with human ESCs not only a 

dependence on activin/Nodal signaling, but also other key 

differences from mouse ESCs that have previously been attributed 

to species divergence. EpiSCs and human ESCs, in fact, grow in 

large, flat, epithelial colonies, they are not able to clonally 

propagated, show a limited capacity for colonising pre-

implantation embryos and directly respond to known gastrulation 

signals in vitro 30-33. Finally, EpiSCs (like human ESCs) have been 

shown to differentiate into trophectoderm in the presence of 

BMP4 34, whereas mouse ESCs have little or no capacity for 

contribution to either primitive endoderm or trophectoderm 

lineages in chimaeric embryos 35 and differentiate into 

trophectoderm only when their Oct-4 gene is mutated by 

homologous recombination 36.  
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Figure 7. Early development. Pluripotent cells from a 

developmental window in the pre-implantation embryo grow as 

mouse embryonic stem (ES) cells, and those from the post-

implantation epiblast grow as epiblast stem cells (EpiSCs). The 

ability to grow cells in vitro, and move between distinct 

pluripotent states will provide insight into the undefined 

molecular mechanisms (‘‘black boxes’’) that establish the early 

cell fates within the embryo. (From Chenoweth et al., 2010). 

 

 

1.2.3 Embryonic stem cells in ungulates 

Overall the ESC characteristics described above made them an 

invaluable genetic engineering tool for studying functional 

mammalian genetics, mammalian developmental biology and for 

producing animal models of human diseases. At present human 
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and mouse ESCs have been the two predominant animal models 

investigated by researchers. However, as described above, cells 

derived from mice and humans differ considerably. Furthermore 

because of legal/ethical problems tied to the use of blastocysts, the 

development of alternative, non-human embryonic stem cell lines 

is crucial for continued extension of research and for development 

of stem cell therapies.  

In this scenario the establishment of ESC lines in large mammal is 

of great interest for basic research (comparative embryology and 

the cell biology of ungulate stem cell maintenance and 

differentiation) and represent an advantage due to their 

physiological similarity to the human and perhaps more relevant 

for clinical translation studies compared with mouse ESCs. 

Over the past 20 years many reports of sheep 37, hamster 38, dog 39, 

cat 40, mink 41, rabbit 42, horse 43, cattle 44 and pig 45-47 ESC lines, or 

what are often presented as “ESC-like cell” lines, have been 

published. Despite this, the primary problem for ESCs in domestic 

animal is that no standard protocol for their isolation and culture 

currently exists. Indeed, based on previously definition of ESC, 

none of the ungulate cell cultures or cell lines described have been 

definitively proven to be ESCs, and none have been successfully 

used as biological reagents in a manner similar to that of human, 

monkey, or mouse ESCs, i.e., directed pluripotent in vitro 
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differentiation 48,49 or as a means of genetically engineering a 

mammal through embryonic chimera formation 50. 

 

1.2.4 Embryonic stem cells in pig 

The experiments described in this thesis were carried out in the 

pig. The choice of using the porcine model is based on the well 

known similarities in term of anatomy, physiology, metabolism 

and organ development with primates that make this large animal 

the ideal link between the classical rodent models and the human. 

Peer-reviewed reports of porcine ESCs, ES-like or ICM cell lines 

have been published all of which used in vivo-derived blastocysts 

as their primary culture material 37,45,51-54. This occurred because of 

the well known difficulties in the production of porcine embryos 

in vitro that is still challenging with low efficiency and quality. On 

the contrary, generally, primate ESC lines have been established 

from in vitro-fertilized (IVF) in vitro-cultured (IVC) blastocysts of 

humans 55,56. Furthermore given the high cost and the low 

efficiency of ESC derivation from in vivo-derived embryos 57, more 

researchers are working with domestic species to produce in vitro-

embryos and to use them for ESC isolation.  

Only in the last period few studies have described the isolation of 

putative pig ESCs using in vitro produced blastocysts 58-61. 

Furthermore putative porcine ESCs established by Notarianni et 

al. were poorly defined 45. In other studies no ESC-like cells 
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survived passage 10, while epithelial-like lines survived up to 

passage 42, but failed to differentiate 47. Talbot et al. reported that 

pluripotency was difficult to maintain in ESC-like and epithelial-

like cell cultures for more than a few passages 62. Further studies 

have been conducted by other authors 53,63, however, the general 

consensus is that none of these lines were truly ESCs and 

pluripotent 64,65 and a number of technical questions are still to be 

answered. The use of conventional protocols for culture of mouse 

and human ESC does not appear to sustain extended growth nor 

pluripotency of cultured porcine cells. Recently it has been 

demonstrated that medium components play a pivotal role in 

regulating intrinsic and extrinsic factors involved in the control of 

pluripotency and that specific pathways may be up-regulated, or 

down-regulated, in response to the addition of specific molecules 

66. It is evident that many important aspects need to be elucited in 

order to be able to establish homogeneous porcine outgrowths 

and ensure a favorable environment for porcine ESC 

maintenance67.  

 

1.2.5 Embryonic stem cells and ethical concern  

Isolation of embryonic stem cells cannot be obtained without 

destroying a viable embryo and for this reason, despite the 

potential therapeutic usefulness, their derivation in the human 
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raises substantial religious, ethical as well as legal and political 

concerns. In this scenario a number of scientific attempts that do 

not require the generation and subsequent destruction of human 

embryos have been proposed in order to fill the gap between 

ethical questions and potential scientific and  medical benefits 68. 

These different approaches involves obtaining stem cells from 

embryos that are clinically dead or developmentally arrested 69,70, 

or removing single blastomeres from less developed embryos 

(morulae), using an approach similar to that used for 

preimplantation genetic diagnosis during in vitro fertilization 

(IVF), in which a single cell is extracted from an embryo and 

tested for genetic disorders 71,72. The possibility to create 

genetically modified biological artifacts obtained through altered 

nuclear transfer (ANT) that create abnormal blastocysts unable to 

implant into the uterus but capable of generating customized 

ESCs has also been proposed as an alternative possibility to 

produce ethically acceptable cell lines 73-77. Epigenetic 

reprogramming of adult stem cells is a further and very promising 

approach for the derivation of stem cells 78-80. In particular, the 

recent identification of 4 factors that  seem to play a crucial role 

for the induction and maintenance of pluripotency, namely Oct-

3/4, Sox2, c-Myc and KLF4, have allowed for the establishment of 

new cell lines called induced pluripotent stem (iPS) cells that are 

similar to ESCs in morphology, proliferation and pluripotency 81-83 
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but derived from terminally differentiated cells. The use of 

artificial parthenogenesis in order to create entities, namely 

parthenotes, which may represent an alternative ethical source for 

pluripotent cell lines is also a promising possibility 84. Such 

embryos constitute a potential source of pluripotent cells that 

would be isogenic with the oocyte donor 85,86 and therefore 

suitable for use in cell or tissue replacement therapy.  

Since many features of parthenogenetic cells are actually 

unknown and several biological aspects need to be elucidated, it is 

not possible to consider this cells suitable for therapy. In this 

thesis different cell lines isolated from human and porcine 

parthenogenetic embryos and from sheep parthenogenetic fetuses 

will be studied and analyzed in detail. 

 

1.3 Parthenogenesis 

1.3.1 Parthenogenesis in mammals 

Parthenogenesis  is a form of asexual reproduction, by which an 

oocyte can develop without the intervention of the male 

counterpart. This process may routinely occur naturally in some 

lower species such as fish, ants, flies, honeybees, amphibians, 

lizards and snakes.  

By contrast, mammals are not spontaneously capable to use this 

form of reproduction.  However, mammalian oocytes can be 

http://en.wikipedia.org/wiki/Asexual_reproduction
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successfully activated in vitro, using a variety of stimulations, such 

as ethanol 87-93, electric shock 94-96, strontium chloride treatment 

97,98, and ionomycin 99,100, which mimic the intracellular calcium 

wave induced by sperm at normal fertilization 101,102. This 

phenomenon causes cleavage divisions and embryonic 

development. However, mammalian parthenotes are unable to 

develop to term due to genomic imprinting alteration that result 

in the repression of paternally expressed genes 103. The consequent 

developmental abnormalities cause an arrest of parthenote 

development at different stages after activation - depending on 

the species 104 - giving embryo-like structure unable to form a new 

individual.  

Parthenotes can be obtained in two different ways. The most 

common consists of combining the activation of metaphase-2 

oocytes with exposure to an actin polymerization inhibitor, 

usually cytochalasin D and B 89-91,105, cycloheximide 92,93 or 6-

dimethylaminopurine (DMAP) 99,100,106,107. Alternatively a diploid 

parthenote can be generated by preventing the extrusion of the 

first polar body. This protocol leads to the formation of tetraploid 

oocytes 89 and the diploid status is then re-established at the end 

of oocyte maturation with the extrusion of the second polar body. 
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 1.3.2 Parthenogenesis and zygosity 

An important aspect related to parthenogenesis is zygosity. It 

refers to the similarity of alleles for a trait in an organism and is 

used to describe the genotype of a diploid organism at a single 

locus on the DNA. If both alleles are the same, the organism is 

homozygous for the trait, while if alleles are different, the 

organism is heterozygous (Figure 8). 

 

 

 
 

Figure 8. Representative figure of homozygous (left) and 

heterozygous (right) chromosome for different alleles. 
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Using one or the other method described above to obtain 

parthenogenesis in mammals (paragraph 1.3.1) has important 

consequences for the genetic make-up of the parthenote in 

question 108. Performing oocyte activation before inhibition of the 

second polar body extrusion determines the formation of highly 

homozygous parthenotes, since diploid status of the parthenote is 

obtained after segregation of sister chromatids (Figure 6). In 

contrast, when the first polar body extrusion is inhibited, 

parthenotes are genetically identical to each other and have the 

same heterozygosity as their mother 89 (Figure 9).  
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Figure 9. Genetic composition of in vitro fertilized embryos (A) 

and parthenotes where extrusion of the II polar body (A) or I 

polar body(C) is inhibited. (From Brevini et al., 2008). 

 

 

The occurrence of a high degree of homozygosity in parthenotes 

has been evaluated in contrasting ways in the perspective of using 

these entities as a source of embryonic stem cells. Homozygosity 

can be seen as a potential benefit when reduction of 

immunogenicity of a stem cell derivative is considered. The 
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possibility of generating stem cells that are homozygous for all 

three sets of HLA (A, B and DR) would exponentially increase the 

number of phenotypes a graft fully matches. Furthermore, 

homozygosity has also been suggested to be an advantage to be 

exploited for selecting cell lines carrying drug response genes, or a 

disease gene or cancer gene correction, providing a useful 

research tool for drug testing and development 109. At the same 

time, it must be remembered that homozygosity can represent a 

severe risk. Loss of heterozygosity could amplify any negative 

genetic component potentially present in the genotype.  

 

1.3.3 Parthenogenesis and asymmetric imprinting 

The term ‘genomic imprinting’ is used to describe the functional 

differences between parental genomes during mammalian 

development, but was not described in animals, other than 

mammals 110. In particular, the imprinting can be consider an 

epigenetic mechanisms which regulates hereditary changes in 

gene expression not related to disturbed sequences of DNA 

nucleotides. It is involved in many processes of normal and 

pathological development of humans and animals 111. 

Interestingly, a number of studies demonstrated that various 

anomalies and mortality exhibited by mammalian clones may be 

due to genomic imprinting 112,113. In cloned mice and sheeps, for 
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example, uncontrolled growth of embryonic tissues and organs 

and an increase of 8 to 50% in embryo weight of embryos may 

reach 8 to 50% were observed 114. These problems seems to be 

caused by disturbed expression of imprinted genes due to 

manipulations of gametes and early embryos 115-117. 

This observation suggested that the parental genomes are 

complementary but functionally non-equivalent, despite the fact 

that they have equivalent genetic information 8. This explains why 

both genomes are needed in mammalian development. Indeed as 

described by Surani, although oocytes are potentially totipotent in 

many organisms, this is not so in mammals 103. This is because the 

maternal genome is epigenetically modified in the germ line to 

contain only maternal ‘imprints’, which normally results in 

repression of certain maternally inherited imprinted genes (Figure 

10). A paternal genome is therefore essential to ‘rescue’ the oocyte, 

as the maternal genes are imprinted reciprocally to paternal 

imprints. 
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Figure 10. Imprinted genes are 'marked' in a parental-specific 

way. Primordial germ cells enter the genital ridge of developing 

male and female embryos and all imprinting marks are erased 

(a). Male (top) and female (botton) germ cells grow and develop 

into sperm/oocytes and reintroduction of paternal and maternal-

specific imprints take plays (b). After fertilization, a zygote is 

formed with both genetic and epigenetic (imprinting) 

contributions from the parental genomes (c). (From Surani M.A., 

2002). 

 

 

Convincing evidence of parental imprinting was obtained in mice 

only in the 1980s, when two groups, Surani and his coworkers 

118,119 and McGrath and Solter 120, demonstrated that both 

chromosome sets, maternal and paternal, are essential for the 

normal development of mammals. This explains why in none of 
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more than 4500 known species of mammals, parthenogenesis has 

been described.  

However,  the possibility of artificial parthenogenetic activation of 

mammalian oocytes lead numerous investigations of genomic 

imprinting using parthenotes as model. These studies began in the 

1930s 121, but only in the 1980s effective methods were found for 

activation 122 and development of parthenogenetic embryos to the 

somite stages 123.  

At present it is well known that imprinting has two major effects 

on parthenotes. Firstly, imprinting alteration affects 

parthenogenetic cell growth in the fetus and post-natally 124. 

Secondly, it causes a restriction of cell lineages in which 

parthenogenetic cells can participate. During embryo 

development, in fact, the dramatic consequences of genomic 

imprinting have been clearly demonstrated by failure of 

parthenotes to give raise to their trophectoderm and primitive 

endoderm, which results in failure of the extra-embryonic tissues 

(especially placental tissue, 125) in parthenogenetic conceptuses 118. 

Indeed mammalian parthenogenetic embryos can develop 

normally up to the 40-somite stage 126,127, but they are unable to 

develop to term and die shortly after this stage, as showed in 

Table 3. In the mouse, for example, the most advanced 

parthenotes survive to the early limb bud stage, have little extra-

embryonic tissue and almost no trophoblast 128.  
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Species Maximum 

development (days) 

Pregnancy 

length (days) 

Reference 

Mouse 10 21 Surani et al. 1986 

Rabbit 10-11 31 Ozil 1990 

Pig 29 114 Kure-bayashi et al. 

2000 

Sheep 25 150 Loi et al. 1998 

Bovine 48 280 Fukui et al. 1992 

Marmoset 

monkey 

10-12 144 Marshall et al. 

1998 

 

Table 3. Summary of maximum development of mammalian 

pathenotes and length of normal pregnancy. 

 

 

At present, approximately 50–100 imprinted genes have been 

identified in the mouse and human genomes. These display a vast 

range of functions, ranging from splicing factors, such as Snrpn 129, 

to growth factors, such as insulin (Ins1 and Ins2 ), Igf-2 130,131, Igf2r 

132, to genes that are functional as RNAs, such as H-19 133 and Xist 

(reviewed by Bartolomei 134).  

Since both parental genomes are needed for generating a 

functional genome, it comes as a consequence that 

parthenogenetic blastocyst-like structures do not possess a 

functional genome that can be considered distinctive of a human 

embryo. Their genome is in reality constituted by a double set of 

an epigenetically imprinted female gamete genome and should be 

more correctly considered unfertilized eggs that have been 
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activated to initiate cell division. Since they are able to undergo a 

few cycles of cell division during the last years parthenogenetic 

blastocysts have been considered as a possible ethically acceptable 

source for human pluripotent cells. 

 

1.3.4 In vitro animal parthenogenesis 

The first paper describing the obtainment of a mammalian 

parthenote was published in 1936 by Gregory Goodwin Pincus, 

who successfully induced parthenogenesis in a rabbit 121. During 

the following years this approach was applied to other 

mammalian species such as rat 135, mouse 136, ferret 137,138 and 

hamster 139. A significant milestone in reproductive science has 

been achieved by Kono et al. with the birth of the first viable 

parthenogenetic mouse 140. Using gene targeting, they were able to 

manipulate two imprinted loci H19/IGF2 and DLK1/MEG3 to 

produce bi-maternal mice at high frequency 141. Pups were 

obtained at day 19.5 of gestation, showing that fatherless mice 

have enhanced longevity 142. This work further expands what is 

achievable in artificial reproduction and may have important 

implications for understanding aspects of embryonic development 

and gene regulation.  



34 

 

At present parthenogenetic activation in no-rodent species is used 

for the derivation of embryonic stem cell lines (Table 4) or for  

biological studies.   

 

 

Specie Refecences 

No-human 

primates 

Vrana KE et al., 2003; 

Wei Q et al., 2011. 

Pig Brevini TA et al., 2007; 

Brevini TA et al., 2010. 

Cow Talbot NC et al., 2004; 

Talbot NC et al., 2007; 

Pashaiasl M et al., 2010. 

Buffalo Sritanaudomchai H et al., 2007. 

Rabbit 

Fang ZF, et al., 2006; 

Wang S et al., 2007; 

Hsieh YC et al., 2011. 

 

Table 4. Parthenogenetic embryonic stem cell lines derived in 

non-rodent species. 

 

 

1.3.5 In vitro human parthenogenesis 

Data from the literature show that human oocytes can be 

successfully activated but often parthenogenetic development 

does not proceed beyond the eight-cell stage 143-148 149-152. 

Development of human parthenotes to the blastocyst stage has 

been reported only recently 109,153,154. This achievement, together 

with the establishment of parthenogenetic stem cells in non-
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human primates 155, stimulated new interest in human 

parthenogenesis because it could eliminate the requirement to 

produce or disaggregate normal competent human embryos for 

deriving pluripotent cell lines in vitro 153,156,157. 

Data reported in the literature showed that a combination of 

ionomycin and 6-DMAP constantly enabled the development of 

parthenotes to the blastocyst stage 108. This Ca2+ ionophore is able 

to induce one prolonged calcium peak that releases oocytes from 

metaphase arrest and then maturation-promoting factor quickly 

rises again and further development is arrested. The subsequent 

addition of 6-DMAP, which inhibits the reactivation of 

maturation-promoting factor following kinetics similar to those 

occurring after fertilization, leads to high in vitro development 

rates also in the human, confirming the results obtained in several 

other species including cattle 158, sheep 159, rhesus monkeys 160, 

rabbits 161 and pigs 162. 

 

1.3.6 Ploidy of parthenogenetic embryos 

Karyotype analysis has often been utilized to determine the 

normality of in vitro-produced embryos 163,164. This investigation 

was carried out on parthenogenetic embryos in order to verify 

their ploidy. First studies performed in mice demonstrated that 

most of parthenotes displayed diploid chromosomal phenotypes 
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87,105,123,165. This high frequency of diploid chromosomal 

complements may be related to the maternal inheritance of 

centrosomes in this specie (see below paragraphs 1.4.3 and 1.4.4). 

Indeed, when parthenogenesis were applied on other mammalian 

specie, many chromosomal alterations were identified.  

Winger et al. demonstrated that diploid bovine parthenotes 

arising from the application of standard procedures (ethanol or 

ionomycin activations following by cytochalasin D or 6-DMAP 

treatements) were a minority, while the majority of 

parthenogenetic embryo displayed polyploid and mixoploid 

chromosomal complements 166. These results are in agreement 

with other studies revealing a greater incidence of chromosomal 

abnormalities as assessed by haploidy, mixoploidy and 

polyploidy in in vitro 167-169 or in spontaneously activated cattle 

embryos 170. The same data were reported in porcine species 

activated by electric stimulation followed by cytochalasin B 

treatment 171 and in human puromycin or spontaneously activated 

oocytes 172-174.  

The events contributing to these abnormal chromosomal 

complements seems to occur as early as completion of the first cell 

cycle 166. As reported below (paragraphs 1.4.3 and 1.4.4), several 

studies demonstrated that the spermatozoa introduce the 

centrosome during fertilization in both bovine and human 99,175-177 

species as well as in porcine one 178. This complex mechanisms 
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may be the possible link between ploidy alterations and 

parthenogenesis. 

 

1.4 Centrosome 

One important aspect that may lead to abnormalities in 

parthenogenesis is the centrosome organization.  

 

1.4.1 Centrosome and its function 

The centrosome, approximately 1 µm in size, is a non membrane-

bound cytoplasmatic organelle composed by a protein complexes 

in animal cells. Its duplication occurs in a semi-conservative 

manner with each centrosome receiving one old preexisting 

“maternal” centrioles and one new. It is a no static structure, since 

it changes shape and components throughout the cell cycle 179 and 

has several functions summarized in Table 5. In particular, the 

main function of centrosome is the organization of both 

interphase microtubule arrays responsible for cell polarity and of 

the mitotic spindle, which mediates bipolar separation of 

chromosomes. Indeed centrosomes are closely associated with the 

nucleus during interphase and undergo cell cycle-specific 

reorganizations during mitosis. In addition it is also implicated in 

numerous other cellular functions such as reported in table 6 

(reviewed by Kimble M. and Kuriyama R. 180 and Rose M.D.181) 
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and impacts cellular processes such as entry into mitosis, 

cytokinesis, Gl/S transition and monitoring of DNA damage. 

 

 

 

Function Responsible element 

Intrinsic 

Reproducing element Unknown 

Microtubule organizer Unknown γ-tubulin binding 

protein 

Microtubule nucleation 

peripheral 

γ-tubulin 

Peripheral 

Nuclear association Gene products 

Configurational alterations Affected and effected by MTs and 

MFs 

Centrosome destruction Absence of duplication of 

reproducing elements 

Cell’s pacemaker: orchestrator of 

the cell cycle’s regulation 

Arrangement of kinase, cyclins 

and phosphatises 

Centriole assembly and axoneme 

excision 

Involves centrin and microtubule 

assembly 

Cell body organizer Perhaps derived from 

microtubules 

 

Table 5. Summary of centrosome functions. 
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Each mammalian somatic cell typically contains one centrosome, 

which must double at each cell cycle and divide between the two 

daughter cell at each cell division, like chromosomes and 

cytoplasm (Figure 11). The centrosome duplicate during 

interphase, at S phase, in coordination with maximum DNA 

decondensetion and subsequent replication (Figure 11). After 

duplication the two separated centrosomes undergo a maturation 

process and move to opposite sides of the nucleus.  During cell 

division, centrosomes form the poles of the bipolar mitotic 

spindle. After anaphase and telophase, centrosomes become 

separated into two daughter cells (Figure 11).  
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Figure 11. The centrosome cycle. At the beginning of G1 phase, 

cells contain a single centrosome with two perpendicularly 

aligned, closely associated centrioles. During G1 phase, the tight 

link (purple bar) between the centrioles is dissolved (centriole 

disengagement), but centrioles remain connected by a loose 

fibrous structure. In S phase, the centrosome duplicates 

simultaneously with DNA replication. Duplication involves the 

assembly of two new centrioles perpendicular to the existing 

centrioles. In late G2 phase, the two centrosomes undergo 

maturation by recruiting additional PCM (grey circle) 

components to prepare for their role as spindle poles. The 

centrosomes then separate and move to the opposite side of the 

nucleus. After chromosome segregation in anaphase and 

telophase, two new daughter cells are produced, each with one 

centrosome associated with the nucleus. (From Barr A.R. and 

Gergely F., 2007). 
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1.4.2 Centrosome molecular composition 

Centrosome  consists of a pair of orthogonally arranged cylinder-

shaped centrioles surrounded by an amorphous matrix of electron 

dense proteins referred to as pericentriolar material (PCM Figure 

12).  

 
 

Figure 12. Centrosome structure. The centrosome is composed of 

two centrioles surrounded by a protein matrix called the 

pericentriolar material (PCM). (From Sun Q.Y and Schatten H., 

2007). 
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Centrioles show the classic 9 + 0 pattern of nine triplet 

microtubule and no central pair of microtubule (Figure 13) and 

contains centrin, cenexin and tektin 182. "The centrosome in 

vertebrates: more than a microtubule-organizing center). In 

particular, centrin is a calcium-sensitive 20-kDa protein with 

contractile properties 183,184 that bind calcium ion transients and 

cause a centrosome shape changes. Centrioles duplication is semi-

conservative, with each daughter cell retaining one of the 

mother’s centrioles and a newly formed daughter centrioles 185.  

 

 

 
 

Figure 13. Centriole structure. Each centriole is made up of nine 

microtubule triplets, which lie evenly spaced in a ring. There 

are no microtubules in the center (9+0 arrangement). 

Transmission electron microscopy image of centrioles 

transverse section (right). 
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The PCM contains a complex meshwork of proteins responsible 

for microtubule nucleation and anchoring 186 including γ-tubulin 

187,188 189,190, pericentrin and ninein. Usually γ-tubulin and centrin 

are two classical markers of the centrosome with specific 

localizations, but the majority of these two proteins (80-90%) are 

not centrosome-associated, while matrix proteins are only 

concentrated at the centrosome with specific localizations 191. 

Pericentrin anchors γ-tubulin complexes at centrosomes in mitotic 

cells, which is required for proper spindle organization. Another 

essential cell cycle-dependent centrosome-associated proteins is 

the nuclear mitotic apparatus protein (NuMA) that is distributed 

to the separating centrosomes during early mitosis. This protein 

ensures the cross-linking of spindle microtubules on the 

centrosome side facing the chromosomes, which is essential for 

the organization and stabilization of spindle poles from early 

mitosis until at least the onset of anaphase. 

 

1.4.3 Centrosome reduction in gametes 

Originally spermatids and primary oocytes display a typical 

centrosome organization with a pair of centrioles surrounded by 

pericentriolar material, in common with somatic cells. This 

somatic cell-like centrosomes undergoes profound modification 

and/or degeneration during the final stages of gametogenesis to 
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meet the specific needs of gamete functions and fertilization. 

Indeed in mammals, with the exception of mouse, spermatozoa 

retain centrioles but lose most of the pericentriolar centrosomal 

proteins, whereas oocytes lose centrioles while retaining a 

stockpile of centrosomal proteins 192. This reciprocal reduction of 

centrosomal constituents makes sperm and oocyte 

complementary to each other and they became able to form a 

functional centrosome in the zygote only after fertilization. 

In rhesus monkey and human, centrosomes are reduced during 

spermiogenesis, but not as completely as in mice (see above). 

Their spermatozoa have proximal centrioles intact (Figure 14), 

whereas the distal centrioles are mostly disorganized or highly 

degenerated together with γ-tubulin and centrosomal proteins 

193,194 (Figure 15). 

 

 

 
 

Figure 14. Proximal and distal centrioles of the human 

spermatozoon. (From Palermo G.D. et al., 1997). 
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In agreement with data reported in primates, previous studies 

demonstrated that boar ejaculated spermatozoa show residual 

centrioles in sperm tail 178 as well as proximal centrioles were 

present in sheep mature male gametes 195,196.  

On the contrary, in mouse, gamete centrosome modifications and 

degenerations is completely different. Centrosome reduction takes 

place during spermatogenesis when it loses the microtubule 

nucleating function, then lose centrosomal proteins and finally 

lose centrioles (Figure 15). In particular, murine microtubule and 

centrosomal proteins are discarded during spermiation, and the 

distal centriole degenerates during the testicular stage of  

spermiogenesis, while the proximal centriole is lost during the 

epididymal stage 197,198.  
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Figure 15. Centrosome reduction during spermiogenesis. The 

male germ cells possess intact centrosomes containing centrioles 

and centrosomal proteins until the round spermatid stage (A). 

The microtubules of the distal centriole extend as axoneme of 

the spermatid tail (B). During spermiation, γ-tubulin and other 

centrosomal proteins are disjuncted from the centrioles and 

discarded with the residual bodies (B). The centrioles are 

degenerated to various extents in spermatozoa of different 

species. Rodent and snail spermatozoa lose both centrioles 

completely (C), whereas primate spermatozoa retain proximal 

centrioles intact but degenerate distal centrioles partially (D). 

Xenopus and Drosophila spermatozoa possess both centrioles 

intact (E). (From Manandhar G. et al., 2005). 
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Contrary to spermatogenesis, centrioles disappear from the oocyte 

during early oogenesis. In particular, oogonia and fetal oocytes 

display normal centrioles until pachytene stage, while these 

organelles are absent in the mature oocytes 199. This degenerative 

process has been demonstrated in rhesus monkeys 200, rabbits 201, 

sea urchins 202, Xenopus 203 and many other species 204 including 

sheep 195,196, cow 99,205 and pig 178, while there is no experimental 

evidence of centriole degeneration in mouse oogenesis 206 (Figure 

16). 
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Figure 16. Centrosome reduction during oogenesis. The oogonia 

possess standard centrosomes containing centrioles and 

centrosomal proteins (A). The centrioles are either retained or 

degenerated during meiotic arrest in different animal oocytes. 

Mammalian primary oocytes lose both centrioles completely (B) 

resulting in acentriolar and anastral poles during meiotic I and 

II divisions (E). The pericentriolar centrosomal proteins are 

dispersed in the oocyte cytoplasm during non-dividing stage (B) 

or distributed as concentric poles of the barrel-shaped spindles 

during dividing stages (E). In snail primary oocytes, the 

centrioles are retained, but they do not replicate during the 

meiotic arrest (C) and the mature eggs are without centriole (F). 

In starfish primary oocytes the centrioles duplicate only one 

time during the dictyate stage producing four centrioles before 

beginning the dividing stage (D) and at the end of meiosis the 

mature eggs retain one centriole from the inner pole (G). (From 

Manandhar G. et al., 2005). 
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1.4.4  Centrosome restoration after fertilization 

At fertilization, sperm and egg equally contribute haploid 

genomes as well as the relative centrosome components. Since in 

mammals, with the exception of mouse, centrosome of MII oocyte 

is greatly reduced/inactivated and centrioles are absent, early 

embryo development requires maternal and paternal contribution 

and, in particular, needs their elements to restore normal and 

functional centrosomal structure.  

In fact, while in mouse there is no evidence of a functional 

centrioles in the sperm and they are maternally inherited, in the 

human and other mammalian species, the spermatozoa contribute 

the proximal centriole during fertilization (Figure 17).   

In agreement with this, in mammalian species, whit the exception 

of mouse, sperm tail and its centriole-harboring connecting piece 

are incorporated into the ooplasm together with the sperm head. 

In the human after insemination, sperm head decondenses in the 

ooplasm and the proximal centriole remains intact forming the 

sperm aster sited around the male pronucleous subjacent to 

oocyte cortex. On the contrary, most sperm cytoplasmic structures 

including mitochondria, fibrous sheath, microtubule doublets, 

outer dense fibers and the striated columns of the connecting 

piece are discarded in a programmed order 207. Sperm aster 

enlarges as male pronucleous decondenses and moves in 



50 

 

cytoplasm, ensuring male and female pronuclei apposition and 

formation of a single mitotic metaphase plate with a bipolar 

spindle. The human sperm centriole duplicates during the 

pronuclear stage, and at syngamy, one or two centrioles are 

located at opposite poles of the first mitotic spindle 208,209 together 

with a surrounding halo of electron-dense PCM that nucleates 

microtubules 207. The mitotic spindle is fusiform and is generally 

almost centrally located 209,210, having never been identified in the 

cytocortex. In human embryos, centrioles were detected from the 

one-cell to the eight-cell stages of embryonic cleavage, and even in 

the hatching blastocyst 209. Thus, the zygote centrosomes are 

ancestors of centrosomes in embryonic, fetal and adult somatic 

cells 209,211. The same process were described in sheep, where 20 

hours after insemination are detectable one bipolar spindle 

displaying two centrioles at the opposite pole (first embryo 

mitosis) 195. 

On the contrary, recent study by Manandhar et al. revealed that in 

the pig sperm centrioles are lost in zygote after in vitro fertilization 

and they are not detectable until the late blastocysts stage. 

Accordingly, the early pre-implantation cleavages show broad 

and anastral spindle poles, while only blastomers of the hached 

blastocysts developed centrioles comparable with those of culture 

cells 178. 
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Figure 17. Centrosome inheritance in non-rodent mammalian 

specie. Meiotic spindle during the extrusion of the first polar 

body (a).  Meiotic spindle for the extrusion of the second polar 

body (b). Sperm before fertilization contains a proximal 

centriole, while  MII oocyte show a meiotic spindle with 

acentriolar centrosomes. Sperm proximal centriole–centrosome 

complex form the aster and, after pronuclear apposition, 

centriole replicate. At syngamy, duplicated centriole–

centrosome complex migrates around the zygote nucleus, it 

relocates to opposite poles to form the centers of the mitotic 

spindle poles and drives first embryo mitotis (b). (From Palermo 

G.D. et al., 1997). 

 

 

It is easy to understand that sperm centrosome has important 

implications in human infertility, and it has been demonstrated 

that sperm centrosomal dysfunctions lead to aberrant embryonic 

development 211,212. This has been also proven in a 
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globozoospermic patient, though an attempt to restore defective 

sperm centrosomal function has been performed, without 

success213,214. 

 

1.4.5 Centrosome and parthenogenesis 

As described above (paragraph 1.3) unfertilized oocytes can be 

activated by various physical or chemical stimuli and their female 

haploid genome can be diploidized, but the embryonic 

development does not proceed to term. To understand this 

process it is important to consider that centrosomal material of 

MII oocyte does not organize into unified foci and is not capable 

to generate astral microtubules nor a correctly oriented spindle in 

the absence of centrioles 215. Accordingly previous studies carried 

out in Xenopus showed that microinjected exogenous centrosomes 

can function as zygotic centrosomes and induce successful 

parthenogenesis. It was shown that the centrosomes from various 

cell types are capable of inducing parthenogenesis 216-218 in case 

they contain intact and replication-competent centrioles 219,220. 

These observations imply that the oocyte centrosome reduction 

has evolved as a control mechanism to suppress parthenogenetic 

development. Due to the loss of functional autonomy, the oocyte 

centrosome cannot initiate or successfully complete normal 
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embryonic cleavages without being supplemented by a fertilizing 

spermatozoon.  

Yet many insect species are obligatory or facultative parthenotes 

221. Indeed in lower specie successful parthenogenesis depends 

upon the oocyte’s ability to generate complete and functional 

centrosomes in the absence of male gamete. In sea urchin and 

insects, for instance, parthenogenetically activated eggs generate 

multiple cytoplasmic asters, containing centrosomal proteins and 

centriole, possibly due to the absence of a correct control along the 

process of spindle formation 222,223. Two of the multiple astral 

centrosomes become associated with the female pronucleus and 

form the mitotic spindle, whereas the others degenerate. 

Furthermore in some stick insect species, spermatozoa do not 

contribute centrioles, so eggs replenish all of the components of 

the zygotic centrosome.  

Currently there are only a few data in the literature about mitotic 

spindle organization and parthenogenesis in mammals. Mouse 

oocytes do not receive centrosomes from spermatozoa, yet they do 

not develop through parthenogenesis. Probably this block is due 

to another control strategy present in eutherian mammals linked 

to imprinting 179 (paragraph 1.3.3). All these processes suggest us 

to study centrosomal organization in parthenogenetic cells, 

comparing these with their bi-parental counterpart. 
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1.4.6 Centrosome alterations and chromosomal instability 

Recent studies have shown that several factors like abnormal 

kinetochore–spindle interactions, premature chromatid 

separation, centrosome amplification, multipolar spindles and 

abnormal cytokinesis can result in chromosomal segregation 

defects 224. 

Usually chromosomal alterations and karyotypic instability are in 

relation with tumors. Malignant formations were studied in depth 

the past century. In 1929 Theodor Boveri, in fact,  while studying 

chromosomal segregation in Ascaris worms and Paracentrotus sea 

urchins, suggested that malignant tumors arise from a single cell 

with an abnormal genetic constitution acquired as a result of 

defects in the mitotic spindle apparatus 225.  He was right, the best 

explanation today is that numerical chromosomal instability 

appears to arise as a result of chromosome segregational defects 

226-229, most frequently resulting from multipolar spindles. 

Structural chromosomal instability results from chromosome 

breakage and rearrangement due to defects in cell cycle 

checkpoints, the DNA damage response and/or loss of telomere 

integrity 230. Structural chromosomal instability frequently results 

from breakage-fusion-bridge (BFB) cycles, first described in maize 

by geneticist Barbara McClintock in 1938 231. In this process, a 

chromatid break occurs, exposing an unprotected chromosomal 
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end which, after replication, is thought to fuse with either another 

broken chromatid or its sister chromatid to produce a dicentric 

chromosome. During the anaphase stage of mitosis, the two 

centromeres are pulled to opposite poles, forming a bridge which 

breaks, resulting in more unprotected chromosomal ends, and 

thus the cycle continues 232. 

Since we hypothesized that parthenogenetic cells posses 

centrosome alterations and multipolar spindle formations (Figure 

18) we carried out a comparative analysis between 

parthenogenetic versus bi-parental cell line chromosomal 

assessment. 

 

 
 

Figure 18. Normal centrosome organization ensure timely and 

controlled switching between symmetric and asymmetric cell 

division, resulting in correct chromosome segregation (A). 

Supernumerary centrioles are sufficient to cause chromosome 

malsegregation (B). (From Brevini T.A.L. et al., 2011). 
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Multiple chromosome malsegregations have been previously 

described in human oocytes after parthenogenetic activation, 

either spontaneous or induced by puromycin 173. Consistent with 

this, a high incidence of polyploid and mixoploid chromosomal 

complements has been reported in parthenotes derived from 

bovine and porcine activated oocytes, with abnormal 

chromosomal complements occurring as early as completion of 

the first cell cycle 166,233. 

Generally in all mammalian parthenotes, with the exception of 

mouse, the lack of paternal contribution to the centrosome is 

considered the most likely cause of such a high rate of aneuploidy. 

Furthermore since mammalian parthenote are able to achieve the 

40-somite stage 126,127, it appears that centriole abnormalities does 

not limit cell proliferation, self-renewal and correct differentiation 

into a variety of tissues, indicating that the requirement of a 

paternal centrosome described in lower animals appears to be less 

stringent in mammalian cells. One explanation for this may be 

found in the hypothesis that genomic imprinting may represent 

the main mechanism that ensure bi-parental fertilization in higher 

mammals 179,234.  

On the other hand, the link between the high percentage of 

parthenogenetic cells showing chromosome number alteration 

and mono-parental cell ability to proliferate is puzling.  
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1.4.7 Mitotic spindle defects and protein alterations  

Several centrosomal proteins are closely related to centrosome 

organization and studies of their expression level alterations are 

often used to understand or confirm cell centrosome defects. In 

the studies described below in this thesis many protein related to 

spindle formation/organization and mitotic check point were also 

investigated in order to verify the alterations resulted by 

morphological or immunocitochemical analysis.  

One family of proteins analyzed and that plays an important role 

in regulating centrosome function, bipolar spindle assembly, 

chromosome segregation and cytokinesis is the Aurora kinases 

235,236 (Figure 19). The three members of the Aurora kinase family 

in mammals, Aurora kinases A/B/C (AURKA, AURKB and 

AURKC), are usually overexpressed in cancer cells and many 

studies were carried out on these cell type in order to characterize 

these kinases.  
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Figure 19. From G2 phase of the cell cycle to metaphase of 

mitosis polo-like kinase 1 (PLK1; green) and aurora kinase A 

(also known as STK6; purple) co-localize at the centrosomes, but 

in contrast to aurora kinase A, PLK1 also localizes to 

kinetochores in prometaphase and metaphase. Aurora kinase B 

(also known as STK12; red), however, is not present on 

centrosomes and is first detected on chromatin in late G2. In 

prophase, aurora kinase B localizes to the chromosome arms and 

inner centromere, and in prometaphase and metaphase it 

localizes only to the inner centromere. In anaphase and 

telophase aurora kinase B co-localizes with PLK1 on the central 

spindle, cortex and midbody to regulate cytokinesis. Although 

aurora kinase A is degraded in anaphase and telophase a small 

proportion of the kinase is also associated with the central 

spindle and midbody; however, the exact function of aurora 

kinase A at this location is unclear. Crosstalk between aurora 

kinases and PLK1 is described in the blue boxes. 

 

 

AURKA is localized in the centrosome from the time of  

duplication until the end of mitosis. Its overexpression has been 

associated with centrosome amplification and multipolar spindles. 

Indeed recent study by Anand et al. showed that AURKA 

overexpression, overrides the spindle assembly checkpoint, 

resulting in arrested mitosis with incomplete cytokinesis, leading 

to multinucleation 237.  

AURKB is associated with the proteins, survivin and the inner 

centromere protein (INCENP). It is located in heterochromatin in 

early mitosis, in central spindle during anaphase, in cell cortex 
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when the contractile ring forms and then in midbody during 

cytokinesis. Studies by Hauf and colleagues demonstrated that 

this protein is involved in destabilization of improper microtubule 

attachments and also plays a role in maintaining the spindle 

assembly checkpoint 238. Further RNA interference experiments 

showed that AURKB absence induces alterations of function and 

localization of the spindle checkpoint components, namely 

budding uninhibited by benzimidazoles 1 homolog beta 

(BUBR1/BUB1B), mitotic arrest deficient-like 2 (MAD2) and 

centrosome-linker motor protein (CENPE) 239 resulting in 

misaligned chromosomes, syntelic attachments of chromosomes 

to the spindle poles (in which both chromatids are attached to the 

same pole), cell division failure, and endoreduplication.  

The last Aurora kinase, not studied in the thesis, AURKC, 

localizes to the centrosome from anaphase to telophase. It is 

essential for mitosis, but little has been published about its exact 

function and its substrates.  

Another important protein family required for mitotic spindle 

assembly and function is polo -like kinase (PLK). 

The first polo kinase was originally identified in a Drosphila 

mutants that display abnormal mitotic spindle organization 240. 

Subsequently, potential homologues of Drosophila polo have been 

identified in yeasts and in mammals. Currently, the conserved 

family of PLKs consists of many members throughout various 
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species. Multiple PLKs are present in mammalian cells (PLK1, 

PLK2/SNK, PLK3/FNK/PRK, and PLK4/SAK) and the available 

data are consistent with the idea that these may also act earlier in 

the cell cycle, possibly during G1. If this hypothesis is correct, 

different members of the polo-like kinase family would act at 

several points during the cell cycle. 

In this thesis particular attention was given to PLK2. It display a 

broad tissue distribution 241 and plays important roles in 

regulating cell proliferation in G1 and early S phases (Figure 20), a 

time when both PLK2 mRNA and protein levels peak 242,243. 

Overexpression and depletion of PLK2 lead to an increase and 

decrease of centrosome numbers, respectively, indicating that it is 

fundamental for  controlled centriole duplication during S 

phase244.  

 



62 

 

 
 

Figure 20. PLK2 control the centriole cycle in a close association 

with the cell cycle. PLK2 phosphorylation is important for the 

function of CPAP in procentriole formation at G1/S transition 

phase. The phosphorylated CPAP (red dots) is located at the 

proximal end of the procentriole. CPAP is dephosphorylated by 

an unknown phosphatase once the cell enters anaphase (blank 

dots). (From Chang J et al., 2010). 

 

 

 

 

Other molecules analyzed in this thesis are TTK protein kinase 

(TTK), BUB1, CENPE 245 and mitotic arrest deficient-like 1 (MAD1) 

(Figure 21).  
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Figure 21. Proposed schematic diagram of the spindle 

checkpoint cascade. (From Vigneron S. et al., 2004). 
 

 

All these proteins are normally involved in kinetochore-

microtubule binding, correct chromosome congression and 

alignment as well as segregation during mitosis. In particular, 

studies by Abrieu showed that disruption of BUB1 and CENPE 

caused a reduction of tension across the centromere, an increase of 

incidence of spindle pole fragmentation and resulted in mono-

oriented chromosomes approaching abnormally close to the 

spindle pole, with a mixture of aligned and unaligned 

chromosomes 246. Moreover, usually the final result of CENPE 

inhibition is mitotic arrest, initiation of apoptosis and cell death 
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and this effect is more likely to affect rapidly dividing cancer cells. 

However redundant mechanisms have been described in 

mammalian cells to enable kinetochore microtubule binding and 

checkpoint monitoring in the absence of CENPE, although with 

poor positioning at the spindle poles and chronically 

monooriented chromosomes 247.  

Another central component of the spindle assembly checkpoint 

and recruitment of kinetochores is MAD1 248-250. Deregulation of its 

expression has been shown to affect cell cycle progression and, in 

particular, the increase of its levels causes a reduction in the 

expression of v-myc myelocytomatosis viral oncogene homolog 

(MYC) in human monoblasts where a decrement of cell 

proliferation with a protracted G1 phase was observed 251.  

A further molecule only recently identify as implicated in 

centrosome replication control and examined in this thesis is the 

Cyclin F (CCNF). Indeed, D'Angiolella et al. showed that siRNA 

mediated depletion of CCNF in HeLa cells induces centrosomal 

and mitotic abnormalities, including multipolar spindles and/or 

asymmetric bipolar spindles with lagging chromosomes 252 

(Figure 22). 
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Figure 22. Cells transfected with siRNAs to Cyclin F show 

centrosome alterations (a) and form multipolar spindle (b). 

(From D’Angiolella V. et al., 2010). 

 

 

1.5 Human parthenogenesis and parthenogenetic stem cells 

Since it is possible to derive parthenogenetic embryos from 

supernumerary human oocytes, as described above (paragraph 

1.3.5) recent studies also demonstrated that these embryo-like 

structures can be used in order to isolate pluripotent cells. First 

attempts at this have described low attachment of parthenogenetic 

embryos to feeder cells and arrest of proliferation after few cell 

divisions 109. Only in the last few years several paper reported the 
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obtainment of parthenogenetic stem cells, displaying 

characteristics in common with their bi-parental counterpart 253-257. 

In our laboratory we developed a protocol for isolation of ICMs 

from human parthenogenetic blastocyst-like structures. 

Parthenotes were subjected to enzymatic digestion with pronase 

in order to remove zonae pellucidae and ICM cells were separated 

from trophectoderm with microsurgical tecnique. These were 

plated of inactivated feeder layer and cultured as described by 

Brevini et al, 2009. Currently, these lines have been growing for 

over 4 years and possess most of the main features of bi-parental 

stem cells. In particular, as reported in our paper 257 (see Appendix 

A), these cells show the typical ESC morphology, express 

appropriate stem cell markers such as OCT4, NANOG, REX1, 

SOX2, alkaline phosphatise (AP), SSEA-4, TRA 1-81, and lack of 

the human ESC negative markers (e.g. SSEA-1). Furthermore our 

parthenogenetic cell lines also possess high levels of telomerase 

activity, which is turned down when cells are subjected to culture 

conditions that induce their differentiation, indicating that a 

physiologically normal control of telomerase activity is present. 

In vitro differentiation potential of these cells was assessed and the 

results obtained demonstrated the ability of these cells to 

differentiate and give rise to components belonging to the three 

embryonic germ layers, while no expression of trophectoderm-

related markers was detected, possibly reflecting parthenote 
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inability to generate adequate fetal membrane development and 

to implant correctly. Moreover, also driven differentiation, using 

controlled culture conditions, were tested on the cells. Data 

obtained in our laboratory demonstrate that parthenogenetic cells 

are able to differentiate and to form different cell subtypes 

belonging to the neural and hemopoietic lineage, not only giving 

rise to early cell population, but also generating more mature cell 

types expressing nestin, CNPase and MAP2 or showing 

lymphoid, erythroid and myeloid morphology, respectively. 

Altogether these findings  indicate that, outside the normal 

developmental paradigm, the differentiation potential of 

uniparental cells may be much less restricted than that of 

parthenogenetic cells in chimeras.  

However, injection of our human parthenogenetic cells in 

immunodeficient SCID mice gave rise to poor differentiation or in 

the formation of myofibrosarcomas. This suggests the possibility 

of an intrinsic deregulation of the mechanisms controlling the 

choice between proliferation and differentiation in embryonic 

stem cells obtained through parthenogenesis. Interestingly, this 

deregulated differentiation appears to be modulated by the 

microenvironment and, while undetectable, or repressed, when 

cells were differentiated in vitro, it became evident once cells were 

exposed to the less restrained in vivo milieu. Moreover we 

observed the presence of extranumerary centrioles and aberrant 
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ploidy. This is consistent with the high incidence of polyploid and 

mixoploid chromosomal complements reported in parthenotes 

derived from different species, including bovine, porcine and 

human, as described above (see paragraph 1.3.6). 
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2.AIM 

As described above human parthenogenetic ESCs possess most of 

the main features of their bi-parental counterpart, including 

indefinite proliferation and in vitro differentiation abilities (see 

Introduction 1.5 paragraph and Appendix A). At the same time 

we also observed the presence of severe chromosomes 

abnormalities and extranumerary centrosomes.  

We considered to be of biological interest to elucidate the origin of 

these discrepancies. To this purpose we performed a detailed 

characterization of parthenogenetic cell line specific properties 

and their differences with bi-parental ESCs.  

 

Specific aims of this thesis were: 

1. to investigate the mechanisms responsible for the severe 

anomalies observed in parthenogenetic cell lines; 

2. to understand which adaptive mechanisms are active in 

parthenogenetic cells, allowing them to normally proliferate 

and differentiate despite the abnormalities.  

 

To these purposes direct comparative studies were carried out on 

parthenogenetic and bi-parental human cell lines as well as on 

those obtained from animal models.  

In particular we used pig and sheep because their parthenogenetic 

mechanisms are more similar to those of the human than mouse. 
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As described above (see paragraph 1.4.4), in fact, in the human 

and other mammalian species, the spermatozoa contribute the 

proximal centriole during fertilization, while in murine species 

functional centrioles are maternally inherited. 

In the first set of the experiments we analysed if chromosome 

alterations are related to the use of human oocytes and the 

relatively old age of donors. It is well known, in fact, that 

advanced maternal age,  as well as the interference of ovarian 

hyperstimulation with the natural selection of good-quality 258,259, 

are clear risk factors for chromosomal aneuploidy and mosaicism 

in the human embryo 260-264. In this case we used the pig because 

oocytes can be retrieved from individual just after puberty, the 

age of maximal reproductive fitness in this species. 

Furthermore we examined if the sever anomalies found in human 

parthenogenetic cells are caused by the derivation protocol and/or 

the culture conditions used in the experiments. To this end we 

transferred sheep parthenotes into synchronized recipients shortly 

after oocyte activation. Embryos were allowed to grow for 21 days 

and fibroblast cell lines were established and analysed. 

In the second set of experiments reported in this thesis we 

investigated how such abnormal cells could survive, proliferate 

and correctly differentiate in vitro, instead of undergoing 

apoptosis as expected. 
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To this purpose we investigated the apoptotic mechanisms, the 

incidence of autophagy and the occurrence of special form of 

intercellular comunications. 
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3. MATERIALS AND METHODS  

Unless otherwise indicated, chemicals were purchased from 

Sigma- Aldrich (Italy). 

 

3.1 Human cell lines 

The experiments performed in the human species were carried out 

on two parthenogenetic pluripotent cell lines previously obtained 

in our laboratory 257 (Appendix A). The bi-parental cell lines used 

as bi-parental counterpart were: HUES13 (generated in the Melton 

lab and used with permission),  HES 7, HES I-3 and HES I-6 

thanks to a collaboration with the group of Prof. Benvenisty N. of 

The Alexander Silberman Institute of Life Sciences of The Hebrew 

University of Jerusalem.   

 

3.1.1 Human parthenogenetic cell line culture 

Human isolated ICMs were cultured on feeder cells in human 

embryonic stem cell medium composed by Dulbecco's modified 

Eagle's medium, without pyruvate, high glucose formulation 

(Gibco, Italy) and supplemented with 10% Knock-out serum 

replacer (Gibco, Italy), 5% FBS (Gibco, Italy), 1 mM glutamine, 

0.1 mM β-mercaptoethanol, 5 ng/ml human recombinant basic 

Fibroblast Growth Factor (bFGF; R&D System, USA) and 1% 
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nonessential amino acid stock (Gibco, Italy) as described by 

Brevini et al. 257.  

 

3.2 Parthenogenetic activation 

3.2.1 Porcine oocytes collection, in vitro maturation, activation 

and culture 

Porcine ovaries were collected from gilts of approximately 120 Kg 

at the local abattoir and transported to the laboratory in 

physiological saline (9g/l NaCl) at 30-34°C. Cumulus-oocyte 

complexes (COCs) were aspirated from antral follicles with an 18-

gauge needle and vacuum pressure of 50 ml/min. The follicle 

aspirate was collected in 15 ml tubes (Terumo, VenoSafeTM) and 

only COCs with a large, compact cumulus and homogeneous 

oocyte cytoplasm were selected for the in vitro maturation (IVM).  

For parthenogenetic activation studies, IVM was performed on a 

total of 1221 oocytes as previously described by Grupen et al. 265 

with minor modifications. COCs were cultured for 22 hours at 

38.5°C in an atmosphere of 5% CO2 in TCM-199 supplemented 

with 25% porcine follicular fluid, 1.1 mg/ml sodium bicarbonate, 

0.1 mg/ml sodium pyruvate, 0.5 mM cysteamin, 8.2 μg/ml insulin, 

10 ng/ml epidermal growth factor, 1 mM dibutryl cAMP, 0.5 

IU/ml porcine FSH:LH (Pluset; Serono, Rome, Italy), 1.0 μg/ml 17 

β-estradiol, 75 μg/ml penicillin and 50 μg/ml streptomycin (199-
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IVM). After 22 hours COCs were washed in fresh medium and 

matured for an additional 24 hours in the same medium without 

dibutryl cAMP.  

At the end of IVM (46 hours), oocytes were denuded by gently 

pipetting in TCM-199 HEPES buffered medium, containing 0.1% 

hyaluronidase at 38.5°C, washed for 10 min in the same medium 

supplemented with 20% (v/v) fetal calf serum (FCS, Gibco, Italy) 

and incubated in Tyrode’s albumin lactate pyruvate medium 

(TALP for activation, see Table 6) for 30 min at 38.5°C. 

Parthenogenetic activation was performed according to the 

method described by Brevini et al. by sequentially exposing the 

oocytes to 5 mM ionomycin in TALP for 5 min at 38.5°C in the 

dark and to 2 mM 6-DMAP in medium NCSU-23 (see Table 7) for 

3 h at 38.5°C in an atmosphere of 5% CO2, 5% O2, and 90% N2 266. 

Presumptive parthenotes were washed thoroughly in NCSU-23 

and cultured in groups of 25–35 in 50 µl NCSU-23 drops under 

mineral oil at 38.5°C in 5% O2, 5% CO2 and 90% N2 atmosphere. 

On day 5 post-activation, half of the medium was replaced with 

fresh NCSU-23 containing 20% (v/v) FCS to reach a final FCS 

concentration of 10% (v/v) in the in vitro culture drop. On day 6/7 

IVF blastocysts were obtained and ICMs were islated for culture. 
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TALP medium for activation 

Penicillin G 0,21 mM 

Streptomycin 0,07 mM 

Red Phenol 0,027 mM 

D-Glucose 5,00 mM 

NaCl 114,00 mM 

KCl 3,16 mM 

MgCl2.6H2O 0,50 mM 

NaH2PO4 anhydrous 0,35 mM 

NaHCO3 25,00 mM 

CaCl2.2H2O 4,72 mM 

Na- lactate syrup 10 mM 

Na-pyruvate 0,10 mM 

Ca-lactate 3,00 mM 

Caffeine Na-benzoate 50:50 2,00 mM 

Bovine Serum Albumin (BSA) 4 mg/ml 

pH: 7.6   OSM: 309 

 

Table 6. Composition of TALP medium used for parthenogenetic 

activation. 
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NCSU-23 medium 

NaCl 108,73 mM 

KCl 4,78 mM 

NaHCO3 25,07 mM 

KH2PO4 1,19 mM 

MgSO4.7H2O 1,19 mM 

D-Glucose 5,55 mM 

Sorbitol 50 mM 

Red Phenol 0,027 mM 

Penicillin G 0,21 mM 

Streptomycin 0,07 mM 

CaCl2.2H2O 1,7 mM 

BSA 4 mg/ml 

L-Glutamine 1mM 

pH: 7.6   OSM: 280 

 

Table 7. NCSU-23 medium composition. 

 

 

 

 

 

 

 

 

 

 

 

 



77 

 

3.2.2 Sheep oocytes collection, activation and transfer in uterus 

The experiments carried out in sheep were performed in 

collaboration with the group of Prof. Ledda S. of the Department 

of Veterinary Pathology and Clinic of the Università degli Studi di 

Sassari.   

Estrous cycles of adult Sarda-breed ewes were synchronized by 

the standard insertion of intravaginal sponges (40 mg FGA; 

Intervet). Multiple ovulations were induced by the administration 

of Follicular Stimulating Hormone (FSH-P; 20 mg pituitary extract 

kindly donated by FATRO, Italy) administered intramuscular 

every 12 hours for 48 hours. Recently ovulated oocytes were 

surgically removed from the oviducts of ewes, anesthetized with 

pentobarbital sodium, by flushing with 10 ml PBS supplemented 

with 4 mg/ml BSA fraction V. Oocytes were held in TCM 199-

HEPES plus 10% FBS (Boehringer Mannheim, Italy) and 

antibiotics (penicillin-streptomycin) at room temperature. 

Cumulus cells were removed with 300 UI/ml hyaluronidase in 

Ca2+-, Mg2 +-free PBS and repeated pipetting. 

In vivo matured oocytes were activated with 5 µM ionomycin for 5 

minutes and incubated for 3 h with 2 mM 6-DMAP in TCM-199 

with 10% Fetal Bovine Serum (FBS, Gibco, Italy) in standard 

culture conditions as previously described by Loi et al. 159. At the 

end of incubation 6-DMAP was washed off and the oocytes were 
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cultured. A well-developed blastocysts (> 100 cells and a clear 

ICM) were transferred to the uteri of foster-ewes (2 blastocysts per 

animal) that had ovulated 6 days previously. Fetal development 

was monitored and foetuses were collected at 21-day of 

pregnancy (the maximum length of time of sheep parthenogenetic 

development 159) in order to isolate their fibroblasts.  

 

3.3 In vitro fertilization 

3.3.1 Pig oocytes in vitro fertilization and culture 

For in vitro fertilization (IVF) studies, IVM was performed on a 

total of 1130 oocytes as previously described (please see 3.2.1 

paragraph).  

Frozen-thawed spermatozoa were purified by centrifugation 

through two-layer Percoll gradients. Live sperm cells were 

washed in TALP medium for IVF (see Table 8) and then were 

diluted in IVF medium (see Table 9). Oocytes were divided in 

groups of 45-50 and co-cultured  with 120000 spermatozoa/ml in 

IVF medium at 38.5°C in 5% CO2 atmosphere. After 24 h, oocytes 

were gently washed to eliminate cumulus cells and sperm 

adhering to the zona pellucida. Finally, embryos were cultured in 

groups of 25–35 in 50 µl NCSU-23 (see Table 7) drops under 

mineral oil at 38.5°C in 5% O2, 5% CO2 and 90% N2 atmosphere. 

On day 5 post-activation, half of the medium was replaced with 
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fresh NCSU-23 containing 20% (v/v) FCS to reach a final FCS 

concentration of 10% (v/v) in the in vitro culture drop. On day 7/8 

IVF blastocysts were obtained and ICMs were isolated for culture. 

 

 

 

TALP 10X medium for IVF 

MgCl2.6H2O 1.25 mM 

NaCl 102,7 mM 

KCl 3 mM 

NaH2PO4 0,28 mM 

NaHCO3 5 mM 

Na- lactate syrup 3,7 ml/l 

Na-pyruvate 1 mM 

HEPES 20 mM 

Polyvinyl alcohol (PVA) 1 mg/ml 

Kanamycin 1,3 mM 

pH: 7.4   OSM: 266 

 

Table 8. Composition of TALP medium used for IVF 
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IVF medium 

CaCl2.2H2O 2,65 mM 

MgCl2.6H2O 0,4 mM 

NaCl 106,1 mM 

KCl 3,08 mM 

NaHCO3 26 mM 

NaH2PO4 0,33 mM 

Na-pyruvate 1 mM 

Na- lactate syrup 1,86 ml/l 

BSA FAF 6 g/l 

Kanamycin 0,13 mM 

pH: 7.4   OSM: 280 

 

Table 9. IVF medium composition 

 

 

3.3.2 Sheep oocytes in vitro fertilization and transfer in uterus 

These experiments were performed in collaboration with the 

group of Prof. Ledda S. of the Department of Veterinary 

Pathology and Clinic of the Università degli Studi di Sassari.   

In vivo matured oocytes were collected from adult Sarda-breed 

after ovarian hyperstimulation (see 3.2.2 paragraph). Oocytes 

were partially denuded of granulosa cells by gentle pipetting in 
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TCM-199 HEPES buffered medium supplemented with 300 IU/ml 

hyaluronidase. Frozen-thawed spermatozoa from a Sarda breed 

were used in this experiment. The IVF system was composed by 

synthetic oviductal fluid (SOF) medium, originally described by 

Tervit et al. 267, enriched with 20% heat inactivated estrous sheep 

serum, 2,9 mM Ca lactate and 16 nM isoproterenol 268. Fertilization 

was conducted in 50 µl drops with 1 x 106 spermatozoa/ml swim-

up derived motile spermatozoa and maximum 15 oocytes per 

drop. After 20/26 hours cleaved oocytes were washed three times 

and cultured in SOF medium supplemented with 2% BME-

essential amino acids, 1% MEM-nonessential amino acids (Gibco, 

Italy), 1 mM glutamine and 8 mg/mL fatty acid free BSA at 39°C in 

5% O2, 5% CO2 atmosphere. Culture was continued until 6 to 7 

days post fertilization, when embryos developed at least to 

expanded blastocysts were transferred to the uteri of foster-ewes 

(2 blastocysts per animal). Fetal development was monitored and 

foetuses were collected at 21-day of pregnancy (the same day used 

for parthenogenetic foetuses) in order to obtain fibrostast primary 

cultures.  
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3.4 Porcine sperm tail microinjection in matured oocyte  

These experiments were carried out in collaboration with the 

group of Prof. Galli C. of Avantea, Laboratory of Reproductive 

Technologies, Cremona. 

 

3.4.1 Porcine oocytes maturation 

Ovaries were collected from the local slaughtered. Oocytes were 

aspirated with the aid of a vacuum pump and transferred to a 

TCM199-based maturation medium supplemented with 10% of 

FBS (Gibco, Italy), 1 μl/ml ITS media supplement, 1 mM sodium 

pyruvate, 0.5 mM L-cystein and gonadotropins (0.05 IU/ml FSH 

and 0.05 IU/ml LH; Pergovet 75, Serono, Italy). Oocytes were 

cultured at 38.5°C in 5% CO2 for 44 h. After maturation oocytes 

were denuded of granulosa cells and MII oocytes were selected 

for polar body extrusion.  

 

3.4.2 Boar sperm preparation 

Frozen-thawed pig semen was washed through a discontinous 

Redigrad density gradient (45%-90%) at 750 g for 30 min. The 

viable spermatozoa recovered from the bottom of the tube were 

rinsed in Ca2+ free TALP and centrifuged at 400 g for 10 min. The 

sperm pellet was suspended at a concentration of 4 million 
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sperm/ml in Hepes buffered SOF medium supplemented with 6 

mg/mlfatty acid free BSA, MEM amino acids (Gibco, Italy), 1 

μg/ml heparin, 20 μM penicillamine, 1 μM epinephrine and 100 

μM hypotaurine (SOF-IVF). Just before ICSI, the sperm 

suspension was diluted 1:1 with a 12% solution of 

polyvinylpyrrolidone in SOF IVF medium. 

 

3.4.3 Intact sperm and tail microinjection 

Intact sperm and sperm tail microinjection was performed as 

described by Kimura and Yanagimachi 269 using a Piezo 

micropipette driving unit (Prime Tech, Japan). For ICSI of intact 

sperm, a motile sperm was aspirated into an injection pipette of 

approximately 7 µm, immobilized by two or three piezo-pulses to 

the tail-midpiece junction and injected. For sperm tail injection, 

just before the injection, sperm tails were detached mechanically 

from sperm heads with very strong piezo-pulses at the tail-sperm 

head junction. Then a single tail was aspirated into an injection 

pipette of approximately 2 µm and injected. The oocytes were 

held on the holding pipette by suction, with the polar body 

orientated to the 6 or 12 o’ clock position, and the injection pipette 

was advanced through the zona pellucida using the piezo drill 

motion. 
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3.4.4 Activation of tail injected oocytes and embryo culture  

Matured oocytes with or without injected sperm tails were 

activated at 48-50 h of maturation by double DC pulses of 1.2 

Kv/cm for 30 sec applied in 0.3 M mannitol solution, containing 1 

mM Ca 270 and 100 M Mg, followed by 3 hr culture in maturation 

medium with 5 g/ml cytochalasin B.  

Activated and intact sperm injected oocytes (day 0) were cultured 

in SOF medium supplemented with FAF BSA and MEM amino 

acids (SOF-BSA-AA 271) at 38.5°C in an atmosphere of 5% CO2 and 

5% O2. On day 2 the cleavage rate was assessed and not cleaved 

oocytes were removed. Culture medium was changed at 50% at 

day 4 and day 6. Embryos were fixed at different time point in 

order to analyzed their centriole assessment (see 3.7.1. paragraph). 

 

3.5 ICM isolation and culture 

3.5.1 STO feeder cell preparation 

STO fibroblasts (LGC Promochem-ATCC, Italy) were routinely 

cultured in high glucose DMEM (Gibco, Italy), supplemented with 

2mM glutamine and 10% FBS (Gibco, Italy). For growth 

inactivation, sub-confluent mono-layers were exposed to the 

medium above containing 10 μg/ml mitomycin-C (Gibco, Italy) for 

3 hours. They were re-suspended in culture medium and seeded 
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at a density of 25 x 104 cell/well in 4-well dishes, pre-coated with 

0.1% gelatin. Inactivation was carried-out 24 hours before plating 

of ICMs or passaging of pluripotent cell lines. Two hours before 

use, the medium was changed and replaced with embryonic stem 

cell medium (see 3.1.1 and 3.5.3 paragraphs). 

 

3.5.2 Porcine ICM isolation 

Porcine parthenotes and IVF embryos were cultured up to the 

early blastocyst stage. Blastocysts were incubated in pronase 0.5% 

(w/v) in medium TCM199 (Gibco, Italy), supplemented with 6.5 

mg/ml HEPES, 1.1 mg/ml sodium bicarbonate and 4 mg/ml 

bovine serum albumin (BSA). Incubation was carried out for 8 

minutes to eliminate zona pellucida. Subsequently, blastocysts 

were incubated in low glucose DMEM medium (Gibco, Italy) 

supplemented with 10% PVA and 10% monkey anti-porcine 

serum (supplied by Istituto Zooprofilattico Sperimentale 

Lombardia ed Emilia-Romagna, Brescia) for 15 minutes. A 30 

minutes incubation in DMEM medium (Gibco, Italy) containing 10 

% PVA and 10% Guinea pig complement was then performed. 

ICMs were isolated from lysed trophoblast cells by pipetting, 

washed through several DMEM drops to avoid culture oil carry-

overs and encourage better attachment and singly plated on 

feeder cells.  
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3.5.3 Porcine ICM culture 

Porcine embryonic stem cells were culture in DMEM-low glucose : 

HAM’SF10 (1:1; Gibco, Italy) supplemented with 10% K.O. 

SERUM (Gibco, Italy), 5% FBS (Gibco, Italy), 2 mM glutamine, 0.1 

mM β-mercaptoethanol, nucleoside mix, 1% non-essential 

aminoacid (Gibco, Italy), 1000IU/ml ES GROWTH (LIF; Chemicon, 

USA) and 5ng/ml bFGF (R&D System, USA) 67. 

Within 3 days, circular colonies with distinct margins of small, 

round cells were observed and media were refreshed. When a 

colony enlarged enough to cover half or more of the well surface, 

cells were mechanically removed using a sterile microloop (Nunc, 

DK), they were transferred to a 50 μl drop of fresh medium and 

pipetted to small cell clumps of an average of  500–600 cells, 

avoiding to obtain single cell suspension. Cells were then 

passaged on freshly prepared feeder-layers. Culture medium was 

changed every day.  

 

3.6 Fetal fibroblast isolation and culture 

This part of experiments was performed in collaboration with the 

group of Prof. Ledda S. of the Department of Veterinary 

Pathology and Clinic of the Università degli Studi di Sassari.   
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Primary cultures of foetal fibroblasts were obtained from 21 day-

old sheep fetuses generated by the transfer of IVF or 

parthenogenetic blastocysts into the uterus of synchronized 

recipients. The isolation of fibroblasts was carried out as previous 

described by Denning et al. 272. Explanted sheep fetuses were 

dissociated manually and then treated with 0.25% trypsin-EDTA. 

Primary cultures were grown on 0.1% gelatin pre-coated Petri 

dishes (Sarstedt, Italy) until the first passage, after which no 

treated Petri dishes (Sarstedt, Italy) were used. Cells were 

cultured in DMEM High Glucose (Gibco, Italy) supplemented 

with 20% FBS, 200 mM glutamine and antibiotic-antimicotic at 

37°C in a humidified environment with 5% CO2 in air. 

 

3.7 Centrosome characterization  

3.7.1 Centriole immunocytochemical localization 

Number of centrioles was assessed in all cell lines as well as in pig 

parthenotes and IVF embryos. 

Human and porcine undifferentiated cells from bi- and mono-

parental origin and sheep fibroblast derived from parthenogenetic 

and IVF fetuses were plated directly on CultureWell Chambered 

Coverglass 16-well dishes (Molecular Probes, Invitrogen, Italy) 

and cultured for 24 hours. Sample were fixed in 100% methanol 
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for 10 minutes at -20°C and permeabilized with 0.1% Triton X-100 

for 15 minutes at room temperature. Aspecific sites were blocked 

with PBS containing 10% BSA. Incubation with primary antibody 

specific for Centrin-1 (1:100, Abcam, UK) was then carried out for 

1 hour at room temperature. Microtubules were also labelled with 

anti-beta tubulin antibody (1:50, Abcam, UK). Incubation with 

suitable secondary antibodies (Alexafluor, Invitrogen, Italy) was 

performed for 30 minutes and nuclei were stained with 4’,6-

diamidino-2-phenylindole (DAPI). Samples were observed under 

an Eclipse E600 microscope (Nikon, Japan) at 100x magnification.  

Porcine parthenotes and embryos at 2-cell, 4-cell, 8-cell, 16-cell 

and blastocyst stage were fixed and stained as previously 

described in small drops and mounted on slides at the end of the 

procedure. Samples were observed under a TCS-NT laser confocal 

microscope (Leica Microsystems, Germany).  

 

3.7.2 Centriole localization with transmission electron 

microscopy (TEM) 

This analysis was performed in collaboration with the group of 

Prof. deEguileor M. of the Department of Biotechnology and 

Molecular Sciences of the Università dell’Insubria, Varese. 

Cells from all different origin were analyzed with transmission 

electron microscopy in order to assess their centriole number. 
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Samples were fixed for 2 hours in 0.1 M cacodylate buffer pH 7.2, 

containing 2% glutaraldehyde. Specimens were then washed in 

the same buffer and post-fixed for 2 hours at +4°C with 1% osmic 

acid in cacodylate buffer. After standard serial ethanol 

dehydration, specimens were embedded in an Epon-Araldite 812 

mixture. Sections were obtained with a Reichert Ultracut S 

ultratome (Leica, Austria). Semi-thin sections were stained by 

conventional methods (crystal violet and basic fuchsin) and 

subsequently observed under a light microscope (Olympus, 

Japan). Thin sections were stained by uranyl acetate and lead 

citrate and observed with a Jeol 1010 EX electron microscope (Jeol, 

Japan). 

 

3.7.3 Mitotic spindle check-point molecule analysis by Real 

Time PCR 

Total RNA was extracted from bi-parental and parthenogenetic 

human, porcine and ovine cell lines. We used cDNA of three bi-

parental embryonic stem cell lines, HES 7, HES I-3 and HES I-6 

thanks to a collaboration with the group of Prof. Benvenisty N. of 

The Alexander Silberman Institute of Life Sciences of The Hebrew 

University of Jerusalem. RNA was extracted with the 

TaqMan®Gene Expression Cells to Ct kit (Applied Biosystem, 

USA). Expression of target genes was evaluated using an ABI- 
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Prism 7000 Sequence Detecting System (Applied Biosystem, USA). 

Pre-designed gene-specific primer and probe sets from 

TaqMan®Gene Expression Assays (Applied Biosystem, USA) 

were used for the following transcripts: Aurora kinase A 

(AURKA; RP5-1167H4.6; AIK; ARK1; AURA; AURORA2; BTAK; 

MGC34538; PPP1R47; STK15; STK6; STK7); Aurora kinase B 

(AURKB; AIK2; AIM1; ARK2; AurB; IPL1; STK5; AIM-1; STK12; 

aurkb-sv1; aurkb-sv2); Autophagy related 5 homolog (ATG5; ASP; 

APG5; APG5L; hAPG5; APG5-LIKE); Budding uninhibited by 

benzimidazoles 1 homolog (BUB1; BUB1A; BUB1L; hBUB1); 

Cyclin-dependent kinase inhibitor 1A (CDKN1A; P21; CIP1; SDI1; 

WAF1; CAP20; CDKN1; MDA-6; p21CIP1; CDKN1A); 

Centromere protein E (CENPE; CENP-E; KIF10; PPP1R61); Cyclin 

F (CCNF; FBX1; FBXO1); E1A binding protein p300 (EP300; p300; 

KAT3B); E2F transcription factor 1(E2F1; RBP3; E2F-1; RBAP1; 

RBBP3); Kelch-like 3 (KLHL3; FLJ40871; KIAA1129; MGC44594); 

Mechanistic target of rapamycin (serine/threonine kinase) (MTOR; 

FRAP; FRAP1; FRAP2; RAFT1; RAPT1; FLJ44809); Microtubule-

associated protein 1 light chain 3 alpha (MAP1LC3A; LC3; LC3A; 

MAP1ALC3; MAP1BLC3); Mitotic arrest deficient 1 (MAD1; 

MAD1L1; PIG9; TP53I9; TXBP181); Mitotic arrest deficient 2 

(MAD2; HSMAD2; MAD2L1); MYC associated factor X (MAX; 

MGC10775; MGC11225; MGC18164; MGC34679; MGC36767; 

bHLHd4; bHLHd5; bHLHd6; bHLHd7; bHLHd8, orf1); Polo-like 
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kinase 2 (PLK2; SNK); Sirtuin (silent mating type information 

regulation 2 homolog) 1 (SIRT1; SIR2L1); Translin (TSN; RCHF1; 

TBRBP; TRSLN; BCLF-1; REHF-1); TTK protein kinase (TTK; RP3-

357D13.2; CT96; ESK; FLJ38280; MPS1; MPS1L1; PYT); Tumor 

protein p53 (TP53; p53; LFS1; TRP53; FLJ92943) and v-mos 

Moloney murine sarcoma viral oncogene homolog (MOS; MSV; 

MGC119962; MGC119963) (Table 10).  

When not available, gene-specific primer and probe sets were 

custom designed. Gene expression level was reported as ΔCt 

value. For each individual gene the number of amplification 

cycles for the fluorescent reporter signal to reach a common 

threshold value (Ct) was estimated and then normalized by 

subtracting the Ct value obtained for the same sample for a 

positive control transcript (Δ-actin), to give ΔCt value. 
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Human Genes Catalog number 

Aurora kinase A (AURKA; RP5-1167H4.6; AIK; ARK1; AURA; 

AURORA2; BTAK; MGC34538; PPP1R47; STK15; STK6; STK7) 
Hs01582072_m1 

Aurora kinase B (AURKB; AIK2; AIM1; ARK2; AurB; IPL1; STK5; 

AIM-1; STK12; aurkb-sv1; aurkb-sv2) 
Hs00945858_g1 

Autophagy related 5 homolog (ATG5; ASP; APG5; APG5L; hAPG5; 

APG5-LIKE) 
Hs00355494_m1 

Budding uninhibited by benzimidazoles 1 homolog (BUB1; BUB1A; 

BUB1L; hBUB1) 
Hs00177821_m1 

Centromere protein E (CENPE; CENP-E; KIF10; PPP1R61) Hs01068241_m1 

Cyclin-dependent kinase inhibitor 1A (CDKN1A; P21; CIP1; SDI1; 

WAF1; CAP20; CDKN1; MDA-6; p21CIP1; CDKN1A) 
Hs99999142_m1 

Cyclin F (CCNF; FBX1; FBXO1) Hs00171049_m1 

E1A binding protein p300 (EP300; p300; KAT3B) Hs00914221_m1 

E2F transcription factor 1(E2F1; RBP3; E2F-1; RBAP1; RBBP3) Hs01566609_g1 

Kelch-like 3 (KLHL3; FLJ40871; KIAA1129; MGC44594) Hs00213589_m1 

Mechanistic target of rapamycin (serine/threonine kinase) (MTOR; FRAP; 

FRAP1; FRAP2; RAFT1; RAPT1; FLJ44809) 
Hs01042405_m1 

Microtubule-associated protein 1 light chain 3 alpha (MAP1LC3A; LC3; 

LC3A; MAP1ALC3; MAP1BLC3) 
Hs00261291_m1 

Mitotic arrest deficient 1 (MAD1; MAD1L1; PIG9; TP53I9; TXBP181) Hs00269119_m1 

Mitotic arrest deficient 2 (MAD2; HSMAD2; MAD2L1) Hs01554515_g1 

MYC associated factor X (MAX; MGC10775; MGC11225; MGC18164; 

MGC34679; MGC36767; bHLHd4; bHLHd5; bHLHd6; bHLHd7; 

bHLHd8, orf1) 

Hs00811068_m1 

Polo-like kinase 2 (PLK2; SNK) Hs01573408_g1 

SIN3 homolog A, transcription regulator (SIN3; DKFZp434K2235; 

FLJ90319; KIAA0700) 
Hs00411592_m1 

Sirtuin (silent mating type information regulation 2 homolog) 1(SIRT1; 

SIR2L1) 
Hs01009003_m1 

Translin (TSN; RCHF1; TBRBP; TRSLN; BCLF-1; REHF-1) Hs00935849_m1 

TTK protein kinase (TTK; RP3-357D13.2; CT96; ESK; FLJ38280; MPS1; 

MPS1L1; PYT) 
Hs01009887_m1 

Tumor protein p53 (TP53; p53; LFS1; TRP53; FLJ92943) Hs99999147_m1 

v-mos Moloney murine sarcoma viral oncogene homolog (MOS; MSV; 

MGC119962; MGC119963) 
Hs01114731_s1 

https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Hs00945858_g1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=AURKB&kwdropdown=ge&adv_kw_filter1=ALL&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&uploadType=ID+List&adv_boolean3=AND&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&msgType=ABGEKeywordResults
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Hs00355494_m1&Fs=y&SearchRequest.Common.PageNumber=1&assayType=ge&chkBatchQueryText=false&srchType=keyword&searchValue=ATG5&searchBy=all&msgType=ABGEKeywordResults
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Hs99999142_m1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=CDKN1A&kwdropdown=ge&adv_kw_filter1=ALL&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&uploadType=ID+List&adv_boolean3=AND&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&msgType=ABGEKeywordResults
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Hs00171049_m1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=CCNF&kwdropdown=ge&adv_kw_filter1=ALL&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&uploadType=ID+List&adv_boolean3=AND&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&msgType=ABGEKeywordResults
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Hs00914221_m1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&SearchRequest.Common.SortSpec=score+desc&searchValue=null&searchBy=null&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=EP300&kwdropdown=ge&adv_kw_filter1=ALL&inventoried=*&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&adv_boolean3=AND&displayAdvSearchResults=null&SearchRequest.Common.ResultsPerPage=50&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&isSL=null&msgType=ABGEKeywordResults
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Hs01566609_g1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=E2F1&kwdropdown=ge&adv_kw_filter1=ALL&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&uploadType=ID+List&adv_boolean3=AND&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&msgType=ABGEKeywordResults
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Hs00213589_m1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=KLHL3&kwdropdown=ge&adv_kw_filter1=ALL&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&uploadType=ID+List&adv_boolean3=AND&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&msgType=ABGEKeywordResults
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Hs01042405_m1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=mtor&kwdropdown=ge&adv_kw_filter1=ALL&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&uploadType=ID+List&adv_boolean3=AND&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&msgType=ABGEKeywordResults
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Hs00261291_m1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=LC3&kwdropdown=ge&adv_kw_filter1=ALL&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&uploadType=ID+List&adv_boolean3=AND&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&msgType=ABGEKeywordResults
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Hs01554515_g1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=mad2&kwdropdown=ge&adv_kw_filter1=ALL&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&uploadType=ID+List&adv_boolean3=AND&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&msgType=ABGEKeywordResults
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Hs01573408_g1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=PLK2&kwdropdown=ge&adv_kw_filter1=ALL&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&uploadType=ID+List&adv_boolean3=AND&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&msgType=ABGEKeywordResults
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Hs01009003_m1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=SIRT1&kwdropdown=ge&adv_kw_filter1=ALL&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&uploadType=ID+List&adv_boolean3=AND&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&msgType=ABGEKeywordResults
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Hs00935849_m1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=TSN&kwdropdown=ge&adv_kw_filter1=ALL&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&uploadType=ID+List&adv_boolean3=AND&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&msgType=ABGEKeywordResults
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Hs99999147_m1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=TP53&kwdropdown=ge&adv_kw_filter1=ALL&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&uploadType=ID+List&adv_boolean3=AND&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&msgType=ABGEKeywordResults
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Hs01114731_s1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=mos&kwdropdown=ge&adv_kw_filter1=ALL&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&uploadType=ID+List&adv_boolean3=AND&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&msgType=ABGEKeywordResults


93 

 

Porcine Genes Catalog number 

Cyclin-dependent kinase inhibitor 1A (CDKN1A; P21) Custom  made 

Polo-like kinase 2 (PLK2) Ss03375595_u1 

Tumor protein p53 (TP53; P53) Custom  made 

Ovine Genes Catalog number 

Cyclin-dependent kinase inhibitor 1A (CDKN1A; P21) Bt03262188_m1 

Polo-like kinase 2 (PLK2) Custom  made 

Tumor protein p53 (TP53; P53) Bt03223221_g1 

 

Table 10. List of all the genes analyzed and probe catalogue 

numbers (TaqMan®Gene Expression Assays, Applied Biosystem, 

USA). 

 

 

3.8 Karyotype assesment  

Chrosomome number was assessed in human, porcine and sheep 

parthenogenetic and bi-parental cells. Mitotically active cells in 

log phase were incubated in 10µg/ml colcemid (Gibco, Italy) for 

40-60 minutes. Cells were dislodged with 0.25% trypsin and 

centrifuged at 200g for 8 minutes. The cell pellet was gently 

resuspended in 0.075 M KCl solution and incubated for 20 

minutes at 37°C followed by fixation with methanol/glacial acetic 

acid (3:1) solution. Fixed cells were dropped on wet slides and air 

dried. Giemsa staining was carried out as indicated by 

manufacturer (Cariomax Giemsa, Gibco, Italy). Metaphases were 

fully karyotyped under a Leica HC microscope. Images were then 

https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Ss03375595_u1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&SearchRequest.Common.SortSpec=score+desc&searchValue=null&searchBy=null&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=PLK2&kwdropdown=ge&adv_kw_filter1=ALL&inventoried=*&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&adv_boolean3=AND&displayAdvSearchResults=null&SearchRequest.Common.ResultsPerPage=100&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&isSL=null&msgType=ABGEKeywordResults
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Bt03262188_m1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&SearchRequest.Common.SortSpec=score+desc&searchValue=null&searchBy=null&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=CDKN1A&kwdropdown=ge&adv_kw_filter1=ALL&inventoried=*&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&adv_boolean3=AND&displayAdvSearchResults=null&SearchRequest.Common.ResultsPerPage=100&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&isSL=null&msgType=ABGEKeywordResults
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Bt03223221_g1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&SearchRequest.Common.SortSpec=score+desc&searchValue=null&searchBy=null&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=TP53&kwdropdown=ge&adv_kw_filter1=ALL&inventoried=*&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&adv_boolean3=AND&displayAdvSearchResults=null&SearchRequest.Common.ResultsPerPage=100&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&isSL=null&msgType=ABGEKeywordResults
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captured with digital camera Leica DC250 using a Leica CW4000 

Karyo software. 

 

3.9 TUNEL assay 

Apoptotic index were tested in parthenogenetic and bi-parental 

human, porcine and sheep cell lines. Cells were plated directly on 

CultureWell Chambered Coverglass 16-well dishes (Molecular 

Probes, Invitrogen, Italy) and cultured for 24 hours. They were 

then fixed in 4% formaldehyde in PBS for 25 minutes at 4°C, 

washed twice in PBS and permeabilized with 0.25% Triton X-100 

in PBS for 5 minutes. Samples were incubated in 100 µl of 

Equilibration Buffer (Roche, Italy) for 10 minutes at room 

temperature and then 50 µl of TdT Reaction Mix (Roche, Italy) 

were added for an incubation of 60 minutes at 37°C. Cells were 

washed in SSC (Roche, Italy) for 15 minutes and their nuclei were 

counterstained with DAPI. At the end of the assay, slides were 

washed, mounted with Vectashield® Mounting Medium (Vector 

Laboratories, Italy) and examined under an Eclipse E600 

microscope (Nikon, Japan). 
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3.10 Autophagic activity detection 

3.10.1 Lysotracker Red staining 

To determ lysosome formation parthenogenetic and bi-parental 

embryonic stem cells were stained with Lysotracker Red, a red-

fluorescent dye for labeling and tracking acidic organelles. It is 

well known that lysosomes are cellular organelles that contain 

acid hydrolase enzymes (4.5 pH).  

In these experiments live cells were incubated with a 1 µM 

solution of Lysotracker Red DND-99 (Molecular Probes, 

Invitrogen, Italy) in complete medium for 30 minutes at 37°C. 

After extensive wash in PBS and distilled water, cells were 

mounted in Citifluor (Citifluor, UK), covered with a coverslip, and 

examined with an Olympus BH2 microscope. Negative control 

was performed by omitting Lysotracker in the medium.  

 

3.10.2 LC3 immunostaining 

Autophagic activity was evaluated using a specific 

autophagosome marker LC3. 

Parthenogenetic and bi-parental embryonic stem cells were fixed 

in 4% paraformaldehyde for 15 minutes at room temperature and 

permeabilized with 0.1% Triton X-100 in PBS for 5 minutes. 

Incubation with anti-LC3 antibody (Novus Biologicals, USA) 

http://en.wikipedia.org/wiki/Organelle
http://en.wikipedia.org/wiki/Hydrolase
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diluted 1:200 in 2% BSA was performed for 1 hour in a dark moist 

chamber. After incubation with the primary antibody, cells were 

washed and incubated with an appropriate Cy3-conjugated 

antibody (dilution 1:100; Jackson ImmunoResearch, UK) for one 

hour. Samples were mounted and observed with an Olympus 

BH2 microscope (Olympus, Italy). Negative control was 

performed by omitting primary antibody. 

 

3.10.3 TEM analysis 

The presence of autophagosome was also assessed though TEM in 

collaboration with the group of Prof. deEguileor M. of the 

Department of Biotechnology and Molecular Sciences of the 

Università dell’Insubria, Varese. 

Cells were processed and observed as described in 3.7.2 

paragraph. 

 

3.11 Inter-cellular bridge detection 

3.11.1 TEM analysis 

The occurency of inter-cellular bridges was assessed though TEM 

in collaboration with the group of Prof. deEguileor M. of the 

Department of Biotechnology and Molecular Sciences of the 

Università dell’Insubria, Varese. 
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Cells were processed and observed as described in 3.7.2 

paragraph. 

 

3.11.2 Scanning electron microscopy (SEM) 

The experiments here described were performed in collaboration 

with the group of Prof. deEguileor M. of the Department of 

Biotechnology and Molecular Sciences of the Università 

dell’Insubria, Varese. 

Inter-cellular bridge formation was investigated in human, 

porcine and sheep cell lines using scanning electron microscopy 

(SEM). Cells were fixed and dehydrated as previously described 

for TEM (3.7.2 paragraph). Samples were then treated with 

hexamethildisilazane and mounted on polylysinated slides, air 

dried and subsequently covered with a 9 nm gold film by flash 

evaporation of carbon in an Emitech K 250 sputter coater 

(Emitech, USA). Specimens were examined with a SEM-FEG 

Philips XL-30 microscope (Philips,  Netherlands). 

 

3.11.3 Dextran single cell injection  

Functional trafficking activity through inter-cellular canals were 

investigated in porcine and ovine bi-parental and parthenogenetic 

cells. Solution of 50mg/ml of Rhodamine-conjugated 10-kDa 

dextran (Molecular Probes, Invitrogen, Italy) was introduced into 
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the cytoplasm of a single cell. Eppendorf FemtoJet® Microinjector 

(Eppendorf, Italy) was used in order to inject a small quantity of 

dextran in cell cytoplasm. Movement of the molecule from the 

injected cell to others was observed with a Nikon Eclipse E600 

microscope (Nikon, Japan). 

 

3.12 Statistical analysis 

Statistical analysis was performed using the unpaired t-test or the 

Mann–Whitney rank sum test, as appropriate, using the Sigma 

Stat statistical package (Systat Software Inc., USA). Data are 

presented as mean percentages (± SEM) of a minimum of three 

independent replicates. In all cases, differences of P≤0.01 were 

considered significant. 
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4. RESULTS 

DERIVATION OF PIG AND SHEEP CELL LINES 

Isolation and characterization of porcine parthenogenetic and bi-

parental embryonic stem cells 

ICMs were isolated from 282 parthenotes and 101 IVF blastocysts 

using immunosurgery technique. They were plated on inactived 

feeder cells and 3 out of 6 and 30 out of 41 outgrowths, derived 

respectively from IVF and parthenogenetic embryos, were able to 

give rise a stable pluripotent cell lines that could be propagated 

extensively in vitro (more than 50 passages) (Table 11).  

 

 IVF 

embryos 

Parthenotes 

Oocytes 1388 1221 

Blastocysts 124 (8.93%) 282 (23.1%) 

Outgrowths 6 (4.84%) 41 (22.16%)* 

ESC lines 3 (2.42%) 30 (16.22%)* 

 

Table 11. Derivation of  porcine ESC lines from IVF embryos 

and parthenotes. Oocyte and blastocyst number used, total 

number (% rate) of outgrowths and cell lines obtained. *p<0.05. 

 

We obtained homogeneous outgrowths, consisting entirely of cells 

which resembled ESCs in their morphology (Figure 23 panel A 

and Figure 24 panel A), both using parthenogenetic and IVF 

ICMs.  
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The outgrowths grew in size and, after 7-8 days of culture, formed 

circular colonies of 3-5 mm in diameter, with distinct margins 

(Figure 23 panel A and Figure 24 panel A). At this stage they were 

passaged onto a fresh feeder layer to establish cell lines or were 

subjected to further characterization. Cells obtained from both 

origin showed many pluripotency aspects common to mouse and 

human ESCs. They expressed many of the known pluripotency 

related transcription factors and surface markers. More in detail 

molecular analysis demonstrated that both IVF and 

parthenogenetic derived cells transcribed for gene like OCT4, 

NANOG, SOX2 and REX1 (Figure 23 panel C and Figure 24 panel 

C). Moreover immunocytochemical studies confirmed the 

presence of Oct4, Nanog and SSEA4 in our porcine cells (Figure 23 

panel B and Figure 24 panel B).  

Three cell lines for each origin were analyzed in the experiments 

described below. 

For more detailed information see Appendix B titled: “Culture 

conditions and signalling networks promoting the establishment 

of cell lines from parthenogenetic and bi-parental pig embryos” 

by Brevini et al. 67. 
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Figure 23. Porcine ESCs derived from parthenotes. 

Parthenogenetic ESCs formed circular colonies with distinct 

margins (panel A). They were positive for several known 

pluripotency-related markers. The figure is representative of all 

passages (more than 50 passages at present). Immuno-

cytochemical analysis with specific antibodies demonstrated 

positivity of parthenogenetic cells for Oct-4, Nanog and SSEA-4. 

Cell nuclei, stained with DAPI, are coloured in blue (panel B). 

Molecular studies confirm the expression of OCT4, NANOG, 

REX1, SOX2 (panel C). Genomic DNA was used as a positive 

control; negative control was represented by differentiated 

parthenogenetic ESCs. 
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Figure 24. Porcine ESCs derived from IVF blastocysts. Bi-

parental ESCs formed circular colonies with distinct margins 

(panel A). They were positive for several known pluripotency-

related markers. The figure is representative of all passages 

(more than 50 passages at present). Immuno-cytochemical 

analysis with specific antibodies demonstrated positivity of 

porcine ESCs for Oct-4, Nanog and SSEA-4. Cell nuclei, stained 

with DAPI, are coloured in blue (panel B). Molecular studies 

confirm the expression of OCT4, NANOG, REX1, SOX2 (panel 

C). Genomic DNA was used as a positive control; negative 

control was represented by differentiated bi-parental ESCs. 

 

 

Isolation of sheep fibroblasts from IVF and parthenognetic fetuses  

In collaboration with the group of Prof. Ledda S. of the 

Department of Veterinary Pathology and Clinic of the Università 

degli Studi di Sassari, 2 IVF embryos and 2 parthenotes were 

transferred to the uteri of each of 4 recipients. Fetuses were 

constantly monitored and the sizes of the conceptuses after 

parthenogenic activation were compared with those of 

conceptuses obtained from normally fertilized oocytes. No 

difference in fetal sac size between parthenogenetic emrbyos and 

controls was detected. On day 21 fetuses were recovered from 

recipient ewes and fibroblasts were isolated as described above 

(paragraph 3.6). 6 cell lines, 3 from parthenogenetic and 3 from bi-

parental fetuses,  were established and analyzed in the following 

experiments. 
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PART 1: ORIGIN OF CHROMOSOME ABNORMALITIES  

Katyotype assessment in parthenogenetic and bi-parental cells 

We looked at the incidence of chromosomal abnormalities in 

parthenogenetic cell lines and compared it with their bi-parental 

counterparts. A total of 192, 172, 237 parthenogenetic and 200, 165, 

172 bi-parental human, pig and sheep cells were analysed 

respectively. The diploid configuration represented the modal 

value in the bi-parental cell lines of all species, whereas hypo-

haploid and hypo-diploid configurations where the most frequent 

in all parthenogenetic cell lines, irrespective of the species and of 

their origin: cell line or primary culture (Figure 28).  
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B

 

 

Figure 25.Representative pictures of human parthenogenetic 

(panel A) and bi-parental (panel B) cell karyotype. 
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Figure 26.Representative pictures of porcine parthenogenetic 

(panel A) and bi-parental (panel B) cell karyotype. 
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Figure 27.Representative pictures of sheep parthenogenetic 

(panel A) and bi-parental (panel B) cell karyotype. 
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Figure 28. Chromosome counting in parthenogenetic and bi-

parental cell lines highlights the higher incidence of 

chromosomal abnormalities in monoparental cells of all 

examined species. Hypodiploid and hypoaploid configurations 

were the most common ones and indicate the occurrence of 

multipolar mitosis. 
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Comparative studies of centrosome organization in 

parthenogenetic and bi-parental cell lines 

A systematic comparison of the incidence of multiple centrosomes 

after IVF or parthenogenetic activation was performed. To this 

purpose we analyzed human and porcine pluripotent cell lines as 

well as sheep foetal fibroblasts. Centriole number was analyzed 

after immune-localization of centrin, a centriole-associated 

calcium-binding protein that plays a fundamental role in 

centrosome duplication. Punctuate centrin localization were 

counted on 343, 237, 267 parthenogenetic and 150, 224, 416 bi-

parental human, pig and sheep cells respectively. A high and 

significantly different incidence of supernumerary pairs of 

centrioles was observed in parthenogenetic cell lines of all species, 

whereas only 20 of 847 bi-parental cells showed an abnormal 

number of centrioles (Figure 30).  
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Figure 29.Representative pictures of cells showing 1, 2 (normal 

centriole number) and 3 centriole pairs (abnormal centriole 

number), localized with centrin-specific antibody. 
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Figure 30. A significant increase of abnormal number of 

centriole pairs (more than 2) is observed in cell lines derived 

from human. pig and sheep parthenotes as established by a 

direct comparison with the respective bi-parental counterparts. 
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Furtheremore, the presence of multipolar asters (Figure 31) 

confirms that extranumerary centrosomes are functional and able 

to form multipolar spindles. 

 

 
 

Figure 31. Multipolar asters in human parthenogenetic 

pluripotent cells confirms that extranumerary centrosomes are 

functional and able to form multipolar spindles. 
 

 

To further confirm these results we also analysed the expression 

levels of PLK2, a molecule required for centriole duplication 244, 

and CCNF, depletion of which cause centrosomal and mitotic 

abnormalities, including multipolar spindles and asymmetric, 

bipolar spindles with lagging chromosomes 252. In our studies we 

detected up regulation of PLK2 in human (15,9-fold) pig (15,7-

fold) and sheep (13,9-fold) parthenogenetic cell lines and, in 
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parallel, we could observe a down-regulation (6,5 folds) of CCNF 

expression in human mono-parental cells (Figure 32). 
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Figure 32. A significant increase of PLK2 expression in human, 

pig and sheep parthenogenetic cell lines that confirms at the 

molecular level the centrosome amplification detected by 

morphological analysis. In parallel, down-regulation of CCNF 

further support the presence of centrosomal and mitotic 

abnormalities. *p<0.05. 
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Quantitative PCR experiments also demonstrated aberrant levels 

of molecules related to spindle formation in human 

parthenogenetic cells, when compared to those of three bi-

parental embryonic stem cell lines. In particular higher levels of 

MAD1, MAX and SIN3 were detected, pointing to the possibility 

of a deregulation in the MAD1 dependent pathway. Furthermore, 

negligible transcription levels of CENPE, TTK and Aurora A 

kinase, indicated abnormalities at different spindle check points in 

parthenogenetic cell lines (Figure 33). 

 

 
 

Figure 33. Expression level of molecules related to spindle 

formation and chromosome segregation in human 

parthenogenetic and bi-parental cell lines. Bars represent the 

average ΔCt of HP cells (solid bars) and bi-parental cells 

(striped bars) related to the genes examined. *p<0.05. 

* * 
* 

* 

* 

* 

* 
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Centriole number assessment in porcine IVF and parthenogenetic 

embryos 

In order to determine when centriole number alterations take 

place, we analyzed the number of centrioles present in IVF and 

parthenogenetic pig embryos. The evaluation was carried out on 

48 IVF embryos and 56 parthenotes at different developmental 

stages (2-, 4-, 8-, 16-cell and blastocyst) for a total of 364 and 376 

blastomers respectively. An abnormal centriole number was 

observed in 59.6% (224/376) of parthenote blastomers, while only 

2.7% (10/364) of the IVF blastomers examined, showed 

supernumerary centrioles (Table 12). In particular centrioles were 

detectable in parthenotes before  4-cell stage and a high incidence 

of abnormalities was immediately observed, while no centriole 

anomalies were visible in IVF embryos. In the latter case centrioles 

appeared at morula/blastocysts stage, as previous demonstrated 

for porcine species 178.  
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 IVF Parthenotes 

Embryos 

analyzed 
48 56 

Blastomer 

analyzed 
364 376 

Blastomers 

with >2 

centrioles 

10/364  

(2.7%) 

224/376  

(59.6%)* 

 

Table 12. Comparative analysis between IVF embryos and 

parthenotes. Centriole number alteration is significantly higher 

in parthenotes. *p<0.05. 

 

 

 

Sperm tail microinjection in porcine matured oocytes 

To confirm the hypothesis about the link between the absence of 

paternal centrioles contribution in parthenogenetic cells and the 

chromosome/centriole number alterations described above, we 

carried out specific experiment in collaboration with the group of 

Prof. Galli C. (Avantea, Laboratory of Reproductive Technologies, 

Cremona), injecting sperm tail in porcine mature oocytes. 

In this species, in fact, as well as in human and sheep, paternal 

centrioles were localized in the proximal end of the sperm tail 178. 

We separated head from tail spermatozoa and only tail, 

containing the proximal centrioles, was injected into MII oocytes. 
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After this, activation was performed in order to stimulate oocytes 

and to trigger parthenogenetic development. 

In the first set of experiment we compared 16-cells and morulas 

obtained from ICSI embryos, parthenotes and parthenotes in 

which sperm tail were injected. 

The results obtained showed that only partenothes display 

balstomers with more than 2 centrioles, while no centrioles were 

detected in ICSI embryos or parthenotes in which sperm tail was 

injected (Table 13). These results are in agreement with a previous 

study revealing that in the pig sperm centrioles are lost in zygote 

after in vitro fertilization and they are not detectable until the late 

blastocysts stage 178. Furthermore these data demonstrated that in 

parthenotes centriole alterations take place at the very early stage 

of parthenote development. 
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 ICSI Parthenogesis 
Tail injection 

plus activation 

Oocytes 56 30 53 

48h 43 25 42 

96h 19 25 17 

Blastomer 

analyzed 
225 376 79 

Blastomers 

with >2 

centrioles 

no 

centrioles 
224 (59.57%)* 

no 

centrioles 

 

Table 13. Centriole number in blastomers of 96h ICSI embryos, 

parthenotes without or with sperm tail. Centriole number 

alteration (more than 2 pair of centrioles) was observed only in 

parthenogenetic blastomers, while no centrioles were detected 

in ICSI embryos or parthenotes with injected sperm tail. *p<0.05. 
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In the second set of experiment we compared blastocysts obtained 

from ICSI embryos and parthenotes with injected sperm tail. The 

number of blastomers with an altered number of centrioles were 

not statistically different between the two groups (Table 14). This 

results validated our hypothesis demonstrating that the injection 

of centriole is sufficient to regulate and control de novo centriole 

formation. 

 

 

 ICSI 
Tail injection 

plus activation 

Oocytes 34 30 

48h 24 25 

144h 4 10 

Blastomer 

analyzed 
139 79 

Blastomers 

with >2 

centrioles 

10 (7.2%) 5 (6.3%) 

 

Table 14. Centriole number in blastomers of 144h ICSI embryos 

and parthenotes with sperm tail. Centriole number alteration is 

not statistical different between ICSI embryos and parthenotes 

in which sperm tail was injected. 
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These results indicate that chromosomal instability in 

parthenogenetic cells is caused by the presence of functionally 

active extranumerary centrioles. These centriole abnormalities are 

present in all cell types analyzed (ESCs and foetal fibroblasts), 

independently from the species (human, pig and sheep). These 

alterations are already present in embryos since the first mitotic 

divisions  and, consequently, before the derivation of cell lines, 

demonstrating that are not caused by the isolation protocol or 

culture conditions used for ESCs. Furthermore, data obtained 

after sperm tail injection demonstrated that all these alterations 

are cause by the absence of male proximal centrioles contribution.  
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PART 2: ADAPTIVE MECHANISMS ACTIVE IN 

PARTHENOGENETIC CELLS 

The high rate of aneuploidy together with multipolar centrosome 

should lead to the inhibition of cell proliferation and to a rapid 

cell death through the activation of the mitotic checkpoint 273. 

However we observed that both human and porcine 

parthenogenetic cells undergo unlimited cell divisions and 

maintain the ability to differentiate in vitro  into normal cell types 

if cultured in the appropriate conditions, as described above257,274. 

Furthermore, the capacity of cell proliferation and differentiation 

was certainly maintained also in sheep parthenotes developed in 

utero since they showed a normal morphology (Figure 34) with a 

beating heart as previously described by Loi et al. 159. 

 

 
 

Figure 34. Sheep parthenote after 21 days of gestation in utero 

shows normal morphological features and a beating heart. 
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Apoptotic index and expression levels of apoptosis-related genes 

In agreement with our observation TUNEL assay showed a low 

apoptotic index of parthenogenetic cells, that was not significantly 

different from their bi-parental counterpart (Figure 35). 
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Figure 35.Quantification of apoptotic index in human, pig and 

sheep bi-parental and parthenogenetic cell lines. TUNEL-

positive cells were scored randomly choosing five microscopic 

fields to reach a total of at least 900 cells and averaged. Error 

bars represent SD. The high rate of aneuploidy and multipolar 

centrosome does not increase TUNEL-positive cell number and 

the apoptotic index in parthenogenetic is not significantly 

different from that of corrisponding bi-parental counterpart. 
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To confirm this observation we also examined by Real Time-PCR 

the expression levels of TP53 and TP21, the two genes mainly 

involved in apoptosis mechanism activation. Results obtained 

clearly showed that both transcripts are significantly down 

regulated in parthenogenetic lines of all species, suggesting this as 

a possible way used by these kind of cells to continue their 

proliferation and to prevent apoptotic process activation even in 

the presence of high levels of aneuploidy (Figure 36). 
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Figure 36. Aneuploidy-related stress limits cell proliferation 

through a p53- and p21- dependent mechanism. On the contrary, 

we observed a down-regulation of p53/p21 pathway in all 

parthenogenetic cell lines. *p<0.05. 
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Characterization of autophagic activity 

Aneuploidy in yeast and mammalian cells leads to a stress 

response caused by the unbalance in cellular protein composition 

275. For this reasons we also investigated for the presence of 

autophagic degradation in parthenogenetic cell lines. This 

mechanism may help them to eliminate extranumerary centrioles 

and probably may represent an alternative way to re-establish a 

correct centrosome complement and to preserve the diploid 

status. 

This phenomena, in fact, is known as an evolutionary conserved 

and strictly regulated lysosomal pathway utilized in cells in order 

to eliminate aberrant and dysfunctional organelles 276. Results 

obtained using TEM and immunostaining analysis showed that 

parthenogenetic cells contained fagosome structures and 

exhibited a strong punctuate signal following the incubation with 

a lysosome-specific probe (LysoTracker Red DND-99) as well as  

with an anti-LC3 antibody, both of which indicate the presence of 

high amounts of lysosomes and autophagosomes in the cytoplasm 

(Figure 37).  
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Figure 37. Autophagic activity in parthenogenetic cells. The 

punctuate positivity in cells after Lysotracker Red staining 

(panel A) and immunocytochemical localization of LC3 (panel 

B) indicate the presence of numerous lysosomes and 

autophagosomes. Panels A’,B’: negative controls. Bar: 10 m. 

 

 

Consistent with morphological observations, LC3 expression was 

nearly 8 times higher in  mono-parental cell lines than in bi-

parental (Figure 38). We also observed a significant increase in the 

expression levels of other specific genes that correlate with the 

activation of the autophagic program, such as Autophagy related 

5 homolog (ATG5), Sirtuin1 (SIRT1), E1A binding protein p300  

(EP300) and E2F transcription factor (E2F1) (Figure 38). At the 

same time the analysis of Mechanistic target of rapamycin 
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(MTOR), a well characterized autophagy inhibitor 277, showed 

specific mRNA levels 10 times lower in parthenogenetic than in 

bi-parental cells (Figure 38).  

 

0

500

1000

1500

2000

2500

3000

3500

4000

LC3 ATG5 SIRT1 EP300 E2F1 MTOR

G
e

n
e

 e
xp

re
ss

io
n

le
ve

l(
D

e
lt

a 
C

tv
al

u
e

) 
o

b
ta

in
e

d
af

te
rn

o
rm

al
iz

at
io

n
ve

rs
u

s 
b

e
ta

 
ac

ti
n

Biparental cell lines Parthenogenetic cell lines

*

*

*

*

*

*

 
 

Figure 38. The significant difference of autophagy levels 

between human parthenogenetic and bi-parental cell lines can 

be appreciated through the several fold difference in the 

expression levels of autophagy-related genes. *p<0.05. 
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The presence of inter-cellular bridges 

The high rate of supernumerary centrosomes and of severe 

aneuploidy of parthenogenetic cells, is inconsistent with the in 

continuous proliferation and ordinate in vitro differentiation as yet 

described. We hypothesized that this could be also possible 

through a wide communication between cells that provides 

mutual exchange of missing cell products and, at the same time, 

alleviates the unbalance in cellular protein composition that 

would hamper normal cell functions. Ultrastructural analysis 

clearly showed the existence of intercellular bridges variable in 

size that are compatible with the notion of reciprocal cell support, 

similarly to what occurs among germ cells (Figure 39). In addition 

in parthenogenetic cell lines and sheep post-implantation 

parthenote cells displayed the presence of communications 

besides the wide cytoplasmic characterized by actin bundles, 

unbalanced chromatid separation and chromosomal bridges 

(Figure 39). 
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Figure 39. Electron microscopy of human and sheep 

parthenogenetic cells demonstrate intercellular bridges, 

allowing a cytoplasmic continuity between the cells:  SEM 

(encircled areas), TEM (white arrows). In utero sheep parthenote 

(21 days of gestation) (panel E) and semithin sagittal section 

counterpart (panel F). Light microscopy of sheep post-

implantation parthenote cells shows cytoplasmic bridges 

(panels G-H white arrows) and unbalanced chromatid 

separation (panels G-Jarrowheads). Tripolar metaphase cell as a 

result of the presence of multiple centrioles (panel M, 

arrowhead). Anaphase cell with one intact chromatin bridge 

(panel J, arrowhead). TEM ultrastructure of sheep parthenote 

cells show the presence of intercellular bridges (panels I and N-

white arrows), wide open cytoplasmic communication, and in 

detail (panels K and N) actin patches (black arrows) at the level 

of the intercellular canal. Bars (panel A)10 μm; (panel B) 6 μm; 

(panel C) 1.25 μm; (panel D) 1 μm; (panel I) 1 μm; (panel L) 1.5 

μm; (panel K) 800nm; (panel N) 800nm. 
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Consistent with the morphological observations, human 

parthenogenetic cells showed up regulation of both AURKB (9-

fold) and KLHL3 (5-fold), compared with their bi-parental 

counterpart. These two molecules are known to actively stabilize 

intercellular canals 278. Furthemore, 5-fold increase of TSN 

expression level was detected in mono-parental cells (Figure 40). 

This up regulation is compatible with an active mRNA 

distribution between connected cells (Figure 40). 
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Figure 40. Up regulation of TNS (a well known RNA-binding 

protein that transports mRNA molecules between cells, through 

intercellular canals), of AURKB and of KLHL3 (recently 

described as an essential stabilizer of intercellular bridges) 

validate the morphological features. *p<0.05. 



132 

 

Functional intercellular trafficking activity through intercellular 

canals identified with ultra-structural analysis was demonstrated 

by an extensive migration among cells of fluroscent 10-kDa 

dextran that was injected into the cytoplasm of a single cell. This 

molecule in fact moved from the cell injected to others (Figure 41) 

suggesting their use for transfer of mRNAs, proteins and cell 

products among cells. 
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Figure 41. Cells injected with 10-kDa dextran. Functional 

activity of intercellular bridges in parthenogenetic cells (panel 

A) is demonstrated by migration of dextran molecules from the 

injected cell (panel B) to adjacent cells (panels C and D). 
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All the results obtained in this second part of thesis demonstrate 

that, despite ploidy alteration, parthenogenetic cell lines continue 

to proliferate without active apoptosis mechanism. This is possible 

thanks to significant down regulation of p53 and p21 genes 

observed in our uni-parental cells when compared with their bi-

parental counterpart.  

Furthermore parthenogenetic cells show a dramatic increase of 

autophagic activity which helps them to eliminate extranumerary 

centrioles and probably may represent an alternative way to re-

establish a correct centrosome complement and to preserve the 

diploid status. 

Since this mechanism was insufficient to prevent an incidence of 

chromosome number alterations, but cell proliferation and 

differentiation was not compromised, the extensive network of 

intercellular bridges identified among parthenogenetic cells may 

have a crucial role. 
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5. DISCUSSION 

The development of parthenotes to the blastocyst stage was 

reported for several species 109,153,158-162,279, but limited data related 

to the potential plasticity of the cell lines derived from them and 

their biological characteristics, with specific regards to the 

potential abnormalities associated with their origin, are available.  

Since our previous studies demonstrated the presence of 

abnormal karyotype in human parthenogenetic cell lines 257, in the 

experiments reported in this thesis we looked at the incidence of 

chromosomal abnormalities in human, porcine and sheep 

parthenogenetic cell lines and compared it with their bi-parental 

counterparts.  

The results described in this thesis showed that hypo-haploid and 

hypo-diploid configurations were the most frequent in all 

parthenogenetic cell lines, irrespective of the species and of their 

origin: pluripotent cell line or primary culture (Figure 28), while 

the diploid configuration represented the modal value in the bi-

parental cell lines of all species. In particular, we were able to 

identified not only chromosome number alteration in human 

parthenogenetic ESC lines, where the donor age is relative old, but 

also in parthenogenetic porcine ESCs. In the latter case oocytes 

were retrieved from young animals just after puberty (the age of 

high reproductive fitness in this species), suggesting that 

chromosome alterations are independent from the donor age. 
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Consistent with our results, a similar incidence of aneuploidy was 

recently described also in cell lines obtained from bovine 

parthenotes 280, which were derived from oocytes isolated from 

animals in their full reproductive fitness.   

Moreover we detected hypo-haploid and hypo-diploid 

configurations in primary cultures of fibroblasts obtained from 

parthenotes transferred into the uterus of synchronized recipients 

and allowed to develop in vivo for 21 days, the maximum length 

of time of sheep parthenogenetic development 159. These results 

give us the possibility to rule out the experimental protocols used 

in our laboratory for establishing and maintaining of embryonic 

stem cell lines as possible causes of aneuploidy. 

In agreement with these data, the presence of frequent 

chromosomal abnormalities in pre-implantation mammalian 

parthenotes has been previously described both in human 281-283 

and animal species 284-286. 

Furthermore the results obtained in the experiment carried out in 

this thesis demonstrated that parthenogenetic cell lines of all 

species showed a high and significantly different incidence of 

supernumerary pairs of centrioles (Figure 30). Furthermore the 

presence of multipolar asters in parthenogenetic cell lines (Figure 

31) confirms that extranumerary centrosomes are functional and 

able to form multipolar spindles similar to that of tumour cell 

lines 287. 
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We also observed a significant high rate of parthenote blastomers 

(59,57%) showing an abnormal centriole number. In particular our 

results showed that centriole formation were evident in 

parthenotes from the 4-cell stage and a high incidence of 

abnormalities was immediately visible. This is the first description 

of centriole dynamics during parthenote pre-implantation 

development in a non-rodent species and indicates that centriole 

abnormalities are not linked to a prolonged culture, but are 

already present at the blastocyst stage, when embryonic cell line 

derivation takes place. 

Similar abnormalities have been previously described in human 

parthenogenetic embryos, that were obtained from oocytes 

spontaneously activated and/or induced with puromycin 282,283. 

Furthermore they do not seem to be confined to human 

parthenotes and appear to be common to other mammalian 

species. Indeed a high incidence of abnormal spindle has been 

reported in parthenotes derived from bovine activated oocytes, 

with abnormalities occurring as early as completion of the first 

cell cycle 166.  

All these observations are in agreement with the recent 

observations that centriole de novo assembly is normally turned off 

when one centriole, acting as template, is present 288. The absence 

of sperm centriole in parthenotes may therefore lead to the lack of 

a negative regulatory mechanism that suppress de novo centriole 
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assembly and may explain the presence of multicentriolar 

structures as the ones detect in these cell lines. 

The relationship between parthenogenesis and centrosome, in 

fact, is complex. It is important to point out that in mammals, with 

the notable exception of mice 206, centrosome of the male and 

female gametes undergo a reciprocal reduction. In fact, centrioles 

degenerate and are lost during oogenesis and while oogonia and 

growing oocytes display normal centrioles until pachytene stage, 

they are absent in the mature oocytes 199. At the time of 

fertilization, the distal centriole is carried into the ooplasm by the 

sperm, where it mixes with a stockpile of centrosomal proteins 

and generates a functional zygotic centrosome 179,204,208,209. This 

process has been described in rhesus monkeys 200, rabbits 201, cows 

99, sea urchins 202, Xenopus 203 and several other species 204. 

Indeed in mammalian parthenotes, due to the absence of 

centrioles, the oocyte centrosomal material does not aggregate 

into unified foci and is unable to form astral microtubules and a 

correctly oriented  spindle, unless rescued by a spermatozoon. 

However, in many insects where parthenogenetic development is 

an obligatory or facultative form of reproduction, oocyte ability to 

generate a functional centrosome, in the absence of the sperm 

contribution, has evolved 221.  

The increased number of centrioles determined with the 

localization of punctuate centrin, was also confirmed by the 
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alterated expression levels of PLK2 and CCNF in our 

parthenogenetic cell lines. In particular, we detected up regulation 

of PLK2, a molecule required for centriole duplication 244, in 

human (15,9-fold) pig (15,7-fold) and sheep (13,9-fold) derived 

lines and a down-regulation of CCNF (6,5 folds) in human cells 

(Figure 32). These results are consistent with the recent finding 

that siRNA mediated depletion of CCNF in HeLa cells induces 

centrosomal and mitotic abnormalities, including multipolar 

spindles and asymmetric, bipolar spindles with lagging 

chromosomes 252, similar to the alterations we found in 

parthenogenetic cell lines and described in this thesis. Altered 

expression levels of mitotic check point molecules were also found 

in human parthenogenetic cells (Figure 33). In particular, the 

comparison of uni-parental pluripotent cells with their bi-parental 

counterpart (HES 7, HES I-3 and HES I-6) indicated a much higher 

level of expression of MAD1, and the related molecules MAX and 

SIN3 in parthenogenetic cells. MAD1 is a central component of the 

spindle assembly checkpoint and recruitment of kinetochores 248-

250 and its de-regulation has been shown to affect cell cycle 

progression with a decrement of cell proliferation and a 

protracted G1 phase 251. The altered levels of such molecules may 

be related to the lack of paternal contribution in spindle assembly. 

A similar explanation could account for the very low transcription 

of BUB1, CENPE and TTK detected in these cells. These two 
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molecules, in fact, are normally involved in kinetochore-

microtubule binding, correct chromosome congression and 

alignment, as well as segregation during mitosis. In particular, 

BUB1 and CENPE disruption usually causes a reduction of 

tension across the centromere and an increased incidence of 

spindle pole fragmentation, resulting in a mixture of aligned and 

unaligned chromosomes 246.  

Since the lack of a paternally derived centriole, able to recruit the 

egg centrosomal material to form a functional centrosome, was 

the common feature in all the three species examined here, we 

suggest that parthenogenetic activation per se, rather than the 

oocyte donor age or the culture method, is responsible for the 

centrosome alterations.  

This hypothesis was definitively validate by the results obtained 

after sperm tail injection in porcine matured oocytes. 

Immunostaining carried out on parthenogenetic activated 

embryos previously injected with tail containing male proximal 

centrioles, displayed a normal centriole number comparable to 

that of the in vitro fertilized embryos. This confirm that the 

presence of male centriole can restore the negative regulatory 

mechanism that suppress de novo centriole assembly.  

Furthermore, since the presence of multipolar spindle is usually 

linked with ploidy alterations, these results may explain the high 

degree of aneuploidy characterizing parthenogenetic cell lines. 
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Generally a high rate of aneuploidy together with multipolar 

centrosome should lead to the inhibition of cell proliferation and 

to a rapid cell death through the activation of the mitotic 

checkpoint 273. Aneuploidy in yeast and mammalian cells leads to 

a stress response caused by the unbalance in cellular protein 

composition 275. Recent results indicate that aneuploidy-related 

stress limits cell proliferation through a p53-dependent 

mechanism 289. 

On the contrary, we observed that human and pig 

parthenogenetic ESC lines undergo unlimited cell divisions and 

maintain the ability to differentiate into normal cell types if 

cultured in the appropriate conditions 67,257. Furthermore, the 

capacity of cell proliferation and differentiation was certainly 

maintained also in the sheep parthenotes developed in utero since 

they showed a normal development and organogenesis with a 

beating heart 159, in the absence of any overt sign of malignant 

transformation. Consistently with these observations the 

apoptotic index of all parthenogenetic cell lines described in this 

thesis is low and not significantly different from their bi-parental 

counterparts (Figure 35). This is made possible thank to a 

significant down regulation of p53 and p21 genes identified in 

parthenogenetic lines of all species (Figure 36). Indeed these gene 

expression alterations may represent the possible way used by 
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these cells to continue their proliferation even in the presence of 

high levels of aneuploidy and centrosome alterations. 

Similar findings were recently described in a Drosophila 

transgenic strain that contains extra centrosomes in around 60% of 

somatic cells but that is morphologically normal, except for a long 

delay in development compared to the wild type 234. Drosophila 

cells, however, did not show an increased incidence of 

aneuploidy, probably because most of the extra centrosomes were 

able to cluster forming a bipolar spindle by metaphase. This is 

different from the cells examined in the current experiments 

which showed a high and steady rate of aneuploidy. Indeed we 

have been unable to detect the clusterization of supernumerary 

centrioles in our cells. 

By contrast we identified through morphological and molecular 

analysis the presence of autophagic activity, an evolutionary 

conserved and strictly regulated lysosomal pathway for cleansing  

aberrant and dysfunctional organelles 276.  

LC3 positivity, in fact, indicates the presence of high amounts of 

lysosomes and autophagosomes in the cytoplasm of 

parthenogenetic cells (Figure 37). This molecule (also known as 

MAP1LC3) assists autophagosome formation and is present in 

sealed autophagosomes 276. Consistent with the morphological 

results, expression levels of autophagy related genes (ATG5, 

SIRT1, EP300 and E2F) were higher in parthenogenetic cells than 
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in bi-parental ones (Figure 38), while MTOR, a well characterized 

autophagy inhibitor 277, showed specific mRNA levels 10 times 

lower in uni-parental cell lines than in bi-parental. In particular, 

ATG5 has a pivotal role in autophagosome formation, through its 

recruitment together with ATG12, ATG16 and LC3 to the 

phagophore. The expression of this autophagic modulator can be 

up-regulated by E2F1 290 and it can be deacetylated by SIRT1 291: 

both mechanisms result in enhanced autophagy, with potential 

positive effects on cell life span 292. It is interesting to note that 

SIRT1, not only promotes autophagy 293 but also inactivates p53 by 

deacetylation 294 therefore reinforcing the down-regulation of p53 

observed in parthenogenetic cell lines.  

This very intense autophagic activity is probably an alternative 

way to re-establish a correct centrosome complement and to 

preserve the diploid status, providing a way to eliminate the 

extranumerary centrioles and chromosomes. This process is likely 

to be used as an active self-protective strategy in order to 

eliminate highly abnormal organelles, thus contributing to cell 

survival and ensuring the maintenance of a “normal” population 

295. Since we have previously shown that centrosome amplification 

is already taking place at the blastocyst stage, when ICM are 

isolated for cell line derivation, it is interesting to note that 

autophagic degradation has recently been described in early 

embryonic development and it was suggested to be used for 
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removal of obsolete maternal factors 296. We hypothesize that 

parthenogenesis-related anomalies prolong and amplify the 

ongoing autophagic processes and therefore result as a preferred 

pathway for counteracting the deleterious effects of centrosome 

amplification, as opposed to other systems where centrosome 

clustering is commonly observed 297.  

Optical and ultrastructural analysis clearly showed the existence 

of intercellular bridges (Figure 39). Injection of fluroscent 10-kDa 

dextran also confirmed the functional activities of this canals 

(Figure 41). Moreover our results demonstrated that 

parthenogenetic cell lines displayed up regulation of molecules 

essential for the stabilization of the intercellular canals containing 

chromosome filaments (AURKB and KLHL3) 278. These 

connections can be considered as a reminiscent of the midbodies 

converted into stable canals and correlated to chromatin bridges 

278. Similar structures have been described in the form of stable 

intercellular bridges between germ cells 298 and provide a mean 

for transfer of mRNAs, proteins, and cell products 299. In 

particular, mRNAs are transported through intercellular bridges 

by a testis-brain-RNA-binding protein called Translin (TSN) 300. 

Arrested cytokinesis is a common process taking place during 

spermatogenesis 299. However gene expression pattern and 

morphological analysis indicated that the communications 

observed between parthenogenetic cells are more similar to the 
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recently described intercellular canals that persists between two 

cells when chromosome segregation is altered for any reason 278, 

as it occurs in about 1% of dividing somatic cells and, at higher 

rate, in transformed cells 301.  

Since the dramatic increase of autophagic activity was insufficient 

to prevent an incidence of aneuploidy, but cell proliferation and 

differentiation was not compromised, we hypothesized that this 

canals may provide a mutual exchange of missing cell products 

between adjacent cells 300,302 and, at the same time, alleviates the 

unbalance in cellular protein composition that would hamper 

normal cell functions. 

 

 

 



145 

 

6. CONCLUSIONS 

Our data provides evidence that the lack of paternal centriole in 

the parthenogenetic zygote leads to a centrosome amplification 

due to the lack of appropriate inhibition mechanisms and the 

ensuing multipolar mitosis cause severe chromosomal instability 

(CIN). Despite it is becoming clear that CIN probably plays a 

causative part in a substantial proportion of malignancies 303 we 

found that it is surprisingly compatible with parthenogenetic 

embryonic stem cells in vitro proliferation and differentiation as 

well as with parthenotes post-implantation development in vivo. 

Our data support the view that this is possible through a series of 

compensatory mechanisms that suppress apoptosis and enable 

cells to support each other through wide and stable network of 

intercellular communications.  

Our data lead us to propose that deriving cell lines from human 

parthenotes, and from animal species that share the same 

fertilization model, can help us to understand the mechanisms 

that link parthenogenesis, pluripotency and oncogenesis. We 

think that this has previously gone largely unnoticed because of 

the substantial difference in the fertilization process between the 

mouse and all other mammalian species, of the very limited 

number of human and non-rodent parthenogenetic cell lines 

available and of the absence of obvious phenotypic alterations. 

However the extensive concordance between our observations 
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and a wide amount of experimental data obtained in completely 

different experimental models, support the physiological 

relevance of our data. The findings also indicate that 

parthenogenesis could be an unexpected but very powerful model 

to study the onset of malignant transformation.   
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Abstract Human parthenogenetic embryos have recently
been proposed as an alternative, less controversial source
of embryonic stem cell (ESC) lines; however many
aspects related to the biology of parthenogenetic embryos
and parthenogenetic derived cell lines still need to be
elucidated. We present here results on human cell lines
(HP1 and HP3) derived from blastocysts obtained by
oocyte parthenogenetic activation. Cell lines showed
typical ESC morphology, expressed Oct-4, Nanog, Sox-2,
Rex-1, alkaline phosphatase, SSEA-4, TRA 1-81 and
had high telomerase activity. Expression of genes
specific for different embryonic germ layers was
detected from HP cells differentiated upon embryoid

body (EBs) formation. Furthermore, when cultured in
appropriate conditions, HP cell lines were able to
differentiate into mature cell types of the neural and
hematopoietic lineages. However, the injection of undif-
ferentiated HP cells in immunodeficient mice resulted
either in poor differentiation or in tumour formation
with the morphological characteristics of myofibrosarco-
mas. Further analysis of HP cells indicated aberrant
levels of molecules related to spindle formation as well
as the presence of an abnormal number of centrioles
and autophagic activity. Our results confirm and extend
the notion that human parthenogenetic stem cells can be
derived and can differentiate in mature cell types, but
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APPENDIX A



also highlight the possibility that, alteration of the
proliferation mechanisms may occur in these cells,
suggesting great caution if a therapeutic use of this
kind of stem cells is considered.

Keywords Human . Parthenogenetic cell lines . Centriole .

Mitotic check-point transcripts

Introduction

Parthenogenesis is the process by which a single egg can
develop without the presence of the male counterpart and is a
form of reproduction common to a variety of organisms such
as fish, ants, flies, honeybees, amphibians, lizards and snakes,
that may routinely reproduce in this manner [1].

Mammals are not spontaneously capable of this form of
reproduction, however, mammalian oocytes can successfully
be activated in vitro, by mimicking the calcium wave induced
by sperm at fertilization and stimulated to divide [2].
Mammalian parthenotes, however, are unable to develop to
term and arrest their development at different stages after
activation, depending on the species [3]. The reason for this
arrest is believed to be due to genomic imprinting which
causes the repression of certain maternally inherited
imprinted genes [4].

Despite these limitations, following the success reported in
mouse [5, 6] and non-human primate models [7, 8], human
parthenogenetic embryos have recently been proposed as an
alternative, less controversial source of embryonic stem cell
lines [2, 9–12]. Parthenotes may also represent a possible
tool for studies on the mechanisms driving early human
embryogenesis and for the pre-clinical test of experimental
protocols in human assisted reproduction (i.e. different
oocytes cryopreservation procedures, oocyte in vitro matu-
ration or polar body genetic screening) [13].

However many aspects related to the biology of
parthenogenetic embryos and parthenogenetic derived cell
lines still need to be elucidated. The decreased extent of
heterozygosis may amplify any negative genetic compo-
nent potentially present in the genotype [14, 15] and has
recently been postulated as a major limitation in partheno-
genetic lines derived from primates [7]. The very high
incidence of chromosome instability and aberrant chromatid
separation in oocytes retrieved from IVF patients, especially
when over 34 year old [16–18] also represents a concern,
given the fact that these correspond to a large part of the
population accessing assisted reproductive therapy and,
hence, are a major potential source of oocytes for parthenote
derivation.

In an attempt to better elucidate some of these aspects,
we present here results on human parthenogenetic cell lines

recently derived in our laboratory; we characterize their
pluripotency and differentiation plasticity, both in vitro and
in vivo, showing many characteristics common to bi-
parental embryonic stem cells; however we report the
presence of abnormal centrosomes and altered expression
levels of specific mitotic spindle check-point proteins,
possibly related to their uniparental origin.

Materials and Methods

Human Oocytes Collection, Activation and Culture

Oocytes were collected at the Infertility Unit of the Depart-
ment of Obstetrics and Gynecology of the “Ospedale
Maggiore Policlinico Mangiagalli e Regina Elena”. In Italy
nomore than three embryos per cycle can be obtained [19, 20]
therefore, in our Unit, patients from whom more than three
good quality oocytes are retrieved, are routinely offered the
opportunity to cryopreserve supernumerary eggs. Patients
refusing this possibility were proposed to participate to the
present study. Approval for the study was obtained by the
local institution review board and all participating women
gave informed consent.

Fresh oocytes were obtained following controlled ovarian
hyperstimulation and transvaginal follicular aspiration for
oocyte retrieval was performed 36 h post-hCG as previously
described [13]. The cell lines described in these experiments
were obtained from twenty oocytes retrieved from four
patients (age range 32–39 years) and activated according to
Paffoni et al. [13].

Isolation of ICM, Establishment and Culture of Cell Lines
from Human Parthenogenetic Embryos

Inner cell masses (ICM) were microsurgically removed
from blastocysts, singly plated and cultured in Dulbecco’s
modified Eagle’s medium, without pyruvate, high glucose
formulation (Gibco, Italy) supplemented with 10%Knock-out
serum replacer (Gibco, Italy), 5% fetal bovine serum (Gibco,
Italy), 1 mM glutamine, 0.1 mM β-mercaptoethanol (Sigma,
Italy), 5 ng/ml human recombinant basic Fibroblast Growth
Factor (R&D System, USA) and 1% nonessential amino acid
stock (Gibco, Italy). Within 3 days, circular colonies with
distinct margins of small, round cells were observed. When a
colony enlarged enough to cover half or more of the well
surface, cells were mechanically removed using a sterile
microloop (Nunc, DK), they were transferred to a 50 μl drop
of fresh medium and pipetted to small cell clumps, avoiding to
obtain single cell suspension. Cells were then passaged on
freshly prepared feeder-layers. Culture medium was changed
every day.

Stem Cell Rev and Rep (2009) 5:340–352 341
APPENDIX A



Gene Expression in HP Cell Lines

Reverse Transcription-Polimerase Chain Reaction

All chemicals were purchased from Invitrogen (Milan,
Italy) unless otherwise indicated.

RNA was extracted using the acid-phenol method
according to Chomczynski and Sacchi and included a
DNase I (1 U/μl) incubation. RNA was then immediately
reverse transcribed, using Superscript-™ II Reverse Tran-
scriptase and following the manufacturer’s instruction.
RNA from bi-parental embryonic stem cells was used as
positive control. Amplifications were carried out in an
automated thermal cycler (iCycler, Biorad), using the con-
ditions appropriate for each set of primers. In particular,
depending on the different experiments, we screened for the
expression of pluripotency related transcripts (Oct-4, Nanog,
Sox-2, Rex-1) and differentiation markers (Bone Morphoge-
netic Protein-4, BMP-4; Neurofilament-H, NF-H; α-amilase).
Expression of β-actin was always examined as an internal
control of the sample quality. Amplification products were
purified in Spin-X centrifuge tube filters (Corning, the
Netherlands), sequenced (SEQLAB, Gottingen, Germany)
and aligned using Clustal W 1.82 (EMBL-EBI service).

Immunocytochemistry

Markers of stem cells and stem cell differentiation were
assessed by immunocytochemistry using the following
primary antibodies: Oct-4 (1:50, Chemicon, USA); Nanog
(1:20, R&D System, USA); SSEA-4 (1:100, Chemicon,
USA); Alcaline phosphatase (1:50, R&D System, USA);
TRA-1-81 (1:100, R&D System, USA); Desmin (1:200,
Chemicon, USA); Keratin 17 (1:200, Chemicon, USA);
Vimentin (1:200, Chemicon, USA); Nestin (1:200, Abcam,
UK); Map2 (1:200, Abcam, UK); CNPase (1:200, Abcam,
UK); beta-tubulin III (1:250, Chemicon, USA). Staining
conditions were as indicated by manufacturers. Incubation
with suitable secondary antibodies (Alexafluor, Invitrogen,
Italy) was carried out for 30 min and nuclei were stained
with 4′,6-diamidino-2-phenylindole (DAPI, Sigma, Italy).
Samples were observed either under a TCS-NT laser
confocal microscope (Leica Microsystems, Germany) or a
Eclipse E600 microscope (Nikon, Japan).

Telomerase Activity

Telomerase activity measurement was performed in
undifferentiated and differentiated HP cells respectively, using
the TRAPeze® Telomerase Detection Kit (Chemicon, USA),
following the manufacturer’s instruction. Reactions were
separated on non-denaturing TBE-based 12% polyacrylamide

gel electrophoresis and visualized with SYBER Green
staining.

Derivation of Embryoid Bodies

To induce the formation of EBs, HP cells were cultured
in 30 μl hanging droplets, as previously described [21].
The medium was refreshed every day and after 7–9 days,
EBs were detectable. Differentiation of EBs was con-
firmed by morphological examination and molecular
analysis that demonstrated the expression of markers
related to mesoderm (BMP-4), ectoderm (NF-H) and
endoderm (α-amilase). Human genomic DNA was used
as a positive control.

Spontaneous Differentiation of HP Cell Lines

Embryoid bodies were mechanically dissociated and cells
were plated directly onto CultureWell Chambered Coverglass
16-well dishes (Molecular Probes, Italy) to encourage ad-
herent culture conditions and spontaneous differentiation as
previously described [22]. After 1 week cells were processed
for RT-PCR amplification or immunocytochemistry.

Neural Differentiation of HP Cell Lines

EBs were prepared as described above and exposed to 10 μM
retinoic acid (Sigma, Italy) and 10 ng/ml Sonic Hedgehog
(R&D System, USA). They were kept 48 h in hanging drops
culture conditions and then they were dissociated and plated
on 0.1% gelatin coated CultureWell Chambered Coverglass
16-well dishes. Differentiation was carried out in Neural
Progenitor Cell Basal Medium (Cambrex Bioscience, USA),
supplemented with Neural Cell Survival Factor-1 (Cambrex
Bioscience, USA) and 25 ng/ml Brain Derived Neurotrophic
Factor (R&D System, USA). After a period from 9 days to
21 days of culture, cells were fixed and stained with specific
antibodies.

Hematopoietic Differentiation of HP Cell Lines

Single-cell suspension was obtained by passaging EBs
through a 21-gauge needle. Cell suspensions were plated
in a serum-free medium (CellGro Medium, Cambrex
Bioscience, USA) supplemented with 10% FBS (Bio-
chrom, Germany) and with the following human recom-
binant cytokines: thrombopoietin (TPO, 10 ng/ml), Flt-3
ligand (FL, 50 ng/ml), stem cell factor (SCF, 50 ng/ml),
interleukin-(IL)-6 (10 ng/ml), (Peprotech EC Ltd., UK).
After 2 weeks cells were harvested and assayed for the
evaluation of colony-forming cells (CFCs) in 2 ml of
complete methylcellulose medium (H4434; StemCell
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Technologies, USA). The medium contained 1% methyl-
cellulose, 30% FBS, 1% Bovine Serum Albumine,
10−4 M 2-mercaptoethanol, 2 mM L-glutamine, 3 IU/ml
erythropoietin, 50 ng/ml SCF, 10 ng/ml granulocyte macro-
phage colony-stimulating factor (GM-CSF), 10 ng/ml
Interleukin-3 (IL-3). After further 21 days of culture,
colonies were scored and then picked up for morphological
or flow cytometric analysis.

Colonies were spotted on Poly-D-lysine coated slides
with a cytocentrifuge (Shandon Cytospin 4, Thermo
Electron Corporation, USA) for 7 min at 200 rpm. Samples
were then fixed and stained with May-Grunwald-Giemsa
for evaluating their hematopoietic differentiation.

Flow Cytometry

To perform flow cytometry analysis on colonies, 2×105 cells
were incubated with the following conjugated mouse-anti
human antibodies: CD45 PE (Beckman Coulter, USA),
CD34 FITC (Becton Dickinson, USA). Isotype immunoglo-
bulins IgG1 PE (Chemicon, USA), IgG1 FITC (Beckman
Coulter, USA) were used as negative controls. For each
sample, at least 50.000 events were acquired with Cytomics
FC500 (Beckman Coulter, USA) and analyzed using the
CXP-analysis software.

“In Vivo” Differentiation

Undifferentiated HP cells of each line were harvested and
injected in the hind limb of 3 Fox Chase SCID (C.B-17/
IcrCrl-scid-BR) and 3 SCID Beige (C.B-17/IcrCrl-scid-
bgBR) mice (Charles Rivers Laboratories, Italy). Each
animal received 3.5×106 cells. The same amount of feeder
cells were injected as a negative control. Tumor formations
were palpable and were retrieved 7–10 weeks after the
injection. They were fixed for 24 h in 10% neutral buffered
formalin, dehydrated and processed using a routine wax-
embedding procedure for histological examination after
hematoxylin/eosin staining. Expression of specific antigens
was determined on serial tissue sections by immunohisto-
chemistry using the indirect avidin-biotin peroxidase
technique (Vector Labs: VECTASTAIN Elite ABC Kit,
Universal; DAB Substrate Kit, 3,3′-diaminobenzidine).
Details about primary antibodies and immunohistochemical
procedures employed are reported in Table 1.

Centrosome Localization

Undifferentiated cells were plated directly on CultureWell
Chambered Coverglass 16-well dishes (Molecular Probes
Europe, Italy) and cultured for 24 h. They were fixed in
100% methanol at −20°C and stained with a primary antibody
specific for human Centrin 1 (1:100, Abcam, UK). Secondary

detection was carried out with the appropriate Alexa Fluor
antibody (Invitrogen, Italy). The results obtainedwere observed
under a Nikon Eclipse E600microscope at 100×magnification.

Electron Microscopy

Samples were fixed for 2 h in 0.1 M cacodylate buffer
pH 7.2, containing 2% glutaraldehyde. Specimens were
then washed in the same buffer and post-fixed for 2 h with
1% osmic acid in cacodylate buffer. After standard serial
ethanol dehydration, specimens were embedded in an
Epon-Araldite 812 mixture. Sections were obtained with a
Reichert Ultracut S ultratome (Leica, Austria). Semi-thin
sections were stained by conventional methods (crystal
violet and basic fuchsin) and subsequently observed under
a light microscope (Olympus, Japan). Thin sections were
stained by uranyl acetate and lead citrate and observed with
a Jeol 1010 EX electron microscope (Jeol, Japan).

Mitotic Spindle Check-Point Molecules

RNAwas extracted from HP cells and from three bi-parental
embryonic stem cell lines, HES 7, HES I-3 and HES I-6 with
the TaqMan®Gene Expression Cells to Ct kit (Applied
Biosystem, CA, USA). Expression of mitotic checkpoint
genes was evaluated using pre-designed gene-specific primer
and probe sets from TaqMan®Gene Expression Assays
(Applied Biosystem, USA) for the following human tran-
scripts: Mitotic arrest deficient 1 (MAD1); Budding uninhib-
ited by benzimidazoles 1 (BUB1); Centromere protein E
(CENPE); TTK kinase (human homologue of the yeast
monopolar spindle 1 kinase); Aurora A Kinase; Myc-
associated factor X (MAX); SWI-Independent 3 (SIN3);
β-actin. Gene expression level was reported as ΔCt value.
For each individual gene the number of amplification cycles
for the fluorescent reporter signal to reach a common
threshold value (Ct) was estimated and then normalized by
subtracting the Ct value obtained for the same sample for a
positive control transcript (Δ-actin), to give ΔCt value.

Results

Three parthenogenetic cell lines (HP1, HP2 and HP3)
were obtained from 20 oocytes. Unfortunately one of the cell
lines was accidentally lost before its full characterization
therefore results for only two lines are reported. These cell
lines could be propagated extensively in vitro and constantly
(67 passages) expressed cell markers that characterize human
embryonic stem cells: Oct-4, Nanog, Rex-1, Sox-2, alkaline
phosphatase, SSEA-4, TRA 1-81 (Fig. 1, panel a and b).
Undifferentiated HP cells expressed high telomerase activity,
while no telomerase activity could be detected once cells
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were induced to differentiate (Fig. 1, panel c), indicating a
physiologically normal control of telomerase activity in these
cells.

When cultured with the hanging drop method, the
formation of EBs was observed regularly after 10–12 days.
Embryoid bodies expressed several tissue-specific markers
including BMP-4, NF-H, α-amilase (Fig. 2, panel a),
keratin 17, vimentin, desmin (Fig. 2, panel b), indicating
that derivatives representative of all three germ layers could
be obtained.

Moreover, when cells were cultured in NPDM Bullet Kit
(Cambrex Bioscience, USA), expression of nestin, β-tubulin
III, CNPase and MAP-2 was observed, demonstrating the
formation of more mature cell types of the neural lineage
(Fig. 3, panel a).

Similarly, exposure of HP cells to specific cytokines and
adequate culture conditions allowed for differentiation of
these cells towards the hematopoietic lineage, with the
generation of CD34/CD45 positive cells (Fig. 3, panel b)
that were able to form colonies in methylcellulose-medium
after a period of 3 weeks (Fig. 3, panel c). Staining of the
differentiated cells with May-Grunwald–Giemsa demon-
strated the presence of lymphoid, erythroid and myeloid
sub-populations (Fig. 3, panel d).

In vivo differentiation ability of HP cells was tested
through intramuscular injection of undifferentiated HP cells

in immunodeficient mice and resulted, for both HP lines,
either in poor differentiation or in tumours that were
classified as myofibrosarcomas (Fig. 4).

Real-time PCR experiments demonstrated aberrant
levels of molecules related to spindle formation in HP
cells, when compared to those of three bi-parental
embryonic stem cell lines (HES 7, HES I-3 and HES I-6). In
particular higher levels of MAD1, MAX and SIN3 were
detected, pointing to the possibility of a deregulation in
the MAD1 dependent pathway. Furthermore, negligible
transcription levels of CENP-E, TTK and Aurora A
kinase, indicated abnormalities at different spindle check
points in HP cells (Fig. 5). Immunohistochemical (Fig. 6,
panel a) and ultrastructural (Fig. 6, panel b-e) analysis of
HP cells demonstrated the presence of groups of multiple
centrosomes showing abnormal shape. These cells were
always accompanied by massive autophagic process
(Fig. 6, panel d). The autophagic cargoes could include
damaged centrioles (Fig. 6, panel e).

Discussion

The development of human parthenotes to the blastocyst
stage was reported only recently [23–25] and not many
data are available because of the limited accessibility of

Table 1 Primary antibodies and procedures used for immunohistochemistry

Antibody Host species
and clonality

Company Clone or
company
code

Antigen
retrieval

Working
dilution

Incubation
time

Secondary
antibody

VIMENTIN Mouse monoclonal DAKO 3B4 EDa 1:1000 40 min at 37°C Biotynilated
anti-mouse

SMA Rabbit monoclonal EPITOMICS E184 HIARb 1:1200 40 min at 37°C Biotinylated
anti-rabbit

DESMIN Rabbit monoclonal EPITOMICS 1184-1 HIAR 1:2000 40 min at 37°C Biotinylated
anti-rabbit

MYOGLOBIN Rabbit polyclonal DAKO L1860 NA 1:10 40 min at 37°C Biotinylated
anti-rabbit

GFAP Rabbit polyclonal DAKO Z334 HIAR 1:10000 40 min at 37°C Biotinylated
anti-rabbit

S100 Rabbit polyclonal DAKO Z311 HIAR 1:15000 40 min at 37°C Biotinylated
anti-rabbit

SYNAPTOPHYSIN Rabbit monoclonal EPITOMICS EP1098Y HIAR 1:500 1 h at room temperature Biotinylated
anti-rabbit

CYTOKERATIN Mouse monoclonal ZYMED AE1/AE3 ED 1:1000 40 min at 37°C Biotynilated
anti-mouse

FVIII Rabbit polyclonal DAKO N1505 ED 1:80 40 min at 37°C Biotinylated
anti-rabbit

LYSOZYME Rabbit polyclonal DAKO A 0099 ED 1:13000 40 min at 37°C Biotinylated
anti-rabbit

a ED: enzymatic digestion with pepsin solution (Digest all™ 3, Zymed)
b HIAR: heat-induced antigen retrieval, pressure cocker, sodium citrate solution pH 6
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unfertilized human oocytes. Even more limited are the
information related to the potential plasticity of the lines
that can be derived from parthenogenetic human embryos,
with specific regards to the potential abnormalities
associated with their origin. The results presented in this
manuscript describe the properties and limits of the cell
lines derived from human parthenogenetic embryos in our
laboratory.

These lines have been growing for over 67 passages and,
in agreement with previous reports on human parthenoge-

netic stem cells [9–12], possess the main features of bi-
parental stem cells, showing stable expression of
pluripotency-related markers, high in vitro differentiation
plasticity and the capability to respond to specific stimuli in
order to give rise to high specification tissue differentiation.
Consistent with these data is their high telomerase activity.
Telomerase activity is indeed correlated with regeneration
and immortality and is typically expressed in germ cells and
embryonic stem cells, while it is absent in most somatic cell
types [26, 27]. In our experiments, undifferentiated HP cells

Fig. 1 Pluripotency of HP cells
is demonstrated by their
positivity to several known
pluripotency-related markers
and by their telomerase activity.
The expression of Oct-4, Nanog,
Rex-1, Sox-2 is shown by
RT-PCR screening of RNA
extracted from HP cells. Beta
actin and RNA from bi-parental
embryonic stem cells were used
as positive control (panel a).
Cytochemical analysis with
specific antibodies demonstrated
immunopositivity of HP cells
for Oct-4, Nanog, alkaline
phosphatase, SSEA-4 and TRA
1-81. Cell nuclei, stained with
DAPI, are coloured in blue
(panel b). Undifferentiated
(Undiff) HP cells displayed high
levels of telomerase activity,
while no telomerase activity
could be detected in
differentiated (Diff) progeny,
indicating a physiologically
normal control of telomerase
activity in these cells (panel c)
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displayed high levels of telomerase activity, while no
activity could be appreciated when cells were differentiated
in vitro through the preparation of EBs. These data indicate
that a physiologically normal control of telomerase activity
is present in HP cells and that, if subjected to differentiation
culture conditions, they respond turning down telomerase
activity, as expected in normal somatic cells. Indeed an
average of 10 days differentiation culture allowed us to
obtain parthenogenetic EBs that actively transcribed RNAs
involved in specification of the three embryonic germ
layers, demonstrating HP cell potential to differentiate in
the main tissue types of the body. HP cell plasticity was
further demonstrated by immunostaining of the monolayers
obtained after EB disaggregation and plating , with
consistent presence of cells belonging to ectoderm, meso-
derm and endoderm lineages.

A crucial point is to assess the possibility to drive
differentiation of human parthenogenetic cells towards a
specific lineage, in controlled culture conditions. In this line
we carried out the sets of experiments presented in this
manuscript aimed at the derivation of mature forms of
neural and hematopoietic cell populations. HP cells were
able to form different cell subtypes belonging to the neural
lineage as well as to differentiate in the complex array of
hematopoietic cells. Although further assays to test the real
extent of cellular functionality are needed, these results
further confirm human parthenogenetic cell lines differen-
tiation potential. In particular our results showed that HP
cells were able not only to give rise to early neural lineages
as previously described [9–12] but also to more mature cell
types expressing nestin, CNPase and MAP2. This is
consistent with the observation that murine androgenetic

Fig. 2 Differentiation ability of
human parthenogenetic cells
after induction of EB formation.
RT-PCR analysis of RNA
extracted from EBs consistently
demonstrated expression of
markers specific for the three
germ layers and, more in details
bone morphogenetic protein-4
(Bmp-4, mesoderm), neurofila-
ment H (NF-H, ectoderm) and
α-amylase (endoderm). Beta
actin and genomic DNA were
used as a positive control
(panel a). Disaggregation and
plating of EBs confirmed HP
cell plasticity, with consistent
presence in the monolayer of cells
displaying immunopositivity for
keratin 17 (endoderm), desmin
(mesoderm) and vimentin
(ectoderm). Cell nuclei, stained
with DAPI, are coloured in blue
(panel b)
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embryonic stem cells are able to differentiate into neuronal
and glial cells [28]. Our results further expand current
knowledge on human parthenogenetic cell in vitro differ-
entiation plasticity, showing the formation of mature
hemopoietic cell lineages. This confirms what has been
previously reported by Mann et al. [31] in mouse
androgenetic and gynogenetic stem cells, that where shown
to be able to generate adult-transplantable hematopoietic
stem cells, that can repopulate the hematopoietic system of

adult transplant recipients [29]. Altogether these findings
indicate that, outside the normal developmental paradigm,
the differentiation potential of uniparental cells may be
much less restricted than that of parthenogenetic cells in
chimeras and that these cells can be an interesting and
relevant model for the study of fundamental mechanisms
involved in human lineage determination.

However, injection of HP cells in immunodeficient
mice gave rise to poor differentiation or in the formation

Fig. 3 Neural and hematopoietic
differentiation of HP cells.
Culture conditions routinely used
to address bi-parental embryonic
stem cells towards neural
differentiation successfully drove
HP cells to form different cell
subtypes belonging to the neural
lineage, with cells displaying
immune-positivity for nestin,
β-tubulin III, CNPase and
MAP-2. Cell nuclei, stained with
DAPI, are coloured in blue
(panel a). Differentiation towards
the hematopoietic lineage was
obtained exposing HP cells to
specific cytokines and adequate
culture conditions. CD34/CD45
positive cells were demonstrated
and separated by cell sorting
(panel b) These cells were able to
form colonies when cultured in
methycellulose-medium (panel c)
and to generate lymphoid,
erythroid and myeloid
subpopulations (panel d,
left to right)
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of myofibrosarcomas [30], depending on animal injected.
This is consistent with the observation that the subcuta-
neous injection of androgenetic mouse embryonic stem
cells in immunodeficient mice generates sarcomas with

muscular differentiation [31] and suggests the possibility
of an intrinsic deregulation of the mechanisms controlling
the choice between proliferation and differentiation in
embryonic stem cells obtained through parthenogenesis
and androgenesis. Interestingly, this deregulated differen-
tiation appears to be modulated by the microenvironment
and, while undetectable, or repressed, when cells were
differentiated in vitro, it became evident once cells were
exposed to the less restrained in vivo milieu.

These results are in contrast to what previously described
in other human parthenogenetic cell lines. We have no
explanation for this differences and we cannot rule out the
possibility that these anomalies simply derive from differ-
ences in the procedures used for the derivation of the cell
lines. In particular while our activation protocol is almost
identical to that described by Revazova et al. [11, 12] it did
not include an electrical activation step as performed by
Mai et al. [10] whereas Lin et al. used spontaneously
activated oocytes [9]. Our cell lines were cultured on
immortalized mouse fibroblasts similarly to Mai et al. [10]
who used mouse embryonic fibroblasts, while in all other
cases human fibroblast feeder layers where used [9, 11, 12].
However, since normal cell lines were obtained with
protocols, in many aspects similar to the one used in our
experiments which, in turn, are described in the literature
for the culture of bi-parental cell lines, we think it is
unlikely that the specific protocol used in our experiment
can be the cause of the observed abnormalities.

Even if specific activation and culture conditions used in
the current experiments cannot be excluded as main cause

Fig. 5 Expression level of molecules related to spindle formation and
chromosome segregation in HP cells and bi-parental cell lines HES 7,
HES I-3 and HES I-6. Bars represent the average ΔCt of HP cells
(solid bars) and bi-parental cells (striped bars) related to the genes
examined. ΔCt value was obtained from the Ct of the target gene
normalized with the Ct value for β-actin of the same sample

Fig. 4 Formation of
myofibrosarcoma-like tumors
following injection of
undifferentiated HP cells in the
hind leg of SCID Beige and Fox
Chase SCID mice. Numerous
multinucleated cells showing
aberrant mitotic figures (a).
Vimentin-positive (b) and
Smooth Muscle Actin-positive
(c) cells dissecting and separating
residual skeletal myofibres.
Scattered, isolated
Desmin-positive (d) cells are
also detectable. HE staining (a)
and indirect avidin-biotin
immunoperoxidase staining with
3,3′-diaminobenzidine
chromogen reaction (c, d, e).
Scale bar 100 μm (A)
and 50 μm (b, c, d)
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of the altered behaviour of our cell lines upon in vivo
transplantation, we hypothesize that the uniparental origin
of HP cells and, in particular, the lack of the centrioles
supplied by the male counterpart, may be a possible
explanation with the use of relatively old donors as a
potential aggravating factor. It has been demonstrated that
centrioles degenerate and are lost during human oogenesis
and while oogonia and growing oocytes display normal
centrioles until pachytene stage, they are absent in the
mature oocytes [32]. With the notable exception of mice
[33] this degenerative process has been described in rhesus
monkeys [34], rabbits [35], cows [36], sea urchins [37],
Xenopus [38], and several other species [39]. Due to the
absence of centrioles, the oocyte centrosomal material does
not aggregate into unified foci and is unable to form astral
microtubules and a correctly oriented spindle, unless
rescued by a spermatozoon. The consequences of the lack
of centrioles on parthenogenetic development have been
studied in detail in lower species, where successful
parthenogenesis largely depends upon the oocyte ability to
generate complete and functional centrosomes in the
absence of the material supplied by a male gamete. In
particular, parthenogenetically activated sea urchin and
insect eggs have been described to form multiple centrioles,
possibly as the result of the lack of a correct control on the
process of spindle formation [40–42]. Indeed, the inability
of parthenogenetic oocytes to organize normal spindles due
to the lack of a functional centrosome has been suggested

as a strict checkpoint control to suppress parthenogenetic
development [43] since it is not an evolutionarily preferred
pathway even in species that are facultative parthenotes
because it leads to genomic homogeneity that, in turn,
results in the accumulation of genetic anomalies in the
population. These observations on the parthenogenetic
process in lower species are in agreement with our findings
in HP cells. Similarly to what reported in sea urchins and
many insects, for instance, we also found that HP cells
display multiple centrioles, suggesting that a decreased
ability to rearrange functional centrosomes is present in
these cells. This is also consistent with the observations by
Marshall [44], indicating that centriole de novo assembly is
normally turned off when a centriole is present. The
absence of sperm centriole in parthenotes may therefore
lead to the lack of a negative regulatory mechanism that
suppress de novo centriole assembly and may explain the
presence of multicentriolar structures as the ones described
in parthenotes and as the ones we detect in HP cells.
Interestingly enough, HP cells can proliferate and divide
and most importantly, they can correctly differentiate,
into a variety of tissues, responding to experimental
conditions that are able to induce differentiation in bi-
parental cells. This ability does not seem to be limited by
the abnormalities described above and suggests that the
requirement of a paternal centrosome described in lower
animals appears to be less stringent in human cells, at
least in in vitro controlled conditions. Indeed, in higher

Fig. 6 Immunohistochemical
(a) and ultrastructural (b-c-d-e)
analysis of human parthenoge-
netic cells. The presence of
amplified centrosomes loosely
dispersed in the cytoplasm can
be appreciated. Supernumerary
centrioles (arrows) and massive
autophagic processes generally
coexist (d). Often the cargo of
autophagic compartments
resemble centrioles partially
damaged (arrowheads)
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mammals, genomic imprinting is thought to be the main
mechanism to ensure bi-parental fertilization [45]. How-
ever these abnormalities in spindle rearrangement may
explain the presence of cells showing misshaped chromo-
somes in our cell lines. On the other hand, these
abnormalities do not seem to be specific of HP cells, and
do not seem to be related to the derivation protocol and/or
the culture conditions used in our experiments, since
spindle rearrangement and multiple chromosome mal-
segregations have been previously described in human
parthenogenetic embryos, that were obtained from oocytes
spontaneously activated and/or induced with puromycin
[46]. Furthermore they do not seem to be confined to
human parthenotes and appear to be common to other
mammalian species. Indeed a high incidence of abnormal
spindle and misshaped chromosomal complements has
been reported in parthenotes derived from bovine as well
as porcine activated oocytes, with abnormalities occurring
as early as completion of the first cell cycle. Each of these
reports linked these phenomena to the absence of a
paternally supplied centrosome [47, 48].

Altered expression levels of mitotic check point mole-
cules were found when in vitro cultured HP cells were
examined by real-time PCR. In particular, the comparison
of HP cells with bi-parental embryonic stem cell lines
indicated a much higher level of expression of Mad-1, and
the related molecules MAX and SIN3 in parthenogenetic
cells. Mad-1 is a central component of the spindle assembly
checkpoint and recruitment of kinetochores [49–51]. The
altered levels of such molecules present in HP cells may be
related to the lack of paternal contribution in spindle
assembly. A similar explanation could account for the very
low transcription for TTK and CENP-E detected in these
cells.

Conclusions

Cell lines derived from human parthenogenetic embryos
have great potentials since these cells possess most of the
main features of bi-parental stem cells, show high plasticity
and give rise to high specification tissue differentiation.
Whereas human parthenogenetic cell lines capable of
normal differentiation, not only in vitro but also in vivo
have been described, we observed malignant in vivo
differentiation accompanied by aberrant centriole distribu-
tion and abnormalities in the control of the mitotic spindle
check point. A series of experimental data, from our and
other laboratories, suggest that these phenomena may be
related to their uniparental origin but do not explain why
these alterations have not been observed in other cell lines.
We have no clear explanation for this but it is interesting to

note that experiments with bovine parthenotes showed that
the ability of maternal centrosomes to organize micro-
tubules differs from oocyte to oocyte, and this may
determine the developmental fate of each parthenote [52]
and, presumably of the resulting cell lines. Indeed differ-
ences in the in vivo differentiation potential between their
two human parthenogenetic cell lines have been described
also by Mai et al. [10]. Further investigations are required
in order to understand how individual variations can impact
the derivation of stable lines from human parthenotes and
how undesirable abnormalities can be prevented, especially
if a therapeutic use of this kind of stem cells is considered.
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Abstract The generation of porcine embryonic stem cells
(pESC) would potentially have great impact in the
biomedical field given the long-standing history of the pig
as a prime animal model for pre-clinical biomedical
applications. These cells would also be beneficial for the
agricultural area, allowing efficient genetic engineering of
this animal, to improve health and production traits. Despite
numerous reports, no conclusive results have been obtained
on the isolation and propagation of pESC lines and the
establishment of pluripotent cells from the pig has remained
an elusive goal. In the present study we performed a
systematic analysis of different culture media for their
ability to support the establishment of homogenous out-
growths from in vitro-produced embryos. Furthermore, we
investigated which molecular networks are responsive to
the factors contained in the most efficient media, since
the identification of dominant signaling pathways that
regulate porcine stem-cell pluripotency is likely to
facilitate the generation of genuine pESC. Finally we
compared IVF blastocysts versus parthenotes as a
possible source for putative pESC in terms of blastocyst
rate, resilience to immunosurgery procedures, ability to
attach to the feeder, to generate outgrowths and to
establish stable cell lines.

Keywords Porcine .Medium formulation .

Pluripotency signalling pathway . IVF. Parthenogenesis

Introduction

The establishment of embryonic stem cells (ESC) in
domestic animals could potentially have great impact both
in agricultural perspective and biomedical fields. In
particular, pig is a desirable species to create pluripotent
cell lines because of its value as a biomedical model, due to
its immunological, morphological, physiological and func-
tional similarities to the human [1–4]. However, despite
numerous reports, no conclusive results have been obtained
on the isolation and propagation of putative porcine ESC
(pESC) lines and no validated pESC lines are available as
yet. Putative pESC established by Notarianni et al. [5] were
poorly defined. In other studies no ESC-like cells survived
passage 10, while epithelial-like lines survived up to
passage 42, but failed to differentiate [6]. Talbot et al. [7]
reported that pluripotency was difficult to maintain in ESC-
like and epithelial-like cell cultures for more than a few
passages. Further studies have been conducted by other
authors [8, 9], however, the general consensus is that none
of these lines were truly ESCs and pluripotent [10, 11] and
a number of technical questions are still to be answered.
The use of conventional protocols for culture of mouse and
human ESC does not appear to sustain extended growth nor
pluripotency of cultured porcine cells. Recently it has been
demonstrated that medium components play a pivotal role
in regulating intrinsic and extrinsic factors involved in the
control of pluripotency and that specific pathways may be
up-regulated, or down-regulated, in response to the addition
of specific molecules [12]. It is evident that one important
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aspect that needs to be addressed is the identification of
appropriate in vitro culture conditions that may encourage
establishment of homogeneous outgrowths, and ensure a
favorable environment, as a preliminary step towards the
isolation of genuine pig pluripotent cells. Here we present
results of experiments designed in order to perform a
systematic study of different media formulations. We
identified ten different medium compositions and tested
them for their ability to promote outgrowth formation.
Furthermore, since the identification of dominant signaling
pathways that regulate stem-cell pluripotency in the pig is
likely to facilitate the generation of genuine pESC, we
studied the expression pattern of molecular networks
known to play a key role in the maintenance of pluri-
potency (LIFR, gp130, STAT3, FGFR-1, FGFR-2, PI3K,
AKT and PTEN) in response to factors contained in the
most efficient media. Finally, given the fact that in the
literature a higher efficiency of ESC derivation is reported
for parthenogenetic activated oocytes compared to biparen-
tal blastocysts [13–15], we compared embryos obtained from
IVF versus parthenogenetic activation, to verify if this occurs
also in pig. Furthermore we tried to identify what mechanism
affects efficiency since it could help the derivation of cell
lines regardless to the source of the embryo.

Material and Methods

Oocyte Collection and In Vitro Maturation (IVM)

Unless otherwise indicated, chemicals were purchased from
Sigma- Aldrich (Milan, Italy).

Ovaries were collected from gilts of approximately
120 Kg at the local abattoir and transported to the
laboratory in physiological saline (9g/l NaCl) at 30–34°C.
Cumulus- oocyte complexes (COCs) were aspirated from
antral follicles with an 18-gauge needle and vacuum
pressure of 50 ml/min.

The follicle aspirate was collected in 15 ml tubes
(Terumo, VenoSafe™) and only COCs with a large,
compact cumulus and homogeneous oocyte cytoplasm
were selected. In vitro maturation (IVM) was performed
as previously described [16] on a total of 2351 oocytes.

Embryo Production

At the end of IVM (46 h), oocytes were denuded by gently
pipetting in TCM-199 HEPES buffered medium, containing
0.1% hyaluronidase at 38.5°C and washed for 10 min in the
same medium supplemented with 20% (v/v) fetal calf serum
(FCS). Subsequently oocytes were fertilized with frozen-
thawed spermatozoa or parthenogenetically activated as
described below.

In Vitro Fertilization (IVF)

Frozen-thawed spermatozoa were purified by centrifugation
through two-layer Percoll gradients. Live sperm cells were
washed in Tyrode’s albumin lactate pyruvate medium
(TALP medium), consisting of 1.25 mM MgCl2.6H2O,
102.7 mM NaCl, 3 mM KCl, , 0.28 mMNaH2PO4, 5 mM
NaHCO3, 3.7 ml/l of Na lactate, 1 mM Na pyruvate,
20 mM HEPES, 1 mg/ml of polyvinylalcohol (PVA) and
antibiotics.

Spermatozoa were then diluited in IVF medium
(2.65 mM CaCl2-2H2O, 0.4 mM MgCl2.6H2O, 106.1 mM
NaCl, 3.08 mM KCl, 26 mM NaHCO3, 0.33 mMNaH2PO4,
1 mM Na pyruvate, 1.86 ml/l of Na lactate, 6 g/l BSA FAF
and antibiotics). A total of 1130 oocytes were divided in
groups of 45–50 and co-cultured with 120000 spermatozoa/
ml in IVF medium at 38.5°C in 5% CO2 atmosphere. After
24 h, oocytes were gently washed to eliminate cumulus
cells and sperm adhering to the zona pellucida. Finally,
embryos were cultured in groups of 25–35 in 50 µl NCSU-
23 drops under mineral oil at 38.5°C in 5% O2, 5% CO2

and 90% N2 atmosphere.

Parthenogenetic Activation

1221 oocytes were denuded and incubated in TALP
medium for 30 min at 38.5°C. Parthenogenetic activation
was performed according to the method described by
Brevini et al. [16] by sequentially exposing the oocytes to
5 mM ionomycin in TALP for 5 min at 38.58C in the dark;
and to 2 mM 6-DMAP in medium NCSU-23 for 3 h at
38.5°C in an atmosphere of 5% CO2, 5% O2, and 90% N2.
Presumptive parthenotes were washed thoroughly in
NCSU-23 and cultured as described above.

On day 5 post-activation or fertilization, half of the
medium was replaced with fresh NCSU-23 containing 20%
(v/v) FCS to reach a final FCS concentration of 10% (v/v) in
the in vitro culture drop.

Preparation of STO Fibroblast Feeder Layers

STO fibroblasts (LGC Promochem-ATCC, Italy) were
routinely cultured in high glucose DMEM (Gibco, Italy),
supplemented with 2 mM glutamine and 10% Foetal
Bovine Serum (FBS; Gibco, Italy). For growth inactivation,
sub-confluent mono-layers were exposed to the medium
above containing 10 μg/ml mitomycin-C (Gibco, Italy) for
3 h. They were re-suspended in culture medium and seeded
at a density of 25×104 cell/well in 4-well dishes, pre-coated
with 0.1% gelatin. Inactivation was carried-out 24 h before
plating of ICMs or passaging of pluripotent cell lines. Two
hours before use, the medium was changed and replaced
with putative pESC medium (see below).
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Immunosurgery and Outgrowth Derivation

Parthenotes and IVF embryos were cultured up to the early
blastocysts stage (6 days for parthenotes and 7 days for IVF
embryos). Blastocysts were incubated in pronase 0.5% (w/v)
in medium TCM199 (Gibco, Italy), supplemented with
6.5 mg/ml HEPES, 1.1 mg/ml sodium bicarbonate and
4 mg/ml bovine serum albumin (BSA). Incubation was
carried out for 8 min to eliminate zona pellucida.
Subsequently, blastocysts were incubated in low glucose
DMEM medium (Gibco, Italy) supplemented with 10%
PVA and 10% monkey anti-porcine serum (supplied by
Istituto Zooprofilattico Sperimentale Lombardia ed Emilia-
Romagna, Brescia) for 15 min. A 30 min incubation in
DMEM medium (Gibco, Italy) containing 10% PVA and
10% Guinea pig complement was then performed. ICMs
were isolated from lysed trophoblast cells by pipetting and
washed through several DMEM drops to avoid culture oil
carry-overs and encourage better attachment.

Outgrowth Culture Conditions

Isolated ICMs, derived from IVF embryos and parthenotes,
were plated on freshly inactivated STO fibroblast feeder
layers. The different culture formulations tested for their ability
to promote outgrowth attachment are described in Table 1.

After 3 days from primary outgrowth establishment,
media were refreshed. When a colony enlarged enough to
cover half or more of the well surface, cells were
mechanically removed using a sterile microloop (Nunc,
DK), they were transferred to a 50 μl drop of fresh medium
and pipetted to small cell clumps of an average of 500–600
cells, avoiding to obtain single cell suspension. Cells were
then passaged on freshly prepared feeder-layers. Culture
medium was changed every day.

Putative pESC Characterization

Gene Expression Analysis of Putative pESC

A small aliquot of the cell suspension was isolated at each
passage and was subjected to Reverse Transcription-
Polimerase Chain Reaction (RT-PCR), screening for the
expression of the genes listed in Table 2. Total RNA was
extracted and cDNA was obtained using Superscript-™ II
Reverse Transcriptase (Invitrogen, Italy). Amplifications
were carried out in an automated thermal cycler (iCycler,
Biorad), using the conditions appropriate for each set of
primers. Accession numbers, sequences of the primers used,
annealing temperatures and fragment sizes are summarized
in Table 2. Amplification products were purified in Spin-X
centrifuge tube filters (Corning, Netherlands), sequenced
(SEQLAB, Gottingen, Germany) and aligned using Clustal
W 1.82 (EMBL-EBI service).

Real-time PCR was performed on 10 parthenotes and 10
IVF ICMs using ABI- Prism 7000 Sequence Detecting
System (Applied Biosystem) and gene-specific primer
(Table 3). Gene expression level was reported as ΔCt
value. For each individual gene the number of amplification
cycles for the fluorescent reporter signal to reach a common
threshold value (Ct) was estimated and then normalized by
subtracting the Ct value obtained for the same sample for a
positive control transcript (β-actin), to give ΔCt value.

Immunocytochemical Analysis

Parthenogenetic and IVF-derived putative pESC were
rinsed with PBS, fixed in 4% paraformaldehyde and
permeabilized with 0.1% Triton X-100. Primary antibodies,
diluted in blocking solution (10% serum in PBS), were
incubated over night at 4°C.

Table 1 Formulation of the culture media tested. * Nutrient mix was composed by 2 mM glutamine, 0.1 mM β-mercaptoethanol, nucleoside mix
and 1% non-essential aminoacid (Gibco, Italy)

DMEM-low
glucose (Gibco,
Italy)

DMEM –
K.O. (Gibco,
Italy)

HAM’S-
F10 (Gibco,
Italy)

NUTRIENT
MIX *

1000IU/ml
ES-GROWTH
(LIF; Chemicon,
USA)

5ng/ml bFGF
(R&D System,
USA)

K.O. SERUM
(Gibco, Italy)

FBS
(Gibco, Italy)

A + + + 15%

B + + + 10% 5%

C + + + 10% 5%

D + + + + + 15%

E + + + + + 10% 5%

F + + + + 15%

G + + + 10% 5%

H + + 10% 5%

I + +

L + + + 10% 5%
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The following markers of pluripotency were analized:
Oct-4 (1:50, Chemicon, USA); Nanog (1:20, R&D System,
USA); SSEA-4 (1:100, Chemicon, USA). The specificity of
these antibodies on pig tissues was previously validated
[17–19]. Incubation with suitable secondary antibodies
(Alexafluor, Invitrogen, Italy) was carried out for 30 min
and nuclei were stained with 4′,6-diamidino-2-phenylindole
(DAPI). Samples were observed either under a TCS-NT
laser confocal microscope (Leica Microsystems, Germany)
or an Eclipse E600 microscope (Nikon, Japan), depending
on the experiment.

Telomerase Activity

Telomerase activity measurement was performed using the
TRAPeze® Telomerase Detection Kit (Chemicon, USA),
following the manufacturer’s instruction. Briefly, lysates
were obtained from IVF and parthenogenetic putative
pESC. Reactions were separated on non-denaturing TBE-
based 12% polyacrylamide gel electrophoresis and visual-
ized with SYBR Green staining. Buffer alone was used as
negative control, telomerase-positive control cells (provided
in the kit) was the positive control.

Table 2 Primers used for RT-PCR

GENE EMBL Accession No. Primer sequence Annealing temperature Fragment size

Oct-4 NM_001113060.1 For 5′- aggtgttcagccaaacgacc-3′ 64°C 335bp
Rev 5′- tgatcgtttgcccttctggc-3′

Nanog DQ447201.1 For 5′- atccagcttgtccccaaag-3′ 60°C 438bp
Rev 5′- atttcattcgctggttctgg-3′

Sox -2 EU503117.1 For 5′ -gccctgcagtacaactccat-3′ 60°C 216bp
Rev 5′- gctgatcatgtcccgtaggt-3′

Rex - 1 AM410991 For 5′-cttcaaggagagcgcaaaac-3′ 56°C 299bp
Rev 5′-tgtccccaatcaaaaatgct-3′

BMP-4 EU549864.1 For 5′-tgagcctttccagcaagttt-3′ 60°C 298bp
Rev 5′- caacgcacagatcaggaaga-3′

NF-H NM_021076.3 For 5′-agagctggaggcactgaaaa-3′ 60°C 248bp
Rev 5′-tccgacactcttcaccttcc-3′

α-amylase AF064742.1 For 5′-cgctccatgattgctgatta-3′ 57°C 196bp
Rev 5′-cctcaccacccaaatcaatc-3′

LIFR SSU97364 For 5′- atcatcagtgtggtggcaaa-3′ 60°C 201bp
Rev 5′- gcagggtccagactgagatg-3′

gp130 NM_001097432 For 5′- aaagctgcctcaacttggaa-3′ 60°C 211bp
Rev 5′- accagaaacttggtgccttg-3′

FGFR-1 AJ577088.1 (Hyttel, 2009) For 5′- actgctggagttaataccaccg-3′ 55°C 125bp
Rev 5′- gcagagtgatgggagagtcc-3′

FGFR-2 NM_001099924 For 5′-cgtgtacacccaccagagtg-3′ 60°C 139bp
Rev 5′- agaggctgactgaggtccaa-3′

STAT-3 DQ470570.1 For 5′- cgcagagttcaaacacctga-3′ 60°C 260bp
Rev 5′- agttcacgttcttggggttg-3′

PTEN FJ436380.1 For 5′-cgacgggaagacaagttcat-3′ 60°C 163bp
Rev 5′-aggtttcctctggtcctggt-3′

PI3K NM_001012956.1 For 5′- atgggggaagcagagaagtt-3′ 60°C 281bp
Rev 5′- ggcagtttcagccattcatt-3′

AKT AB499527.1 For 5′- atcgtgtggcaggatgtgta-3′ 60°C 200bp
Rev 5′- ctggccgagtaggagaactg-3′

Actin NM_007393.3 For 5′- tgaaccctaaggccaaccgtg-3′ 60°C 267bp
Rev 5′- tgtagccacgctcggtcagga-3′

Vitronectin NM_214104.1 For 5′-gagctgctgcactgactacg-3′ 60°C 299bp
Rev 5′-aaccgttcttgaggttggtg-3′

ITGB1 NM_213968.1 For 5′-cgggagaaaatgctccaata-3′ 60°C 227bp
Rev 5′-cacactcaaacgtcccattg-3′

Actin NM_007393.3 For 5′- tgaaccctaaggccaaccgtg-3′ 60°C 267bp
Rev 5′- tgtagccacgctcggtcagga-3′

Table 3 Primers used for Real
Time-PCR
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Differentation Ability of Putative pESC

Derivation of Embryoid Bodies

To induce the formation of embryoid bodies (EBs), cells
were cultured in 30 μl hanging droplets of putative pESC
medium without LIF and bFGF. The medium was refreshed
every day and after 10–12 days, EBs were detectable.
Differentiation of EBs was confirmed, through RT-PCR
screening for the expression of markers related to meso-
derm (Bone Morphogenetic Protein-4, BMP-4), ectoderm
(Neurofilament-H, NF-H) and endoderm (α-amilase) (see
Table 2).

Spontaneous In Vitro Differentiation

EBs were mechanically dissociated and cells were plated
directly onto CultureWell Chambered Coverglass 16-well
dishes (Molecular Probes, Italy) to encourage adherent
culture conditions and spontaneous differentiation. After
one week, cells were processed for immunocytochemical
analisys. They were subjected to the same process
previously described for immunocytochemical analisys
and were screened for the presence of differentiation
markers: Desmin (1:200, Chemicon, USA); Keratin 17
(1:200, Chemicon, USA); Vimentin (1:200, Chemicon,
USA). The ability of Keratin 17 antibody to recognize pig
cells is documented by the manufacturer. Desmin and
Vimentin antibody specificity was previously validated by
other Authors [17, 20].

Statistical Analysis

The Χ 2 test (P<0.05) was used to compare the results
obtained from IVF and parthenogenetic embryos.

Results

Assessment of Different Culture Conditions for Outgrowth
Formation and Cell Line Derivation

In this set of experiments we examined the effect of
different medium formulations (Table 1) through the
evaluation of primary outgrowth formation, outgrowth
expansion and cell line establishment. We tested the
different media using ICMs derived from both parthenoge-
netic and IVF embryos. The results obtained are summa-
rized in Table 4. No primary outgrowths were obtained with
media A, B, C, G, H, I and L. Using these media ICMs did
not attach or adhered loosely to the feeder layer, with no
increase in outgrowth cell number. Intermediate results
were obtained with media D and F. In these two groups, we
could observe attachment of ICMs. However all cells
differentiated after 9–12 days of culture. The best results were
obtained with medium E that allowed the derivation of
homogeneous outgrowths, consisting entirely of cells which
resembled ES cells in their morphology (Figs. 1 and 2, panel
A), both using parthenogenetic and IVF ICMs. The newly
produced outgrowths grew in size and, after 7–8 days of
culture, formed circular colonies of 3–5 mm in diameter,
with distinct margins (Figs. 1 and 2, panel A). At this stage
they were passaged onto a fresh feeder layer to establish cell
lines or were subjected to further characterization. Putative
pESC showed many pluripotency aspects common to mESC
and hESC. They were maintained for many passages (45
passages at present). They presented high telomerase activity,
which disappeared when cells were induced to differentiate
(Fig. 3), indicating a physiologically normal control of
telomerase activity in these cells. They expressed many of
the known pluripotency related transcription factors and
surface markers (Figs. 1 and 2, panel B and C).

Table 4 Effect of different culture media formulation. Total number of parthenogenetic and IVF ICMs plated, outhgrowth attachment and
pluripotent cell lines obtained

Medium Parthenogenetic ICM Parthenogenetic outgrowth IVF ICM IVF outgrowth Note

A 12 0 5 0 No

B 13 0 4 0 No

C 10 0 5 0 No

D 39 7 18 1 Differentiated after 9–12 days

E 36 30 16 2 Homogeneous and ESC-like morphology

F 24 4 10 1 Differentiated after 9–12 days

G 12 0 6 0 No

H 15 0 8 0 No

I 11 0 6 0 No

L 13 0 5 0 No
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Altogether, this result indicates that the use of medium
E, containing a combination of LIF, bFGF and FBS is the
most effective to promote outgrowth attachment and
support cell line expansion.

Characterization of Molecular Networks Involved
in the Inhibition of Differentiation

We analyzed the expression profile of a set of molecules
responsive to LIF and bFGF. The results obtained by RT-
PCR analysis are shown in Fig. 4 and indicate that putative
pESC express STAT-3, but mRNAs for LIF receptor
subunits (LIFR and gp130) are not present. On the contrary
expression of three genes (PI3K, AKT and PTEN),
representative of the PI3K/AKT pathway, a signaling
cascade known to be responsive to LIF, was detected
consistently. Further analysis demonstrated that putative
pESC express FGFR-2, while no positivity was obtained
for FGFR-1.

Derivation of EBs and Differentiation Plasticity of Putative
pESC

Putative pESC lines obtained from IVF embryos and
parthenotes were analyzed for differentiation ability. For-
mation of EBs was observed regularly after 10–12 days of
hanging droplets culture for both types of cell lines (Figs. 5
and 6, panel A). EBs expressed tissue-specific markers like
BMP-4, NF-H, and α-amilase (Figs. 5 and 6, panel B).
Furthermore when EBs were disaggregated and grown in
monolayer conditions, they presented the expression of
keratin 17, vimentin and desmin (Figs. 5 and 6, panel C),
indicating that subpopulations of cells representative of all
three germ layers could be obtained.

IVF-Embryos vs. Parthenotes: Blastocyst Rate,
Immunosurgery Resilience, Outgrowth and Cell Line
Formation

We compared blastocyst rate, immunosurgery resilience,
primary outgrowth formation and cell lines derivation using
IVF blastocysts and parthenotes as a source.

The results for this comparison are shown in Table 5 and
indicate that parthenogentic activation generated a signifi-
cantly higher number of blastocysts than IVF (23.1% vs
8.93%). ICMs were successfully isolated from 83 IVF
blastocysts (82.18%) and 185 parthenotes (65.6%). Parthe-
notes tended to be less resilient than IVF embryos to
immunosurgery, although this difference is not statistically

Fig. 1 Putative pESC derived from parthenotes. Putative pESC were
positive for several known pluripotency-related markers. The figure is
representative of all passages (45 passages at present). The expression
of Oct-4, Nanog, Rex-1, Sox-2 is shown in panel b. Genomic DNA
was used as a positive control; negative control was represented by
differentiated parthenogenetic putative pESC. Cytochemical analysis
with specific antibodies demonstrated immunopositivity of partheno-
genetic cells for Oct-4, Nanog and SSEA-4. Cell nuclei, stained with
DAPI, are coloured in blue (c)

R
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significant. However, parthenogenetic ICMs had a signifi-
cantly higher ability to form outgrowths (22.16% vs 4.82%)
and to generate cell lines that displayed an ESC-like
morphology (39 from parthenotes and only 3 from IVF

embryos). All cell lines (42) were positive for pluripotency
markers at the first passage. Ten of them lost their
expression within two to three passages and then differen-
tiated or degenerated. Only the remaining 32 cell lines, that
maintained pluripotency markers, displayed high telomer-
ase activity and showed differentiation capability, were
considered putative pESC (Figs. 1, 2, 3, 5 and 6). They
represented 2.41% of the plated IVF ICMs and 16.22% of
the parthenogenetic ones.

Fig. 3 IVF and parthenogenetic putative pESC telomerase activity.
Undifferentiated parthenogenetic and IVF putative pESC displayed
high levels of telomerase activity, while no telomerase activity could
be detected in differentiated (Diff) progeny, indicating a physiologi-
cally normal control of telomerase activity in these cells

Fig. 2 Putative pESC derived from IVF blastocysts. Putative pESC
were positive for several known pluripotency-related markers. The
figure is representative of all passages (45 passages at present). The
expression of Oct-4, Nanog, Rex-1, Sox-2 is shown in panel b.
Genomic DNA was used as a positive control; negative control was
represented by differentiated IVF putative pESC. Cytochemical
analysis with specific antibodies demonstrated immunopositivity of
bi-parental cells for Oct-4, Nanog and SSEA-4. Cell nuclei, stained
with DAPI, are coloured in blue (c)

�
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In order to understand why parthenogenetic ICM had
higher ability to form outgrowths, we compared the
expression level of cell adhesion molecules between
parthenogenetic and bi-parental ICMs. The results indicated
that the expression of beta integrin-1 (ITGB1) and
vitronectin was higher in parthenogenetic than in IVF
ICMs (see Fig. 7).

Discussion

We compared different media formulations using both pig
parthenogenetic and IVF embryos as a source for outgrowth
formation and cell line derivation. We could establish that,
regardless to the different source used, 1000 IU/ml of LIF,
5 ng/ml human recombinant basic Fibroblast Growth Factor
and a minimum concentration of 10% K.O. serum were
required in our medium, in order to ensure ICM attachment
(medium D and F). In our experimental conditions, the
presence of these components allowed 16.8% (45/268) of
the seeded ICMs to adhere to the inactivated feeder layer
and to form outgrowths. However it is interesting to note
that, only when these outgrowths were maintained also in
the presence of FBS and Ham’s F10 (medium E), self
renewal ability was ensured and stable lines were generated

Fig. 4 Gene expression panel of pluripotency pathways related genes.
Parthenogenetic and IVF putative pESC showed consistent expression
of FGFR-2, STAT3, AKT, PI3K and PTEN, while no positivity was
obtained for FGFR-1, LIFR and gp130

Fig. 5 Differentiation ability of parthenogenetic putative pESC after
induction of EB formation. RT-PCR analysis of RNA extracted from
EBs (a) consistently demonstrated expression of markers specific for
the three germ layers and, more in details bone morphogenetic
protein-4 (Bmp-4, mesoderm), neurofilament H (NF-H, ectoderm) and
α-amylase (endoderm). Genomic DNAwas used as a positive control;
negative control was represented by undifferentiated parthenogenetic
putative pESC (b). Disaggregation and plating of EBs confirmed
parthenogenetic cell plasticity, with consistent presence in the
monolayer of cells displaying immunopositivity for vimentin (ecto-
derm), cytokeratin 17 (endoderm) and desmin (mesoderm). Cell
nuclei, stained with DAPI, are coloured in blue (c)
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(32/52). A possible role played by FBS, in combination
with LIF, in the maintenance of pluripotency has recently
been demonstrated in experiments carried out with mouse
ESC, where the use of a medium supplemented with LIF
and FBS was able to preserve the undifferentiated pheno-
type [21]. Consistent with this, the cell lines generated in
our laboratory, displayed undifferentiated morphology,
expressed pluripotency-related markers and showed high
telomerase activity, indicating that the culture conditions
used were adequate to maintain several aspects related to
pluripotency (Figs. 1 and 2). This was further confirmed by
the ability of both IVF and parthenogenetic putative pESC
to give rise to EBs, that were able to differentiate into cell
types belonging to the three embryonic germ layers, as
shown by molecular screening and immunocytochemical
staining (Figs. 4 and 5).

Cell signaling pathways that are known to govern
pluripotency and that are well characterized in other species
are still to be elucidated in the pig and an understanding of
these aspects would indeed help to identify the conditions
adequate to support self-renewal requirements in this
species. Our results clearly indicated that neither LIF nor
bFGF alone are sufficient to establish outgrowths and
generate stable cell lines. Therefore we studied the
signaling pathways responsible for the biological activities
of both these molecules. Our results showed the expression
of STAT3 but the absence of gp130 and LIFR transcripts,
two specific subunits of LIF receptors (Fig. 3). In
agreement with this, a previous report demonstrated
inconsistent expression of LIFR in porcine 24 hr epiblast
cells [22]. The variability among samples was explained in
that study as a result of contaminating endoderm, making it
difficult to ascertain a potential importance of LIF/LIFR in
the porcine. This observation has been further confirmed by
a recent study that could not detect LIFR in the epiblast
cells of early embryos [23]. Altogether, these data would
imply the dispensability of LIF in supporting pluripo-
tency in the porcine species and would seem to disagree
with our results indicating LIF as a key supplement,
supporting both attachment and self renewal. However
we found that putative pESC actively transcribe for
PI3K, AKT (a key effector in the PI3K pathway) and
PTEN (a negative regulator of the same pathway)
(Fig. 3). The PI3K /AKT signaling cascade is known
to be responsive to LIF and has been previously shown
to trigger the expression of Nanog and to facilitate
efficient proliferation and survival of murine ESC [24].
Based on these observations, we hypothesize that LIF is
involved in maintenance of self renewal in porcine cells.
However this cytokine is unlikely to act through the
gp130/LIFR/STAT3 signaling pathway, but, rather via
alternative cascades, one of which could be represented
by the PI3K /AKT system.

Fig. 6 Differentiation ability of IVF putative pESC after induction of
EB formation. RT-PCR analysis of RNA extracted from EBs (a)
consistently demonstrated expression of markers specific for the three
germ layers and, more in details bone morphogenetic protein-4 (Bmp-
4, mesoderm), neurofilament H (NF-H, ectoderm) and α-amylase
(endoderm). Genomic DNA was used as a positive control; negative
control was represented by undifferentiated IVF putative pESC (b).
Disaggregation and plating of EBs confirmed IVF putative pESC
plasticity, with consistent presence in the monolayer of cells
displaying immunopositivity for vimentin (ectoderm), cytokeratin 17
(endoderm) and desmin (mesoderm). Cell nuclei, stained with DAPI,
are coloured in blue (c)
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A further factor that was tested in our experiments and
resulted to be beneficial for pig outgrowth attachment and
colony formation was bFGF. This observation is supported
by previous reports showing that FGF pathway is necessary
for proliferation and pluripotency [25, 26] and can fully
replace LIF for maintenance of hESC self-renewal [27].
Inhibition of the bFGF signaling has been demonstrated to
repress Oct3/4 expression, suppress downstream kinases
and drive ESC into differentiation [28, 29]. bFGF exerts its
effects, binding to one or more of its several specific
receptors [30, 31]. The expression studies carried out in our
experiments demonstrated the presence of FGFR-2 in pESC
(Fig. 3), indicating the ability of porcine cells to bind bFGF
and explaining the beneficial effect exerted by the addition
of this factor to the culture medium. These experimental
data suggest a possible role of the FGF signaling pathway
in self renewal of porcine cells. Furthermore it is notewor-
thy that bFGF can also bind and activate the PI3K /AKT

cascade [32, 33], which is expressed in putative pESC. It
cannot be ruled out that bFGF could exert its pluripotency
related effect through this pathway as well.

Expression of the molecules involved in the signaling
pathways described above was detected both in partheno-
genetic and IVF derived cells, implying the existence of a
number of common regulatory pathways between the two
cell populations. Striking diversities were however evident
in a second set of experiments where differences between
parthenotes and IVF embryos as a source for the establish-
ment of putative pESC were assessed. In these studies we
used the medium formulation previously selected as the one
ensuring the most adequate support for both and scored the
ability to generate stable outgrowths/cell lines from
embryos of different origins.

We observed that parthenogenetic ICMs appeared to be
less resilient than IVF ones to the standard immunosurgery
protocol used (Table 5). We have no clear explanation for
this, however it may be useful to remember that a
significantly higher number of apoptotic cells has been
reported in pig parthenogenetic blastocysts, compared with
fertilized embryos [34]. This may represent a disadvantage
and leads to a decreased ability of these embryos to
withstand the stress related to immunosurgery treatment.
By contrast, isolated parthenogenetic ICMs generated a
significantly higher number of outgrowths than IVF ones
(22.16% vs 4.82%). This observation suggests a better
ability of parthenogenetic embryos to adhere to the feeder
cells and to form outgrowths. Although, further studies are
needed in order to better elucidate this aspect, we think that
one of the possible explanation of this trend may be found
in the higher expression levels of beta integrin-1 and
vitronectin, that we consistently detected in parthenogenetic
ICMs (see Fig. 7). Both these molecules are involved in the
implantation cascade and stabilize cell to cell adhesion [35].
Their increased expression in parthenogenetic ICMs may
therefore be one of the possible factors accounting for the
significantly higher number of outgrowths obtained from
parthenotes. Consistent with these data, previous studies
carried out in mouse ESC have shown that altered
expression of integrins lead to a reduced ability of the cells
to adhere and to maintain stable association with fibroblast
feeder layers [36]. The higher ability of parthenogenetic

Fig. 7 Expression level of adhesion molecules involved in the
implantation cascade. Bars represent the average ΔCt of parthenoge-
netic ICMs (orange) and IVF ICMs (blu) related to vitronectin and
ITGB1 genes. ΔCt value was obtained from the Ct of the target gene
normalized with the Ct value for β-actin of the same sample

IVF Parthenogenetic activation

Oocytes 1130 1221

Blastocysts 101 (8.93%) 282 (23.1%)

Successful Immunosurgery 83 (82.18%) 185 (65.6%)

Outgrowths 4 (4.82%) 41 (22.16%)*

Cell lines 3 (3.61%) 39 (21.08%)*

Putative pESC 2 (2.41%) 30 (16.22%)*

Table 5 Effect of IVF vs.
parthenogenesis on different pa-
rameter leading to the derivation
of putative pESC lines. Total
number (% rate) of ICMs, out-
growths and cell lines obtained
from IVF and parthenogenetic
blastocyst. *(P<0.05)
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ICMs to form outgrowths represents an obvious advantage
for the generation of cell lines. However, it may as well
increase cell ability to improperly colonize a substrate and
needs to be further studied. Several reports in the literature
correlates increased expression of cell adhesion molecules
to the process of invasion and tumor formation [37, 38].
The higher ability of parthenogenetic ICMs to form
outgrowths described in the present report does not appear
to be specific of the pig and is common to many other
species. In the mouse, Kim K. et al. [15] describe an
efficiency of ESC de novo isolation from parthenogenetic
activated oocytes of 65%, compared to the much lower
success (averaging 15%) reported when IVF blastocysts
were used as a source [39]. Consistent with these data, also
in human systems, embryos obtained with parthenogenetic
activation protocols were more effective than those
obtained from regular IVF, with a significantly higher
number of ICMs that attached to MEF feeder layer and
generated stable cell lines [14]. Similarly, in rabbit, while
only 1 line was isolated from ten IVF blastocysts, 3 lines
were recovered from ten parthenogenetic embryos [40].

These observations suggest that similar regulatory path-
ways are likely to exist among different species and
modulate many of the mechanisms involved in the control
of cell adhesion, outgrowth formation and cell line
generation. However species related differences appear to
drive the coupling of these common mechanisms with the
specific timing of embryo development, the distinct
expression and relative concentration of pluripotency-
related molecules and the diverse needs of the cell in its
micro environment. We think that the understanding of
these subtle but meaningful diversities within species may
provide beneficial information towards the isolation of
genuine ESC.
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Abstract

The establishment of embryonic stem cell (ESC) lines in domestic species could have great impact in the agricultural as well
as in the biomedical field. In particular, derivation of pig ESC would find important applications aimed at improving health and
production traits of this species through genetic engineering. Similarly, the immunological, morphological, physiological, and
functional similarities to the human make the pig a very effective and suitable animal model for biomedical studies and pre-clinical
trials. While proven blastocyst-derived mouse and human ESC lines have been established, no validated porcine ESC (pESC) lines
are available. In the present manuscript we briefly discuss some of the factors that make the establishment of ESC lines in the pig,
and in animal species other than mouse and human, a very slow process. The paucity of information related to morphology,
pluripotency markers, differentiation capability hampers a thorough evaluation of the validity of putative lines.

These difficulties are further increased by the lack of reliable antibodies, reagents, and in vitro culture systems that could ensure
reliable results in the pig and allow for the screening and long-term maintenance of pESC.

Data from the literature suggest that similar regulatory pathways are likely to exist among different species. Coupling of these pathways with
their distinct expression patterns, the relative concentrations of pluripotency-related molecules, and timing of embryo development, along with
supportive micro-environmental conditions, would appear to vary in a species-specific manner. We feel that the understanding of these subtle
but meaningful diversities may provide beneficial information about the isolation of genuine porcine embryonic stem cells.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

During the past 15 years, many reports of porcine
ESC lines, or what are often presented as “ES-like”
cell lines, have been published. However, validated
pig ESC (pESC) lines still do not exist and no con-
clusive results have been obtained, despite numerous
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reports related to the isolation and propagation of putative
pESC lines (reviewed in Brevini et al, 2007) [1].

Putative pESC established by Evan et al (1990) [2]
and their relative differentiated cells, were poorly de-
fined. In other studies no ESC-like cells proliferated
beyond passage 10, while epithelial-like lines survived
up to passage 42, but failed to differentiate [3]. In other
studies the pluripotent features of both ESC-like and
epithelial-like cells were difficult to maintain for more
than a few passages [4]. The general consensus is that
none of these lines were truly ESCs and pluripotent
[1,5] and a number of technical questions are still to be
answered. None have been successfully used as a bio-
logical reagent in a manner similar to the use of human,
monkey or mouse ES cells, i.e., directed pluripotent in
vitro differentiation [6,7] or as a means of genetically
engineering through embryonic chimera formation [8].

The majority of mouse and monkeys [9] ESC lines
have been established from in vivo-derived embryos,
while human ones originate from in vitro-fertilized
(IVF) and in vitro-cultured (IVC) blastocysts [10–12].

In the peer-reviewed reports on establishment of
porcine ES, ES-like, or ICM cell lines, all used in
vivo-derived blastocysts as their primary culture mate-
rial [2,13–18]. These in vivo blastocysts were acquired
from the reproductive tract, at various stages, but gen-
erally at the early blastocyst stage to the later elongated
or filamentous stage. Only in the last years studies
reported on the isolation of putative pESC using in vitro
produced blastocysts [1,19–21].

Given the high cost and the low efficiencies of ESC
derivation from in vivo derived embryos [22], more
researchers are working with domestic species to gen-
erate greater numbers of in vitro embryos (in vitro
fertilized embryos, parthenotes, somatic cell nuclear
transfer embryos) for use in ESC isolation. However,
difficulties are evident in the production of pESCs in
vitro: while IVF of bovine embryos is well established,
production of porcine embryos in vitro is still challeng-
ing, with low efficiency and quality [23].

2. Different species, different timing

The optimal embryonic developmental stage for the
initiation of ICM cultures for establishing pESC lines is
not known.

At the time of implantation, the mouse blastocyst
contains three cell types: epiblast, trophectoderm, and
primitive endoderm [24]. The epiblast will give rise to
the embryo and it has been shown to be the source for
ESCs [25]. These three early embryonic lineages are

present in all eutherian species. However, compared to
mice and humans, where the epiblast never gets ex-
posed to the uterine environment, blastocysts of ungu-
lates have an extended period of preimplantation de-
velopment, during which exposure takes place (Fig. 1).
In man, formation of the three early lineages takes
approximately 6 d post fertilization [26]. In contrast, in
the pig, sheep, and cow, epiblast formation starts at
hatching and is completed around day 12 [27]. This
implies that no defined epiblast is likely to be present in
pig blastocysts before hatching (day 6 or 7 of develop-
ment in vivo) [28]. During the following days there is
only a modest increase in the number of epiblast cells
in the ICM of the blastocyst compared with the increase
in trophectoderm and visceral endoderm cells.

In pig conceptuses, the thin layer of trophectoderm,
the Rauber’s layer, covering the epiblast and separating
it from the uterine lumen and visceral endoderm,
slowly starts to degenerate by day 9 post-fertilization.
This structure progressively disappears, leaving the epi-
blast directly exposed to the uterine lumen [29]. The
first signs of polarity become evident along with the
formation of a crescent-shaped thickening within
the posterior third. This thickening will differentiate
into the primitive streak. This event accompanies the
appearance of defined mesoderm and endoderm layers
[30]. It follows a gradual downregulation of the pluri-
potency marker OCT-4 with a concurrent upregulation
of �-tubulin III expression, a marker of neural differ-
entiation. This suggests that embryos at this stage are
no longer suitable for ESCs derivation.

The question that needs to be answered is: what
point in the preimplantation development is best for the
isolation of stable pESC lines? Examining this prob-
lem, Chen et al [17] found that early hatched in vivo

Fig. 1. Species specific periods of early embryos development.
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blastocysts had a relatively small number of trophecto-
derm cells and a less flattened ICM. The success rate
for the establishment of pig ES-like cell cultures was
decidedly greater (12 cultures (21%) vs. none) from
recently hatched blastocysts than from late-hatched
blastocysts [17]. Another report used in vivo pig blas-
tocysts from day 5–6 to day 10–11 of gestation and
found that while day 10–11 blastocysts yielded ES-like
cell cultures, few or none were propagated from day
5–6 embryos [15]. Our experience confirms the possi-
bility of establishing stable pluripotent cell lines using
day 6–7 blastocysts. This was demonstrated, using both
in vivo and in vitro (parthenogenetic and IVF) derived
embryos, which were treated with pronase for 7 min to
remove the zona pellucida and then subjected to im-
munosurgery, using a custom made pig antiserum.
ICMs were seeded on inactivated SIM mouse embryo-
derived and thioguanine and ouabain resistant (STO)
fibroblast feeder layers and monitored for attachment
and derivation of outgrowths (Fig. 2). Although cell
lines were derived from the different sources, the rate
of success varied and parthenogenetic ICMs displayed
a higher ability to form outgrowths and generate stable
cell lines [1,31].

3. Which culture conditions?

Compared with the large number of studies explor-
ing the appropriate culture conditions for mouse and
human ESCs, there is a minimal amount of data avail-
able for domestic species ESC. That limited informa-
tion is mainly based on mouse ESC culture systems. As
a result, such conditions did not appear to be effective
for maintaining stable undifferentiated ESC lines in
domestic animals. We are convinced that a major goal
at present is to develop better culture formulations in
order to obtain homogenous pluripotent outgrowths

from pig embryos and identify the best in vitro envi-
ronment that would facilitate derivation of stable pESC
culture.

Several authors highlighted the need for a feeder-
layer (STO cells or mouse embryonic fibroblasts) in
order to ensure the survival of pig (and bovine) epiblast
cells in primary culture [32,33]. Without feeder-cell
support, cultures of primary pig epiblast cells failed to
grow, and instead senesced and died over a 10–14 d
period. Similar results were reported with feeder-free,
short-term, primary cultures of pig ICMs, with or with-
out the addition of leukemia inhibitory factor (LIF) to
the medium [34]. It is plausible that ungulate ES cell
line establishment will therefore require feeder cells, at
least in their initial culture, as has been true for the
establishment of most mouse and primate ES cell lines.

The need for a feeder layer does not seem to be
related only to the release of specific factors by the
feeder cell populations, since the use of conditioned
medium did not exert a comparable effect. The pres-
ence of feeder cells appeared to be necessary in order to
ensure good culture conditions. Therefore, at present,
most laboratories use protocols similar to those de-
scribed in the mouse, and ungulates ESCs are grown on
a feeder layer, in medium supplemented with various
other nutrients or components like basic fibroblast
growth factor (bFGF) [35–37], LIF [23,35–38], epider-
mal growth factor (EGF), and stem cell factor (SCF)
[38]. We have found that pig cell lines do not express
LIF receptor, indicating that the addition of this cyto-
kine to the culture medium is not essential for the
maintenance of pluripotency. However, LIF appears to
inhibit the differentiation process [21] since its pres-
ence in the standard medium used for embryoid body
(EB) formation, results in preventing cell commitment
to germ layer specification and inhibited cell aggrega-
tion (see Fig. 3).

Fig. 2. Isolation of ICM from a preimplantation pig blastocyst, plating on feeder cells and derivation of a colony of putative pluripotent cells.
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It is likely that the role of LIF in pluripotency main-
tenance of pESC does not occur through a classical
LR�-gp130 and STAT3 activation pathway [39]. In
agreement with this, Blomberg et al demonstrated in-
consistent expression of LIFR in porcine epiblast cells
cultured for 24 h [40]. The variability among samples
that was observed in that study was explained as the
result of contaminating hypoblast, making it difficult to
ascertain a potential importance of LIF/LIFR in the
porcine. This observation has been further confirmed
by a recent study that could not detect LIFR in the
epiblast cells of early porcine embryos [41]. Within this
scenario, we suggest that LIF effect is likely to be
mediated through alternative signaling pathways that
have been shown to participate in maintaining pluripo-
tency. Our data indicate a possible involvement of the
PI3K/AKT signaling cascade [31], which is known to
be responsive to LIF and has been shown to trigger the
expression of NANOG and to facilitate efficient prolif-
eration and survival of murine ESC [42].

Another key aspect in long term cell culture main-
tenance is sensitivity of cell to cell contacts. Indeed, the
inability to withstand dissociation of primate ES cells
into single-cell suspensions is a complicating factor in
their culture. Mouse ESCs are in general dissociated
with trypsin–EDTA and this procedure does not seem
to affect their plating efficiencies [43]. In contrast,
enzymatic and chemical dissociation of human or mon-
key ES cells typically gives re-plating efficiencies of

less than 1% [44] and seems to render the cells more
exposed to chromosome abnormalities [45,46].

This is apparently even more pronounced in ungu-
late epiblast cells. Primary cultures of AP positive,
undifferentiated, ungulate epiblast cells, prepared by
the successive immunodissection, culture, and physical
dissection method, are extremely sensitive to lysis, by
either physical manipulation, withdrawal of calcium, or
exposure to trypsin-EDTA [32,33,47]. Primary cultures
of pig epiblast cells, in particular, will rupture and lyse
after only 5 min exposure to Ca2�/Mg2�-free PBS,
with cells completely disintegrating in 30–60 min [47].
This inability to withstand dissociation is a critical
point for passaging protocols of porcine epiblast cells.
In line with this requirement, we disaggregate pig ICMs
using mechanical dissociation and passage pig cell line
colonies using micro-loops and mechanical pipetting,
avoiding completely the exposure to enzymatic diges-
tion. Furthermore, while performing these procedures,
we always make sure to keep clumps of cells and never
reach single cell suspension that would result in imme-
diate differentiation.

4. How do we assess pluripotency?

For many years, characterization of ESC in domestic
species was mainly carried out on the basis of morpho-
logical criteria, given the fact that, until recently, no

Fig. 3. Pluripotent cells, cultured in hanging droplets, generate EBs after 9–10 days of co-culture. The addition of LIF to the medium inhibited
differentiation and cell aggregation.

547T.A.L. Brevini et al. / Theriogenology 74 (2010) 544–550

APPENDIX C



specific molecular marker has been identified. Al-
though evidence based on the comparison between the
transcriptomes of mouse and human ESC leads to the
conclusion that mouse ESCs are substantially different
from human cell lines, they express the same set of
factors, known to be required for pluripotency in mouse
ESCs, including, for example, the two homeodomain
proteins OCT-4 and NANOG [48].

Furthermore, classic human and mouse ESC mark-
ers such as OCT-4, SSEA-1, SSEA-4 and alkaline
phosphatase are indeed expressed by ungulates ICM
and embryo-derived cell lines; however, the same
genes are also expressed in the trophectoderm and
endoderm [49–52]. The paucity of specific information
available to authenticate appropriate ESC markers ham-
pers thorough evaluation of the validity of putative
pESC lines.

OCT-4 protein expression mode in porcine is con-
troversial. Many authors report data demonstrating that
both ICM and trophectoderm express this marker
[1,40,50,53–58]. Furthermore, recent studies show
OCT-4 gene expression in porcine trophectoderm and
endoderm cell lines [59]. On the other hand, according
to Vejlsted et al, in embryos at the expanding hatched
blastocyst stage, OCT4 is confined to the inner cell
mass [60]. In our studies we find that OCT-4 mRNA is
detectable at the time of porcine ICM plating and dur-
ing the first passages, while, by passage seven to ten,
OCT-4 mRNA expression is completely turned off or,
when expression persists, immune-positivity is com-
mon to the cytoplasmic compartment and not only
restricted to the nucleus [1]. Of course a consistent
limitation in these findings is the lack of reliable anti-
bodies for ungulates that could ensure consistent re-
sults, which makes the interpretation of the data even
more confused. It is interesting to note that, unexpect-
edly, downregulation of OCT-4 does not seem to affect
these cells, which have been cultured for several further
months without showing changes in their morphology
and with no expression of specific differentiation mark-
ers. These observations suggest that, even though OCT-4
is likely to be a marker of stemness also in the pig, it does
not seem to be the only or the key factor playing a role in
the maintenance of pluripotency in this species [39]. It
may be hypothesized that OCT-4 presence plays an indis-
pensable role in plating and early culture of pig epiblasts,
but may then be replaced by other pluripotency factors
like NANOG, which is a well-characterized marker in
human and mouse ESC lines.

NANOG is constantly expressed in the cell lines that
were generated in our laboratory and, in contrast to

OCT-4, it is detectable at every passage [1]. Interest-
ingly, it is also strongly downregulated in caprine tro-
phectoderm, while being strongly expressed in the ICM
[52] and does appear to be a specific marker of pluri-
potency for ruminants because both its mRNA and
protein are found in the ICM and strongly downregu-
lated in the trophectoderm of caprine blastocysts [52].

Altogether, these observations lead us to hypothe-
size that NANOG may be able to maintain pig pluripo-
tent cells in an undifferentiated state, also in the ab-
sence of the simultaneous expression of OCT-4. This is
further supported by recent studies indicating that
NANOG over expression is sufficient to support mouse
ESC self-renewal [61].

On the other hand, it may be hypothesized that
NANOG expression, in the absence of OCT-4, indicates
a “stand-by” mode, where a cell is prevented from
committing to differentiation but, at the same time, is
not fully pluripotent and only the simultaneous expres-
sion of both factors (and, possibly, many others) has to
be present in order to maintain cells in a genuine plu-
ripotent state.

Conflicting data regarding the expression of other
pluripotency markers (SSEA1, SSEA4, Alkaline Phos-
phatase, Sox2, Rex1) further complicates our under-
standing of pESC. Although these factors are consid-
ered characteristic of ESC in other species, they cannot
be regarded as definitive markers in the pig [1,50,59].

5. Perspectives and strategies

Many factors, some of which are briefly discussed in
the present manuscript, make the establishment of ESC
lines in the pig, and in animal species other than mouse
and human, a very slow process. The paucity of con-
clusive information related to morphology, pluripo-
tency markers, differentiation capability that should be
distinctive of pESC, hampers thorough evaluation of
putative lines at present. These difficulties are further
increased by the lack of antibodies, reagents and tools
that ensure reliable screening in the pig and, as a result
of this, misleading assessments are a real hazard.

Further investigation is required to identify the op-
timal time for the initiation of pig ICM cultures and to
set up better in-vitro culture systems for the establish-
ment and long-term maintenance of pESC. The inter-
actions with the feeder layer still need to be fully
understood. It is reasonable to assume that similar reg-
ulatory pathways are likely to exist among different
species and modulate many of the mechanisms in-
volved in the control of cell adhesion, outgrowth for-

548 T.A.L. Brevini et al. / Theriogenology 74 (2010) 544–550

APPENDIX C



mation and cell line generation. However species re-
lated differences may drive the coupling of these
common mechanisms with the specific timing of em-
bryo development, the distinct expression and relative
concentration of pluripotency-related molecules and
the cell needs in its micro environment. We feel that the
understanding of these subtle but meaningful diversi-
ties in the pig species may provide beneficial informa-
tion towards the isolation of genuine embryonic stem
cells. Possibly, these aspects can be better evaluated if
we concentrate our research on the identification of
porcine specific pathways involved in the control of
self-renewal, focusing on a close re-exam of the mech-
anisms driving pig early embryo development and dif-
ferentiation. This approach should comprise the evalu-
ation of both intrinsic and extrinsic factors that may not
be the same molecules that have been shown to be
effective in other species. There is still a lot of work to
be done and there are no shortcuts.
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Abstract: Human parthenogenetic embryos have been recently proposed as an alternative, less controversial source of 

embryonic stem cells. However many aspects related to the biology of parthenogenetic cell lines are not fully understood 

and still need to be elucidated. These cells have great potentials; they possess most of the main features of bi-parental 

stem cells, show the typical morphology and express most of the pluripotency markers distinctive of ESC. They also have 

high telomerase activity, that disappears upon differentiation, and display great plasticity. When cultured in appropriate 

conditions, they are able to give rise to high specification tissues and to differentiate into mature cell types of the neural 

and hematopoietic lineages. However, their injection in immunodeficient mice has been reported to result in tumour for-

mations. Aberrant levels of molecules related to spindle formation, cell cycle check points and chromosome segregation 

have also been detected in these cells, that are characterized by the presence of an abnormal number of centrioles and 

massive autophagy. All these observations indicate the presence of an intrinsic deregulation of the mechanisms controlling 

proliferation versus differentiation in parthenogenetic stem cells. In this manuscript we summarize data related to these 

aberrant controls and describe experimental evidence indicating their uniparental origin as one of the possible cause. Fi-

nally we propose their use as an intriguing experimental tool where the pathways controlling potency, self renewal and 

cell plasticity are deeply interconnected with cell transformation, in an unstable, although highly controlled, equilibrium 

between pluripotency and malignacy.  

Keywords: Centriole, mitotic spindle, parthenogenesis, pluripotency, tumorigenic. 

INTRODUCTION 

 Parthenogenesis is the process by which an oocyte can 
develop without the intervention of the male counterpart. It 
is a form of reproduction common to a variety of organisms 
such as fish, ants, flies, honeybees, amphibians, lizards and 
snakes, that may routinely reproduce in this manner. 

 Mammals are not spontaneously capable of this form of 
reproduction, but, mammalian oocytes can be successfully 
activated in vitro, mimicking the intracellular calcium wave 
induced by the sperm at fertilization, which triggers cleavage 
divisions and embryonic development [1]. Mammalian 
parthenotes, however, are unable to develop to term and ar-
rest their development at different stages after activation, 
depending on the species [2]. The reason for this arrest is 
believed to be due to genomic imprinting which causes the 
repression of certain genes [3], that are normaly expresse by 
the paternal allele. 

 Because mammalian parthenotes are inherently unable to 
form a new individual, following the success reported in 
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mouse [4, 5] and non-human primate models [6, 7], human 
parthenogenetic embryos have recently been proposed as an 
alternative, less controversial source of embryonic stem cell 
lines [1, 8-11]. Parthenotes may also represent a possible tool 
for studies on the mechanisms driving early human embryo-
genesis and for the pre-clinical test of experimental protocols 
in human assisted reproduction (i.e. different oocytes cryo-
preservation procedures, oocyte in vitro maturation or polar 
body genetic screening). However many aspects related to 
the biology of parthenogenetic embryos and parthenogenetic 
derived cell lines still need to be elucidated. The assembly of 
the new embryonic centrosome in the absence of the sperm 
centriol can lead to aberrant progression of cell cycle and 
spindle formation [12]. The decreased extent of heterozy-
gosis may amplify any negative genetic component poten-
tially present in the genotype [13, 14]. The very high inci-
dence of chromosome instability and aberrant chromatid 
separation in oocytes retrieved from IVF patients, especially 
when over 34 year old [15-18] also represents a concern, 
given the fact that these represent a large part of the popula-
tion accessing assisted reproductive therapy and, hence, are a 
major potential source of oocytes for parthenotes derivation. 

 In an attempt to better elucidate some of these aspects, 
human parthenogenetic (HP) cell lines, recently derived in 
our laboratory [2, 19], were characterized for their pluripo-
tency and differentiation plasticity, both in vitro and in vivo. 
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Here we discuss the characteristics of these cell lines that are 
common to bi-parental embryonic stem cells. However we 
also describe the presence of an intrinsic deregulation of the 
mechanisms controlling proliferation versus differentiation 
and suggest their uniparental origin the possible cause. 

PLURIPOTENCY AND IN VITRO DIFFERENTIA-

TION ABILITY OF HP CELL LINES 

 The development of human parthenotes to the blastocyst 
stage was reported only recently [20-22] and not many data 
are available because of the limited accessibility of unfertil-
ized human oocytes. Even more limited are the information 
related to the potential plasticity of the lines that can be de-
rived from parthenogenetic human embryos. The lines de-
rived in our laboratory have been growing for over two years 
and possess the main features of bi-parental stem cells. They 
are capable of renewing themselves; they can be continu-
ously cultured in an undifferentiated state and can be propa-
gated extensively in vitro. For over 70 passages they con-
stantly expressed markers that characterize and are distinc-
tive of human embryonic stem cells, such as Oct-4, Nanog, 
Rex-1, Sox-2, alkaline phosphatase, SSEA-4, TRA 1-81, 
indicating a pluripotency signature that is not influenced by 
the exclusive presence of the maternal genome. In common 
with biparental cell lines they also display high telomerase 
activity, which is often correlated with self-renewal, regen-
eration and immortality and is typically expressed in germ 
cells and embryonic stem cells [23, 24] (Table 1). In line 
with this, undifferentiated HP cells displayed high levels of 
telomerase activity, while no telomerase activity could be 
detected when cells were subjected to specific stimuli in or-
der to induce tissue differentiation in vitro . These data indi-
cate that a physiologically normal control of telomerase ac-
tivity is present in HP cells and that, if subjected to culture 
conditions that induce differentiation, they turn down their 
telomerase activity. Consistent with this, HP cells were able 
to form embryoid bodies (EBs) that actively transcribed 
RNAs involved in specification of the three embryonic germ 
layers, demonstrating the potential of these cells to differen-
tiate in the main tissue types of the body. Interestingly, very 
low or no expression of trofectoderm-related markers was 
detected, suggesting that human parthenogenetic cells have a 
poor capability to differentiate towards trofectoderm and this 
may reflect parthenote inability to give rise to adequate fetal 
membrane development and to implant correctly. 

 In our opinion a crucial point was to assess the possibility 
to drive differentiation of human parthenogenetic cells to-
wards a specific lineage, in controlled culture conditions. 
Data from our lab demonstrate that cells were able to form 
different cell subtypes belonging to the neural lineage as well 
as to differentiate in the complex array of hematopoietic 
cells. Although further assays to test the real extent of cellu-
lar functionality are needed, these results further confirm 
human parthenogenetic cell lines differentiation potential. In 
particular our experiments showed that HP cells were able, 
not only to give rise to early neural lineages, as previously 
described [8-11], but also to more mature cell types express-
ing nestin, CNPase and MAP2 [19]. This is consistent with 
the observation that murine androgenetic embryonic stem 
cells are able to differentiate into neuronal and glial cells 
[25]. Similarly, exposure of HP cells to specific cytokines 

and adequate culture conditions allowed for differentiation of 
these cells towards the hematopoietic lineage, with the gen-
eration of lymphoid, erythroid and myeloid sub-populations. 
Our results further expanded current knowledge on HP in 
vitro differentiation plasticity showing the formation of ma-
ture hemopoietic cell lineages and confirms what has been 
recently reported in mouse androgenetic and gynogenetic 
stem cells, that where shown to be able to generate adult-
transplantable hematopoietic stem cells that can repopulate 
the hematopoietic system of adult transplant recipients [25]. 
Altogether these findings indicate that, outside the normal 
developmental paradigm, the differentiation potential of uni-
parental cells may be much less restricted than that of 
parthenogenetic cells in chimeras and that these cells can be 
an interesting and relevant model for the study of fundamen-
tal mechanisms involved in human lineage determination. 

Table 1. Comparison of Pluripotency Signature in Biparental 

and Parthenogenetic (HP) Cell Lines 

 
Human Biparental 

ESC 

Human Partheno-

genetic Cell Lines 

(HP) 

Oct-4 + + 

Nanog + + 

Sox-2 + + 

Rex-1 + + 

TRA 1-81 + + 

SSEA-4 + + 

Telomerase activity high high 

EB derivation yes yes 

PARTHENOGENETIC CELLS SHOW A DEREGU-

LATION OF THE MECHANISMS CONTROLLING 

PROLIFERATION VERSUS DIFFERENTIATION 

 Injection of HP cells in immunodeficient mice gave rise 
to the formation of malignant sarcomas with myofibroblastic 
differentiation [26]. This is consistent with the observation 
that the subcutaneous injection of androgenetic mouse em-
bryonic stem cells in immunodeficient mice generates sar-
comas with muscular differentiation [27]. These findings 
suggest the presence of an intrinsic deregulation of the 
mechanisms controlling the choice between proliferation and 
differentiation in embryonic stem cells obtained through 
parthenogenesis and androgenesis. However, it is interesting 
to note that this appeared to be modulated by the microenvi-
ronment and, while it was undetectable when cells were dif-
ferentiated in vitro, it became evident once cells were ex-
posed to the in vivo milieu. 

 These results are in contrast to what previously described 
in other human parthenogenetic cell lines [8-11] and the pos-
sibility exists that these anomalies derive from differences in 
the procedures used for the derivation of the cell lines. We 
think that an important factor to be considered is the age of 
the oocyte donors. This aspect could be important, given the 
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high incidence of chromosome instability and aberrant 
chromatid separation in oocytes retrieved from IVF patients, 
especially when over 34 year old [15-17]. Unfortunately no 
details on donors age were given in the other reports, there-
fore the relevance of this parameter cannot be evaluated. 

 However, based on a series of experiments carried out in 
our lab [19], we hypothesize that the uniparental origin of 
HP cells and, in particular, the lack of the centrioles supplied 
by the male counterpart, may be a possible explanation of the 
altered behaviour of parthenogenetic cell lines upon in vivo 
transplantation, with the use of relatively old donors as a 
potential aggravating factor. 

PARTHENOGENETIC CELLS AND DE-NOVO CEN-

TRIOLE ASSEMBLY 

 It has been demonstrated that centrioles degenerate and 
are lost during human oogenesis and, while oogonia and 
growing oocytes display normal centrioles until pachytene 
stage, they are absent in the mature oocytes [28]. With the 
notable exception of mice [29] this degenerative process has 
been described in rhesus monkeys [30], rabbits [31], cows 
[32], sea urchins [33], Xenopus [34], and several other spe-
cies [35]. Due to the absence of centrioles, the oocyte centro-
somal material does not aggregate into unified foci and is 
unable to form astral microtubules and a correctly oriented 
spindle, unless rescued by a spermatozoon. The conse-
quences of the lack of centrioles on parthenogenetic devel-
opment have been studied in detail in lower species. In Sci-
ara parthenogenetic embryos, the spindles assembled without 
centrosomes are anastral, and the distance between the 
daughter nuclei is greatly reduced [36]. This limitation is 
common to many other species that are obligatory or faculta-
tive parthenotes, where successful parthenogenesis largely 
depends upon the oocyte ability to generate complete and 
functional centrosomes, in the absence of the material sup-
plied by a male gamete. In particular, parthenogenetically 
activated sea urchin and insect eggs have been described to 
form multiple centrioles, possibly as the result of the lack of 
a correct control on the process of spindle formation [37-39]. 
Indeed, the inability of parthenogenetic oocytes to organize 
normal spindles, due to the lack of a functional centrosome, 
has been suggested as a strict checkpoint control to suppress 
parthenogenetic development [40], since it is not an evolu-
tionarily preferred pathway, even in species that are faculta-
tive parthenotes, because it leads to genomic homogeneity 
that, in turn, results in the accumulation of genetic anomalies 
in the population. These observations on the parthenogenetic 
process in lower species are in agreement with our findings 
in HP cells. Similarly to what reported in sea urchins and 
many insects, for instance, also HP cells display multiple 
centrioles Fig. (1) suggesting that the ability to rearrange 
functional centrosomes is altered in these cells. Marshall 
[41], suggested that centriole de novo assembly is normally 
turned off when centrioles are present in a cell. Therefore the 
absence of sperm centriole in parthenotes may lead to the 
lack of the negative regulatory mechanism that normally 
suppress de novo centriole assembly and may explain the 
presence of multicentriolar structures, as the ones described 
in parthenotes and as the ones we detect in HP cells. 

 Interestingly enough, HP cells can proliferate and divide 
and most importantly, they can correctly differentiate, into a 
variety of tissues, responding to experimental conditions that 
are able to induce differentiation in bi-parental cells. This 
ability does not seem to be limited by the abnormalities de-
scribed above and suggests that the requirement of a paternal 
centrosome described in lower animals appears to be less 
stringent in human cells, at least in in vitro controlled condi-
tions. Indeed, in higher mammals, genomic imprinting is 
thought to be the main mechanism to the obligatority of en-
sure biparental fertilization [42]. However these abnormali-
ties in spindle rearrangement may explain the high percent-
age of cells showing misshaped, mal-segregated chromo-
somes in our cell lines. Multiple chromosome malsegrega-
tions have been previously described in human oocytes after 
parthenogenetic activation, either spontaneous or induced by 
puromycin [43]. Consistent with this, a high incidence of 
polyploid and mixoploid chromosomal complements has 
been reported in parthenotes derived from bovine and por-
cine activated oocytes, with abnormal chromosomal com-
plements occurring as early as completion of the first cell 
cycle and, again, it was linked to the absence of a paternally 
supplied centrosome [44, 45]. 

 The patterns of abnormal centrosome reformations ob-
served in HP cells closely resemble those seen in cancer cells 
which argues that structural defects of centrosomes can ac-
count for the formation of abnormal mitosis and multipolar 
cells frequently observed in cancer [46]. Interestingly 
enough these abnormalities do not seem to affect the overall 
proliferation rate and in vitro differentiation plasticity of HP 
cells. Although this needs to be further elucidated, it could 
be partially explained by the massive autophagocitic activity 
present in these cells. This process is likely to be used as an 
active self-protective strategy in order to eliminate highly 
abnormal organelles thus contributing to cell survival and 
ensuring “normal” population [47]. 

PARTHENOGENETIC CELLS AND MITOTIC SPIN-

DLE CHECKPOINT MOLECULES 

 We previously showed that HP cells display altered ex-
pression levels of mitotic check point molecules Fig. (2). In 
particular, the comparison of HP cells with bi-parental em-
bryonic stem cell lines indicated a much higher level of ex-
pression of Mad-1, and the related molecules MAX and 
SIN3 in parthenogenetic cells. Mad-1 is a central component 
of the spindle assembly checkpoint and recruitment of kine-
tochores [48-50]. Increased level of Mad1 has been previ-
ously shown to cause a reduction in the expression of Myc in 
human monoblasts where a decrement of cell proliferation 
with a protracted G1 phase of the cell cycle was observed but 
Mad1 was neither demonstrated to cause spontaneous differ-
entiation nor to enhance

 
induced differentiation but rather 

inhibited differentiation
 
induced by retinoic acid [51]. On the 

other hand Mad1 dimerizes with MAX and, through a spe-
cific association with the SIN3 co-repressor, decreases tran-
scription and, indirectly inhibits cell proliferation [52]. 
Taken together these observations support the hypothesis 
that the altered levels of such molecules present in HP cells 
cause anomalies in their control of proliferation and differen-
tiation.
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Fig. (1). Expression level of molecules related to spindle formation and chromosome segregation in HP cells and biparental cell lines. Bars 

represent the average Ct of HP cells (white)and biparental cells (grey) related to the genes examined. Ct value was obtained from the Ct of 

the target gene normalized with the Ct value for -actin of the same sample. 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Ultrastructural analysis of human parthenogenetic cells. The presence of amplified centrosomes loosely dispersed in the cytoplasm 

can be appreciated. Supernumerary centrioles and massive autophagic processes generally coexist. 

 Disturbances in the control of spindle formation and cell 
division are also consistent with the observation that HP cells 
showed very low transcription for TTK and CENP-E, mole-
cules normally involved in kinetochore-microtubule binding, 
correct chromosome congression and alignment as well as 
segregation, during mitosis. Disruption of CENP-E, in fact, 
has been shown to reduce tension across the centromere, 
increase the incidence of spindle pole fragmentation, and 
result in mono-oriented chromosomes approaching abnor-
mally close to the spindle pole, with a mixture of aligned and 
unaligned chromosomes [53]. Normally the final result of 
CENP-E inhibition is mitotic arrest, initiation of apoptosis 
and cell death and this effect is more likely to affect rapidly 
dividing cancer cells. However redundant mechanisms have 
been described in mammalian cells to enable kinetochore 
microtubule binding and checkpoint monitoring in the ab-
sence of CENP-E, although with poor positioning at the 
spindle poles and chronically monooriented chromosomes 
[54]. 

CELLS IN AN UNSTABLE EQUILIBRIUM BE-
TWEEN PLURIPOTENCY AND MALIGNANT 

TRANSFORMATION 

 The data presented in this review, and many evidence 
available from the literature, demonstrate that cell lines ob-
tained from parthenogenetic embryos display intriguing, 
although somehow contraddictory features. The main path-
ways controlling potency, self renewal and cell plasticity are 
active and functional in these cells and, in line with this, HP 
cells are able to self renew and maintain unaltered stable 
pluripotent cell colonies in vitro. In this highly controlled 
self renewal equilibrium, where symmetric cell division is 
predominant, abnormal centrioles and chromosome mal-
segregations do not result in aberrant growth and/or dediffer-
entiation. Our data suggest that authophagy is one of the 
resources that these cells utilize in order to eliminate super-
numerary centrioles in these conditions. When cultured in 
vitro, they are able to respond to differentiation media and 
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give rise to populations representative of the three germ lay-
ers, switching between symmetric and asymmetric cell divi-
sions in a timely and controlled manner. HP cells can be 
driven though standard protocols to differentiate into hema-
topoietic and neural cells. However this pluripotency/high 
plasticity status seems to be related to a strictly controlled 
environment, such as the one which is recreated in in vitro 
culture conditions, and is lost when cells are transplanted in 
SCID mice. The in vivo milieu appears to interfere with this 
mode and releases cells to aberrant growth, with unrestrained 
expansion of the stem cell compartment that leads to the 
formation of malignant sarcomas. 

 Work from Boveri at the turn of the 20th century postu-
lated that centrosomes play an essential role in the mainte-
nance of genome stability and that defects in centrosome 
biogenesis could lead to aneuploidy and potentially favor 
tumor formation. For over 100 years, however this hypothe-
sis has not been tested. Basto and colleagues [55] recently 
demonstrated that the induction of supernumerary centro-
somes is sufficient to cause transformation in flies, with 
large and invasive tumors as a result. Castellanos and col-
legues [56] used an unbiased approach to study the tumori-
genic potential of panel of Drosophila mutants, defective in 
various aspects of centrosome biogenesis. These authors 
found that most of mutants generated a high frequency of 
tumors but Polo-like kinase and Aurora A mutants gave rise 
to especially large and invasive tumors that could be serially 
re-transpalnted and were able to generate an almost infinite 
tumor mass. Parallel studies from Weaver et al. [57] demon-
strated that reduced levels of centrosome-linker motor pro-
tein CENP-E result in elevated levels of aneuploidy. Al-
though it will be important to determine how specie with 
high numbers of chromosomes that need to be segregate to 
progeny during cell divition respond to centrosome dysfunc-
tion, we think it may be of interest to note that HP cells were 
found to express dramatically decreased levels of Aurora A 
and CENP-E [19], indicating that similar molecular pathway 
are likely to be affected by the presence of supernumerary 
centriols in human cells. 

 Interpreting the results we generated with HP cells, in the 
light of the data mentioned above, we can hypothesize that 
parthenogenetic cells may represent an interesting model 
where the control of asymmetric cell division is lost, due to 
the presence of abnormal centrosome. Since switching be-
tween symmetric and asymmetric cell divisions in a timely 
and controlled manner is crucial for normal tissue homeosta-
sis, deregulation of this process can cause continued expan-
sion of the stem cell compartment, with the activation of the 
tumorigenic process [58], as we detect when HP cells are 
transplanted to SCID mice. 

 In this line, the tumorigenic process detected in HP cells 
may be related to the presence of supernumerary centrioles 
that would create misalignment between the spindle and the 
asymmetric cell determinants, resulting in enforcement of 
the tumorigenic process. We think that further studies on the 
link between supernumerary centriols, multipolar spindles 
and genetic instability leading to cancer in mammalian spe-
cie could provide important information, especially if we 
consider that most of the data available at the present, are 
limited to lower species. In our opinion the use of HP cell 
lines could represent an intriguing and unique experimental 
tool where the pathways controlling potency and self re-
newal vs cell transformation can be investigated in a human 
model, and where the use of different milieaux can activate 
mechanisms that control the switch between pluripotency 
and malignancy. 
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1. Introduction
Stem cells are characterized by their ability to proliferate 
indefinitely and, in adequate conditions, to give rise to 
specialized cell types. Their isolation can be obtained 
using different sources, with different advantages 
and limitations [1]. Embryonic stem cells (ESCs) are 
pluripotent cells derived from the inner cell mass (ICM) of 
pre-implantation blastocysts, as previously demonstrated 
in the mouse [2,3] and humans [4]. These cells present 
unlimited self-renewal and are able to differentiate into 
all cell types of the body [5,6]. These properties are not 
shared by adult stem cells isolated from differentiated 
adult tissues. Adult stem cells, in fact, show a limited 
capacity for self-renewal ex vivo [7] and are very difficult 
to expand in vitro. Consequently ESCs are considered 
to be an unlimited source of transplantation materials 

for the replacement cell therapy. These characteristics 
have resulted in efforts aimed at establishing ESCs in 
species other than the human and the mouse, including 
rabbit, hamster, cattle, sheep, goat and non-human 
primates. However, in order to generate ESCs lines, 
the creation and destruction of an embryo are needed. 
Moving from animals to man, the embryo’s potency to 
develop into a complete human being, represents a 
concern and raises serious ethical, religious, legal and 
political issues. This imposes the necessity to identify 
alternative sources of pluripotent cells for research and 
therapeutic purposes [1]. During recent years different 
methods have been suggested in order to obtain 
pluripotent cells without the generation and destruction 
of a viable human embryo. To this purpose, ESCs 
have been successfully derived, removing a single cell 
(blastomere) from an eight-cell-stage embryo, using a 
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Abstract:  Embryonic stem cells (ESCs) represent a useful tool for cell therapy studies, however the use of embryos for their derivation give rise 
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biopsy procedure routinely utilized in in vitro fertilization 
clinics, in order to carry out pre-implantation genetic 
screenings [8,9]. Similar results were obtained deriving 
stem cells from growth-arrested embryos. Zhang et al. 
recently used such ‘blocked’ embryos (considered 
non-viable and discarded) to derive human ESCs that 
met all the criteria for pluripotency and had normal 
karyotype [10]. Another approach proposes the use of 
non-embryonic entities obtained through altered nuclear 
transfer (ANT). This technique is conceptually based on 
somatic cell nuclear transfer (SCNT), but the somatic 
cell used is genetically altered before being transferred 
to an enucleated oocyte, obtaining an abnormal 
blastocyst, unable to implant into the uterus but capable 
of generating customized embryonic stem cells [11,12]. 
Most recently, studies suggest the possibility to induce 
the pluripotent status (iPS) in somatic cells by direct 
reprogramming [13], using retroviruses or lentiviruses 
that “force” the expression of factors considered 
essential for pluripotent status maintenance, such as 
Oct3/4 [14,15], Sox2 [16] and Nanog [17,18]. Several 
pioneering studies suggest cellular reprogramming 
also through fusion of somatic cells with embryonic cell 
lysates [19] or loading permeabilized cells with lysates of 
donor cells (somatic or pluripotent) [20] as an alternative 
to the derivation of ESCs from human embryos, and a 
solution to both the ethical and legal problems. 

The use of artificial parthenogenesis has been recently 
proposed as a possible alternative source of ESCs. While 
many features common to ESCs have been identified in 
these lines, several aspects related to parthenogenetic 
cell biology still need to be elucidated [21]. In this review 
we summarize data present in the literature related to 
parthenogenetic cell line derivation in human species. In an 
attempt to better clarify some important biological aspects, 
we discuss characteristics, pluripotency, differentiation 
plasticity, but also evaluate limits of these cell lines, recently 
derived in our laboratory [22]. 

2. Parthenogenesis in mammals
Parthenogenesis is a form of asexual reproduction, by 
which an oocyte can develop without the intervention 
of the male counterpart. This process may routinely 
occur naturally in some animal species such as fish, 
ants, flies, honeybees, amphibians, lizards and snakes. 
By contrast, in mammals this form of reproduction is 
not spontaneous, but oocytes can be successfully 
activated in vitro, using various electric, mechanical 
or chemical stimulations, which mimic the intracellular 
calcium wave induced by sperm at fertilization [23].  This 
phenomenon causes cleavage divisions and embryonic 

development [1]. However, mammalian parthenotes are 
unable to develop to term due to genomic imprinting 
alteration [24] that result in the repression of paternally 
expressed genes [25]. The consequent developmental 
abnormalities cause an arrest of parthenote development 
at different stages after activation - depending on the 
species [26] - giving embryo-like structure unable to form 
a new individual. In this scenario, after the successful 
isolation of  embryonic parthenogenetic cell lines in the 
mouse [27,28] and non-human primate models [29,30], 
human parthenotes have recently been proposed as an 
alternative, less controversial source of stem cell lines 
[1,31-34]. Furthermore it must be noted that they may 
also be used as a new experimental tool for studies 
on the biological mechanisms involved in human early 
embryo development and assisted reproduction [21].

3.  Human parthenogenesis as a 
source of pluripotent cell lines

In recent years the possibility to obtain ESCs after 
parthenogenetic activation in humans has been 
demonstrated [1,31-34], although the success of this 
approaches has been strongly limited by the restricted 
accessibility to unfertilized oocytes. We firstly reported 
the generation of a human parthenogenetic (HP) cell line 
in 2006 [35] and were then able to characterize these 
cells for their pluripotency and differentiation plasticity, 
both in vitro and in vivo [22]. In particular, we were able to 
show their typical ESC morphology and the main features 
of bi-parental stem cells, expressing appropriate stem cell 
markers such as Oct-4, Nanog, Rex-1, Sox-2, alkaline 
phosphatase, SSEA-4, TRA 1-81, and lack of the human 
ESC negative markers (e.g. SSEA-1) [36,37]. Altogether 
these results indicate a pluripotency signature that does 
not appear to be influenced by the exclusive presence 
of the maternal genome. HP cells also possess high 
levels of telomerase activity, which is turned down when 
cells are subjected to culture conditions that induce their 
differentiation, indicating that a physiologically normal 
control of telomerase activity is present.

In vitro differentiation potential of these cells was 
assessed throughout their culture in hanging droplets, 
which induces formation of embryoid bodies (EBs). 
When EBs were plated and grown as a monolayer, both 
gene expression and immunocytochemical analysis 
demonstrated the ability of these cells to differentiate and 
give rise to components belonging to the three embryonic 
germ layers (Figure 1). Interestingly no expression of 
trophectoderm-related markers was detected, possibly 
reflecting parthenote inability to generate adequate fetal 
membrane development and to implant correctly. 
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A crucial point in ESC studies is, in our opinion, to 
assess the possibility to drive cell differentiation towards 
a specific lineage, using controlled culture conditions. 
Data obtained in our laboratory demonstrate that HP 
cells were able to differentiate and to form different cell 
subtypes belonging to the neural lineage [22]. We are 
able to show that, when exposed to the appropriate 
in vitro microenvironment, these cells, not only gave 
rise to early neural population, but also generated 
more mature cell types expressing nestin, CNPase and 
MAP2 [22]. Moreover our experiments  demonstrated 
HP in vitro differentiation capability to form mature 
hemopoietic cell lineages - lymphoid, erythroid and 
myeloid sub-populations [22]. All these data are in 
agreement with the observation that murine uni-
parental ESCs are able to differentiate into neuronal and 
glial cells as well as to generate adult-transplantable 
hematopoietic stem cells that can re-populate the 
hematopoietic system of adult transplant recipients [38]. 
Moreover these findings indicate that uni-parental cells 
may be differentiated and may represent a powerful tool 
in order to study the mechanisms controlling the human 
lineage determination in vitro.

4.  Parthenogenetic pluripotent cell 
and mitotic spindle alteration

It has been demonstrated that centrioles degenerate 
and are lost during mammalian oogenesis. These 

organelles are present in oogonia and growing oocytes 
until pachytene stage, while they disappear in the 
mature oocytes, where they persist as a peri-centriolar 
disaggregated material [39]. They are then replaced at 
fertilization,  when the sperm contributes the centriole that 
joins and re-organize the peri-centriolar material present 
in the oocyte to re-form a fully functional centrosome 
[40,41].This event causes an aberrant progression of 
cell cycle and spindle formation in the newly synthesized 
embryonic centrosome in the absence of the sperm 
centriol [42]. With the notable exception of mice [43], the 
lack of centrioles on parthenogenetic development have 
been described in rhesus monkeys [44], rabbits [45], 
cows [46], sea urchins [47], Xenopus [48], and several 
other species [49]. In these species oocytes are unable 
to form astral microtubules and a correctly oriented 
spindle (Figure 2). These observations are in agreement 
with our findings in HP cells that lack  correct control 
of the spindle formation process. These cells displayed 
multiple centrioles as well as an altered expression level 
of mitotic check point related-molecules, suggesting 
that the ability to rearrange functional centrosomes is 
altered in these cells. In particular HP cells showed a 
higher level of Mad-1 and the related molecules MAX 
and SIN3, when compared with bi-parental cells. These 
molecules represent a central component of the spindle 
assembly checkpoint and recruitment of kinetochores 
[50-52], suggesting the possibility of severe disturbances 
in the control of spindle formation and mitosis in 
these cells. Furthermore HP cells showed very low 

Figure 1.  Pluripotency and differentiation plasticity of HP cell lines. HP cells grow in colonies and show a typical ESC morphology (A). They 
are able to form EBs (B) that differentiate into cells belonging to the three embryonic germ layers: endoderm (C); mesoderm (D) and 
ectoderm (E).
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transcription for TTK and CENP-E, which are involved 
in correct chromosome aggregation and alignment as 
well as segregation, during mitosis. Altogether these 
observations support the hypothesis that the altered 
levels of such molecules in HP cells cause anomalies in 
their control of proliferation and differentiation. 

5.  Parthenogenetic pluripotent cell 
and karyotype alteration

Abnormalities in spindle rearrangement is usually linked 
to a high percentage of cells showing mal-segregated 
chromosomes. Previous studies demonstrated the 
presence of multiple chromosome malsegregations in 
human oocytes after parthenogenetic activation, either 
spontaneous or induced by puromycin [53]. A high 
incidence of polyploid and mixoploid blastomers has also 
been reported in parthenotes derived from bovine and 
porcine, suggesting the absence of a paternally supplied 
centrosome as a possible cause [54,55]. Consistent with 
this, chromosome instability was observed in HP cell 
lines. However, these abnormalities do not seem to affect 
the overall proliferation rate and in vitro differentiation 
plasticity of these cells that, when cultured in vitro, are 
able to respond to specific media, routinely used for 
bi-paretntal ESCs differentiation, and to give rise to 
populations representative of the three germ layers in 
controlled manner. Furthermore it is interesting to note 
that the use of an alternative protocol of activation has 
been shown to better ensure chromosome stability. In 
this line, Fulka et al. recently reported the derivation of 
karyotypically normal cell lines from mouse MI maturing 
oocytes exposed to Butyrolactone I, which converts 
meiotic metaphase I chromosomes into chromosomes 
with mitotic-like morphology [56].

The data available from the literature as well as that 
described in this review indicate that cell lines isolated 

from parthenotes display interesting, even though 
contradictory aspects. Despite the exhibition of abnormal 
centrioles and chromosome mal-segregations, these 
cells are indeed able to proliferate and maintain their 
pluripotent status and respond in a controlled manner to 
specific stimuli, generating a vast array of differentiated 
cell populations. We think they may represent a precious 
model where the pathways controlling self-renewal 
and differentiation plasticity deeply interrelate with cell 
instability and abnormality. 
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