Asymptotic Stability of Solitons.

D. Bambusi¹

¹Dipartimento di Matematica "F.Enriques" - Università degli studi di Milano

Tinée, February 8, 2011

The Problem A model problem Recall of BC09 Connection with NLS Marsden-Weinstein reduction Darboux theorem Perturbation theory

- The Problem
- 2 A model problem
- Recall of BC09
- 4 Connection with NLS
- Marsden-Weinstein reduction
- 6 Darboux theorem
- Perturbation theory

Model problem

$$\begin{split} \mathrm{i}\psi_t &= -\Delta\psi - \beta'\big(|\psi|^2\big)\psi\;,\quad x\in\mathbb{R}^3\;,\\ |\beta(u)(k)| &\leq C_k\langle x\rangle^{\tilde{p}-k}\;,\quad \tilde{p}\leq 1+\frac{2}{d-2}\;,\quad d=3 \end{split}$$

- Symmetries:
 - translations $(\psi, q_i) \mapsto \psi(. q_i \mathbf{e}^i)$, generated by $-\mathrm{i}\partial_{x_j}$
 - Gauge $(\psi, q_4) \mapsto e^{iq_4} \psi$, generated by i.
- Conservation laws:

$$\mathcal{P}^{j}(\psi) := \int \frac{\psi \partial_{j} \bar{\psi} - \bar{\psi} \partial_{j} \psi}{2}$$
 $\mathcal{P}^{4}(\psi) := \int |\psi|^{2}$

Look for special solutions

$$\psi(x,t) = e^{-i(\omega_4 t + q_4)} \eta_p(x - (\omega_i t + q_i) \mathbf{e}^j)$$

• η_p is a critical point of

$$H := \int |\nabla \psi|^2 - \beta(|\psi|^2)$$

restricted to

$$S_p := \{ \psi : \mathcal{P}^j(\psi) = p^j , j = 1, ..., 4 \}$$

Ground state. A ground state is the minimum.

Theorem

The Problem

Assume

- Assumptions on the linearized operator.
- Fermi golden rule (probably generic generic: work in progress)
- $\inf_{p,q} \|\psi_0 e^{-iq_4} \eta_p (.-q_i e^j)\|_{H^1} \ll 1$

$\mathsf{Theorem}$

There exist functions $\omega(t)$, p(t) q(t) having a limit as $t\to +\infty$ and a state ψ_∞ such that, writing

$$\psi(x,t) = e^{-iy_4(t)} \eta_{p(t)}(x - y(t)) + \chi(x,t) ,$$

$$y_j(t) = \omega_j(t)t + q_j(t) , \quad |q_j(t)| \ll 1 , \quad j = 1,, 4$$

one has

$$\lim_{t\to +\infty} \|\chi(t) - e^{\mathrm{i}t\Delta}\psi_{\infty}\|_{L^6} = 0.$$

The Problem A model problem Recall of BC09 Connection with NLS Marsden-Weinstein reduction Darboux theorem Perturbation theor

Comments

- What's new? Old results when the Floquet spectrum has at most 1 eigenvalue: Weinstein, Soffer-Weinstein, Buslaev-Perelman, Cuccagna, Perelman.
- Ideas from D.B.-Cuccagna (on Klein Gordon), Cuccagna (case with potential), Perelman (no eigenvalues, energy space).
- Key difficulty: the generators of the symmetries are unbounded.
 - Development of reduction theory, Darboux theory and Normal form theory with only continuous transformations.
 - Validity of Strichartz estimates for the relevant operators.

The Problem A model problem Recall of BC09 Connection with NLS Marsden-Weinstein reduction Darboux theorem Perturbation theor

Comments

- What's new? Old results when the Floquet spectrum has at most 1 eigenvalue: Weinstein, Soffer-Weinstein, Buslaev-Perelman, Cuccagna, Perelman.
- Ideas from D.B.-Cuccagna (on Klein Gordon), Cuccagna (case with potential), Perelman (no eigenvalues, energy space).
- Key difficulty: the generators of the symmetries are unbounded.
 - Development of reduction theory, Darboux theory and Normal form theory with only continuous transformations.
 - Validity of Strichartz estimates for the relevant operators.

The Problem A model problem Recall of BC09 Connection with NLS Marsden-Weinstein reduction Darboux theorem Perturbation theory

Comments

- What's new? Old results when the Floquet spectrum has at most 1 eigenvalue: Weinstein, Soffer-Weinstein, Buslaev-Perelman, Cuccagna, Perelman.
- Ideas from D.B.-Cuccagna (on Klein Gordon), Cuccagna (case with potential), Perelman (no eigenvalues, energy space).
- Key difficulty: the generators of the symmetries are unbounded.
 - Development of reduction theory, Darboux theory and Normal form theory with only continuous transformations.
 - Validity of Strichartz estimates for the relevant operators.

- The Problem
- 2 A model problem
- Recall of BC09
- 4 Connection with NLS
- Marsden-Weinstein reduction
- 6 Darboux theorem
- Perturbation theory

Model probelm

- The equation: $i\psi_t = -\Delta \psi + V\psi + \frac{\delta H_P}{\delta \tilde{\psi}(x)}$. $\mathcal{H}_0 := -\Delta + V$ with one eigenvalue $\mathcal{H}_0 \mathbf{e} = \omega \mathbf{e}$
- Spectral coordinates $\psi = \xi \mathbf{e} + f$: $H_0 = \langle \overline{f}; Bf \rangle + \omega |\xi|^2$
- Model nonlinearity

$$H_P := \bar{\xi}^{\nu} \langle \bar{\Phi}; f \rangle + \xi^{\nu} \langle \Phi; \bar{f} \rangle$$

Equations

$$\dot{\xi} = -i\omega\xi - i\nu\bar{\xi}^{\nu}\langle\bar{\Phi};f\rangle$$
$$\dot{f} = -i(Bf + \xi^{\nu}\Phi)$$

• Further decoupling $g = f + \xi^{\nu} \Psi$: if Ψ is such that

$$(B - \nu \omega)\Psi = \Phi$$

then
$$\dot{g} = iBg + O(|\xi|^{\nu}|f| + |\xi|^{2\nu-1})$$

Dissipation

Define

$$R_{
u}^{\mp} := \lim_{\epsilon \to 0^+} \left(B - \omega
u \pm i \epsilon \right)^{-1} , \quad \Psi = R_{
u}^{-} \Phi$$

• then $\Psi(x) \sim \langle x \rangle^{-1}$. Plug in the equation for ξ :

$$\dot{\xi} = -\mathrm{i}\omega\xi - \mathrm{i}\left|\xi\right|^{2\nu - 1}\left\langle\bar{\Phi}; R_{\nu}^{+}\Phi\right\rangle\xi + O(\xi^{\nu - 1}\left|\left\langle\Phi; g\right\rangle\right|)$$

Plemelji formula:

$$R_{\nu}^{-} \equiv (B - \nu\omega - i0)^{-1} = PV(B - \nu\omega) - i\pi\delta(B - \nu\omega)$$

implies
$$\langle \bar{\Phi}; R_{\nu}^{-} \Phi \rangle = a - \mathrm{i}b, \ b \geq 0$$

•
$$\dot{\xi} = -i\omega\xi - ia|\xi|^{2\nu-1}\xi - b|\xi|^{2\nu-1}\xi + \text{h.o.t.}$$

•
$$\frac{d}{dt}|\xi|^2 = -2b|\xi|^{2\nu} \implies |\xi|^{\nu} \in L_t^2$$

• Use normal form to reduce to the model problem.

Dissipation

Define

$$R_{
u}^{\mp} := \lim_{\epsilon \to 0^+} \left(B - \omega
u \pm i \epsilon \right)^{-1} , \quad \Psi = R_{
u}^{-} \Phi$$

• then $\Psi(x) \sim \langle x \rangle^{-1}$. Plug in the equation for ξ :

$$\dot{\xi} = -\mathrm{i}\omega\xi - \mathrm{i}\left|\xi\right|^{2\nu - 1}\left\langle\bar{\Phi}; R_{\nu}^{+}\Phi\right\rangle\xi + O(\xi^{\nu - 1}\left|\left\langle\Phi; g\right\rangle\right|)$$

• Plemelji formula:

$$R_{\nu}^{-} \equiv (B - \nu\omega - i0)^{-1} = PV(B - \nu\omega) - i\pi\delta(B - \nu\omega)$$
.

implies
$$\langle \bar{\Phi} ; R_{\nu}^{-} \Phi \rangle = a - \mathrm{i} b, \ b \geq 0$$

•
$$\dot{\xi} = -i\omega\xi - ia|\xi|^{2\nu-1}\xi - b|\xi|^{2\nu-1}\xi + \text{h.o.t.}$$

• Use normal form to reduce to the model problem.

Dissipation

Define

$$R_{
u}^{\mp} := \lim_{\epsilon \to 0^+} \left(B - \omega
u \pm i \epsilon \right)^{-1} , \quad \Psi = R_{
u}^{-} \Phi$$

• then $\Psi(x) \sim \langle x \rangle^{-1}$. Plug in the equation for ξ :

$$\dot{\xi} = -i\omega\xi - i|\xi|^{2\nu - 1} \langle \bar{\Phi}; R_{\nu}^{+} \Phi \rangle \xi + O(\xi^{\nu - 1} |\langle \Phi; g \rangle |)$$

Plemelji formula:

$$R_{\nu}^{-} \equiv (B - \nu\omega - i0)^{-1} = PV(B - \nu\omega) - i\pi\delta(B - \nu\omega).$$

implies $\langle \bar{\Phi}; R_{\nu}^{-} \Phi \rangle = a - \mathrm{i} b, \ b \geq 0$

•
$$\dot{\xi} = -i\omega\xi - ia|\xi|^{2\nu-1}\xi - b|\xi|^{2\nu-1}\xi + \text{h.o.t.}$$

•
$$\frac{d}{dt}|\xi|^2 = -2b|\xi|^{2\nu} \implies |\xi|^{\nu} \in L_t^2$$

• Use normal form to reduce to the model problem.

- The Problem
- 2 A model problem
- 3 Recall of BC09
- 4 Connection with NLS
- Marsden-Weinstein reduction
- 6 Darboux theorem
- Perturbation theory

On the wave equation

• The equation.

$$u_{tt} - \Delta u + Vu + m^2 u = -\beta'(u)$$
, $(t, x) \in \mathbb{R} \times \mathbb{R}^3$

with $-\Delta + V(x) + m^2$ a positive Schrödinger operator (V smooth and fast decaying),

 β' a smooth function function fulfilling $|\beta(u)| \leq Cu^4$

• Consequence. $-\Delta + V$ has finitely many eigenvalues

$$-\lambda_1^2 \le \dots \le -\lambda_n^2 \le 0$$

and
$$\sigma_c(-\Delta + V) = [0, +\infty)$$

The theorem of BC09

• Denote
$$K_0(t) := rac{\sin(t\sqrt{-\Delta+m^2})}{\sqrt{-\Delta+m^2}}$$

• Remark $u(t) := K'_0(t)u_0 + K_0(t)v_0$ solves

$$u_{tt} - \Delta u + m^2 u = 0$$

 $u(x,0) = u_0(x)$ $\dot{u}(x,0) = v_0(x)$.

Theorem

There exists $\epsilon_0 > 0$ such that, if

$$||(u_0, v_0)||_{H^1 \times L^2} < \epsilon_0$$

then there exist $(u_+, v_+) \in H^1 \times L^2$ such that

$$\lim_{t \to \pm \infty} \|u(t) - K_0'(t)u_{\pm} + K_0(t)v_{\pm}\|_{H^1} = 0$$

- The Problem
- 2 A model problem
- Recall of BC09
- 4 Connection with NLS
- Marsden-Weinstein reduction
- 6 Darboux theorem
- Perturbation theory

Marsden-Weinstein reduction - generel facts

Connection between the two problems: Marsden-Weinstein reduction.

- Symplectic manifold: (\mathcal{M}, ω) , J Poisson tensor
- Symmetry group: $(q, u) \mapsto e^{qJA}u$, generated by

$$\mathcal{P}(u) := \frac{1}{2} \langle u; Au \rangle ,$$

- Invariant Hamiltonian: H, s.t. $H(u) = H(e^{qJA}u)$,
- Reduced system: $S_p := \{u \in \mathcal{M} : \mathcal{P}(u) = p\}$ and

$$\mathcal{M}_{\rho} := \mathcal{S}_{\rho} / \simeq \,, \quad \left(u \sim u' \iff u' = e^{qJA} u \right)$$

- Explicit construction: see the blackboard!
- $\Omega := i^* \omega$, and $H_r := i^* H = H \circ i$.
- Ground state, η_p : minimum of H_r !

Connection between the two problems: Marsden-Weinstein reduction.

- Symplectic manifold: (\mathcal{M}, ω) , J Poisson tensor
- Symmetry group: $(q, u) \mapsto e^{qJA}u$, generated by

$$\mathcal{P}(u) := \frac{1}{2} \langle u; Au \rangle ,$$

- Invariant Hamiltonian: H, s.t. $H(u) = H(e^{qJA}u)$,
- Reduced system: $S_p := \{u \in \mathcal{M} : \mathcal{P}(u) = p\}$ and

$$\mathcal{M}_{\rho} := \mathcal{S}_{\rho} / \simeq \,, \quad \left(u \sim u' \iff u' = e^{qJA} u \right)$$

- Explicit construction: see the blackboard!
- $\Omega := i^* \omega$, and $H_r := i^* H = H \circ i$.
- Ground state, η_p : minimum of H_r !

Marsden-Weinstein reduction - generel facts

Connection between the two problems: Marsden-Weinstein reduction.

- Symplectic manifold: (\mathcal{M}, ω) , J Poisson tensor
- Symmetry group: $(q, u) \mapsto e^{qJA}u$, generated by

$$\mathcal{P}(u) := \frac{1}{2} \langle u; Au \rangle ,$$

- Invariant Hamiltonian: H, s.t. $H(u) = H(e^{qJA}u)$,
- Reduced system: $S_p := \{u \in \mathcal{M} : \mathcal{P}(u) = p\}$ and

$$\mathcal{M}_{\rho} := \mathcal{S}_{\rho} / \simeq \,, \quad \left(u \sim u' \iff u' = e^{qJA} u \right)$$

- Explicit construction: see the blackboard!
- $\Omega := i^* \omega$, and $H_r := i^* H = H \circ i$.
- Ground state, η_p : minimum of H_r !

Difficulty

Only continuous group actions:

$$u(.) \mapsto u(.-q)$$
, generated by $\partial_t u = -\partial_x u$.

- (1) Does reduction theory holds, and in particular
 - Is the reduced manifold a manifold?
 - Can one define the reduced system?
- (2) Canonical coordinates are needed: is it possible to prove Darboux theorem?
- (3) develop transformation theory with unbounded generators
- (4) Dispersive estimates: do Strichartz estimates persist under unbounded perturbation?

- The Problem
- 2 A model problem
- Recall of BC09
- 4 Connection with NLS
- Marsden-Weinstein reduction
- 6 Darboux theorem
- Perturbation theory

- Phase space:
 - H^k , $k \in \mathbb{Z}$ Scale of Hilbert spaces, $\langle .; . \rangle$ scalar prod of H^0
 - $J: H^k \mapsto H^{k-d}$ Poisson tensor
 - $E := J^{-1}, \ \omega(U_1, U_2) := \langle EU_1; U_2 \rangle$
 - $X_H := J \nabla H$ Hamiltonian vector field
- The system: $H := \frac{1}{2} \langle A^0 u; u \rangle + H_P(u); A^0 : H^k \to H^{k-d_0}$
- Symmetries: $\mathcal{P}^{j}(u) := \frac{1}{2} \langle \mathcal{A}^{j} u; u \rangle;$
 - $A^j: H^k \to H^{k-d_j}$, JA^j generate a flow: $e^{qJA^j}: H^k \mapsto H^k$, $\forall k$.

$A^0\eta_p + abla H_P(\eta_p) - \sum_i \lambda_j A^j \eta_p = 0$

- Assumptions:
 - (1) $\mathbb{R}^n \supset I \ni p \mapsto \eta_p \in H^{\infty}$ is smooth. Normalization condition $\mathcal{P}^j(\eta_p) = p^j$.
 - (2) $\bigcup_{p \in I} \{\eta_p\}$ is isotropic
- Key remark: $q \mapsto e^{qJA^J} \eta_p$ is smooth!
- Consequence: $\mathcal{T} := \bigcup_{q,p} e^{\sum q_j J A^j} \eta_p \simeq I \times (\mathbb{T}^l \times \mathbb{R}^{n-l}),$
- Natural decomposition: $H^0 \equiv T_{\eta_p} H^0 \simeq T_{\eta_p} \mathcal{T} \oplus T_{\eta_p}^{\omega} \mathcal{T}$ with $T_{\eta_p}^{\omega} \mathcal{T} := \{ U : \omega(U; X) = 0 , \forall X \in T_{\eta_p} \mathcal{T} \}.$

$$A^{0}\eta_{p} + \nabla H_{P}(\eta_{p}) - \sum_{j} \lambda_{j} A^{j} \eta_{p} = 0$$

- Assumptions:
 - (1) $\mathbb{R}^n \supset I \ni p \mapsto \eta_p \in H^{\infty}$ is smooth. Normalization condition $\mathcal{P}^j(\eta_p) = p^j$.
 - (2) $\bigcup_{p \in I} \{\eta_p\}$ is isotropic
- Key remark: $q \mapsto e^{qJA^J} \eta_p$ is smooth!
- Consequence: $\mathcal{T} := [] e^{\sum q_j J A^j} \eta_p \simeq I \times (\mathbb{T}^l \times \mathbb{R}^{n-l}),$
- Natural decomposition: $H^0 \equiv T_{n_0}H^0 \simeq T_{n_0}T \oplus T_{n_0}^{\omega}T$

$$A^0\eta_p +
abla H_P(\eta_p) - \sum_j \lambda_j A^j \eta_p = 0$$

- Assumptions:
 - (1) $\mathbb{R}^n \supset I \ni p \mapsto \eta_p \in H^{\infty}$ is smooth. Normalization condition $\mathcal{P}^j(\eta_p) = p^j$.
 - (2) $\bigcup_{p \in I} \{\eta_p\}$ is isotropic
- Key remark: $q \mapsto e^{qJA^j}\eta_p$ is smooth!
- Consequence: $\mathcal{T}:=\bigcup_{q,p}e^{\sum q_jJA^j}\eta_p\simeq I\times(\mathbb{T}^I\times\mathbb{R}^{n-I}),$
- Natural decomposition: $H^0 \equiv T_{\eta_p} H^0 \simeq T_{\eta_p} \mathcal{T} \oplus T_{\eta_p}^{\omega} \mathcal{T}$ with $T_{\eta_p}^{\omega} \mathcal{T} := \{ U : \omega(U; X) = 0 , \forall X \in T_{\eta_p} \mathcal{T} \}.$

$$A^{0}\eta_{p} + \nabla H_{P}(\eta_{p}) - \sum_{i} \lambda_{j} A^{j} \eta_{p} = 0$$

- Assumptions:
 - (1) $\mathbb{R}^n \supset I \ni p \mapsto \eta_p \in H^{\infty}$ is smooth. Normalization condition $\mathcal{P}^j(\eta_p) = p^j$.
 - (2) $\bigcup_{p \in I} \{\eta_p\}$ is isotropic
- Key remark: $q \mapsto e^{qJA^j}\eta_p$ is smooth!
- Consequence: $\mathcal{T}:=\bigcup_{q,p}e^{\sum q_jJA^j}\eta_p\simeq I\times (\mathbb{T}^I\times\mathbb{R}^{n-I}),$
- Natural decomposition: $H^0 \equiv T_{\eta_p}H^0 \simeq T_{\eta_p}T \oplus T_{\eta_p}^{\omega}T$ with $T_{\eta_p}^{\omega}T := \{U : \omega(U;X) = 0 , \forall X \in T_{\eta_p}T\}.$

- Level surface of \mathcal{P} : $\mathcal{S}_p := \{ u : \mathcal{P}^j(u) = p^j , \forall j \} \ni \eta_p$
- Invariance: $e^{\sum q_j J A^j} \eta_p \subset \mathcal{S}_p$.
- Transversality: if $\mathcal{M}_p \subset \mathcal{S}_p$ is such that $T_{\eta_p} \mathcal{M}_p = T_{\eta_p}^{\omega} \mathcal{T}$ then it
- Explicit construction of the reduced system
- Local model: $\mathcal{V}:=T_{\eta_0}^{\omega}\mathcal{T},\,\mathcal{V}^k:=H^k\cap\mathcal{V},\,(k\geq0),\,\mathcal{V}^{-k}$ dual of \mathcal{V}^k .
- Look for $\mathcal{V}^k \ni \phi \mapsto p(\phi) \in I$ s.t.

$$u := \eta_{p(\phi)} + \Pi_{p(\phi)} \phi \in \mathcal{S}_{p_0} .$$

- Level surface of \mathcal{P} : $\mathcal{S}_p := \{ u : \mathcal{P}^j(u) = p^j , \forall j \} \ni \eta_p$
- Invariance: $e^{\sum q_j J A^j} \eta_p \subset \mathcal{S}_p$.
- Transversality: if $\mathcal{M}_p \subset \mathcal{S}_p$ is such that $T_{\eta_p} \mathcal{M}_p = T_{\eta_p}^{\omega} \mathcal{T}$ then it should be a eqivalent (locally) to the reduced system.
- Explicit construction of the reduced system Fix $p_0 \in I$.
- Local model: $\mathcal{V}:=T_{\eta_n}^{\omega}\mathcal{T}$, $\mathcal{V}^k:=H^k\cap\mathcal{V}$, $(k\geq 0)$, \mathcal{V}^{-k} dual of \mathcal{V}^k .
- Look for $\mathcal{V}^k \ni \phi \mapsto p(\phi) \in I$ s.t.

$$u := \eta_{p(\phi)} + \Pi_{p(\phi)} \phi \in \mathcal{S}_{p_0}$$
.

• Define: $i(\phi)$ by

$$\mathcal{V}^{k} \ni \phi \mapsto \eta_{p(\mathcal{P}(\phi),\phi)} + \Pi_{p(\mathcal{P}(\phi),\phi)} \phi =: i(\phi) \in \mathcal{S}_{p_{0}}$$
$$H_{r} := i^{*}H , \quad \Omega := i^{*}\omega .$$

- Vector field: H_r defines a Hamiltonian vector field in \mathcal{V} .
- Assumptions
 - X_H defines a local flow on H^{k_0} which leaves invariant $H^k \ \forall k > k_0$.
 - The same for $X_{H_{\bullet}}$.

$$d_{k_0}(u_0,T) < C$$
, $u_0 \in \mathcal{S}_{p_0}$

Reduction

• Define: $i(\phi)$ by

$$\mathcal{V}^{k} \ni \phi \mapsto \eta_{\rho(\mathcal{P}(\phi),\phi)} + \Pi_{\rho(\mathcal{P}(\phi),\phi)} \phi =: i(\phi) \in \mathcal{S}_{\rho_{0}}$$
$$H_{r} := i^{*}H , \quad \Omega := i^{*}\omega .$$

- Vector field: H_r defines a Hamiltonian vector field in \mathcal{V} .
- Assumptions
 - X_H defines a local flow on H^{k_0} which leaves invariant $H^k \ \forall k > k_0$.
 - The same for X_{H_r} .

Theorem

 $\exists C > 0 \text{ s.t.. if}$

$$d_{k_0}(u_0,\mathcal{T}) < C$$
, $u_0 \in \mathcal{S}_{p_0}$.

then $\exists q(t)$ s.t. $u(t) = e^{q_j(t)JA^j}i(\phi(t))$.

The converse is also true.

- The Problem
- 2 A model problem
- Recall of BC09
- 4 Connection with NLS
- Marsden-Weinstein reduction
- 6 Darboux theorem
- Perturbation theory

Search for canonical coordinates

$$\Omega_{\phi}(\Phi; \Phi) = \langle \mathcal{E}(\phi)\Phi; \Phi \rangle \; , \qquad \mathcal{E}(\phi) = E + O(\phi^2) \; .$$

$$\phi = \mathcal{F}(\phi') = e^{\sum_j q_j J A^j} (\phi' + S(N, \phi')) , \quad N^j := \mathcal{P}^j(\phi') , \qquad (1)$$

$$\Omega(\Phi_1'; \Phi_2') = \langle E\Phi_1'; \Phi_2' \rangle . \tag{2}$$

Search for canonical coordinates

$$\Omega_{\phi}(\Phi; \Phi) = \langle \mathcal{E}(\phi)\Phi; \Phi \rangle , \qquad \mathcal{E}(\phi) = E + O(\phi^2) .$$

Darboux theorem

There exists a map of the form

$$\phi = \mathcal{F}(\phi') = e^{\sum_j q_j J A^j} (\phi' + S(N, \phi')) , \quad N^j := \mathcal{P}^j(\phi') , \qquad (1)$$

where the following following properties hold

- 1. $q_i(N, \phi)$ is defined on $\mathbb{R}^n \times \mathcal{V}^{-\infty}$
- 2. $S: \mathbb{R}^n \times \mathcal{V}^{-k} \mapsto S(N, \phi) \in \mathcal{V}^l$ is smoothing.
- 3. in terms of the variables ϕ' the symplectic form is given by

$$\Omega(\Phi_1'; \Phi_2') = \langle E\Phi_1'; \Phi_2' \rangle . \tag{2}$$

• The differential of $e^{q_j(\phi)JA^j}\phi$ involves

$$e^{q_j(\phi)JA^j}JA^j\phi dq_i$$

• Smoothness: If H is invariant: $H(e^{q_j(\phi)JA^j}u) = H(u)$ then:

$$H(\mathcal{F}(\phi)) = H(\phi + smoothing terms)$$

Explicitely

$$H \circ \mathcal{F} = H_L + H_P + \text{small corrections}$$

 $H_L(\phi) = H(\eta_{D_0} + \phi) - H(\eta_{D_0})$

Restriction of the linearization at the soliton to the symplectic orthogonal!

- 1 The Problem
- 2 A model problem
- Recall of BC09
- 4 Connection with NLS
- Marsden-Weinstein reduction
- 6 Darboux theorem
- Perturbation theory

- Write $H_L(\phi) = \frac{1}{2} \langle \phi; L\phi \rangle$ One can prove that L is selfadjoint and
- Spectrum $\sigma(L) = \{\omega_1^2, ..., \omega_N^2\} \cup [\Omega^2, +\infty)$
- Coordinates There exist coordinates such that $H_L = \sum_I \omega_I |\xi_I|^2 + \langle \overline{f}; Bf \rangle$
- One can start with perturbation theory.

Normal form.

• Definition: Normal form A function $Z(M, \phi)$ is in normal form up to order N, if the following holds

$$\{\omega \cdot (\mu - \nu) \neq 0 \& |\mu| + |\nu| \leq N + 2\} \Longrightarrow \frac{\partial^{|\mu| + |\nu|} Z}{\partial \xi^{\mu} \partial^{\nu} \overline{\xi}} (M, 0) = 0$$

$$\{\omega \cdot (\mu - \nu) < \Omega \& |\mu| + |\nu| \leq N + 1\} \Longrightarrow d_{f} \frac{\partial^{|\mu| + |\nu|} Z}{\partial \xi^{\mu} \partial^{\nu} \overline{\xi}} (M, 0) = 0$$

$$\{-\omega \cdot (\mu - \nu) > \Omega \& |\mu| + |\nu| \leq N + 1\} \Longrightarrow d_{\overline{f}} \frac{\partial^{|\mu| + |\nu|} Z}{\partial \xi^{\mu} \partial^{\nu} \overline{\xi}} (M, 0) = 0$$

Theorem

For any $N \ge 0$ there exists a canonical transformation T_N of the form (1) such that $H_r \circ T_N$ is in normal form up to order N.

ne Problem A model problem Recall of BC09 Connection with NLS Marsden-Weinstein reduction Darboux theorem Perturbation theory

THE END

THANK YOU