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BalancingefÞcienciesby squeezingin realistic eight-port homodynedetection
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We addressmeasurementsof covariant phaseobservables(CPOs)by meansof realisticeight-porthomodyne
detectors.WedonotassumeequalquantumefÞcienciesfor thefourphotodetectorsandinvestigatetheconditions
underwhich the measurementof a CPOmay be achieved. We show that balancingthe efÞcienciesusing an
additionalbeamsplitterallows usto achieve a CPOat theprice of reducingtheoverall effective efÞciency, and
provethatit is never asmearingof theidealCPOachievablewith unit quantumefÞciency. An alternativestrategy
basedon employing a squeezedvacuumasa parameterÞeldis alsosuggested,which allows oneto increasethe
overall efÞciency in comparisonto thepassive caseusingonly a moderateamountof squeezing.Both methods
aresuitablefor implementationwith currenttechnology.

DOI: 10.1103/PhysRevA.83.043818 PACSnumber(s):42.50.Ar, 42.50.Ct, 03.65.! w

I. INTRODUCTION

In quantummechanics,the conceptof phasefor a radi-
ation mode hasalways remaineda somewhat controversial
topic, with both fundamentalandtechnologicalimplications,
see[1Ð7] andreferencesthereinfor a review. A major reason
for this is that in trying to deÞnethephaseof a quantumos-
cillator onecanclearlyseetherestrictionsof theconventional
approachwhich identiÞesobservablesas self-adjointopera-
tors,or equivalently, their spectralmeasures.Indeed,it canbe
shownthatnospectralmeasuresatisÞesthephysicallyrelevant
conditionsposedon phaseobservables[8Ð11]. However, this
problemhasbeenovercomewith theintroductionof themore
generalconceptof observablesaspositive operatormeasures.
In this approachthe conceptof a covariantphaseobservable
(CPO) naturally emerges and theseobservableshave been
completelycharacterized[10,11]. An importantclassof CPOs
ariseas the anglemargins of certaincovariant phase-space
observables,themostfamiliar examplebeingtheQ function
of theÞeld.Their physicalsigniÞcanceis furtheremphasized
by thefactthatany phase-spaceobservablecanin principlebe
measuredvia eight-porthomodynedetection,amethodwhich
was introducedin themicrowavedomain[12] andthenexten-
sively analyzedin theopticaldomain[13Ð21]. Othermultiport
homodyne[22,23] andheterodynedetections[24Ð26] maybe
employedaswell, thelatteralso in thepresenceof frequency
mismatch[27].

Any realistic measurementis subject to noise due to
imperfectionsin themeasuringapparatus.In thecaseof eight-
port homodynedetection,oneof therelevantsourcesof noise
is the presenceof detectorinefÞciencies.Indeed,asreported
in [28], the quantumefÞcienciesof commerciallyavailable
detectorsrangefrom very high to as low as a few percent
and their effect is far from being negligible. In eight-port
homodyningthe presenceof detectorinefÞcienciescauses
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a Gaussiansmearingon the measuredobservable [29,30].
This appearsas a convolution structure which causesthe
actually measureddistributions to be smoothedversionsof
the ideal ones.As a matterof fact, quantumefÞcienciesof
thephotodetectorsaretraditionallyassumedto beequalwhich
resultsin a rotation invariant convolving measure.In other
words,thesmoothingeffect is thesamein any directionin the
phasespace.A detailedanalysisshows that this symmetryis
lost if we droptheassumptionof equalefÞciencies[31]. This
lossof symmetryiscrucialwhenthemeasurementis intended
to gain information about the phasepropertiesof the Þeld,
andit is the purposeof this paperto addressthis problemin
detail.

Weconsidertwo methodsfor regainingthis lostsymmetry.
At Þrst, we show that the efÞcienciescan be balancedby
insertingan additionalbeamsplitter in front of one of the
photodetectors.This resultsin a decreasedoverall efÞciency
for the measurementscheme.We also show that the angle
margin of the measuredphase-spaceobservable is never a
smearingof the ideal one. We then considerthe effect of
squeezingthe parameterÞeldwhile keepingthe efÞciencies
Þxed. As it turnsout, this also compensatesthe efÞciencies
mismatch,thusretrieving thelostsymmetry. Wealsocompare
thetwo methodsandshow thattheoverall efÞciency isalways
greaterfor thesqueezingstrategy.

The paperis organizedas follows. In Sec.II we lay out
the generalframework and give the necessarydeÞnitions.
SectionIII is devotedto themathematicaldescriptionof eight-
porthomodynedetectioninvolvingnonidealphotodetectors.In
Secs.IV andV wedescribein somedetailtheaforementioned
methodsof overcoming the problemsarising from different
quantumefÞciencies.Theconclusionsandfutureoutlookare
presentedin Sec.VI .

II. COVARIANT PHASE OBSERVABLES AND
PHASE-SPACE OBSERVABLES

Let H be the inÞnitedimensionalseparableHilbert space
associatedwith a single-modeelectromagneticÞeld,and let
L (H) denotethe setof boundedoperatorsactingon H. We
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Þx the photonnumberbasis{|n"|n = 0,1,2, . . .} anddenote
by N the number operatorassociatedwith this basis.By
diagonalityof aboundedoperatorwealwaysmeandiagonality
with respectto thenumberbasis.Wewill usewithoutexplicit
indication the coordinaterepresentationin which caseH is
identiÞedwith L 2(R) and the basis vectors with Hermite
functions.The statesof the Þeldare representedby positive
operatorswith unit trace,andtheobservablesarerepresented
by normalizedpositiveoperatormeasuresE : B(! ) # L (H),
whereB(! ) standsfor the Borel " algebraof subsetsof the
measurementoutcomespace! . For a Þeld in a state#, the
measurementoutcomestatisticsof an observableE is given
by theprobabilitymeasureX $# tr[#E(X)].

An observable$ : B([0,2%)) # L (H) isacovariantphase
observable(CPO)if

ei &N $ (X)e! i &N = $ (X ú+ &)

for all X %B([0,2%)) and & %[0,2%), where ú+ denotes
addition modulo 2%. According to the phasetheorem[11,
Theorem2.2], eachphaseobservableisof theform

$ (X) =
&!

m,n= 0

cmn
1

2%

"

X
ei (m! n)' d' |m"' n|, (1)

for someuniquephasematrix (cmn)&
m,n= 0, that is, a positive

semideÞnitecomplex matrix satisfying cnn = 1 for all n %
N. Thephaseobservablesmeasuredby eight-porthomodyne
detectionarise as anglemargins of certaincovariant phase-
spaceobservables.

An observable G : B(R2) # L (H) is a covariant phase-
spaceobservableif

W(q,p)G(Z)W(q,p)( = G(Z + (q,p))

for all Z %B(R2) and (q,p) %R2, where W(q,p) =
ei qp

2 e! i qP eipQ are the Weyl operators.Any covariantphase-
spaceobservableis generatedby a uniquepositive unit trace
operator" sothattheobservableisof theform [32,33]

G" (Z) =
1

2%

"

Z
W(q,p)" W(q,p)( dqdp.

Now let us denoteby $ " : B([0,2%)) # L (H) the angle
margin of G" , thatis,

$ " (X) = G" (X ) [0,& )), X %B([0,2%)),

wheretherelationbetweenthepolarandCartesiancoordinates
is given by rei ' = 1*

2
(q + ip). The key resultneededin our

study is [11], Theorem4.1, which statesthat $ " is a phase
observableif andonly if " is diagonal. Thesimplestandfrom
theexperimentalpointof view themostusefulexampleis the
case" = |0"' 0|, that is, whentheobservableis generatedby
thevacuumstate.In thiscasethephasedistribution is justthe
anglemargin of theHusimi Q functionof theÞeld.

It shouldbestressedthateventhoughCPOsarisenaturally
as the margins of covariant phase-spaceobservables,not all
CPOsare obtainedin this way. In particular, the canonical
phaseobservableis not the anglemargin of any phase-space
observable [11]. In order to go into the analysisof phase
observablesrelatedtoeight-porthomodynedetection,weneed

to recall the detailsof the measurementscheme.This is the
subjectof thenext section.

III. EIGHT-PORT HOMODYNE DETECTOR

The eight-port homodynedetectorconsistsof four input
modes,four balanced50:50 beamsplitters,a phaseshifter
which providesa phaseshift of %

2 on oneof the modes,and
four photodetectorswith quantumefÞciencies( j , j = 1,2,3,4
(seeFig. 1), whicharenotassumedto beequal.Themeasured
quantitiesare the suitably scaledphotonnumberdifferences
betweenmodes1 and 3 and betweenmodes2 and 4. The
signal Þeld in mode 1 is the Þeld underinvestigation while
the parameterÞeld in mode 2 determinesthe measured
observable.The inputmode3 is left empty so it corresponds
to a vacuumÞeld and the local oscillator in mode 4 is in a
coherentstate|

*
2z". The procedurefor obtainingthe phase

distribution with this setupcanbedescribedasfollows.Each
experimentaleventconsistsof asimultaneousdetectionof the
two commutingdifferencephotocurrentswhichtraceapairof
Þeldquadratures.Eacheventthuscorrespondsto apointin the
complex planeandthephasevalueinferredfrom theevent is
thepolarangleof thepoint itself. Theexperimentalhistogram
of thephasedistributionsis obtainedupondividing theplane
into ÒinÞnitesimalÓangularbinsof equalwidth, from 0 to 2%,
thencountingthe numberof pointswhich fall into eachbin.
We shall next go into the mathematicaldescriptionin more
detail.

FIG. 1. Schematicdiagramof theeight-porthomodynedetection
scheme.The schemeconsistsof four input modes,four balanced
50:50 beamsplitters,a phaseshifter which provides a phase-shift
of %

2 on one of the modesand four photodetectorswith quantum
efÞciencies( j , j = 1,2,3,4, which are not assumedto be equal.
Themeasuredquantitiesare thephotonnumberdifferencesbetween
modes 1 and 3 and between modes 2 and 4, rescaledby the
amplitudeof the local oscillator, i.e., a strongcoherentstate|

*
2z"

impingedinto mode4. Thesignal Þeld in mode1 is theÞeldunder
investigation,while the parameterÞeld in mode2 determinesthe
measuredobservable.Theinputmode3isleftemptysoit corresponds
to avacuumÞeld.
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In orderto obtainmeasurementsof covariantphase-space
observables,we needto take thehigh-amplitudelimit, thatis,
assumea very stronglocal oscillator. Indeed,if " + is thestate
of theparameterÞeldandwe assumeidealdetectors(( j = 1
for all j ), the measuredobservable in the high-amplitude
limit |z| # & is G" , wherethe generatingoperatoris " =
C" +C! 1; here C denotesthe conjugation map (C) )(x) =
) (x)( [34]. The presenceof detectorinefÞcienciescauses
aGaussiansmearingso thattheactuallymeasuredobservable
is given by µ (13,(24 ( G" : B(R2) # L (H) deÞnedas

#
µ (13,(24 ( G" $

(Z) =
"

µ (13,(24(Z ! (q,p)) dG" (q,p),

whereµ (13,(24 : B(R2) # [0,1] is a probability measurewith
thedensity

(q,p) $#
1

2%

%
(13(24

(1 ! (13)(1 ! (24)

) exp
&
!

(13

2(1! (13)
q2 !

(24

2(1! (24)
p2

'
,

where ( ij = 2( i ( j

( i + ( j
[31]. The quantities(13 and (24 may be

viewed as overall efÞcienciesrelated to the two balanced
homodynedetectorsin thescheme.In particular,

min{( i ,( j } ! ( ij ! max{( i ,( j } .

Thesmearedphase-spaceobservableisstill covariantandthus
generatedbysomepositivetraceoneoperator. Indeed,wehave

µ (13,(24 ( G" = Gµ (13,( 24( " ,

whereµ (13,(24 ( " is theconvolutedstate[33]

µ (13,(24 ( " =
"

W(q,p)" W(q,p)( dµ (13,(24(q,p) .

Theanglemargin of themeasuredphase-spaceobservableis
then$ µ (13,( 24( " andtheproblemis to determinetheconditions
under which this is a CPO. In other words, we need to
determinewhenthe generatingoperatoris diagonal.At Þrst
wegiveapartialcharacterizationin thefollowing proposition.

Proposition1. If " isdiagonal,thenµ (13,(24 ( " isdiagonalif
andonly if (13 = (24. Conversely, if (13 = (24, thenµ (13,(24 ( "
is diagonalif andonly if " is diagonal.

Proof. Firstnoticethatany two traceclassoperators" and
# areequalif andonly if tr[" W(q,p)] = tr[#W(q,p)] for all
(q,p) %R2 andthediagonalityis equivalent to thecondition

ei &N " e! i &N = "

for all & %[0,2%). Furthermore,since

e! i &N W(q,p) ei &N

= W(q cos& + p sin&, ! q sin& + p cos&),

it follows thatastate" is diagonalif andonly if themapping

(q,p) $# tr[" W(q,p)]

is invariant with respect to rotations. According to [33],
Prop.3.4] wehave

tr[µ (13,(24 ( " W(q,p)] = öµ (13,(24(p, ! q)tr[" W(q,p)] ,

where

öµ (13,(24(p, ! q) =
"

ei (px! qy) dµ (13,(24(x,y)

= exp
(

!
1 ! (24

2(24
q2 !

1 ! (13

2(13
p2

)

is nonzeroeverywhere.If eitherof thesefunctionsis rotation
invariant, their product is invariant if and only if the other
functionisalso invariant.Thisproves theproposition. "

Note that neither of the conditions in Proposition1 is
necessaryfor µ (13,(24 ( " to be diagonal.Indeed,considera
state" = µ (24,(13 ( " diag where" diag is an arbitrary diagonal
state.For (13 ,= (24 this stateis not diagonal.On the other
hand,sincethemeasureµ (13,(24 ( µ (24,(13 hasthedensity

(q,p) $#
1

2%
(13(24

(13 ! 2(13(24 + (24

) exp
&
!

1
2

(13(24

(13 ! 2(13(24 + (24
(q2 + p2)

'
,

it followsfrom Proposition1 andtheassociativity of convolu-
tions[33], Prop.3.2] that

µ (13,(24 (
#
µ (24,(13 ( " diag

$
=

#
µ (13,(24 ( µ (24,(13

$
( " diag

is diagonal.
We close this section with a conceptualremark. Since

the observable measuredwith this setup is the covariant
phase-spaceobservable Gµ (13,( 24( " it is a slight misuseof
terminology to call this a direct measurementof the angle
margin $ µ (13,( 24( " . However, the brief analysisbelow shows
that this schemecanbe usedto directly measure$ µ (13,( 24( " .
Considerfor conveniencethe caseof ideal detectors.For a
local oscillatorwith a Þnite intensity|z| this schemedeÞnes
anobservableE"

z : B(R2) # L (H). It wasshown in [34] that,
with thechoicearg(z) = 0,

lim
|z|# &

E"
z = G"

weaklyin thesenseof probabilities(see[34] for details).Now
E"

z is a discreteobservable and the measurementoutcomes
consistof pairs (q,p) %R2. Let f : R2 \ {(0,0)} # [0,2%)
be the pointer function which assignsto each pair the
correspondingargument,thatis, f (q,p) = ' qp deÞnedby

cos' qp =
q

*
q2 + p2

, sin' qp =
p

*
q2 + p2

,

anddenoteEf ,"
z : B([0,2%)) # L (H),

Ef ,"
z (X) = E"

z (f ! 1(X) - {(0,0)}).

Thenit canbeshown that

lim
|z|# &

Ef ,"
z = $ "

weakly in thesenseof probabilitiesandthesameargumenta-
tion holdsin thecaseof inefÞcientdetectors.In this sense,by
choosingto recordonly thevalues' qp we seethateight-port
homodynedetectionin the high-amplitudelimit canbe used
asadirectmeasurementof $ µ (13,( 24( " .
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IV. BALANCING EFFICIENCIES BY AN ADDITION AL
BEAM SPLITTER

Supposethat the stateof the parameterÞeld is diagonal,
for instance,a vacuumstate.In order to obtain a CPO,we
needto have (13 = (24. As illustratedin Fig. 2, a given value
of ( ij canbeobtainedwith inÞnitelymany differentvaluesof
( i and( j . It follows that thereis a greatdealof freedomin
choosingthe detectorsin order to obtain the equality (13 =
(24. This degreeof freedommay be exploited to modify the
measurementsetupin order to compensateany differencein
the overall efÞciencies.Indeed,supposethat the efÞciencies
( j areÞxed and,for instance,(24 < (13. This meansthat the
homodynedetectorconsistingof detectorsD1 andD3 is more
efÞcientthantheotherone.

Since a photodetectorwith efÞciency ( is equivalent to
having a Þctitiousbeamsplitter with transparency ( in front
of an ideal detector(seee.g., [35,36]), one can artiÞcially
decreasethe efÞciency of, say, detectorD3 by placing an
additional beam splitter with transparency (bs in front of
the detector. The resultingeffective efÞciency of D3 is then
( +

3 = (bs(3 andthenew overall efÞciency is

( +
13 =

2(bs(1(3

(1 + (bs(3
.

Hence,with theappropriatechoice

(bs =
(1(24

2(1(3 ! (3(24
,

we may balancethe setup and obtain ( +
13 = (24. This is

illustrated in Fig. 2. In other words, we achieve a CPO at
theprice of artiÞciallydecreasingthelargestefÞciency to the
valueof thesmallestone.For theremainderof thissectionwe
denote( = ( +

13 = (24 andusethenotationµ ( = µ ( ,( .
It is interestingto notethatby balancingtheefÞcienciesof

the homodynedetectorswe have a situationwhereboth the
actually measuredobservable and the one correspondingto
ideal detectorsare phaseobservables.Thereforeit is natural

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

13

bs

24

13

i

! j

!

!

!

!

!

FIG. 2. Contourlines for the overall efÞciency ( ij asa function
of ( i and( j . Theadditionof abeamsplitterwith transparency (bs can
beusedto balancethesetupandobtain( +

13 = (24.

to study the connectionbetweenthem. Since the measured
phase-spaceobservable is a smearingof the ideal one, one
might expect that this property is inherited into the angle
margins, namely, that there exists a probability measure
* : B([0,2%)) # [0,1] suchthat $ µ ( ( " = * ( $ " . However,
this is not thecase.

Proposition2. The measuredobservable$ µ ( ( " is never a
smearingof $ " .

Proof. Assumethat$ µ ( ( " = * ( $ " for someprobability
measure* . Let (cµ ( ( "

mn ) and(c"
mn) denotethephasematricesof

$ µ ( ( " and$ " , respectively. It is easilyveriÞedusingEq. (1)
thatthematrix elementssatisfy therelation

cµ ( ( "
m,m+ k = ö* (k)c"

m,m+ k , (2)

where ö* (k) =
+2%

0 ei k' d* (' ). It was shown in [37] that
limm# & c|n"

m,m+ k = 1 for all k %N, where(c|n"
m,m+ k) isthephase

matrix relatedto theobservable$ |n". Now both" andµ ( ( "
are mixtures of numberstatesand the convex structureis
inherited into the correspondingobservables,and thus into
thephasematrices.Therefore,wehave

lim
m# &

cµ ( ( "
m,m+ k = 1 = lim

m# &
c"

m,m+ k

for all k %N. This, togetherwith Eq.(2), shows that ö* (k) = 1
for all k %N. It follows that$ µ ( ( " = $ " which is possibleif
andonly if µ ( ( " = " . This is satisÞedif andonly if ( = 1,
thatis, thedetectorsare ideal. "

In the simplest caseof the vacuumparameterÞeld and
balancedefÞciencies the convoluted state can easily be
calculated.First noticethat thenecessarymatrix elementsof
theWeyl operatorsare

' n|W(q,p)|0" =
1

*
n!

(
1

*
2

(q + ip)
) n

e! 1
4 (q2+ p2)

sothatwith thepolarcoordinatesrei ' = 1*
2
(q + ip), onecan

calculate

' n|µ ( ( |0"' 0||n" =
"

|' n|W(q,p)|0"|2 dµ ( (q,p)

=
1
n!

(
1 ! (

"
r 2n exp

(
!

r 2

1 ! (

)
dr 2d'

2%
= ( (1 ! ( )n.

Theconvolutedstateis thus

µ ( ( |0"' 0| = (
&!

n= 0

(1 ! ( )n|n"' n| . (3)

V. BALANCING EFFICIENCIES BY SQUEEZING THE
PARAMETER FIELD

There is an interestingalternative to the methodof bal-
ancingefÞcienciesconsideredabove. As mentionedbefore,
the requirementof equalefÞcienciesis necessaryonly in the
casethat theparameterÞeldis in a diagonalstate.Therefore
it is possible that for Þxed efÞcienciesa suitably chosen
nondiagonalstatecanbeusedtocompensatefor thedifference
in theefÞcienciessothattheconvolutedstateisdiagonal.Here
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weshow thatthiscanalwaysbedoneby employing asuitable
squeezedvacuumstateas aparameterÞeld.

Let us assumethat we are able to preparethe parameter
Þeld into a squeezedvacuumstate|) a"' ) a|, where a > 0
is the squeezingparameterand) a(x) = (a/ %)1/ 4 e! 1

2 ax2
. As

in the proof of Proposition1, we needto study the rotation
invarianceof thefunction

(q,p) $# tr
,
µ (13,(24 ( |) a"' ) a|W(q,p)

-

= öµ (13,(24(p, ! q)' ) a|W(q,p)|) a"

= e! ( 1! (24
2(24

+ a
4 )q2! ( 1! (13

2(13
+ 1

4a )p2

. (4)

It is clearthat this is invariant with respectto rotationsif we
can choosethe squeezingparameterin sucha way that the
equality

1 ! (24

2(24
+

a
4

=
1 ! (13

2(13
+

1
4a

(5)

holds.SolvingEq.(5) for a wehave

a =
(24 ! (13

(13(24
±

.

1 +
(

(24 ! (13

(13(24

) 2

, (6)

wherethesolutionwith theplussign isalwayspositive. Hence,
we cancompensatethedifferencein theefÞcienciesby using
a suitably squeezedvacuumas the parameterÞeld. In order
to comparethis with themethodof balancingefÞciencieswe
needto solve the spectraldecompositionof the convoluted
state

µ (13,(24 ( |) a"' ) a| .

First,deÞneaparameter

+ =
(13 ! 2(13(24 + (24

(13(24
+

.

1 +
(

(24 ! (13

(13(24

) 2

so that by insertingthe value (6) of the squeezingparameter
into Eq.(4) weobtain

tr[µ (13,(24 ( |) a"' ) a|W(q,p)] = e! +
4 (q2+ p2). (7)

On theotherhandweknow that

µ (13,(24 ( |) a"' ) a| =
&!

n= 0

, n|n"' n|

sothat

tr[µ (13,(24 ( |) a"' ) a|W(q,p)]

=
&!

n= 0

, n' n|W(q,p)|n"

=
&!

n= 0

, ne! 1
4 (q2+ p2)L n( 1

2(q2 + p2)), (8)

where L n(x) denotesthe nth Laguerrepolynomial. Upon
rewriting the exponentialfunctionin Eq. (7) using the series
representation[38], 8.975(1)

e
z

z! 1 x = (1 ! z)
&!

n= 0

L n(x)zn, |z| < 1,

onehas

e! +
4 (q2+ p2) = e! 1

4 (q2+ p2)e
1
4 (1! +)(q2+ p2)

=
2e! 1

4 (q2+ p2)

+ + 1

&!

n= 0

(
+ ! 1
+ + 1

) n

L n

(
q2 + p2

2

)
,

(9)

where0 < +! 1
++ 1 < 1. ComparingEqs.(8) and(9) we Þndthat

theeigenvalues, n are

, n =
2

+ + 1

(
+ ! 1
+ + 1

) n

andthestateis

µ (13,(24 ( |) a"' ) a| = (eff

&!

n= 0

(1 ! (eff )n|n"' n| , (10)

wherewehave deÞned

(eff =
2

+ + 1
,

whichmaybeviewedastheoverall effectiveefÞciency of this
measurementscheme.

Theremarkablefeatureof thismethodis theinequality

(eff # (m . min{(13,( 24} , (11)

which holds for any value of the quantum efÞciencies.
Furthermore,theequalityholdsif andonly if (13 = (24 andin
thiscaseno squeezingis needed.Thismeansthatfor (13 ,= (24
theoverall efÞciency of thismethodis alwaysgreaterthanthe
oneobtainedby balancingtheefÞcienciesby the insertionof
anadditionalbeamsplitter. Indeed,by multiplying bothsides
of (11) by (+ + 1)max{(13,( 24} andaftersomealgebrawesee
that(11) is equivalent to

/
( 2

13(
2
24 + ((24 ! (13)2 ! |(24 ! (13| + (13(24 ,

which holdsfor all (13 and(24.
In order to make our analysismore quantitative let us

introducethequantity

- =
(eff

(m
=

2
(1 + +)(m

, (12)

which representsthe ratio betweenthe effective efÞciency
achievableby squeezingtheparameterÞeldat Þxed valueof
the four efÞciencies( j , j = 1, . . . ,4, andthecorresponding
quantity obtainedby the insertionof a beamsplitter. From
Eq. (11) we know alreadythat - # 1, whereasin Fig. 3 we
reportits behavior asa functionof (13 and(24.

As is apparentfrom the plot - is symmetricunder the
exchangeof (13 and(24 andachievesits maximum- / 1.17
for (13 = 0.5 and(24 = 1 or vice versa.The function is not
particularlypeaked aroundits maximumandthis meansthat
thereis a wide rangeof valuesfor (13 and(24 for which we
have a signiÞcantgain in squeezingthe parameterÞeld in
comparisonto the insertionof a beamsplitter. On the other
hand,whenoneof the two efÞcienciesis very small thenthe
two methodsareequallyineffective.Theamountof squeezing
neededto achieve CPO strongly dependson the values
of the efÞciencies.The region of maximum improvement
correspondsto amoderatesqueezing,i.e.,a nottoofarfrom 1.
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