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SUMMARY

b-Amyloid (b-A) accumulates in the brain of patients with Alzheimer’s disease (AD) and is presumably
involved in the pathogenesis of this disease, on account of its neurotoxicity and complement-activating
ability. Although assembly ofb-A in particular aggregates seems to be crucial, soluble non-fibrillarb-A
may also be involved. Non-fibrillarb-A does not bind C1q, so we investigated alternative mechanisms
of b-A-dependent complement activationin vitro. On incubation with normal human plasma, non-
fibrillar b-A 1-42, and truncated peptide 1–28, induced dose-dependent activation of C1s and C4,
sparing C3, as assessed by densitometric analysis of immunostained membrane after SDS–PAGE and
Western blotting. The mechanism of C4 activation was not dependent on C1q, because non-fibrillarb-A
can still activate C1s and C4 in plasma genetically deficient in C1q (C1qd). In Factor XII-deficient
plasma (F.XIId) the amount of cleaved C4 was about 5–10% less that in C1qd and in normal EDTA
plasma; the reconstitution of F.XIId plasma with physiologic concentrations of F.XII resulted in an
increased (8–15%)b-A-dependent cleavage of C4. Thus our results indicate that the C1q-independent
activation of C1 and C4 can be partially mediated by the activation products of contact system. Since the
activation of contact system and of C4 leads to generation of several humoral inflammatory peptides,
non-fibrillar b-A might play a role in initiating the early inflammatory reactions leading to a multistep
cascade contributing to neuronal and clinical dysfunction of AD brain.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia in
the elderly, accounting for>50% of all cases. Several risk factors
have been suggested in this neurodegeneration, including genetic,
environmental and metabolic factors, but the aetiology is still
unknown. The neuropathological hallmarks are neurofibrillary
tangles and senile plaques. The major protein component of the
plaques is a 39–42 amino acid peptide (b-amyloid (b-A)) proteo-
lytically derived from the transmembrane amyloid precursor pro-
tein (APP) [1].b-A was considered inert until recent studies clearly
showed that it is biologically active, leading to neuronal degenera-
tion and microglial activationin vitro [2]. Although it is now clear
that neuritic plaques, reactive microglia and several inflammatory
mediators are linked to neuronal degeneration in the AD brain,
the mechanism underlying these links is still uncertain. During
the past decade evidence has been provided suggesting that the

complement system (C) may be involved in the inflammatory
process. In the AD brain several factors of the classical pathway
[3,4] and less consistently the complement membrane attack
complex (MAC) [5,6] are commonly found on neuritic plaques,
low levels of C1q in cerebrospinal fluid (CSF) correlate with the
disease state [7], andin vitro b-A can activate the C classical
pathway through an ionic interaction with C1q [8]. Although only
the region between residues 4 and 11 of theb-A peptide is critical
for binding to a collagen-like domain of the C1q A chain [9,10], a
particular assembly state ofb-A seems to be needed for C
activation [11] since monomericb-A does not bind C1q [12].
However, the finding that monomericb-A 1–42 activates the
classical pathwayin vitro [13] raised the question of alternative
mechanisms.

During activation of the contact system and fibrinolysis several
peptides are generated, i.e. factor XIIf, kallikrein and plasmin,
which, by acting on C1s, can activate the classical pathway in a
C1q-independent manner, bothin vitro [14,15] andin vivo [16].
The possibility that these systems may be involved in C activation
in the AD brain is suggested by thein vivo finding that the contact
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system may be activated in these patients [17,18], and that soluble
b-A has a stimulatory effect on plasminogen activation by tissue-
type plasminogen activatorin vitro [19].

The present study was undertaken to define the mechanisms
through which non-fibrillarb-A activates C, by evaluating the
generation of activation products of C1s, C4, C3 and factor B. We
also checked whether non-fibrillarb-A peptide 1–42, and the
truncate peptides 1–28, can substitute for C1q in classical pathway
activation in vitro, and whether activation of the contact system
and fibrinolysis are also involved.

MATERIALS AND METHODS

Chemicals and reagents
Synthetic analogues ofb-A peptides 1–42 and 1–28, Tween-20,
soybean trypsin inhibitor, b-Dellin, biotinylated rabbit anti-goat
and goat anti-rabbit IgG, peroxidase-conjugated goat anti-rabbit,
and avidin-alkaline phosphatase substrate were obtained from
Sigma Chemical Co. (St Louis, MO). Goat polyclonal anti-high
molecular weight kininogen (light chain) and goat anti-factor XII
were from Nordic (Tilburg, The Netherlands). Rabbit polyclonal
anti-C4/C4c, anti-C3/C3c, anti-C1INH, and anti-factor B were
from Dako (Glostrup, Denmark). Sheep polyclonal anti-C1s was
from The Binding Site (Birmingham, UK). Purified C4, Factor XII
and Phe-Phe-Arg-chloromethyl ketone dihydrochloride (PPACK)
were from Calbiochem Co. (San Diego, CA). Polyvinylidene-
difluoride membrane (Immobilon) was from Millipore Co. (Bed-
ford, MA). The ECL Western blotting detection reagents were
from Amersham (Aylesbury, UK). The high-performance scanner
and Image Master software were from Pharmacia (Uppsala,
Sweden). Pure C1INH was a kind gift from Dr A. E. Davis III
(Department of Nephrology, The Children’s Hospital Research
Foundation, Cincinnati, OH). Pure C1s and C1r2–C1s2 complex
were a kind gift from Dr U. Martensson (Department of Medical
Microbiology, Lund University, Sweden).

Plasma samples
Blood was collected from three healthy volunteers and from one
subject genetically deficient in factor XII (F.XIId) in polypropy-
lene tubes containing Na-citrate 0·13 mol/l (9:1). The mixture was
handled at room temperature, centrifuged at 1300g for 10 min, and
used for the experiments within 30 min from bleeding. Sponta-
neous activation of C4, C3 and factor B ranged between 2% and
6%, and plasma was suitable for assessing activation of the
classical and alternative C pathways by heat-aggregated IgG
(HAG) and Zymosan, respectively. Na-citrate prevents activation
of the coagulation system butin vitro activation of the contact
system by negatively charged substances (Kaolin) and plasmin
generation by plasminogen activators (tissue-type plasminogen
activator in presence of fibrinogen fragments) can be tested.
Human plasma genetically deficient in C1q (C1qd) was a kind
gift from Dr P. Spaeth (ZLB Central Laboratory, Blood Transfu-
sion Service SRC, Bern, Switzerland). C1qd and F.XIId plasma do
not contain substances precipitable with polyclonal anti-human
C1q or anti-human factor XII as assessed by single radial
immunodiffusion and double immunodiffusion analyses in agarose.
Fresh samples were used in each experiment.

Characterization ofb-A peptides
b-A peptides were prepared by dissolving lyophilizedb-A 1–42 or
1–28 in high quality distilled H2O at a concentration of 200mg/ml

(50 mM) and immediately diluting to 25mM with PBS pH 7·4.
Within a few minutes of dissolution,b-A preparations were
centrifuged (10 000g) for 10 min at room temperature and the
state of aggregation was assessed by separating supernatants and
pellets by 15% non-reducing SDS–PAGE. Freshly solubilizedb-A
peptides were morphologically characterized by light and electron
microscopy. Thioflavin T stains were used for light microscopy of
the peptides, in supernatants and pellets. For negatively stained
specimens, samples (20ml) were adsorbed to 200 mesh Formvar
carbon-coated grids, air-dried, and negatively stained with 2%
uranyl acetate in water (w/v) for 2 min. The grids were examined
and photographed in a Jeol JEM 1010 electron microscope operating
at 80–100 kV.

Complement system activation
C activation was assessed by measuring the degree of C4, C3, and
factor B cleavage using densitometric analysis of immunostained
blotting membranes after SDS–PAGE. This method simulta-
neously evaluates the native protein and its activation fragments.
Plasma samples were loaded on 8% acrylamide gel and separated
by SDS under non-reducing conditions. Proteins were transferred
to polyvinylidene-difluoride (PVDF) membranes by electro-
blotting, blocked for 12 h at 48C with 5% skimmed milk in Tris-
buffered saline–0·1% Tween-20, washed and incubated for 2 h at
room temperature with polyclonal rabbit anti-C4, C3 or factor B.
The C factor bands were visualized with biotin-conjugated goat anti-
rabbit IgG and an avidin-alkaline phosphatase substrate. The blot-
ting membranes were analysed with a high-performance scanner and
Image Master software to establish the level of protein activation,
the cleaved protein being expressed as a percentage of total protein
(band IIversusbands I plus II). The interassay variation was 10%.
C1s activation in plasma was assessed by evaluating the generation
of C1 s–C1INH complexes. Briefly, the IgG fraction of polyclonal
sheep anti-C1s was conjugated to cyanogen bromide-activated
Sepharose 4B in sodium bicarbonate buffer pH 8·3. The residual
active groups were blocked using Tris–HCl pH 8·0. Anti-C1s-
conjugated Sepharose beads (50ml) were incubated with samples
of activated plasma (see above) for 15 min at room temperature
under gentle agitation. The Sepharose beads were washed three
times to remove non-adsorbed plasma proteins, resuspended in SDS-
sample buffer (non-reducing) and incubated for 5 min in boiling
water. The Sepharose beads were pelleted, and the protein-contain-
ing supernatants were subjected to SDS–PAGE, and transferred to
PVDF membranes as described above. The bands were visualized on
blotting membranes with polyclonal rabbit anti-C1INH, horseradish
peroxidase-labelled rabbit anti-goat IgG and ECL detection
reagents. The amount of stable C1s–C1INH complexes was eval-
uated by densitometry, and the values expressed as a percentage of
total protein (200-kD bandversus200-kD plus 110-kD band).

Contact system activation
Contact system activation was assessed by measuring the degree of
cleavage of high molecular weight kininogen (HK) [20,21], essen-
tially as described for C factors. The HK bands were visualized on
blotting membranes with polyclonal goat anti-light chain HK,
biotin-conjugated rabbit anti-goat IgG and an avidin-alkaline
phosphatase substrate. The apparent masses of native HK and its
activation fragments were mol. wt 130 000 (band I), 107 000 (band
II) and 98 000 (band III). HK activation was expressed as the
percentage of total protein (band II plus IIIversusbands I plus II
and III).
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Complement activation byb-A peptides
C activation byb-A peptides was assessed as follows. Human Na-
citrate plasma (100ml) was incubated at 378C for 30 min with
100ml of freshly resuspendedb-A1–42, or 1–28, at various
concentrations (5–100mg/ml). The reaction was quenched by
adding 200ml of PBS containing soybean trypsin inhibitor
100mg/ml, EDTA 10 mM, Polybrene 0·05% (w/v). C4, C3 and
factor B activation was assessed as described above. To investigate
the mechanism ofb-A-mediated C activation,b-A1–42 orb-A1–
28 were incubated in separate experiments with normal human
plasma containing EDTA (up to 20 mM), with C1qd plasma, with
pure C4, C1s, or C1s–C1r complex.

Contact system activation byb-A peptides
Activation of the contact system byb-A was assessed by incubat-
ing Na-citrate plasma samples withb-A1–42 or 1–28 at various
concentrations for 30 min at 378C, essentially as for C activation.
To investigate the importance of contact system activation inb-A-
dependent activation of the classical pathway,b-A1–42 or 1–28
were incubated with a human F.XIId plasma or with F.XIId plasma
containing the specific kallikrein inhibitor Phe-Phe-Arg-chloro-
methyl ketone dihydrochloride (10–6

M) [22]. To prevent classical
pathway activation EDTA (up to 20 mM) was added to plasma
samples before incubation. In additional experimentsb-A was
incubated with F.XIId plasma reconstituted with physiologic con-
centrations of purified F.XII (30mg/ml); this concentration of F.XII
normalized coagulation F.XII activity assessed by coagulometric
assay.

Plasmin generation byb-A peptides
The capacity ofb-A to induce plasminogen activationin vitro was
evaluated by assessing the generation of plasmin–anti-plasmin

(PAP) complex. Briefly, solubleb-A1–42 or 1–28 were incubated
for 30 min at 378C in normal plasma or F.XIId plasma, with or
without limited amounts of tissue-type plasminogen activator (t-
PA) [23]. After SDS–PAGE in non-reducing conditions and
Western blotting, the activation bands were visualized by poly-
clonal goat anti-plasminogen, biotin-conjugated rabbit anti-goat
IgG and an avidin-alkaline phosphatase substrate. The apparent
masses of PAP complexes and native plasminogen were, respect-
ively, 150 kD and 90 kD. As a control, plasma samples were
incubated with t-PA and fibrin(ogen) peptides to induce PAP
complex generation.

Effect of the plasmin inhibitor (b-Dellin) on C1s activity
The method described by Lennicket al. [24] was used to measure
the activity of C1s, determined by conversion of the substrate
NZLBz. This highly sensitive assay was adapted for microtitre
plates and used to determine the effect of the plasmin inhibitor b-
Dellin on the activity of pure C1s. The amounts of C1s giving the
best linear increase in absorbance (5 min at 340 nm in a Titertek
Twinreader) were chosen. Before exposure to the substrate C1s
was incubated for 30 min at 378C with serial amounts of b-Dellin
(100–500mg/ml) or buffer as control.

Data presentation
Each experiment was run in duplicate and repeated three times
using different batches ofb-A. Representative experiments are
reported in Figs 2, 3 and 4.

RESULTS

Light microscopy analysis showed that freshly solubilized peptides
b-A1–42 and 1–28 were Thioflavin T-negative and gave a single
band at the expected molecular weight (5–6 kD) in coomassie
blue-stained SDS–PAGE (data not shown). Electron microscopy
examination revealed no discernible ultrastructure inb-A1–42
preparations, or when structure was present (Fig. 1), it was repre-
sented by amorphous precipitate due to salt precipitation during the
drying process. The same results were obtained withb-A1–28.

Incubation of these freshly solubilizedb-A1–42 or 1–28 with
normal human plasma resulted in dose-dependent activation of C4
with no evidence of C3 activation, even at the maximal concentra-
tion (100mg/ml) of b-A. The ability to activate C4 was not
prevented by adding EDTA (up to 20 mM) to plasma before
incubation (Fig. 2a). Both peptides had similar C4-activating
capacity (Fig. 2b). Since theb-A preparations used in the current
experiments had no direct cleaving activity on pure C4 (Fig. 2c),
nor on C1s or C1r2–C1s2 complex, we determined whether the
interaction with C1q was critical for C4 activation by incubatingb-
A1–42 or 1–28 with human C1qd plasma.b-A peptides retained
their ability to induce C4 cleavage in the absence of C1q, whereas
HAG did not (Fig. 3a). The cleavage of C4 was associated with the
generation of high mol. wt complexes containing C1s and C1INH
both in C1qd plasma and in normal plasma containing EDTA
(Fig. 3b). By densitometric analysis we found that the levels of
stable C1s–C1INH complexes (meanþ s.d. of three experiments
in duplicate) were three to four times higher in C1qd plasma
incubated withb-A (56þ 9%) than with HAG (12þ 4%) or buffer
(12þ 5%). Similar values were measured in normal plasma treated
with EDTA (b-A, 54þ 8%; HAG, 14þ 6%; buffer, 13þ 4%).

To explore alternative mechanisms of classical pathway acti-
vation, we investigated whether activation of the contact system,
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Fig. 1. Electron microscopic analysis ofb-amyloid (b-A) preparation.b-
A1–42 (20ml) was adsorbed on Formvar-coated grids, negatively stained
with 2% uranyl acetate in water, and observed in a Jeol JEM 1010 electron
microscope operating at 80–100 kV. Freshly solubilizedb-A1–42 adsorbed
on the grids showed no fibrillar structure. The amorphous precipitate in the
figure is an artefact of the drying process due to salt precipitation.



leading to factor XIIf and kallikrein generation [25,26], and of
fibrinolysis were essential for C4 activation. Normal Na-citrate
plasma and F.XIId plasma were incubated with non-fibrillarb-A1–
42 at different concentrations. To prevent activation of the classical
pathway through assembly of C1 complex, EDTA (up to 20 mM)
was added to the plasma samples before incubation. Whereas F.XII
deficiency prevented theb-A-dependent cleavage of HK, a reliable
marker of contact system activation [21],b-A retained its capacity
to activate C4, even in the presence of EDTA (Fig. 4a). Recon-
stitution of deficient plasma with physiologic concentrations of
F.XII (30mg/ml) normalized coagulation F.XII activity, restored
theb-A-cleaving activity to HK, and increased (8–15%) the degree
of C4 cleavage. The cleavage of C4 was not prevented in FXIId-
EDTA plasma to which the specific kallikrein inhibitor (PPACK)
was added before incubation withb-A1–42 or 1–28.

Increased fibrinolytic activityin vivo and in vitro may be
associated with activation of the classical C pathway by plasmin-
dependent conversion of native C1s to its active form [15,16]. To

assess the importance of plasmin generation inb-A-dependent C4
activation, solubleb-A1–42 was incubated with F.XIId plasma
containing EDTA to prevent activation of, respectively, the contact
system and C1. Although non-fibrillarb-A1–42 did not induce
plasmin generation in the absence of t-PA, in additional experi-
ments we incubatedb-A with F.XIId-EDTA to which the plasmin
inhibitor b-Dellin was added before incubation. The plasmin
inhibitor did not significantly reduce the level of C4 activation
(Figs 4b and 5). Among the plasmin inhibitors available commer-
cially, we used b-Dellin, a potent inhibitor with no effect on C1s
activity, as assessed by measuring conversion of the substrate
NZLBz.

DISCUSSION

The results of this study indicate that freshly solubilized, appar-
ently non-fibrillar, b-A peptides can induce activation of early
factors of C classical pathwayin vitro, through a mechanism that is
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Fig. 2. Complement activation by non-fibrillarb-amyloid (b-A) in vitro. (a) Non-fibrillar b-A1–42 was incubated with fresh human Na-
citrate plasma (NHP), or Na-citrate plasma to which EDTA (20 mM) was added before incubation (NHPþ EDTA). C4 and C3 activation was
assessed by SDS–PAGE in non-reducing conditions by Western blotting and densitometric evaluation of immunostained membranes. Non-
fibrillar b-A peptides induced dose-dependent activation of C4, sparing C3, that was not prevented by EDTA. The first lane (activated plasma)
refers to normal plasma massively activated with heat-aggregated IgG (HAG). The degree of C4 and C3 activation is reported at the bottom of
each lane. (b)b-A1–42 (B) and 1–28 (X) have similar capacity to activate C4 in fresh human Na- citrate plasma. Values are the average of C4
activation measured in three experiments in duplicate (meanþ s.d.). (c) SDS–PAGE analysis of theb-A cleaving activity on pure C4. C4 was
mixed withb-A (100mg/ml) from different batches or with purified C1s (*) and incubated for 30 min at 378C. Specimens from each sample
were run in SDS–PAGE under reducing conditions and stained with coomassie blue.b-A preparations did not induced the cleavage of C4
chains (a, b, g), whereas C1s cleaved thea-chain (a0). C1sH, C1sL, heavy and light chains of C1s.



independent of the binding to C1q, and that might involve activa-
tion of contact system.

Freshly solubilized preparations ofb-A, both 1–42 and 1–28,
did not bind Thioflavin T, gave a single band in 15% SDS–PAGE,
and had no fibrillar aggregates on electron microscope examination
(Fig. 1), indicating that they were predominantly non-aggregated
and not assembled in amyloid-like fibrils. Incubation of theseb-A
peptides in normal human plasma resulted in dose-dependent
activation of C1s and C4, without any effect on C3 (Figs 2 and 3)
and Factor B (not shown). The absence of anyb-A cleaving activity
on pure C4, C1s or on C1r2–C1s2 complex argues against the
possibility that C activation could be due to contaminating proteases
in the b-A preparations. Thus the morphological changes inb-A
structure, due to fibrillation and aggregation, might therefore result
in enhancement ofb-A’s ability to activate the classical pathway
[8,11] more than being vital for starting C activationin vitro [13].

b-A1–42 and 1–28 at 25–50mM retained their ability to lead to
the C4 cleavage (Fig. 2) and to the generation of C1s–C1INH
complexes (Fig. 3) after incubation in human plasma genetically
deficient in C1q. This observation seems to rule out the possibility
that the activity associated with freshly solubilizedb-A might
derive from the binding of C1q to dispersed fibrils present in our

starting preparations [27–29], or from the conversion of some
amount of the peptide into fibrillar configuration during the 30-min
incubation in plasma [30].

A C1q-independent mechanism of classical pathway activation
can be triggered by contact system and kallikrein activation, the
second leading to generation of kinins [14]. Upon interaction with
negatively charged substances, F.XII is converted to the catabolic
peptides F.XIIf and F.XIIa which activate the classical pathway by
acting at the site of C1r and C1s, the first directly [25] and the
second through kallikrein generation [26]. Alternatively, increased
fibrinolytic activity may result in activation of early C factors,
since plasmin can activate C1sin vitro [15,25] andin vivo [16]. The
involvement of the contact system and fibrinolysis in the inflam-
matory phenomena in the AD brain remains to be demonstrated,
although several lines of evidence support it. Hageman factor is
associated withb-A deposits [17], HK is massively cleaved in CSF
of AD patients [18], and plasminogen [31], plasminogen activator
and inhibitors are produced in brain [32,33].In vitro, solubleb-A
has the capacity to induce cleavage of HK [21], in a F.XII- and
kallikrein-dependent manner (Fig. 4a), and enhances the t-PA-
dependent conversion of plasminogen to plasmin (Fig. 4b) as
effectively as fibrin(ogen) fragments [19]. Although further studies
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Fig. 3. C1q-independent complement activation by non-fibrillarb-amyloid (b-A)1–42. (a) Non-fibrillarb-A1–42, heat-aggregated IgG
(HAG) (about 200 mg/ml, 100ml) or buffer were incubated with human plasma congenitally deficient in C1q (C1qd) or with intact normal
plasma (NHP). In NHP bothb-A and HAG exhibited similar C4-activating ability, whereas in the absence of C1q, C4 was activated byb-A
only. The degree of C4 activation is shown at the bottom of each lane. (b)b-A1–42 induced C1s–C1INH complex generation both in C1qd
plasma and in normal plasma treated with EDTA, whereas HAG did not. The first lane refers to C1s–C1INH complex generated by HAG in
normal plasma. The results of densitometric analysis of stable C1s–C1INH complex are shown at the bottom of each lane.
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Fig. 4. Involvement of contact fibrinolysis system on C4 activation byb-amyloid (b-A) in vitro. (a) Normal human plasma (NHP) and plasma
congenitally deficient in factor XII (F.XIId) were incubated with non-fibrillarb-A1–42 for 30 min at 378C. To prevent C1q-dependent
classical pathway activation, EDTA (20 mM) was added to the plasma before the incubation. Contact system activation was assessed by
evaluating the degree of cleavage of high mol. wt kininogen (HK). Factor XII deficiency prevented theb-A-dependent activation of contact
system, whereas the cleavage of C4 was only slightly reduced. The percentages of HK and C4 activation are shown at the bottom of each lane.
Control plasmas refer to NHP incubated with kaolin or heat-aggregated IgG (HAG) for HK or C4 activation, respectively. (b)b-A1–42 was
incubated with F.XIId plasma to which the plasmin inhibitor b-Dellin and EDTA were added before incubation. Plasminogen (PLG)
activation was assessed by evaluating generation of plasmin–anti-plasmin (PAP) complexes. Non-fibrillarb-A, with apparently no effects on
plasminogen activation, retained its ability to activate C4 even in presence of the plasmin inhibitor (b-Dellin). The first lane shows the pattern
of plasminogen activation induced byb-A in the presence of tissue-type plasminogen activator (t-PA).



are needed to characterize the molecular events, they are likely to
be due to reaction of the negatively charged residues ofb-A
peptides on F.XII [34] and t-PA. That activation of contact
system might be involved in the C4 cleavage seen in our experi-
ments is suggested by the finding that in F.XIId-EDTA plasma the
amount of cleaved C4 was about 5% and 10% less than in C1qd
and normal EDTA-plasma, respectively (Fig. 5), and that recon-
stitution of deficient plasma with physiologic concentrations of
F.XII increased the level (8–15%) of C4 cleavage. Thus the finding
that soluble b-A1–42 and 1–28 induced similar amounts of
cleaved C4 after incubation in normal plasma (Fig. 2) might be
only apparently in contrast with Jiang and co-workers’ report [9] of
a lack of significant C4 activation by the shorter peptide. The
source of C factors might be responsible for this difference. In
citrate plasma we could assess the effect ofb-A on both the C and
fibrinolysis-contact systems, whereas using serum Jianget al.
could only evaluate the effect on C, since fibrinolysis and contact
systems were already activated by blood coagulation.

The pattern ofb-A-dependent activation of early components
of classical pathway seen in our experiments is unusual, in that C1s
and C4 showed some degree of activation, but C3 was apparently
normal. A similar C profile has been previously observedin vitro
when certain polyanions [35] or cryoglobulins [36] are incubated
with normal serum, and it has been attributed to the chemical
composition of those reactants that allows for a greater accessi-
bility of C4b or C4b2a to the control proteins (C4BP, H, I) of
classical pathway C3 convertase. In addition, a partial classical
pathway activation with the characteristic of sparing C3 may be
due to a defective control on C1 activation as observed in patients
with C1INH deficiency. Complement and contact systems share
C1INH as a major inhibitor [37,38], thus activation of F.XII
leading to C1 activation may result in C1INH consumption, and
the deficiency of functional C1INH may enhance the susceptibility
of C1 and F.XII to the activation. Because C1INH binds to
activated C1 it is possible that such a consumption of C1INH

may facilitate F.XII activation byb-A in our experiments. In
addition,in vitro studies have shown [14] that the rate of inhibition
of activated F.XII by C1INH is considerably reduced in the
presence of negatively charged surfaces (b-A in our experiments).
There is evidence that a local consumption or functional deficiency
of C1INH may occurin vivo; in fact in AD neuritic plaques this
protein has been detected by a MoAb that recognizes the com-
plexed form [34]. Although the absence of C1s or C1r molecules at
the site of C1INH immunoreactivity [4] could be due to the
reduced antigenicity of the C1 subunits after their inhibition
[39], the expression of a neo-epitope in the C1INH molecule
might also be the result of binding to other proteases, such as
F.XIIa, kallikrein, or plasmin. Recently,in situ hybridization
revealed that in brain areas with neuritic plaques and activated
glial cells, only neurones express C1INH mRNA. Thus a defective
synthesis of C1INH combined with an increased rate of consump-
tion may allow ongoing contact system and complement activation
in the areas ofb-A deposition [40].

Whatever the mechanism, the cleavage of C4 results in gen-
eration of proinflammatory peptides, although with a lower specific
activity than those from C3 and C5. The small peptide C4a can
enhance vascular permeability, and can diffuse away from the
activation site chemotactically signalling to inflammatory cells;
C4b through the binding to cell membrane can serve as opsonin.

From the summary Fig. 5 it appears that there was a consistent
amount of uninhibited cleaved C4. Since it was about four to five
times higher than in buffer-plasma control, it is unlikely that this
could be due to an unspecific C4 proteolysis occurred during the
30-min incubation. Concerning the remaining uninhibited C4
cleavage, using genetically deficient plasmas we could ascertain
reasonably the relevance of the defective factor, i.e. C1q or F.XII,
whereas it is likely that some degree of activation could occur in
plasma despite the inhibition of complement and/or contact-fibri-
nolytic proteases with chemicals or Ca-chelating agent.

It is apparent from our data that the ability ofb-A to activate
C1s and C4 does not necessarily imply the binding of C1q to fully
fibrillar peptides. Under our experimental conditions we could not
define the exact mechanism of such an activation, but we provide
evidence that activation of contact system seems to play a role.
This may be relevant in AD brain, where contact system has been
found to be activated [8]. Since non-fibrillarb-A does not bind
C1q, our finding could provide one possible explanation for the C-
activating ability by monomericb-A in vitro [13], and for the
amount of activated C4 found in diffuse deposits in AD brain [3].
The fact that non-fibrillarb-A deposits may be found in the brain of
non-demented elderly subjects indicates thatper senon-fibrillar
amyloid is not enough to explain the pathogenesis of AD. How-
ever, the AD brain shows increased production ofb-A peptide, and
it has been recently shown thatb-A without the need of pre-
aggregation may induce vascular endothelial damage and micro-
glia activation [41,42]. Thus by showing that non-fibrillarb-A can
induce generation of humoral inflammatory peptides, both from
contact system and complement, our data could support the
hypothesis that non-fibrillarb-A also may play a role in initiation
of the inflammatory reactions associated with the progression of
plaques and probably of the clinical disorder in AD.
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