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Abstract

In recent years, there has been a growing interest in the adoption of ontologies

and ontological reasoning to automatically recognize complex context data such

as human activities. In particular, the Web Ontology Language (OWL) emerged

as the language of choice, being a standard for the Semantic Web, and supported

by a number of tools for knowledge engineering and reasoning. However, the

limitations of OWL 1 in terms of expressiveness have been recognized in various

fields, and important research e↵orts have been made to extend the language

while preserving decidability of its OWL 1 DL fragment. The result of such work

is OWL 2. In this paper we investigate the use of OWL 2 for modeling complex

activities and reasoning with them. We show that the new language constructors

of OWL 2 overcome the main limitations of OWL 1 for the representation of

activities; OWL 2 axioms can be used to represent certain rules and rule-based

reasoning previously demanded to hybrid approaches, with the advantage of

having a unique semantics, avoiding potential inconsistencies. Then, we propose

a system architecture showing the integration of a novel OWL 2 activity ontology

and reasoning modules with distributed modules for sensor data aggregation and

reasoning. The feasibility of our solution is shown by an extensive experimental

evaluation with simulations of di↵erent intelligent environments.
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1. Introduction

The automatic recognition of human activities has been a major challenge

for context-awareness, and more generally for mobile and pervasive computing,

since the very beginning. The ability to recognize what a user is doing or the

situation in which a group of users is involved has enormous benefits on the

ability of a pervasive application to react and adapt, as well as to anticipate

the needs of a user in the near future. Applications span from health-care

monitoring to smart home and o�ce automation, from intelligent sightseeing

guides to new generation gaming. We illustrate an application in the health-

care domain by means of the following running example.

Example 1. Consider the case of a hospital center remotely monitoring the

activities of daily living of Alice, a person with early-stage cognitive impairment

who is living independently at home. Alice’s smart home is equipped with an

activity recognition system (ARS) that acquires context data from a variety of

sensors (domotic and physiological sensors, RFID readers, microphones, etc)

to detect Alice’s activities. The ARS periodically communicates detected activi-

ties to the hospital center, where they are analyzed to evaluate the evolution of

Alice’s cognitive, physical, and social capabilities. In order to provide compre-

hensive information to the hospital center, the ARS must be able to recognize

both individual activities such as “having meal”, and social ones such as “meet-

ing”. Moreover, detected activities must be provided at a high level of detail;

for instance, it must be possible to distinguish activity “having hot meal” from

“having cold meal”. Similarly, it must be possible to discriminate among dif-

ferent kinds of meetings; e.g., “meeting nurse” must be distinguished from “tea

party”.

Numerous techniques have been investigated for the automatic recognition

of human activities. The main approaches to activity recognition can be divided

into data-driven and knowledge-driven approaches. Data driven approaches are

based on machine learning methods and di↵er on the kind and number of used
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sensors, considered activities, adopted learning algorithms, and many other pa-

rameters. They do not require a knowledge engineering process, but usually

require carefully identified and large training sets [1, 2, 3]. Data-driven tech-

niques are well suited for recognizing simple activities and gestures based on

raw sensor data. For instance, referring to the scenario illustrated in our run-

ning example, it is possible to recognize generic activities of daily living (ADLs)

such as “preparing meal” and “toileting” using Hidden Markov Models based

on data provided by simple environmental sensors, as proposed in [4]. Unfortu-

nately, data-driven techniques have a number of problems with the recognition

of more complex and specific activities. For instance, in order for the statistical

classifier to distinguish among “preparing hot meal” and “preparing cold meal”,

additional training data should be acquired for the two cases; the same should

be done to recognize specializations of activity “toileting”, as well as of any other

considered activity. This would be problematic, not only for the intrinsic cost

of data acquisition, but also because the growth of the number of considered

activities would negatively a↵ect the recognition performance of the machine

learning algorithm. Moreover, the granularity of the learned concepts is further

influenced by the typology and availability of the low-level sensor data; hence,

these techniques do not adapt well to environmental changes.

Knowledge-driven approaches have a long history, since the representation of

actions and situations as well as reasoning with them is a classical investigation

topic in artificial intelligence. Logic-based methods define actions in terms of

the transformation from an initial representation of the world state (situation)

to the one that can be observed as a result of the action. Methods di↵er for the

expressiveness of the logic, for the implicit or explicit representation of temporal

aspects (activity duration), and for the complexity of reasoning [5, 6]. Recently,

description logics, a class of knowledge representation formalisms, have emerged

for their high expressiveness combined with desirable computational properties.

These are the logics underlying the popular ontological language OWL 1 that

has also been used to build activity ontologies in the area of pervasive comput-

ing [7, 8]. The ontological approach to activity modeling consists in a knowledge
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Figure 1: Part of the ontology of social activities

engineering task to define the formal semantics of human activities by means

of the operators of the ontological language. Each activity is defined as a spe-

cialization of the abstract Activity class; for instance, a SocialActivity can

be defined as an Activity having more than one actor. Activities are arranged

in a hierarchical fashion; for example, Figure 1 shows part of the hierarchy of

social activities defined in our ontology, that will be presented in Section 7.

Sub-activities are specializations of their parent activity: for instance, refer-

ring to our running example, TeaParty can be defined as “a specialization of

FriendlyMeeting, in which the actors are sipping tea during the afternoon”.

Ontological reasoning is used to recognize that a user is performing a certain

activity starting from some facts (e.g., sensor data, location of persons and ob-

jects, properties of actors involved) and/or from recognized component simple

activities.

The use of ontologies and other knowledge-based approaches has two main

drawbacks: a) it requires good knowledge engineering skills, and significant ex-

pertise with the selected knowledge representation language, and b) OWL 1 DL,

the decidable fragment of the OWL 1 Web Ontology Language, has been shown
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to have serious expressiveness limitations both in terms of the relationships that

are needed to represent certain activities, and for the lack of support for rule-

based reasoning [9, 10]. Hybrid solutions, coupling OWL 1 DL with rule-based

reasoning, either lead to undecidability, or are exposed to inconsistencies due to

the di↵erent semantics of the underlying languages.

In this paper, we investigate in more detail the use of ontological languages

to describe and automatically recognize complex human activities in light of

the recent introduction of the OWL 2 Web Ontology Language 1. Considering

the drawbacks of knowledge-based approaches mentioned above, point a) is not

so critical since domain and knowledge engineering experts can be found, and

their e↵ort in terms of ontologies of activities can then be shared. We show

that the increased expressiveness of the OWL 2 language with respect to OWL

1 solves some of the problems mentioned in point b) above, leading to a new

well-founded approach to complex activity recognition. The main contributions

of this paper are the following:

• We show that the new language constructors of OWL 2 overcome the main

limitations of OWL 1 for the representation of activities;

• We highlight where OWL 2 axioms can be used to represent certain rules

and rule-based reasoning previously demanded to hybrid approaches, with

the advantage of having a unique semantics, avoiding potential inconsis-

tencies. We also show where OWL 2 still comes short in terms of expres-

siveness for rule representation, as well as for handling uncertain informa-

tion;

• We propose a system architecture showing the integration of a OWL 2

ontology and reasoning modules with modules for sensor data aggregation

and data-driven simple activity recognition. Extensive experiments eval-

uate the scalability in terms of computational costs with growing number

of users and sensors.

1
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
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The rest of this paper is organized as follows. Section 2 lists the main requi-

sites that an activity recognition framework should satisfy. Section 3 discusses

related work. Section 4 provides a primer for the reader unfamiliar with the

OWL language and semantics. Section 5 illustrates the increased expressiveness

for activity modeling. Section 6 is devoted to semantics issues, as well as to a

comparison with hybrid context reasoning approaches. Section 7 illustrates the

proposed system architecture, and Section 8 reports our experimental results.

Section 9 concludes the paper.

2. Requirements

In this section we identify the requirements that a comprehensive solution

for knowledge-based activity recognition should fulfill.

1. Modeling . In order to recognize human activities with a knowledge-based

approach, it is necessary to accurately model the physical and social en-

vironment of users. For instance, consider the scenario illustrated in our

running example. In order to recognize social activities like TeaParty and

MeetingNurse, it is necessary to model the current location of persons

in the smart home (e.g., living room vs bedroom), their role (friend vs

nurse), their posture (seated vs lying down), used objects (tea cups vs

medications), time of the day, and so on. While quite simple data (for

instance, device capabilities and network characteristics) can be modeled

through key-value and markup models such as CC/PP [11], it is widely

recognized that more complex domains claim for more sophisticated rep-

resentation formalisms [9]. The main approaches in this sense include not

only ontological models, but also object-role based models [12], and spa-

tial models of context information [13]. Even if di↵erent languages can be

adopted to implement those models, the main requirements in terms of

expressiveness are the ability to represent:

• Hierarchical structures. Indeed, activities, as well as other context
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data such as symbolic locations, must be arranged in complex hierar-

chies; see, for instance, the hierarchy of social activities in Figure 1.

• Complex relationships among context instances. For example, it must

be possible to relate an instance of class Activity to the instance of

its actors, current location, and time. There is also the need to define

complex relationships based on the composition of simpler ones.

• Complex definitions based on simpler ones using restrictions and ex-

istential/universal quantification. It must be possible to define com-

plex activity characterizations in terms of involved simpler activities

and restrictions on their relationships, including spatial and tempo-

ral ones. Referring to our running example, in order to characterize

TeaParty, it is necessary to restrict the membership to that class to

those instances of FriendlyMeeting in which all the actors’ current

activity is an instance of class SippingTea, and in which the current

time is Afternoon.

The support of OWL 2 for modeling complex context data and human

activities is discussed in Section 5.

2. Reasoning . Reasoning capabilities are an obvious requirement for a knowledge-

driven activity recognition system. Reasoning is used to derive implicit

information from explicit context data; for instance, referring to our run-

ning example, it is possible to derive the current activity of Alice based

on her current location, posture, used objects, and surrounding people.

Reasoning can also be used for automatically detecting inconsistency of

the knowledge base (e.g., if the location system of the smart home deter-

mines that Alice is at the same time in two di↵erent rooms). Support for

context reasoning in OWL 2 is extensively discussed in Section 6.

3. Handling imperfection. Context information (either directly acquired from

sensors, or derived by some form of reasoning) is inherently subject to

imperfection. Hence, mechanisms to cope with inconsistencies, conflicts,

inaccuracy, and incomplete information are needed. This issue is discussed
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in Section 6.3.

4. Interoperability . Since context data may be acquired from heterogeneous

sources, a language to formally express the semantics of those data is

needed; with this respect, the advantages of an ontological solution are

obvious.

5. E�ciency . Since, in most cases, activity recognition must be performed

at run time, e�ciency of reasoning is of paramount importance. An exper-

imental evaluation of e�ciency of OWL 2 reasoning with complex human

activities is presented in Section 8.

3. Related work

Activity recognition techniques can be classified in two main categories:

data-driven and knowledge-driven techniques.

Early data-driven techniques were mainly based on the use of machine

learning methods and data acquired from multiple body-worn accelerometers

(e.g., [14, 15]) to recognize basic physical activities. More recently, some ap-

proaches have taken into account a wider notion of context; for instance, in [16]

a method is proposed to classify physical activities by considering data acquired

from several kinds of sensors (measuring sound, humidity, acceleration, orienta-

tion, barometric pressure, . . . ). Observations regarding the user’s surrounding

environment (in particular, the use of specific objects), possibly coupled with

body-worn sensor data, are the basis of many other activity recognition systems

(e.g., [17, 18, 3]). There are also techniques based on probabilistic methods

such as Bayesian networks and Markov models; for instance, relational Markov

networks are used in [1] to derive high-level activities such as shopping or din-

ing out. Other quite sophisticated data-driven techniques for the recognition of

high-level activities have been proposed in [2].

Among knowledge-driven techniques, the situation calculus [5] is a well-

known logic-based framework for the definition of actions and change; actions

are defined in terms of the transformation from an initial representation of the

8



world state (situation) to the one that can be observed as a result of the action.

To take into account multiple agents, actions with duration, and their temporal

relationships, the event calculus [6] has been later introduced. These formalisms

as well as a number of variants of them have been adopted in di↵erent systems

(e.g., [19]) to model the temporal characterization of activities and the causality

relationships between activities and events. The application of these systems to

dynamic pervasive computing environment involves problems of interoperability

and adaptation to di↵erent context situations. Indeed, in general the set of

available data sources (e.g., sensors) is dynamic, and not known in advance.

Hence, since context data must be exchanged among heterogeneous entities, a

language to formally specify the context data semantics is needed. For this

reason, the use of formal ontologies, specified using the OWL 1 language or its

ancestor DAML+OIL, has been investigated to represent context data, from

raw ones acquired from sensors, to complex ones such as human activities (e.g.,

the ontologies SOUPA [20], CONON [21], the one used in CARE [22], and the

one for smart homes used in [23]). In particular, a technique to recognize human

activities based on ontological reasoning alone has been proposed by L. Chen et

al. [7, 23]. The main idea is to use ontologies not only to represent activities, but

also each data that can be used to recognize them, including sensors, objects,

locations, and actors. Data coming from sensors are mapped to ontological

classes and properties, and added to the assertional part of the ontology. Coarse-

grained activities are recognized by ontological reasoning based on the available

data, and refined as new information becomes available. The technique we

investigate in this paper is di↵erent, since we rely on statistical reasoning to

recognize simple activities, actions, and postures, which are then abstracted by

ontological reasoning to recognize complex activities.

With respect to expressiveness, it has been recognized that the operators

provided by OWL 1 are insu�cient to define complex context descriptions, es-

pecially due to the lack of operators for defining complex relationships (see,

e.g., [9, 10]); for instance, in OWL 1 it is not possible to define “coLocatedWith”

as a property relating persons having the same current location. Indeed, in or-
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der to guarantee decidable reasoning procedures, OWL 1 does not include some

expressive constructors that are needed for reasoning with complex domains,

including human activities. This issue is discussed in detail in Section 5.1. In or-

der to overcome these expressiveness limitations, activity recognition techniques

based on OWL 1 adopted a (either tight or loose) combination of ontological

and rule-based reasoning. However, the combination of OWL with rules leads to

severe problems regarding computability and semantics. For example, it is well

known that a tight integration of OWL with expressive rule-based languages

(e.g., in the SWRL [24] language) leads to undecidability. On the other hand,

with a loose integration, inconsistencies may arise due to the coexistence of the

open world semantics of OWL with the closed world semantics of rule-based

systems (this issue is explained in detail in Section 6.1). In this paper we show

how such problems can be avoided by exploiting the novel operators of OWL 2,

through which it is possible to represent most rule-based activity definitions by

ontological axioms, preserving decidability and formal semantics.

Recently, techniques to combine data-driven and knowledge-driven approaches

to activity recognition have been proposed [25, 8]. Our work continues this line

of research by investigating the use of OWL 2 to recognize complex activities

based on elementary observations from sensors and simple activities recognized

through data-driven methods.

4. Preliminaries

In the following, we give preliminary information about the family of OWL

languages.

4.1. The OWL 1 languages and their underlying description logics

OWL 1 [26] is a family of description logic (DL) languages defined by the

World Wide Web Consortium for the Semantic Web. As illustrated in Section 3,

DL languages based on OWL 1 have been widely adopted in context-aware

systems in order to reason with complex context data such as human activities.
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Description logic (DL) [27] is a category of knowledge representation lan-

guages for the definition of knowledge bases, and for the execution of automatic

reasoning procedures over them. Currently, DL is the preferred class of lan-

guages for model ling formal ontologies [28]. By means of DL languages, it is

possible to model a given domain by means of classes, individuals, relations

between individuals (object properties), and relations between individuals and

values (datatype properties). Complex descriptions of classes and properties can

be built composing simpler descriptions through the operators provided by the

specific DL language. The formal semantics of a DL language is given in terms

of an interpretation I, which is composed by a non-empty set �I (the domain

of the interpretation), and by an interpretation function ·I . The interpretation

function assigns every atomic class A to a subset of �I , and every atomic object

property P to a binary relation P I ✓ �I ⇥ �I .

Knowledge bases in DL are composed by a pair hT ,Ai. The TBox T consti-

tutes the terminological part of the knowledge base, which contains definition

of classes and properties of the considered domain. The TBox is composed by

a set of axioms having the form C v D or P v R (inclusions) and C ⌘ D or

P ⌘ R (equality), where C and D are classes, and P and R are object proper-

ties. For instance, referring to Example 1, if TeaParty and SocialActivity are

classes defined in the TBox, the axiom “TeaParty v SocialActivity” denotes

that TeaParty is a specialization of SocialActivity; i.e., each instance of the

former class is also an instance of the latter. An axiom C v D is satisfied by an

interpretation I when CI ✓ DI . An interpretation I satisfies a TBox T when

I satisfies all the axioms of T .

On the other hand, the ABox A constitutes the assertional part of the

knowledge base, which contains class instances and property assertions. The

ABox is composed by a set of axioms of the form x : C and hx, yi : R, where x

and y are individuals, C is a class, and R is an object property. Referring to

Example 1, “Alice : ElderlyPerson” denotes that Alice belongs to the class of

elderly persons; “h Alice, Seated i : hasCurrentPosture” denotes that Alice is

currently seated. Axioms x : C and hx, yi : P are satisfied by an interpretation I
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when xI 2 CI and hxI , yIi 2 P I , respectively. An interpretation I satisfies an

ABox A when I satisfies all the axioms of A. An interpretation I that satisfies

both the TBox T and the ABox A is called a model of hT ,Ai.

DL supports di↵erent reasoning tasks, including:

• Subsumption: a class C is subsumed by a class D with respect to a TBox

T i↵ CI ✓ DI for every model I of T ;

• Satisfiability: a class C is satisfiable with respect to a TBox T if there

exists a model I of T such that CI is non empty.

• Equivalence: classes C and D are equivalent with respect to a TBox T i↵

CI = DI for every model I of T ;

• Disjointness: classes C and D are disjoint with respect to a TBox T i↵

CI \DI = ? for every model I of T ;

• Consistency of an ABox A with respect to a TBox T : an ABox A is

consistent with respect to a TBox T i↵ an interpretation I exists, which

is a model of hT ,Ai;

• Classification: computing the hierarchy of the atomic classes in T ;

• Instance retrieval: retrieving all the instances in A that belong to a given

class C;

• Realization: computing the most specific atomic classes in T that are

instantiated by a given individual.

OWL 1 includes three DL languages: OWL 1 Full, OWL 1 DL, and OWL 1

Lite. These languages are represented through RDF graphs. OWL 1 Full is the

most expressive language of the family. Indeed, since no syntactic restriction

is imposed in OWL 1 Full, every RDF graph can be considered a valid OWL

1 Full ontology. However, with OWL 1 Full the basic reasoning procedures are

undecidable, and, at the time of writing, no complete reasoner for that language

exists. OWL 1 DL is the most adopted language of the family to reason with
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complex context data, due to its favorable tradeo↵ between expressiveness and

complexity of reasoning; moreover, it is supported by a number of tools for

ontology engineering and reasoning. On the contrary, OWL 1 Lite is a syntactic

subset of OWL 1 DL having very few applications in context-awareness, since it

lacks important constructors, such as union and complement in class definitions,

and complex cardinality restrictions. Moreover, OWL 1 Lite o↵ers very limited

advantages with respect to OWL 1 DL in terms of complexity of reasoning. For

these reasons, in the rest of the paper we restrict our attention to OWL 1 DL,

and for simplicity we refer to it as OWL 1.

4.2. OWL 2 and its sublanguages

The DL language underlying OWL 1 was chosen in order to guarantee de-

cidable reasoning procedures. For this reason, that language does not include

very expressive constructors that are needed to model complex domains. An

extensive presentation of the limits of OWL 1, which were partially solved by

the definition of its successor OWL 2, can be found in [29]. OWL 2 is an ex-

tension of its predecessor with several constructors that emerged to be required

for modeling di↵erent domains (e.g., computational biology, social sciences, en-

gineering, etc.). In this paper, we limit our attention to the use of OWL to

model complex activities and context data. With this regard, the most notable

constructors that were introduced in OWL 2 are:

• Qualified cardinality restrictions. Cardinality restrictions (CRs) restrict

the class membership to those instances which are in a given relation with

a minimum or maximum number of other individuals. For instance, the

following axiom states that an activity is a social activity if it has at least

two actors: “SocialActivity v Activityu � 2 hasActor”. While OWL

1 supports CRs, restrictions cannot be qualified with a class. Qualified

CRs were added to OWL 2. For instance, it is possible to state that a

friendly meeting is an activity with at least two actors who are friends

(� 2 hasActor.Friend).
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• Composition of properties. In order to preserve decidability, OWL 1 does

not include property composition operators. As it will be illustrated in

details in Section 5.1, this is one of the main limitations when modeling

and reasoning with complex context data and activities. OWL 2 supports

a restricted form of property composition that can be exploited to support

rule-based reasoning; this aspect is illustrated in Section 5.

• Datatypes. OWL 1 provides very limited support for datatypes. For in-

stance, it is not possible to define restrictions to a subset of datatype

values (e.g., “an adult is a person being at least 18 years old”). OWL

2 provides stronger support for expressive datatypes, by allowing novel

datatypes to be defined restricting existing ones.

The OWL 2 specification identifies di↵erent profiles; i.e., subsets of the lan-

guage to address the requirements of specific domains [29]. OWL 2 DL is the

language that is obtained by increasing OWL 1 with the novel operators of the

language; hence, it is the most expressive of the OWL 2 family, and obviously

the one having highest reasoning complexity. OWL 2 EL was designed to enable

e�cient (polynomial time) reasoning with large terminologies; this e�ciency is

obtained by disallowing the use of universal quantification, negation, disjunc-

tion and CRs. OWL 2 QL aims to support conceptual models such as UML

and ER diagrams, and to e�ciently reason over them; hence, its expressiveness

is comparable to the one of those models (for instance, universal quantification

and disjunction are not allowed). Finally, OWL 2 RL has the goal of sup-

porting forward-chaining rule-based reasoning within a DL-based framework.

However, in order to preserve the decidability of reasoning problems, the use

of DL constructors is restricted to ensure that a reasoner needs to reason only

with individuals that explicitly occur in the ABox. Hence, the use of existen-

tial quantification in class axioms is not allowed, since it would determine the

presence of anonymous individuals.
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5. Modeling

Since each of the EL, RL and QL profiles of OWL 2 does not satisfy at least

one of the requirements of point 1 in Section 2, in the rest of this paper we

restrict our attention to OWL 2 DL (called OWL 2 in the following, for the

sake of simplicity).

5.1. Limitations of OWL 1

When modeling complex pervasive computing domains with OWL 1, various

di�culties arise due to the limitations of the language. Consider for example the

hasColleague property, which is fundamental in modeling the activities per-

formed within an organization. A straightforward definition of the colleagues of

an individual A could be: those individuals which are employed by the employer

of A. Unfortunately, this definition cannot be expressed in OWL 1. In fact, the

language –for preserving its decidability– does not include property composition

constructors. Similarly, OWL 1 does not include even restricted forms of role-

value-maps [27]. A role-value map R1 = R2 defines the class of individuals i such

that the set of instances that are connected to i by property R1 are connected to

i also by property R2. This could be useful, e.g., in defining when an employee is

actually in her work location: Personu(current location = work location).

Due to these expressiveness limitations of OWL 1, certain classes cannot be

represented in a straightforward manner, and more ad-hoc and convoluted rep-

resentations must be adopted.

5.2. Exploiting the novel operators of OWL 2

In the following, we show how the novel operators of OWL 2 can be exploited

to overcome the insu�ciencies of OWL 1.

5.2.1. Qualified cardinality restrictions

With qualified cardinality restrictions (QCR), it is possible to restrict the

class membership to those instances which are in a given relation with a min-

imum or maximum number of other individuals belonging to a specific class.
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For instance, using QCR it is possible to define activity CarnivalParty as “a

friendly meeting in which all of the participants are wearing a mask”, where a

FriendlyMeeting is an activity having at least two actors who are friends. The

above axioms can be defined as follows.

CarnivalParty v FriendlyMeeting u

8 hasActor.
⇣
Person u 9 isWearing.Mask.

⌘
,

where a friendly meeting is an activity with at least two actors who are friends:

FriendlyMeeting v Activityu � 2 hasActor.Friend

Note that the above definition cannot be expressed in OWL 1 due to the lack

of support for QCR.

5.2.2. Expressive datatypes

The lack of support for expressive datatypes in OWL 1 makes it di�cult to

support the definition of even simple data such as basic actions and gestures.

Due to its support for expressive datatypes, OWL 2 overcome these issues. For

instance, suppose to define tea party as “a social activity held in the afternoon

in which actors are seated in a quiet living room to sip tea”. This definition can

be represented in OWL 2 by the following axiom.

TeaParty v SocialActivity u 8 hasTimeExtent.Afternoon u

8 hasActor.
⇣
Person u 9 hasCurrentPosture.Seated

u 9 hasCurrentActivity.Sipping u 9 hasCurrentLocation.
�
LivingRoom u � 2 contains.TeaCup

u 8 hasSoundSensor.(MeasuredSoundDb  35[int])
�⌘

,

where 8 hasSoundSensor.(MeasuredSoundDb  35[int]) is used to character-

ize a quiet environment. Note that, due to the lack of datatype restrictions,

MeasuredSoundDb  35[int] cannot be expressed in OWL 1.
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5.2.3. Property composition

As anticipated in Section 4.2, the property composition constructor � allows

basic properties to be composed in order to define more complex ones. By

means of this constructor, in OWL 2 we can state that “if a person A lives in

a building B, and B is the home building of a person C, then C is a next-door

neighbor of A”. This statement can be expressed by the following axiom.

LivesInBuilding � HomeBuildingOf v̇ NextDoorNeighbor.

Note that the property composition constructor � is not supported by OWL

1. In order to preserve the decidability of reasoning problems, OWL 2 imposes

particular restrictions of the use of this constructor. Since detecting violations

of these restrictions and resolving them is not trivial, in Section 5.3 we illustrate

our technique to address this issue.

5.3. Detecting and solving violations of the regularity restriction

The unrestricted use of property composition in OWL 2 would make key

reasoning problems with that language undecidable [30]. Hence, in order to

preserve decidability, the OWL 2 specification imposes a regularity restriction

on the use of this constructor: a total ordering � must exist such that, for each

object property pi of an axiom p1�p2� . . .�pn v̇ r, property pi is not a successor

of the object property r according to the � ordering.

Given the set of property inclusion axioms P in the TBox T , our goal is

to check if P violates the regularity restriction and, in the positive case, to

automatically transform P in a P 0 ⇢ P such that: a) P 0 does not violate the

restriction, and b) P \ P 0 is minimal. Note that, to the best of our knowledge,

at the time of writing existing OWL 2 reasoners are able to detect the violation

of the regularity restriction, but they do not suggest strategies to automatically

transform an invalid set of axioms into a valid one.

In order to check if P violates the regularity restriction, we build its property

dependency graph PDG(P ). PDG(P ) is a directed graph whose nodes are the

property inclusion axioms in P ; an edge exists from axiom a1 to axiom a2
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(a1, a2 2 P ) i↵ the property on the right-hand side of a2 belongs to the set of

properties in the left-hand side of r1. It is easy to verify that P respects the

regularity restriction i↵ PDG(P ) is acyclic. Indeed, if PDG(P ) is a directed

acyclic graph, then a topological sorting of it does exist. This means that

the reachability relation B among vertices of PDG(P ) is a total order. We

recall that a1Ba2 holds i↵ there is a direct path from a1 to a2. Since vertices

correspond to property inclusion axioms, and, by construction, B is such that

a1Ba2 entails that the set of properties in the left-hand side of a1 includes the

property on the right-hand side of a2, it follows that properties are also in a total

ordering, and this ordering satisfies the requirement for regularity restriction.

If the PDG is not acyclic, our goal is to remove the minimum possible number

of axioms from P such that the resulting set P 0 is acyclic. The problem of

finding a minimum cardinality set of nodes whose deletion resolves every cycle

in general graphs is called feedback vertex set (FVS) problem [31]. The FVS

problem is known to be NP-complete, even if an exact solution is achievable in

polynomial time for particular categories of graphs. Unfortunately, in general

PDG(P ) does not fall into any of these categories. Hence, since P may include

a huge number of axioms, and cycle resolution must be performed at run time in

order to interact with the ontology engineer, we adopt a low-complexity heuristic

algorithm.

Our algorithm for cycle detection and resolution is shown in Figure 2. The

algorithm takes a set P of property inclusion axioms as input, and returns

the original set P if it satisfies the regularity restriction; in the other case, it

informs the ontology engineer, and returns a subset P 0 of P that satisfies that

restriction. At first (lines 2 and 3), we construct the PDG of P , and we apply

the well-known depth-first search (DFS) algorithm [32] for directed graphs in

order to detect cycles. Then, if at least one cycle is detected (lines 4 to 6), we

inform the ontology engineer (line 5), and we apply to PDG(P ) the heuristic

algorithm for the unweighted FVS problem proposed by Levy and Low in [33] in

order to obtain P 0 (lines 12 to 15). That heuristic algorithm has time complexity

O(|E|·log|V |), where |E| is the number of edges and |V | is the number of vertices.
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1: Main(P ) /* P is the original set of property inclusion axioms */

2: G := PDG(P );

3: hasCycles := DFS-HasCycles(G);

4: if (hasCycles) then

5: NotifyOntEng();

6: P 0 := ResolveCycles(P,G);

7: else

8: P 0 := P ;

9: end if

10: return P 0 ;

11:

12: ResolveCycles(P,G);

13: FV S := Levy&Low(G);

14: P 0 := P \ FV S;

15: return P 0;

Figure 2: Algorithm for detecting and solving violations of the regularity restriction

If no cycle is detected (lines 7 and 8), we keep P unchanged. Finally, we return

the set of property inclusion axioms, that satisfies the regularity restriction.

When axioms are removed from P , we prompt the ontology engineer to either

accept the new set of axioms, or to manually choose a di↵erent solution.

6. Reasoning

As illustrated in Section 3, various hybrid context reasoning techniques have

been proposed to augment the expressive power of ontological languages by

means of rules. Most of these techniques adopt OWL 1 as the ontology language,

and essentially vary on the kind of rule language that they use. Extensions

range from quite simple rules like Horn clauses to very expressive rules, like

generic first-order logic (FOL) rules. However, it is well known that even when

OWL is augmented with Horn clauses only, key reasoning problems become
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undecidable [24]. On the contrary, in this section we show that, with a purely

OWL 2-based solution, decidability of reasoning can be retained while fulfilling

most of the practical modeling needs of hybrid techniques. In the following

we compare the OWL 2 approach with hybrid techniques in terms of formal

semantics and expressiveness.

6.1. Issues about the coexistence of the OWA of ontologies with the CWA of

rules

As anticipated in Section 3, the coexistence of the open world assumption

(OWA) of ontologies with the closed world assumption (CWA) of rule-based

languages in hybrid approaches may determine inconsistencies. Consider the

following example.

Example 2. Suppose to model the class of empty rooms in OWL as follows:

EmptyRoom v Room u ¬9hasOccupant. (1)

Room ⌘ EmptyRoom t OccupiedRoom. (2)

EmptyRoom u OccupiedRoom ⌘ ?. (3)

The above definitions state that a room is empty if it does not contain anybody;

a room is either empty or occupied. Property hasOccupant is inverse functional;

i.e., each person can be in at most one room at a time.

Below, we model in the rule-based format the fact that a room is empty if it

is inside an empty home, and that a room is occupied if it is not empty. For the

sake of generality, we adopt the syntax of FOL; unary predicates correspond to

ontological classes, and binary predicates correspond to object properties in the

TBox.

8 X 8 Y
⇣
Room(X) ^ EmptyHome(Y) ^

IsInside(X,Y)! EmptyRoom(X)
⌘
. (4)

8 X
⇣
¬EmptyRoom(X)! OccupiedRoom(X)

⌘
. (5)
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Suppose also that a smart home contains three rooms (living room, bedroom

and restroom). Each room has a sensor to monitor the presence of people in

the room. Moreover, a sensor at the front door monitors the entrance of people

in the home. Those sensors periodically communicate the number of people

in the home, as well as in each room, to the smart home intelligent system.

Suppose that the front door sensor detects the presence of exactly one person

in the home; however, due to a failure, the room sensors do not communicate

with the intelligent system; hence, it is impossible to detect the specific room in

which that person is. The inference engine of the intelligent system periodically

evaluates rule (5) against each of the three rooms to derive if any of them is

occupied. Note that the semantics of negation in that rule is the one of negation

as failure. Due to the CWA of rule-based systems, that rule evaluates to true if

it cannot be proved that the room is empty. The fact that the room is empty can

be proved when (condition c1) “the room is inside an empty home” (rule (4)),

or (condition c2) “no person is currently in the room” (axiom (1)). In this

example, condition(c1) is false. Condition (c2) cannot be proved since there

is no specific information in the assertional part of the ontology stating that

no person is in the room; hence, due to the OWA of OWL, no conclusion is

drawn by the ontological reasoner about the fact that the room is empty or not.

Since both conditions cannot be proved, the inference engine evaluates rule (5)

to true, deriving that the room is occupied. The same reasoning is applied with

respect to the other two rooms; hence, the inference engine derives that every

room is occupied. When this information is added to the assertional part of the

ontology, the ontological reasoner derives that each room contains at least one

person; hence, since each person can be in at most one room at a time due to

the inverse functional definition of property hasOccupant, at least three di↵erent

individuals are in the home. This contradicts the assertion given by the front

door sensor (“exactly one person is in the home”), generating an inconsistency.

These and similar inconsistencies due to the coexistence of the OWA with

the CWA in hybrid systems are very di�cult to detect when modeling activities
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and context. On the contrary, a pure OWL 2 solution is not prone to these

issues.

Example 3. Continuing Example 2, rule (4) can be represented by the OWL 2

axiom below:

EmptyRoom v Room u 9 IsInside.EmptyHome. (6)

Rule (5) corresponds to axioms (2) and (3). Since the right-hand side of ax-

iom (6) is not verified by the rooms of the smart home due to the OWA, no

conclusion is drawn about the fact that each room is either empty or occupied.

6.2. Expressiveness: OWL 2 versus hybrid approaches

In the following we compare OWL 2 with hybrid approaches in terms of

expressiveness.

6.2.1. Relationship between OWL 2 and predicate logic

The relationships of description logics with other logic formalisms have been

extensively studied [27, chap. 4]. In particular, the description logic underlying

OWL 2 is known to be a decidable fragment of FOL. Hence, there is a direct

translation between OWL 2 knowledge bases and FOL: every class C can be

translated in a predicate logic formula �c(x) with a free variable x, such that

for every interpretation I, the set of elements of �I satisfying �c(x) is CI .

The decidability of OWL 2 is conditioned to the so-called tree model prop-

erty [34], stating that a class C is satisfiable i↵ C has a model in which the

interpretation of properties defines a tree-shaped directed graph. Adhering to

this property strongly limits the expressiveness of the language. Indeed, refer-

ring to the FOL-based representation of OWL 2 axioms, severe restrictions are

imposed on the use of variables and quantifiers: every predicate (corresponding

to an object property) must contain the quantified variable. Hence, it is impos-

sible to restrict the class membership to those instances that are related to an

anonymous individual through di↵erent property paths. On the contrary, most

rule-based languages do not impose such stringent restrictions.
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Since most hybrid approaches rely on rule languages that are also subsets of

predicate logic, it is natural to compare the expressive power of OWL 2 with the

one of those languages based on the relationships among their underlying logics.

Indeed, if F is a fragment (or subset) of a language L, then F is obviously less

expressive then L. However, such a formal comparison is not always possible,

since in some cases OWL 2 is neither a subset, nor a superset of the rule lan-

guage used in a hybrid system. Moreover, an in-depth analysis of the literature

shows that existing hybrid techniques not always fully exploit the expressive

power of their language; hence, though being less expressive, OWL 2 could be

su�cient to accomplish the practical modeling needs of those techniques. Hence,

in the following we compare OWL 2 with hybrid approaches based not only on

the formal characteristics of the languages, but also on their practical use for

modeling human activities.

6.2.2. Loosely- versus tightly-coupled approaches

Hybrid approaches coupling rule-based and ontological reasoning (referred

to as hybrid techniques in the following for simplicity) can be classified as either

loosely- or tightly-coupled. In tightly-coupled solutions, a unified language for

rules and ontologies is adopted. Hence, while being extremely expressive, with

those languages, key reasoning problems are undecidable. On the contrary, in

loosely-coupled solutions, rule-based and ontological reasoning are executed sep-

arately. For instance, in [20, 21, 22, 35, 36] the interaction between ontological

and rule-based reasoning is given by the possibility to define rules whose pre-

conditions involve ontology-based context data derived by ontological reasoning.

Hence, the evaluation of rules does not a↵ect the ABox; i.e., the information

flow is one-way from the ABox to the logic program knowledge base. This fea-

ture clearly limits the expressive power of those solutions: for instance, simple

activities recognized through rule-based reasoning cannot be exploited by the

ontological reasoner to derive more complex activities. An advantage of a purely

ontological solution is that, when ontological axioms are used instead of loosely

coupled rules, the result of reasoning can be exploited to derive other implicit
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Framework Rule language Coupling Evaluation

Semantic framework [35] Horn clauses Loose M

COBRA [20] Horn clauses Loose M

Semantic Space [36] Horn clauses Loose P

SeMaPS [37] SWRL Tight P

2*3CM [38] SWRL Tight M

CARE [22] General LP Loose P

SOCAM [21] FOL rules Loose M

GAIA [39] FOL rules Tight P

CDTON [40] FOL rules Tight M

Table 1: OWL 2 support for hybrid reasoning approaches. N=None, P=Partial (supports

only part of the presented examples), M=Major (supports all of the presented examples, but

not the whole constructors).

information, while retaining decidability.

6.2.3. Evaluation

Table 1 reports a qualitative evaluation of the expressive power of a pure

OWL 2 solution with respect to the one of several hybrid techniques. Even if

the set of considered hybrid techniques is obviously not exhaustive, it covers a

wide spectrum of the state-of-the-art. For each considered technique, Table 1

reports the adopted rule language, the kind of coupling between ontological and

rule-based reasoning (either loose or tight), and the level of support of OWL

2 to model activities presented in the corresponding technical papers. Support

is N=None if none of the rule-based definitions of activities modeled in the

literature with that technique can be translated in OWL 2 axioms; P=Partial if

only part of the definitions can be translated; M=Major if all of the presented

definitions can be translated.

As it can be observed, OWL 2 provides at least partial support for all of the

considered techniques, and major support for many of them. In the following we

illustrate in more details the results for the di↵erent classes of rule extensions.
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For each of the presented rules, we use the same syntax that is used in the

original papers.

Horn clauses. Horn clauses are essentially disjunctions of literals with at most

one positive literal. While both OWL 2 and Horn clauses are subsets of FOL,

a direct comparison between the expressiveness of the two languages is prob-

lematic, since neither of those languages is a subset of the other. In particular,

with Horn clauses, as well as with more expressive FOL rules, it is possible to

use n-ary predicates, that cannot be natively represented in OWL 2. Moreover,

within Horn clauses it is possible to use function symbols, while OWL 2 has

very little support for concrete domains; i.e., datatypes with a set of associ-

ated predicates supporting external reasoning. Moreover, Horn clauses do not

impose restrictions on the use of variables, while OWL 2 axioms must adhere

to the tree model property. On the other hand, Horn clauses also have strong

limitations with respect to OWL 2: negation is not supported, and, since all

variables are universally quantified at the outer level of the rule, the existence

of anonymous individuals cannot be asserted.

SeMaPS [37] and 2*3CM [38] tightly couple OWL 1 and Horn clauses through

the SWRL language. In those systems, rules are used to derive high-level con-

text descriptions to recognize intentions and activities of people is smart en-

vironments. In [20, 35, 36], Horn clauses are loosely coupled with OWL 1 to

derive high-level context information such as spatial properties (e.g., co-location

of people) and to recognize social activities as current meeting. Rules are mostly

based on the composition of elementary binary predicates; hence, with OWL 2 it

is possible to represent this kind of rules by exploiting the property composition

constructor, without violating the tree model property. Consider the following

rule, taken from [35]:

Actor(?x) ^ Actor(?y) ^ SymbolicSpace(?z) ^ located(?x,?z) ^

located(?y,?z) ! colocated with(?x,?y).
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Figure 3: Graphs of the interpretation of properties

The above rule can be encoded by the following OWL 2 axiom:

located � hosts v̇ colocatedWith,

where hosts is the inverse of property located.

However, rules whose preconditions are not based on chains of binary pred-

icates cannot be translated in OWL 2 axioms, since they violate the tree model

property. For instance, consider the following rule, taken from [36].

8 X 8 Y 8 Z
⇣
Person(X) ^ Person(Y) ^ Location(Z) ^

hasSupervisor(X,Y) ^ hasOffice(Y,Z) ^ hasCurrentLocation(X,Z) !

hasCurrentActivity(X,meetingSupervisor)
⌘
.

That rule states that if a person is currently in her supervisor’s o�ce, then her

current activity is meetingSupervisor. The rule cannot be translated in an

OWL 2 axiom, since the interpretation of properties, depicted in Figure 3(a),

does not define a tree-shaped directed graph.

General logic programs. In the CARE framework [22], OWL 1 is loosely cou-

pled with a restricted rule-base language to recognize complex context data and

human activities in mobile and pervasive computing environments. In that lan-

guage, presented in more details in [41], rules are specified as first-order definite
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clauses [42] with negation-as-failure and no function symbols, forming a general

logic program. In order to guarantee the model uniqueness, as well as very

e�cient reasoning procedures, CARE supports rule chaining but no recursion.

As with Horn clauses, a direct comparison between the expressiveness of OWL

2 and the one of general logic programs is di�cult, since neither language is a

subset of the other. Indeed, variables in CARE rules are universally quantified;

then, as with Horn clauses, reasoning with anonymous individuals is not sup-

ported. On the other hand, negation as failure, which is inexpressible in FOL,

is obviously not supported by OWL 2, as well as rule sets violating the tree

model property. As a consequence, while most rules presented in [41] can be

easily translated in OWL 2 axioms, other rules cannot be translated without

violating the tree model property. For instance, consider the following rule:

8 X 8 Y 8 Z
⇣
Person(X) ^ Location(Y) ^ Location(Z) ^

hasCurrentLocation(X,Y) ^ hasHomeTownLocation(X,Z) ^

differentFrom(Z,Y) ! hasCurrentActivity(X,travelling)
⌘
,

stating that if a person is currently outside her hometown, then she is traveling.

Unfortunately, the above rule cannot be transformed in a valid OWL 2 axiom,

since it violates the tree model property. Indeed, as it can be seen in Figure 3(b),

the interpretation of properties does not define a tree-shaped directed graph.

Generic first order logic rules. Various architectures for context-awareness are

based on ontological formalisms augmented with generic FOL rules, either in

a loosely [21, 36] or tightly coupled [39, 40] fashion. FOL rules are the most

expressive rules that were proposed in the context-awareness literature to extend

ontological languages; hence, obviously OWL 2, whose underlying description

logic is a fragment of FOL, is less expressive than those languages. On the other

hand, it is well known that key FOL reasoning problems are undecidable in the

general case.

27



6.3. Handling imperfect context information

In the following we discuss the support of OWL 2 to handling imperfect

context information.

• Quality metrics. Unfortunately, like its predecessor, OWL 2 does not

natively support confidence (probability that the data is true), accuracy,

precision, or timeliness. Hence, it is possible to use metadata to represent

those information, but it is not possible to automatically reason with them.

For instance, in order to represent the confidence of a context data it

is possible to declare a confidenceValue functional data property having

domain in Sensor and range in (0, 1]. That property can be used to

condition the derivation of a given high-level data to the confidence of

basic context assertions. However, note that in OWL 2 it is not possible

to propagate the value of a data property; hence, it is not possible to

assign a confidence to ontological inferences based on the confidence of

preconditions.

• Erroneous information. With OWL 2 it is possible to automatically rec-

ognize inconsistencies due to erroneous data provided by context sources.

For instance, suppose that isIn is an object property with domain Person

and co-domain Room, and it is functional (i.e., a person can be in at most

one room at a time). If a location server provides the data “User u isIn

Room S235”, and a di↵erent one states that “User u isIn Room S236”,

this inconsistency is recognized by the ontological reasoner.

• Incompleteness. Since OWL 2 makes the OWA, if the truth value of a con-

text assertion (e.g., “user u isIn Room S235”) is unknown, no conclusion

about it is drawn. This contrasts with the CWA, in which every assertion

that cannot be proved to be true is considered false.
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Figure 4: System overview.

7. OWL 2-based architecture and activity ontology

The overall OWL 2-based architecture for modeling and reasoning with com-

plex activities is depicted in Figure 4. The design of the OWL 2 ontology is

done by means of graphical tools for ontology development that simplify design

and testing, such as Protégé2 and Swoop3. Given the defined set S of OWL 2

axioms, the algorithm illustrated in Section 5.3 is executed to detect and solve

violations of the regularity restriction, thus obtaining a TBox T . The above

operations are performed o✏ine, at the time of ontology engineering.

At run time, context information coming from distributed sources in the

intelligent environment is retrieved and aggregated by the aggregation mid-

dleware (CARE [41]), which is hosted by a possibly non mobile infrastructure. In

particular, the system interacts with the COSAR [8] system to retrieve informa-

tion about simple human activities, recognized by hybrid ontological/statistical

reasoners executed on users’ personal mobile devices. Dynamic context data

2
http://protege.stanford.edu/

3
http://code.google.com/p/swoop/
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Figure 5: OWL 2 activity ontology: core classes and properties.

sources are automatically discovered by the publish/subscribe mechanism of

COSAR (details are described in [43]). According to this mechanism, sensors

publish a SensorML [44] formal description of their capabilities, and reason-

ers subscribe to data of interest. Once context data has been collected, CARE

aggregates them, solving possible conflicts based on a prioritized resolution tech-

nique. Context data are mapped to ontological classes and properties by CARE,

and added as instances to the ABox. Ontological reasoning to recognize com-

plex human activities is performed, either periodically or on the occurrence of

specific events [22], by existing OWL 2 reasoners executed on dedicated servers.

Figure 5 depicts the core classes and properties of the OWL 2 ontology that

we have defined for the activity recognition domain. The ontology is published

on the PalSPOT project website4. This novel ontology is derived from the

OWL 1 ontology presented in [8], which was used to refine the predictions of

statistical activity recognition systems by means of symbolic reasoning. The

innovative contribution of our ontology lies in the exploitation of the novel

4
http://everywarelab.dico.unimi.it/palspot
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operators of OWL 2 to represent activity axioms that could not be expressed

in OWL 1. In the design of the ontology, we mainly concentrated on modeling

activities for smart home and smart workplace scenarios, which are involved

in the experimental evaluation of our system reported in Section 8. Figure 1

shows part of the social activities modeled by our OWL 2 ontology; part of the

individual activities are shown in Figure 6.

Some activities for the smart home domain have been presented in Sec-

tion 5.2. Smart workplace activities include various kinds of meetings, presen-

tations, and individual working activities. For instance, we define an individual

job interview as a conversation involving at least one employee (the examiner),

and exactly one person that is not a company employee (the candidate); the

actors are further characterized by their attitudes and intentions to the conver-

sation, which are modeled through the hasInteractionType property.

IndividualJobInterview v Conversation u

� 1 hasActor.
�
Employee u

9 hasInteractionType.(RequestInfo t AskOpinion t Comment)
�
u

= 1 hasActor.
�
¬Employee u

9 hasInteractionType.(PosOpinion t NegOpinion t Propose)
�
,

For the sake of this work, we adopt the classification of interaction types pro-

posed by Yu et al. in [45], in which interaction types are recognized by means

of statistical and probabilistic techniques.

A stockholders meeting (i.e., one in which the management reports to the

company stockholders) is defined as follows:

StockholdersMeeting v Meeting u 9hasActor.(Manager u

9 hasCurrentActivity.DoingPresentation) u

� 2 hasActor.(Stockholder u hasCurrentPosture.Seated).

Note that the above definition relies on the recognition of simple activities (doing

a presentation) and postures (seated).
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Figure 6: Part of the ontology of individual activities
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The ontology models not only human activities, but also those context data

that are needed to recognize them. At the time of writing, the ontology includes

199 classes and 53 properties. Part of the activities were defined based on the

translation into OWL 2 axioms of rule-based definitions found in the literature.

While the set of activities and context data defined in this ontology is obviously

non exhaustive, we believe that this ontology can be profitably used to model

many pervasive computing scenarios. Moreover, the ontology is easily extensible

to address additional application domains.

8. Experimental evaluation

In order to assess the e�ciency of the OWL 2-based activity recognition

architecture shown in Section 7, we performed extensive experiments with a

working implementation of the whole system. In previous works, we thoroughly

experimented with the CARE and COSAR modules; results reported in [41]

and [43] have shown that, in realistic settings, those modules operate in a few

milliseconds. Hence, since ontological reasoning is the most computationally-

expensive part of our system, we made new experiments to evaluate the com-

putational cost of reasoning with our OWL 2 context ontology in di↵erent sim-

ulated environments.

In these experiments, we measure the execution times of classification and

realization, using di↵erent OWL 2 reasoners. In particular, we use Pellet5 and

HermiT6 reasoners, since at the time of writing, no other reasoner provides com-

plete support for OWL 2. Ontological reasoning is used to derive the specific

activity that is currently performed by users in the intelligent environment. We

recall that classification is executed o✏ine at the time of ontology engineering,

while realization is executed online, after having filled the ABox with instances

representing users in the intelligent environment, as well as context information

coming from sensors. Experiments were performed on a laptop with Core2 Duo

5
http://clarkparsia.com/pellet/

6
http://hermit-reasoner.com/
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T6600 2.2GHz processor and 3GB RAM. The execution times for the classifica-

tion of our OWL 2 ontology was comparable when using both reasoners; times

were below 6 seconds, which is an acceptable result, since classification is per-

formed o✏ine with respect to activity recognition. In the following we report

our experimental results with realization.

We performed the evaluation using two di↵erent scenarios: smart home and

smart workplace. These scenarios were chosen as representative examples of

intelligent environments. The smart home scenario was inspired by the testbed

used within the CASAS project and described in [46]. In our simulation, the

apartment is formed by three bedrooms, one restroom, one kitchen, one dining

room, and one living room. Rooms are equipped with: i) presence sensors to

detect the location of people in the building; ii) 3 kinds of environmental sen-

sors for sound, light intensity, temperature; and iii) 3 kinds of domotic sensors

to detect the use of hot water, cold water, and stove burner. The datasets were

generated by a custom Java program executed o✏ine. Each dataset reported a

snapshot of the position of people in the smart environment, and of the values

of environmental and domotic sensors, which were generated according to a uni-

form distribution. At run time, we added the dataset information to the ABox

by inserting instances and property assertions, and we exploited the Java APIs

for Pellet and HermiT to perform the realization reasoning task. We performed

experiments with growing numbers of persons (from 1 to 20) and sensors (from

20 to 120) in the apartment. For the sake of these experiments, we assume that

each person is performing one individual activity at a time. Hence, for each

person, an instance of IndividualActivity is added to the ABox. Moreover,

for each room hosting more than one person, we add to the ABox an instance

of SocialActivity to represent the social activity occurring in that room. The

ultimate goal of realization is to recognize the most specific classes of activity

that instantiate those instances. Results are averages of ten runs with di↵er-

ent positioning of people in the home, and di↵erent sensor values. Figure 7

shows the execution times of realization when using the Pellet reasoner; error

bars depict standard deviation, while the dotted line represent the exponential
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(a) Growing number of persons (sen-

sors = 60)

(b) Growing number of sensors (per-

sons = 10)

Figure 7: Realization times with the smart home scenario (Pellet reasoner)

trend line. In the experiments reported in Figure 7(a), the number of sensors

in the home is fixed (60), and we vary the number of people in the home and,

consequently, the number of activities that are performed in the intelligent en-

vironment. As it can be observed, execution times grow exponentially with the

number of persons. Execution times remain below 3 seconds with at most 20

persons in the home. Times remain below 1 second when at most 8 persons

are in the home. We believe that these execution times are feasible for most

activity recognition applications in the smart home domain.

In a second set of experiments, whose results are reported in Figure 7(b),

we fix the number of persons in the home to 10, and we vary the number

of sensors. In this case, results show a linear increase with the number of

sensors; execution times of realization remain well below 2 seconds even with

the highest number of sensors considered in this experiment. The linear increase

of execution times is due to the fact that the number of activities performed

in the home is constant and, consequently, realization involves a fixed number

of instances. The increase is due to the growing number of data in the ABox.

Results with the HermiT reasoner, shown in Figure 8, essentially confirm these

trends, even though execution times are higher.

The smart workplace simulation models a larger-scale scenario, in which the
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(a) Growing number of persons (sen-

sors = 60)

(b) Growing number of sensors (per-

sons = 10)

Figure 8: Realization times with the smart home scenario (HermiT reasoner)

intelligent environment is a workplace formed by 26 rooms: fourteen o�ces, five

laboratories, three meeting rooms, two restrooms, one break room and one con-

ference room. In our simulation, the workplace hosts from 20 to 100 employees,

and it contains a number of sensors ranging from 100 to 500, which include sen-

sors for sound, light intensity and temperature, and virtual sensors that detect

the use of electronic devices like personal computers. Results with the Pellet rea-

soner are shown in Figure 9 . In Figure 9(a) we report the result of experiments

with a fixed number of sensors in the workplace (250), and growing numbers

of people and activities. Similarly to the smart home scenario, execution times

of realization grow exponentially with the number of persons in the intelligent

environment. In this case, execution times remain below 6 seconds with at most

100 persons in the smart workplace. In the last set of experiments, whose results

are reported in Figure 9(b), the number of persons in the workplace is fixed to

50, and we vary the number of sensors. In this case, realization execution times

grow linearly with the number of sensors. As expected, in a larger-scale smart

workplace scenario, execution times are quite large when a conspicuous number

of human activities is considered. However, scalability issues can be addressed

by carefully determining the conditions to activate ontological reasoning, and by

executing the computation in a distributed fashion. In particular, in our exper-
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(a) Growing number of persons (sen-

sors = 250)

(b) Growing number of sensors (per-

sons = 50)

Figure 9: Realization times with the smart workplace scenario (Pellet reasoner)

iments, a single machine was used to perform ontological reasoning to recognize

activities in the whole smart environment. However, when activity recognition

must be executed in large-scale environments like corporate buildings, execution

times of ontological reasoning can be reduced by the use of a distributed, and

possibly outsourced, computing infrastructure. Indeed, large execution times

for the realization reasoning task are due to the high number of instances in the

ABox, which, in turn, is determined by the number of persons and sensors in

the environment. However, with a distributed computing solution, this reason-

ing task can be easily partitioned in multiple subtasks, each considering a small

portion of the environment (e.g., a room, or a floor), which will include only a

subset of persons and sensors.

Note that, for the smart workplace scenario, we do not report experiments

performed with the HermiT reasoner, since execution times with that reasoner

were higher than 3 minutes (that is not acceptable for most applications) even

with the smallest number of instances considered in this scenario.

9. Conclusions and future work

In this paper we investigated the use of OWL 2 for modeling and reasoning

with complex human activities. We showed that the new language operators
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of OWL 2 overcome the main limitations of OWL 1 for representing human

activities, and that certain rules and rule-based reasoning previously demanded

to hybrid approaches can be represented by OWL 2 axioms, with the advantage

of having a unique semantics. Then, we proposed a novel OWL 2 activity

ontology, as well as a comprehensive activity recognition architecture integrating

ontological reasoning with distributed context reasoning modules. Experiments

with simulations of di↵erent scenarios showed the feasibility of our approach.

While OWL 2 overcomes many expressiveness limitations of OWL 1, some

limitations of OWL 2 emerged from our experience on the definition of complex

activities. In particular, the tree model property, that guarantees decidability of

OWL 2 reasoning problems, strongly limits the expressiveness of the language.

This limitation is problematic when one needs to restrict the class membership to

a set of instances that are fillers of a given property; e.g., “an internal meeting is

a meeting in which all of the actors are colleagues among themselves”. Indeed,

with the description logic underlying OWL 2 it is impossible to express the

above axiom without giving up decidability. Hence, similar definitions can be

expressed only by restricting the activity definition to a specific domain; e.g.,

“an internal meeting of company X is a meeting in which all of the actors are

employees of X”.

A further major limitation that we encountered regards the support for im-

perfect information, which is not natively provided by OWL 2. Extending our

techniques to support uncertainty and fuzziness will be the subject of future

work. In particular, we are investigating recent approaches (e.g., [47]) to repre-

sent fuzzy and imprecise information within the OWL 2 framework itself; with

these approaches the complexity of reasoning problems does not augment, since

the language is not extended with novel operators. Future work also includes in-

vestigating techniques to model the temporal characterization of activities, such

as duration and temporal relationships, within a description logic framework, as

in [48]. Evaluation of usability, and optimizations to enhance the performance

of ontological reasoning by a distributed computing solution, will also be the

subject of future works.
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