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The Problem

NLS

@ Model problem

e = -0y — B (W), xeR®,

B0 < P+, psle 2o, d=3

® Symmetries:
o translations (¢, q;) — (. — gie’), generated by —i0j,
o Gauge (¥, qa) — e'%, generated by i.

@ Conservation laws:

. O — 00O;
Pi(y) = /Lf’ﬂﬂ

Pw) = [l



The Problem

Ground States

@ Look for special solutions
Y(x, t) = efi(“"‘”q“)np(x — (wjt + qj)ej)
@ 7, is a critical point of
Hi= [ 196l - 5(uP)
restricted to

Sp = {7/) ’Pj(w):plaf:laa‘l}

@ Ground state. A ground state is the minimum.



The Problem

Theorem

Assume
@ Assumptions on the linearized operator.

e Fermi golden rule (probably generic generic: work in progress)
o inf [0 — e (. — i) < 1

Theorem

There exist functions w(t), p(t) g(t) having a limit as t — 400 and a
state ¥, such that, writing

¢(X7 t) = e_iyA(t))np(t)(X - Y(t)) + X(Xv t) )
yi(t) =wi(t)t +qi(t) , lg(t)l <1, j=1,...4

one has

lim ||x(t) — ™ol s =0 .

t—+o00
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The Problem

Comments

@ What's new? Old results when the Floquet spectrum has at most 1
eigenvalue: Weinstein, Soffer-Weinstein, Buslaev-Perelman,
Cuccagna, Perelman.

o |deas from D.B.-Cuccagna (on Klein Gordon), Cuccagna (case with
potential), Perelman (no eigenvalues, energy space).



The Problem

Comments

@ What's new? Old results when the Floquet spectrum has at most 1
eigenvalue: Weinstein, Soffer-Weinstein, Buslaev-Perelman,
Cuccagna, Perelman.

o |deas from D.B.-Cuccagna (on Klein Gordon), Cuccagna (case with
potential), Perelman (no eigenvalues, energy space).
o Key difficulty: the generators of the symmetries are unbounded.

o Development of reduction theory, Darboux theory and Normal form
theory with only continuous transformations.
e Validity of Strichartz estimates for the relevant operators.



A model problem

Outline

© A model problem



A model problem

Model probelm

@ The equation: jy, = —AyY + Vi) + 6(15/3’-(12)'
Ho := —A + V with one eigenvalue Hoe = we

@ Spectral coordinates ¢ = {e + f:
Ho = (F; Bf) + wl¢f?

@ Model nonlinearity
Hp = &/(®;f) + £(0; f)
e Equations

f = —iwé — iuf”(@; f)
f=—i(Bf +¢£0)

o Further decoupling g = f + £7V: if W is such that
(B—vw)¥ =9

then & = iBg + O(|¢]"|f| + [¢]*"7)
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Dissipation

@ Define
RF:=lim (B—wv=+ie) ', V=R ¢

v
e—0t

@ then W(x) ~ (x)~1. Plug in the equation for &:

€= —iwg —1[¢* 7T (P; R D) + O (P g)])
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A model problem

Dissipation

o Define
RF:=lim (B—wv=+ie) ', V=R ¢

v
e—0t

@ then W(x) ~ (x)~1. Plug in the equation for &:

€= —iwg —1[¢* 7T (P; R D) + O (P g)])

@ Plemelji formula:
R, =(B—vw—i0)"'=PV(B - ww) — itd(B — vw) .
implies (®; R, ®) = a—ib, b>0
o { = —iwt —ial¢? 1 — B¢ e +hot,
o SIEP=-2beP =l e 12

@ Use normal form to reduce to the model problem.
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Recall of BCO9

On the wave equation

@ The equation.
U — Au+ Vu+ m*u= —f§'(u) , (t,x) € R x R®

with —A + V/(x) + m? a positive Schrodinger operator (V' smooth
and fast decaying),
(' a smooth function function fulfilling |3(u)| < Cu*

o Consequence. —A + V has finitely many eigenvalues
2
—)\%S"'S -A2<0

and o.(—A+ V) =10, +00)



Recall of BCO9

The theorem of BC09

sin(tv—A + m?)
Ny

e Remark u(t) := K{(t)uo + Ko(t)vo solves

o Denote Ko(t) :=

Uy — Au+mPu=0
u(x,0) = uo(x) i(x,0) = v(x) .

There exists ¢g > 0 such that, if

| (uo, vo)llHixe2 < €0

then there exist (us,vy) € H! x L2 such that

lim |lu(t) — K§(t)ux + Ko(t)ve| 2 =0
t—too
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Connection with NLS

Marsden-Weinstein reduction - generel facts

Connection between the two problems: Marsden-Weinstein reduction.
e Symplectic manifold: (M,w), J Poisson tensor

e Symmetry group: (g, u) — eAu, generated by

P(u) = %(u;Au) ,

e Invariant Hamiltonian: H, s.t. H(u) = H(e%Au),
@ Reduced system: S, :={ue M : P(u) = p} and

My =8,/ =, (u~u = u =e)
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Connection with NLS

Marsden-Weinstein reduction - generel facts

Connection between the two problems: Marsden-Weinstein reduction.

e Symplectic manifold: (M,w), J Poisson tensor

e Symmetry group: (g, u) — eAu, generated by
1
P(u) = §<u;Au> ,
e Invariant Hamiltonian: H, s.t. H(u) = H(e%Au),

@ Reduced system: S, :={ue M : P(u) = p} and

My =8,/ =, (u~u = u =e)

Explicit construction: see the blackboard!
Q:=i*w,and H, . =i"H=Ho|.

Ground state, 7, minimum of H,!



Connection with NLS

Difficulty

Only continuous group actions:
u(.) — u(. — q), generated by O;u = —0yu.
(1) Does reduction theory holds, and in particular

o Is the reduced manifold a manifold?
o Can one define the reduced system?

(2) Canonical coordinates are needed: is it possible to prove Darboux
theorem?

(3) develop transformation theory with unbounded generators

(4) Dispersive estimates: do Strichartz estimates persist under
unbounded perturbation?



Marsden-Weinstein reduction

Outline

© Marsden-Weinstein reduction



Marsden-Weinstein reduction

Framework

@ Phase space:

H*, k € Z Scale of Hilbert spaces, (.;.) scalar prod of H°
J: H* — H*~? Poisson tensor

E = Jil, w(Ul, U2) = (EUl; U2>

Xy := JV H Hamiltonian vector field

1
@ The system: H := 5 <A0u; u> + Hp(u); A% : Hk — Hk=d

e Symmetries: P/(u) == % (Au; u);

A Hk — Hk=d A generate a flow: e"JAj - Hx — Hk Vk.
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Ground state and decomposition of the space

A%, + VHp(1) — Z NA T =0
J

@ Assumptions:
(1) R"D> 13 prn, € H*® is smooth.
Normalization condition P/(1,) = p’.

(2) U,es {mp} is isotropic
o Key remark: g — e"JAjnp is smooth!

e Consequence: T := UezquAjTlp ~ [ x (T' x R,

q,p



Marsden-Weinstein reduction

Ground state and decomposition of the space

A% + VHp(11,) — Z AA 1, =0

Assumptions:

(1) R"D> 13 prn, € H*® is smooth.
Normalization condition Pj(np) =p.
(2) U,es {mp} is isotropic

o Key remark: g — e WA

Consequence: T := LJeZ quA ~ [ x (T' x R,
q.p

o Natural decomposmon H® = T, H0 7, T © T,‘;;T

with T,;*; = {U s w(U; X) —0 , VX € T??pT}-

7p is smooth!



Marsden-Weinstein reduction

A nonlinear construction

@ Level surface of P: S, := {u cPi(u)=p W} > Mp
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Marsden-Weinstein reduction

A nonlinear construction

@ Level surface of P: S, := {u cPi(u)=p Vj} S
o Invariance: eZ 94y C S,

e Transversality: if M, C &, is such that T, M, = T,“,jJT then it
should be a eqgivalent (locally) to the reduced system.

@ Explicit construction of the reduced system
Fix pg € 1.

@ Local model: V := T;:T, VE = HkNV, (k > 0), V=% dual of VX
o Look for VK 3 ¢+ p(¢) € I s.t.

U= Np(p) + Mpe)® € Spy -



Marsden-Weinstein reduction

Reduction

o Define: i(¢) by

V3 ¢ = pp(0).0) + Mp(p(e).0)® = 1(8) € Sp,
H =i"H, Q=i"w.

@ \ector field: H, defines a Hamiltonian vector field in V.



Marsden-Weinstein reduction

Reduction

o Define: i(¢) by

V3 ¢ = pp(0).0) + Mp(p(e).0)® = 1(8) € Sp,
H =i"H, Q=i"w.

@ \ector field: H, defines a Hamiltonian vector field in V.
@ Assumptions

o Xy defines a local flow on H* which leaves invariant H* Yk > ko.
e The same for Xy, .

3C > 0 s.t., if

dko(UO,T) <C, ue€ Spy -

then 3q(t) s.t. u(t) = e¥OA j(¢(t)).
The converse is also true.
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Darboux theorem

Search for canonical coordinates

Qu(®;9) = (E(9)®:®) ,  E(¢) = E+ 0(¢7) .



Darboux theorem

Search for canonical coordinates

Qu(®;9) = (E(9)®:®) ,  E(¢) = E+ 0(¢7) .

Darboux theorem

There exists a map of the form

6= F(¢) = eXi 9 (¢ + S(N,¢)), N :=Pi(¢)), (1)

where the following following properties hold
1. gi(N, ) is defined on R" x V==°
2. S:R"x V=¥ S(N,¢) € V' is smoothing.

3. in terms of the variables ¢’ the symplectic form is given by

Q(®; P5) = (EPY; P3) . (2)




Darboux theorem

Recovering smoothness

@ The differential of eqf(¢)JAj¢ involves
eqf'(‘b)JAjJququj
e Smoothness: If H is invariant: H(eqf(¢)JAju) = H(u) then:

H(F(¢)) = H(¢ + smoothing terms)

o Explicitely
Ho F = H; + Hp + small corrections

Hi(¢) = H(77po +¢) — H(77po)

Restriction of the linearization at the soliton to the symplectic
orthogonal!
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Perturbation theory

Spectrum

o Write Hi(¢) = %(d); Lo)
One can prove that L is selfadjoint and

o Spectrum o(L) = {w3, ..., w} } U[Q?, +00)

@ Coordinates There exist coordinates such that
Hy =Y wil&? + (f; Bf)

@ One can start with perturbation theory.



Perturbation theory

Normal form.

@ Definition: Normal form A function Z(M, ¢) is in normal form up to
order N, if the following holds

olul+lvl 7z
{w'(M—VHéO&|M|+|V|SN+2}:>WuVI,O):O
olul+lvl 7z
{w~(u—u)<Q&|M\+|V|§N+l}:>de(/\/l,0):0
olul+lvl 7

For any N > 0 there exists a canonical transformation Ty of the form (1)
such that H, o Ty is in normal form up to order N.




Perturbation theory

THE END

THANK YOU
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