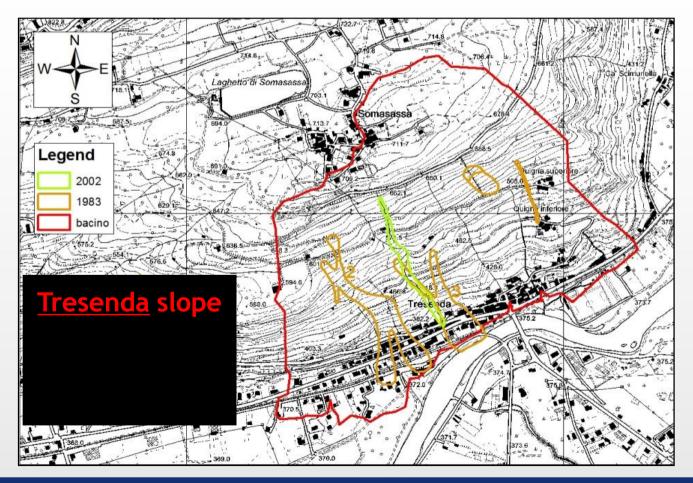


UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI SCIENZE DELLA TERRA A. DESIO

Parametrization of a dry retaining wall on a terraced slope in Valtellina (Northern Italy) and stability analysis

(Corrado Camera, Tiziana Apuani, Marco Masetti)


8th International Symposium FMGM - Berlin, 12-16 September 2011

Study Area Geographical and Historical Setting

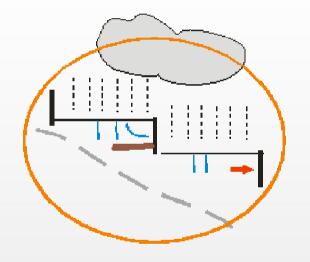
<u>**1983</u>**: 3 soil slips/debris flows. Casualties and damages.</u>

2002: 1 soil slip/debris flow. Damages.

Corrado Camera 8th International Symposium FMGM - Berlin, 12-16 September 2011

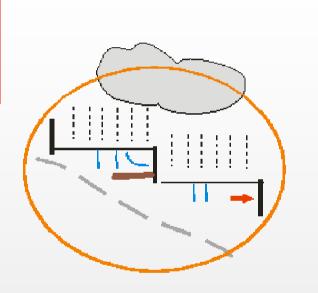
Study Area Geographical and Historical Setting

Study Area Geographical and Historical Setting



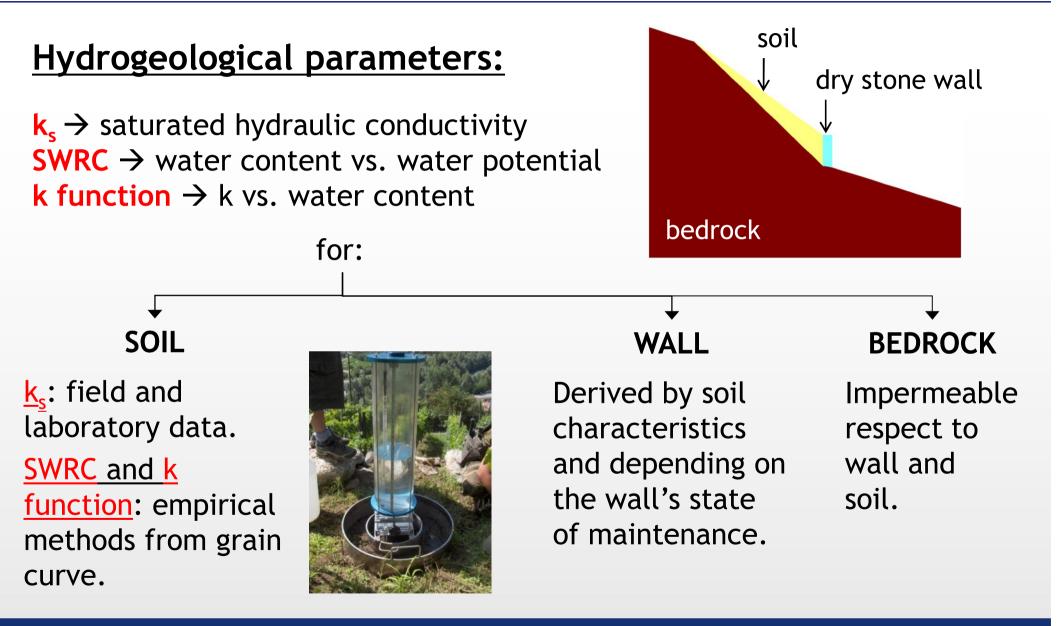
Triggering of superficial landslides:

- ✓ Why? → rainfalls, antecedent water content, soil and walls properties, etc.
 Single terrace scale. Single rainfall event.
- ✓ Where and When? → spatial and temporal variability.
 Slope scale. Rainfall temporal series.

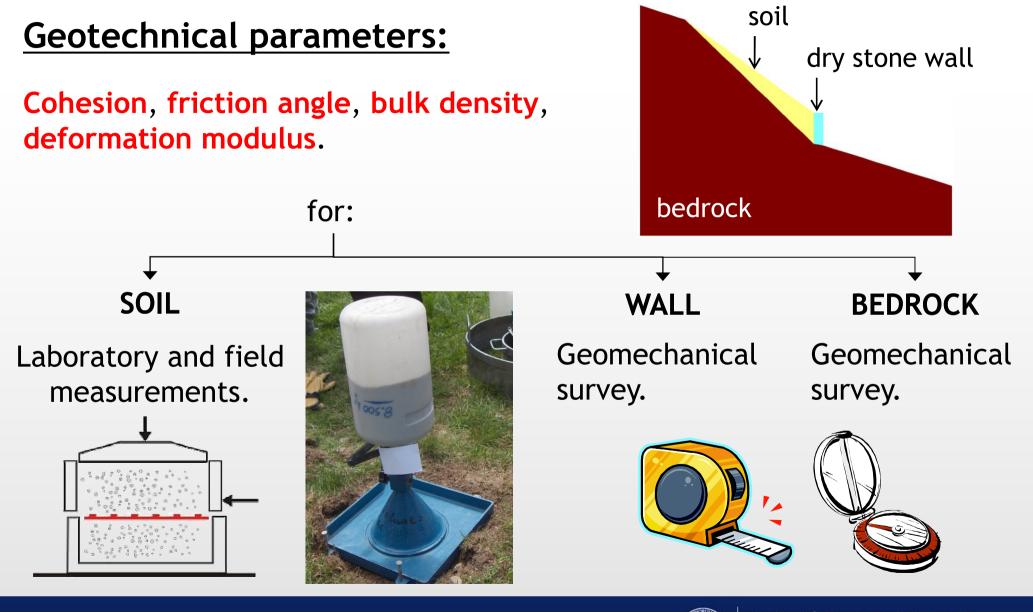

✓ How do they evolve? → reology, topography.
 Slope scale. Post triggering.

Triggering of superficial landslides:

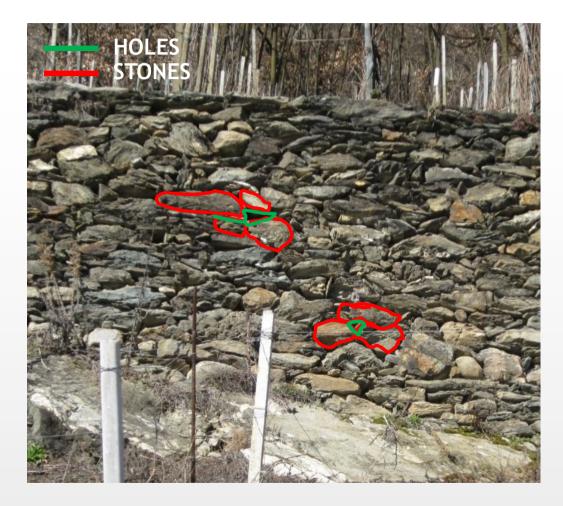
- ✓ Why? → rainfalls, antecedent water content, soil and walls properties, etc.
 Single terrace scale. Single rainfall event.
- ✓ Where and When? → spatial and temporal variability.
 Slope scale. Rainfall temporal series.



✓ How do they evolve? → reology, topography.
 Slope scale. Post triggering.

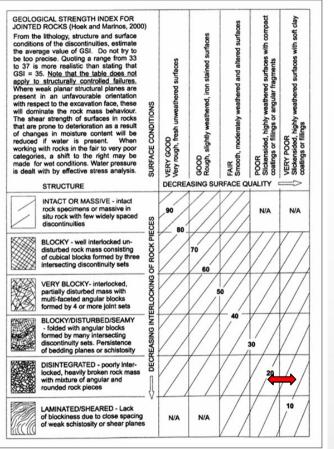


Parameterization


Parameterization

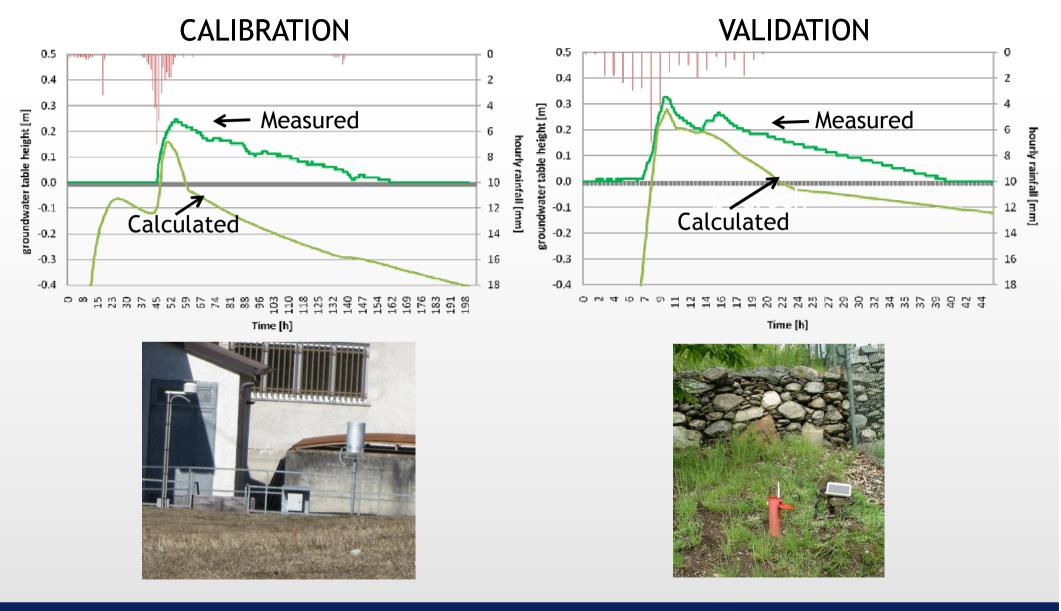
Corrado Camera 8th International Symposium FMGM - Berlin, 12-16 September 2011

<u>Methods</u>: Hydrogeological and Stability Model Parameterization


The dry stone wall is assimilated to a **rock mass**.

Parameterization

GSI

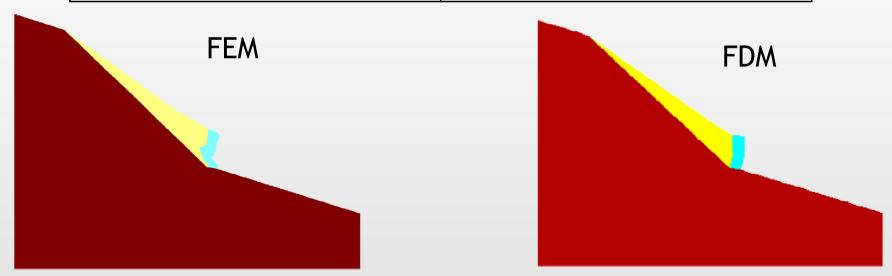

Hoek & Brown criterion \rightarrow equivalent Mohr-Coulomb c and ϕ

GSI	σ _{ci} [MPa]	E _m [MPa]	c [kPa]	φ [deg]
10 - 20	20 - 50	450 - 1250	25 - 40	45 - 55

Corrado Camera 8th International Symposium FMGM - Berlin, 12-16 September 2011

Calibration and Validation - Hydrogeological part

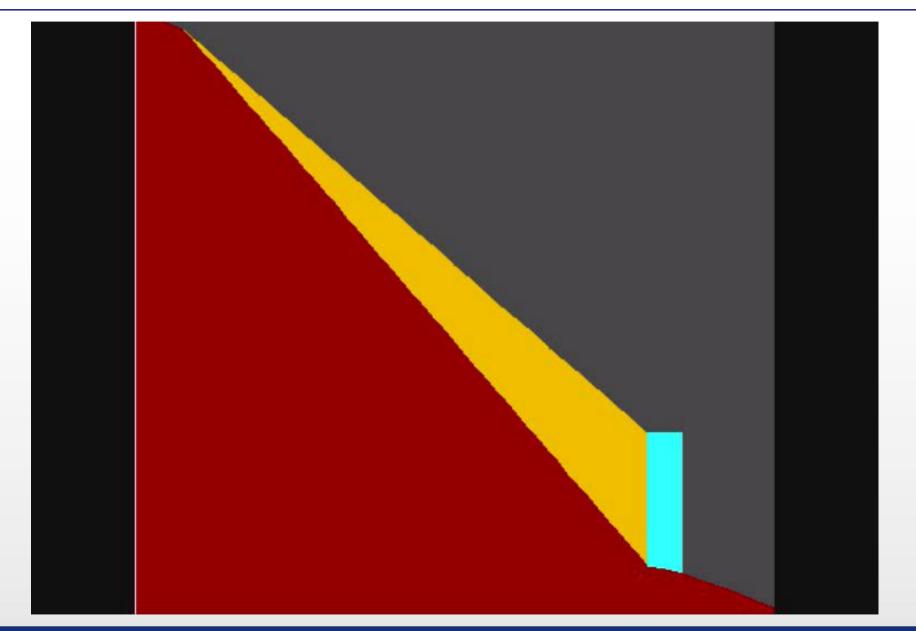
Corrado Camera 8th International Symposium FMGM - Berlin, 12-16 September 2011


Calibration and Validation - Stability part

Three real rainfall events:

- similar duration
- similar total cumulated rainfall
- different antecedent water content

Two stable One failure


Finite Elements Method			Finite Differences Method		
E [Mpa]	c [kPa]	φ [deg]	E [Mpa]	c [kPa]	φ [deg]
250	120	55	250	15	55

Corrado Camera 8th International Symposium FMGM - Berlin, 12-16 September 2011

Calibration and Validation - Stability part

Use of the model and results

ID	Return	Wall	Initial water	Results	Results
	period	maintenance	content	FEM	FDM
1	10 years	Good	dry	stable	stable
2	10 years	Good	almost saturated	stable	stable
3	10 years	Bad	dry	stable	stable
4	10 years	Bad	almost saturated	stable	stable
5	50 years	Good	dry	stable	stable
6	50 years	Good	almost saturated	stable	stable
7	50 years	Bad	dry	stable	stable
8	50 years	Bad	almost saturated	stable	unstable
9	100 years	Good	dry	stable	stable
10	100 years	Good	almost saturated	unstable	stable
11	100 years	Bad	dry	stable	stable
12	100 years	Bad	almost saturated	unstable	unstable

Use of the model and results

ID	Return	Wall	Initial water	Results	Results
	period	maintenance	content	FEM	FDM
1	10 years	Good	dry	stable	stable
2	10 years	Good	almost saturated	stable	stable
3	10 years	Bad	dry	stable	stable
4	10 years	Bad	almost saturated	stable	stable
5	50 years	Good	dry	stable	stable
6	50 years	Good	almost saturated	stable	stable
7	50 years	Bad	dry	stable	stable
8	50 years	Bad	almost saturated	stable	unstable
9	100 years	Good	dry	stable	stable
10	100 years	Good	almost saturated	unstable	stable
11	100 years	Bad	dry	stable	stable
12	100 years	Bad	almost saturated	unstable	unstable

1) For **dry** initial conditions the system is always **stable**.

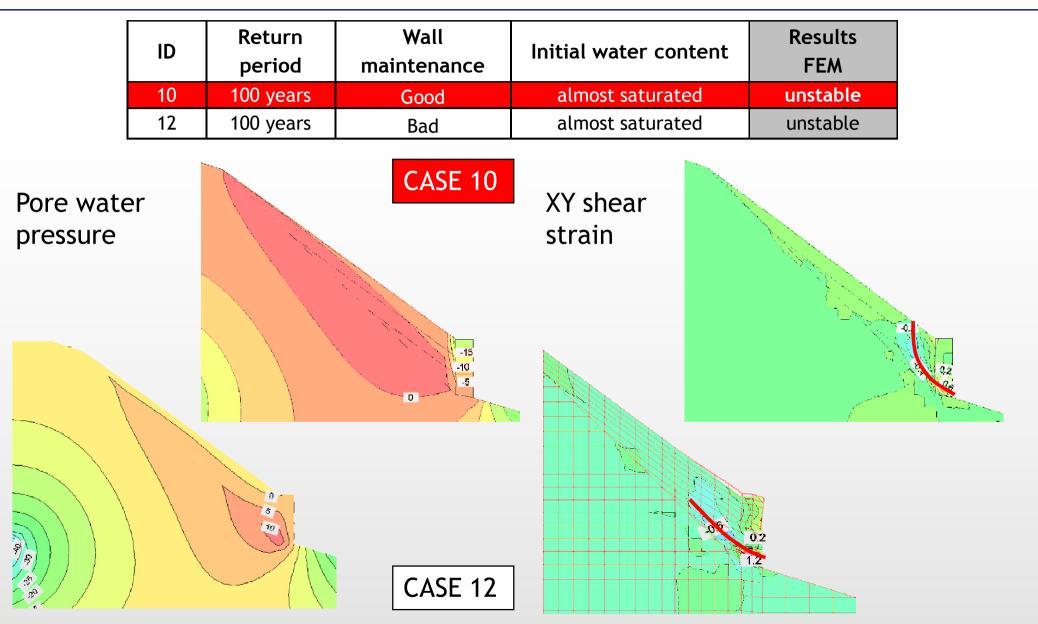
Use of the model and results

ID	Return	Wall	Initial water	Results	Results
	period	maintenance	content	FEM	FDM
1	10 years	Good	dry	stable	stable
2	10 years	Good	almost saturated	stable	stable
3	10 years	Bad	dry	stable	stable
4	10 years	Bad	almost saturated	stable	stable
5	50 years	Good	dry	stable	stable
6	50 years	Good	almost saturated	stable	stable
7	50 years	Bad	dry	stable	stable
8	50 years	Bad	almost saturated	stable	unstable
9	100 years	Good	dry	stable	stable
10	100 years	Good	almost saturated	unstable	stable
11	100 years	Bad	dry	stable	stable
12	100 years	Bad	almost saturated	unstable	unstable

1) For **dry** initial conditions the system is always **stable**.

2) FEM-FDM models are **coherent** for **the worst scenario**.

Use of the model and results


ID	Return	Wall	Initial water	Results	Results
	period	maintenance	content	FEM	FDM
1	10 years	Good	dry	stable	stable
2	10 years	Good	almost saturated	stable	stable
3	10 years	Bad	dry	stable	stable
4	10 years	Bad	almost saturated	stable	stable
5	50 years	Good	dry	stable	stable
6	50 years	Good	almost saturated	stable	stable
7	50 years	Bad	dry	stable	stable
8	50 years	Bad	almost saturated	stable	unstable
9	100 years	Good	dry	stable	stable
10	100 years	Good	almost saturated	unstable	stable
11	100 years	Bad	dry	stable	stable
12	100 years	Bad	almost saturated	unstable	unstable

1) For **dry** initial conditions the system is always **stable**.

- 2) FEM-FDM models are **coherent** for **the worst scenario**.
- 3) Two cases are **not** in agreement.

Use of the model and results

Corrado Camera 8th International Symposium FMGM - Berlin, 12-16 September 2011

Conclusions

Importance of field and laboratory characterization.

HYDROGEOLOGICAL MODEL

Differences in the behaviour of differently maintained walls.

STABILITY MODEL

Validation of the GSI procedure. Definition of scenarios.

- ✓ Extreme rainfalls events combined with antecedent rainfalls are crucial factors for stability.
- ✓ <u>Walls conditions</u> and <u>water table geometry</u> complicate the reaction of the system.

Thanks for you attention