Is the pancreas affected in patients with septic shock? -- a prospective study

Raffaele Pezzilli, Alessandra Barassi, Andrea Imbrogno, Dario Fabbri, Antonina Pigna, Antonio M. Morselli-Labate, Roberto Corinaldesi and Gianvico Melzi d’Eril

Bologna, Italy

BACKGROUND: Hyperamylasemia can be observed anecdotally during the course of severe sepsis or septic shock. This study aimed to investigate the possibility of pancreatic involvement in patients with septic shock using serum pancreatic enzyme determinations and imaging techniques in 21 consecutive patients with septic shock and 21 healthy subjects as controls.

METHODS: The serum activity of pancreatic amylase and lipase was assayed initially in all subjects and 24 and 48 hours after the initial observation in the 21 patients with septic shock. All patients also underwent radiological examination to detect pancreatic abnormalities.

RESULTS: The serum activity of pancreatic amylase was significantly higher in the 21 patients with septic shock than in the 21 control subjects during the study period, while the serum activity of lipase was similar to that of the control subjects. Amylase and lipase serum activity did not significantly changed throughout the study period in the 21 patients with septic shock. None of the patients with pancreatic hyperenzymemia had clinical signs or morphological alterations compatible with acute pancreatitis.

CONCLUSION: The presence of pancreatic hyperenzymemia in septic shock patients is not a biochemical manifestation of acute pancreatic damage, and the management of these patients should be dependent on the clinical situation and not merely the biochemical results.

Key Words: amylase; lipase; clinical medicine; shock; sepsis; systemic inflammatory response syndrome

Introduction

It has been reported that amylase seems to be more frequently elevated than lipase in patients with shock; however, none of these patients with pancreatic hyperenzymemia had pancreatic alterations on imaging. In addition, the occurrence of acute pancreatitis has rarely been reported after an episode of septic shock, and hyperamylasemia has also been observed anecdotally during the course of severe sepsis or septic shock. In our previous study evaluating the frequency of pancreatic hyperenzymemia and acute pancreatitis, only 3 of 12 patients had septic shock. Thus we aimed to investigate the possibility of pancreatic involvement in patients with septic shock by serum pancreatic enzyme determinations and imaging techniques.

Methods

The study was carried out in the Intensive Care Unit (ICU) of Sant’Orsola-Malpighi Hospital (Bologna, Italy) and was approved by the local institutional review board with a priori patient or appropriate proxy consent obtained prior to the participants’ entry into the study which was carried out in accordance with the Declaration of Helsinki.

The criteria for the presence of septic shock were the presence of an identifiable site of infection associated with the presence of a temperature greater than 38 °C or less than 36 °C; a heart rate greater than 90 beats per minute; a respiratory rate of more than 20 breaths per
minute; a white blood cell count >12,000 or <4000/mm3 and hypotension persisting despite fluid resuscitation and requiring vasoressor therapy.$^{[6]}$ The exclusion criteria were patients under 18 years of age, the absence of circulating leukocytes, severely immunocompromised patients, autoimmune diseases, active chemotherapy or chronic steroid therapies.$^{[7]}$ Acute pancreatitis was diagnosed on the basis of the presence of prolonged typical pancreatic pain associated with the findings of pancreatic abnormalities at imaging and a three-fold increase in the serum activity of amylase and lipase.$^{[8]}$

From March 2009 to February 2010, 21 consecutive patients (13 males, 8 females; mean age 69.0 years, range 41-85 years) met these criteria and were enrolled in the study. All patients were treated according to current therapeutic modalities,$^{[3]}$ and the final diagnoses were pneumonia in 5 patients, aortic prosthesis infection in 2, esophageal cancer in 2, gastric cancer in 2, pancreatic cancer in 2, jejunal cancer in 1, gastric cancer in 1, melanoma in 1, chronic polyneuropathy in 1, osteomyelitis in 1, upper gastrointestinal tract injury due to the ingestion of caustic substances in 1, acute myocardial infarction in 1, and infective endocarditis in the remaining patient.

Ten patients died during the hospital stay: 1 within 24 hours from ICU admission, 1 within 1 week from ICU admission, 4 between the 13th and the 18th day from ICU admission, 3 between the 31st and the 35th day from ICU admission and one 3 months after ICU admission.

Twenty-one subjects (11 males and 10 females, mean age 40.5 years, range 25-60 years) recruited from blood donors, medical staff and subjects who underwent a routine medical check-up served as control subjects. They were in good general health, were not taking any medication, and had no signs of chronic or recent acute diseases.

Serum samples were obtained from all subjects at their initial observation and from the 21 patients with septic shock after 24 and 48 hours; they were kept frozen at -20°C until analysis.

Serum activity of pancreatic amylase (AMY-P, Roche, Milan, Italy; upper reference value, 115 U/L) and lipase (LIPASE, Roche, Milan, Italy; upper reference value, 60 U/L) was assayed using commercially available kits. All patients also underwent ultrasonography and/or computed tomography to detect pancreatic abnormalities.

Data were expressed as mean±SD. Statistical analyses were carried out by the Mann-Whitney U test, the matched-pairs Wilcoxon’s test and the Spearman’s rank-order correlation coefficient. The statistical analyses were performed by using the SPSS/PC+ statistical package (SPSS Inc., Chicago, IL, USA) on a personal computer. Two-tailed P values <0.05 were considered statistically significant.

Results

The time course of amylase and lipase is shown in Fig. 1. During the 3-day study period, the serum activity of pancreatic amylase was significantly higher in the patients with septic shock than in the controls. On the contrary, the serum activity of lipase was similar to that of the control subjects. When only patients with septic shock were considered, we found that the serum activity of amylase and lipase did not change throughout the study period.

Fig. 1. Individual serum activity of pancreatic amylase and lipase in patients with septic shock during the study period and in the control subjects. Data are reported as mean±SD. Horizontal dotted lines indicate the upper reference limit of each enzyme.
Acute pancreatitis in septic shock

Table. Pancreatic amylase and lipase serum activity in survivors and non-survivors throughout the study period (U/L, mean±SD)

<table>
<thead>
<tr>
<th></th>
<th>Survivors (n=11)</th>
<th>Non-survivors (n=10)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amylase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial observation</td>
<td>127±65</td>
<td>226±212</td>
<td>0.756</td>
</tr>
<tr>
<td>24 hours</td>
<td>139±54</td>
<td>176±148</td>
<td>0.603</td>
</tr>
<tr>
<td>48 hours</td>
<td>156±84</td>
<td>171±155</td>
<td>0.941</td>
</tr>
<tr>
<td>Lipase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial observation</td>
<td>41±29</td>
<td>54±51</td>
<td>0.973</td>
</tr>
<tr>
<td>24 hours</td>
<td>47±37</td>
<td>39±32</td>
<td>0.503</td>
</tr>
<tr>
<td>48 hours</td>
<td>55±40</td>
<td>37±34</td>
<td>0.261</td>
</tr>
</tbody>
</table>

Fig. 2. Relationship between serum amylase and lipase activity in the 83 determinations performed on the 21 patients with septic shock followed for 3 days, and in the 21 control subjects.

Two patients (9.5%), one with upper gastrointestinal tract injury due to the ingestion of causative substances and the other with infection of an aortic prosthesis, had serum activity of pancreatic amylase three times greater than the upper reference limit while none of the patients studied had serum lipase activity three times greater than the upper reference limit. Considering the patients who died during hospitalization and survivors, we did not find significant differences in the serum activity of amylase and lipase between the survivors and non-survivors in the 3 days of the study (Table).

Pooling all the data obtained at the different time intervals, a significant relationship was found between serum amylase and lipase concentrations (P<0.001) (Fig. 2). This relationship persisted when the determinations made in the patients and control subjects (P<0.001 for both) were considered separately.

Finally, none of the patients developed clinical signs or morphological changes compatible with those of acute pancreatitis.

Discussion

One of the consequences of septic shock is ischemia, and the ischemia followed by reperfusion results in a breakdown of the microcirculation in the pancreas, which occurs as in other organs, and this is considered to be a critical factor in the pathogenesis of acute pancreatitis. In addition, microvascular perfusion failure is a characteristic hallmark of pancreatitis. Since Panum presented the first report, other researchers have reported that the pancreas is highly sensitive to ischemia. In humans, acute pancreatitis may develop after embolic closure of the vessels supplying the pancreas, after hypoperfusion of the pancreas during cardiac surgery and surgery for thoraco-abdominal aneurysms, after splanchnic hypoperfusion, or after pancreatic transplantation. We found that during 12 hours after admission, serum amylase concentrations were elevated, whereas serum lipase concentrations were below the upper reference limit, suggesting that hyperamylasemia is of non-pancreatic origin. Hegewald et al and Gmaz-Nikulin et al reported the appearance of pancreatic changes during shock, detected only by electron microscopy and histology; in our study, we used imaging techniques, such as ultrasonography and computed tomography, in evaluating the changes of the pancreatic gland, and the pancreatic changes were not clinically relevant. Interestingly, hyperamylasemia was also observed anaedotically in the course of severe sepsis or septic shock. Previously we evaluated the frequency of pancreatic hyperenzymemia and acute pancreatitis, and we found that only 3 of 12 patients had septic shock. Thus investigated in the present study the possibility of pancreatic involvement in patients with septic shock using serum pancreatic enzyme determinations and imaging techniques. As pointed out by Rogers, biochemical investigation is no substitute for clinical examination. In fact, even if the serum activity of pancreatic amylase was significantly higher in patients with septic shock than in control subjects, the serum activity of lipase was similar to that of the control subjects; none of the patients developed clinical signs or morphological alterations compatible with those of acute pancreatitis. Thus, other causes should be hypothesized for the increased level of serum amylase. For example, in the present study, 7 patients had gastrointestinal tract diseases and 2 were operated on for a pancreatic neoplasm (9/21, 42.9%). Although pancreatic hyperenzymemia was observed in these patients, who were free from any kind of contemporary shock condition, we believe that this evidence does not affect our data because only a low percentage of the patients (9.5%) had a serum activity of pancreatic amylase three times greater than the upper
The presence of hyperamylasemia in a patient with the magnitude and duration of circulatory collapse, with a progressive fall of serum PLA2 levels during the study. These authors reported that their data on phospholipase A2 levels were consistent with an extrapancreatic source of intravascular phospholipase A2 release during sepsis and these levels correlated directly with the magnitude and duration of circulatory collapse, with a progressive fall of serum PLA2 levels during convalescence.

Finally, none of the patients with septic shock had serum lipase activity three times greater than the upper reference limit. This further confirmed that serum lipase is more accurate than pancreatic amylase in the diagnosis of acute pancreatitis.[33, 34] It has also been reported that sepsis is associated with secretory pancreatic dysfunction that is worse in septic shock patients than in sepsis patients without shock and that impaired exocrine function is significantly correlated to APACHE III and SOFA scores.[35] However, these findings do not influence the result of our study because we aimed to evaluate the presence of acute pancreatic alterations in patients with septic shock.

Considering patients who died during hospitalization and survivors, we found no differences in the serum activity of amylase and lipase between the survivors and non-survivors in the 3 days of the study.

In conclusion, during the early phases of septic shock, serum amylase is more frequently elevated than serum lipase, but none of the patients with pancreatic hyperenzymemia showed pancreatic injury at imaging. The presence of hyperamylasemia in a patient with septic shock is not a biochemical manifestation of acute pancreatic damage and the management of the patient should depend on clinical conditions and not merely on evaluation of biochemical results.

Funding: None.

Ethical approval: Not needed.

Contributors: PR and PA proposed the study. PR wrote the first draft. IA, FD and MLAM analyzed the data. All authors contributed to the design and interpretation of the study and to further drafts. PR is the guarantor.

Competing interest: No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

References

5. Rogers KL, Date RS, Ward JB. Biochemical investigation is no substitute for clinical examination! JOP 2008;9:209-211.

Acute pancreatitis in septic shock

Received December 7, 2010
Accepted after revision January 21, 2011