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Abstract

Applications based on three-dimensional object models are today very com-

mon, and can be found in many fields as design, archeology, medicine, and

entertainment. A digital 3D model can be obtained by means of physical

object measurements performed by using a 3D scanner. In this approach,

an important step of the 3D model building process consists of creating the

object’s surface representation from a cloud of noisy points sampled on the

object itself. This process can be viewed as the estimation of a function

from a finite subset of its points. Both in statistics and machine learning

this is known as a regression problem. Machine learning views the function

estimation as a learning problem to be addressed by using computational

intelligence techniques: the points represent a set of examples and the sur-

face to be reconstructed represents the law that has generated them. On the

other hand, in many applications the cloud of sampled points may become

available only progressively during system operation. The conventional ap-

proaches to regression are therefore not suited to deal efficiently with this

operating condition.

The aim of the thesis is to introduce innovative approaches to the regres-

sion problem suited for achieving high reconstruction accuracy, while lim-

iting the computational complexity, and appropriate for online operation.

Two classical computational intelligence paradigms have been considered

as basic tools to address the regression problem: namely the Radial Basis

Functions and the Support Vector Machines. The original and innovative

aspect introduced by this thesis is the extension of these tools toward a

multi-scale incremental structure, based on hierarchical schemes and suited

for online operation. This allows for obtaining modular, scalable, accurate



and efficient modeling procedures with training algorithms appropriate for

dealing with online learning. Radial Basis Function Networks have a fast

configuration procedure that, operating locally, does not require iterative

algorithms. On the other side, the computational complexity of the con-

figuration procedure of Support Vector Machines is independent from the

number of input variables. These two approaches have been considered in

order to analyze advantages and limits of each of them due to the differences

in their intrinsic nature.
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Introduction

1.1 From real object to digital model

A digital three-dimensional (3D) model is a numerical representation of the visual ap-

pearance of the object. From the digital model, a realistic representation of the object

as a two-dimensional image can be computed. By using techniques such as perspective

and shading, the human eye perception can be emulated in this image, giving a realistic

representation of the object three-dimensionality. A 3D visualization system is there-

fore, generally, based on two key elements: the scene, a mathematical representation

of the three-dimensional objects, and the rendering, the technique used for computing

the 2D images of the scene.

Applications based on the three-dimensional model processing are today growing

more and more popular due to the increasing availability of three-dimensional graphic

devices and the decreasing cost of the computational power. Many of these applications

have been developed in a wide variety of fields, encompassing, e.g., design, archeology,

medicine, and entertainment. The use of digital 3D modeling in these applications pro-

vides various advantages. In particular, the model can be used for digital simulation or

to create an easily modifiable digital description of the object. Besides, modeling allows

for using real objects, people and environments to create their virtual representation,

suited for further computer-based manipulation.
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1. INTRODUCTION

Typical applications that use 3D modeling are, for instance, the following:

• Archeology and the arts need —from one side— to preserve artworks, while —

from another side— aim to expose them to as many people as possible in order to

support knowledge dissemination and cultural promotion. Virtual museum allows

for a larger public access than a real museum without any risk for the exposed

objects and, at the same time, it can be a promotional way to attract visitors

to the real museum. People interested in a single artwork have the possibility

of explore, directly and in a more detailed way, its virtual representation. If an

artwork is placed in a theca, the field of view can be strong limited, while its

3D model can be observed from any point of view and at different scales, so

that every detail can be appreciated from its realistic virtual copy. Furthermore,

3D modeling can improve both the study of an artwork and the accuracy of its

cataloging.

• Fashion design, production, and marketing may greatly exploit the use of 3D

models of the human body or its parts. In the virtual fashion the customer model

can be acquired for accurately evaluating his/her size as well as possible specific

body characteristics. This information can greatly enhance clothing tailoring by

specifically taking into account the body peculiarities for customized solutions.

The model can be dressed to assist the customer in shopping by offering a virtual

view and virtual cloth trying.

• Quantification of features can be exploited to compare objects and classify them.

This concept is applied in different contexts. For example, in the industry it is

applied to quality control, while in security it is used for identity identification

by means biometric measures. 3D digitization may simplify the comparisons by

extracting the features from a continuous model instead of considering the clouds

of points sampled on the object surface.

• In medical applications, 3D models of human parts and organs can offer a virtual

view of the body to physicians for observation, diagnosis support, and therapy

monitoring. For instance, the 3D ultrasonography can be used to check the

fetal morphology, while 3D tomography helps in vascular and cancer observation,

diagnosis, and monitoring.
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1.1 From real object to digital model

• Virtual environments are very important for training in correctly executing criti-

cal tasks or dangerous procedures, in which the human error has to be minimized.

Virtual surgery is one of these cases: doctors can practice on virtual patients and

gain experience and confidence before performing the real surgery. Furthermore,

surgeons can practice operations several times without using resources which are

rather limited or constrained, as cadavers or animals. Recently, robotized surgery

has been also developed in virtual environments to optimize and tailor the pro-

cedure on the specific patient, having then the actual operation performed by

robots. Another instance of virtual training was flight simulation, used both for

training and evaluating pilots. Often, in these applications the 3D models are

combined with haptic devices, in order to enrich the virtual reality experience

with tactile sensations.

• Design and reverse engineering are greatly helped by 3D models. Some designers,

especially in the architecture field, prefer to create physical prototypes first (e.g.,

using clay) and then digitize them. The 3D models can be included in simulations

and presentations. Furthermore, existing objects whose digital representation is

not available may have to be reengineered or included in new projects. For these

cases, as well as for reverse engineering, the use of 3D digitization for reproducing

the objects is usually less expensive and more accurate than the manual modeling.

• The entertainment industry is increasingly using opportunities offered by 3D mod-

eling. In the last decade the number of movies with 3D digital characters has

grown. On the other hand, the use of the digital 3D model of an actor allows

for avoiding complex, expensive and time-consuming makeup sessions to create

particular physical features, as well as the use of stuntmen in dangerous scenes.

Similarly, accuracy and sophistication of many modern 3D video games rely on

the extensive use of 3D models to create scenes and characters. Besides, many

video games are nowadays inspired to real persons, like in sport games. 3D scan-

ning can boost the realism of the game by significantly increasing the fidelity of

the avatars.

Different applications may have very different requirements. For example, recon-

struction in virtual archeology needs a good accuracy and a low invasiveness, but gen-

erally time is not an important constraint. On the contrary, in videoconference applica-
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tions, real-time processing is mandatory, while the modeling quality plays a secondary

role. Besides, some a-priori knowledge of the object to be modeled can be useful to

achieve a more robust and fast reconstruction procedure. For instance, when the facial

characteristics and mimic are of interest, the acquisition and reconstruction techniques

can be based on a face model to achieve better results. Similarly, in industrial quality

control it is important to implement fast reconstruction with a low cost, since the same

operations are repeated for many objects of the same type.

Simple objects can be represented as models by means of simple equations: for

instance, the equation x2 + y2 + z2 = r2 can be used for representing a sphere with

radius r. The Constructive Solid Geometry (CSG) has been introduced to create more

complex objects by combining simple solid objects (e.g., cube, cone, sphere) by means

of union, intersection, and difference operators (e.g., a tube can be seen as the differ-

ence between two cylinders with different radiuses). Unfortunately, this method is not

suitable to describe a large class of complex objects, especially when the surface is very

uneasy as in fig. 1.1, and therefore its use is limited to Computer Aided Design (CAD)

modelling.

The digital 3D model can be created in two different ways: it can be produced

by drawing the virtual description within a CAD system or by digitization based on

measuring the physical object. Nowadays, with CAD systems operators are able of

creating very complex models by using, typically, the Non-Uniform Rational B-Spline

(NURBS) [133], a mathematical model that allows for generating curves and surfaces

with great flexibility and precision. The NURBS is suitable for handling both analytic

and free-form shapes.

Digitization by physical object measurement is a process that allows for obtaining

the 3D model in a semi-automatic way by measuring the geometric features of the

object as well as its visual features (e.g., color and texture) and, then, by identifying

the most appropriate surface representing the measured points.

In the CAD systems the operator must shape the surface representing the object,

while in digitization the surface is captured by the measurement devices. Digitization

is generally faster than the use of a CAD system and achieves a higher (or, at least,

measurable) level of accuracy with respect to the object to be modeled. Furthermore,
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1.2 The reconstruction of a 3D model

Figure 1.1: The Michelangelo’s David is an example of large 3D object. It has been

digitized in the project described in [105]

digitization, being essentially a measurement process, does not require any artistic

ability of the operator.

1.2 The reconstruction of a 3D model

The systems used for digitization of real objects have very different characteristics

because the applications are very variegated. The 3D digitization systems are char-

acterized by different performances and the acquisitions techniques used are based on

different physics principles. Despite of these differences, the digitization process can be

described independently from the particular system used.

3D model construction is a modular process composed by different steps (fig. 1.2).

Acquisition systems are used in the first step to collect information (geometric and

visual) from physical objects. The sensors of the systems acquire a finite set of infor-
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mation, such as 3D coordinates of points belonging to the object surface, colors, and

textures. Then, this information is elaborated for obtaining a generalized description.

In the regions where samples have not been acquired, the surface has to be estimated

by the generalization. Moreover, as the acquisition is realized by means of a sequence

of measurements, it is affected by measurement errors. Hence, the reconstruction pro-

cedure has to consider strategies for data noise filtering.

In the reconstruction of a complex shape, which cannot be surveyed by a single point

of view, many sensors have to be used or many acquisitions have to be performed.

Information coming from different sensors (or from different acquisitions) has to be

consistently merged. This implies two processing steps: registration, where the data

are referred to a single reference system and merging, where the overlapping regions

are combined.

Finally, after the computation of a good representation of the object, it is possible to

transform the model in a better format for using it in final applications. For instance,

it can be compressed in order to decrease the size of model.

In fig. 1.2 a high level scheme of digitization process is reported:

• A set of sensors is used to capture information regarding geometrical and chro-

matic features of the scene.

• The data obtained are used to measure scene features, such as 3D position of

points, color, and light position.

• From these data, a generalization of the acquired features, even where the data

are scarcely available, is computed.

• The information from different sensors or from different acquisition sessions can

be merged.

• The previous steps can be iterated in order to improve the quality of model (e.g.,

for a denser sampling in some regions).

• The representation can be transformed and optimized using a better paradigm

for a specific application.
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1.3 The 3D surface reconstruction from sampled points

Figure 1.2: The scheme shows the main steps of the 3D objects digitization process.

Each step of digitization process can be improved exploiting a priori knowledge

about the scene or about the acquisition technique. Techniques developed for general

cases can be improved and customized for particular cases. The possibility of exploiting

a priori knowledge allows an improvement of the final 3D model both in terms of quality

and computational complexity.

1.3 The 3D surface reconstruction from sampled points

The aim of generalization phase is the computation of the complete description of the

model, even in regions where the information has not been gathered.

If just the geometrical information of the physical object is considered, this phase

consists, generally, in transforming the points cloud sampled on object surface in a

representation from which it is possible to give a realistic graphical depiction. Hence,

the object description, based on 3D coordinates points after the sampling, has to be
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transformed in a description based on surfaces. In this transformation two kinds of

problems arise:

• the surface has a continuous description, while the sampling is a form of dis-

cretization: the value of the surface in between the sampled points has to be

estimated;

• the samples are affected by measurement error: a strategy for error filtering can

be necessary.

The goal of surface reconstruction is, then, the computation of an unknown surface

approximation using a set of points and, eventually, information about the original

surface or about the sampling process (e.g., sample density and noise magnitude).

This problem is solved in literature in two distinct ways, often referred as surface

reconstruction and function reconstruction [83].

In the surface reconstruction approach, the goal is to find a smooth function f :

R3 → R such that the input points {k1, ..., kn} ⊂ R3 are close to the zero set, Z(f).

The zero set, Z(f) = {x ∈ R3|f(x) = 0}, represents the estimation of the surface. In

a second stage, a contouring algorithm can be used to obtain a simple surface that

approximate Z(f).

The objective of function reconstruction approach can be stated as follow: given a

set of pairs {(x1, z1), ..., (xn, zn)}, where xi ∈ R2 and zi ∈ R, the goal is to determine a

function f : R2 → R such that f(xi) ≈ zi.
The first approach allows complete 3D reconstruction, but the surface is described in

terms of distance function. The input domain represents the 3D coordinates of points

and the codomain is a measure of the distance between the points and the surface

implicitly computed by the function itself. This means that the points belonging to the

surface have to be estimated by searching the zero set elements. This is typically more

expensive with respect to the case of function reconstruction, in which the function

itself directly represents the surface. Besides, having the analytic representation of the

surface, a resampling of the surface at the required resolution can be easily obtained.

With this approach the description of a complete 3D model cannot be realized using a

single function, as a single function is able to describe just 2.5D surface (i.e., similar

to a bas-relief representation). A further step for merging the different functions is

needed.
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In function reconstruction approach, the problem of surface reconstruction is seen

as a problem of function approximation from points belonging to function itself. Prob-

lems of this kind occur in many branches of applied mathematics, and computer science.

Many techniques have been developed to face them, such as interpolation, extrapola-

tion, regression analysis, and curve fitting.

The function approximation problem is very general and found applications in many

real situations. In the last decade, a rigorous theoretical treatment, called Statistical

Learning Theory [167], has determined the developing of many efficient paradigms for

solving these kinds of problems. Within this approach, the problem, called regression

problem in this context, is seen as a learning problem, where the two-dimensional vector

coordinates of the single point is an input instance, while the third coordinate is seen

as an output label. The approximation function is the rule that identifies how to obtain

labels from instances.

In supervised learning approaches the calculation of the solution is typically divided

in two phases: in the first one, called training, examples (instances and labels) are used

to configure the model, namely the parameters of model are determined, while the

second one consists in testing the configured model. The testing is structured as follows.

New instances are presented to the model and the labels computed by the model are

compared with the expected (real) values. The differences between the expected values

of labels and those computed by the model are used to evaluate the accuracy of the

model itself.

1.4 Objectives of the thesis

For the solution of function reconstruction problem, Supervised Learning approaches,

generally, show a good tradeoff between computational complexity, accuracy and ro-

bustness of the solution with respect to other methods. In this context, there are many

different paradigms able to find the approximation function: Multi-layer Perceptron

Networks, Radial Basis Function (RBF) Networks, Support Vector Machines (SVM),

etc. In general, there is not a single paradigm better than the others, but each one

shows good or bad performances according to the application context.
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The Supervised Learning methods are characterized by two possible learning modal-

ities [148]. The first one requires to gather all examples before the configuration of the

model. This case is referred as batch learning and is used for stationary problems [22].

The second one, instead, consists in configuring the model using one example by time.

This case is referred as online learning [148], and is used for non stationary problems,

where the statistical distribution of the input changes with time [145], and for real-time

learning [56].

In surface reconstruction problems, the chance of using real-time learning can be

very important because the surface can be computed while the acquisition phase is

taking place. For instance, in active 3D scanning, where a laser stripe or spot is

projected over an artifact to sample data points over its surface [7], a real-time display

of the current reconstructed surface would allow driving the laser toward the areas

where the details are still missing in the reconstructed surface [27][147]. This largely

improves the effectiveness of the scanning procedure.

Another important improvement (in terms of robustness, accuracy, and computa-

tional resources saving) can derive by the use of hierarchical models. A hierarchical

model is composed by some submodels, typically called layers or levels. The layers

are hierarchically organized: each layer realizes a reconstruction up to a certain scale

and the output of the model is the sum of the output of each layer. The single layer

is generally characterized by a scale parameter, which determines the space/frequency

behavior of the layer. The hierarchical models (called, also, multiresolution models)

are, then, suitable to analyze the frequency behavior of the surface in the domain.

Besides, as the solution space is wide and contains many local minima, the surface

reconstruction solution is computationally expensive and may be not robust. Both the

efficiency and robustness can be improved utilizing hierarchical techniques.

Furthermore, the observed scene is, typically, composed by objects that can be char-

acterized by different details levels. The chance of utilizing paradigms able to manage

information at different scales can simplify the algorithms and increase their compu-

tational efficiency. Moreover this approach can be suitably merged with the online

learning techniques. In fact the first points acquired from the object can be used for

defining the large scale information (i.e., the first layers of the hierarchy). This initial
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model can be used to drive the estimation of some initial parameters. Then, the ac-

quisition of new points will determine the adding of new layers and an improvement of

the initial model, until a required level of details is reached.

The core of the thesis is the exploring of innovative online learning modalities for

hierarchical models that allow robust real-time reconstructions for 3D scanning. In

particular two popular supervised learning paradigms, Radial Basis Function Networks

and Support Vector Machines, have been considered here.

Hierarchical Radial Basis Function Networks [59] have shown high performances for

3D scanning problems. For this reason, its online configuration can be an important

innovative tool for real-time surfaces reconstruction. Beside, Support Vector Machines

have became one of the most popular paradigms for both classification and regression

problems. With respect to RBF, this approach has the advantage that the computa-

tional complexity of the configuration procedure is independent from the dimension of

the input space and the number and positions of the units is automatically determined.

The RBF approach has the advantage that for problems in low dimensional space the

configuration procedure is generally faster. On the other hand, it can be noticed that

the nature of the computed solution of SVMs is similar to the RBFs one. Hence, also

the SVM paradigm can be extended to a hierarchical version, more suited (but not

limited) to 3D scanning problems.

RBFs and SVMs approaches have been chosen because, by means of online config-

uration and hierarchical organization, they can represent an important improvement of

techniques already consolidated for 3D scanning, in particular for the real-time cases.

These two approaches have been considered in order to analyze advantages and lim-

its of each of them due to the differences in their intrinsic nature. In particular, the

innovative contributions of the thesis can be summarized in the following points:

• Design and analysis of online configuration of Hierarchical Radial Basis Function

Network models (HRBF)

• Design and analysis of Hierarchical Support Vectors Machines for Regression mod-

els (HSVR)

• Comparison of HRBF and HSVR models

11



1. INTRODUCTION

• Analysis for a future development of online configuration of HSVR models

This work can be seen, also, as a starting point for studying online configured

hierarchical models for applications different from the 3D scanning. In fact, both the

paradigms considered are used for many other applications. For instance, SVMs are

largely applied for pattern recognition problems. Hence, the study of hierarchical SVM

models for classification can be a possible research direction for the future.

1.5 Thesis structure

The thesis is organized in six chapters. The first three chapters are dedicated to the

introduction and detailed description of the problems, while in the remaining chapters,

the innovative contributions of the work are explained, and the results are presented

and discussed. In particular:

• In chapter 2 the problem of real object digitization is discussed. A survey about

3D shape reconstruction techniques and a description of the three-dimensional

reconstruction problems is presented. The aim of the chapter is to give a brief

overview of the typical approaches used for obtaining the digitization of a physical

object.

• In chapter 3 the problem of function approximation from points for the case of

supervised learning approach is discussed. This chapter contains the concepts

underlying to the paradigms object of the study.

• In chapter 4 the HRBF model is presented. The RBF network model is explained

and the hierarchical paradigm working principles are discussed with particular

attention to the online configuration of the model.

• In chapter 5 an innovative multi-scale incremental structure for SVMs is pre-

sented. Advantages and limits of the model are explained and the experimental

results are reported.

• In chapter 6 the results obtained for the two approaches are compared, the con-

clusions and the possible future research directions are presented.
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The digitization process

In the previous chapter, the procedure used to obtain a digital copy of a real object

has been described omitting many details, for sake of conciseness. In this chapter, the

single steps which compose the digitization are described in depth and the approaches

used in literature for implementing them are discussed.

The digitization process can be divided in three main phases: acquisition, recon-

struction and optimization.

During the acquisition the real object is analyzed by means of devices that measure

some characteristics. This information is used during the reconstruction phase for

the creation of a three-dimensional model of the real object. Then the model can be

optimized: its representation is transformed in an equivalent one, more suitable for the

final application that will use the digital copy.

Particular attention is given here to the reconstruction phase: in fact this is the core

of the thesis. However, understanding the other phases is important because, even if

each phase can be described individually, there is a certain level of dependency among

each other.

Initially, an overview about the different techniques used to realize the geometrical

measure of a real object is presented (Section 2.1). After this overview, in Section 2.2

it is showed how the collected data can be used to obtain a general description of the

digital model. In the last part of the chapter, Section 2.3, some possible post-processing

procedure are described. They can be applied to the model in order to adapting it to

a particular application.
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2.1 Acquisition

An acquisition system is composed by a set of devices and procedures able to capture

the shape and the appearance of an object. Generally, the acquisition systems realize a

sampling of the acquired object surface features. The information collected during the

sampling is used in the reconstruction phase to obtain the object model. The different

systems can be evaluated considering their performances in terms of:

Accuracy The accuracy is an index that describes how much the measurements evalu-

ated by a system are close to their real values. Different techniques can be utilized

to determine such index. They can be classified in direct measurement (e.g., using

a lattice of known step) and indirect (e.g., average distance of sampled points on

a plane with respect to the optimal plane).

Resolution The resolution measures the density of details that the system can recover,

or in similar way, the minimum distance that two features should have to be

discernible.

Speed The speed of an acquisition system is evaluated as the time employed for mea-

suring a feature (for example, the points per second that the system can sample).

Obviously, it is important to consider also the kind of feature measured (e.g., a

line contains more information than a point).

Flexibility The flexibility of a system is the capacity of acquiring a wide class of

objects (considering materials and dimensions). This feature depends on the

kind of sensors used and the size of the acquisition field.

Invasiveness The invasiveness is the effect that the acquisition procedure can cause to

the object. The measure can modify the object in different way (light sensitivity,

fragileness). In practice, this limits the use of the system for a certain class of

objects.

Robustness The robustness of a system describes the sensitivity of the system to the

environmental conditions.

Usability The usability of a system describes the technical know-how needed to the

user for a correct use of the system.
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2.1 Acquisition

Cost There are acquisition systems of very different prices. The hardware and the

software used by the system determine its cost.

Some of these features can be easily quantified, while other features are just quali-

tative. There are features dependent on some components of the system. For example,

the physical principle used for obtaining the measurement determines the invasiveness

of the system. Some features are quite incompatible. For instance, generally the us-

ability cannot coexist with a high level of flexibility and a high level of accuracy, as

both the last two features typically require a complex system, in which users with a

significant degree of expertise are needed.

The physical principle exploited by the system for measuring the object geometrical

features is probably the most used characteristics for categorizing the 3D scanning

systems, as sketched in fig. 2.1. In the following sections, the devices that belong to each

category are described, their working principles are explained, and their advantages and

disadvantages are consequently discussed.

2.1.1 Contact 3D Scanners

In contact 3D scanners the surface of the object is probed by the physical touch. There

are mainly two types of these systems: Coordinate Measuring Machine (CMM)(fig. 2.2-

b) and Joined Arm (fig. 2.2-a).

The first is composed by a tactile probe attached to a vertical arm, which can

be moved along the horizontal plane. The movement of the probe is allowed by the

three orthogonal axes in a typical three-dimensional coordinate system. The probed

coordinates result directly from the displacement of the actuators along each axis. The

object is placed on a reference plane where the probe can explore it. The movement of

the probe can be both automatically and manually operated.

Generally, these systems enjoy a good accuracy (Helmel Checkmaster 112-102 allows

for an accuracy of 9 µm) and they are used mostly in manufacturing. The disadvan-

tages are that the working volume is bounded by the structure and that the acquisition

direction is only vertical.

The Joined Arm is composed by a chain of articulated links with a probe mounted

at the end of the last link. The 3D coordinates of the probe result as the composition
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Figure 2.1: 3D scanner taxonomy

of the rototranslations operated by each link. Since, as for the CMM, the point coor-

dinates are computed by the position of the mechanical components, these systems are

generally sensitive to temperature and humidity variations. For that reason, in order

to provide good performance, they require a high mechanical technology to be realized.
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The main differences between CMM and Joined arm are in the mechanical structure.

Since generally the arms have a greater degree of freedom, they can be used for a larger

class of objects. The arms are typically manually operated, while the CMM can be

more easily automated. Both these devices can be very precise (Cam2 Quantum Arm

has an accuracy of 0.018 mm [2]), but they are relatively slow compared to the other

scanner systems. Furthermore, these methods are invasive and so they are not suitable

for delicate object (e.g. archaeological artifacts). Another disadvantage is the price,

as these systems are generally not cheap. It should be noticed that the tactile probe

of both these systems can be substituted with another kind of sensor. In this case the

systems are not longer belonging to the class of contact 3D scanners.

(a) (b)

Figure 2.2: (a) Coordinate Measuring Machines, (b) Joined Arm
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2.1.2 Non-contact 3D Scanners

In non-contact systems, the sampling of the surface is performed by the interaction

between some kind of radiation and the object surface itself. Depending on whether the

radiation is supposed to pass through the object or it is reflected by the object surface,

these systems can be divided in two sub-categories: transmissive and reflective.

Figure 2.3: Computer tomography

Transmissive Systems - Industrial Computed Tomography

In transmissive systems the object has to be positioned between the emitter (which

irradiates the object) and receiver (which collects the radiation attenuated by the ob-

ject) (fig. 2.3). The main representative of this category is the Industrial Computed

Tomography. The radiation is generated by an X-ray tube by means the collision of

electrons with particular materials, usually tungsten, molybdenum or copper. The pho-

tons emitted by the collision penetrate the target object, and are captured by a 2D

detector as a digital radiographic image. The 3D model is reconstructed from a set of

2D X-ray images of the object taken from different views. The views can be obtained

either rotating the object and fixing the source-sensor pair (for example, positioning

the object on a turn table) or fixing the object and rotating the source-sensor pair (for

example, in medical scanners, where the system revolves around the patient). From

this series of 2D radiographs using, generally, the back-projection algorithm [57] it is

possible to compute a 3D voxel model.
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The three-dimensional resolution of the obtained model ranges from a few microme-

ters to hundreds of micrometers, and depends on X-ray detector pixel size. This kind of

system allows the reconstruction of both external and internal surfaces and the method

is unaffected by certain object characteristics (dark, reflective or transparent surfaces).

The structure of the hardware makes the system suitable for only relatively small ob-

jects. It should be noted that the density and the thickness of the object affect the

energy collected by the X-rays detector. Furthermore the reconstruction of the model

from the 2D radiographic images is computationally intensive.

Reflective Systems

The reflective systems exploit the radiation reflected by the object surface for esti-

mating the position of the points of the surface. They can be classified from the type

of radiation they use. In particular, optical systems use optical radiation (wavelength

between 100 nm and 300 µm), while non-optical systems use sound or non-optical elec-

tromagnetic radiation to make the measurements. Since optical systems form the main

category of 3D scanners, they will be considered in depth in the next section.

The class of non-optical systems is composed by devices based on radar and sonar

systems. Although the radiations exploited are very different (the radar uses electro-

magnetic microwaves, the sonar uses sound or ultrasound waves), both of them are

based on the principle of measuring the time-of-flight of the emitted radiation: from

the time required for the wave to reach the object and return to the system, knowing

the speed of the utilized radiation, it is possible to estimate the distance covered by

the radiation, which can be considered equal to the double of the distance of the object

from the scanning device. As this principle is used also for a class of optical scanners,

it will better explained in the next section.

Due to the use of microwave radiations, radar systems have a very large depth of

field, up to 400 km, and can perform ground penetrating reconstructions (fig. 2.4). A

typical application is for air defense. These systems are quite expensive and generally

have a low accuracy. When a sonic wave is used, as in sonar systems, the measure-

ment is insensitive to the optical properties of the object and can be applied for the

reconstruction in environments where the optical radiation would be distorted or too
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much attenuated (due to absorption), as the underwater setting. These systems are

characterized by a low accuracy (fig. 2.5) due to low signal to noise ratio.

Figure 2.4: Ground penetrating radar system

Figure 2.5: A range image acquired by a sonar system
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2.1.3 Optical 3D Scanners

The ability of reconstructing an object without physically touching has important ad-

vantages: it is applicable to delicate objects (e.g., archeology artifacts), the use of

radiation allows, generally, high speed of acquisition and wide range reconstruction

(e.g., landscape reconstruction). Furthermore, very low cost systems can be realized.

Depending on the source of the radiation (device emitted or environmental), these

systems can be divided in two sub-categories: passive and active systems.

2.1.3.1 Passive Systems

The passive systems do not emit any kind of radiation themselves; they usually use the

reflected ambient radiation. Generally, they are based on the use of Charge-Coupled

Devices (CCDs), the classical sensors that are embedded in the commercial digital

cameras. The sensors collect images of the scene, eventually from different points of

view or with different optical setups. Then, the images are analyzed in order to compute

the 3D coordinates of some points in the scene. The passive scanner can be very cheap;

normally, they do not need particular hardware but typically do not yield dense and

highly accurate digitization. Often, with these scanners the 3D points computation is

not easy and a heavy computational effort can be required. Although they share the

same sensor technology, different families of passive optical scanner can be found in the

literature [176], which are characterized by the principle used to estimate the surface

coordinates: stereoscopic, silhouettes, texture (or contour) and defocus.

Stereoscopic

The stereoscopic systems are based on the analysis of two (or more) images of the

same scene, seen from different points of view. The 3D points of the scene are cap-

tured by each camera as their 2D projection in the taken images. The first task of the

reconstruction algorithm consists in identifying pairs of 2D points in different images

that correspond to the same 3D point in the scene. If the corresponding 2D points

are found, their projected rays can be estimated and the 3D positions of the points

can be recovered as the intersection of the projection rays (fig. 2.6 and fig. 2.7). This

reconstruction method is known as triangulation. It should be noticed that this method
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Figure 2.6: The intersection of the projected rays gives the 3D coordinates of the points.

Figure 2.7: Example of real pair of images where peculiar points are highlighted

requires complete knowledge of the camera parameters: their (relative) position and

orientation, but also their internal parameters (i.e., focal length, optical center, CCD

size, and distortion parameters). The camera parameters are determined during a phase

called calibration. Generally, this phase is performed before the scanning session, using

particular known scene, as a chessboards or simple objects, where the correspondence

problem (i.e., the matching between the projections of the same points in the 3D space

on the acquired images) can be easily solved. An estimation of the calibration param-

eters can be also computed directly from the images of the object (exploiting some

additional constraints on the acquired model) [114].
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The main problem of this kind of system is the computation of the correspondence

pairs of the 3D points. For this reason, the stereoscopic technique is generally used for

the reconstruction of particular objects in which the correspondence problem can be

solved easily. Since using standard image processing techniques it is relatively simple to

extract peculiar points such as the corners of an object from an image, these methods

are applied for the reconstruction of building or, in general, of objects in which the

edges are evident (fig. 2.7).

A possible approach for reducing the computational complexity of the correspon-

dence problem consists in capturing many images in which the point of view slightly

changes. Since the position of a point on an image will be slightly different from that

on the next image, the search for the correspondence for each point can be performed

only in a small portion of each image. However, it should be considered that in this

case the complexity of the estimation of the calibration parameters can increase.

The main advantages of these techniques are the potential low cost of the hardware

needed and the non-invasiveness of the method. The generally low accuracy and the

sensibility to the calibration phase limit the diffusion of these systems in real applica-

tions.

Figure 2.8: Shape-from-silhouettes system.
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Shape-from-silhouettes

The silhouette systems [137] [166] compute the model as composition of the contours of

the object taken from different points of view. To this aim, the typical scanner of this

category is composed by a turn table (where the object is placed on, fig. 2.8), a flat

background (which simplify the contour extraction procedure), and a single camera.

While the object rotates, the camera captures an image from which the contour is ex-

tracted. Each contour can be seen as a cone of projected rays that contains the object.

The intersection of these cones determines the approximate shape of the object.

This system has the benefit that is realizable easily and with low cost hardware, but

has the strong limitation that only convex objects can be accurately reconstructed. In

fact, the cavities of an object are not visible in the projected silhouettes and then they

cannot be reconstructed, which limit the use of these systems in many real applications.

(a) (b)

Figure 2.9: In a surface textured with a repeated pattern, (a), the shape of the surface

causes distortions in the texture that can be analyzed for estimating the surface normals,

(b).

Shape-from-texture and shape-from-contour

Techniques that extract information about the objects shape from its texture or contour

provide useful clues for 3D digitization and are interesting results of the computer vision
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theory, but are rarely implemented for real 3D scanners. In fact, these techniques are

not able to compute the 3D coordinate of object points, but only the surface curvature

(up to a scale parameter) or its orientation.

Shape-from-texture is grounded on the hypothesis that the surface of the object

is covered by a texture characterized by a pattern that is repeated with regularity

(fig. 2.9). The curvature of the surface can be computed analyzing the distortion of

the texture. The surface normals are estimated from the analysis of the local inho-

mogeneities [11]. Furthermore a diffuse illumination of the scene is required, as the

shading can influence the texture analysis.

A similar technique is called shape-from-contour. In this case the surface orientation

is computed by the analysis of the distortion of a planar object. For example, if the

object contour is known to be a circle (e.g., a coin), while the contour of the acquired

object is elliptical, it is possible to estimate the surface orientation that realizes this

distortion.

Figure 2.10: Three images captured with different focal length

Shape-from-defocus

In the shape-from-defocus systems [104] the defocus produced by a lens is driven to

allow the extraction of depth information (fig. 2.10). In these scanners, a conventional

camera captures several images of the same scene using different focal lengths. Gener-

ally, this method can make use of a single camera that records all the images for the

different focus setups. The frequency content of the same region in different images is

used for identifying in which image the considered region is on focus. Since from the

focal length the distance of the plane of focus from the optical center is determined,
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then knowing the region on focus for a given focal length gives the distance of that

region from the camera too.

Typically, these systems are not able to make very precise reconstruction, as the

accuracy depends on the setup (depth field). Besides, this technique can be applied

only on texturized objects. However, these systems can be realized using low cost

hardware, and, being optical passive, they are non-invasive.

2.1.3.2 Active Systems

The active systems emit some kind of radiation, and the interaction between the object

and the radiation is captured by a sensor. From the analysis of the captured data,

knowing the features of the emitted radiation, the points’ coordinates can be obtained.

As a matter of fact, they are the most common scanner systems. Among the several

kinds of scanners that belong to this category, the most exploited principles are: time

of flight (ToF), phase shift and active triangulation. However, interferometry scanners

found application for specific problems, such as the digitization of very small objects,

while illuminant-based techniques have theoretic interest especially for applications

where the color of the object have to be captured.

Time-of-flight

Time-of-flight (ToF) systems measure the distance from scanner to surface points

through the measurement of the time employed by the radiation to reach the object and

come back to the scanner. Knowing the speed of radiation and the round-trip time, it is

possible to compute the distance and (knowing the direction of the emitted radiation)

the 3D points coordinates [73] [1]. Hence, changing the direction of the emission, the

system can cover the entire field of view.

Depending on the type of waves used, such devices are classified as optical radar

(optical waves), radar (electromagnetic waves of low frequency) and sonar (acoustic

waves). The optical signal based systems are the most used type. Such systems are

sometimes referred to as LIDAR (LIght Detection And Ranging) or LADAR (LAser

Detection And Ranging). These systems are characterized by a relatively high speed

acquisition (10, 000 ÷ 100, 000 points per second) and their depth of view can reach

some kilometers.
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Generally, the optical ToFs accuracy is limited because the high speed of radiation

used. In fact, for measuring the distance with 1 mm accuracy, it is necessary to be able

to measure a time range in the order of picoseconds. Hence, these systems are generally

applied in long-range 3D measurement of large object, such as building and geographic

features. The optical properties and the orientation of the surface with respect to the

ray direction affect the energy collected by the photo detector and can cause loss of

accuracy.

As said above, these systems are often used to geographic reconstruction; the aerial

laser scanning is probably the most advanced and efficient technique to survey a wide

natural or urban territory. These systems, mounted on an airplane or on a helicopter,

work emitting/receiving up to 100,000 laser beams per second. The laser sensor is often

coupled with a GPS satellite receiver, which allows recovering the scanner position for

each acquired point. Hence, each point can be referred to the same reference system

and the acquired points (which can form a dense cloud of points) can be related to

a cartographic reference frame, for an extremely detailed description of the covered

surface [170].

ToF scanners are often used in environment digitization. A relatively recent appli-

cation is the digital crime scene reconstruction; using the digital model, the police are

helped in the scene analysis task.

For this aim, the typical scanner model is composed by a rotating head which

permits a wide field of view; for example the model Leica ScanStation C10 has a field

of view of 360◦ horizontal and 320◦ vertical [3].

Another kind of ToF system is the Zcam (produced by 3DVSystems) which provide

in real-time the depth information of the observed scene. The scene is illuminated

by the Zcam which emits pulses of infra-red light. Then it senses the reflected light

from scene pixel-wise. Depending on the sensed distance, the pixels are arranged in

layer. The distance information is output as a grey level image, where the grey value

correlates to the relative distance.

Phase shift

Phase shift systems use a laser beam which power is sinusoidally modulated over the

time [5]. From the phase difference between the emitted and reflected signal, it is
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Figure 2.11: Phase shift working principle.

possible to compute the round-trip distance. In fact, the phase difference between the

emission and reflection signal is proportional to the traveled distance (fig. 2.11). Since

the phase can be distinguished only within the same period, the periodicity of the sig-

nal creates ambiguity. To resolve this ambiguity, multiple frequency signals are used.

This method has performances quite similar to the ToF method, but can reach a higher

acquisition speed (500,000 points per second).

Figure 2.12: A scheme of active triangulation system.
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Active Triangulation

In active triangulation systems the scene is illuminated by a coherent light source

from one direction and viewed from another. These systems primarily differ in the

light structure used (single spot, laser sheet beam, or coded light) and the scanning

method (moving the object or moving the scanning mechanism). If the source is a

low-divergence laser beam, the interaction of this radiation with the surface object will

produce a spot, which can be detected by a sensor (typically a CCD). The orientation

and the position of the source and the sensor are typically known. From the spot loca-

tion on the sensor, the line between the sensed spot and the camera center point can

be computed. As the laser line is known, the 3D point will result as the intersection

point between the camera line and the laser line. Hence, the point 3D coordinates can

be calculated by triangulation (fig. 2.12).

If the laser orientation and position are not known, it is possible to calculate the

coordinates using two or more cameras as in stereoscopic method. In this way, the

system acquires one point per frame, while using a different light source (such as a

laser sheet or a matrix spot) more points per frame can be captured. As the laser

sheet illuminates a plane in the space, the camera captures the contour resulting from

the intersection of this plane and the object surface. Then, for any image pixel on the

contour, the corresponding 3D point on the object surface is found by intersecting the

ray passing through the pixel and the laser 3D plane equation. The use of a matrix

spot allows to sample a region instead of a line (as done by the laser sheet), and it

can be potentially the fastest solution for surface acquisition. However, the problem of

matching each beam with its projected point acquired by the camera is more complex

than in the single beam case.

The use of a matrix spot would be required, with strong constraints on the speed of

acquisition, whenever a moving object has to be acquired. As the problem of determine

the pairs of points on the images is hard, this technique is not generally used. The

typical approach used in this case is instead the projection of a structured light pattern.

There are many different techniques based on the projection of structured pattern, and

generally they make use of a calibrated camera-projector pair [15]. The aim of these

techniques is to characterize each point by projecting a different light pattern on a

different direction. Hence, the illumination is used like a code, allowing the correct
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identification of each direction. The encoding is realized using different strategies as

colored stripes [178] or time-coded stripes [147]. The colored stripes encoding presents

an important problem: both the surface color of the object and the ambient light

influenced the color of the reflected light. For this reason, to reconstruct a colored (or

textured) object, other kinds of coding are preferred.

In [147], a structured-light range-finder scanner using temporal stripe coding is

proposed. Using a projector and a camera synchronized at 60 Hz, four successive

frames are exploited to acquire a 115×77 matrix points. For each frame, a set of

black/white stripes is projected. Observing as a pixel changes its color (from white

to black and from black to white) in different frames, it is possible to compute which

stripe is illuminating the pixel and then, by the triangulation, the 3D position of the

point. Actually, the entities that carry the code are not the stripes, but the stripe

boundaries: in this way, a more efficient coding is possible. In fact, a single stripe can

carry one bit (the stripe can be black or white), while a boundary can carry two bits

(it can have a stripe on the left white and on the right black, and so on).

Another very efficient scanner system is proposed in [87]. This system uses three

phase-shifted sinusoidal gray-scale fringe patterns, to provide pixel-level resolution.

A projector and a camera are synchronized at 120 Hz with a resolution of 532×500

points per frame, achieving a system accuracy of 0.05 mm. For each pixel, the phase

from the three pattern intensities is calculated. This phase information determines

the correspondence between the image field and the projection field. The phase map

calculated from the three camera images can be converted to the depth map by a phase-

to-height conversion algorithm based on triangulation. With this system it is possible

to realize a real-time reconstruction. For example, the system is able to measure human

faces, capturing 3D dynamic facial changes. In order to provide a high definition real-

time reconstruction it is employed a GPU (Graphics Processing Unit)[4] to compute

the 3D coordinates points. These devices have a highly parallel structure that makes

them more effective than typical CPUs, for a range of complex algorithms [183]. GPUs

are very useful in the reconstruction problems because typically these problems are

characterized by parallelizable computation.

The active triangulation systems, generally, are characterized by a good accuracy

and are relatively fast. The strong limitation of these systems is the size of scanning

field. As the coordinates are computed by means of triangulation, the accuracy of
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these systems depends by the angle formed by the emitted light and the line of view,

or equivalently, by the ratio between the emitter/sensor displacement and the distance

of the object (fig. 2.12). In the optimal set-up, the considered angle should be 45◦.

Moreover, the resolution of CCD, the resolution and the power of source of light limit

further the active triangulation systems to a depth of field of few meters. Hence, these

systems are not usable for digitization of large objects. Furthermore objects color and

ambient illumination may interfere with the measurement.

Figure 2.13: Example of the shape information contained in the shading.

Shape-From-Shading and Photometric Stereo

The shape-from-shading problem consists in the estimation of the three-dimensional

shape of a surface from the brightness of an image of that surface. The first formula-

tion of this problem was proposed in the 70s [85]. The work revealed that the problem

requires the solution of a nonlinear first-order differential equation called the brightness

equation. Today, the shape-from-shading problem is known to be an ill-posed problem,

which does not have a single solution [29]. What makes difficult to find a solution

for this problem is often illustrated by the concave/convex ambiguity, caused by the

fact that the same shading can be obtained both for a surface and its inverted surface,

for a different direction of the illuminant. Moreover, this kind of ambiguity can be

widely generalized. In [16], it is showed that, given the illuminant direction and the

Lambertian reflectance (albedo) of the surface, the same image can be obtained by a

continuous family of surfaces, which depend linearly on three parameters. In other
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words, neither shading nor shadowing of an object observed from a single viewpoint

can provide the exact 3D structure of the surface.

However the problem can be solved under simplified conditions. The first one is the

use of directional lighting with known direction and intensity. But, again, this simpli-

fication is not enough and, in order to solve the problem, knowledge about reflection

properties of the surface of the object is also required. In particular, the surface should

be Lambertian, namely the apparent brightness of the surface has to be the same when

the observer change the angle of view, and the albedo (i.e., the fraction of light that is

reflected) should be known.

As the method implies the use of a known radiation, it can be considered belonging

to the active systems class. Under these conditions the angle between the surface

normals and the incident light can be computed. However in this way the surface

normals are derived as cones around the light direction. Hence, the surface normal in

a given point is not unique and it is derived considering also the values of the normals

in a neighborhood of the considered point and making the assumption that the surface

is smooth.

When a photometric stereo technique is used, the problem is simplified by illumi-

nating the scene from different positions [82] [80]. With this technique, introduced in

[177], it is possible to estimate the local surface orientation by using several images of

the same surface taken from the same viewpoint, but under illumination that comes

from different directions. The light sources are ideally point sources, which positions

are known with respect to the reference system, oriented in different directions. The

lights are activated one at a time, for each captured frame, so that in each image there

is a well-defined light source direction from which to measure the surface orientation.

Analyzing the sequence of intensities change of a region, a single value for the surface

normal can be derived. In general, for a Lambertian surface, three different light di-

rections are enough to solve uncertainties and compute the normals. This approach

is more robust with respect to shape-from-shading, but the use of synchronized light

sources implies a more complicated 3D system, which can strongly limit the acquisition

volume. On the other hand, the availability of images taken with different lighting

conditions allows a more robust estimation of the color of the surface.
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Moiré Interferometry

The Moiré interferometry is a technique that allows to detect and measure deforma-

tions in a quasi-planar surface. The method utilizes interference effect between some

form of specimen grating and reference grating [88]. The principle of the method is

that projecting parallel regularly spaced planes or fringes on the surface of the object,

and observing the scene from a different direction, the observed fringes will appear as

distorted by the surface shape. The measurement of displacement from the plane can

be obtained comparing the observed fringes with the reference fringes. In more detail,

the z coordinate can be determined measuring the fringe distances obtained from the

superimposition of the grating projected with the grating observed and knowing the

projection and observation angles.

This technique allows a high accuracy (on the order of micrometers), but for a very

small field of view. In fact, the grating projected has to be very dense (e.g., with 1000-

2000 lines/mm). This characteristic limits the method to microscopic reconstruction.

Figure 2.14: A scheme of a holographic system
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Holographic Interferometry

A hologram is the recording of the interference pattern formed by a reference laser

beam and the same beam reflected by the target object. It can be obtained by splitting

a laser beam in two parts: one is projected onto the object and the other one goes

directly to the camera (fig. 2.14). The holographic interferometry is a technique for

measuring vertical displacement by comparing the holograms of the same object at dif-

ferent states. In particular, vertical displacements can be estimated comparing images

taken while the object is moved along the vertical axis. The images are analyzed to

detect the peak of the interference pattern for each pixel, which allows computing the

height of the considered pixel. The systems based on this technique are quite expensive,

but allows sub-nanometer measurement. Since the field of view is very small, generally,

the method is applied for objects of size of few millimeters.

2.1.4 Hybrid Techniques

In the previous pages, an overview of many techniques characterized by complementary

strength and weakness has been presented. Many real systems implements more than

one technique for exploiting the advantages of each approach. For instance CAM2

Laser ScanArm V3 is a Joined Arm where the probe is an active triangulation laser

scanner, combining the precision and the speed of the active system with the mobility

of the Joined Arm.

The systems that combine stereoscopic techniques with structured light are another

example. The correspondence problem that arises for the stereoscopic systems can be

greatly simplified by the projection of light patterns. Moreover, using multiple cameras

the reconstruction can be improved both in accuracy and in speed.

Furthermore an optical 3D scanner system can be enriched with a couple of emitter

and receiver that exploit another kind of radiation (such as sonic, microwave radiation)

for the objects or environments in which the optical radiation cannot be applied.

The combination of multiple techniques generally allows a more robust systems and

an improvement of the accuracy. The price to be paid is the complexity and then the

cost of the system.
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Figure 2.15: Some types of 3D scanners

2.1.5 Evaluation of 3D systems

The systems have been classified in a taxonomy that privileges, as criterion for the

classification, the physical principle exploited to extract the 3D information. However,

other properties of the scanning systems can be used as classification key. For instance,

among other, the accuracy, the resolution, or the speed of acquisition can characterize

a scanner system, but these properties are more related to an actual implementation

of the systems than to a class of scanners and hence are not suited for a structured

treatment of the subject. On the other hand, these properties have to be considered

when a scanning system has to be chosen and are often critical for the choice. Obviously,

there is no way for indicating a scanner system as the best one, because each model

has been designed for a specific field of application (fig. 2.15).

In [35] a method for evaluating the 3D scanners is suggested. It considers some

important features (e.g. field of view, accuracy, physical weight, scanning time) and for

each feature it associates a weight. By giving a score for each feature of each scanners
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considered, a single final score can be computed as the sum of each score.

Anyway, probably the three principal aspects that should be considered in order

to choose a 3D scanner are the properties of the objects to acquire (size and material

features), the accuracy required, and the budget, under auxiliary constraints such as

the speed of acquisition required and the environmental conditions. Some attention

should be paid also to the human aspects: some models require a deep knowledge of

the principles exploited by the scanners and can be used only by trained people.

An important aspect to note about every 3D scanner is the calibration procedure.

Generally 3D scanners have different setups and the point cloud reconstruction is pos-

sible only if the setup parameters are known. The aim of calibration phase is the

estimation of setup parameters. This phase is critical for many types of scanners be-

cause the precision of the system is, typically, strongly connected to the quality of

calibration performed. Moreover the time employed to realize the calibration can be

very long. The procedure can spend several minutes, even though the scanning session

can require just some seconds.

However, as the technological advances improve the computational power and the

performances of the devices, more attention is paid by the scanner designers for making

the systems more user friendly. In fact, in the last decade many research works are

related to the estimation of the calibration parameters without a proper calibration

stage. In this track, an interesting approach, mainly oriented to the stereoscopic tech-

niques, is the passive 3D reconstruction, which allows the estimation of the calibration

parameters after the acquisition session.

Since devices for the reproduction of 3D contents are becoming widely available

to the consumer market, compact and easy-to-use devices for capturing 3D contents

are likely to be proposed. Hence, it can be envisioned that the miniaturization of

components such as CCD sensors or pico-projectors will be exploited for implementing

small, point-and-click optical devices.

2.2 Reconstruction

The aim of the reconstruction phase is to find the best approximating surface for the

collection of data gathered in the acquisition phase. There are two aspects that charac-

36



2.2 Reconstruction

terize this problem: the a priori knowledge about the object and the kind of information

collected by the acquisition phase.

In order to solve this problem, a paradigm for surface representation is needed. This

paradigm can be used to encode a priori knowledge about the problem. For example,

if the acquisition is concentrated to a certain class of objects, a parametric model can

be used to represent the objects of that class. The reconstruction can be simplified by

searching just the parameters that best fit the acquired data.

If the a priori knowledge about the object is limited or the class of objects is very

wide, the paradigm for the reconstruction should have many parameters in order to

be able to fit many different shapes and the reconstruction technique should be more

complex.

The problem of surface reconstruction can be formulated as an optimization prob-

lem. In general, a model based approach is more robust [48]. However, the general case

where the a priori knowledge is strongly limited is here examined.

Similar considerations can be applied for the data acquired. Some systems are able

to acquire lines, edges or other features with a higher informative content, but the

reconstruction from points is a more general problem and it is considered here. Fur-

thermore, in reconstruction phase, problems connected to the data uncertainty should

be considered, such as: noise, missing or ambiguous data, and the missing information

about the surface topology.

2.2.1 Reconstruction from points

The reconstruction of a surface from a three-dimensional points cloud requires the

implicit definition of the surface topology.

The hand surface reconstruction can be considered in order to clarify the difference

between geometry and topology of a set of data and their influence in the reconstruction

problem. Points placed on the tip of two fingers of the same hand can be geometrically

very close, but topologically are very far from each other. In fact, the geometric (Eu-

clidean) distance is defined as the shortest line segment that connects the two points,

while the topological distance is defined considering only those segments that belong

to the surface: the two distances can be very different. The geometric and topological
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distance is similar for points in the region at the base of the fingers, close to the palm:

there, points belonging to different fingers can be confused due to the presence of noise.

The difference between topological and geometric distance becomes smaller and

smaller if the surface region containing the points becomes similar to a plane. The

knowledge on the topology of the surface simplifies the reconstruction problem. For

this reason, the a priori knowledge about the object can be very useful. Some surface

transformations do not change the features related to the topology.

If the reconstruction is based only on the 3D coordinates of the points, the topology

information can be unknown. The simplest way to determine the topological distance

among the points is to consider it equal to the Euclidean one. Hence, points geometri-

cally close will be also considered topologically close.

In practical cases, the problem of the lack of topological information can be han-

dled in two phases. In the first phase, a polygonal model that represents the data at a

low resolution is found. This model is computed by means local planar approximation

and it is used as topological reference. In the second phase the positions of the points

is transformed on the base of their displacement with respect to the polygonal model

computed in the first phase. The results of the two phases are used to reconstruct the

detailed surface.

The problem of surface reconstruction from points has been largely studied in the

last years. The techniques to address it can be divided into two classes:

• volumetric techniques, which process the data without any additional information

about the topology and are based on the search of the volume occupied by the

object;

• function approximation techniques, which consider the surface as a function on a

given domain.

There are also techniques based on the combination of the two classes. For example

it is possible to use a volumetric technique to find a rough reconstruction of the object

surface (that will belong to the same topological class of the object surface) and use

this reconstruction as the domain of a function that realizes a detailed approximation

of the object surface.
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(a) (b) (c) (d)

Figure 2.16: Example of surface reconstruction by means volumetric method. In panel

(a) the point cloud, in panel (b) the partition into cubes of the point cloud space, in panel

(c) the first triangular mesh, and in panel (c) the a smoother version of the preview mesh.

Another feature that characterizes the reconstruction techniques is the kind of so-

lution: interpolation or approximation of the acquired points. As, generally, the points

are the result of a measurement process, an interpolation cannot determine a good

solution, due to measuring error. Despite this consideration, an interpolation can be

used as first approximation that can be improved in next processing phases.

A more detailed classification of the reconstruction techniques can be found in [115].

There are definitions and methods well known in the field of surface reconstruction,

as: convex hull, Delaunay triangulation, Voronoi diagram, α-shapes, octree, marching

cubes. The full explanation of these concepts goes beyond the scope of this thesis and

can be found in [139]. For reference, a short definition of these concepts is reported in

the Glossary (6.2.3).

2.2.2 Volumetric methods

Generally, for the computation of the object topology, volumetric methods are used.

The algorithms of this class are composed of the following steps [115]:

1. Point space decomposition in cells

2. Selection of the cells crossed by the surface

3. Surface computation from the selected cells
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In [10] the bounding box of the points is partitioned into cubes of the same edge

(fig. 2.16-a–b). Only the cubes that have at least an internal data point are considered

(fig. 2.16-b). A first surface approximation is composed of the exterior faces of the

cubes that are not shared by any two cubes. These faces are then diagonally divided

in order to obtain a triangular mesh (fig. 2.16-c). A smoother version of this surface is

obtained moving each vertex of the mesh in the point resulting from a weighted average

of its old position and the position of its neighbors (fig. 2.16-d).

In [84] the signed distance function concept is used for the approximation of the

surface topology. The signed distance function of the surface assumes a positive value

in external points and negative value in internal points. The isosurface (i.e., the region

of the space where the signed distance function is zero) is then the target surface. The

space occupied by the points is divided in a regular lattice and for each vertex the

value of the signed distance function is estimated. Then, the cubes which have vertices

of opposite sign are selected. This is equivalent to select the cubes through which the

surface passes. Then the marching cubes algorithm is applied to the selected cubes for

improving the surface resolution.

A similar approach is proposed in [144], but with a different technique for the

computation of the signed distance function. Since the distance function determines

implicitly the surface and obviously it is not a priori known, the technique for estimat-

ing the distance function is a critical aspect for the methods of this kind.

Another critical factor of the volumetric methods based on a regular lattice is the

size of the cells. In [14] tetragonal cells are used. In the first phase, there is a single cell

that includes all the points, which is then divided in four parts adding the barycenter at

the set of the vertices. Then, the signed distance for all the vertices is computed. The

tetrahedrons whose vertices have the same sign are deleted. For each of the remaining

tetrahedrons an approximation of the surface that passes through it (a Bernstein-Bézier

polynomial) is computed. If the approximation error of the surface with respect to the

points inside the tetrahedron is over a given threshold, the procedure is iterated.
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(a) (b) (c) (d)

Figure 2.17: Example of α-shape computation in 2D space. In panel (a) the Delaunay

triangulation for a set of six points is shown, in panel (b), (c), and (d) the results of the

edges elimination based on three different values of α.

In [130] the set of points is partitioned by means a clustering algorithm (k-means).

Each cluster is represented by a polygonal approximation and the model obtained is

used as first approximation of the surface. In order to avoid the problem of putting

in the same cluster points from different faces of a thin object, the points’ normals

(estimated by the local properties of the dataset) are also used in the clustering.

There are some methods based on the deletion of elements. This approach is called

sculpturing or carving. In [54] it is proposed a reconstruction algorithm based on α-

shape. The Delaunay triangulation is first computed and then every triangle which

cannot be circumscribed by a sphere of radius α is deleted: the remaining triangles

compose the α-shape of the dataset. In fig. 2.17-a–d the working principle for the 2D

case is represented. The Delaunay triangulation is first computed (fig. 2.17-a) and the

every edge which cannot be circumscribed by a circle of radius α is deleted (fig. 2.17b–

d).

For the computation of the faces composing the surface, the following criterion is

adopted: the two spheres of radius α that pass through the vertices of each triangle are

computed. The triangle belongs to the surface if at least one of the two spheres does

not contain points of the dataset. This method is very simple and has only α as global

parameter. If the sampling density is not uniform, the use of a single α value can cause

a poor reconstruction. In fact, if the value of α is too large, the reconstruction can be

too smooth, while for a too small value of α the reconstruction can have undesired holes.
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Figure 2.18: Example of tetrahedrons elimination [24]. The tetrahedrons ABCI and

BCDI are eliminated because they have the following elements toward the outside of the

object: single face, three edges and three points. In this way, the cavity determined by I

can be visible.

In [24] it is proposed a method that, from the set of tetrahedrons obtained from the

Delaunay triangulation, computes the elimination of tetrahedrons considered external

to the object. The external tetrahedrons are selected using a heuristic (the tetrahedrons

that have the following elements toward the outside of the object: two faces, five edges

and four points or a single face, three edges and three points) (fig. 2.18). The aim of

the procedure is obtaining a polyhedron of genus 0 which have all the data points as

its vertices (in other words, all the data points are on the surface). This is obtained by

iteratively eliminating a tetrahedron at a time. For each tetrahedron which has at least

one face on the surface, a value, called decision value, is computed and is used to sort

the tetrahedrons. The tetrahedrons with the largest values will be eliminated first. The

decision value is defined as the maximum distance between the faces of the tetrahedron

and the points that lies on the sphere circumscribing the tetrahedron self. Hence,

tetrahedrons that are large and short will be eliminated first. These tetrahedrons,

generally, hide surface details. This algorithm does not allow the reconstruction of

surfaces with non-zero genus (see Glossary 6.2.3).

An alternative approach [150] is based on the duality between Delaunay triangula-

tion and Voronoi diagram. The minimum spanning tree of the Voronoi diagram (where

each node corresponds to the center of the thetraedron of the Delaunay triangulation

of the data points and the length of each edge corresponds to the distance of the con-

nected centers) is computed and some heuristics are applied in order to prune the tree

(fig. 2.19). The elimination of a node in the spanning tree corresponds to elimination

of the tetrahedron associated in the triangulation (fig. 2.19-d).
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(a) (b) (c) (d)

Figure 2.19: Example of spanning tree computation in 2D space. In panel (a) the tri-

angulation for a set of five points is shown. In panel (b) the graph associated to the

triangulation; the nodes represent the triangles and the edges represent the edges in com-

mon between two triangles. In panel (c) the minimum spanning tree is depicted. In panel

(d) the triangulation resulted from the pruning of the minimum spanning tree.

(a) (b) (c) (d)

Figure 2.20: Example of medial axis approach in 2D space. In panel (a) the point cloud.

In panel (b) the input points partitioned by a regular lattice. In panel (c) external squares

are eliminated and the squares with the maximal distance are selected. In panel (d) the

circles with radius equal to the minimum distance to the points are represented.

In [19], the principle of sculpturing of an initial triangulation obtained from the

α-shape is used. The elimination criterion is different from the previous method, as

it is based on a local measure of smoothness. The α-shape is used to find the general

structure of the surface and the elimination phase is used for the details. As in [84],

the surface can be defined as a signed distance function. This function, as the surface,

is unknown. An approximation is computable and can be used as estimation of the

surface (for example by means the marching cubes algorithm). The signed distance

function should be reasonable just in the regions close to the surface.
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In [23], a different estimation of the distance from the surface with respect to the

signed distance function is introduced. It is called medial axis, and it is defined as the

set of centers of the maximal spheres, which are the spheres internal to the surface that

are not included in other internal spheres (fig. 2.20-d). An approximation of the medial

axis of a data set is computed from the bounding box of the input points partitioned

by a regular lattice (fig. 2.20-b). The voxels that contain the points are considered as

the border of the volume included by the surface. Starting from the external voxels,

those that do not contain points are removed (fig. 2.20-c). A distance equal to zero is

assigned to the voxels that contain points. Then the distance is iteratively propagated

to the adjacent voxels that do not contain points, increasing its value. For the voxels

with maximal distance it is assigned a sphere with a radius equal to the value of the

distance (fig. 2.20-d). To each sphere, a field function is associated. These constitute

the primitives for the definition of a field scalar value in each point of the space, which,

in turn, provides the implicit surface. The global field is defined as the sum of a subset

of these primitives, which are selected by using an iterative optimization procedure.

The methods based on the Delaunay triangulation use the hypothesis that the

points are not affected by error. However, as generally these points are the result of a

measurement, then they are noise affected. For this reason, a noise filtering phase can

be needed for the vertices of the reconstructed surface.

2.2.3 Function approximation

In [119], a mesh deforming procedure is proposed. The initial model is a non-self-

intersecting polyhedron that is either embedded in the object or surrounds the object

in the volume data representation. Then the model is deformed with respect to a set

of constraints. For each vertex, a function that describe the cost of local deformations

is associated; the function considers the noise of the data, the reconstruction features

and the simplicity of the mesh.

A different approach is described in [160], where the adaptation is obtained by the

use of oriented particles. Each particle has some parameters that are modified during
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the adaptation phase. The modeling of the interactions strength (attractive and repul-

sive) among particles determines the surface.

The physic metaphor for surface reconstruction is used, also, in other works. In

[10] a polygonal model is transformed in a physical model and is used in a data-driven

adaptation process. The vertices are seen as points with mass and the edges are seen

as springs. Moreover, each vertex is connected to the closer data point by a spring.

The model can be expressed as a differential linear equation system and the solution

can be found iteratively. After the computation of the equilibrium state, the physical

model is transformed in a geometrical model. The solution represents a tradeoff be-

tween smoothness of the surface and data fitting. The trade off is determined by the

chosen physical parameters.

The physical modeling approach is used, also, in [163]. In this case the aim is to

obtain a method for reconstruction and recognition. The paradigm, called Deformable

Superquadrics, consists of a class of models based on parameterized superquadric el-

lipsoids that are deformed to fit the point cloud data. The ellipsoids are used to

incorporate the global shape and the local features are represented by means of splines.

The deformations are determined by dynamic rules, expressed as a set of Lagrangian

motion equations. The numerical simulation of the motion equations determines the

evolution of the 3D model under the action of forces and constraints. The main advan-

tage of the use of a physical model is due to the intuitiveness with which the degrees

of freedom can be related to the data features.

The iterative adaptive structures have been used also in the field of artificial in-

telligence, as methods for the solution of learning from examples problems. The Self-

Organizing Map (SOM) [97], also known as Kohonen features map, model is composed

by a set of units, {uj} organized in a reticular structure, and characterized by a value,

wj ∈ RD, in feature space. The SOM is configured with the aim of approximating

the distribution of a given set, P ⊂ RD. For each adaptation step, an element of the

dataset pi is extracted and the closer unit in feature space, uk, called winning unit, and

the units connected to it are adapted with the following rules:

wj(i+ 1) = wj(i) + ηhj(k) · (p− wj(i))
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The parameter η is the learning rate, and controls the speed of adaptation, while the

value assumed by hj(k) is inversely proportional to distance of the units j and k, eval-

uated on the reticular structure (topological distance). At the end of the configuration

the units closer in the reticular structure will have similar features. When applied to

three-dimensional data, the reticular structure will represent the polygonal surface and

it will be a smooth approximation of data points.

The SOM presents two kinds of problems. Despite that it can be shown that the

initial configuration of the features vector of each unit can be chosen randomly, in

practice the performances are greatly affected by the initial position of the units. A

good starting configuration allows to save computational time that can be used in order

to obtain a better solution. Hence, a preprocessing phase to obtain an initial model

close to the data can be useful in this sense.

Some units, called dead units, are not used in the adaptation. The final position of

these units will be similar to the initial one. This fact can determine not smooth regions

of the surface. This situation occurs when these units are too far from the elements of

dataset and they never result winning units or when the reticular structure is too dense

and these units are never chosen for the adaptation. To solve the problem of dead units,

in [13] a two steps algorithm is proposed. In the first step (direct adaptation), the input

is presented to the SOM and the respective units are updated, as in the standard one,

while in the second step (inverted adaptation) the units are randomly chosen and they

are updated using the closer input data in feature space. Hence, possible dead units

can be brought near to the data and can participate to the fitting.

In [116] it is presented an approach based on the idea of surface description graph

(SGD). It is defined as an extension of the minimum spanning tree of the dataset. Each

SGD node is used for the extraction of the surface features in a region. The aim of

this procedure is the individuation of the regions with the same morphological features,

which can be connected in order to obtain the surface reconstruction.

2.2.4 Multiresolution representation

Many phenomena of real world have an informative content that is appreciable at differ-

ent space scales. Some features of an object can be associated to the global shape, while

other features can be associated to the details. The large scale features are generally
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related to the kind of object, while the small scale features are related to the details

and can be used to differentiate objects of the same type. The large scale features

have typically a low frequency content (hence a small variability), while the small scale

features have a high frequency content. If an organization of the information based on

the scale would be possible, few resources would be generally sufficient to describe the

behavior at large scale; conversely the configuration of the resources for the small scale

features can be performed with an analysis of the data focused in small regions.

The multiresolution and hierarchical paradigms are based on these concepts. They

are structured to perform a description at different scales. There are mainly two ways

to obtain a multiresolution description:

• coarse to fine (fig. 2.21-a), where the description at low resolution is extracted

first, and then the resolution is increased till the details are reconstructed;

• fine to coarse (fig. 2.21-b), where the description at the maximum of the resolution

is performed first, and then the description at smaller resolution is obtained.

A coarse to fine multiresolution paradigm is presented in [182], where a cloud of

points is recursively approximated using superquadrics. In the initial phase, the su-

perquadric that best approximates the data is estimated (fig. 2.22-b). For each point,

the residual of the fitting (i.e., the distance between the point and its approximation) is

computed (fig. 2.22-c) and a plane is fitted to data accounting for large error (fig. 2.22-

d). The plane is then used for splitting the cloud of points into two disjoint parts. For

each subset, the superquadric that represents the data in the optimal way is computed

(fig. 2.22-e). If the procedure is iterated, for example computing the dividing plane for

the subsets with a higher error, a set of models, with increased complexity that can be

associated at different resolutions, is determined. This method does not determine a

hierarchy, because the reconstruction at a scale does not use the model at the previous

resolution.

The hierarchical paradigms are an interesting family of the multiresolution paradigms.

They have a structure characterized by levels (or layers), where each level is charac-

terized by a scale of reconstruction. The reconstruction for a certain scale is obtained
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(a)

(b)

Figure 2.21: The two approaches to obtain a multiresolution representation of the target

surface f . In the fine to coarse approach, panel (a), the scale of approximation increases

with the layers. The function ai (0 ≤ i ≤ 4) represents the approximation of ai−1, where

a0 = f , obtained at layer i, while di represents the error of the approximation of the layer

i: di = ai−1 − ai. In the coarse to fine approach, panel (b), the scale of approximation

decreases with the layers. ai represents the approximation of ri−1, where r0 = f , obtained

at layer i. ri represent the error of the approximation of the layer i: ri = ri−1 − ai.

using all the levels at scale greater or equal to the scale chosen. Then, the representa-

tion presents a hierarchical structure.

The Hierarchical Radial Basis Functions (HRBF) networks [25] [26], treated in

depth in chapter 4, are an example of a coarse to fine hierarchical paradigm. The

HRBF model is composed of a pool of subnetworks, called layers, and its output is

computed as the sum of the outputs of its layers. The output of each layer is computed

as a linear combination of Gaussian. For each layer, the Gaussians are regularly spaced

on the input domain and they have the same standard deviation.

The configuration of the weights of the linear combination is based on the analy-

sis of the points that lie in the region of the Gaussian. A first layer of Gaussians at

large scale performs an approximation of the global shape of the surface. The detail is

computed as the difference of the dataset and the approximation computed by the first

layer. The scale parameter (the standard deviation of the Gaussians) is then decreased
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(a) (b) (c) (d) (e)

Figure 2.22: Panel (a) shows a 3D point cloud. In panel (b) the first approximation

computed using a superquadric. In panel (c) the grey level represents the residual of the

points. In panel (d) the dividing plane for the region with large residual is shown. In panel

(e) the second approximation on the two subset is depicted.

and a new layer is inserted to approximate the detail. The process can be iterated till

the maximal possible resolution is reached (fig. 2.23).

The Hierarchical Support Vector Regression (HSVR) model works in a very similar

way; it is explained in depth in chapter 5. The idea is, again, based on a model

organized in layers, where each layer performs the reconstruction at a certain scale.

The main differences with respect to the HRBF model are that the basis functions are

placed at the input points position (in general, they are not regularly spaced), and the

weights are found as solutions of an optimization problem.

In a similar way, the Multilevel B-splines, proposed in [102], performs the recon-

struction using the superimposition of different levels of B-splines. The coefficients of

the first level are computed by means of a least squares based optimization, consid-

ering only the points that lie in the influence region of the base. The computation

starts from a reticular structure of control points. The detail is computed as difference

between the original data and the approximation performed by the first layer. A new

layer of B-spline, with a denser reticular structure of control points is then used for

the reconstruction of the detail. A similar approach, called Hierarchical Spline, [66]

works only with regularly spaced data. For this case, a fine to coarse algorithm has

been proposed [67], where the multiresolution representation is derived from a initial

B-spline representation at the maximal resolution.
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Figure 2.23: The outputs of four layers of a HRBF model are depicted in the left. The

sum of the single layers output gives the multiscale approximation, in the right.

50



2.2 Reconstruction

As the previous method, the Multiresolution Analysis based on the wavelet trans-

formation [110][38] works with regularly spaced data. An MRA is characterized by

a pair of functions, called scaling function and wavelet, that generate complementary

spaces. The basis for these spaces are formed respectively by shifted copies of the

scaling function and the wavelet. The scaling function is usually smooth and features

the low frequency components, while the wavelet varies rapidly and features the high

frequency components.

A function can be decomposed as the sum of an approximation and a detail function,

which belong respectively to the space formed by the scaling function (approximation

space) and the wavelet (detail space). Hence a function can be represented as a linear

combination of shifted copies of the scaling function and the wavelet. The coefficients

for the approximation and for the detail are determined by the convolution between the

data samples and a suitable pair of digital filters (low-pass filter for the approximation

and high-pass filter for the detail). The properties of an MRA allow to decompose the

scaling function as a linear combination of scaled copies of the scaling function itself

and scaled copies of the wavelet. Hence the function decomposition can be iterated,

which allows to obtain the function representation with a fine to coarse approach: the

process is iterated on the approximation coefficients in order to obtain the coefficients

for the coarser scales. At the end, the multiresolution reconstruction can be performed

by adding the coarsest approximation and the details up to a given scale.

In [131], a MRA based approach for not regularly spaced data is presented. The

data considered is a three-dimensional cloud of points. The approach is based on the

hypothesis that the surface has the topology and the genus of a sphere. The initial

polygonal mesh is computed by adapting a sphere to the set of 3D points. To this

mesh, the wavelet transformation defined on a spherical domain [151] is applied.

In [65] another fine to coarse technique based on the wavelet for not regularly

spaced data is presented (but limited to one-dimensional data). The scaling function

and wavelet coefficients are obtained by means of the minimization of the reconstruction

error, through the resolution of a linear system.
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2.2.5 Integration

When an object is not observable from a single sensor or a very fine detail is needed with

respect to the object dimension, a data integration step is necessary. In this case the

acquisition has to be performed from different points of view. The information captured

from different sensors has to be integrated in order to calculate a single representation.

This operation can be divided in two steps:

Registration the different information are reframed with respect to the same reference

system;

Fusion a single model is generated combining the data of different views in the over-

lapping regions.

Registration

The registration is an operation used in many fields. Whenever the data, coming

from different sources of information, have to be transformed in a single reference

system, a registration procedure has to be performed. In particular, in the case of

three-dimensional reconstruction, the registration can be needed for different reasons:

Sessions the acquisition is performed at different times, for example if the number of

sensors is not enough to acquire the object in a single acquisition;

Sensors different sensors have to be used to acquire different features of the same

object;

Subject if a comparison of different object’s models has to be performed.

The registration procedure can be simplified if there are reference points in the

different acquisition or if there is information about the calibration of the acquisition

device. A typical case is the registration of data collected at different times. In this

case, the point of view changes in time (or the point of view is the same, but the object

is moving). The registration of different views corresponds, then, to the inversion of

the function that describes the motion of the object with respect to the sensor (e.g., if

the object is placed on a turn table). If there are not common reference points in the

different views, some features have to be found in order to compute the transformations
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Figure 2.24: Example of a bad registration due to the presence of two subsets poorly

registered among each other.

that relate the different acquisitions. As, generally, an overlapping region for each pair

of different views is not available, some views can be accurately registered among each

other, but poorly registered with respect to other views (fig. 2.24). The formation of

cliques of views can introduce registration error which results in abrupt variations in

the fused dataset. Hence, the registration has to solve mainly two kinds of problems:

• a good estimation of the object features;

• a uniform diffusion of the registration error.

The algorithm Iterative Closest Point(ICP)[20] is one of the most used to realize

the registration. The effectiveness of ICP has been proved for every representation

modality [20]. The algorithm is based on the definition of a distance function among

points of the registration sets. For a set of points, a rototranslation is operated. This

rototranslation is such that the distance among the set of points and the closest corre-

spondence points of a reference surface is minimized. The registration of the different

views is obtained iterating this procedure. Since the ICP suffers of local minimum

problem, it needs a good initialization and wide overlapping regions among the data

that have to be registered.

In [165], a modified version of ICP is proposed. The views are represented as range

images and a polygonal surface is computed for each of them. The vertices are weighted
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with a value that represents the reliability of the measure. The ICP is applied just to

the vertex with a correspondence in the other mesh and with a distance smaller than

a given threshold. The registration is performed, initially, using a low resolution repre-

sentation of the surface (it is obtained by means of downsampling the data) in order to

increase the speed of convergence of the alignment. The registration of multiple views

is computed choosing a reference view and aligning the other views to this one.

In [179] the registration is performed in two steps from the surfaces corresponding

to the different views. In the first phase, for each view, the points with high value

of gradient are selected. The hypothesis is that the polygonal curves that connect

these points have robust features. In the second phase the registration law is computed

aligning these curves.

Fusion

The calibration and reconstruction errors can cause the surfaces belonging to differ-

ent views, after the registration, not to overlap perfectly. The simple unification of

the registered data or the surface would produce a poor representation of the object

surface, with artifacts in the overlapping regions. The aim of the fusion procedure is

to improve the representation of the surface in the overlapping regions (fig. 2.25).

Generally, each acquisition device has an error distribution which depends on the

features of the acquired object. For example, the uncertainty on the data in the regions

close to a border is, typically, greater than the uncertainty in the inside regions, or it

may depend on the relative orientation of the surface and the sensor. This information,

acquisition device dependent, can be exploited in the fusion procedure to weight the

reliability of the data.

In [50], where each view is a range image, each pixel of the view is weighted with

its distance from the closest border pixel. The depth of each pixel, in the resulted

merged image, is computed using a weighted average. The border pixels are adapted

in a smooth way.
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Figure 2.25: The first two models, on the left and center, are merged, on the right.

The procedure in [165] is realized in two steps. Initially, a mesh with the same

topology as the object is computed. Then, the geometrical accuracy is recovered with

an adaptation of the mesh itself to the registered data. In the first step, the parts of the

mesh in the overlapping regions are removed and new edges that connect the vertices in

these regions are computed. As the procedure can create small triangles in the border

regions, a further step performs their elimination. Although the resulting mesh would

be acceptable from the topological point of view, its geometry can present artifacts.

Hence, for each vertex the set of vertices that lie in its spherical neighborhood in the

original meshes is considered for estimating the normal at the vertex as the average of

the normals of the selected vertices. Then, the vertex is moved in the average of the

intersections between the computed normal and the original meshes.

Among the other techniques for the fusion problem, an interesting approach is

presented in [126]. The integration of the information of volumetric images is here

performed using the wavelet transform: the original images are decomposed in their

components (high and low frequency), integrated in this domain and then composed

back.

2.3 Optimization

A 3D model can be used in different applications. Depending on the features of the

final application, a post-processing of the model can be required. For example, virtual

reality applications usually requires models composed by a number of polygons as small

as possible, while if the model have to be used in a movie it can be necessary to modify
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the model for a better inclusion in a scene.

The transformation can be simplified by the use of particular paradigms for the

representation of the model. The most common processing procedures applied to a

model are:

• conversion

• compression

• watermarking

• animation

• morphing

The conversion of a model is applied to obtain a representation of the information

in a format suitable for the elaboration in other applications. A common conversion

operation is the triangulation of the model’s surface [79]. An interesting aspect of the

conversion is the re-parameterization. In [101] it is presented a multiresolution method

for the parameterization of a triangular mesh. The original mesh is simplified (in O(N)

levels where N is the number of vertices) till to obtain a mesh with few polygons that is

used as base for the parameterization. The resulting description allows a reformulation

of the mesh, in which the distribution of the triangles can be made more regular or the

connectivity can be forced constant and a priori chosen.

The objective of 3D compression is allowing the description of larger and more

complex models using a given budget of resources. This can be useful, for example, for

models used in network applications. The compression can be realized using techniques

utilized for the one-dimensional and two-dimensional cases as: wavelets, entropy coding,

and predictive coding. Other approaches take advantage of the properties of 3D models,

as: Edgebreaker [143], Subdivision Surfaces [121], and triangle strips [55]. Current

techniques for 3D compression can be classified into three categories:

• Mesh-based approaches, that realize the compression considering the topological

relation among the triangles of the polygon mesh representing an object’s surface

(e.g., Edgebreaker);

56



2.3 Optimization

• Progressive and hierarchical approaches, that transmit a base mesh and a series of

refinements (e.g., Compressed Progressive Meshes, subdivision-based approaches,

and Compressed Normal Meshes);

• Image-based approaches, that encode not an object but a set of its pictures (e.g.,

QuicktimeVR and IPIX).

In general, the compression techniques try to minimize the loss of perceptible informa-

tion with respect to a constraint that determines the quantity of resources usable (i.e.,

the maximum number of triangles).

The watermarking [138] is a procedure that is correlated to the compression. In

general, it is a technique used to modify the representation of the object inserting

information that is not perceptible. Only a particular procedure allows the extraction

of this information, allowing the recognition of the model. Each model can be then

marked with a code and the information can be used to recognize it, for example for

author rights reasons:

The most critical feature of a watermarking procedure is its robustness. It has to

resist to the common manipulative operations, such as scale variation, resampling and

segmentation.

The animation and morphing are techniques to manipulate graphical objects com-

monly used in the field of computer graphics. The animation of a 3D model is obtained

associating a motion law (as a function of time) to the surface points. However, in prac-

tice, it is not possible specifying the motion law for each point of a model. Instead, a

very common technique uses a skeleton structure for the motion mapping. This struc-

ture is, generally, composed by hierarchically connected segments that have to respect

geometrical constraints. Each point of the surface is correlated to one (or more than

one) segment and the animation is obtained just as an effect of the skeleton animation.

A hierarchical representation of the surface can improve the animation of the model:

the computation of the skeleton can be obtained using a low resolution model [101] [100].

The morphing is the visual effect that is used to transform the graphical represen-

tation of an object in the representation of another object. The morphing is realized by
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the computation of a smooth time function that relates the parameters of two different

models. In order to obtain a better visual effect, only the coefficients that code for the

same features have to be related. For example, for the face morphing the nose of the

original face should become the nose of the second face. The presence of a hierarchi-

cal structure for the representation can simplify the realization of the morphing. In

fact, as the most representative features of the objects should be present at large scale,

the transformation can be performed using mainly the coefficients of the layers at low

resolution.

2.4 Summary

The digitization of a real object is a complex operation, used in many fields with dif-

ferent aims. The real cases are characterized by a large variability of the conditions in

which the digitization has to be performed. Although the creation of a 3D model can re-

sult from a very variegated sequence of activities, it can be described, at high level, as a

well defined sequence of steps. These steps do not depend on the particular application.

The acquisition is the first phase and it is performed with the aim of collecting

information about the features of the acquired object. The reconstruction phase puts

together the data collected and computes a single object description. The optimization

phase transforms the model reconstructed in a format more suited to the application

that will make use of it.

The core of this thesis is related to the reconstruction phase. In particular, two

multiresolution paradigms HRBF and HSVR are presented and analyzed in depth. In

order to better explain the features of these paradigms, in the next chapter the class

of problems that they are able to solve is presented, in a more general context with

respect to the surface reconstruction.
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Regression

The prediction of values of variables from observations is known in statistical literature

as regression. This problem has been studied in several disciplines belonging to the

computer science area and applied mathematics in general. In particular, the predic-

tion of real valued variables is an important topic for machine learning. When the value

to be predicted is categorical or discrete, the problem is called classification problem.

Although in machine learning most of the research works have been concentrated on

classification, in the last decade the focus has moved toward regression, as a large num-

ber of real-life problems can be modeled as regression problems. Functional prediction,

real value prediction, function approximation and continuous class learning are exam-

ples of the several names used to identify the regression problem. In this chapter, the

name regression is used, because it is the historical one.

More formally, the regression problem can be defined as follow:

Given a set of training samples {(xi, yi) | i = 1, . . . , n}, where xi ∈ X ⊂ RD

and yi ∈ Y ⊂ R, the goal is to estimate an unknown function f , called

regression function, such that y = f(x)+e, where e is a (zero mean) random

variable which models the noise on the dataset.

The elements of the vector x will be indicated as input variables (or attributes) and

y will be indicated as output (or target) variables. The regression function describes

the dependency between x and y. The objective of a regression problem is to estimate

this dependency from a set of samples and eventually from a priori knowledge about

the regression function f . The solution of a regression problem will be indicated with
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f̂ . As f̂ can be evaluated also for values of x that are not in the training set, the

regression function represents a generalization of the training set. The generalization

capability of a solution can be evaluated challenging f̂ over a set of samples (usually

called test set) never used in the solution of the regression problem.

It should be noted that the regression problem is more general than the problem

in which the training samples are assumed to be noise free (for example, interpolation

problems). Typically, the techniques developed for noise-affected data can perform good

solution also in the case where the absence of noise is assumed. Vice versa the techniques

developed for the noise free case are not able to filter the noise and the solution tends

to reproduce the noise of the training samples. In this case, typically, the solution does

not perform a good generalization. When the solution is characterized by a low error

on the training samples and a high error on the others data, it is called overfitting

solution. The techniques for regression can be considered more robust because they are

more suitable for noise filtering and to avoid the overfitting problem.

The importance of the regression techniques is highlighted in all the applications in

which a domain expert in not available. Thanks to these techniques, the problem can

be addressed just using the data. Furthermore, it allows the extraction of knowledge

automatically. In fact, as the solution allows to predict the output corresponding to an

input value never used in the configuration, it can be used to discover new expertise

about a considered domain.

Many techniques have been developed for the solution of regressions problem. In

the following, a review of some popular regression techniques is presented.

3.1 Parametric and non-parametric approaches

One of the most used approaches in regression is to limit the search for the solution

to a subset of functions. In particular, the limitation can be realized searching the

solution among a family of parametric functions. Although a too tight choice for the

parametric family can have the collateral effect of excluding the function that actually

generates the dataset (which would be the “true” solution to the regression problem),

this approach offers the advantage of a simpler solution (i.e., it is less computationally

expensive than other methods). Simple linear regression in statistical analysis is an

example of parametric approach. In this approach, the variable y is supposed to change
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at a constant rate with respect to the variable x. Hence, the solution of the regression

problem will be a hyperplane that satisfies the following linear system:

yi = β0 + β1xi,1 + β2xi,2 + · · ·+ βdxi,D + εi, i = 1, . . . , n (3.1)

The first subscript, i, denotes the observations or instances, while the second denotes

the number of input variables. There are D + 1 parameters, βj , j = 0, · · · , D to be

estimated. The term εi represents the errors of the solution for the sample i, namely

εi = yi − ŷi, where ŷi = f̂(xi), the value of the solution (the hyperplane) for xi. .

In the parametric model the structure of the function is given, and the procedure

estimation regards just the parameters, {βj}, according to a fitting criterion. Generally,

the criterion used is based on the minimization of an error (or loss) function on the

training points. A typical approach is the minimization of the sum of squares difference

between the predicted and the actual value of the examples (least squares criterion).

When the distribution from which the training data have been sampled is known, the

parametric family of the solution can be correctly chosen. In this case, the parametric

methods perform an accurate estimation. Hence these methods can be applied in the

case where there is a priori knowledge about the application domain. When, on the

contrary, the a priori knowledge is poor or not available, a non-parametric approach is

generally preferable.

The non-parametric approach aims to find a general structure able to model a large

set of functions, requiring only very weak assumptions on the distribution underlying

the data. In this case the solution is not found as optimization on a set of parameters

but as a function of the training points. These methods are generally based on the

use of locally weighted average of the training data to solve the regression problem.

An example of non-parametric approach is the locally weighted regression that will be

presented in the section (3.3).

The choice of the possible functions set in which the solution has to be searched is

known as model selection problem. It is a critical task due to the bias-variance dilemma.

It can be shown that the expectation value of the error committed by a model, M , for

the solution of a regression problem can be expressed as the sum of three components:

Var(M) + Bias(M) + σε.
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Figure 3.1: The dot line line represents the target function, the solid line is a solution

computed by a linear model.

The first term, Var(M), describes the robustness of a model with respect to the

training set. If different training sets, sampled by the same distribution, determine

very different solutions, the model M is characterized by a large variance. The second

term, Bias(M), describes how the best approximation achievable by the model is a good

estimation of the regression function f . The third term, σε describes the measurement

error on the data and it represents the limit of the accuracy of the solution.

For example, if the regression function is a quadratic polynomial and the regression

problem is solved using a linear model (fig. 3.1), the variance can be small (the solution

can be robust with respect different training sets), but the bias is large (the best, in some

sense, solution for the model is not a good estimation of the regression function). On

the contrary if the model is able to perform non linear solutions (fig. 3.2), the variance

can be large (as the solution tends to overfit the data, it will change for different training

sets), but the bias is small (as the model is able to compute a quadratic polynomial,

then a good estimation of the regression function f is possible). In general a good

model realizes a trade-off between bias and variance.

The solution can be computed in parametric and non-parametric approaches mainly

62



3.2 Instance-based regression

Figure 3.2: The dot line represents the target function, the solid line is a solution com-

puted by a model with small bias and large variance.

using two methods: local methods, that base the search of the solution by using local

averaging on the data, and global methods, in which the solution is found solving a

global optimization problem.

3.2 Instance-based regression

Instance-based approach is a family of methods that instead of configuring a model

for explicit generalization uses a strategy for the prediction based only on the direct

comparison of new instance with those contained in the training set. In other words,

the parameters of the model are exactly the training set instances, and the processing

of training data is deferred to the time when a prediction has to be performed. For this

feature, such methods are called also lazy learning algorithms. This class of algorithms

is derived from the nearest neighbor classifier [41]. They were initially devoted to the

classification [45][8] and then they have been extended to the regression [93] case.

In the instance-based techniques for regression, the examples are composed by a

set of input variables, which values are either categorical or numerical, and the output
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variables are continuous. The predicted label value for an instance is computed as

a function of the training set elements. For example, the nearest neighbor method

considers the output variables of the most similar training samples (called neighbors)

of the new instance, and it compute the values of the output variable of the new

instance as a function (typically the average) of the output variables in this subset.

The similarity can be computed considering the Euclidean distance between instances.

There are many variants of instance-based algorithms in literature. The simplest

one is called proximity algorithm. The similarity is computed as the complement of

the Euclidean distance, S(xi, xj) = 1 − ||xi − xj ||1, where all the input variables have

been normalized in the continuous range [0, 1]. The value of the output variable for a

sample x is computed as the weighted sum of the values of the output variables of the

most similar training set elements:

f̂(x) =
∑
xj∈Ti

S(x, xj)∑
xj∈Ti S(x, xj)

yj (3.2)

where Ti is the subset of the training set composed of the training set elements most

similar to x.

This method performs good approximations only for a sufficiently large training set

and for locally linear regression functions. The method is based on the assumption that

all the input variables have the same importance with respect to the output variable.

If this assumption is not verified, the method has to be modified applying a weight

for each input variable. Since all the training examples have to be stored, for large

dataset the amount of memory required can be huge. In order to reduce the quantity

of memory needed, averaging techniques have been proposed [8].

The complexity of this class of methods depends on the number of nearest neigh-

bours. The number of nearest neighbours for a specific problem can be found using

different heuristic techniques as cross-validation (see Glossary 6.2.3) [96].

3.3 Locally weighted regression

Locally weighted methods [12] belong, as the instance-based ones, to the family of

lazy learning algorithms. Like the instance-based methods, the prediction is operated

using a subset of the instances in the training set. Hence, the training set instances,

which are represented as points in d-dimensional Euclidean space, strongly influence
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the prediction on a local basis. The main difference between the instance-based and

the locally weighted methods is that, while the formers compute the prediction by

averaging the closer training set elements, the locally weighted methods perform the

prediction using a locally estimated model. The local models are generally linear or

non-linear parametric functions [12]. These methods are also based on the weighting

of the data for giving more importance to relevant examples and less importance to

irrelevant examples. The same effect can also be obtained replicating the important

instances. The relevance is computed, analogously to the similarity of instance-based

methods, measuring the distance between the new instance and each training point.

The functions used to weight the training points contribution are called kernel ; one of

the most used is the Gaussian function. For example the prediction for the instance xt

can be obtained using the Nadaraya-Watson estimator as:

f̂(x) =
∑
i

yiKσ(xi, x)

Kσ(xi, x)
=
∑
i

yie
−||xi−x||

2

σ2

e
−||xi−x||2

σ2

(3.3)

where the sums are limited to an appropriate neighborhood of x, and σ is a parameter

which controls the width of the influence region of the kernel.

The actual form of the solution, f̂ , has to be chosen in order to minimize a given

training error function, L, called loss function:

L =

n∑
i=1

E(f̂(xi), yi) (3.4)

where E is a general function that measures (or weights) the difference between f̂(xi)

and yi, i.e., the error made in using f̂(xi) in place of yi. Generally, these functions are of

two kinds: squared error, E(f̂(xi), yi) = (f̂(xi)−yi)2, and absolute error, E(f̂(xi), yi) =

|f̂(xi)− yi|.

It can be shown that weighting the loss function (such that nearby instances are

more considered than those that are distant), is equivalent to directly applying a weight-

ing function on the data. For instance, considering a constant local model as the solu-

tion, ŷ, in order to require that it fits the nearby points well, the loss function can be

chosen as:

L(x) =
n∑
i=1

[(ŷ − yi)2K(xi, x)] (3.5)
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It can be shown that the best estimate ŷ(xt) that will minimize the loss function L(xt)

is ŷ = f̂(xt), where f̂(xt) is computed as in (3.3).

Different weighting functions can be applied to this approach [12] and this choice

can produce very different performances. Locally weighted methods have shown higher

flexibility and interesting properties, such as smoothness and statistical analyzability,

than the instance-based methods. However, the choice of an appropriate similarity

function is critical for the performance of the model. This can be a problem when it

is difficult to formalize when two points can be considered close. As mentioned before,

the computational complexity of the training phase is reduced to the minimum (it is

realized just storing the dataset), but the prediction phase can be computationally

expensive. In order to limit the cost of the prediction for large data sets, a k-d tree

data structure [12] can be used for speeding up this phase. A k-d tree is a binary data

structure that recursively splits a d-dimensional space into smaller subregions in order

to reduce the search time of the relevance points for an instance.

3.4 Rule induction regression

Rule induction regression methods have been developed for studying regression ap-

proaches which provide interpretable solutions. These methods have the aim of ex-

tracting rules from a given training set. A common format for interpretable solutions

is the Disjunctive Normal Form (DNF) model [174]. Rule induction models have been

initially presented for classification problem [174] and then extended for regression [175].

These approaches have features similar to those of decision tree [28], as both the

models induce a recursive subdivision of the input space. The rule induction algorithms,

generally, provide models with better explanatory capabilities since the rules that they

found are not mutually exclusive. Furthermore, the rules are more compact and predic-

tive than trees [175]. Regression trees show better performances when there are many

higher order dependencies among the input variables [68]. They are extremely suited

to find the relevant input variables in high dimensional cases when only a small subset

of them is meaningful. A disadvantage of regression tree models is that partitioning of

the input space can cause discontinuity in prediction at the regions boundaries.
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The solution provided by a regression tree is generally composed by a pool of if-then

rules, such as, for example:

if x ∈ Rk then f̂(x) = ak = median{yki } (3.6)

where Rk is a region of the input space, ck is a constants, and {yki } is the set of training

points that lie in the region Rk. In this example, the output variable value for the

sample x is computed as the median of the output variables of the training points that

lie in the region Rk. This is a common choice, as the median is the minimizer of mean

absolute distance.

The general procedure for obtaining the regression tree is described in the following.

The tree is initialized by associating the whole training set to the root of the tree.

Then a recursive splitting procedure is applied at each node, until the cardinality of

the dataset associated to each node is below a given threshold. For this purpose, for

each node, the single best split (e.g., the one that minimizes the mean absolute distance

of the training examples of the partitioned subset) is applied, generating two children

for each node. As the goal is to find the tree that best generalizes new cases, a second

stage of pruning generally follows for eliminating the nodes that cause overfitting.

In regression tree, a single partition Rk represents a rule, and the set of all disjoint

partitions is called rule-set. In rule induction approach, instead, the regions for rules

need not be disjoint: a single sample can satisfy several rules. Hence, a strategy to

choose the rule to be applied from those that are satisfied is needed. In [174], the

rules are ordered according to a given criterion (e.g., the creation order). Such ordered

rule-set is called decision list. Then, the first rule that is satisfied is selected:

if h < k and x ∈ Rh and x ∈ Rk then f̂(x) = ch (3.7)

The rule-based regression model can be built, as in the regression tree, adding a

new element at a time (i.e., the one that minimizes the distance). Each rule is extended

until the number of training examples which it covers drops below a given threshold.

The covered cases are then removed and rule induction process can continue on the

remaining cases. This procedure is very similar to the classification case [118] [40].

In [175] a rule-induction regression algorithm based on the classification algorithm

Swap-1 [174] is presented. Swap-1 starts with a randomly chosen set of input variables

to create a candidate rule and swaps all the conjunctive components with all the possible
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components. This swap includes the deletion of some components from the candidate

rule. The search finishes when there are no swaps that improve the candidate rule

anymore, where the evaluation of each candidate rule is performed on their ability

of predicting the values of the output variables of the examples that satisfy the rule

condition. Each time that a new rule is added to the model, all the examples covered

by that rule are removed. This procedure is iterated until the training set becomes

empty. A pruning step is performed after the creation of the rule-set: if the deletion of

a rule does not decrease the accuracy of the model the rule is deleted.

Since Swap-1 is designed for categorical input variables, its regression version implies

a preprocessing to map the numeric input variables in categorical ones. This is realized

using a variant of K-means algorithm [91]:

• the output value of the examples yi are sorted;

• an approximately equal number of contiguous values yi are assigned to each class;

• an examples is moved to an adjacent class if it reduces the distance between the

example and its class mean.

The rule induction regression algorithm is realized computing Swap-1 on the mapped

data and then pruning and optimizing the rule-set. After the pruning, the optimization

is performed by searching the best replacement for each rule such that the prediction

error is reduced [175].

The predicted value can be computed as the median or mean value of the class

elements, but it is also possible to apply a parametric or a non-parametric model for

each class.

3.5 Projection pursuit regression

The local averaging methods suffer of poor accuracy when the input space has a large

numbers of attributes (curse of dimensionality). In fact, when a training set is dis-

tributed in a space, the density of the set decreases exponentially with the increasing

of number of dimensions [69] [77]. In practice, this means that in higher dimension the

number of training points is never enough in order to compute local averaging.

The Projection Pursuit Regression approach [95] is more suited for these cases. The

idea is to compute a global regression by using an iterative procedure that performs
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successive refinements. The procedure computes at each step a smooth approximation

of the difference between the data and what has been already modelled in the pre-

vious steps. The model is represented by the sum of the smooth approximation Sm

determined at each iteration:

f̂(x) =
M∑
m=1

Sm(βTm · x) (3.8)

where βm is the parameter vector (projection), x is an instance, Sm is a smooth function,

and M is the total number of sub-models computed (number of iterations).

The critical part of the algorithm is the search of the βm, the vector of parameters,

at each iteration and the a priori choice of the smooth functions as well. The βm vector

is found in accordance with a fitting criterion such that the minimization of a loss

function is achieved. In particular βm has to maximize the following:

βm = max
β

R(β) = max
β

1−
∑n

i=1(ri − Sm(βT · xi))2∑
i=1 r

2
i

(3.9)

where ri represents the error of i-th training point at m-th iteration, r0 = yi. The

iteration steps are performed until R(β) is greater than a given threshold. The smooth

function S can be chosen in many different ways [95][142][141]. In [142] the perfor-

mances of the algorithm are compared for three different smooth functions: smoothing

spline, super-smoother, and polynomial. Also smooth functions based on local averag-

ing of the residuals [69] can be used.

3.6 Multivariate Adaptive Regression Splines

As mentioned in Section 3.4, the tree-based recursive partitioning regression suffers of

the problem of lack of continuity in the partition boundaries, which affects the accuracy.

Furthermore the tree methods are not able to provide good approximation for some

classes of target functions (e.g., linear or additive functions). Multivariate Adaptive

Regression Splines (MARS) addresses these two problems of the recursive partitioning

regression to increase accuracy [68]. The solution computed has the following form:

f̂(x) = c0 +

M∑
m=1

cmBm(x) (3.10)
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where ci is a constant and Bm is a basis function. Hence, the output of the model is

computed as a linear combination of basis functions Bm(x). Each basis function Bm(x)

takes one of the following three forms:

1. a constant 1

2. a hinge function, namely a function of the form max (0, x − τ) = [x − τ ]+ or

max (0, τ − x) = [τ − x]+, where τ is a constant, called knot, whose value is

automatically determined by MARS.

3. a product of two or more hinge functions.

The MARS set of basis functions is:

B := {[xj − τ ji ]+, [τ
j
i − x

j ]+| τ ji = xji , j ∈ {1, 2, · · · , D}, i ∈ {1, 2, · · · , n}} (3.11)

where xji denotes the value of j-th input variable for the i-th sample. If all the training

points are distinct, there are 2Dn basis functions.

Figure 3.3: Two examples of hinge functions.

Hinge functions are a key part of MARS models. In fig. 3.3 are reported two

examples of hinge functions. A pair of hinge functions as that in fig. 3.3 is called

reflected pair. As the hinge function is zero for a part of its range, it can be used to

partition the data into disjoint regions, each of which can be processed independently.

70



3.6 Multivariate Adaptive Regression Splines

Figure 3.4: Piecewise linear function. It is defined as f(x) = 6[x− 2]+ − 3[2− x]+

In particular the use of hinge function allows building piecewise linear and non-linear

functions (fig. 3.4). MARS operates by constructing reflected pairs (as those in fig. 3.3)

knots at each training points for each input variables.

The MARS algorithm presented in [68] is composed by two procedures:

Forward stepwise The basis functions are searched starting by the constant basis

function, the only present initially. At each step, the split that minimize a given

approximation criterion among all the possible splits on each basis function is

chosen. This procedure stops when the maximum value, chosen by the user,

Mmax is reached. Since the model found generally overfits the data, a backward

pruning procedure is then applied.

Backward stepwise At each step, the basis function whose elimination causes the

smallest increase in the residual error is deleted. This process produces a sequence

of models, {f̂α}, which have an increasing residual error, where α expresses the

complexity of the estimation. In order to choose the best estimated model a

cross-validation technique can be applied.

In [162] it is proposed a variation of the MARS algorithm in which the backward

procedure is not used. In substitution, a penalized residual sum of squares for the
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forward procedure is introduced, and the problem is reformulated as a Tikhonov regu-

larization problem.

3.7 Artificial Neural Networks

The Artificial Neural Networks (ANN) is a family of models belonging to the class of

parametric approaches [22] [52] [81] [136], which have been inspired by the computa-

tional model of human brain neural network. Among the models of the family, the most

common is the feedforward multilayer perceptron (MLP). This model is composed of

a sequence of layers of computational units, called neurons, which perform a simple

processing of the inputs that they receive. Each neuron is characterized by a function,

called activation function, which is used for the computation of its output. Among

others, the linear and logistic (reported in the following) functions are commonly used

for this scope:

B(z) =
1

1 + exp(−z)
(3.12)

Figure 3.5: A scheme of single hidden layer feedforward neural network model

In fig. 3.5, a scheme of the MLP model is depicted. The MLP processes the data

layerwise: each layer receives the input from the output of the previous layer and pro-

vides the input to the next layer. Only the neurons of consecutive layers are connected.
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Each connection is characterized by a scalar parameter called weight, which is a mul-

tiplicative coefficient that is applied to the value transmitted by the connection itself.

The input of each unit is the sum of all the contributions carried by the incoming

connections; hence, it is a linear combination of the output of the units of the previous

layer. The first and the last layers are generally composed by linear neurons, while

the intermediate layers, called hidden layers, are composed by non-linear (commonly

logistic) neurons. The scheme in fig. 3.5 represents a MLP with a single hidden layer

and a single output unit.

The MLP models can be used to solve efficiently a large class of regression and

classification problems. It has been proved that MLP with at least one hidden layer is

a universal approximator [86]. However the addition of extra hidden layers may allow

to perform a more efficient approximation with fewer units [22].

The output of the network of fig. 3.5 is computed as:

f̂(x) =
M∑
m=1

βmB(γTm · x) (3.13)

where M is the number of hidden units, βm is the weight (a scalar) of the connec-

tion between the output unit and m-th hidden unit, γm is the weights vector of the

connections between the input units and the m-th hidden unit.

In general the neural networks can have more complex schemes than that in fig. 3.5.

For example, in recurrent neural networks the information flow is allowed to loop back

to previous layers.

The number of the hidden units of a network determines the trade-off between bias

and variance of the model (3.1). More hidden units are used in a network, better the

training data are fit. However if a too large number of units is used, the model can

show overfitting on the training data, determining poor predictive performance.

The parameters of a neural network are, generally, found minimizing a loss function

(as in 3.3) that measures the difference between the network output and the values of

the output variables. The loss function usually used is the squared one.

Since MLP output function is not linear (and the corresponding loss function is not

quadratic) with respect to the model parameters, the optimal value of the parameters

cannot be found directly (e.g., as solution of a linear system). Hence an iterative

optimization is usually performed, based on the computation of the gradient of the
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loss function. The gradient can be computed in several ways. The most popular

algorithm for the computation of the gradient, due to its computational efficiency, is

the backpropagation algorithm [146]. It exploits the property of the derivatives of a

composite function for decomposing the gradient in simpler expressions. Starting from

the output layer, the gradient of the loss function can be decomposed in its components

relative to each unit and the recursive application of the above mentioned property

allows to propagate the computation of the gradient with respect to all the parameters

of the network toward the input layer.

The gradient of the loss function is then used in a minimization algorithm. There

are several iterative methods to perform the minimization of the loss function. The

simple gradient descent is one of them. The updating of the parameters is computed as

a step of length η in opposite direction with respect the gradient of the loss function.

The choice of the value of η, called learning rate, is generally, difficult. A too small value

of η can determine many steps to reach a minimum, vice versa a too large value can

determine oscillating behavior in which a minimum is never reached. To speed up the

convergence, the η parameter varies during the learning phase and many heuristics have

been proposed to choose the shape of this variation. The simple gradient descend is,

generally, an inefficient method and the second order gradient approaches are preferred.

The second order methods are based on the fact that in a minimum of a function,

its derivative is null. As a consequence, the Taylor expansion of the function computed

with respect to the minimum will not have first order term. Hence, for points close to

the minimum, the function can be effectively approximated by using only the second

order derivative (and the value of the function in the minimum). It results that the

vector that separate from the minimum can be computed directly as the ratio between

the derivative of the function in the considered point and the its second order derivative

in the minimum.

As the value of the second derivative in the minimum is not known it has to be

approximated. In general, this term is the Hessian matrix of the loss function and there

are several iterative techniques based on the use of its approximation as the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm [31] and the Levenberg-Marquardt (LM)

algorithm [103] [111]. The BFGS requires that the starting parameter vector is close to

a minimum to be effective. Other techniques (e.g., based on the simple gradient descent)

can be applied before it in order to reach such starting point. The LM algorithm does
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not suffer of this problem, but it requires more memory than BFGS as it has to store

some matrices. Hence, for large networks, it becomes inefficient.

3.8 Wavelet regression

An interesting approach to perform function approximation is wavelet regression [46]

[47] [49]. This approach derives from the unification and development of many ideas

from the field of filtering theory, physics and applied mathematics. The wavelet trans-

formation is a representation of a function f(x) ∈ L2(R) using a linear combination

of basis function. The basis functions, called wavelet, are generated by scaling and

translating the same function called mother wavelet, ψ(x) ∈ L2(R). Hence, the actual

shape of each wavelet ψa,b(x) depends on two real parameters, a and b that represent

the scale and the position of the wavelet, respectively.

The computation of the solution is based on the Multi-Resolution Analysis (MRA).

MRA defines for a function f(x) a succession of approximating function {Pj [f(x)]}j∈Z
that converges to the function self. The function Pj [f(x)] is a linear combination of

functions obtained by translating a single function called scaling function, Pj [f(x)] =∑
k λj,kφj,k(x). The shape of the scaling function depends on a scale parameter j that

determines the approximation resolution. It has been proved [110] that there exists a

sequence {hk} such that:

φ(x) = 2
∑
k

hkφ(2x− k) (3.14)

This relation is called refinement equation.

The difference between an approximation and the next one is called detail, and can

be expressed as: Pj+1[f(x)]−Pj [f(x)] = Qj [f(x)]. The function f(x) can be expressed

as:

f(x) =
∑
j

Qj [f(x)] =
∑
j,k

γj,kψj,k(x) (3.15)

Then the function f(x) can be obtained also as linear combination of detail functions.

As for the scaling function, it has been proved [110] that there exists a sequence {gk}
such that:

ψ(x) = 2
∑
k

gkψ(2x− k) (3.16)
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If an orthogonal basis is chosen, the coefficients {λj,k} can be obtained by the

orthogonal projections of the function f(x) on the corresponding scaling function:

λj,k = 〈f, φj,k〉 ⇒ Pj [f(x)] =
∑
k

〈f, φj,k〉φj,k(x) (3.17)

In a similar way, the coefficient γj,k can be obtained as projection of f(x) on the wavelet:

γj,k = 〈f, ψj,k〉 ⇒ Qj [f(x)] =
∑
k

〈f, ψj,k〉ψj,k(x) (3.18)

The orthogonality limits the construction of wavelets. For example, the Haar

wavelet is the only wavelet that is symmetric and orthogonal with real values defined

on a compact domain. The definition on a compact domain allows an accurate imple-

mentation of the wavelet transformation. The sequences {hk} and {gk} (3.14, 3.16) can

be seen as the coefficients of a pair of digital filters (more precisely, a Finite Impulse

Filter). These filters are then characterized by a finite number of not null coefficients.

Therefore, the coefficients of the transformation can be computed by means of the

convolution of the function f with these filters.

Relaxing the orthogonality constraints by defining an MRA which makes use of

biorthogonal basis allows obtaining two pair of filters. The first one can be used for the

transformation (i.e., for computing the coefficients), while the second one can be used

for the inverse transformation (i.e., for computing the function from the coefficients).

The generalization to biorthogonal wavelet allows more flexibility in the choice of the

basis functions. In this case, there are two additional functions φ̃(x) and ψ̃(x), that

represent the dual scaling function and dual wavelet. These functions generate a dual

MRA.

In the case of a pair of biorthogonal MRA, one can be used for computing the coef-

ficients and the other for the approximation of the function. The projection operators

Pj and Qj become:

Pj [f(x)] =
∑
k

〈f, φ̃j,k〉φj,k(x) (3.19)

Qj [f(x)] =
∑
k

〈f, ψ̃j,k〉ψj,k(x) (3.20)

The discrete wavelet transformation assumes the form:

f =
∑
j,k

〈f, ψ̃j,k〉ψj,k (3.21)
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The relations of orthogonality and biorthogonality allow the definition of a fast al-

gorithm for the computation of the wavelet transformation. This algorithm exploits

the relation between the basis functions and the filters associated to them. The projec-

tion operations on the approximation space and detail space is formulated as filtering

operation using low-pass FIR and high-pass FIR.

The original formulation of the wavelet is based on the constraint of regularly spaced

input data. In the regression problems this constraint is generally not satisfied. A

method called Lifting Scheme [156] [157] [158] defines an approach to use wavelet for

the case of not regularly spaced data. In the Lifting Scheme the computation of the

wavelet is divided in a chain of weighted averaging and sub/over sampling operations.

If the data are not regularly spaced, the basis functions are not scaled and translated

copies of the same function, but they have to be adapted to the training data. The in-

creased flexibility of the method is paid with a higher computational cost that becomes

typically unfeasible when the dimension of the space of the problem increases. Another

disadvantage of this approach is that the noise on the data can determine problems

for the estimation of the coefficients. Despite the regression is based on MRA, the

computation of the solution is computed using a fine to coarse approach. Hence to

perform an efficient noise filtering, the amount of noise on the data has to be known.

3.9 Summary

The estimation of a function from a set of noise affected samples is a problem that can

be addressed using many different techniques. In this chapter, a review of the main

approaches presented in the literature has been given.

In general, there is not an approach that can be considered superior to the others.

Each one shows good or bad performances depending on the particular application. The

a priori knowledge about the application problem typically determines which approach

to use.

In general, a single taxonomy for the regression methods does not exist. The dif-

ferent approaches can be classified using different criteria. These criteria are based on

either the kind of solution found or on the kind of strategy used to find the parameters

of the solution. The most used features for classifying the regression methods are:

1. parametric and non-parametric;
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2. linear and non-linear;

3. global and local.

There are methods that are difficult to classify and can be considered hybrid methods.

For example, the piecewise linear models perform solutions that are locally linear (i.e.,

the sub-solutions are linear), but the regression function is not linear.

In the following two chapters, specific regression paradigms will be analyzed in

depth. They can be considered both parametric non-linear machine learning ap-

proaches. The first one, based on a particular family of neural network, is called

Hierarchical Radial Basis Function model and can be considered a local approach. The

second one, called Support Vector Machine, can be considered a global approach.

The global approaches compute the solution as an optimization of a functional. The

local approaches perform the estimation of the parameters by using local models on the

data. In general the first methods are not fast but are less sensitive to the problem of

sparseness of the data that occurs when the dimension of the input space increases. On

the contrary the latter allow fast and accurate solution when there is a large amount of

data but are more sensitive to outliers and are not able to produce accurate solutions

for high dimension of input space.
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Hierarchical Radial Basis

Functions Networks

In this chapter, a particular kind of neural network, which belongs to the perceptron

family [81], is considered. The models of the perceptron family are characterized for

the activation function of their neural units and their connection schema. In partic-

ular, the units with radial symmetry, generally, allow obtaining good approximation

with a limited number of units. Each unit is characterized by a radius that defines

its influence region: only the input inside the influence region produces a significant

activation of the unit. The locality property contributes to improve the efficiency of the

learning process, as only a subset of the training data can be considered for the config-

uration of each unit. Moreover, the locality allows to avoid the interference of examples

in distant regions during the configuration of the network parameters that can cause

collinear error and may stuck the learning procedure in local minima. The networks

based on these units are called Radial Basis Functions (RBF) Networks [120] [136] [134].

Using a Gaussian as basis function, a RBF network can be described as a function

f̂(x) : RD → R, as follows:

f̂(x) =
M∑
k=1

wkG(x;µk, σk) =
M∑
k=1

wk
e
− ||x−µk||

2

σ2
k

√
πDσDk

(4.1)

where M is the number of Gaussians used, wk ∈ R is the multiplicative coefficient (or

weight) of each Gaussian, σk ∈ R is the width of the k-th Gaussian, µk ∈ RD is the po-
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sition in the input domain of the k-th Gaussian, D is the number of input variables (or

input space dimension). σk determines the size of influence region of the k-th Gaussian:

in fact, this Gaussian assumes a value significantly higher than zero in the spherical

region centered in µk and radius proportional to σk. The Gaussians have unitary norm.

The learning problem can be formulated as: given a set of points {(xi, yi)|xi ∈
RD, yi ∈ R, 1 ≤ i ≤ n}, the goal is to find a set of parameters {M,µk, σk, wk} such that

a given error function E(f̂(x), y) is minimized.

The problem is ill-posed, because the surfaces that pass through the given points are

infinite. In order to choose the best approximation among the possible solutions, some

constraints have to be introduced, as well as a criterion for evaluating the suitability of

each solution. The smoothness of the solution is a natural constraint: for small vari-

ations of a point have to correspond to small variations of the surface. The selection

of optimal parameters is a non-trivial problem as it implies a non linear optimization

where there are many local minima. Some heuristics have been proposed for the sim-

plifying the search of a good, although not the optimal, solution. The constraints and

the heuristics have the aim to incorporate in the learning process of the network some

a priori knowledge about the target function.

In the theory of regularization, the learning problem can be formulated introducing

a smoothness term in the cost function that has to be minimized [135] [74] [180]. It has

been proved that a linear combination of Gaussians centered in the data points is able

to minimize such cost function. Despite this clear formulation, in general, an efficient

algorithmic solution does not exist [173] [123]. Techniques based on stochastic gradient

[74] suffer of local minima, which may prevent optimal solution.

In order to find the global minimum, algorithms specialized and computationally

intensive have to be used [18] [37] [75]. The solution can be searched operating an opti-

mization on all the parameters [94] [124] [21]. Although, in principle, these techniques

are able to find the global minimum, they are based on the exhaustive exploration of

parameters space and then they are computationally expensive.
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A different strategy, called hybrid learning [30] [120], derives from the observation

that the parameters in (4.1) can be divided in two classes depending by their role:

structural parameters and synaptic weights. The parameters that influence the Gaus-

sians behavior, (M , {µk} and {σk}), belong to the first class, while the weights, {wk},
belong to the second class. The different nature of these parameters suggests to use

different algorithms for determining their values. With these techniques the position of

the units {µk} can be determined by using clustering algorithms (e.g., [112]) and the

number of units, M , can be chosen a priori. The parameters {σk}, define the behavior

of the function in regions among the samples and they are determined using heuristics

[120] [127] [134] [154]. When the structural parameters are set, the equation (4.1) de-

scribes a linear system where the unknowns are the weights, {wk}. Although they can

be computed solving the system, for networks with high number of units this solution

can imply numerical or memory allocating problems. Hence a local approach for the

weights estimation can be preferable.

The growing structures [70] [71] [134] are an improvement of hybrid schemes. The

number of units is not a priori given, but the units are added to network one by one

till a criterion is satisfied. These schemes are iterative and the estimation of good pa-

rameters, generally, requires a time consuming learning phase.

Another approach, used in computer vision, is based on the use of regularly spaced

Gaussians placed on a lattice covering the input space [132] [149]. The disadvantage

of this approach is the rigidity of the structure used. The distance among the units is

the same in all the input space: the resulting function can suffer of overfitting in some

regions and missing details in other regions. Furthermore, the presence of overfitting

would imply a waste of resources due to a use of too many units. This problem can

be solved in several ways. For example, in [39] a methods based on the computation

of an orthogonal model basis that allows both improving the generalization ability of

the original model and reducing the number of the units is proposed. The weights

of the orthogonal basis are found by an iterative minimization of a functional. The

technique is based on a modified Gram-Schmidt orthogonalization procedure and can be

computational intensive for large networks. Besides, numerical problems may arise. A

different approach is represented by a model called Hierarchical Radial Basis Functions
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(HRBF) [25], [59]; it is based on the idea of inserting units only where they are needed

without using iterative procedure to find the weights.

HRBF combines the characteristics of growing structures and considerations grounded

in signal processing, allowing a fast and robust estimation of both the structural pa-

rameters and the weights of the network. Because part of the work of the thesis is

related to HRBF model, it is presented in detail in section 4.1, where the concepts

illustrated in [25] [59] are summarized.

The configuration of this model is performed using the entire dataset. When the

dataset is not completely available at the moment of the reconstruction, i.e., the model

have to be configured while the dataset is still acquired, the HRBF model cannot be

applied efficiently. In order to update the already configured model with respect the

new points the entire configuration procedure has to be repeated. This is generally not

suitable for the cases in which the configuration of the model has to be performed in real-

time with respect to the data acquisition. In section 4.2, an innovative configuration

algorithm for HRBF online learning is presented [63]. It allows to achieve accuracy

comparable to that of the original HRBF algorithm.

4.1 Batch HRBF

4.1.1 Gaussian Regular RBF network and Gaussian Filter

For sake of simplicity, the reconstruction of functions R → R is considered for the

description of the HRBF model. Then the concepts will be extended to the surface

case, R2 → R. In the R→ R case, the output of the RBF model assumes the form:

f̂(x) =
M∑
k=1

wkG(x;µk, σk) =
M∑
k=1

wk
e
− ||x−µk||

2

σ2
k

√
πσk

(4.2)

In the following, a RBF network composed of regularly spaced Gaussian units which

have the same standard deviation, σ, will be referred as regular RBF network. Since the

size of the region of the domain input where each Gaussian affects the approximation

is proportional to σ, this parameter describe also the scale at which the RBF operates

(and σ is also termed the scale parameter). In this case, (4.2) can be reframed as

the convolution of the weights sequence {wk} with a Gaussian function G(x) (actually,

with a regular sampling of G). Filtering theory concepts can then be applied to find
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an efficient algorithm for computing the values of the structural parameters and the

weights of regular RBF networks. In the following, some concepts for characterizing

the Gaussian filter will be introduced in section 4.1.2. Then, in sections 4.1.3 and 4.1.4,

the regular RBF network model will be generalized with models that, although they

cannot be used in practical cases, can simplify the theoretical derivation of the HRBF

algorithm, that will be illustrated in section 4.1.6.

4.1.2 Gaussian Filter

The ideal low-pass filter keeps all the components at frequency lower than νcut-off and

the components at higher frequency are deleted. This filter is not realizable in practice.

In the frequency domain, a real low pass filter, F̃ (ν), is characterized by two frequencies,

νcut-off and νmax, that identify three bands. Defining two thresholds suitable δ1 and δ2,

νcut-off and νmax are identified by the following:

δ1 ≤ |F̃ (ν)| ≤ 1 for 0 ≤ ν ≤ νcut-off (4.3)

0 ≤ |F̃ (ν)| ≤ δ2 for νmax ≤ ν ≤ ∞ (4.4)

These values define three bands in the frequency domain: Pass Band, Stop Band and

Transition Band. In the first band, the frequency components are kept almost un-

changed, in the second are almost deleted and in the last are attenuated progressively.

The Gaussian filter (fig. 4.1) is formulated as:

G(x, σ) =
1√
πσ

e−
x2

σ2 (4.5)

Its Fourier transform is:

G̃(ν, σ) = e−π
2σ2ν2

(4.6)

The following relations describe as σ and the frequencies in equations (4.3) and (4.4)

are related:

e−π
2σ2ν2

cut-off = δ1 ⇒ νcut-off =

√
− log δ1

πσ
(4.7)

e−π
2σ2ν2

max = δ2 ⇒ νmax =

√
− log δ2

πσ
(4.8)
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Figure 4.1: Gaussian filter

4.1.3 Regular continuous RBF network

Equation (4.2) describes a neural network that, in practical case, has to be constituted

of a finite number of units. However it is possible to consider a generalization consti-

tuted of an infinite number of contiguous units, which will be referred in the following

as the continuous RBF network. The structural continuity of this RBF network is de-

scribed by a support region U ⊂ R (the input range where the Gaussians are defined),

a weight function w(x) : U→ R (that represents the density function of the weights in

(4.2)) and a function σ(x) : U → R+. If the distance between the Gaussians tends to

zero, the equation (4.2) can be generalized by using a regular continuous RBF network

in which U ≡ R and σ(x) = σ:

f(x) =

∫
R
w(c)G(x− c|σ) dc = w(x) ∗G(x;σ) (4.9)

Due to the convolution theorem [90], (4.9) implies:

f̃(ν) = w̃(ν)G̃(ν;σ) (4.10)

Here, given a function w(x), the function f(x) is obtained. In the regression problem,

however, it is the inverse. In the following, a rule for obtaining a function w(x) that

provide a good estimation of f(x) is investigated. If w(x) were replaced by the function
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f(x) itself, the function f̂(x) would be obtained:

f̂(x) =

∫
R
f(c)G(x− c|σ) dc = f(x) ∗G(x;σ) (4.11)

and in the frequency domain:

˜̂
f(ν) = f̃(ν)G̃(ν;σ) (4.12)

From the (4.12) it is clear that f̂(x) is a smooth version of f(x). In fact all the f(x)’s

frequency components over νcut-off will be attenuated progressively by the convolution

with Gaussian filter. If f(x) does not contain significant frequency components over

νM , in order to obtain a good approximation of f(x), the parameter σ in (4.7) have to

be set such that the following constraint is satisfied:

νcut-off > νM (4.13)

4.1.4 Regular discrete RBF network

In real cases there is a limited number, N , of samples. Now it is considered the case

in which a function, f , is reconstructed from a regular sampling of the function itself,

{(xi, fi) | fi = f(xi)}, with sampling step ∆x, using a linear combination of Gaussians

centered in the samples. In the points {xi} the function can be reconstructed as:

f̂(xi) =
N∑
k=1

fkG(xi;xk, σ)∆x =
∆x√
π σ

N∑
k=1

fke
− (xi−xk)2

σ2 (4.14)

Equation (4.14) can be extended on the whole real line using the following interpolation:

f̂(x) =
N∑
k=1

fkG(x;xk, σ)∆x =
∆x√
π σ

N∑
k=1

fke
− (x−xk)2

σ2 (4.15)

In (4.15), also the Gaussian filter is sampled, with sampling frequency νs = 1
∆x . This

fact, for the sampling theorem, introduces another constraint:

νmax <
νs
2

(4.16)

Relations (4.7, 4.8) can be modified as follows:

e−π
2σ2ν2

cut-off = δ1 (4.17)
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e−π
2σ2ν2

max =
δ2

2
(4.18)

δ2 has been halved because, when νmax = νs/2, the Gaussian receives the same contribu-

tion from the main lobe and from the closest replica (aliasing effect). Other Gaussians

contribution can be considered, but they are too small for significantly influence the

reconstruction.

It can be proved that with a sampling frequency of νs, the reconstructed function

does not have (significant) components over ν?M , where:

ν?M =

√
log δ1

log δ2/2

νs
2

(4.19)

Equation (4.19) is comparable with the sampling theorem. The latter asserts that the

maximal frequency that can be reconstructed by a sampled signal is equal to the half

of the sampling frequency. As δ1 > δ2, the maximum reconstructed frequency by the

model in (4.15) will be under that indicated by the Shannon theorem.

If δ1 is set to
√

2/2, according with the common practice (attenuation of 3 dB), and

δ2 is set to 0.01, the following is obtained from (4.19):

νs = 7.829 ν?M (4.20)

The sampling frequency should be almost about eight times the maximal frequency

that has to be reconstructed. Decreasing the value of δ1 or increasing the value of δ2,

the ratio tends to two. In this way the quality of the reconstruction decreases. In

particular if δ2 increases there will be an increase of aliasing effect; if δ1 decreases there

will be greater attenuating of higher frequency components.

Using the above stated relations and setting the maximal frequency ν?M , it is possible

to configure a regular discrete RBF network, setting the number, M , the positions,

{µk}, and the width, σ of the Gaussians (compatibly with the sampling frequency νs).

The weights {wk} will be derived from the subsampling of the input data.

For example, given {(xi, yi)|x ∈ R, y ∈ R, i ∈ {1, ..., n}} a set of regularly sampled

points, ∆x = xi+1 − xi ∀i, a regular discrete RBF network can reconstruct frequency

components up to 1
8∆x (due to the equation (4.20)). If this is compatible with the
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maximal frequency component of the function, then the function can be reconstructed

by placing a Gaussian unit in every input point: µk = xk, M = n. From the constraints

about the frequencies and set ∆x = 1/νs, it can be derived that the σ parameter cannot

be less than 1.465∆x. The weights correspond to the values assumed by the sampled

points: wk = yk. It should be noted that for matching a given target maximum

frequency (below 1
8∆x) a suitable subsampling of the data set can be applied. In this

case, the number of Gaussians, their centers, and their width have to be changed

accordingly to the subsampling.

4.1.5 Hierarchical approach

The previous technique is inefficient when the function f presents different frequency

content in different domain regions. The presence of high frequency details in just some

parts of the domain would require the use of a high number of units also in the regions

where the frequency content is low. Instead, these regions would be more efficiently

reconstructed with a lower number of Gaussians with a larger σ.

The reconstruction can be realized, in a more efficient way, using more than one

network, each one characterized by a different value of σ. The first network has the

objective of realizing a general approximation of the function, a1(x). The value of the

cut-off frequency of this network is chosen relatively small, say ν1. For the estimation

of the Gaussian weights a suitable input points subsampling can be realized, and the

approximation a1(xi) of f(xi) can be computed for all the examples in the data set. A

residual set r1 can be defined for formalizing the information that is not described by

a1:

r1 = {yi − a1(xi)} (4.21)

A second network characterized by a cut-off frequency ν2, ν2 > ν1, is used for

obtaining an approximation of the residual r1. In this way a network that realizes the

function a2(x) is obtained. The procedure can be iterated until the residual is under a

chosen threshold.

The described procedure performs a multi-resolution representation of the sampled

function. The representation at l resolution is given by the sum of the output of the

first l networks.
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4.1.6 Generalization: non regular noise-affected data

The procedure described in section 4.1.4 supposes regularly spaced noise-free data sam-

pled in the same position of the Gaussian centers. If this hypothesis is not verified,

a technique for the estimation of the value assumed by the sampled function, f , in

the Gaussian centers is needed. The presence of noise, however, is a minor problem,

because the Gaussian filter attenuates the high frequency components of the dataset

(which are mainly due to noise). It should be noted that this estimation is not the

approximation that will be carried out by the network, but only a rough estimation of

the values required by the learning procedure and missing in the dataset. To stress this

concept, this rough estimation will be indicated using f̌ .

The estimation of f̌k = f̌(µk) will be performed locally: a subset Ak of the dataset

will be selected using the distance from µk as selection criterion; then the value in Ak

will be combined for providing the value fk. The region from which Ak belong to is

called the receptive field of the k-th Gaussian. The simple criteria used for the samples

selection are mainly two. The first one is based on the number of elements used in the

estimation: for each Gaussian the n samples closer to its center, µk are selected. The

second one is based on the distance: for each Gaussian every point closer than a given

threshold, ρ, to µk is selected. Both the methods have advantages and disadvantages.

In [25], an estimation criterion [12] based on a weighted average of points belonging

to the set Ak, is used, where the weight of each sample decreases with the distance of

the sample from the center of the Gaussian. In particular, the weight function used

is a Gaussian function. The implicit assumption is that the points close to the center

are able to provide a reliable estimation with a normal probability distribution. The

estimation in the Gaussian center, µk, is hence:

f̌(µk) =

∑
xr∈Ak yre

− (xr−µk)2

σ2
w∑

xr∈Ak e
− (xr−µk)2

σ2
w

(4.22)

where the estimation set, Ak, is:

Ak = {xr | ||xr − µk|| < ρ} (4.23)

The parameter σw is equal to σ of the considered RBF network (although σw < σ

would be more precautionary, as it avoid to attenuate too much the high frequency

88



4.1 Batch HRBF

components of the dataset), while ρ is set equal to ∆x, which is the spacing between

two consecutive Gaussians (µr − µr−1 = ∆x, ∀r).
Furthermore, the selection of a local dataset allows to evaluate if the considered

Gaussian is required for the approximation. In fact, if in Ak the value of f is below

the measurement noise, ε, no Gaussian need to be inserted (otherwise, overfitting may

be obtained). Hence, the k-th Gaussian is inserted (i.e., wk is set to ∆x fk) if and only

if the average value of the output variable, Rk, in the spherical neighborhood of µk is

over a given threshold ε, namely if the following is satisfied:

Rk =

∑
xr∈Ak ||yr||
|Ak|

> ε (4.24)

Otherwise, wk is set to zero. Since in a hierarchical scheme, the output variable used

to estimate the weights is the residual, Rk is termed local residual. Besides, if in Ak

there are too few samples to provide a reliable estimation an alternative criterion have

to be applied for estimating wk. A simple approach can be set wk to zero, but also an

iterative procedure that increases the value of ρ until Ak is enough populated (e.g., if

|Ak| < α, for a suitable α) can be devised.

4.1.7 Batch HRBF configuration algorithm

The concepts and the relations illustrated in the previous sections allow to design a

non iterative algorithm for setting up the parameters of an HRBF networks in order

to approximate a function from a finite sampling of the function itself. This procedure

exploits the knowledge of the entire input data set and adopts local estimates to setup

the network parameters. This produces a very fast configuration algorithm, which is

also suitable to be parallelized.

The HRBF configuration algorithm can be summarized as following:

1. Given a dataset {(xi, yi)|i = 1, . . . , n}.

2. A set of L cut-off frequencies is chosen, {νl| l = 1, ..., L}. Each frequency corre-

sponds to a layer of RBF.

3. From the set of frequencies, the values of σ and ∆x for each layer are computed:

σl =

√
log 2/2

πνcut-off
(4.25)
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∆xl =
σl

1.465
(4.26)

4. The first residual is set as: r0 = {r0(xk) = yk}

5. For l = 1, . . . , L, the l-th layer is considered.

6. The Gaussians centers of the l-th layer, {µl,j |µl,j−µl,j−1 = ∆xl}, are set such that

they cover the range covered by the dataset. The number, Ml of the Gaussians

of the l-th layer can be set as Ml =
⌈

max(xi)−minxi
∆xl

⌉
.

7. For each Gaussian, j, the subset Al,j is selected, where the receptive field is a

spherical neighborhood of the (l, j)-th Gaussian, centered in µl,j , with radius

proportional to ∆xl.

8. If (4.24) is satisfied, the coefficient wl,j is computed as:

wl,j = ∆xl

∑
xr∈Al,j yr e

−
(xr−Pl,j)2

σ2
l

∑
xr∈Al,j e

−
(xr−Pl,j)2

σ2
l

(4.27)

9. The set al = {al(xi) =
∑

j wl,gG(xi;µl,j , σl)} is computed.

10. The residual is computed as: rl = {rl−1(xi)− al(xi)}

11. If l < L, jump back to step 5.

The output function results:

f̃(x) =

L∑
l=1

∑
j

wl,jG(x;µl,j , σl) (4.28)

L reconstructions with different resolution are then available:

ãl(x) =
l∑

h=1

ah(x) =
l∑

h=1

∑
j

wh,jG(x;µh,j , σh) (4.29)

Despite there are not theoretical constraints, the set {ν1, ..., νl} is computed, gener-

ally, such that each frequency is doubled with respect to the previous one. In this way

a wide range of frequencies can be covered by using a small number of layers. Since σ
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and ν are closely related, the first step of the algorithm above described is not always

needed. For some applicative problems, the values of σ can be set directly. Further-

more, it is not required to set the number of layers a priori. In fact, other termination

criteria can be used: for example, the procedure can be iterated until the residual is

under a given threshold on the entire domain.

Since the hierarchical scheme requires the computation of the output of each layer

in order to compute the data set for the next layer, when the width of the layer is small

with respect to the extent, most of the computational cost of the output of the layer is

wasted. This happens because the Gaussians function is defined for every real value.

However, due to its exponential decay, the Gaussian assumes significant values only in

the region close to its center. This allows to limit the contribution of each Gaussian to

the output of the layer only in a suitable neighborhood of it center. This region, Ik,

will be termed the influence region of the Gaussian. It can be formalized through its

radius, τ :

Gl,k =

{
1√
πσl,k

exp
(
− ||x−µl,k||)

2

σ2

)
, ||x− µl,k|| < τl,k

0, elsewhere
(4.30)

Summarizing, the batch HRBF network hyperparameters (i.e., the parameters of

the procedure that set up the HRBF network) are reviewed in the following, with some

annotations on how their value can be set up:

• the width of the weighting function of (4.22), σw;

• the radius of the receptive field, ρ, (4.23);

• the radius of the influence region, τ , (4.30);

• the minimum number of samples, α, for a reliable estimation of the weights;

• the set of the centers of the units of each layer, {µl,k};

• the set of the width of the units of each layer, {σl};

• the number of layers, L;

• the error threshold ε, (4.24).
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Some hyperparameters (namely σw, ρ, τ , and α) can be considered as hard-wired

parameters, since the behaviour of the training algorithm is not very sensitive to their

value. Only for very fine tuning purposes, they should be considered. The parameters

{µl,k}, {σl}, and L are related to the structure of the HRBF network. Although

reasonable criteria can be devised for setting their value, for particular applications

their value can be forced by the user. The error threshold ε depends heavily by the

noise on the data and the accuracy that is required to the solution performed by

the HRBF network. These three groups of hyperparameters require different levels of

knowledge on the HRBF operation. In particular, the direct setup of σw, ρ, τ , and α

requires a low level knowledge of the HRBF algorithm, while the set up of {µl,k}, {σl},
and L requires only a grasp on the RBF theory, and the set up of ε requires only a

priori knowledge on the dataset (i.e., on the applicative domain).

As mentioned above, σw ≤ σl, for each layer. A reasonable choice can be: σw = σl/2.

The hyperparameter ρ controls the width of the receptive field, and, hence, it should be

proportional to the width of the units of the layer, σl, or to the spacing, ∆xl. Hence,

reasonable choice can be: ρ = σl or ρ = 2∆xl. A too small value of ρ can make

the estimation unreliable due to lack of samples, but, on the other hand, large value

of ρ can make the estimation computationally expensive (and also unreliable, due to

excessive averaging). The radius of the influence region affects both the accuracy and

the computational cost of the training procedure. Since the value of the Gaussian is

negligible for points more than 3 σ away from the center, this can be a reasonable

value, although, for practical purposes, even a lower proportionality factor can provide

an accurate enough approximation. The minimum number of samples required for a

reliable estimation depends both from the variability of the function and from the noise

on the data. However, since only a rough approximation is required, few samples are

sufficient for the scope (3 to 5 can be a reasonable value for α).

The position of the units of each layer can be easily set up by covering the range of

the data. In the RD → R case, however, this choice can be inefficient. Some a-priori

knowledge on the dataset can be exploited for limiting the placement of the Gaussians

only where the data are effectively located (e.g., using the convex hull, or the alpha

shape, of the dataset). The width of the Gaussian units of each layer {σl}, can be

set using some a-priori knowledge on the frequency content of the function. However,

when this information is missing, the width of the Gaussians can be halved at each
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layer. A reasonable value for σ1 can be the length of the interval where the data belong

to. When multivariate approximation is operated, this value can be the maximum of

the length of the intervals containing the input variables. The number of layers, L,

can be a-priori determined considering the computational resources available (e.g., the

maximum number of units), or can be adapted considering the error achieved by the

last configured layer (e.g., through cross validation).

The error threshold is the most critical hyperparameter as it determines the accu-

racy of the approximation of the whole HRBF network. It should be set using a-priori

knowledge on the dataset (i.e., the noise on the data), if available, but can be otherwise

determined with cross validation. For instance, this threshold can be obtained from

the accuracy of the measurement instruments used for obtaining the data set. In the

case of the 3D scanning, it can be estimated by using several techniques (e.g., average

distance of sampled points on a plane with respect to the optimal plane), or from the

calibration procedure.

4.1.8 Extension to the two-dimensional case

Due to the property of the Gaussian function, the extension to the multivariate case

is quite easy. In particular, the two-dimensional case is considered here, since it is

of interest for the applicative problem of surface reconstruction. Besides, the formal

explanation is clearer and can be easily generalized. In the R2 → R case, the Guassian

filter results:

G(x;σ) =
1

πσ2
e−
||x||2

σ2 (4.31)

where x ∈ R2. As x = (x1, x2), the (4.31) can be written as:

G((x1, x2);σ) =
1

πσ2
e−

x2
1+x2

2
σ2 =

1

πσ2
e−

x2
1
σ2

1

πσ2
e−

x2
2
σ2 = G(x1;σ)G(x2;σ) (4.32)

and its Fourier transform can be written as:

Ĝ(ν;σ) = e−π
2σ2ν2

1 e−π
2σ2ν2

2 = e−π
2σ2||ν||2 (4.33)

as the Fourier transform of a separable function is equal to the product of the one-

dimensional transform of its components. Then, all the considerations and relations

for one-dimensional case are valid also for two-dimensional one. There is only a change

in step 8 of the HRBF configuration algorithm (section 4.1.7): the proportionality
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constant between the estimated value of the function and the coefficient of the Gaussian,

∆xl, becomes ∆x2
l .

(a) (b)

(c) (d)

Figure 4.2: Reconstruction of a doll with HRBF model using (a) 5 layers, (b) 6 layers,

(c) 7 layers, and (d) 8 layers. The hierarchical structure of the model allows to choose the

number of layers that match the required resolution.
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(a) (b)

(c) (d)

Figure 4.3: The grids of Gaussians for the 5th (a), 6th (b), 7th (c), and 8th (d) layers of

the HRBF model used for the reconstruction in fig. 4.2.

In fig. 4.2 an example of reconstruction realized using the HRBF model is reported.

The dataset has been acquired by the systems described in [27]. The four surfaces

represent the output of the HRBF model considering the first 5 layers (a), 6 layers

(b), 7 layers (c), and 8 layers (d). As can be seen, the reconstruction improves when

new layers at smaller scale are added. The hierarchical approach allows the multi-

scale reconstruction at different levels of detail. In fig. 4.3 the grids of Gaussians (i.e.,

the regular lattice where the Gaussian are placed) are depicted. The centers of the

Gaussians effectively used (i.e., those that have not null weight) of the level are marker

in red. It can be noticed that in the last layers some Gaussians are missing due to

the lack of the samples in their receptive field or because, locally, the approximation

already match the required accuracy.
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4.1.9 Batch HRBF network approximation properties

In [59], the approximation properties of the HRBF model have been investigated. The

basis used for the regular discrete RBF has been shown to be a Riesz basis for the space

it spans. This implies that the decomposition that it operates is unique and stable.

Furthermore, the degree of stability (i.e., the influence of errors in the data on the

approximation) depends only on the ratio σ
∆x . Since σl = 1.465∆xl for all the layers,

the stability is the same for all the scales at which the HRBF network operates.

The approximation property holds for regular RBF networks: it can be shown

that, for a large class of functions (the compactly supported infinitely differentiable

functions), there exists a scale factor σj such that the approximation performed by

the layer is arbitrarily closer to the considered function. Since the function to be

approximated changes at every layer (as it is the residual left by the previous layers),

the convergence of the HRBF approximation scheme can be questioned. However is

has been proved that the residual becomes smaller and smaller as the layers are added

to the HRBF network, and the convergence of the HRBF approximation is uniform for

the compactly supported functions in C∞ that have equilimited derivatives (i.e., there

exists a supremum of the norms of the derivatives of function).

4.2 On-line HRBF

On-line learning algorithms compute the value of the parameters of an approximation

model (such as a neural network) by considering one sample at a time. Several reasons

may induce to prefer this modality with respect to the batch learning. In real cases, the

training set can be too large for applying a batch method efficiently. This is the case, for

instance, of linear models, where the matrix inversion required computing the optimal

value of the model’s parameters cannot be computed due the excessive memory needed.

Besides, the peculiarity of the application may require on-line learning. For instance,

when the approximation model have to be updated due to the non-stationarity of the

process that provide the data, or when a partial approximation is required during the

acquisition of the training set.

For the HRBF networks, the scheme described in the previous section cannot be

applied in this scenery. In fact, if an HRBF network has been already configured using

a given data set, when a new sample, (xnew, ynew), becomes available, the estimate in
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(4.22) becomes out of date for the first layer. Then f̌(µk) has to be reestimated for all

the Gaussians by using the new data set constituted of the old data set and the new

sample. As a result, a1(·) changes inside the influence region of all the updated units

and the residual r1 changes for all the points inside this area. This requires updating

the weights of the second layer for those Gaussians whose receptive field intersects with

this area. This chain reaction may involve an important subset of the HRBF network’s

units. Moreover, the new point can prompt the request of a new layer, at a smaller scale.

One possibility is to reconfigure the entire network computing all the parameters

every time a new point is added to the input data set. This solution is computationally

expensive and unfeasible for real-time configuration. To avoid this, a few approxima-

tions have to be introduced.

The most limiting factor to real-time operation is the shape of the receptive field:

as the Gaussians have radial symmetry, their receptive field comes out with a spherical

shape that does not allow an efficient partitioning of the data points. To overcome this

problem, the receptive field is approximated with a cubic region [60]; this approxima-

tion can be accepted as far as the input space has a low dimensionality [61].

Cubic approximation allows organizing the incoming data points and the HRBF pa-

rameters into an efficient data structure. For each layer l, the input space is partitioned

into non-overlapping regular boxes Cl,k, each centered in a different Gaussian center

µl,k. As shown in fig. 4.4, for a R2 → R mapping, the input domain is partitioned into

squares Cl,k, where each Cl,k is called the close neighborhood of the (l, k)-th Gaussian

Gl,k. The vertices of each Cl,k are shifted of 1
2∆xl with respect to the grid centers.

A particular data structure is associated to each Gaussian Gl,k. This contains the

Gaussian’s position µl,k, its weight wl,k, the numerator nl,k, and the denominator dl,k

of (4.27). The structure associated to the Gaussian at the top of the hierarchy (current

highest layer h) contains also all the samples that lie inside Ch,k. To obtain this, when

a Gaussian is split during learning, its associated samples are sorted locally by mean of

the qsort algorithm and distributed among the 2D new Gaussians of the higher layer.

As ∆xl = ∆xl−1/2, the close neighborhood of each Gaussian of the l-th layer (father)

is formed as the union of the close neighborhoods of the 2D corresponding Gaussians of
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(a) (b)

Figure 4.4: Close neighborhood Cl,k of the Gaussian centered in µl,k , belonging to the

l-th layer, is shown in pale gray in panel (a). The close neighborhoods tessellate the input

domain, partitioning it in squares which have side equal to that of the l-th grid ∆xl and

are offset by half grid side. In the next layer, Cl,k is split into four close neighborhoods,

Cl+1,j (quads) according to quad-tree decomposition, as shown in panel (b). Each Cl+1,j

has a side half the length of Cl,k , and it is centered in a Gaussian µl+1,j positioned in ”+”.

the (l+ 1)-th layer (children). This relationship, depicted in fig. 4.4(b), is exploited to

organize the data in a quad-tree: the points which lie inside Cl,k are efficiently retrieved

as those contained inside the close neighborhood of its four children Gaussians.

In the following, it is assumed that the side of the receptive field Al,k and of the

influence region Il,k of a Gaussian are set to twice the size of the Gaussian’s close neigh-

borhood Cl,k to allow partial overlapping of adjacent units. However, any relationship

such that Al,k and Il,k cover an integer number of close neighborhoods produces an

efficient computational scheme.

The configuration algorithm is structured as a sequence of steps for updating the

weights followed by a single step in which residual is evaluated and Gaussians possibly

inserted. These two phases, depicted in the scheme in fig. 4.5, are iterated until new

points are added.

The algorithm starts with a single Gaussian positioned approximately in the cen-

ter of the acquisition volume, with a width sufficiently large to cover the volume. An

estimate of the dimension of the acquisition volume is therefore the only a priori infor-

mation needed by the configuration algorithm.
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Figure 4.5: Schematic representation of the on-line HRBF configuration algorithm

4.2.1 First Learning Phase: Updating of the Parameters

When a new point xnew is given, the quantities nl,k, dl,k, and wl,k (4.27), associated to

the Gaussians such that xnew ∈ Al,k, are updated

nl,k := nl,k + rl−1(xnew)e−||µl,k−xnew||2/(σl/2)2
(4.34)

dl,k := dl,k + e−||µl,k−xnew||2/(σl/2)2
(4.35)

wl,k =
nl,k
dl,k
·∆xDl (4.36)

where rl−1(xnew) is computed, like in (4.21), as the difference between the input data

and the sum of the output of the first l − 1 layers of the present network computed in

xnew.

It is explicitly noticed that the modification of the weight of a Gaussian in the l-th

layer Gl,k modifies the residual of that layer rl inside the Gaussian’s influence region.

Hence, the terms in (4.34)–4.36) should be recomputed for the next layer for all the

(already acquired) data points inside the influence region of Gl,k. This would require

recomputing the residual of the next layer and so forth up to the last configured layer.

However, this would lead to an excessive computational load, and, in the updating

phase, the terms in (4.34, 4.35, 4.36) are modified only by adding the contribution of
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xnew to nl,k and dl,k. The rationale is that increasing the number of points, (4.36) tends

to (4.27). The residual is then recomputed only in xnew, which is sufficient to obtain a

good estimate of (4.27).

After updating the weights, xnew is inserted into the data structure associated to

the Gaussian of the highest layer h, such that xnew ∈ Ch,k.

4.2.2 Second Learning Phase: Splitting

After Q points have been collected, the need for new Gaussians is evaluated. To this

aim, the reconstructed manifold is examined inside the close neighborhood of those

Gaussians which satisfy the following three conditions: i) they do not have any chil-

dren, ii) at least a given number K of points has been sampled inside their close neigh-

borhood, and iii) their close neighborhood includes at least one of the last Q points

acquired. These are the Gaussians candidates for splitting. Let us call J their ensemble.

For each Gaussian of J , the local residual Rl,k is reevaluated for all the points inside

its close neighborhood using the present network parameters. If Rl,k is larger than the

given error threshold ε, splitting occurs: 2D new Gaussians at half scale are inserted

inside Cl,k. The points associated to the Gaussian Gl,k are distributed among these

four new Gaussians depending on which Cl,k they belong to [cf., fig. 4.4(b)].

It is remarked that the estimate of Rl,k requires the computation of the residual,

that is the output of all the previous layers of the network, for all the points inside

Cl,k. To this aim, the output of all the Gaussians (of all the layers) whose receptive

field contains Cl,k is computed.

As a result, the parameters of an inserted Gaussian Gl,k, nl,k, dl,k and wl,k in (4.34,

4.35, 4.36) are computed using all the points contained in its close neighborhood; for

this new Gaussian, no distinction is made between the points sampled in the earlier

acquisition stages and the last Q sampled points. The quantities nl,k, dl,k and wl,k are

set to zero when no data point is present inside Cl,k and the Gaussian Gl,k will not

contribute to the network output.

It should be noticed that, as a consequence of this growing mechanism, the network

does not grow layer by layer, as in the batch case, but it grows on a local basis.
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4.2.3 Proof of convergence

In [59], the capability of a single-layer HRBF, with a scale σ adequate to approximate a

given function f(·), has been proven showing that the residual can be made arbitrarily

smaller. Moreover, it has been shown that the sequence of the residuals obtained with

the HRBF scheme converges to zero under mild conditions on f(·).

As the on-line configuration procedure is different from the batch one, the conver-

gence of the residuals obtained with the on-line scheme has to be proven.

The on-line and the batch scheme differ for both the computation of the weights [

(4.34)–(4.36) versus (4.27)] and for the rule of insertion of new Gaussians (in the batch

scheme, this occurs layerwise, while in the on-line scheme, it occurs locally during the

splitting phase).

It is first shown that the output of each layer of the on-line HRBF is asymptotically

equivalent to that of the batch HRBF. Let us first consider the case of the first layer.

Let fp be the input data set constituted of the first p points sampled from f and

denote with ? the operation such that

a1(·) = fp ? G(·;σ1) (4.37)

is the output of the first HRBF layer, configured using fp. It can be shown that when

p tends to infinity, the function computed in (4.37) converges to the value computed in

(4.28) for the batch case.

This is evident for this first layer, whose weights are estimated as f̌(µl,j), and

r0(xi) = yi holds. In this case, the following asymptotic condition can be derived:

lim
p→∞

wb
1,k =

p∑
m=1

ym e
−||µ1, k−xm||2/(σ1/2)2

p∑
m=1

e−||µ1, k−xm||2/(σ1/2)2

∆xD1 = lim
p→∞

wo
1,k (4.38)

where wb
1,k are the weights computed in the batch algorithm by (4.27) and wo

1,k are

those computed in the on-line algorithm by (4.34)–(4.36).
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It follows that:

lim
p→∞

∆r1(xi) = lim
p→∞

rb
1(xi)− ro

1(xi) = 0 (4.39)

where rb
1(xi) is the residual at the point xi computed by (4.27), and ro

1(xi) is the same

residual computed by (4.34, 4.35, 4.36).

If a second layer is considered, the estimate of its weights can be reformulates as

n2, k := n2, k + (ro
1(xp) + ∆r1(xp)) · e−||µ2, k−xp||2/(σ2/2)2

(4.40)

d2, k := d2, k + e−||µ2, k−xp||2/(σ2/2)2
(4.41)

Since limp→∞∆r1(xp) = 0 and d2, k always increases with p, the contribution of the ini-

tially sampled data points becomes negligible as p increases. As a result, limp→∞w
b
2,k =

limp→∞w
o
2,k, and also the approximation of the residual of the second layer tends to be

equal for the batch and on-line approaches. The same applies also to the higher layers.

Splitting cannot introduce a poor approximation as the weights of the Gaussians

inserted during the splitting phase are robustly initialized with an estimate obtained

from at least K points.

4.2.4 Experimental results

For the experimental results on-line HRBF model has been extensively applied to 3D

scanning. Digitization was performed by the Autoscan system [27][26] which allows

sampling more points inside those regions which contain more details: a higher data

density can therefore be achieved in those regions that contain higher spatial frequen-

cies. To this aim real-time feedback of the reconstructed surface is of paramount im-

portance as shown in [6].

A typical set of sampled data is reported in fig. 4.6b: it is constituted of 33 000

points sampled over the surface of the artifact (a panda mask) in fig. 4.6a. As can

be seen in Figs. 4.7 the reconstruction becomes better and better with the number of

points sampled. Acquisition was stopped when the visual quality of the reconstructed

surface was judged sufficient and no significant improvement could be observed when

new points were added (compare fig. 4.7e and fig. 4.7f).
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(a) (b)

Figure 4.6: A typical data set acquired by the Autoscan system [27]. The panda mask in

(a) is reconstructed starting from 33 000 3D points automatically sampled on the surface

by the Autoscan system; these constituted the input to the HRBF network. Notice the

higher point density in the mouth and eyes regions.
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To assess the effectiveness of the on-line algorithm, a quantitative analysis of the

local and global error has been carried out. Since the true surface is not available, a

cross validation approach has been adopted [42]; from the dataset in fig. 4.6b, 32 000

points, randomly extracted, were used to configure the network parameters (training

set), and 1 000 for testing (test set).

The error, expressed in millimeters, was measured in l1-norm, εmean, and in l2-norm,

root mean squared error, RMSE, as:

εmean =
1

N

N∑
i=1

|rT (xi)| (4.42a)

RMSE =

√√√√ 1

N

N∑
i=1

rT (xi)2 (4.42b)

where rT (xi) is the reconstruction error on the i-th point of the test set, i = 1, . . . , n.

To avoid border effects, (4.42) have been computed considering only the points that

lie inside an internal region of the input domain; this region has been defined as the

region delimited by the convex hull of the data set, reduced by 10%.

The experiments have been carried out on a machine equipped with Intel Pentium4,

2.4 GHz, 512 KB cache, 512 MB RAM.

4.2.5 Comparison with the batch HRBF

Results of the comparison with the batch HRBF approach are reported in table 4.1.

These figures have been obtained with the following parameters: Q = 100, K = 3,

L = 8 layers. The error threshold, ε, was set for all the layers equal to the nominal

digitization error, that was 0.4 mm. The final reconstruction error of 0.391 mm, is very

close to ε; a total of 9 222 Gaussians were allocated over the eight layers, and produce

a sparse approximation (cf. fig. 4.8d–f).

The network complexity and the reconstruction error have been compared with

those obtained when the network was configured using a batch approach, with the

same number of layers as the on-line version.
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(a) (b) (c)

(d) (e) (f)

Figure 4.7: Panels show the reconstruction with on-line HRBF after 1 000, 5 000, 10 000,

20 000, 25 000, and 32 000 points have been sampled.

105



4. HIERARCHICAL RADIAL BASIS FUNCTIONS NETWORKS

(a) (b) (c)

(d) (e) (f)

Figure 4.8: Reconstruction with (a) HRBF batch and (b) HRBF on-line. The difference

between the two surfaces is shown in panel (c). In panels (d)–(f) the center of the Gaussians

allocated by the on-line algorithm in the last three layers is shown.

Two batch modalities have been considered. In the first one, pure batch, the con-

figuration procedure described in section 4.1.7 [59] is adopted. In the second approach,

batch constrained, the Gaussians are placed in the same position, and have the same

width as those of the on-line approach, while the weights are computed by (4.27), con-

sidering all the data points inside the receptive field of each Gaussian, as described in

[25].

As shown in fig. 4.8, the surface reconstructed by the batch HRBF has a slight

better appearance than the on-line one, especially at the object border as shown by

the difference image (Figs. 4.8c and 4.9). This was obtained at the expense of a larger
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(a) (b)

Figure 4.9: Difference in the reconstruction error on the points of the test set: on-line

vs. pure batch (a), on-line vs. batch constrained (b).

number of Gaussians: about 12.7% more than those used in the on-line approach, being

10 393 versus 9 222 (table 4.1). Despite the difference in the computational resources

used, the global accuracy of the batch approach is only slightly better than the on-line

one, being of 0.373 mm versus 0.391 mm (4.82%).

It is remarked here that acquisition was stopped when the visual appearance of the

model (reconstructed with the on-line approach) was considered sufficient.

Therefore, it has been investigated if there was room for further accuracy improve-

ment by acquiring more data points. To this aim, it is plotted in fig. 4.10 the rate of

Gaussians allocation and of error decrease as a function of the number of data points.

As it is clearly shown, the batch version grows and converges faster than the on-line

version: it achieves εmean of 0.391 mm using only 8 500 data points. The figure shows

also that the error of the on-line model can be slightly lowered adding new points down

to 0.381 mm, closer to the batch approach. To achieve such an error only 99 more

Gaussians are required.
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(a) (b)

Figure 4.10: Number of Gaussian units (a) and mean error (b) as a function of the

number of data points used to configure the networks. Data set is grown of 500 data

points at a time.

Table 4.1: Accuracy and Parameters of Each Layer of the HRBF Networks

on-line pure batch batch constrained

#layer σ #Gauss. (total) RMSE εmean #Gauss. (total) RMSE εmean RMSE εmean

1 363.3 1 (1) 47.8 46.2 1 (1) 47.8 46.2 47.8 46.2

2 181.7 4 (5) 30.2 28.0 4 (5) 30.2 28.0 30.2 28.0

3 90.8 16 (21) 13.0 10.7 16 (21) 13.0 10.7 13.0 10.7

4 45.4 46 (67) 6.44 5.10 62 (83) 6.40 5.05 6.39 5.07

5 22.7 160 (227) 3.33 2.68 204 (287) 3.07 2.50 3.03 2.48

6 11.4 573 (800) 2.17 1.66 678 (965) 1.73 1.41 1.72 1.41

7 5.68 2 092 (2 892) 1.16 0.838 2 349 (3 314) 0.849 0.637 0.872 0.657

8 2.84 6 330 (9 222) 0.530 0.391 7 079 (10 393) 0.510 0.373 0.526 0.385

Table 4.2: Reconstruction with several datasets

on-line pure batch batch constrained

dataset #points #Gauss. (total) RMSE εmean #Gauss. (total) RMSE εmean RMSE εmean

panda mask 32 000 6 330 (9 222) 0.530 0.391 7 079 (10 393) 0.510 0.373 0.526 0.385

cow mask 33 861 6 360 (9 501) 0.667 0.476 7 680 (11 335) 0.643 0.460 0.660 0.470

doll 15 851 3 366 (6 058) 0.466 0.331 3 312 (6 294) 0.389 0.287 0.447 0.312
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(a) (b)

Figure 4.11: Test error and number of Gaussian units with respect to K with Q fixed to

100 (a), and with respect to Q with K fixed to 3 (b).

4.2.6 Discussion

Results are consistent for different artifacts (cf. fig. 4.13); real-time visualization of

the actual surface has been of great value in directing the laser spot more frequently in

the most critical regions, collecting more points there. Best results are obtained when

the points are sampled mostly uniformly in the first few layers. This allows a more

robust estimate of the weights of the Gaussians of these layers, as the Gaussians of the

first layers cover each a large portion of the input space. In all the experiments, data

acquisition was stopped when the visual appearance of the reconstructed model was

considered satisfactory. Alternatively, data acquisition could be stopped when splitting

does not occur anymore. The error was measured as the mean value of the test error

averaged over ten randomizations on the same dataset.

The on-line configuration algorithm contains two hyperparameters: K and Q (Sec-

tion 4.2.2); their influence has been experimentally assessed by training the model with

different combinations of K and Q. This gives an insight on the general behavior of

the on-line algorithm as a function of these parameters.

Figure 4.11a shows that the number of Gaussians decreases while the test error

increases with K. This is due to the fact that, increasing K, more points are collected

inside the close neighborhood of a Gaussian, before splitting it. Therefore, in this case,
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(a) (b)

Figure 4.12: Test error and number of Gaussian units reported with respect to N for

small and large values of Q: in (a), Q was fixed to 100, and, in (b), Q was fixed to 1 000.

given the same total number of points, although the single weights can be estimated

better, a smaller number of split operations would occur. This suggests using a very

low value of K; in fact K = 1 produces the smallest test error, of 0.378 mm. This

is paid with a larger number of Gaussians that reaches a total of 9 968 for K = 1. A

trade-off has been adopted here choosing K = 3, which produces a total number of

Gaussians of 9 222, about 92.5% of those obtained setting K = 1.

The behavior of the test error as a function of Q is shown in fig. 4.11b. For small

values of Q, the behavior is almost the same: the error starts increasing after Q =

1 000, although the increase is of small amplitude (about 0.01 mm from Q = 1 000 to

Q = 2 500). The number of Gaussian units instead decreases monotonically with Q,

with a marked decrease above Q = 300. This can be explained by the fact that, when a

new Gaussian is inserted, its weight is initialized using all the already acquired points

that belong to its close neighborhood (Section 4.2.2). Afterward, its weight is updated

considering only the points inserted inside its receptive field, as in (4.34, 4.35, 4.36).

Therefore, increasing Q, the weight associated to each new Gaussian can be computed

more reliably as more points are available for its estimate. However, when Q assumes

too large values with respect to the number of available data points, not enough splits

occur, and the reconstruction becomes poorer. This situation is depicted in fig. 4.11b

where for a relatively large value of Q, the test error tends to increase as an effect of

the decrease in the number of the allocated Gaussians.
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From the curve in fig. 4.11, it can be derived that the optimal value of Q would be

≈ 1 000, as it allows a low reconstruction error with a reduced number of Gaussians.

However, the price to be paid for such saving in computational units is the loss of

interactivity. In fact, when Q increases, the split operation occurs less frequently. As

this operation produces the largest decrease in the reconstruction error, a long time has

to elapse before the user can see a large change in the appearance of the reconstructed

model, and the improvement in the model quality is not smooth in time. Moreover,

the reconstruction error decreases less quickly; this is well captured in fig. 4.12. Hence,

the use of large values of Q is not interesting for such applications where interactive

on-line learning is required and the value of Q = 100 has been adopted here as it is

approximately twice the data sampling rate, that is of 60 points/s.

Therefore, although the value of K and Q may be subjected to optimization with

respect to network accuracy or size, the resulting values may not be adequate for real-

time applications. In particular, as Q produces a very similar test error over a wide

range of values, it has been set here according to the data sampling rate to guarantee

interactivity; this value is lower than the one that would produce the smallest net-

work. This value could be even lowered, but at the price of a large overhead, as the

split phase is the most computationally expensive. Therefore a value of Q related to

data rate seems the most reasonable. However, it is remarked that using more Gaus-

sians than the minimum required is not very sensitive to overfitting, because of the

mechanism of local computation of the weights, provided that enough points have been

sampled inside the receptive field of the Gaussians. This is shown in Figs. 4.12 where

the test error does not increase with the number of Gaussian units.

As far as K is concerned, its value is related to the amount of noise on the sampled

points: the larger the noise, the greater should be K to reduce the estimation error on

the weights. However, possible bias in the estimation of the weights can be recovered in

the higher layers thanks to the incremental optimization construction. For this reason,

a very low value of K can be chosen: a value of K < 5 worked well in all our experi-

ments and produced a good reconstruction with a reasonably low number of Gaussians.
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(a) (b)

Figure 4.13: HRBF on-line reconstruction of the dataset (a) cow (33861 points, 9501

Gaussians), and (b) doll (15851 points, 6058 Gaussians).

The parameter L decides the level of detail in the reconstructed surface as it sets

the smallest value of σ that is related to the local spatial frequency. It could be set in

advance when this information is available to avoid the introduction of spurious high

frequency components; otherwise, L is incremented until the error in (4.42) goes under

threshold or a maximum number of Gaussians is inserted. It should be remarked that

in this latter case, if Q were too small, L could increase more than necessary.

The mechanism used in the weight update phase, that does not require the recon-

figuration of the whole network, produces a slight bias in the weights. This can be

appreciated in table 4.1, where the accuracy obtained when the weights are estimated

considering all the data points (batch constrained) is compared with that obtained with

the on-line approach described here. In fact, the output value in µl, k (4.27) is estimated

as the ratio between nl, k and dl, k, obtained as the run-time sum of the values derived

from each sampled point. However, this value is equal to that in the batch model only

for the first layer (where all the Gaussian weights are computed using the height of all

sampled points inside their receptive field). In the higher layer, where the residual in

the already acquired points is not updated, the estimate of the weights may contain

a bias. This, in turns, may produce a reconstruction error. However, in the splitting
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phase, the bias in the weights and the reconstruction error are corrected in the close

neighborhood of the split units, as the residual is recomputed there, using all the data

points inside the Cl, k. Moreover, due to the non-orthogonality of the Gaussian basis

function, the HRBF model is able to compensate the reconstruction error in one layer,

with the approximation achieved by the next layer [58].

The maximum number of layers does not determine only the maximum spatial fre-

quency that can be reconstructed, but it has also a subtle effect. In fact, the on-line

configuration approach, differently from the batch one, can introduce Gaussians at the

k-th level also when k − 1-th level has not been completed: a Gaussian can be split

before the neighbor Gaussians of the same layer. This is the case when higher frequency

details are concentrated inside the receptive field of that Gaussian, as the parameters

of each Gaussian are updated independently from those of the others. Therefore one

branch of the network can grow before another branch.

When the maximum number of layers of the network, L, is too low for the frequency

content of the given dataset, the error inside the close neighborhood of some Gaussians

of the last layers will contain also the highest frequency details. As a consequence, the

weights in these regions may contain a bias that produces a local poor reconstruction.

This error affects also the close neighborhood of the adjacent units by the influence re-

gion and the receptive field of the corresponding Gaussians. This, in turns, may induce

splitting of these adjacent units and produces networks of different structures when a

different maximum number of layers is prescribed (cf. table 4.3).

Differently from other growing network models [9][117][70], pruning is not adopted

here, as all the units participate in the reconstruction because of the configuration

mechanism; pruning can be considered useful when dealing with time-variant systems

or when some of the data are not pertinent, but the problem addressed here does not

belong to this class, and the additional complexity for managing pruning does not seem

justified here.

On-line HRBF shares with other growing networks models the criterion for inserting

new units: the insertion is decided on the basis of a local error measure, which is

fundamental to achieve real-time operation. The other element which allows real-time
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Table 4.3: The number of Gaussians of the last four layers of networks configured with

different maximum numbers of layers, L

HH
HHH

HHL

l
6 7 8 9

7 565 1948 — —

8 565 1848 4185 —

9 565 1840 3777 2683

operation is the grid support, which guides Gaussians positioning. This is shared also by

[9]. However, in [9] all the weights are recomputed after the insertion of new Gaussians,

while here only a subset of the weights is recomputed thanks to the hierarchical close

neighborhood structure. This produces a large saving, especially for large networks. It

should be noticed that this growing strategy implicitly implements an active learning

procedure [78], as the data points that participate in the configuration of the new

Gaussians are only those that carry an over-threshold error. Grid support has been

also adopted by [149][113]; however, in their approach global optimization is used, that

makes the configuration procedure computationally heavy.

4.3 Summary

The RBF network model is an interesting paradigm, which, thanks to the locality

property, allows for obtaining a good approximation with limited number of units.

In the case of reconstruction of function characterized by different frequency content

in different domain regions, the HRBF approach represents an efficient model for the

computation of the solution.

This model is particularly suited to 3D scanning problems in which the surface of

an object has to be computed from a set of noise-affected points sampled on the surface

itself. The HRBF model can be configured in two modalities:

• batch, where all the points have to be acquired before the configuration;

• on-line, where the configuration is performed one sample at a time.

Both configuration algorithms have been discussed in this chapter. The on-line

modality is an innovative contribution proposed in this thesis. It is particularly im-

portant because it allows a more effective scanning procedure, providing the surface
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obtained up to that time as a feedback to the operator. The on-line procedure, derived

from the batch one, produces results comparable to the latter, and can be effectively

used in all the domains of low dimensionality. A proof of the equivalence between the

two modalities in the asymptotic case has been provided.
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5

Hierarchical Support Vector

Regression

This chapter contains the second key point of the thesis: an innovative multi-scale

approach based on Support Vector Machines (SVM) for solving regression problems.

Thanks to the hierarchical structure, the model can be better applied to 3D surface

reconstruction giving a new, more robust and faster configuration procedure.

The SVM approach is based on a non-linear generalization of the Generalized Por-

trait model developed in the sixties by Vapnik and Lerner [169]. As Generalized Potrait

model, the SVMs are based on a framework of statistical learning theory, called also

Vapnik Chervonenkis (VC) theory, which has been developed from 1960’s to 1990’s

by Vapnik and Chervonenkis [168]. This theory is essentially related to the analysis

of the conditions for which at the minimization of the training error corresponds the

minimization of the generalization error.

Initially, this approach was applied just for classification problems; in particular

the first works were focused on optical character recognition (OCR). The classification

problem is formulated as a convex optimization problem in which the solution is unique

and it can be found using standard optimization software. Furthermore, the compu-

tational complexity of the procedure used to find the solution is independent from the

number of input variables. Thanks to the good performances with respect to other

methods, SVMs rapidly became popular for all areas where statistical classification

tasks must be performed [32] [33].

The SVMs have been more recently extended to regression [152], domain in which
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this approach has been called Support Vector Regression (SVR). The problem is for-

mulated, again, as convex optimization problem whose computational complexity is

independent from the number of input variables. As the SVM for classification, this

approach has shown good performances for the solution of many applicative problems

[122] [53] [155].

The smoothness of the solution computed by SVR paradigm is determined by a

pool of parameters, generally, selected using a trial and error strategy. When the

data are characterized by different frequency content over the input domain, the search

of a combination of parameters that produces a good solution (over the entire input

domain) can become particularly inefficient or unfeasible. The use of a hierarchical

structure of SVRs that realize different scale reconstructions addresses this problem.

The core of this chapter is an innovative paradigm based on SVR allowing multi-scale

reconstruction and its use for 3D surface reconstruction problem.

In order to better understand the working principles of the Hierarchical Support

Vector model, the SVM approach is considered initially in section 5.1. Starting from

the linear classification problem, the explanation is extended to non-linear case and

then to the regression problem. In section 5.2, the hierarchical regression approach is

treated and a new model, termed Hierarchical Support Vector Regression (HSVR), is

introduced.

5.1 SVM

5.1.1 Linear classification

The binary classification problem [168] can be defined as follow:

let {(x1, y1), . . . , (xn, yn)} be a training set where xi ∈ X ⊆ RD, yi ∈ Y = {−1, 1}. The

objective is to find a decision function (or hypothesis) f̂(x) : X → Y able to correctly

classify new examples.

The decision function can be chosen among many kinds of functions. The selection

of the best kind of function is a well known problem treated in depth in Statistical

Learning Theory [167].

In the SVM paradigm, the f̂(x) is in the form of Θ(h(x)), where h(x) is a linear

function of x:

f̂ = Θ(h(x)) = Θ(ω · x+ b) (5.1)
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Figure 5.1: Binary linear classificator. xi denotes the i-th input variable.

Θ(z) =

{
−1 if z < 0

1 if z ≥ 0
(5.2)

Where ω ∈ RD and b ∈ R. For sake of conciseness, f̂ , is called linear decision function.

A linear decision function divides the input space RD in two regions separated

by the hyperplane ω · x + b = 0. The region in which the point lies determines the

classification of the point itself (fig. 5.1).

Then the classification problem can be formulated as the searching of the separator

hyperplane parameters, ω and b. If the examples are linearly separable, the separator

hyperplanes are in infinite number. Since the problem is ill-posed, the solution is not

unique. The SVM algorithm allows finding the hyperplane that maximizes the margin.

The margin is defined as the distance between the hyperplane and the closest examples

(fig. 5.2). By the maximization of the margin the problem became well-posed, and if

the solution exists it is always unique. Furthermore, the maximization of the margin

allows finding the best solution from a statistical point of view, i.e., the hyperplane that

minimizes the statistical risk of misclassification. The computation of the hyperplane

that maximizes the margin is shown in the following.

Let h(x) = ω · x + b = 0 be the equation of the hyperplane. The signed distance

between the hyperplane and a generic point x is h(x)
||ω|| (fig. 5.3). The distance can

be obtained multiplying the signed distance by the label yi (5.2). Every separator
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Figure 5.2: The separator hyperplanes are in infinite number. SVM algorithm finds that

one that maximizes the margin.

Figure 5.3: Distance between hyperplane and a point x.

120



5.1 SVM

hyperplane satisfies the following:

yih(xi)

||ω||
≥M > 0, ∀ i = 1, . . . , n (5.3)

where M represent the distance between the hyperplane and the closest example. The

maximal margin is then:

M∗ = max
||ω||=1,b

min
i

yih(xi) (5.4)

Given an hyperplane of margin M with respect to a training set, it is possible to choose,

from its infinite representations, the one such that ||ω|| = 1
M . The hyperplanes in this

form, called canonical form, are such that:

min
i

yih(xi) = 1 (5.5)

If only canonical hyperplanes are considered, maximizing the margin has the same effect

of minimizing ||ω|| = 1
M .

The hyperplane (ω, b) that solves the optimization problem:

minω,b
1
2 ||ω||

2

subject to yi(ω · x+ b) ≥ 1, i = 1, . . . , n
(5.6)

realizes the maximal margin hyperplane with geometric margin M = 1
||ω|| .

The optimization problem can be solved transforming it into its corresponding dual

problem, because the latter is, generally, easier to solve than the primal one.

The dual problem is obtained by the Lagrangian form of the primal problem (5.6):

L(ω, b, α) =
1

2
||ω||2 −

n∑
i=1

αi(yi(ω · xi + b)− 1) (5.7)

where αi are the Lagrangian multipliers.

If the Lagrangian form is maximized with respect to the multipliers αi ≥ 0 and

minimized with respect to ω and b:

min
||ω||,b

max
α

L(ω, b, α) (5.8)

the solution of this problem is the same of the solution of the primal problem (5.6).

Let (ω∗, b∗) be a pair of value for the problem (5.6). If (ω∗, b∗) do not satisfy all

the constraints of (5.6) then the maxα L(ω, b, α) tends to infinite and hence (ω∗, b∗)

121



5. HIERARCHICAL SUPPORT VECTOR REGRESSION

is not a solution of (5.8). If (ω∗, b∗) satisfy all the constraints of (5.6) then the

maxα L(ω, b, α) = 1
2 ||ω||

2, hence the solution of (5.8) is equal to the solution of (5.6).

Necessary conditions for a point (ω, b) to be a minimum of the primal problem (5.6)

are the following:
δL(ω,b,α)

δb = 0⇒
∑r

i=1 αiyi = 0

δL(ω,b,α)
δω = 0⇒ ω =

∑r
i=1 αiyixi

(5.9)

The Lagrangian (5.7) can be rewritten as:

L(ω, b, α) =
1

2
(ω · ω)−

r∑
i=1

αi(ω · xi)− b
r∑
i=1

αiyi +
r∑
i=1

αi (5.10)

Using the strong duality theorem [51]:

min
||ω||,b

max
α

L(ω, b, α) = max
α

min
||ω||,b

L(ω, b, α) (5.11)

Substituting the conditions (5.9) in the right part of (5.11), the dual problem is then

obtained:
maxα W (α) = 1

2

∑
i,j αiαjyiyj(xi · xj)

s.t.
αi ≥ 0, ∀ i = 1, . . . , r

(5.12)

Therefore, the minimum of the primal problem (5.6) coincides with the maximum of

the dual problem (5.12).

The optimization problem (5.12) (as the (5.6)) is a quadratic programming problem

(convex quadratic functional and linear constraints). The solution is unique and can

be found using standard numerical software.

Let α∗ be the solution of the dual problem. The second condition of (5.9) is ω∗ =∑r
i=1 α

∗
i yixi hence ω∗ is a linear combination of training set vectors. Furthermore, from

the Kuhn-Tucker theorem [98] it is known that the solution has to satisfy:

α∗(yi(ω
∗ · xi + b∗)− 1) = 0, ∀ i = 1, . . . , n (5.13)

This relation, known as Karush-Kuhn-Tucker (KKT) complementary condition, is a

necessary condition for the optimum. It determines that for inactive constraints α∗i = 0

and for active constraints α∗i ≥ 0.

The vectors xi that correspond to non zero Lagrangian multipliers are called Support

Vectors (SV), SV = {xi : α∗i > 0}. Since for each SV the corresponding constraint is
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Figure 5.4: The circled points are the SVs that determine the hyperplane.

active (yi(ω
∗ · xi + b∗) = 1), their distance from the hyperplane is equal to the margin

(fig. 5.4).

. The vector ω∗ that determines the slope of the hyperplane is computed as linear

combination of SVs:

ω∗ =
∑
SV

yiα
∗
i xi (5.14)

The b∗ can be computed using the KKT corresponding to just anyone of the support

vectors:

yi(ω
∗ · xi + b∗) = 1⇒ b∗ = yi −

∑
SV

yjα
∗
j (xj · xi) (5.15)

Substituting in the decision function the expression of ω∗, it is obtained:

f̂(x) = Θ

((∑
SV

yiα
∗
i xi

)
· x+ b∗

)
= Θ

(∑
SV

yiα
∗
i (xi · x) + b∗

)
(5.16)

5.1.2 Soft margin classification

If the training set is non-linearly separable (fig. 5.5), there is no hyperplane that can

correctly classify all the points. However, it is clear that some hyperplanes are prefer-

able than others for this task. A possible strategy consists in the minimization of

misclassification number and in the concurrent maximization of the margin for the

points correctly classified.

In order to realize that strategy, called soft margin, the constraints are relaxed by

means of the introduction of the slack variables, ξi ≥ 0. The constraints in (5.6) are
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Figure 5.5: Example of a nonlinearly separable set.

reformulated as:

yi(ω · xi + b) ≥ 1− ξi,∀ i = 1, . . . , n (5.17)

The classification error for the training set can be measured as
∑n

i=1 ξ
p
i , where p ∈ R.

The minimization problem can be expressed as:

min
1

2
(ω · ω) + C

n∑
i=1

ξ1
i (5.18)

where p has been chosen equal to one in order to maintain the computational tractabil-

ity. C is a regularization constant that determines the trade-off between misclassified

samples and the maximization of the margin.

The corresponding Lagrangian is:

L(ω, b, ξ, α, q) =
1

2
(ω · ω) + C

n∑
i=1

ξi −
n∑
i=1

αi (yi(ω · xi + b)− 1 + ξi)−
n∑
i=1

qiξi (5.19)

with αi ≥ 0 and qi ≥ 0.

The dual form is found by differentiating with respect to ω, ξ, and b and imposing

stationarity:
δL(ω,b,ξ,α,r)

δω = ω −
∑r

i=1 yiαixi = 0
δL(ω,b,ξ,α,r)

δξi
= C − αi − qi = 0

δL(ω,b,ξ,α,r)
δb =

∑r
i=1 yiαi = 0

(5.20)

124



5.1 SVM

As in the separable case, from substituting the previous conditions in the La-

grangian, the following dual problem is found:

maxαW (α) = 1
2

∑
i,j αiαjyiyj(xi · xj)

s.t.∑r
i=1 αiyi = 0,

0 ≤ αi ≤ C,∀ i = 1, . . . , r

(5.21)

(5.21) differs from (5.12) only for the constraints on the multipliers.

In this case, the KKT conditions are:

αi (yi(ω · xi + b)− 1 + ξi) = 0
ξi(αi − C) = 0

(5.22)

As in the separable case the solution is sparse. The points for which α∗i = C are

called bounded support vectors and they have non-zero slack variables (second KKT

condition). The points for which 0 ≤ α∗i < C are called unbounded support vectors and

they have null slack variables.

The decision function is equal to (5.16).

5.1.3 Non-linear classification

Since SVMs are linear machines, they are able to compute only hyperplanes. Hence,

they perform poorly on classification problems where the data are not linearly separable.

The strategy used to realize a non linear classification with a linear machine is based on

the idea that the data can be mapped in another space, called feature space (fig. 5.6).

Since, generally, the feature space has higher dimension, the data in this space can

become linearly separable, which allows the use of the SVM algorithm (fig. 5.7).

Having the φ : X → F mapping function, the decision function of the primal

problem becomes:

f̂(x) = Θ(ω · φ(x) + b) = Θ

 D∑
j=1

ωjφj(x) + b

 (5.23)

where D is the dimension of the feature space (ω ∈ RD). The primal problem becomes

an optimization problem in a D dimensional space. If D is large, computation problems

arise both for the optimization and for the evaluation of the decision function.
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Figure 5.6: The function φ maps the data in other space called feature space.

Figure 5.7: Thanks to φ the data become linearly separable, and the SVM algorithm can

be applied.
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The dual formulation would become:

maxαW (α) = 1
2

∑
i,j αiαjyiyj(φ(xi) · φ(xj))

s.t.∑n
i=1 αiyi = 0,

0 ≤ αi ≤ C,∀ i = 1, . . . , n

(5.24)

and the relative decision function would be:

f̂(x) = Θ

(
n∑
i=1

yiαi(φ(xi) · φ(x))) + b

)
(5.25)

It is noted that the elements φ(xi) appear only in dot products in both dual problem and

in the decision function. Computing directly the results of these dot products is possible

to avoid the explicit computation of φ function. The kernel function, introduced in the

next section, is the tool that allows the direct computation of the dot products.

5.1.4 Kernel

A kernel is a function k : X ×X → R such that:

k(x, x′) = φ(x) · φ(x′), ∀ x, x′ ∈ X (5.26)

where φ is a map from the input space X to space (having dot product) F .

The kernel defines implicitly the map φ and then can be used to find the optimal

hyperplane in the space F . Hence, the explicit computation of φ(x) can be avoided

using the kernel (“kernel trick”).

The kernel can be found from the mapping function φ but generally it is set a priori

and the function φ can remain unknown.

As the dot product is commutative, the kernel has to be symmetric:

k(x, z) = k(z, x),∀ x, z ∈ X (5.27)

Let X an input domain, it can be proved that a symmetric function k(·, ·) : X×X → R
is a kernel if and only if the matrix:

K =

 k(x1, x1) k(x1, x2) · · · k(x1, xr)
...

...
...

...
k(xr, x1) k(xr, x2) · · · k(xr, xr)

 ∈ Rr×r (5.28)
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is positive semidefinite for any subset {x1, . . . , xr} ⊂ X.

In the SVM context, K contains the values of the kernel for any combination of the

input point pairs and it is called kernel matrix. This information is used in the dual

optimization problem.

By using the kernel the classification problem is formulated as:

maxαW (α) = 1
2

∑
i,j αiαjyiyjk(xi, xj)

s.t.∑r
i=1 αiyi = 0,

0 ≤ αi ≤ C,∀ i = 1, . . . , r

(5.29)

The decision function becomes:

f̂(x) = Θ

(
r∑
i=1

yiαik(xi, x) + b

)
(5.30)

5.1.5 Linear regression

As illustrated more formally in chapter 3, the regression problem can be formulated as

the search of a function f̂ , given a training set {(x1, y1), . . . , (xn, yn)}, xi ∈ X ⊆ RD,

yi ∈ Y ⊆ R, such that f̂(x) : X → Y is able to approximate the given samples,

f̂(xi) ≈ yi.
The solution is searched using a loss function that measures the difference between

the prediction and the real value of the samples. For instance, two common loss func-

tions are the following:

• Quadratic loss, L(ζ) = ζ2

• 1-norm loss, L(ζ) = |ζ|

where ζ = y − f̂(x) (fig. 5.8).

In classification problem only the points that lie close to the hyperplane for less

than the margin contribute to the loss function; this guarantees the sparsity of the

solution. In order to guarantee the sparsity of the solution also in the regression case

Vapnik introduced a family of loss function called ε-insensitive. In the case of 1-norm

loss (fig. 5.9) the ε-insensitive version results:

Lε1(ζ) =

{
0 if |ζ| ≤ ε

|ζ| − ε otherwise
(5.31)
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Figure 5.8: The goodness of an approximation, f̂ , is evaluated on the distance between

point and its approximation (left panel) by means of a loss function, which, for instance,

can be quadratic or linear (right panel).

Figure 5.9: The points inside the ε-tube do not contribute to the training error (on the

left), while the points outside the ε-tube contribute linearly to the error due to the shape

of the loss function (on the right).

The SVR problem can be formulated (1-norm) as following:

min
ω,b

1

2
(ω · ω) + C

1

n

n∑
i=1

Lε1(|yi − (ω · xi)− b|) (5.32)

The functional of optimization problem can be seen as composed of two terms: the first,

1
2(ω ·ω), controls the slope of the solution, while the second, 1

n

∑n
i=1 L

ε
1(|yi−(ω ·xi)−b|),

controls the approximation error.

By the absorption of the term 1
n in the constant C and introducing the slack vari-
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ables the problem becomes:

minω,b
1
2(ω · ω) + C

∑n
i=1(ξi + ξ∗i )

s.t.

yi − (ω · x)− b ≤ ε+ ξi, ∀ i = 1, . . . , n

(ω · x) + b− yi ≤ ε+ ξ∗i , ∀ i = 1, . . . , n

ξi, ξ
∗
i ≥ 0,∀ i = 1, . . . , n

(5.33)

The constant C is a term that controls the trade-off between the minimization of the

slope and the deviation from the insensitivity zone.

As for the classification case, the Lagrangian of the primal problem is formulated

introducing the multipliers αi, α
∗
i , ηi, η

∗
i :

L(ω, b, α, α∗, η, η∗) = 1
2 ||ω||

2 + C
∑n

i=1(ξi + ξ∗i )−∑n
i=1 αi(ε+ ξi − yi + (ω · xi + b))−∑n
i=1 α

∗
i (ε+ ξ∗i + yi − (ω · xi − b))−∑n

i=1(ηiξi + η∗i ξ
∗
i )

(5.34)

The minimum conditions result:

δL
δb = 0 ⇒

∑n
i=1(αi − α∗i ) = 0

δL
δω = 0 ⇒ ω =

∑n
i=1(αi − α∗i )xi

δL
δξi

= 0 ⇒ ηi = C − αi

δL
δξ∗i

= 0 ⇒ η∗i = C − α∗i

(5.35)

From the substitution of the previous conditions in the Lagrangian, the dual problem

is obtained:

maxαi,αj
∑n

i,j=1(αi − α∗i )(αj − α∗j )(xi · xj)− ε
∑n

i=1(αi + α∗i )+∑n
i=1 yi(αi + α∗i )

s.t.∑n
i=1(αi − α∗i ) = 0

αi, α
∗
i ∈ [0, C], ∀ i = 1, . . . , n

(5.36)

The problem is, again, a maximization of a convex quadratic functional with linear

constraints. Hence it is a quadratic optimization problem and then the solution is

unique.
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Figure 5.10: Only the points that do not lie in the ε-tube are SVs. Every point outside

the ε-tube is a bounded SV, and the value of their αi is C.

For this problem, the KKT conditions result:

αi(ε+ ξi − yi + (ω · xi) + b) = 0

α∗i (ε+ ξ∗i + yi − (ω · xi)− b) = 0

(C − αi)ξi = 0

(C − α∗i )ξ∗i = 0

(5.37)

The first two conditions assure that the Lagrangian multipliers are zero for each point

lying in the ε-tube. Then the solution is sparse. The last two conditions say that each

point lying outside the ε-tube is a bounded support vector, namely ξi > 0 ⇒ αi = C.

Each point lying on the margin (yi− (ω ·xi) + b = ε, ξ = 0), has Lagrangian multipliers

with value in the range [0, C], 0 ≤ αi ≤ C (fig. 5.10).

The solution can be expressed as:

f̂(x) =
∑
SV

(αi − α∗i )(xi · x) + b (5.38)

The value of b is computed using the KKT conditions.

In fig. 5.11, an example of linear regression is shown for several value of ε. The

training set is obtained sampling a linear function (fig. 5.11-a) and a random uniform

quantity has been added to the samples.
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(a) (b)

(c) (d)

Figure 5.11: In (a), a training set is obtained sampling a linear function in 10 points and

a random uniform quantity has been added to the samples. In (b), (c), and (d) the SVR

approximation obtained with ε-tube respectively of 0.1, 0.5, and 0.7. The points circled in

red are the SVs.
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5.1.6 Non-linear regression

Since the SVR are linear machines, then they are able to compute just linear regres-

sion. As for the classification problem, in order to obtain a non-linear solution the

training set is mapped to another space (characterized by higher dimension) in which

the problem becomes linear. The solution is then computed in that space. Since the

feature space can have infinite dimensions, the computation of the mapping function

can be unfeasible. Fortunately, by the use of the kernel, also in this case, the explicit

computation of this function can be avoided.

First of all, it can be noted that both in the dual regression problem (5.36) and in

the decision function (5.38) the training set vectors appear only as the dot product of

pairs of them. The kernel function can be used to compute the results of these dot

products.

By using the kernel, the regression optimization problem has the form:

maxαi,αj
∑n

i,j=1(αi − α∗i )(αj − α∗j )k(xi, xj)− ε
∑n

i=1(αi + α∗i )+∑n
i=1 yi(αi + α∗i )

s.t.∑n
i=1(αi − α∗i ) = 0

αi, α
∗
i ∈ [0, C],∀ i = 1, . . . , n

(5.39)

The decision function becomes:

h(x) =
∑
SV

(αi − α∗i )k(xi, x) + b (5.40)

Another form of the dual problem is, generally, preferred. Substituting α−α∗ with

β and taking into account that αiα
∗
i = 0 it is obtained the following alternative form:

maxβ
∑n

i,j=1 βiβjk(xi, xj)− ε
∑n

i=1 |βi|+
∑n

i=1 yiβi
s.t.∑n
i=1 βi = 0

−C ≤ βi ≤ C,∀ i = 1, . . . , n

(5.41)

The decision function becomes:

h(x) =
∑
SV

βik(xi, x) + b (5.42)
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For the KKT conditions the βi coefficients have to satisfy the following relationships:

|βi| =


0, |yi − f(xi)| < ε
[0, C], |yi − f(xi)| = ε
C, |yi − f(xi)| > ε

(5.43)

In practice, a tolerance threshold δ, is introduced to allow finding a reasonable

number of points on the tube boundary, and (5.43) becomes:

|βi| =


0, |yi − f(xi)| < ε− δ
[0, C], ε− δ ≤ |yi − f(xi)| ≤ ε+ δ
C, |yi − f(xi)| > ε+ δ

(5.44)

The Gaussian function is one of the most used as kernel. If it is used, (5.42) assumes

exactly the form of the function computed by the RBF network (4.2). Hence, the SVRs,

as the RBF nets, are characterized by a solution that is a linear combination of kernel

functions.

5.2 Multi-scale SVR

5.2.1 Single kernel regression

A single kernel function is used in the standard SVR approach. This features a prede-

fined shape characterized by a set of parameters. Like other methods based on kernels,

the quality of the solution depends on the choice of the kernel function and of its pa-

rameters; these must be suitable to the current data. In general, this choice, also known

as kernel selection [99], is a difficult task: the function is often chosen by trial and error,

genetic optimization or domain knowledge of the user.

Besides this, the choice of a single kernel function can be questioned. In fact, when

the data are characterized by a space varying frequency content, the use of a single

kernel is not able to produce accurate solutions and approaches based on multiple

kernels have been recently investigated [140][172]. In these approaches the kernel is

defined as a mixture of predefined basic kernels, where the mixing coefficients are

computed during the optimization phase. In this case, the form of the output is:

f̂(x) =

n∑
i=1

(βi

m∑
j=1

µjkj(x, xi)) + b (5.45)

where the type and the number (m) of kernels used in the linear combination have to

be chosen a priori and the coefficients µj are determined in the optimization phase.
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Figure 5.12: (a) A function with non-stationary frequency content, and (b)–(c) two SVR

using a single Gaussian kernel with two different scale parameters, σ. (b) A large scale

kernel provides a smooth solution, but is unable to reconstruct the details, while (c) a small

scale kernel suffers of overfitting providing poor generalization.
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However, even in this case, the solution is a linear combination of copies of the same

function.

The problem of using a single kernel is highlighted in the examples reported in

fig. 5.12. The data points have been sampled on the curve h(·)

h(x) = sin(2πx4) + x (5.46)

whose local frequency content increases with x. The sampling step is decreased with

the local frequency according to 1
120x . The solution computed with a large kernel fails

in reconstructing the details as shown in fig. 5.12b. On the other side, using a kernel

with a small scale, such as the one used in fig. 5.12c, the solution will be prone to

overfitting and lack of generalization in scarcely sampled regions.

In the following it is presented a novel approach that allows adapting automatically

the kernel parameters to the local frequency content of the data. This approach is

based on a hierarchical structure, where each layer contains SVs that have the same

kernel function, but the SVs in the different layers do feature different parameters and

therefore the resulting model can be considered a multi-kernel approach. The model

has been termed Hierarchical Support Vector Regression (HSVR).

5.2.2 Multi-kernel by hierarchical structure

The output of the HSVR model is obtained as the sum of the output of several layers,

each constituted of single-kernel SVRs, {al(·)} characterized by a different scale:

f̂(x) =
L∑
l=1

al(x, σl) (5.47)

where L is the number of layers and σl determines the scale of the kernel of the l-th

layer. The different layers are organized as a hierarchy where the scale decreases when

the layer number increases, that is σl ≥ σl+1 holds. When the kernel is the Gaussian

function, the output of each layer can be written as:

al(x;σl) =

Ml∑
k=1

βl,kG(||x− xl,k||;σl) + bl =

Ml∑
k=1

βl,k e
((x−xl,k)2/σ2

l ) + bl (5.48)

where Ml is the number of SVs, βl,k is the coefficient of the k-th SV and bl is the

bias of the l-th layer. Therefore, the l-th SVM layer realizes a reconstruction of the
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approximation up to a certain scale, determined by σl. HSVR configuration proceeds

adding and configuring one layer at a time, proceeding from the layer featuring the

largest scale to that featuring the smallest one.

The first layer is trained such that the distance between the function produced by

the first layer itself and the data is minimized (5.32). All the other layers are trained

to approximate the residual, which is the difference between the original data and the

output of the HSVR model produced by the layers configured up to that stage. The

measure of the residual for each layer, rl, is given as:

rl(xi) = rl−1(xi)− al(xi) (5.49)

The l-th layer will be configured with the training set, Sl, defined as:

Sl = {(x1, rl−1(x1)), . . . , (xn, rl−1(xn))} (5.50)

and r0(xi) = yi is assumed.

The value of the scale parameter of the first layer, σ1, is somehow arbitrary; for

instance it can be chosen proportional to the size of the input domain (e.g., the length

of the diagonal of the data bounding box). New layers are added during training until

a given stopping criterion is satisfied (e.g., when the validation error does not decrease

anymore).

Two other parameters are defined for each layer: Cl, that controls the trade-off

between the regression error and the smoothness of the solution, and ε, that controls

the amplitude of the ε-insensitivity tube around the solution itself.

Although few attempts to theoretically determine a proper value of C [171] [161]

in regularization theory have been proposed, it is usually experimentally set by trial

and error. In this work, Cl has been chosen, for each layer, as J times the standard

deviation of the residuals used to configure that layer:

Cl = J std( rl−1(xi)) (5.51)

with the following motivation. First, it is noticed that as Cl is the value assumed by

the Lagrange multipliers associated to the SVs of the l-th layer ((5.42) and (5.43)), its

value represents the maximum weight that can be associated to each Gaussian in (5.42).

For the regions of the input space where the Gaussians associated with the SVs have

no significant overlap (this depends both on the Gaussian scale parameter and on the
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Figure 5.13: Data points reduction. A smooth function is shown in thin line in both

panels. A set of 100 points have been randomly sampled over it and a Gaussian random

quantity has been added to them. These points are displayed as dots. Thick dots represent

all the points used by the optimization engine to determine the regression represented as a

thick line. Circled dots represent the SVs. Errmean is computed as 1/n
∑n

i=1 |f̂(xi)−yi|. In

panel (a) the SVR curve obtained through standard SVR (ε = 0.416, C = 9.67, σ = 1.66,

Errmean = 0.427) and in panel (b) the solution obtained considering only the points in

S′l (5.52). Notice that in the latter case only 32 data points are used in the optimization

procedure (the unused points are shown as small dots). The number of SVs drops from 49

to 5. Both solutions are contained inside an ε-tube around the real function.

data density), the value of Cl is approximately the maximum value that the solution

can assume in those regions (the Gaussian kernel maximum amplitude is equal to one,

(5.48)). For this reason, Cl should be large enough to allow the solution reaching the

maximum or minimum value of the data points inside the whole input domain. On

the other hand, a too large value of Cl could favor overfitting. Experimental results

on different data sets have suggested to choose the value of J in the interval (0, 5].

This represents a trade-off between these two requirements. However, inside the above

range, results are largely independent on the value of J .

Hence, the only parameter that cannot be determined from the data set is ε. This

should be proportional to the accuracy required for the regression, as its value is linearly

related to noise amplitude [153].
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5.2.3 Training set reduction

The drawback of the previous scheme is the total number of SVs, which is significantly

higher than in standard SVR. Moreover, in HSVR the layers with a larger value of σ

have a number of SVs similar to those layers with a smaller σ. This appears in contrast

with common sense, as fewer units should be required to realize a reconstruction at a

larger scale, but it is due to the fact that all the data points distant from the solution

by more than ε are selected as SVs (5.43). Hence, in the first layers, where the HSVR

output has a low frequency content, many data points will lie far from the computed

function and they will be selected as SVs, thus leading to an unnecessary high number

of SVs for the layer.

To avoid this, after each layer has been configured, a selection step devoted to reduce

the number of the SVs is carried out. Then, the loss function (5.39) is minimized a

second time, considering only the reduced training set to obtain the final approximation

for that layer.

To reduce the number of the SVs, it is first noticed that the distance of a training

point from the computed function measures the suitability of the function to describe

the information conveyed by that data point. In this sense, points too distant from the

solution cannot be “explained” by the solution itself and their utility can be questioned:

they can be regarded as outliers. For these reasons, an acceptable approximation of

the solution should be obtained using only those points that lie close to the solution

itself.

This intuition has been confirmed experimentally. It has been observed that the

quality of the approximation at a given scale does not degrade significantly by consid-

ering only points close to the ε-tube (cf. fig. 5.13). In particular, for the l-th layer,

let us define as S′l the set constituted only of those SVs which lie on the border of the

ε-tube and those that lie far from the computed function for less than ε/2:

S′l =
{

(xi, rl−1(xi)) s.t. |rl(xi)| − ε| < δ ∨ |rl(xi)| <
ε

2

}
(5.52)

where δ is the tolerance parameter that determines the thickness of the ε-tube margin

(5.44). It should be noticed, that S′l is produced by means of the evaluation of the

residual, rl(·), obtained when (5.39) is maximized considering all the data points (first

optimization step), while the final output of the layer and therefore the associated
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residual for that layer, is obtained maximizing (5.39) only with the points in S′l (second

optimization step).

Therefore, the configuration phase of each layer is structured in two sequential

steps: the first one provides the approximation at the considered scale considering

all the training points, while the second one realizes an efficient representation of the

approximation by considering only a selected subset of these points.

In order to cope with the diminished points density in S′l, the value of the parameter

Cl is increased proportionally in the second optimization step:

C ′l = Cl
|Sl|
|S′l|

= J std( rl−1(xi))
|Sl|
|S′l|

(5.53)

It should be remarked that, similarly to the HRBF model [59][63] (described in sec-

tion 4.1), any reconstruction error induced by the information loss due to the reduction

of the training set will flow into the residual, rl, that is used to configure the next layer

of the architecture. Therefore such error is not critical, as it will be taken care by the

next layer. The reduction procedure can be applied also to standard SVR. However,

as in standard SVR there is no chance to recover the error introduced by the pruning,

more care should be taken in the selection of the reduced training set. In section 5.2.5,

the reduction procedure is discussed and compared with pruning techniques found in

the literature [106][125].

5.2.4 Experimental results

The results obtained using the HSVR model on both simulated and real data are

reported here and compared with those obtained with standard SVR [152], in terms

of the number of SVs, the computational time, and the accuracy. The accuracy is

assessed through the root mean square error (RMSE), and the mean absolute error

(Errmean) and its standard deviation (Errstd). These are computed over a test set,

different from the training one. A third set, different from both, called validation set,

is used for choosing the optimal value of the hyperparameters, which are ε, σ, and C for

the standard SVR model, and of only ε and C for the HSVR model. For the latter, C

is set according to (5.51) and (5.53) and the value of σ for the first layer is set equal to

the size of the input domain. The validation set is used also to decide when the growth

of the HSVR model has to be stopped: no new layer is added when the validation error
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Figure 5.14: Reconstruction provided by standard SVR with the best hyperparameters

(ε = 0.05, σ = 0.022, C = 20). Notice the poor approximation on the right side of the

curve and spurious oscillations on the left.

does not decrease anymore and the last layer is discarded, as it can easily contribute

to overfitting.

The optimization problem in (5.39), that arises for both the hierarchical and the

standard SVR approach, was solved through LibCVM Toolkit Version 2.2 [164]. This

software has shown the same accuracy of SVMlight [89] (that is one of the most used

software packages for SVM) with a substantial saving of computational time. This was

measured on a machine equipped with an Intel Pentium 4, at 2.40 GHz, 512 KB cache,

and 512 MB of memory.

5.2.4.1 Regression on synthetic data

The space-varying function, h : R → R, defined in (5.46) and plotted in fig. 5.12a is

used. It is a synthetic dataset that allows to stress the limits of the single scale SVR.

The training dataset has been obtained by sampling (5.46) in 252 points such that

the sampled data density is proportional to the local frequency content, and adding

a random uniform quantity in [−0.1, 0.1] to simulate sampling error. The solution

has been evaluated using a test set and a validation set, each composed of 500 points

sampled from h(·) with a uniform distribution.

The accuracy of standard SVR was evaluated on the validation set for all the possible
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Figure 5.15: Reconstruction provided by HSVR (a) and HSVR with data points reduction

(b) with ε = 0.075. The dashed lines limit the ε-insensitive region (i.e., the data points

that lie inside this region do not increase the loss function value (5.32)).
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Table 5.1: Accuracy on synthetic dataset

Errmean Errstd RMSE #SVs Time [s]

HSVR 0.0282 0.0262 0.0385 1545 0.308

HSVR (red.) 0.0313 0.0338 0.0460 243 0.382

SVR 0.0816 0.167 0.186 149 0.451

combinations of the following values of the hyperparameters, ε, σ, and C:

ε ∈ {0.0, 0.005, 0.01, 0.025, 0.05, 0.075, 0.1, 0.2} (5.54)

σ ∈ {0.015, 0.022, 0.0313, 0.0625, 0.125, 0.25} (5.55)

C ∈ {0.5, 1, 1.5, 2, 5, 10, 20} (5.56)

and the best SVR was used in the comparison. This was obtained with ε = 0.05,

σ = 0.022, and C = 20 and it is shown in fig. 5.14. Notice the poor approximation

on the right side of the curve and the spurious oscillations on the left. These are not

present in the curve provided by the HSVR model shown in figs. 5.15.

This is supported by the quantitative data reported in table 5.1 that reports the

accuracy of the different models.

The computational time for the HSVR model is referred to the entire process of

configuring the 9 layers required before the growth stops, while for the SVR model

the configuration time does not consider the process for searching for optimum value

of ε, C and σ, but is referred only to the computation of the solution with ε = 0.05,

σ = 0.022, and C = 20.

If we considered also the search for the optimal value of the parameters, the total

configuration time would increase significantly to 43.8 s. For sake of comparison, the

configuration time for HSVR increases to 3.27 s and 4.49 s for HSVR without and with

reduction, to test the eight different values of ε.

Enlarging the search space of C up to 100,000, the accuracy of SVR improves. In

fact, the test error decreases from 0.0816 down to 0.0517, although it remains higher
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Figure 5.16: (a) Mean test error and (b) number of SVs used, as a function of ε. For

reference, in panel (a) the value of ε has been reported as a dot-dashed line.

Table 5.2: Configuration Data of the HSVR model (ε = 0.075).

HSVR HSVR red.

# Layer Errmean Errstd RMSE #SVs (tot.) time [s] (tot.) Errmean Errstd RMSE #SVs (tot.) time [s] (tot.)

1 0.479 0.333 0.583 237 (237) 0.017 (0.017) 0.520 0.302 0.602 3 (3) 0.017 (0.017)

2 0.458 0.337 0.569 240 (477) 0.02 (0.037) 0.453 0.341 0.567 4 (7) 0.018 (0.035)

3 0.412 0.368 0.552 227 (704) 0.019 (0.056) 0.436 0.361 0.566 6 (13) 0.02 (0.055)

4 0.359 0.366 0.511 220 (924) 0.02 (0.076) 0.373 0.380 0.532 9 (22) 0.021 (0.076)

5 0.294 0.367 0.470 201 (1125) 0.047 (0.123) 0.321 0.385 0.501 15 (37) 0.052 (0.128)

6 0.212 0.329 0.391 171 (1296) 0.078 (0.201) 0.237 0.344 0.418 35 (72) 0.102 (0.23)

7 0.104 0.221 0.244 131 (1427) 0.065 (0.266) 0.141 0.273 0.307 51 (123) 0.073 (0.303)

8 0.0328 0.0390 0.051 82 (1509) 0.036 (0.302) 0.0367 0.0446 0.0577 79 (202) 0.067 (0.37)

9 0.0282 0.0262 0.0385 36 (1545) 0.006 (0.308) 0.0313 0.0338 0.046 41 (243) 0.012 (0.382)

144



5.2 Multi-scale SVR

Figure 5.17: Reconstruction operated by the 1-th, 5-th and 9-th layer of the HSVR

model when all the data points are considered (dashed line) and when only the points in

S′l are considered (continuous line). The residual of each layer (i.e., the training points for

that layer) are reported as dots. A small difference between the solution obtained with

and without data point reduction can be observed. This difference becomes smaller and

smaller and in the last layer, the two curves are almost coincident.
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Figure 5.18: Evolution of the test error (Errmean) of the HSVR models as new layers

are inserted. The continuous line represents the error of the HSVR model with no data

reduction. The dashed line represents the error of the model when data reduction was

applied in all the previous layers, but not in the current one in which all the data points

are passed to the optimization procedure (1-st optimization pass). The dot dashed line

represents the error of the HSVR model when data reduction is applied to all the layers

(2-nd optimization pass is applied to the configuration of all the layers).

than that of HSVR. However, the time required to compute this solution increases

enormously to 3,129 s.

The role of ε has been investigated. As it can be seen in fig. 5.16, the test error

produced by the HSVR model is below ε for ε > 0.05. This is much smaller of the

optimal value of 0.075. This means that the data points, on average, lie inside the ε-

tube around the curve. Instead, for SVR the optimal value of ε is 0.05, which is smaller

than the test error achieved (0.0816). This means that a relatively large number of

data points are not contained inside the ε-tube as can be seen in fig. 5.14. Moreover,

as expected, the number of SVs decreases with the increase of ε.

The increase in the detail of the model is shown in fig. 5.17, where the output of three

layers is shown. Notice that data reduction has the effect of smoothing the solution in

the first layers, but smoothing tends to disappear in the last layer. This is highlighted

in fig. 5.18 where the test error obtained with data reduction is superimposed to that

obtained without data reduction. Quantitative figures are summarized in table 5.2.
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(a) (b)

Figure 5.19: Panel (a) shows the artifact (a panda mask) that has been digitized obtaining

the data for the experiment. In panel (b) the training data set is reported.

5.2.4.2 Regression on real data

Figure 5.19 shows a typical data set sampled from a real artifact (a panda mask) through

a 3D scanner [63]. As the points have been sampled from a single point of view, they

belong to a 2.5D surface that can be described as a R2 → R function and they are

therefore suitable to SVM regression. The data set is composed of 22, 000 points, of

which 18, 000, randomly chosen, are used for training, 2, 000 for validation, and 2, 000

for testing. Each coordinate of the points was normalized to fit inside [−1, 1]. Besides,

in order to limit border effects, validation and test error has been computed in the

inner region of the data set, considering only points distant from the closest boundary

by more than 0.1.

SVR was computed with all the combinations of the following values of the param-

eters (ε, σ, and J):

ε ∈ {0, 0.0025, 0.005, 0.01, 0.02} (5.57)

σ ∈ {0.188, 0.0938, 0.0469, 0.0234} (5.58)

J ∈ {0.5, 1, 2, 5} (5.59)
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(a) (b) (c)

(d) (e) (f)

Figure 5.20: Panels (a), (b), and (c) show the surfaces that determine the lowest test

error for SVR, HSVR and HSVR with reduction. The parameter used were respectively

J = 0.5, ε = 0.005 and σ = 0.0469 for SVR, J = 0.5 and ε = 0.01 for HSVR, and J = 1

and ε = 0.01 for HSVR with reduction. Although these surfaces are optimal in terms of

the test error, their visual appearance is not of good quality. A better result is shown in

panels (d), (e), and (f), for SVR, HSVR, and HSVR with reduction, respectively. In (d)

the surface obtained through SVR with a suboptimal set of parameters (J = 5, ε = 0.005,

and σ = 0.0938) is shown. In panels (e) and (f) the surface from the same HSVR models

for (b) and (c) are used, but discarding some of the last layers (one of seven for (e) and

three of ten for (f)).
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Figure 5.21: Test error (a–c) and number of SVs (d–f) used by the SVR and HSVR

model for the Panda dataset as a function of ε are reported. Results for the best, average

and worst cases are plotted. For reference, the value of ε has been reported as a dot-dashed

line.

C was set proportionally to the standard deviation of the output variable, y, of the

points through the proportionality factor J :

C = J std(y) (5.60)

similarly to (5.51).

The HSVR was computed using all the combinations of the values of J in (5.59)

and ε in (5.57). The surface associated to the lowest test error is shown in fig. 5.20a–c

for SVR and HSVR with and without reduction. However, although surface variability

lies inside the ε-tube region, the results are not nice due to high frequency variability.

A better visual appearance can be obtained only from HSVR models, discarding a few

of the last layers. This is clearly evident in fig. 5.20e–f.

The test error and number of SVs for HSVR and SVR, averaged over five different

randomizations of the data set, are reported in fig. 5.21. The best case results are

reported in table 5.3 that shows that the best test error is similar in all the three
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Table 5.3: Results for “panda mask” data set

Errmean Errstd RMSE #SVs time [s]

HSVR 0.0110 0.0115 0.0160 100 448 682

HSVR (red.) 0.0112 0.0119 0.0163 11 351 1 104

SVR 0.0111 0.0117 0.0161 12 442 382

models (all in the range [0.0110, 0.0112]). This consideration can be extended to all the

best models for each value of ε (fig. 5.21a).

On the contrary, the average and worst case test error (computed over all the

parameters combinations) are much higher for SVR than for HSVR. In fact the averaged

(worst) test error is 0.0113 (0.012), 0.0116 (0.015), and 0.0140 (0.019) for respectively

HSVR, HSVR with reduction, and SVR.

Although the test error for all the three optimal models is very similar, the config-

uration time is very different: 682 s for HSVR, 1,104 s for HSVR with reduction, and

382 s for SVR. This large difference becomes smaller when suboptimal configuration

parameters are considered. In fact, in the average cases the computational time to

configure one model is 1024 s, 1241 s, and 1093 s for HSVR, HSVR with reduction and

SVR.

The time required to explore the space of the hyperparameters has to be considered.

We remark that the dimensionality of this space is smaller for HSVR, as σ does not

need to be determined in advance. In the case here considered, 80 combinations have

been used for SVR and 20 for HSVR, with a time saving of 25.4%. In fact, for SVR

a total configuration time of 87,410 s has been used, while HSVR and HSVR with

reduction required a total configuration time of 16,845 s and 22,168 s respectively.

From figs. 11d–f and table 5.3 it is evident that HSVR uses about ten times the

SVs of SVR. However data reduction allows reducing this number slightly less than

SVR (allowing a saving of 9.61%, for the optimal case).

5.2.5 Discussion

The HSVR model is based on two key elements: a multi-scale incremental approxi-

mation and a reduction of the number of the data points passed to the optimization
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procedure and of those that contribute to the model output (the SVs).

As clearly shown in fig. 5.14 and table 5.1 the SVR with a single kernel function

is not able to perform a solution of good quality when data frequency content and

local data density is variable. In particular, spurious oscillations are produced in the

region of low frequency content when a high frequency kernel is adopted to follow

higher frequency oscillations (fig. 5.12c). In the multi-scale approach presented in this

chapter, instead, the function in the low frequency region is reconstructed by the first

layers while the higher layers improve the reconstruction of the function in the high

frequency region (fig. 5.17).

The better reconstruction achieved by HSVR does not depend on a particular value

of ε as shown in figs. 5.16a and 5.21a–c: the test error of the HSVR model is well

below the error of standard SVR for a wide range of ε values, even considering the best

combination of ε, C, and σ for SVR.

The reduction of the SVs that effectively contribute to the output of each layer

does not degrade the reconstruction (cf. fig. 5.18) and it allows to produce a very

similar output with much less SVs (243 vs. 1545 for the synthetic dataset and 11,351

vs. 100,448 for the panda mask data set). The same is true for the output of the

intermediate layers as shown in fig. 5.18 and table 5.2. As the solution accuracy does

not degrade, most of the SVs employed especially in the first layers (cf. table 5.2) are

wasted in the vain attempt of approximating details with a kernel that operates at

a too large scale. These SVs can therefore be pruned without degrading the output

quality of the model.

Figure 5.18 shows also the residual error that can be attributed to data points

reduction (this is the height difference between the error “2-nd pass” and the error

“HSVR”). This error is recovered in each next layer, as can be seen by comparing the

error produced when no data reduction is applied to the current layer, but it was applied

in all the previous layers (“1-st pass”) with that produced when no data reduction is

applied (“HSVR”): the two errors are almost coincident.

The reduction procedure is not limited to the SVs: data points are subdivided

according to (5.52) in points internal to the ε-tube, that are used to constrain the

function close to the unknown true function from which data have been extracted, and

points on the margin or external to the ε-tube, that are effectively used to represent the

solution (5.52); only these are called SVs (cf. fig. 5.13). All the data points, internal
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and not internal to the ε-tube, are passed to the optimization procedure, while only

a subset of both groups of points is passed when the reduction step is implemented

(cf. fig. 5.13). This procedure is particularly efficient when data sampling is relatively

dense; if a few data points are present and these are sparse, reduction might turn out

not as efficient.

The problem of obtaining a SVM model with few SVs has been studied in several

works [106] [72] [92] [76] [181]. These approaches can be classified into two main families.

The first redefine the optimization problem in order to control the number of SVs

inserted [72] [92]. The second family realizes the reduction of SVs in two steps: the

standard training of the SVM is performed first and then a pruning procedure is applied.

Training set reduction presented here belongs to the second family.

In [106] the set of kernel matrix row vectors is partitioned using K-means algorithm.

The pruning operates clusterwise: a vector is deleted if it differs from its orthogonal

projection in the space spanned by the others vectors of the cluster for less than a given

threshold. After the pruning the coefficients of the SVs of the model are updated in

order to recover part of the lost information. From the point of view of the ratio between

the accuracy lost and the number of SVs deleted, this approach, generally, performs

better reductions than that based on (5.52). Conversely, from the point of view of the

computational cost, the reduction based on (5.52) is convenient. The pruning method

presented in [106], in fact, requires a computational time similar to that of the training

phase, while the approach presented here requires, generally, a small fraction of the

time of the training phase (considering, also, the second step of training).

In [125] the hyperplane found by the SVM is seen from a mechanical point of view.

Each SV exerts a force on the hyperplane. The minimum of the optimization problem

determines that the system is in an equilibrium state. The pruning is operated by

substituting two SVs with a SV that exerts an equivalent force, the system is, again,

in an equilibrium state. The new SVs, generally, do not exert exactly the equivalent

force of those deleted and an approximation is used. The selection of the pairs of SV

for substitution is performed by means of a greedy heuristic procedure: the pair such

that their substitution determines the minimum deviation of the solution is selected.

The stop criterion is based on monitoring of the accuracy lost for each replacement.

When the lost accuracy is over a given threshold, the pruning procedure is stopped.

This approach has the advantage of controlling the lost accuracy of each pruning step
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but, as the previous one, it is more computational expensive than the training selection

based on (5.52).

Both the approaches [106] and [125] are applied to the classification case, but they

may be adapted to the regression case. Vice versa the pruning based on (5.52) cannot

be applied to the classification case, because it makes use of the ε-tube definition. The

pruning methods, are generally characterized, by the aim of found a good trade-off

between SVs reduction and accuracy lost. The computational time spent to find the

pruned solution can be recovered in the phase of computation of the reduced model

output. For the configuration of HSVR layers it is more important save time of the

pruning procedure than preserve the accuracy. In fact, it should be noticed that, simi-

larly to the HRBF model [59] [63], any reconstruction error induced by the information

loss due to the reduction of the training set will flow into the residual, rl, that is used

to configure the next layer of the architecture. Therefore such error is not critical, as

it will be taken care by the next layer.

Taking a closer look at fig. 5.13a and fig. 5.13b a small difference between the

solution obtained with and without data point reduction can be observed. However,

this difference is incorporated in the residual of that layer and it can be recovered by

higher layers (table 5.2). This is clearly shown in fig. 5.17. Moreover, this difference

becomes smaller and smaller as new layers are added, and, in the last layer, the two

curves are almost coincident.

This consideration is confirmed in fig. 5.20 and 5.21, where it is evident that the

model with and without reduction perform a very similar reconstruction, both from

the point of view of test error minimization (fig. 5.21a–c) and from the point of view

of visual quality evaluation (fig. 5.20e–f).

The saving in the number of SVs obtained using the data reduction, is paid with

an increase in the computational time (table 5.3). However, as shown in table 5.3, the

increase of 61.9% in the configuration time is worth a 88.7% saving in the number of

SVs. Moreover, both the number of SVs and the computational time for the two pass

optimization compares well with the corresponding figures of the traditional SVR.

In this respect, the number of layers may be critical. Different strategies can be

used to stop the learning procedure. If no a-priori information is available, the use

of validation error guarantees that a good generalization is obtained. The process of

adding new layers can be stopped when the validation error for new layers does not
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decrease anymore. Otherwise, learning can be stopped when the error on the residual

drops below a given threshold: for instance, this can be associated to measurement

noise [63]. Other criteria, depending on the applicative context, can be adopted to stop

the learning. For example, for graphical applications it is preferable an over smooth

surface (with a greater test error, fig. 5.20d–f) than a surface that tends to overfit the

data (although with a lower test error, fig. 5.20a–c). New layers can be inserted until

the reconstruction does not present over fitting and the layers performing over fitting

can be discarded. For standard SVR instead the selection of a smoother model needs

the exploration of the parameters space and a qualitative evaluation of the solution

resulting from each trial.

In the standard SVR approach, the quality of the solution depends critically on the

value of the parameters, C, σ, and ε. This makes the computation of the standard

SVR regression extremely time consuming, as the space of the three hyperparameters

should be explored with the optimization procedure.

The HSVR approach, instead, is much less sensitive fig. 5.21a–c) and its configura-

tion time is comparable to the configuration time of the standard SVR approach with

a fixed set of hyperparameters (the configuration average time for panda mask dataset

is 1024 s, 1241 s, 1093 s for HSVR, HSVR with reduction and SVR). This is due to the

strategy adopted by the HSVR model to set the parameters.

As kernels with a different σ are chosen in the different layers, the criticality in

choosing a single value of σ, adequate for the data, disappears: starting from a large

σ and halving it in each layer, guarantees that a value of σ adequate to the data is

found as shown in fig. 5.17. The hyperparameter ε is left to the optimization procedure

although it can be set according to the measurement noise on the data. The last

parameter, C, is set proportional to the standard deviation of the data points value

(5.51) through the factor J . This has been experimentally set analyzing different data

set in the range [0.1, 20], but low values of J are usually sufficient for achieving the

best results. Even if its optimal value may vary with different data sets, it has been

verified that results are robust with respect to variations of J for different data sets as

shown in fig. 5.21a–c, where best, average and worst cases are almost similar.

In principle, it is possible to realize an accurate regression of a high frequency

content function using a linear combination of large scale kernels (characterized by

low frequency content) [74]. However, in general, this result is not applicable for real
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cases, because the computational effort needed is too high. In fact, the use of large

scale kernels involve large coefficients (high value of C), which may cause numerical

instability of the solution due to numerical precision effects and noise on the input data.

Besides the configuration time tends to increase with the value of C. Hence, the use of

high value of C for real cases is almost unfeasible.

In principle, this learning scheme can work with kernels other than the Gaussians.

However, the Gaussian kernel has two main properties: the scale parameter, σ, allows

shaping the kernel such that the SVs are sensitive to different frequency ranges, and the

non orthogonality, which allows to recover in the next layers the reconstruction error

possibly left by the previous layers. Although in principle other kernels that enjoy the

above mentioned properties could be used, adequate optimization engines should be

developed, different from LibCVM Toolkit, which goes beyond the aim of this work.

The use of different kernels will be investigated in future works.

5.3 Summary

The SVR paradigm is a global approach to solve regression problems. Thanks to the

formulation as a convex optimization problem, a solution of that problem exists always

and is unique. Furthermore the solution can be found using standard optimization

software. Thanks to these features the SVM have become popular in many applicative

fields including 3D scanning.

In the standard version of the SVR the solution is computed as a linear combination

of a single kernel function. In this chapter it has been shown that this feature can limit

the accuracy of regression for dataset characterized by different frequency content in

different domain regions. The accuracy of the solution can be increased using the HSVR

model proposed here.

The HSVR performs the reconstruction using a set of standard SVR with different

hyperparameters of the same kernel functions. In this sense, HSVR can be considered

a multi-kernel approach.

In order to reduce the total number of SVs used in HSVR, another model based on

a second step of configuration for each layer, has been proposed. This version, called

HSVR Red, allows solutions characterized by a degree of accuracy comparable to that

of the HSVR and a number of SVs generally smaller than the standard SVR.
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5. HIERARCHICAL SUPPORT VECTOR REGRESSION

The HSVR and HSVR Red models have been applied to the 3D scanning problem.

The results have shown that these innovative approaches are more robust than the

standard SVR. Furthermore, the hyperparameter selection problem has been strongly

reduced. Hence the hierarchical models allow to obtain more accurate surfaces using a

faster configuration procedure.
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Conclusion

Modelling is an essential activity applied in the most part of the scientific and real-life

problems. The objective of the modelling is to obtain a simplified representation of phe-

nomena, objects, and physical processes which captures the essential relations among

the quantities and variables of interest. When the interest is oriented to the study of

a physical object, the three-dimensional digital model of the object is a representation

that is useful for several reasons.

Three-dimensional models are used in many application fields, encompassing, e.g.,

design, archeology, medicine, and entertainment. The use of digital 3D model has

various advantages. For example, in medicine the 3D models of internal organs are used

for diagnosis or to create virtual reality environments used for the training of surgeons.

The entertainment is probably the field in which the 3D models are most used: almost

all video games are based on the use of 3D models; often they are composed of digital

characters impersonating real persons, like in sport game. Also in the cinematography

the use of digital characters is constantly growing.

3D models essentially come from two distinct ways: CAD modeling in which the

model is built manually by a user and physical object measurement in which the mod-

eling is realized by means of 3D scanners. The latter is the fastest way to realize a 3D

model of a physical object. The model presents, generally, higher accuracy and more

realism with respect to that one obtained with CAD.

The output of 3D scanners is typically a noise-affected points cloud sampled on

the object surface. An important step of the process of creation of the 3D model is

the computation of a continuous description of the surface starting from the points

157



6. CONCLUSION

cloud. This step can be seen as a function approximation problem from points sampled

on the function itself. Machine learning views the function approximation as a super-

vised learning problem. The points represent a set of examples and the surface to be

reconstructed represents the process that has generated them.

The core of this thesis regards the development of innovative models for surface com-

putation based on supervised learning approaches. In particular two kinds of paradigms

for surface computation have been considered:

On-line models On-line models are particularly important for the surface reconstruc-

tion because these models allow real-time reconstruction with respect to the ac-

quisition of the points from real object. For example, in active 3D scanning where

a user drives a laser source over an artifact to sample data points over its sur-

face, a real-time feedback of the current reconstructed surface would be of great

help to sample points in the regions where the details are still missing in the

reconstructed surface. This improves the effectiveness of the scanning procedure.

Hierarchical models A hierarchical model is composed of a pool of sub-models. Each

sub-model realizes the reconstruction up to a certain scale and the output of the

hierarchical model is computed as the sum of the output of each sub-model. Hier-

archical models are important tools for surface reconstruction problems because

they, generally, allow a robust and efficient reconstruction.

The starting point of the work is represented by two approaches used for this kind

of problems: Hierarchical Radial Basis Function network (section 4.1.7) and Support

Vector Machine (section 5.1). These two paradigms have been chosen because they are

two different approaches to the problem of surface reconstruction from sampled points.

In particular the first one is a local method, as the function approximation is based on

a local averaging of the data, while the second one is a global method, for which the

surface reconstruction is formulated as an optimization problem of a functional.

In particular, the contribution of the thesis can be summarized in two key points:

the development of an innovative on-line model for Hierarchical Radial Basis Function

(HRBF) neural network [63] [17], presented in section 4.2, and the development of an

original Hierarchical model for Support Vector Machines [62] [64], called Hierarchical

Support Vectior Regression (HSVR), presented in section 5.2.
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6.1 HRBF vs. HSVR

Table 6.1: Accuracy on “panda mask” dataset

Errmean Errstd RMSE #SVs time [s]

HSVR 0.0110 0.0115 0.0160 100 448 681

HSVR (red.) 0.0112 0.0119 0.0163 11 351 1 104

HRBF 0.0112 0.0111 0.0158 14 679 49

The results obtained have shown that the on-line HRBF can effectively perform a

real-time reconstruction and the accuracy of the solution tends to the accuracy of the

HRBF model configured with batch approach. The accuracy of the two models become

comparable after the acquisition of a reasonable amount of points (4.7 and 4.8).

The results obtained with HSVR have shown that the hierarchical model allows a

more accurate and robust reconstruction due to the use of a set of kernels at different

scales. Furthermore the problem of choosing the hyperparameters is heavily reduced.

Thanks to the use of the second step of configuration for each layer, the hierarchical

model performs good approximation saving computational resources with respect to

the standard SVR model.

6.1 HRBF vs. HSVR

The techniques developed in this thesis are evolutions of two common approaches for

regression: Hierarchical Radial Basis Function Network and Support Vector Machine

for Regression. These two paradigms represent two different approaches to deal with

the problem of regression.

In HRBF the computation of the solution is based on the estimation of the weights

of each unit computed as weighted average of the points that lie in a neighborhood of

the unit self. The model can be considered a local approach because is based on local

averaging.

In SVR the computation of the solution is formulated as an optimization problem.

A functional, composed of two terms, is minimized in order to find the solution: the

first term controls the training error and the second controls the smoothness of the

solution. As the solution is performed by the global optimization of a functional, this

model can be considered a global approach.
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The local approaches have the advantages that being based on local averaging they

do not need iterative configuration procedures. This, in practice, means that the con-

figuration of local models is, generally, faster than the configuration of global models.

This is confirmed by the data in table 6.1: the time for the configuration of the HRBF

is 7.20% of the time of the HSVR and 4.44% of the time of HSVR red.

On the other hand the local approaches are more sensitive to the presence of outliers.

A local estimation can be strongly influenced by the presence of an outlier. Vice versa

the global training error can be slightly changed by the presence of the same outlier.

The local approaches are, also, more sensitive to the sparseness of the data. Sparser

are the data fewer elements are used in the local averaging. This means less robust

estimations. This is the reason whereby, generally, the local approaches do not show

good performances for problems with many input variables. Typically, the sparseness

of the data increases exponentially with the increase of the number of input variables.

In particular the SVR (and HSVR) model has the advantage that the computational

complexity of the configuration phase does not depend on the number of input variables.

The number of input variables is hidden by the use of the kernel functions. The only

information used in the configuration procedure is the value of the kernel function for

each pair of training points. It can be computed once before the optimization of the

functional.

With the HRBF model, instead, when the number of input variables increases, the

computational complexity increases as well. For a large number of input variables both

the computation of the positions of the units’ centers and distances between points and

units centers imply more complex geometrical operations. Furthermore, for two input

variables the on-line procedure approximates the influence region of each Gaussians as

a square region (close neighborhood); only the points that lie in this region are used for

the estimate of the unit’s weight. This approximation is not suitable for a large number

of input variables. In fact, the difference between the volume of a hypercube (close

neighborhood) and the volume of the circumscribed hypersphere (influence region)

grows exponentially with the number of input variables.

If the reconstruction is performed for the case R2 → R and the dataset is sufficiently

dense, both methods reach the same level of accuracy (cf. table 6.1). Despite the fact

that, for the two approaches, the test error is very similar, from the point of view of

the visual quality, the surface computed by the HRBF model is quite better than that
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(a)

(b)

Figure 6.1: (a) The surface computed by the HSVR model. (b) The surface computed

by the HRBF model.

161



6. CONCLUSION

computed by HSVR (fig. 6.1). This is due to the strategy used for placing the units.

In the HSVR approach the position of the units is determined by the position of the

training points, instead in HRBF the units are placed on regularly spaced grid for each

layer. Hence, in HRBF the input space is covered uniformly by the units, and this,

generally, improves the smoothness of the reconstruction.

6.2 Future works

Three possible research directions of the thesis are presented in this section. The

first one regards to the development of on-line models for Hierarchical Support Vector

Machines. This could be interesting for the 3D scanning problems but, also, for all the

applications in which the solution has to be performed in real-time with respect the

data acquisition.

The second extension is relative to the implementation on parallel hardware of

the on-line hierarchical models. Exploiting the computational performances of the

parallel hardware some approximations needed in the on-line model could be eliminated

improving the accuracy of the models.

The third possible extension is the development of a Hierarchical Support Vector

Machine for the classification problem. This problem presents many features in com-

mon with the regression case. Also in classification the solution is obtained using the

mapping performed by the kernels function. Hence, using a set of kernels at differ-

ent scales can be profitable also for this kind of problems. In the following the three

research direction are discussed.

6.2.1 On-line HSVR

When the entire dataset is not available all together but the data comes sequentially, the

HSVR model cannot be applied efficiently. In order to update the already configured

model with respect to new points the entire configuration procedure has to be repeated.

This is generally not suitable for the cases in which the configuration of the model has to

be performed in real-time with respect to the data acquisition. On-line configurations

of SVM models for classification have been proposed in [159] [44]. More recently on-line

configurations of SVR models have been developed [109] [184].
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In [109] an incremental algorithm based on updates of SVR approximation whenever

a new sample is added to the training set is proposed. The weight associated to the new

point is computed in a finite number of discrete steps until it meets the KKT conditions,

while ensuring that the existing data continue to satisfy the KKT conditions at each

step.

The on-line configuration of HSVR has to consider that the updating of a layer

determines the change of the residuals used in the configuration of the next layers.

The procedure of updating, hence, has to be repeated for each layer. This is very time

consuming and some approximation strategies have to be developed in order to allow

real-time configuration.

Since the good performances of HSVR, procedures like that one proposed in [109]

should be investigated to realize the on-line configuration of hierarchical model too.

6.2.2 Implementation on parallel Hardware of On-line hierarchical

models

The surface reconstruction is, generally, a computationally expensive procedure: using

strategies to save computational time can be important. The computational power

saved can be devoted to improve the accuracy of the solution. A common way to

perform a task in less time is, if possible, dividing it in subtasks and perform them

simultaneously.

Parallel computing is the simultaneous use of multiple computational resources to

solve a computational problem. In fact, often, a computational task can be divided

into small subproblems and they can be solved concurrently. Parallel processing is an

established approach for high-performance computing. The usage of highly parallel

hardware has become commonplace in many areas, encompassing, e.g., high-energy

physics, image processing, multimedia and life science. The development of parallel

architectures and tools for parallel processing continues to challenge computer architects

and software engineers. The parallel computing offers to scientist an effective tool to

solve complex problems.

An example of popular parallel hardware used in research community is the Graph-

ics Processing Unit (GPU) [108]. GPU is a dedicated graphics rendering device for a

personal computer, workstation and game console. GPUs are co-processors that have
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been heavily optimized for computer graphics processing. Computer graphics process-

ing is a field dominated by data parallel operations, particularly linear algebra matrix

operations. These chips are not only a powerful graphics engine but they are, also,

high parallel programmable processors. Furthermore, the GPUs are, nowadays, the

most powerful computational hardware for dollar present on the market [128] [129].

The GPU’s rapid increase in both programmability and capability has brought the

research community to use these systems to solve many kinds of problems.

The HRBF configuration procedure, both on-line and batch, is characterized by

local operations, which can be performed in parallel. If the configuration of a layer

is considered, the estimation of the weights of the units can be realized completely in

parallel because the estimates are independent among each other.

The use of GPUs can then be well applied to the HRBF model. Furthermore for the

3D scanning, the GPU can be used both for the configuration of the model parameters

and for the rendering of the surface computed by the model. Some preliminary results

seem to be satisfactory and promising.

The configuration procedure of the SVR is characterized by the minimization of a

convex problem. The optimization is performed on the space of the coefficients of input

points. This optimization is generally realized using Sequential Minimal Optimization

(SMO) that performs the optimization considering two coefficients at a time and freez-

ing the others [43]. Despite the fact that this formulation cannot be implemented on

parallel hardware, some variants of the SMO algorithm have been proposed and they

have been implemented on parallel hardware [36] [34]. The implementation presented

in [34] has been realized for CUDA architecture and shows a speed-up of 10 to 70 times

over libSVM (one of the most popular SVM implementation).

Since the good results obtained with the CUDA architecture for SVM, an imple-

mentation of HSVR (and On-line HSVR) on CUDA may be interesting.

6.2.3 Hierarchical Support Vector Machine for Classification

The most works in literature regarding the Support Vector Machines are relative to

their use for classification problems. As in the regression case the solution is computed

as linear combination of a single kernel function. Also in this case one of the most

common kernel functions is the Gaussian. The benefits found by the use of hierarchical

model for regression could be well applied for the classification case.
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Obviously some adaptations in the hierarchical scheme have to be made. For exam-

ple the means of the residual in classification case is strongly different. In regression it

is clear that the difference between the output and the target value can be considered

as reconstruction error. This error can be directly used as input for the next layer.

In multi classification case the error cannot generally be measured as the difference

between predicted class and real class. This difference can be used as measure of error

just in rare cases, for example, if a particular correlation between the labels of the

classes and the closeness (from a geometric point of view) of the classes themselves is

present.

It is noted that SVM algorithm for classification solves just binary classification.

The extension to the multi classification case is performed transforming the multi clas-

sification task in a binary classification. This is obtained computing for each class a

classification of the kind: the selected class vs. all the others. In this way it is possible

to compute a multi classification using a binary classification algorithm.

Considering the hierarchical model for binary classifiers, the residual of each layer

will be 0 for points that are correctly classified and +1 or −1 otherwise. Should the

examples already correctly classified be used for the configuration of the next layer?

This is the first problem that the hierarchical model has to solve. Using only examples

misclassified in the previous layer would decrease the dataset size. The consequence of

that may be a decrease of the configuration time and an increase of the classification

error due to the lack of important training input. The second problem is how to use the

information of misclassification of the examples for the configuration of the next layer.

The last problem regards the computation of the output of the hierarchical model. In

the regression case the output is merely the sum of the outputs of each layer, but in

this case probably another strategy should be developed.

Since the absence of the ε hyperparameter for SVR classification, if the hyperpa-

rameters reduction of HSVR (from (ε, C, σ) for SVR to (ε, J) for HSVR) is confirmed

also in the classification case, the model selection should be performed only on J pa-

rameter. This would determine a great improvement in the computational time needed

to find the best solution.
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α-shape The α-shape is a generalization of Delaunay triangulation [14]. The α-shape

of a set of points P is obtained from its Delaunay triangulation removing the

elements (edges, triangles and tetrahedrons) that cannot be inscribed in a

sphere of radius α.

Cross-validation The cross-validation is a technique used to estimate the predictive

performance of a model. A dataset is partitioned into two subsets. The

model is configured with one of the subsets and it is evaluated with the other

one. The process is iterated on several partitioning. The model performances

are evaluated averaging the results of the iterations.

Convex hull The convex hull of a set of points P ⊂ RD is the intersection of convex

subsets of RD that contain P . For a finite set of points in R2, the convex

hull is the convex polygon of minimum area that contains the points. The

vertices of convex hull are a subset of P .

Voronoi diagram The Voronoi diagram of a set of points P ⊂ RD is the partition

in regions determined by P , such that the region corresponding to p ∈ P

contains all the points of RD closer to p than any other points of P .

Genus A topologically invariant property of a surface defined as the largest number

of non intersecting simple closed curves that can be drawn on the surface

without separating it. Roughly speaking, it is the number of holes in a

surface.

Manifold A manifold is a topological space which is locally Euclidean (i.e., around

every point, there is a neighborhood which is topologically the same as the

open unit ball in Rn).
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Marching Cubes The Marching Cubes [107] is an algorithm for the approximation of

isosurface in volumetric data. Each cube is characterized by the values of the

vertices that represent the voxel. For a user defined threshold, if a cube has

some vertices over threshold and some other under threshold, the isosurface

of value equal to threshold pass through the cube. Determining the vertices

of the cube that are intersected by the isosurface, it is possible to create

triangular patches that divide the cube in regions internal and external to

the isosurface. The representation of the surface is then generated connecting

the obtained triangular patches.

Octree An octree is a tree data structure where each node has eight children. Each

child represents an eighth of the volume of the parent node. It is a data

structure used for the search of points belonging to a region of the 3D space.

This structure allows a logarithmic access to the data of the set.

Delaunay triangulation The Delaunay triangulation of a set of points P is com-

posed by triangles (tetrahedrons in three dimensions) that have as vertices

the points of P , such that there are not other vertices lying in the spheres

circumscribed to the triangles.
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[141] L. Rejtö and G. Walter. Remarks on projection pursuit regression and density

estimation. Stochastic Anal. Appl., 10:213–222, 1992. 69

[142] C. Roosen and T. Hastie. Automatic smoothing spline projection pursuit. Journal

of Computational and Graphical Statistics, 3:235–248, 1994. 69

[143] J. Rossignac. Edgebreaker: Connectivity compression for triangle meshes. GVU

Technical Report GIT-GVU-98-35, 1998. 56

[144] G. Roth and E. Wibowoo. An efficient volumetric method for building closed

triangular meshes from 3-d image and point data. In Graphics Interface, pages

173–180, 1997. 40

[145] A. Rubaai, R. Kotaruand, and M.D. Kankam. Online training of parallel neural

network estimators for control of induction motors. IEEE Transaction on Industry

Applications, 37(5):1512–1521, 2001. 10

181



REFERENCES

[146] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal represen-

tations by error propagation. Parallel Distributed Processing: Explorations in the

Microstructure of Cognition, 1:318–362, 1986. 74

[147] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy. Real-time 3d model acquisition. In

Proceeding of the, pages 438–446. ACM Press, 2002. 10, 30

[148] D. Saad. Online Learning in Neural Networks. Cambridge University Press, 1998.

10

[149] R. M. Sanner and J. E. Slotine. Gaussian networks for direct adaptive control.

IEEE Transactions on Neural Networks, 3(6):837–863, 1992. 81, 114

[150] T. Schreiber and G. Brunnett. Approximating 3d objects from measured points.

In Proceedings of 30th ISATA, 1997. 42

[151] P. Schroder and W. Sweldens. Spherical wavelets: Efficiently representing func-

tions on the sphere. In SIGGRAPH 95 Conference Proceedings, pages 161–172,

1995. 51

[152] A.J. Smola and B. Schölkopf. A tutorial on support vector regression. Statistics

and Computing, 14:199–222, 2004. 117, 140

[153] A.J. Smola, N. Murata, B. Schölkopf, and K.-R. Müller. Asymptotically op-

timal choice of ε-loss for support vector machines. In Proceedings of the 8th

International Conference on Artificial Neural Networks, Perspectives in Neural

Computing, pages 105–110. Springer Verlag, 1998. 138

[154] D. F. Specht. Probabilistic neural networks. Neural Networks, 3:109–118, 1990.

81

[155] M. Stitson, A. Gammerman, V. Vapnik, V. Vovk, C. Watkins, and J. Weston.

Support vector regression with anova decomposition kernels. Advances in Kernel

MethodsSupport Vector Learning, pages 285–292, 1999. 118

[156] W. Sweldens. The lifting scheme: A new philosophy in biorthogonal wavelet

constructions. Wavelet applications in signal and image processing III, volume

2569 of Proceedings of SPIE, pages 68–79, 1995. 77

182



REFERENCES

[157] W. Sweldens. The lifting scheme: A custom-design construction of biorthogonal

wavelets. Appl. Comput. Harmon. Anal., 3(2):186–200, 1996. 77

[158] W. Sweldens. The lifting scheme: A construction of second generation wavelets.

SIAM J. Math. Anal., 29(2):511–546, 1997. 77

[159] N. A. Syed, H. Liu, and K. K. Sung. Incremental learning with support vector

machines. In In Proceedings of the Workshop on Support Vector Machines at the

International Joint Conference on Artificial IntelligenceIJCAI-99, 1999. 162

[160] R. Szeliski and D. Tonnesen. Surface modeling with oriented particle systems.

Computer Graphics, 26(2):185–194, 1992. 44

[161] Yaohua Tang, Weimin Guo, and Jinghuai Gao. Efficient model selection for sup-

port vector machine with gaussian kernel function. In Computational Intelligence

and Data Mining, 2009. CIDM ’09. IEEE Symposium on, pages 40–45, 2009. 137

[162] P. Taylan and G.-W. Weber. Multivariate adaptive regression spline and con-

tinuous optimization for modern applications in science, economy and techology.

Technical report, Humboldt Universitaet Berlin, 2004. 71

[163] D. Terzopoulos and D. Metaxas. Dynamic 3d models with local and global de-

formations: deformable superquadrics. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 13(7):703–714, 1991. 45

[164] I.W. Tsang, J.T. Kwok, and Pak-Ming Cheung. Core vector machines: Fast

svm training on very large data sets. Journal of Machine Learning Research, 6:

363–392, 2005. 141

[165] G. Turk and M. Levoy. Zippered polygon meshes from range images. In Computer

Graphics, 28(Annual Conference Series), pages 311–318, 1994. 53, 55

[166] R. Vaillant and O. Faugeras. Using extremal boundaries for 3d object modelling.

IEEE Trans. Pattern Analysis and Machine Intelligence, 2(14):157–173, 1992. 24

[167] V. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1989. 9, 118

[168] V. Vapnik and A. Chervonenkis. Theory of pattern recognition. Nauka, Moscow,

1974. 117, 118

183



REFERENCES

[169] V. Vapnik and A. Lerner. Pattern recognition using generalized portrait method.

Automation and Remote Control, 24:774–780, 1963. 117

[170] D. Visintini, A. Spangher, and B. Fico. The vrml model of victoria square in

gorizia (italy) from laser scanning and photogrammetric 3d surveys. Proc in

Web3D 2007, pages 165–169, 2007. 27

[171] Dong Wang, Xiang-Bin Wu, and Dong-Mei Lin. Two heuristic strategies for

searching optimal hyper parameters of c-svm. In Proceedings of the Eighth In-

ternational Conference on Machine Learning and Cybernetics, pages 3690–3695,

2009. 137

[172] Zhe Wang, Songcan Chen, and Tingkai Sun. MultiK-MHKS: A novel mul-

tiple kernel learning algorithm. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 30(2):348–353, 2008. ISSN 0162-8828. doi: http://doi.

ieeecomputersociety.org/10.1109/TPAMI.2007.70786. 134

[173] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning Journal, 8(3),

1992. 80

[174] S. Weiss and N. Indurkhya. Optimized rule induction. IEEE Expert, 8(6):61–69,

1993. 66, 67

[175] S. Weiss and N. Indurkhya. Rule-based machine learning methods for functional

prediction. Journal of Artificial Intelligence Research, 3:383–403, 1995. 66, 67,

68

[176] C. Wohler. 3D Computer Vision: Efficient Methods and Applications. Springer,

2009. 21

[177] R. J. Woodham. Photometric method for determining surface orientation from

multiple images. Optical Engineering, 19(1):139–144, 1980. 32

[178] C. Wust and D. W. Capson. Surface profile measurement using color fringe

projection. Mach. Vision Appl., 4:193–203, 1991. 30

[179] R. Yang and P. K. Allen. Registering, integrating and building cad models from

range data. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA-98), pages 3115–3120, 1998. 54

184



REFERENCES

[180] A. L. Yuille. A computational theory for the perception of coherent visual motion.

Nature, 333:71–74, 1988. 80

[181] X. Zeng and X. Chen. Smo-based pruning methods for sparse least squares

support vector machines. IEEE Trans. on Neural Networks, 16(6):1541–1546,

2005. 152

[182] H. Zha, T. Hoshide, and T. Hasegawa. A recursive fitting-and-splitting algorithm

for 3-d object modeling using superquadrics. In Proceedings of the International

Conference on Pattern Recognition, volume 1, pages 658–662, 1998. 47

[183] S. Zhang, D. Royer, and S. Yau. Gpu-assisted high-resolution, real-time 3-d shape

measurement. OPTICS EXPRESS, 14(20):9120–9129, 2006. 30

[184] Y. Zhenhua, F. Xiao, and L. Yinglu. Online support vector regression for system

identification. Advances in Natural Computation, 3611:627–630, 2005. 162

185


	List of Figures
	List of Tables
	1 Introduction
	1.1 From real object to digital model
	1.2 The reconstruction of a 3D model
	1.3 The 3D surface reconstruction from sampled points
	1.4 Objectives of the thesis
	1.5 Thesis structure

	2 The digitization process
	2.1 Acquisition
	2.1.1 Contact 3D Scanners
	2.1.2 Non-contact 3D Scanners
	2.1.3 Optical 3D Scanners
	2.1.3.1 Passive Systems
	2.1.3.2 Active Systems

	2.1.4 Hybrid Techniques
	2.1.5 Evaluation of 3D systems

	2.2 Reconstruction
	2.2.1 Reconstruction from points
	2.2.2 Volumetric methods
	2.2.3 Function approximation
	2.2.4 Multiresolution representation
	2.2.5 Integration

	2.3 Optimization
	2.4 Summary

	3 Regression
	3.1 Parametric and non-parametric approaches
	3.2 Instance-based regression
	3.3 Locally weighted regression
	3.4 Rule induction regression
	3.5 Projection pursuit regression
	3.6 Multivariate Adaptive Regression Splines
	3.7 Artificial Neural Networks
	3.8 Wavelet regression
	3.9 Summary

	4 Hierarchical Radial Basis Functions Networks
	4.1 Batch HRBF
	4.1.1 Gaussian Regular RBF network and Gaussian Filter
	4.1.2 Gaussian Filter
	4.1.3 Regular continuous RBF network
	4.1.4 Regular discrete RBF network
	4.1.5 Hierarchical approach
	4.1.6 Generalization: non regular noise-affected data
	4.1.7 Batch HRBF configuration algorithm
	4.1.8 Extension to the two-dimensional case
	4.1.9 Batch HRBF network approximation properties

	4.2 On-line HRBF
	4.2.1 First Learning Phase: Updating of the Parameters
	4.2.2 Second Learning Phase: Splitting
	4.2.3 Proof of convergence
	4.2.4 Experimental results
	4.2.5 Comparison with the batch HRBF
	4.2.6 Discussion

	4.3 Summary

	5 Hierarchical Support Vector Regression
	5.1 SVM
	5.1.1 Linear classification
	5.1.2 Soft margin classification
	5.1.3 Non-linear classification
	5.1.4 Kernel
	5.1.5 Linear regression
	5.1.6 Non-linear regression

	5.2 Multi-scale SVR
	5.2.1 Single kernel regression
	5.2.2 Multi-kernel by hierarchical structure
	5.2.3 Training set reduction
	5.2.4 Experimental results
	5.2.4.1 Regression on synthetic data
	5.2.4.2 Regression on real data

	5.2.5 Discussion

	5.3 Summary

	6 Conclusion
	6.1 HRBF vs. HSVR
	6.2 Future works
	6.2.1 On-line HSVR
	6.2.2 Implementation on parallel Hardware of On-line hierarchical models
	6.2.3 Hierarchical Support Vector Machine for Classification


	Glossary
	References

