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The eigenvalue equation of a band or a block tridiagonal matrix, the tight binding
model for a crystal, a molecule, or a particle in a lattice with random potential or
hopping amplitudes, and other problems lead to three-term recursive relations for
(multicomponent) amplitudes. Amplitudes n steps apart are linearly related by a
transfer matrix, which is the product of n matrices. Its exponents describe the decay
lengths of the amplitudes. A formula is obtained for the counting function of the
exponents, based on a duality relation and the Argument Principle for the zeros
of analytic functions. It involves the corner blocks of the inverse of the associated
Hamiltonian matrix. As an illustration, numerical evaluations of the counting function
of quasi 1D Anderson model are shown. C© 2011 American Institute of Physics.
[doi:10.1063/1.3594654]

I. INTRODUCTION

Consider the equation

Cnun−1 + Anun + Bnun+1 = Eun , n ∈ Z, (1)

where An , Bn , and Cn are given complex non-singular square matrices of size m, E is a parameter,
and the vectors un ∈ Cm are unknown.

The case An = A†
n , Cn = B†

n−1 will be referred to as the Hermitian case, and is common
occurrence in physics: it describes a chain of m−level atoms with Hamiltonians An and couplings
Bn between neighboring atoms. In a lattice model for transport or in a model for a crystal, the atoms
may be thought of as sections of the lattice or crystal, each containing m sites. In linear algebra, if
off diagonal blocks are triangular the equation represents the eigenvalue equation for a band matrix
of bandwidth 2m + 1.

At each n the equation provides un+1 in terms of un and un−1, and an iterative evaluation of
them can be started from initial conditions u0, u1. The process can be formulated via a 2m × 2m
transfer matrix: [

un+1

un

]
= T (E)

[
u1

u0

]
. (2)

The n-step transfer matrix T (E) is the product tn(E)tn−1(E) · · · t1(E) of 1-step transfer matrices
with the block structure (Im is the unit matrix of size m)

tk(E) =
[

B−1
k (E − Ak) −B−1

k C†
k

Im 0

]
. (3)

We are concerned with the 2m exponents of the transfer matrix T (E),

ξa = 1

n
log |za|, (4)
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and their (normalized) counting function:

N (ξ ) = 1

2m
{ # ξa : ξa < ξ } = 1

2m

2m∑
a=1

θ (ξ − ξa). (5)

An operative approach to the numerical evaluation of the exponents is found in Ref. 17. In several
cases of interest, the exponents have definite large n limits (Lyapunov exponents) and describe
the exponential rates of growth or decay in n of the eigenvalues za and of the solutions un of the
recursive Eq. (1). They are important, especially the largest or the (positive) smallest, in the study of
dynamical systems, stability, localization problems, and wave transmission in layered structures.3

Analytic expressions for the distribution of Lyapunov exponents are known only for few cases and
such cases do not originate from a Hamiltonian, i.e., a recursion equation such as Eq. (1).2, 6, 10

Most of the results where an Hamiltonian is given first were obtained numerically9, 12, 18 or via some
expansion.1, 4

The main result of the paper is the following exact formula, valid for a single transfer matrix of
type (2):

Proposition 1.1 (Counting function):

N (ξ ) = 1

2
+

(
2π

n

)−1 ∫ 2π
n

0
dϕ

1

2m
tr

[
z G B(E, z)1n Bn − 1

z
G B(E, z)n1C1

]
, (6)

z = eξ+iϕ

G B(E, z)ab are the blocks of size m of the resolvent G B(E, z) = [H B(z) − E]−1, and H B(z) is the
block tridiagonal matrix of size mn with corners

H B(z) =

⎡
⎢⎢⎢⎢⎢⎣

A1 zB1 C1/z

C2/z
. . .

. . .

. . .
. . . zBn−1

zBn Cn/z An

⎤
⎥⎥⎥⎥⎥⎦ . (7)

The suffix B stands for “balanced,” as this matrix is more tractable in numerical calculations
than the Hamiltonian matrix H (z), to be introduced next.

Notes: (1) the integral will be shown to be a contour integral, and cancels all z dependent terms
of the Laurent expansion. Therefore, one cannot remove the integral in the large n limit. (2) The
imaginary part of the integral is zero.

An expression of the counting function where the dependence on z is made “explicit” will be
given in the Appendix, Proposition (A.1).

II. A SPECTRAL DUALITY

According to the Argument principle of complex analysis, the zeros of an analytic function f (z)
contained in the disk |z| < R (inside the domain of analyticity) are enumerated by the following
complex integral on a circle of radius R:

n(R) =
∮

|z|=R

dz

2π i

f ′(z)

f (z)
. (8)

We are interested in the zeros of f (z) = det[T (E) − z] and their distribution N (ξ ) = (1/2m)n(enξ ).
The result for the counting function rests on a remarkable duality that relates f (z) to the characteristic
polynomial of a Hamiltonian matrix H (z), which naturally arises from the problem (1) restricted
to n steps in a ring topology, but with generalized boundary conditions specified by a complex
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parameter z:

H (z) =

⎡
⎢⎢⎢⎢⎢⎣

A1 B1 C1/z

C2
. . .

. . .

. . .
. . . Bn−1

zBn Cn An

⎤
⎥⎥⎥⎥⎥⎦ . (9)

The polynomial f (z) = det[T (E) − z] has degree 2m in the variable z and degree nm in the
parameter E . Duality states that the polynomial is proportional to the characteristic polynomial of
the matrix H (z):

Proposition 2.1 (Duality,13, 14):

det[T (E) − z] = (−z)m det[E − H (z)]

det[B1 · · · Bn]
. (10)

It is a duality relation as it exchanges the roles of the parameters z and E among matrices:
whenever z is an eigenvalue of the transfer matrix evaluated at E, the value E is an eigenvalue of
the block tridiagonal matrix H (z).

Proposition 2.2: The matrix H B(z) is similar to H (zn): H (zn) = S(z)H B(z)S(z)−1, where S(z)
is the block diagonal matrix with blocks S(z)ab = δabza Im.

As a consequence the two matrices have the same eigenvalues. Another consequence is the
property H B(ze−i2π/n) = S(ei2π/n)H B(z)S(e−i2π/n).

Before deriving the expression for the counting function, we quote interesting and related
analytic consequences of duality. Duality and Jensen’s formula of complex analysis provide an
equation for the exponents ξa of the transfer matrix:

Proposition 2.3 (Ref. 13):

1

2m

2m∑
a=1

(|ξa − ξ | + ξa + ξ ) − ξ

= 1

mn

∫ 2π

0

dϕ

2π
log

∣∣det[H (enξ+iϕ) − E]
∣∣ − 1

mn

n∑
k=1

log |det Bk | . (11)

Corollary 2.4: For ξ = 0, the formula gives the sum of the positive exponents:

1

m

2m∑
a=1

ξa θ (ξa)

= 1

mn

∫ 2π

0

dϕ

2π
log

∣∣det[H (eiϕ) − E]
∣∣ − 1

mn

n∑
k=1

log |det Bk | . (12)

Remark 2.5: The sum of all the exponents is 1
n log | det T (E)|. Then

2m∑
a=1

ξa = 1

n

n∑
k=1

(log | det Ck | − log | det Bk |) . (13)
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Remark 2.6: If the transfer matrix is symplectic, i.e., there is a matrix � such that
T (E)†�T (E) = �, then the exponents come in opposite pairs.

Proof: If z is an eigenvalue of T (E) with eigenvector θ , then �θ is an eigenvector of T (E)†

with eigenvalue 1/z . This means that 1/z is eigenvalue of T (E). The corresponding exponents are
either both zero or opposite real numbers. �

Equation (12) is exact and applies to any single transfer matrix. However, it is reminiscent of
the formula for the sum of the Lyapunov exponents of an ensemble of random transfer matrices,
obtained by Herbert, Jones, and Thouless for 2 × 2 matrices, and by Kunz, Souillard, and Lacroix11

for larger ones:

1

m

∑
a

λa(E) =
∫

d E ′ρ(E ′) log |E − E ′| + const.

This formula was obtained for the Hermitian case, but holds also in non-Hermitian tridiagonal
problems.5, 8 In Eq. (12), the angular average on ϕ replaces the ensemble average, that produces the
ensemble density of eigenvalues. It seems that an ergodic property is at play for such systems.

III. THE COUNTING FUNCTION

The expression (7) for the counting function can be obtained straightforwardly from Eq. (11).
Here, we give a direct proof based on the famous formula Eq. (8), the duality relation, and the simple
formula

d

dz
det M(z) = det M(z) tr

[
M(z)−1 d

dz
M(z)

]
.

Proof: Let G(E, z) = [H (z) − E]−1, f (z) = det[T (E) − z], and use duality

f ′(z)

f (z)
=

d
dz [zm det[H (z) − E]]

zm det[H (z) − E]
= m

z
+ tr

[
G(E, z)

d

dz
H (z)

]

= m

z
+ tr

[
G(E, z)1n Bn − 1

z2
G(E, z)n1C1

]
.

The complex integral of the first term is m. Inclusion of the normalization factor gives

N (ξ ) = 1

2
+ 1

2m

∮
|z|=enξ

dz

2π i z
tr

[
z G(E, z)1n Bn − 1

z
G(E, z)n1C1

]

= 1

2
+ 1

2m

∫ 2π

0

dθ

2π
tr

[
z G(E, z)1n Bn − 1

z
G(E, z)n1C1

]
,

where z = enξ+iθ . Next, we set θ = nϕ, then z = en(ξ+iϕ). We introduce the resolvent of H B(z) and
note that G(E, wn)ab = wa−bG B(E, w)ab by virtue of the similarity; in particular it is

wnG(E, wn)1n = wG B(E, w)1n,
1

wn
G(E, wn)n1 = 1

w
G B(E, w)n1.

The final formula is obtained (after renaming w as z). Since the counting function is real, only the
real part of the integral is nonzero and

0 =
∫ 2π

n

0

dϕ

2π
Im tr

[
z G B(E, z)1n Bn − 1

z
G B(E, z)n1C1

]
. (14)

�
Remark 3.1: While the Argument Principle requires the circle radius to be enξ , the use of the

balanced matrix scales the radius to eξ and makes the formula for the counting function useful for
numerical studies.
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In numerical calculations, the angular integral is replaced by a sampling on different angles. As
the circle of radius eξ crosses an eigenvalue eξa+iϕa , the counting function jumps to a new plateau
after strong oscillations due to close sampling points:

1

eξ+iϕ − eξa+iϕa
≈ eξa+iϕa

(ξ − ξa)2 + (ϕ − ϕa)2
[(ξ − ξa) − i(ϕ − ϕa)].

The formula requires the inversion of the matrix H B , and the explicit dependence on the
interesting parameter z is lost. In the Appendix, we show that this dependence can be made more
explicit by means of the resolvent equation for the matrix with corners removed.

IV. ANDERSON MODEL

As an illustration of the formula, consider the Anderson model for the motion of a particle in
a cubic lattice with the shape of a bar, with a random potential. The particle may hop with equal
amplitudes from a site �k to neighboring ones �k + �e and is subject to a site-potential ε(�k) (a random
number uniformly distributed in the interval [−w/2, w/2]):∑

�e
ψ(�k + �e) + ε(�k)ψ(�k) = Eψ(�k).

If the bar is sliced perpendicularly to the long direction (k = kz), each slice is a square 2D lattice, with
m sites. Accordingly, the Hamiltonian gains a block structure, with diagonal blocks Ak describing
slices, and blocks Bk = Ck = Im describing hopping among neighboring slices. The Schrödinger
equation is now written as in (1): uk+1 + uk−1 + Ak uk = E uk , where the m components of uk are
the amplitudes ψ(�k) in the slice k.

Because of disorder, in the large n limit, eigenstates are exponentially localized (Anderson
localization) on a distance given by the inverse of the smallest positive exponent. In the large n limit,
all the exponents ±ξa(E) exist and are independent of the realization of the disorder.

Figures 1 and 2 show the counting function for a single realization of disorder and a sample of
length 80 (cross section 2 × 2 or 3 × 3).

0 0,5 1 1,5
ξ

0

0,2

0,4

0,6

0,8

1

1,2

N
(ξ

)

2x2x80, w = 18

FIG. 1. The counting functionN (ξ ) (a different normalization is used) for the Anderson model in a cubic lattice of dimensions
2 × 2 × 80, with disorder strength w = 18, energy E = 0. Each discontinuity marks a positive exponent ξ1, . . . , ξ4 (the
negative exponents are just their opposites).
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)
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3x3x80

FIG. 2. The counting functionN (ξ ) (a different normalization is used) for the Anderson model in a cubic lattice of dimensions
3 × 3 × 80, with disorder strength w = 18, energy E = 0. Each discontinuity marks a positive exponent ξ1, . . . , ξ9.

The subject on Anderson localization is vast. A discussion of the spectral properties of Anderson
matrices with non-Hermitian boundary conditions (the z and 1/z dependence) is presented in
Ref. 15. The one dimensional case was studied by Goldsheid and Khoruzhenko (Hermitian case)7

and several others and by us in the non-Hermitian case.16

APPENDIX: RESOLVENT IDENTIRY FOR EXPLICIT z DEPENDENCE

Let h be the matrix H (zn) with corners removed (then it is z-independent),

h =

⎡
⎢⎢⎢⎢⎢⎣

A1 B1

C2
. . .

. . .

. . .
. . . Bn−1

Cn An

⎤
⎥⎥⎥⎥⎥⎦ , (A1)

and let g(E) = [h − E]−1 be the resovent matrix, with blocks gab. Then

Proposition A.1:

tr

[
z G B(E, z)1n Bn − 1

z
G B(E, z)n1C1

]
(A2)

= tr

[
−zn Bng1n − Im −zn Bng11

1
zn C1gnn

1
zn C1gn1 + Im

]−1

.
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Proof: �(zn) = H (zn) − h is a matrix whose nonzero blocks are �(zn)1n = z−nC1 and
�(zn)n1 = zn Bn . The matrix equation for the resolvent is

G(E, zn) = g(E) − g(E)�(zn)G(E, zn). (A3)

The four equations for the blocks a, b = 1, n can be put in matrix form[
G1n G11

Gnn Gn1

]
=

[
g1n g11

gnn gn1

]
−

[
g1n g11

gnn gn1

] [
zn Bn 0

0 C1/zn

] [
G1n G11

Gnn Gn1

]
.

The blocks of G(E, zn) are expressed in terms of the blocks of G B(E, z),[
G1n G11

Gnn Gn1

]
=

[
1/zn 0

0 zn

] [
zG B

1n znG B
11

G B
nn/zn G B

n1/z

]
.

Then [
zG B

1n znG B
11

G B
nn/zn G B

n1/z

]
=

[
zng1n zng11

gnn/zn gn1/zn

]

−
[

zng1n zng11

gnn/zn gn1/zn

] [
Bn 0

0 C1

] [
zG B

1n znG B
11

G B
nn/zn G B

n1/z

]
,

with solution

[
zG B

1n znG B
11

G B
nn/zn G B

n1/z

]
=

⎛
⎝

[
g1n g11

gnn gn1

]−1 [
1/zn 0

0 zn

]
+

[
Bn 0

0 C1

]⎞
⎠

−1

.

Finally, left multiplication by the diagonal matrix with blocks Bn and −C1 gives[
zBnG B

1n zn BnG B
11

−C1G B
nn/zn −C1G B

n1/z

]

=
⎛
⎝

[
g1n g11

gnn gn1

]−1 [
B−1

n /zn 0

0 −znC−1
1

]
+

[
Im 0

0 −Im

]⎞
⎠

−1

.

The rhs is simplified by means of the following identity for invertible matrices A and B: (A−1 +
B−1)−1 = A − A(A + B)−1 A,

=
[

Im 0

0 −Im

]
−

[
Im 0

0 −Im

]

×
([

zn Bn 0

0 − 1
zn C1

] [
g1n g11

gnn gn1

]
+

[
Im 0

0 −Im

])−1 [
Im 0

0 −Im

]
.

The trace is then taken as

tr

[
zBnG B

1n − 1

z
C1G B

n1

]
= tr

[
−zn Bng1n − Im −zn Bng11

1
zn C1gnn

1
zn C1gn1 + Im

]−1

. (A4)
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As a further step, one could perform the the block inversion of the matrix by Schur’s formula. Since
the trace is then taken, only the diagonal blocks are needed:

= −tr

[
zn Bng1n + Im + Bng11(

1

zn
C1gn1 + Im)−1C1gnn

]−1

+ tr

[
1

zn
C1gn1 + Im + C1gnn(zn Bng1n + Im)−1 Bng11

]−1

. (A5)

�
This final expression allows in principle the evaluation of the counting function with one single

big matrix inversion to obtain the four z-independent corner blocks gab (a, b = 1, n). Then, for each
z value, only the inversion of two square m × m matrices (A5) is required.
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