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Introduction

In this thesis we study the geometry of submanifolds of the conformal sphere
Q,, focusing, in particular, on surfaces immersed in Q4.

In Chapter 1 we summarize the basic definitions and facts about the Mobius
group Méb(n), its Lie algebra and its Maurer-Cartan form ®. We also define
the conformal sphere, realized as a homogeneous space for the Mobius group.

Chapter 2 is devoted to the study of the general theory of submanifolds of
the conformal sphere. Let f: M — @, be an immersion of an oriented surface
in Qu, let e : U C M — Mob(n) be a local Darboux frame field along f and
¢ = e*® the pull-back of the Maurer-Cartan form on M. Then ¢ satisfies the
Maurer-Cartan structure equations

doy = —dc N ¢y
and the following conditions:

(i) moe= fly, 7 being the projection 7 : M6b(n) — @, sending a matrix
in M6b(n) to the projectivization of its first column;
(ir) @5 = 0;
(iii) hgy = 0, where hg;, symmetric in the lower indices, are the coefficients of
¢$ in the local coframe {(bf)}, that is ¢ = hj} %.

Every immersion admits a Darboux frame, and such frames determine a splitting
of the form ¢, enabling us to define a natural Cartan connection on M and a
Riemannian vector bundle over M, called the normal bundle N, locally spanned
by the columns {e, }.
Moreover, a submanifold of @, is totally umbilical, i.e. h{; = 0 for every a, 1, j,
if and only if there exists Q,, C @y, such that f(M) C Q.

In Chapter 3 we introduce the conformal Grassmannian of s-planes in R*12,
Qs (I[{”*Q), defined as the orbit of the point O = [g,] of the Grassmann bundle,
with respect to the left action (by matrix multiplication) of the group Mob(n),
{e4} being the standard basis of R"*2. Q, (]R"+2) can be seen as a homoge-
neous space for Méb(n) and can be endowed with a natural Kéhler-Lorentzian
structure. Particular attention is paid to the case s = 2, since in this case we
provide a holomorphic embedding of Qs (IR”“) into a quadric in ]Pg“.

Chapter 4 focuses on the study of surfaces in Q4. With respect to a Dar-
boux frame e, it is a natural, as well as useful, technique to consider the Hopf
transform of the symmetric matrices (hg;), denoted with L and defined as

L™ = §(h11 — h3y) — ih{y.
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Although the Hopf transforms L% strongly depend on the choice of the Dar-
boux frame, through them we can define the following real 2-forms, which are
independent of the choice of a particular Darboux frame, and therefore globally
defined on M:

wi = L £iL* "0} A 2,
w = (L + L") ¢ A 65,
0= —i(L?’F - L4ﬁ) &L A 2.

These forms are related by the equality

W =w+ F 1M,

and are significant in the study of the geometry of the immersed surface M.
We will say that f is £ isotropic if, respectively, wy = 0.
As for the form w, it allows to define the Willmore functional of the immersion

f as
WK(f):/KW

where K C M is compact. f is said to be a Willmore surface if, for any compact
set K C M, it is a critical point of the Willmore functional Wi.

Lastly, if N indicates the normal bundle introduced in Chapter 2, then 7 is
connected to the curvature Ky of such bundle, in that

n=Knoy A bg.

As an immediate application of these formulae we obtain Theorem 4.1, which
states that, in the case of M compact and denoting W (f) := Wi (f),

WmﬁA%ﬂwm

where x(N) is the Euler number of the bundle N. In particular, if M is a
compact =+ isotropic surface, then the Willmore functional is quantized.
Another application of the above formulae is Corollary 4.2, which states that if
M is compact, then

/ wi > +21x(N)
M

equality holding if and only if f(M) is a conformal 2-sphere Q2 C Q4.

In order to further investigate the geometry of surfaces in @4, we need to
introduce the conformal equivalent of the Gauss map in the Riemannian setting.
This and many other concepts and results studied here have been introduced
in the study of minimal surfaces in the Riemannian four-sphere and even in
oriented Riemannian four-manifolds in general. Two interesting papers in this
direction are [10] and [5].

Given an immersed surface f : M — @4, we can define its conformal Gauss map
vf: M — Q>(RY) as the map associating p € M to the 2-plane [es, e4],,, where
e is any Darboux frame defined in a neighbourhood of p.

Since dimg M = 2, it makes sense, even in the conformal setting, to ask if and
when the conformal Gauss map -y is holomorphic, antiholomorphic or harmonic
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and it was first proved in [11] that -y, is harmonic if and only if f is Willmore.
Here we also prove the remarkable fact, stated in Theorem 4.3, that v, is &
holomorphic (that is, holomorphic or antiholomorphic) if and only if f is F
isotropic.
In the proof of this latter result, certain important quantities are involved,
namely
k= %(p‘f‘ —ipy),
where pj! are the coefficients of #° with respect to ¢k, that is ¢0 = p?qﬁ’g.
Under the following condition on k:
Iy e Ll (M) suchthat |k°+ik?| <y|L? +iLl*|  ae. (1)

for some p > 2, we prove that the function ‘L3 + iL4| is of analytic type, i.e.
it either vanishes identically or has isolated zeros. Therefore we have that if
f: M — Q4 is an immersion satisfying (1), then either 7, is = holomorphic
or the set Z+ of F isotropic points of M is discrete. This result is stated in
Proposition 4.6.
Condition (1) is very natural in this setting because it allows to employ classical
techniques such as Cauchy-Riemann inequalities and Carleman-type estimates.
An advantage of these results is that they can be combined with classical index
theorems for vector fields and, more generally, for sections of suitable vector
bundles over M. Indeed, as a first result, the same technique, applied to a
slightly more general context, provides, in the case of M compact and not
+ isotropic, an upper bound on the Euler characteristic of M, as proved in
Theorem 4.8.

Later on, we consider the notion of S-Willmore surface, first introduced by
Ejiri in [7]. In our setting, with respect to a Darboux frame along f, the notion
corresponds to the two following conditions being fulfilled on M

Ky 7& 0,

a1 E(BPL — K L)@ o ¢ =0,
where ¢ = ¢ + i¢Z is the (1,0)-form defining the complex structure of M.
Ejiri proved that, in the Riemannian setting, an S-Willmore surface is a Will-
more surface; this holds true also in our setting, as proved in Proposition 4.11.
Moreover, in Proposition 4.12 we prove that if f : M — Q4 is a + isotropic
immersed surface, then f is S-Willmore if and only if Ky # 0 on M. In Propo-
sition 4.13 we also deduce that if f : M — @4 is an immersion which satisfies
condition (1), without umbilical points and such that the set of 4 isotropic
points is not discrete, then f is S-Willmore.

Defining pf; as follows,

PEeds = dpft — pESE + P 85 + 20700 — hilief,
we consider a condition similar to (1):

Fy e L} (M) suchthat |p},L*—ppL?| <y|k°L* — K'L?|  ae. (2)

loc

for some p > 2 and in Theorem 4.14 we prove, using once again the aforemen-
tioned classical techniques, that if f : M — @4 is an immersion such that (2)
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holds, then either a;; = 0 or its zero set is discrete. In this latter case, for M
compact we have

where z(aq) is the sum of the orders of the zeros of ;.

In particular, if M is a Willmore surface, condition (2) is automatically satisfied,
and in fact in this case we prove in Proposition 4.16 that «; is a holomorphic
section of the vector bundle ®3 T*M™0  Moreover, if M is a topological
2-sphere, then a; = 0.

The last part of the thesis deals with the following problem: instead of con-
sidering immersions of M in @4, and associating to them their conformal Gauss
maps, we start from a map v: M — Oy (IE{G) and, under certain suitable con-
ditions, we retrieve a (4-valued map, called J,, whose conformal Gauss map,
where defined, is exactly the original map 7. The map J, is not necessarily an
immersion, but it is a weakly conformal branched immersion, and its conformal
Gauss map can be continuously extended at the branch points.

In this way we establish a bijection between — isotropic, non totally umbilical,
weakly conformal branched immersions f : M — @4, whose conformal Gauss
maps can be continuously extended at the branch points, and non constant,
holomorphic, totally isotropic maps v : M — Qs (Rﬁ) with non constant associ-
ated map J,. The correspondence is realized via the conformal Gauss map and
the result is stated in Theorem 4.17.

This result is further extended so as to include the totally umbilical surfaces. To
this end we introduce an appropriate Grassmann bundle, called Q2(Q4), defined
as the orbit of a fixed point of the product manifold Q4 x O- (]RG) with respect
to the natural left action (defined componentwise) of the group Mob(4). Q2(Q4)
can again be seen as a homogeneous space for M6b(4) and has a natural inte-
grable complex structure. The result we obtain, stated in Theorem 4.20, is that
there is a bijection between — isotropic, weakly conformal branched immersions
f: M — @4, whose conformal Gauss maps can be continuously extended at the
branch points, and holomorphic maps I' : M — Q5(Q4), solutions of a suitable
Pfaffian system.



Chapter 1

The Mobius group and the
conformal sphere

1.1 The Mobius group

We start by giving an outline of the construction of the conformal sphere @,
and of the Mébius group. For further details see [14], [13].
Throughout this chapter we shall use the following index convention:

0<a,b,...<n+1, 1<AB,...<n

On R"™*2, consider the standard basis {¢,} and the Lorentzian inner product
defined in the usual way: if v = v%, and w = w®¢,, then

-1 0 0 w®
(v,w) = (vo,vA,v”H) 0o I, 0 w?
0 0 1 wntt

We perform the following change of basis: we set

1 1
No = 5(80 - 57L+1)7 NA = €A, n+1 = ﬁ(‘go + 5”+1)'

In this way the vectors ng and 1,41 are light-like and, with respect to this new
basis, the Lorentzian inner product has the following representative matrix:

0
s= o 5, o |. (1.1)
0

We denote by L the light cone, the set of light-like vectors, that is
L={zeR"?|(z,z)=0};
setting, as before, v = x%n, we can write

L= {veR"?|-2:%"" + 2% =0},
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while the positive light cone is
£t ={verl|z®+2""" >0}

We consider the canonical projectivization p : R"*2 — IP%+1 with homogeneous
coordinates defined with respect to the new basis {7,}, i.e. the homogeneous
coordinates of the projective class of the vector v = x%, are (z° : x4 : z"+1).
We let @,, denote the Darboux hyperquadric, namely the projectivization of the
positive light cone:

Qn:=PLT C ]P%"H;

it is trivial to see that the projective hyperquadric @,, is diffeomorphic to S™,
an explicit diffeomorphism being given by § : Q,, — S™, defined as

2L — o0 2r4
. t
§: [x] — (2xn+1+x072$n+1+x0>, (1.2)

where the square brackets indicate the projective class identified by € R*+2.
A standard way of immersing R™ in @),, is through the Dirac-Weyl chart x :

R™ — @, defined as
1
X T (l:xA:2z|2>.

Note that [no] and [1),+1] belong to Q,,, while none of the [4] does. Furthermore,
the origin of R™ is sent by x to [no], while 6([no]) = *(—1,0,...,0) = S, the south
pole of S™, and §([n,+1]) = ¥(1,0,...,0) = N, the north pole of S™. Moreover,
it is immediate to see that y(R™) = Q,, \ {[7n+1]} and § o x = o 5", the inverse
of the stereographic projection from N, so that [n,+1] can be regarded as the
point at infinity of R"™.

Now, the group of projective transformations that fix @, is the projectiviza-
tion of the group

I'={G e GL(n+2)|'GSG = \S for some X > 0},

that is, the quotient of I" with respect to the center R*I of GL(n + 2). The
quotient PT" is trivially isomorphic to the group

O(n+1,1) = {G € GL(n+2) | 'GSG = S}.

This group has four connected components, according to the sign of the deter-
minant and whether the positive light cone is sent onto itself or not. We are
only interested in the identity component, that is

{GeOMm+1,1)|detG=1, GLT = LT},

because these transformations can be verified to be the ones that correspond
exactly to the orientation preserving conformal diffeomorphisms of S”, endowed
with its standard metric, the one induced by the inclusion in R**!. We can
therefore set

Definition 1.1. The Mébius group is the Lie subgroup of GL(n + 2) defined

by
Méb(n) = {G € O(n+1,1) |detG =1, GLT = L1},
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1.2 The Lie algebra of the Mobius group

We will now briefly study the structure of Mob(n) as a Lie group. The Lie
algebra of Mob(n), which we shall denote by mob(n) is trivially the vector
space of the matrices that satisfy

AS + SA =0,
that is
—a 'w 0 a€R,
mob(n) = v D w Deo(n) ;;
0 ' a v,w € R"

thus it can be split as mob(n) = g_1 @ go ® g1, where

0 0 O 0 *w 0
g_1= v 0 0 v e R g1 = 0 0 w w e R”
0 v 0 0 0 O
—a 0 0
a € R,
8o = 8 1092 D € o(n)

The vector space mob(n) is obviously 3(n + 1)(n + 2)-dimensional and a basis
is given by the following matrices

1 0 O 0 0 0
P(O) = 0 0 0 y P(A,O) = €A 0 0
00 -1 0 teq O
0 teq O 0 0 0
Poay=(0 0 ea |, Papy=( 0 Dap 0 A> B,
0 0 0 0 0 0

(1.3)

where e is the A-th vector of the canonical basis of R™ and {Da g} ,. g is the
standard basis for the vector space of skew-symmetric matrices, i.e. D4 p is
defined as
1 if a=A b=B
(DAvB)Z: -1 if a:B, b=A
0 otherwise.

The Maurer-Cartan form of the Mobius group is the mob(n)-valued 1-form de-

fined as follows: given any G € M&b(n) and denoting by L¢ the left translation
on Méb(n), then, for every X € TaMob(n),

Pe(X) = Lg-1.cX.

From its very definition, one can easily check that ® is left invariant and that
its expression with respect to the basis (1.3) is the following

=Py & Poy+ Y Plas ® P + 2 |[Piao) © Pao) + Ploay ® Po.a)
B<A A
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where, if X € méb(n), X indicates the vector field on Mob(n) defined by left
translation of X, and

Py, {P&,B)}B<A» Plaoy Fo.a

are the real-valued 1-forms forming the dual coframe of the frame
Py, {ﬁ } . Piag, Po.a
(0) (AB)fp 4 (4,0) (0,4)

But the mob(n)-valued 1-form ® can also be seen as a (n + 2) x (n + 2) matrix
of left invariant real-valued 1-forms in the following way:

oY) B

n+1
— A A A
(I) - (I)O (I)B (I)n+1 )
n+1 n+1 n+1
(I)O (I)B (I)n+1

with the obvious symmetry relations

o) =—opt],  op=-0fF @), =apt =0 )
oY = (I)E-&-la of = (I)ZH' .

We point out that, at each point G € Méb(n), the 1-forms ®J, {@64}, {@%}
and {04

writes as

} p<a form a basis of TEMSb(n). Moreover, the structure equation

ddy = —DI N Df,
which, using the symmetries (1.4), can be simplified to
ddY = -9 A df
AP = —3 A DY — L A DF
doY = -0 A Y — &Y N OF
ddp = —0gt A OY — P4 N DG — BY A DF

(1.5)

Finally, since Mob(n) is a subgroup of GL(n + 2) and the left translation is a
linear map, we can express the Maurer-Cartan form as

dc = GG, (1.6)
meaning that, for every X € TaMob(n),
de(X)=G'X,

where the product G~ X is just the ordinary matrix product. This makes sense
since T¢Mob(n) can be canonically included in the algebra of (n + 2) x (n+ 2)
matrices. This expression for ®, although apparently carrying a slight abuse of
notation, will turn out to be quite useful later on.

For more details on the Mébius group and other classical Lie groups, see [3], [1].
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1.3 The Mobius space

Let us now turn back to the study of the action of Moéb(n) on the Darboux
hyperquadric @,,. It can be proved that such action is transitive, therefore we
can realize @, as a homogeneous space for Mob(n). In other words we can
fix any point of @, for instance the point O = [r)], and consider the isotropy
subgroup of such point, that is the subgroup

Go = {G € Mdb(n) | [Gno] = [no]}-

Then @, is diffeomorphic to the manifold whose points are the left cosets of G
in Méb(n), which we shall denote by Méb(n)/Go.
The explicit expression of Gy can be computed:

r~1 tzA %r|x|2
Go = 0 A rT
0 0

A€ SO(n),
reRT, x € R"

and the natural projection

7 : Méb(n) — Qn
is defined, for G € Mob(n), by

(@) = (Gl

that is, the projectivization of the first column of . This projection makes
7 : Méb(n) — @, a principal Gp-bundle.
Let us now consider a local section of this bundle, i.e. a smooth map

s: U — Mob(n)

defined on an open subset U of @,,, such that the following diagram commutes

s Mob(n)
o)
U——0Qn

that is, m o s = 4, the inclusion map of U into @,; then we can pull back the
Maurer-Cartan form ® to U C @,, and define the local, méb(n)-valued 1-form

P = 5D,

Of course, since the pull-back commutes with both the exterior derivative and
the wedge product, v satisfies the structure equation as well:

dy = —a A .
Moreover, using (1.6), we can write

Y =5"®=s""ds. (1.8)
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Let 5§ : V. — Mob(n) be another local section and set {/; = $*®; assuming
UNV # @, s and s are related by

s=sK,

for some smooth map K : UNV — Gy. In particular, applying the last equality
to (1.8), we get that the pull-back of the Maurer-Cartan form changes according
to the following formula.

V=K WK + K 'dK. (1.9)

Let us focus on the 1-forms {¢g‘}. It is immediate to see that they locally span
the cotangent space of @,. Indeed, from the very definition of ®, the forms
{®¢'} span the semibasic forms of the bundle Gg — Mob(n) = @,,, that is, the
forms that vanish on the vectors tangent to the fiber. Now if w is a 1-form on
Qn, then 7w is a semibasic form on M&b(n) and therefore 7*w = a @ for
some suitable smooth functions a 4. It follows that

w=(mos)w=s"T"w=(as 08P,

and thus {1¢'} is a local basis for the cotangent space of Q.
This fact allows us to define a local metric in the following way:

> w8 @ v (1.10)
A

and a nowhere vanishing local n-form as follows:

Yo A A (1.11)

Under a change of section, the (A, 0)-component of (1.9) gives, in particular,
gt =t AR,

so that _ _
Y vieug =r2> ui @¢g
A A

and _ _
Yo N ADT =175 A AP

Therefore (1.10) and (1.11) define a conformal class of metrics and an orientation
on @,, namely a conformal structure, and we can set

Definition 1.2. The Mobius space, or the conformal sphere, is the Dar-
boux hyperquadric @, endowed with its structure of homogeneous space for
Méb(n) and the conformal structure given by (1.10) and (1.11).

Finally, it is not hard to prove that the diffeomorphism ¢ : @, — S™,
defined in (1.2), becomes a conformal map once @,, and S™ are equipped with
their standard conformal structures.



Chapter 2

The conformal structure of
a submanifold and its
Darboux framing: the
general case

2.1 The frame reduction procedure

In what follows M will always be assumed to be m-dimensional and oriented.
We fix the index ranges

1<AB,...<n, 1<4,5,... <m, m+1<a,pf,...n

Let f: M — @, be an immersion. We recall that @),, is realized as the homoge-
neous space Mob(n)/Goy where Gy is the isotropy subgroup at O given in (1.7).
The corresponding principal Gy-bundle is

7 : Mob(n) — Mob(n)/Go
where 7 acts on a matrix of Mob(n) by projectivizing its first column.

Definition 2.1. A zeroth order frame field along f is a smooth map e
defined on an open set U C M with values in Mob(n) such that moe = fiy, that
is, the following diagram commutes:

Mob(n)

vem—-q,

From now on, dealing with frames along f, we will omit specifying their
domains of definition since no possible confusion will arise.

Any two zeroth order frame fields e, € on the intersection of their domains
of definition, if not empty, are related by

e=¢cK (2.1)

11
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where K : UNU — Gy is a smooth function. Setting
o=¢e"d

we obtain again equations (1.5) to be interpreted this time on M. Under the

change of frames (2.1), ¢ = €*® expresses in terms of ¢ as in (1.9). In particular,
for
r7l tgA Lp|z)?
K= 0 A rT
0 0 r

A€ SO(n), r€ R", r e RT,
00 =1 A(9g) = r 1 AZeg,

As a consequence, at any point p € M we can choose a zeroth order frame such
that

¢ = 0. (2.2)

The isotropy subgroup at this point is given by

1 ¢ t 1 2 2
T ZA yB 2r(|$\ +|y|) rGRJr,AGSO(m)v

G = 0 0 re B € SO(n—m),
0 0 B "y re R™ yeR"™
0 0 0 r Y

(2.3)
and since (7 is independent of p, smooth zeroth order frame fields such that
(2.2) holds can be chosen in an appropriate neighbourhood of each point of M
by general theory, see [14].

Definition 2.2. A zeroth order frame field e such that (2.2) holds on its domain
of definition is called first order frame.

Any two such frame fields are related by (2.1) where now K takes values in
G defined in (2.3).

With the aid of first order frame fields we can define a conformal structure
on M. Indeed, because of (1.9) and (2.3), under a change of first order frame

fields the quadratic form ds? = Z (;56 ® (;56 transforms according to the law

ds? = r~2ds?
while the volume form dV = ¢§ A ... A ¢ transforms according to
dV =r="dv. (2.4)

It is trivial to see that now the map f becomes a conformal immersion of the
manifold M, endowed with this conformal structure, into @, equipped with its
standard conformal structure.

Differentiating (2.2) and using the structure equations of Méb(n) we obtain

0=—¢ A ¢p.
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By Cartan’s lemma there exist some (locally defined) functions h; such that
o =hieh, b= (2:5)
We use (1.9) and (2.3) to obtain under a change of first order frame fields
Of = BIATe) — BLATYof. (26)
Next, for first order frame fields
o) =1~ Ajd (27)
and using (2.6), (2.7) and the definition of h¢; given in (2.5) we finally obtain
hiy = rBLAG (Al ki, — Ay”), (2:8)

where the meaning of A, B, y, r is given in (2.3). Taking the trace of (2.8) with
respect to ¢ and j we obtain

E% = TBg(hgk - myﬁ)'

The next step is therefore to consider at any point p € M a first order frame
such that

e = 0. (2.9)
The isotropy subgroup is given by
-1t 10,2
Y e som
Gp = B € SO(n —m), (2.10)
0 0 B +
0 0 0 re Rm,x € R™

and is again independent of the point p considered, so that first order frames with
the above property can be smoothly chosen in an appropriate neighbourhood of
any point.

Definition 2.3. A Darboux frame field along f is a first order frame field
for which (2.9) holds.

Any two Darboux frame fields are related by (2.1) where now K is a smooth
function taking values in Gp.
We observe that for Darboux frames (2.8) becomes

ng = rBEALAFR],. (2.11)

For further details on the generality of the frame reduction procedure, we refer
the reader to [13], [15], [14].

2.2 The geometry of submanifolds of the Mobius
space

Differentiating (2.5), using the structure equations and Cartan’s lemma with
respect to a Darboux frame e we have

dhg; — hS 0k — heoF + 0% + hoh + 65500 = he ok, (2.12)
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for some (locally defined) functions Af;; symmetric in the lower indices. To see
this latter fact, we observe that by Cartan’s lemma

?jk = ?kj-
On the other hand, by (2.12),

dhS; — h5y 8t — hiid + hj,05 + h5io) + 8500 = h5df:

[0}

however, h{; = h$;, so that, from the above equality we get

W5l = dhSy — hi 05 — iy of + hizof + hijof + 5%
and comparing with (2.12) we then deduce
?jk = ?ik

realizing the desired symmetries.
Taking the trace of (2.12) with respect to ¢ and j and using (2.9) we obtain

P = P o (2.13)
where we have set 1
P = - fik (2.14)

With respect to a Darboux frame e defined on U C M let us consider the
matrix of 1-forms ¥ defined by

@ @ 0
w={ o o o | (2.15)
0 oh —of

We can clearly think of ¥ as taking values in the Lie algebra of the %(m +
1)(m + 2)-dimensional Mobius group.
Under a change of Darboux frames ¢ = eK, where K takes values in Gp, we
have _

U =KWK+ K K,

with
) rmt tz A Lxf?
K= 0 A re ,
0 0 r

reR™, Ae SO(m), r e RT.

We therefore conclude that ¥ defines a Cartan connection on M, whose curva-
ture forms are, as usual, given by the structure equations that we write in this
case as:

dpg = —¢f Ny + Q5

dgy = = N dh — &5 A 6 + 0

Ao = =g N Y — ) Ny + Q)

Al = —df A &Y — ¢ A — &7 A ¢y + Q.
Comparing (2.16) with the structure equations of the group Méb(n) we imme-
diately deduce that

(2.16)
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=gl ndT, =g A
so that using (2.5) and (2.13) we obtain

1 g o j c
) = §(pkhij —Dj %) b A o (2.17)
i 1 a o apa
Q= 5( kv — N jk)‘vbg A by (2.18)

We begin by analysing (2.18). We set
T;kl = h?kh?z — hg ?k (2.19)

so that (2.18) can be expressed as
i1k
0 = §Tjkl¢o A @yp-

Note that the coefficients T;kl satisfy the usual algebraic symmetries of the
Riemann curvature tensor, including the first Bianchi identity.
Making use of (2.11) we observe that, with respect to Darboux frames €, e

we have '
Ti = TP AJALALAY TS, (2.20)

We denote by E; the frame on M dual to %, that is, characterized by the
request

0Y(Ex) = 0}
Using (2.7) we deduce _
By =rALE, (2.21)
(already at the level of first order frames). Therefore, using (2.20), (2.7) and
(2.21) we define a global tensor 7 on M by locally setting
T = Thatt ® 0 ® 6 © B (2.22)

for a Darboux frame along f. We will call 7 the generalized Weyl tensor.
Observe that, unlike the usual Weyl tensor, 7 is not traceless. Indeed, we have

Nji = =7}y = h§hs. (2.23)

J

From (2.20) and (2.7) the above components define a global symmetric tensor
N, locally given by A
N = Njrd @ 6. (2.24)

Njj = (h3)?

1,],x

We observe that

and

Ny = r°Nj;.
Thus, the trace of A/ does not define a scalar and N = 0 if and only if hi; =0
for each «, i, j, if and only if Q4 = 0 V4, j. Furthermore, if A" =0, then Qf =0
Vi.

According to Cartan, we set the following
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Definition 2.4. The Cartan connection ¥ on M is normal if N = 0.

The normality condition in the present case is easily analysed. Indeed we
have

Proposition 2.1. Let f : M — @, be an immersion, M oriented, m =
dim M > 2, for which N = 0. Then, there exists Qu C Qn such that f(M) C
Q- Furthermore, if M is compact, f is a diffeomorphism onto Q,.

Proof. We use a standard technique in the method of the moving frame and
therefore we give here only a sketch of the proof. Let e be any Darboux frame
along f. Then, by assumption hf; = 0 and therefore, with respect to e we have

§=0=9.
Differentiating ¢$ = 0 and using the structure equations we obtain
0=¢2 Adh for all k

and, since m > 2, we deduce

o = 0.
Consider now on Méb(n) the ideal Z generated by the forms ®§, ®®, 0. Using
the Maurer-Cartan structure equations (1.5) and the symmetries (1.4) we see
that Z is a differential ideal, that is, dZ C Z. The distribution A defined by Z

is, at the identity

a 'z 0 0 D € o(m)
A — y D 0 «x Ee€o(n—m)
= 0 0 E 0 z,y € R™
0 'y 0 =—a aeR

and is obtained at any other point by left translation because of the left invari-
ance of ®. In particular, its maximal integral submanifold passing through the
identity is the subgroup of Mob(n)

t
R
0o 0 B 0 X A Y | eMob(m),BeSO(n—m)p~
c ‘W o0 d ¢ 'Wod

~ Mob(m) x SO(n —m)

The image of this subgroup in the quotient Mob(n)/Go ~ @, is therefore an
m-~dimensional sphere @Q,,, and so is the image of any other maximal inte-
gral submanifold. Now, it is trivial to see that e,TM C A, so that f,TM =
meexTM C 7, A and the connectedness of M grants that f(M) C Q,,. Assum-
ing M compact, f(M) is open and closed in Q,,, thus f(M) = @Q,, and f is a
homeomorphism onto @Q,,. O

Definition 2.5. We say that a point p € M is an umbilical point if and only
if N(p) = 0.
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Equivalently, p € M is an umbilical point if and only if for some (hence any)
Darboux frame
hi; =0 at p.

The form (2.10) of the isotropy subgroup Gp of Darboux frames along f
suggests the possibility of defining a suitable vector bundle N over M whose
role should parallel that of the normal bundle of an isometric immersion into
a Riemannian manifold. Indeed, let p € M and choose a Darboux frame e
along f with p belonging to its domain of definition. Define the fiber IV, to be
the (n — m)-dimensional vector space generated by {e,}. Because of (2.10), a
change of Darboux frames as in (2.1) gives rise to a new basis {€,} such that

€o =eBl (2.25)

with B € SO(n —m). It follows that the bundle N is well defined and on it
there is a naturally defined inner product ( , ) for which {e,} is an orthonormal
basis at p.With respect to this inner product we define a metric connection

D :T(N) > T(T*M ® N)

by setting
Dey = ¢ @ es.

D is well defined, indeed if X\ represents the matrix of the connection forms,
then under a change of Darboux frames, according to (1.9), we have

\='BA\B +'BdB.

On the other hand, D is clearly metric since ¢35 + #8 =0.
As usual the curvature forms Ag are defined via the structure equations
Ao = —¢5 Aoy + AG.
Using the structure equations of the group Mob(n) and (2.5), setting
il ,
Tgij = gihgj - gjhgi (2.26)
we obtain
« 1J_ o i V]
Aﬁ = 5 Tﬁij(bo A ¢0.
Observe that we have the symmetry relations
1

1 1.8

o = — a,, fr— ..
Tij = — Tgji Taij

Moreover, with respect to Darboux frames e, e

l~a 2y ne gt pgvL ¥
Tgi; =T BaBﬁAiAj Tt

It follows that we can define a tensor ~7 by locally setting

L= ng‘ij(Z)é ® qﬁ% ® eq ® eg.

We will call -7 the normal curvature tensor.



Chapter 3

The conformal
Grassmannian

3.1 The conformal Grassmann bundle as a ho-
mogeneous space

The aim of this chapter is to introduce an appropriate conformal Grassmannian
as an orbit of the Grassmann manifold of oriented s-planes in R"*2 under the
action of the Mobius group Méb(n).

Its description and structure is given as follows. Set s =n —m > 1 and let
{€0y-++€msEm+t1s---sEn,yEnt1) be the standard basis of R"*2. Fix as an origin
in G, (IR”+2) the point O = [e;n41,.-.,&x] and consider the orbit Qg (]R"”)
of the point O under the left action (by matrix multiplication) of the group
Mob(n) onto G (]R"+2). Then the isotropy subgroup of the action on the orbit
at the point O is given by

a 'z 0 b a tj b m)
r A 0 T Y € Maob(m), .
Hy = 0 0 B g c tw d C Moéb(n).
c fw 0 d B € S0(s)
(3.1)

Note that, since Hy C Mob(n), z, w, x,y, a, b, ¢,d, A cannot be chosen arbitrarily
but have to satisfy certain compatibility relations between them that will be
essential in determining that certain quantities are globally well defined.

Thus Q,(R™*?) is identified with the homogeneus space Méb(n)/Hy with
the canonical projection

71 Méb(n) — Q4 (R"?)

given by
T:P— [Pnt1,--.,Pn (3.2)

where Py, P4, P41 are the columns of the matrix P.

18



3.2 The Kéahler-Lorentzian structure of the conformal Grassmannian 19

3.2 The Kahler-Lorentzian structure of the con-
formal Grassmannian

On their common domain of definition two local sections of the bundle 7 :
Méb(n) — Qs (R™"?) are related by § = sK where K is a function taking
values in Hy. Considering the components 9, ¢, ® of the Maurer-Cartan
form of Mo6b(n) and setting ¢ = s*®, we find that their pull-backs under the
sections s, s are related by the following transformation laws:

P = dYBE — y' o4 BE + by BS
P = —w'e}BE + AFkBE — 2o BY (3.3)

55 = cpYBE — 2ok BE + ap] BS
where the meaning of d, ¢, a,b,y,x,w, z, A, B is given in (3.1). From (3.3) and
the relations defining the group Mob(n), it is not hard to deduce that the
quadratic form diI? of signature (s, s(m + 1)) given by

A’ = -0 ® pf —pF @ ¥+ Y vk ® 7, (3.4)

7,0

is well defined on Q,(R"™?) and determines a pseudo-metric on it. In particular
the forms o9, ¢§, ¢k, constitute a (local non orthonormal) coframe on Q4 (R™?)
which thus turns out to be of dimension s(m + 2), s = n — m. It is convenient

to set 4 4
0 =f, 00 =90, 0" =g (3.5)

and to order the pairs («,0), («, 1), (0,a) as

(7,0) < (B8,1) < (0,a)  Va,B,7,i

(0,8) < (0,) iff B<a

(8,7) < (e, i) iff 6 <aorfB=aandj<i

(3,0) < (a,0)  iff < a (3.6)

Thus, representing with the symbols A, B,...the s(m +2) indices («, 0), (a,1),
(0,), we can write dI? as

di? = g550* @ 67 (3.7)
with
0 0 —1I
(ggg) = 0 I,, O s=n—m. (3.8)
—1, 0 0

The Levi-Civita connection forms 0% with respect to the previous coframe are
therefore characterized by the equations

A pA B
{do =040

- . (3.9)
ggaeg + 9559% =0.
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This allows us to determine the connection forms by simply taking exterior
derivatives of (3.5) and using the structure equations of the group Mob(n). We
obtain

a,0 aO a,O
03] —(55@04—@57 05! —(55%, 0,3 =0
93,5 = 350, 9ai = %sok + 0405, 9875 = 55¢) (3.10)
0,a _ 0 a _ sa 0,0 a
0670 —0, 9 5 ()00, 907[3 73057(%3908

and, by a simple computation, one checks the validity of the skew-symmetry
relations given by the second of (3.9).

It is worth considering the special case s = 2, that is m = n — 2. Indeed,
starting from the 2n independent forms ¢Y, ¢!, p& we can construct the n
independent forms over C

=0 +igl, =l ik, =i g (3.11)

Using the structure equations it is immediate to verify that their differentials
belong to the ideal they generate, showing that Qo (]R”“) is a complex manifold,
in fact complex Lorentzian. Indeed the complex structure J induced by the
forms (3.11) is determined by

CX+iJX) =X +iJX) =" HX +iJX)=0 VX € TQy(R""?),
that is
Pn1(X)=en(JX)  eon (X)) =en(JX) e H(X) = ¢p(JX).
It is therefore trivial to verify that the metric di? is Hermitian-Lorentzian.
dP*(JX, JY) = = 1 (JX)pp (JY) = o (JX)p (JY)+
Pn1(JY) = @i (JX) o (JY )+
W(IX)e,

*900 ( X)

+ @1 (JX)en 1 (JY) + 0, (JX)pl, (JY) =
== on(X)es (V) — oh_1 (X)) H(Y)+

—op(X)en (V) — @5 (X)p_1 (Y)+

+ @ (X)en (V) + o1 (X)), (V) =
=dI*(X,Y).

We verify that Q5 (I[{””) is Kéahler by showing that the differential of the Ké&hler
form

K(X,Y)=d*(JX,Y)
vanishes identically. This is a simple exercise using (3.11) and the Maurer-
Cartan structure equations. Indeed

K(X,Y) == ¢ 1 (JX)pg (V) = o0 (JX)p (V) +
— 00 IX)h 1 (V) — o (JX)on (V) +
+ 01 (JX)pn 1 (V) + 05 (JX)pl (V) =
=0 (X)pg T (Y) — b1 (X)ep (V) +
+ 5 (X)eh 1 (V) — o H(X)en(Y)+
— (X)) 1 (V) + @1 (X))@ (Y),
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that is,
K=—on 1 AN =05 " AGh + @hy Ay, = (3.12)
— (- ATTT = AT P A CF).
Therefore
A = — dgl) 1 Al + @01 Al — dog ™t A b+
+ g AdE), + Ay Nl — Py Adpl, =
=(P0 A1+ PR A Ph_1+ o An_1) A+
—on_1 A (g Aeg + OF Aog + on_y App T+
+ (05 A+ A s+ on T AGE) Aph+
— 00 AP A P+ PR A+ on o AT+
—(Po A1 TP AGh_ 1+ on Apn 1+ @) Aog ) Al +
+ b 1 A AP+ DL APk + ol  ApnT + o) App) =
= Agn_1 App + PR A Oh_1 Aog +on A1 A g+
—on A APE N0 — ot APRAOE — P01 Ay Agp T
+og P AGOAQ) + O T A GG Aen +oRTT Aol A+
— 00 AP, — o T AR Al — T Ay AT+
— PO AP NPl — Pk Non_1 Al — DY AT A g+
+ Oh 1 NGOG+ D1 ADk A oh P A Al =
—0.

3.3 The projective structure of the conformal
Grassmannian

Finally we describe the complex projective structure of the conformal Grass-
mannian. There is a natural injection of Qo (IR”+2) in IP%Jrl defined as follows.
Let [Gen—1,Gey], with G € Méb(n), be a 2-plane of Qz(R™"?). The map
sending [Ge,_1,Ge,] to the projectivization of the complex, non-zero vector
G(en—1 +1iey) is well defined and injective, and thus provides a complex projec-
tive representation for the whole conformal Grassmannian of 2-planes in R"+2.
Indeed, let [Ge,—1,Gey) and [G'e,—1, G'ey] be two representatives for the same
2-plane in Qo (R”+2), then G and G’ must differ by an element of the isotropy
subgroup Hy, namely G’ = GH for some H € Hy. But H has an expression as
in (3.1), with B € SO(2), that is

cosf —sinf
B= ( sinf  cosf )’
for some 0 € R, so we have
G'(en—1 +iey) =GH(gp_1 + icy) =

=G(cosbe,,—1 + sinfe,, — isinfe,_1 +icosbe,) =

:e_wG(Enq +igy)
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which projects to the same complex projective class as G(g,,—1 + ic,). As for
injectivity, if G(en—1 + ien) and G'(e,—1 + i€,) project to the same projective
class, then there exists p > 0 and € € R such that

G'(en_1 +iey) = pe®Glen_1 +icy) = pGH(en_1 + icn),

where

I,_1 0 0 0
0 cosf sinf O
0 —sinf cosf 0
0 0 0 1

H =

clearly belongs to Hy. So [Ge,—1,Gey] and [G'e,—1,G'e,] are in fact the same
2-plane in Q, (]R"'*‘Q).

We will show that, as a matter of fact, Qo (R”"‘Q) can be identified with an open
submanifold of the projective quadric of homogeneous equation

222" + 3 (@) = 0. (3.13)
A=1

As we have explained above, the image in IP%+1 of a 2-plane of Qs (IR”“) is
the projective class of a complex vector of the form G(e,_;1 + ie,), for some
G € Mob(n). Now, the vector €,_1 + ie, trivially satisfies equation (3.13), and
therefore lies in the quadric. Note that the quadric (3.13) is represented by the
matrix

0 0 -1
S = 0 I, O
-1 0 O

introduced in (1.1) and, since G € Méb(n),

)
HG(en_1 +1i€0)]S[G(en—1 +icn)] = H(en_1 +1i0) GSG(en_1 + icy) =
="en_1 +ien)S(en_1 +icy) = 0.

Therefore G(e,_1 + i€y,) lies in the quadric (3.13).

However, the conformal Grassmannian doesn’t cover the whole quadric. Indeed
the points of the quadric coming from a 2-plane in Q- (IR"+2) are those that
have a representative v + iw € C™*2 such that, with respect to the Lorentzian
product in R™*2, [|v]|*> = |jw|> > 0. This leaves out the projective classes
represented by vectors v + iw where v and w are isotropic and non zero. All
such vectors lie in the quadric but cannot be obtained from ¢, _1 or €, through a
matrix of Méb(n), because such matrices preserve the Lorentzian norm defined
through the matrix S.



Chapter 4

The geometry of surfaces in

(4

4.1 Some conformal invariants

Let f: M — Q4 be an oriented immersed surface. Assume that M has been
given the structure of a Riemann surface starting from an assigned metric g
and assume that f is conformal in the sense that the conformal structure that
it induces on M coincides with that of M as a Riemann surface.
We let e : U C M — Mob(n) be a local first order frame along f, so that,
according to (2.2),

¢y =0 3<a<4

and the isotropy subgroup is given by (2.3). Then
Of =hih, b =hG 1<ij<2 (4.1)

and we have the transformation laws (2.7), (2.8).

Starting from first order frames, we are now going to introduce a number of
geometric invariants. We let L denote the Hopf transform of the symmetric
matrix (h;), that is

« 1 « « -7
L™ = §(h11 — hgy) — ih{y. (4.2)

A Cf)St —sint
sint cost

and recalling that e’ = cost + isint, using (2.8) we compute

Setting

Iy = rBIAL(ATh, — Aly”) =
= rBY (AL AR, + AJATRD, + ATATKY, + ATATRD, — 611y°) =
= rB%(cos®t hfl + costsint hgl + sintcosthf2 + sin? ¢ h§2 —yP) =
= rBP(cos® t h?| + 2 costsint by + sin® t hy, — y?).

23
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Similarly,

rBI Ay (Ashy; — Ayy”) =
= rBI (AL ALY, + ALARRG, + ASALRY, + ASAZRY, — 8any®) =
= rB(sin*¢t hfl — 2sintcost h’fz + cos? t h§2 — 7,

a
22

hSy = rBIAL(AThY) — Ajy®) =
= rBI(AYAIRY, + ALAZRY, + ABALRY, + A3AThG, — 610y°) =
= ng(— sintcost hfl —sin?t hgl + cos? t h@ + costsint h§2) =
=rBP (— sint cost(hf; — hy) + (—sin? t + cos? t)hfz).

From the above formulae, we can deduce the one expressing the transformation
of L* under a change of first order frames

e :%(N% - ~32 - Qiﬁ?z) =
:%TBS(COS2 t h?l 4+ 2costsint th +sin? ¢ h§2 -7+

—sin?t b, 4 2sint cost h?, — cos®> t h, + 1+

— 2i( — sint cos t(hY, — hy) + (= sin? t + cos? t)h%)) =
:%ng ((cos2 t —sin®t)(hY, — hy) + 4costsint h,+

+ 2isint cos t(hf1 - h’gQ) — 2i(—sin®t + cos? t)h’ﬂ) =
1 g 2 o2 - St (BP B
—§rBa ((cos t —sin®t + 2isint cost)(h]; — hhy)+

— 2i(cos® t — sin® t + 2isint cos t)h%) =
:%TBg(COSQ t —sin?t 4 2isint cos t)(h?l — h§2 - Qihfz)’

that is B '
LY =re®'BALP. (4.3)

coss —sins
B = . ,
sins coss

L &il* = e (B{L7 +iB]L") =

Therefore, setting

= rezit(cossL3 +sins LY Fisins L3 + z'cossL4) =
= re(cos s Fisins) (L £ L),

that is _ _ o
L3 +iL* = re®"e™5 (1P £iL*) (4.4)
Using (2.4) and (4.4), we see that the real, locally defined 2-forms
wi = |L? 4L ¢4 A 63, (4.5)

are globally defined and smooth.
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Definition 4.1. We will say that f : M — Q4 is + or — isotropic respectively
ifwy =0 orw_ =0.

Note that, when f is at the same time + and — isotropic then
hiy =0, hiy = hgs.

Thus passing to a Darboux frame h{; = 0 for every a, 1, j, and f(M)C Qs CQy
according to Proposition 2.1.

We underline the fact that the forms wy are invariant with respect to first
order frames.

It is easy to see, using (2.7) and (2.8), that the 2-form

1 N N N
w= 4{2( % — h3y)” + 4( 12)2}¢(1) Adg = (L3 + [L*]*) ¢ A ¢ (4.6)
is globally defined. In particular the form 7 is globally defined, which satisfies

W=ws T (4.7)

We now identify 1. A simple computation, using the definitions of w and w4
yields

0= ﬂ'(L?’F - L4ﬁ) &4 A 2. (4.8)
Expressing it in terms of the h{;’s we obtain
—i (LBF - L4ﬁ> = hi1hiy — highty — hishiy + hisho,.
If we specialise to a Darboux frame e along f, since b} + h3, = 0 we obtain
fi(L?’F - L4ﬁ) — 2(h3,hYy — B3,h1).

We go back to the bundle N introduced in section 2.2 through (2.25). The
curvature Ky of this bundle is now given by

. 1, . . ;
Ai = ilﬁi‘j% A ¢€J = KN¢(1) A Q%
and using (2.26) we deduce that
Ky = —i (L3Z4 - L4f3) (4.9)

or, in other words
dgiy = Knop A 65 = 1. (4.10)
Using (4.7), (4.10) and the generalized Gauss-Bonnet theorem, having set

W(f) = /Mw (4.11)

in the case of M compact, we obtain
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Theorem 4.1. Let f : M — Q4 be an immersion of a compact orientable
surface; then

W) = [ wew2ma) (1.12)
M
where x(N) is the Euler number of the bundle N introduced above.

The functional W (f) defined in (4.11) for M compact or, more generally on
compact domains of M, is called the Willmore functional.

Corollary 4.2. Let f : M — Q4 be an immersion of a compact orientable
surface. Then

/ wi > F2mx(N)
M

equality holding if and only if f(M) = Q2 C Q4.
Proof. An easy computation shows that

1 (03
w=5 Z(hij)2¢(l) A 5,

,],&

so clearly W(f) > 0 and W(f) =0 if and only if f(M) = Q2 C Q4 by Proposi-
tion 2.1. O

Suppose that M is compact and orientable; (4.12) implies that, if M is either
+ or — isotropic, then the values of W (f) are “quantized”.

4.2 The conformal Gauss map of a surface in (),

Our next goal is to give a geometric interpretation to + and — isotropic im-
mersions. Towards this aim we introduce the conformal Gauss map. We let
Qs (RG) be the conformal Grassmannian of 2-planes introduced in Chapter 3.
As we have seen, Qj (IR6) has the structure of a complex, Kéhler-Lorentzian
manifold with a local basis of (1,0)-type forms given by

=y +ic*d), (F=def+icdy, (=0 +ic"dg,  (4.13)

where ¢ is any local section of 7.

Given a Riemann surface M, a map h : M — Qy (RG) is respectively + holo-
morphic if the pull-back of the forms ¢°, ¢¥, ¢3 in (4.13) is respectively of type
(1,0) or (0,1)

Definition 4.2. Let f : M — Q4 be an immersed oriented surface and let e be a
(local) Darbouz frame along f. The conformal Gauss map v5: M — Qo (RG)
is defined by setting

VP fessealp

where with [e3, e4]p, we denote the oriented 2-plane generated by the vectors es,
eq4 at the point p.

Note that, because of the transformation law (2.25) under a change of Dar-
boux frames, 7y is globally well defined, and the orientation of the 2-plane
[es, e4] is also preserved.
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4.3 Isotropic surfaces and the holomorphicity of
the conformal Gauss map

We introduce some notation. We recall, see (2.13) and (2.14), that under a
Darboux frame e

(e : (e 1 «
o0 = prog with Pk = 5 ik (4.14)

We define )
k% = 5 (0f —ip3). (4.15)
We are now ready to prove the next

Theorem 4.3. Let f : M — Q4 be an immersed oriented Riemann surface.
Then f is £ isotropic if and only if vy : M — Qo (]RG) is F holomorphic.

Proof. We begin by observing that if e is any Darboux frame along f, then the
following diagram is commutative.

Méb(4)

This fact enables us to compute in a simple way ~v;¢°, 'y;ck, 7;¢?. Indeed,

setting ) .
90,@ _ §*©87 9(170 — §*(I)g7 94t = g*(I):X (416)

and using (4.14), (4.15) and (4.1) we have:

77070 = pR et
7590 = ~hg,0k (4.17)
7}00” =0.

In order to see this, we observe that
R = (Foe)' TP = (o) P,

And since To (¢ o 7) = 7, then for every g in the inverse image through 7 of the
domain of definition of ¢, it holds

$(7(9)) = gK(9),
where K is an Hy-valued function. Therefore

(so7)*®, = K(9) 'g 'dgK(9) + K(g) 'dK,,
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and since I?(g)*ldl?g has values in the Lie algebra of Hy, we deduce that

[e3

(com) @, = (Klgo) g5 "dgan K (90))

~ ~ 0
(com) S, = (Kig0) 05" dgan K (90))

~ ~ «@
(com) @, = (K(go)’lgaldggoK(go)) :

%

If for a fixed § we replace the section ¢ with the section ¢K(§)~! obtained
multiplying ¢ by a constant matrix, we will have defined a new section ¢ which
satisfies, at the point g (and in general only there), the equality <(7(q)) = g,
and therefore

(Som) df; = (97 'dgg), = ¥65
(o) @Y, = (7 dgs), = 25
(Com) @y = (77 "dgg); = 75

Now let us fix pg € M and set ¢ = e(py). Given a section ¢ defined in a

neighbourhood of v¢(po), and possibly replacing it with the section K (e(po)) 1,
which we shall still call ¢, we have at the point pg

s(7(e(po))) = e(po),
and thus
(V7" 25),, = (e"(com)"®F), = (€"®F),, = 65 ,, =0
(’Y;g*q)?x)po - gpo = pg(po)(bgpo
(055°01),, = 6%, = i),

Po

Hence, setting ¢ = ¢ + i¢% and observing that, if oy, B¢ are real-valued func-
tions, one has

(ak+iﬁk)¢’g={a1;62 +zﬂl;a2}<p+{a1;62 +iﬁl—ga2}<p, (4.18)

we get, at the point po,
V5% =(p} + ivk) 66 =
1 . . :
=5{(pl +p2) +i(p1 —p2) Jo +

—(k* + k) + (W =ik )7

1 ‘ e
5{(10‘;’ —p3) +i(pt +p3)}o =

and similarly, using (4.2),

1 1
V;Cl = —5{(h§1 —ihy) +i(hi; —ihiy) b — 5{(@1 +ihiy) +i(hi, +ihls) } =

—%(L3 +iL")p — %(Lff — z’L4)¢
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and
1 . . . 1 . . . _
’Y;§2 = _5{(}131 - Zth) + Z(h§11 - Zh%Q)}‘P - *{(h% + zh§2) + Z(}14211 + Zhgz)}‘ﬁ =
1 . . . . _
= —5{(h§1—|—zh:f1) +1 ( —|—Zh )}cp {(hgl —zh‘;’l) —l—z(h%l —zh‘lll)}go:
= s (L +il)e+ L (F—il)p
Namely, at the point pg,
75¢0 = (K + k) + (K — i)
1 1/
T3¢t = =5 (L +ilY)p - 3 (L3 - iL4)¢
Yig? = —%(L3 +ilYo+ %<L3 - iL4)¢
y;c’* =0.

It is therefore clear, using (4.5), that if 7; is F holomorphic then f is £ isotropic.
To prove the converse we need to show that

L3+il* =0 implies k3 +ik* = 0. (4.19)

Towards this aim we differentiate the first of (4.19) and we use (2.12) to perform
the computations. Note that, since we are using Darboux frames along f,

L* = h{y — ih{s.
A simple check yields

dhiy =hi1,0f + 2h1207 + hir s — h 60 — PRdG

dhiy =hiy, 0 — 21167 + hisds — hipdh

dhty =hi1,96 + 2h1207 — hii¢5 — hi160 — piiés

dh%z :h%%(lﬁloc - 2h£111¢% - h?2¢§ - h4112¢87

and we can compute
d(LS + iL4) :d((hi)l + ihzlll) - ‘(h§2 + ih%2)) =

=dh3, +idh}, —idh3, £+ dhi, =

=h311.06 + 2h3267 + bl b5 — b3 60 — PRos+
+i(hiy ¢ + 2h156T — hiyd5 — M1y 60 — pret)+
— i(hioyd — 21167 + hisds — hiag()+

(héllzkdﬂg - 2h£111<252 - h?zﬁbg - h1112¢8) =

=(hk — P} £ hiap) 96 £ i (R, — pi F Blok) 96+
+ 2h12¢1 + hi1¢3 — b6 + 2ihi,¢7 F kY, d3 F ihi do+
+ 120187 — ihiy@5 + ihia) F 201167 F hizds F hixgg =
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:(h?uc —ppE h%2k)¢](§ + i(hiluc - P T h?2k>¢g+
+ Z(h?Q +ihi, +ih3, F hzﬁ)(ﬁ + (hil1 Fihi, —ihiy F hi’2)¢§+
+ (_hi + ih‘ﬁ + ih?Q + h4112)¢8 =
=(h}yy, — P} £ higy) 06 £ (Rl — i F hiay) o6+
+2i(hYy — ik, £ihty £ hy) 6 Fi(h) — ik, £ ikl £ h,) e+
- (h:fl - ih% + ihlﬁ + h%z)ﬁbg =
=(h1), — P} £ hiop)df T i(hirg — P F hiar) 06+
+ (L2 £iLY[i(267 F ¢3) — ¢0) s
namely
d(L? £4iL*) =(h3y), — pi £ hiop) 6 £ i(hlyx — Pk F i) o6+
(L% LY [i(262 T 88) — 60 (4.20)
Hence, if the first of (4.19) holds, we have
0 ={(h},x — Pk £ Piop) £ i(hiyy — P F hiow) } 66,

that is,
3 3 4 4 4 3
hi1 — Pk & hig, = 0= hiyy — P F hig-

Therefore, using the symmetries of the h%k’s and the definitions of pf,
0= (k) — p} £ his)) F (hiiy — p3 F hisg) = hiyy + hiyy — 03 £ p3 = pi +p3
and similarly
0 = (A1 —p3 £ higg) £ (hiy; — 1 Fhig) = £(hisy+hiyy) —p3 Fpi = —p3 +pi.
Hence
2(k* £ ik*) = (p} — ip3 £ i(pl —ip3)) = (P} £ p3) +i(—p3 £ p}) =0.
O

Let us now further analyze the quantities k* as defined in (4.15). It is not
hard to show that under a change of Darboux frames

~ ~ ) . 1
K+ ikt = 7«2@%%{1«3 +ik* + 5(9& +iz?)(L® + ¢L4)}. (4.21)
Indeed
2(K® £ ik") = (B} — ip3) £ (P} — ipy) =
—r2BJ (A’f (pfj n hfjjxj> —iAb (pf + hfjxj))Jr
i B (A5 (p] + nj07) — 145 (pf + haT) ) =

_2 (Bg + iBf) (A} —iAb) (Pf + hfjxj) -
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=r?(B§ £iB])(A] —iA}) (p} + i’ )+
12(BY 153) (A% - 143) (0} + i) +
(B4 i) (AL - iAL) (9! + 1)+
+1r%(B3 £iBj}) (A} — iA3) (p3 + th al) =
=r?(cos s F isins)(cost + isint)(p} + hiz’)+
+7*(cos s F isin s)(sint — i cost)(p3 + hgjxj)—k
)(cost +isint)(p} + h‘llj:z:j)wL
)(sint —icost)(p3 + héjxj) =

+72(sins i cos s

+72(sins i cos s
=r? (eﬂseit (p? + h‘rfjxj) — jeTiseit (pg + hgjxj)—k
+jeTet (p‘l1 + hijmj) +jeT (—ieit) (p% + hgjgcj)) =
—r2e¥ie (] = ip) (ol — ind)+
+ (i} — ih3,) £ i(hd; — ihd,)at) =
=2 (2(k? £ ik) + (B — i) (i — )2+
+ (W3 — ih3,) £ i(hdy — ¢h32))x2) -
=r?eToe (2(k* £ ik*) + (L® £iL")a' + (iL® ¥ L")2?) =
=r?e"e T {2(k £ ik?) + (L® £ iL*) (2" +iz®)}.
For p > 2, consider the condition
Fy e Ll (M) suchthat |k £ik?| < y|L? +il?| a.e. (4.22)
Of course we have to check that this condition actually makes sense, since the
quantities involved strongly depend on the choice of the Darboux frame. To
this end we use (4.21) and (4.4) and observe that if condition (4.22) holds for
some Darboux frame, then for any other Darboux frame we can estimate

L~ 1
’k3 j:ik:4’ = 2|k ikt + 3 (! +ia?) (L* £iLY)| <

<r? <7—|— %|x1 +im2|) |L3 :I:iL4’ = r<'y+ %}zl +ix2|>‘z3 iiffl‘-

Therefore condition (4.22) still holds provided we replace v with another suitable
function in L (M). We recall the following result by Eschenburg and Tribuzy
(see [8]).

Lemma 4.4. Let U C C be an open domain containing 0 and f : U — C™ a
smooth function satisfying the Cauchy-Riemann condition

of

0z
for some LP-function v with p > 2. Then, in a neighbourhood of the origin,
either f =0 or

<AIf (4.23)

f(2) =2"fo(2)

for some nonnegative integer k and a continuous function fy such that fo(0) # 0.
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This result prompts us to set the following

Definition 4.3. Let M be a Riemann surface and E — M a complex vector
bundle. A smooth section s of E is said to be of analytic type if it either
vanishes identically or near any zero p, we have

s =23

for some positive integer k and some continuous section so with so(p) # 0, where
z 1s any holomorphic chart centered at p.

Sections of analytic type, and particularly functions of analityc type, are
quite useful in many different settings, and have therefore been studied thor-
oughly (e.g. see [2]).

In order to prove Lemma 4.4, we need the following

Lemma 4.5. Let g : U\ {0} — C™ be a C*-function which is bounded near 0
and satisfies

dg
| <
’32 <l

for some LP-function v on U with p > 2. Then lin})g(z) exists, and for a
z—

suitably small closed disc D C U of radius R centered at 0, the L1-norms on D
and its boundary 0D are related by

lgll, o < OR:
lg

|q,0D
with ¢ 4+ p~t =1 and for a constant C depending only on ||’pr
Proof of Lemma 4.5. Let 0 # ¢ € Int(D) and consider the 1-form

=90,

on D. = D\ (B:(0) UB(()), € small. Applying Stokes’ theorem we get

0
/d77=/ —g(Z—C)_ldE/\dz=/ 77—/ n—/ ik
D. p. 9z oD 0B.(¢) JoB.(0)

[ o= [ 29 omigo)

/ n =0, n—0 as &—0.
9B (¢) 9B (0)

Therefore, letting € — 0, we have

z

and

27rig(§):/8D zg(—Z)g“ dz — Dgg(z—g)ldmdz (4.24)

for every ¢ € Int(D) \ {0}.
Since % € LP, we can show that the right-hand side of (4.24) has a limit for
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¢ — 0. In order to do this, we will show that, for h € LP, the function Ph
defined by

1 1
— —||dz A dz|
z

PhO = [ ha)| =

is continuous at ¢ = 0. Let us first observe that the integral defining Ph
converges, since h € LP and

e L9,

11 <
¢ 2 W0

Indeed 1 < ¢ < 2, so the integral of |2(z — ¢)|”? converges at 0, at ¢ and at
infinity.
Therefore, by Holder’s inequality,

o
2(z=0)

and, performing the change of variable z = (Z, we have

‘ :</c |2(z = O "ldz A d,z|)31 _

=|<|2f"(/c 2z - 1>|q|dmdz|)" i

ﬁ”q and observing that K, depends only on p, we get

[Ph(Q)] < [Cll[Rll,

q

1
2(z = ()
1
2(z—1)

b~}

q

Now, setting K, =

IPR(O)| < KyllhllI¢) 7

and so we have

@ 1 dz/\dz—/agldz/\dz‘g/
p 0 D

p0Z z—( Z z

dgl| 1
0z||lz— ¢
=|PR(O)| < K|l I¢I" 7

1
—’|dz/\dz =
z

where h is defined as ‘%‘ on D, and is zero elsewhere.
This shows that g(z) has limit as z — 0.

Let us now estimate the L%-norm of g. Since ¢ < 2, the function

2 g(2)(z = )7

is L? on D. Hence we can use Holder’s inequality on the second term in the
right-hand side of (4.24) and get

ag 1

dzNd

s/ 9|z — ¢ dz A de] <
D

snm( / |g<z>|qz—<|‘q|dzAdz|)

q
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Elevating (4.24) to the ¢ (a convex operation, because ¢ > 1),

(2m)g(¢ ’/ d—/aZ_CdAdz
1N\ 9
< </3D |g<z>||z<—1dz|+v||,,(/D |g<z>|q|z<|‘q|dmdz|)"> <
1 1 | i
<20(5( [tz ael) 3l [ o - <l laznas ).

We use Holder’s inequality to estimate

[ o=t = ([ g -0 ae)

so that we have

(2m)?|g(Q)|* <(4mR)*~ /aD l9(2)["|z = ¢ dz|+

a
<

T 2071y ¢ /D 9(2)|7)z — ¢z A dz).
Integrating with respect to ( over D, we get
ol <tirry [ [l - o aslac n acl+
D oD
+ 21y /D UD 19(2)]%]= — ¢|~9]dz A dz@ 1dZ A dc].

Applying Fubini’s theorem and setting

a= sup/ |z —
ze€D JD
we can write

2m)llgllg p < UrR)* allgllg op + 27 IVIellgllg o

But a — 0 as R — 0, so that, up to choosing R sufficiently small, we can assume

(2m)d — 2‘1_1H’y||ga > 0.

Therefore .
l9llg.p (A7) 1o
lgllf op = (2m)9 — 297y |I2ax

which proves the claim. O

q—1

Proof of Lemma 4.4. Let us assume (4.23) is satisfied and, without loss of gen-
erality, let us take zg = 0. Assume f # 0 in a neighbourhood of 0, i.e. for every
disc D of radius R centered at 0 there exists z; € D such that f(z;) # 0, and
set 7 := |z1| < R. First we shall show that in this case we cannot have

£(z) = o(|2")
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for every k € IN. To this end, we set

and observe that, since |f(z1)| > 0, there exists a constant a, independent of k,
R and r, such that

—k

lgrllg,p = ar™".

On the other hand
lgllyop < ORTF.

for a suitable constant b independent of k, R and r. Hence we have

lgrllgp _ a (R>k
g |q,8D “b\r /)’
that goes to infinity as k — +oc0. Since g obviously satisfies the hypotheses of
Lemma 4.5 with the function v of (4.23) depending only on f and not on k, the

g llq, p
llg Hq,aD

Now let k£ be the degree of the first nonzero Taylor polynomial of f at 0 and set
g = f/z*. Then, by Lemma 4.5, g has a limit for z — 0 and

quotient must be bounded as k£ — 400, a contradiction.

lir%g(z) =a#0

by the assumption on k. Hence we can write g(z) = a + h(z) for some function
h=o0(1) as z — 0, that is

f(z) = 2" (a + h(2)).

By assumption, a + h(z) # 0 on a suitable neighbourhood of 0, so we have the
desired claim. O

This result has many applications in this context, starting with the following

Proposition 4.6. Let f : M — Q4 be an immersion satisfying (4.22). Then
either vy is & holomorphic or the set I+ of F isotropic points of M is discrete.

Proof. From (4.20) and (4.18) we obtain
d(L? £4iL*) = (L £iL")[i(2¢F F ¢3) — o] + (¢® £i¢h)p + (k> £ik")Pp (4.25)
where we have set o
C* = k> —i(hyy — ihis). (4.26)
Indeed
(P, — P £ Doy, + i(£RT1 F Py — hiaw)) 66 =

1
= E{hil))ll — P} £ hiy £ hijy Fps — higy+

+ihlyy Fipl — ihYy — i3y +ipy F ih%zz}‘P‘f'
1
"‘Q{hi’n — P} £ hiy F hig 293 + hign+
Fihiy, Fipl — kg +ihd, — iph + ih[ﬁz}@
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and we have

hiyy — P} £ higy & hiy F s — higy+
Fihtyy Fipl — ihfy — k31, +iph F ihiyy =

= i(hi’m - ih?m) + k31— pY £ by £ hig+
F py £ ihtyy Fip] +iph Fihlyy —ihiy =
. . 1 1
=- Z(Qh?m - Zh?m) + §h?11 - §h§’21 + Ay +
+ hiyy Fps £ihiy, Fipl +ip) Fihlyy =
== i(2h?12 - ih?m) +p} — h3y £ hiy+
£ hiyy F py £ ihiy, Fipy +ips Fihiy =
== 2i(h15 — ih¥y) + (P} +ip3) £ hig+
+ h%lz + pg + ih%n + ileL + ih%m =
=- 2i<h:1312 - ih?m) + (P} + ip3) + hiy+
+ h41112 $17421 + m%u + §h41111 + §h§21 + Zh%m =
== Qi(h:{’m - ih?m) + (0 +ip3) £ i(p] +ip3) £ 2(hlyy — ihiyy) =
=2(¢* £i¢")
and
hiyy — P} &+ higy F hiyp £ 05 + higy+
+ihtyy Fipl — ihlyy + ki, — iph £ ihly, =
:(hi)u + h?22) _P? + (:I:pg - @Pg) + ipzll"‘
£ i(hiyy + hisg) £ hiyy F iy — ihy + iy, =
=p} + (£p5 — ip) +ip} =
=2(k3 £ ik%).
Now we use (4.22) in order to apply Lemma 4.4 to the functions L3 £iL*. O

Let us now consider the canonical projection p : R%\ {0} — Pg, sending = to
its projective class [z]. Given two Darboux frames e and € along f : M — Qy,
we have

p*Egga = Tng*eoeﬁ-
Indeed, since p(Az) = p(x) for every A € R* and for every z € RS\ {0}, then
DirzAszV = Piz¥, that 1S puyzAv = pyrv. Therefore

DizoCa = p*r—leogll = Paeo (T€a) = 7”ng*eo €g
Hence, setting E, = Puey€a, We get
Eo =rBYEg. (4.27)

It follows that the bundle P over M locally spanned by Fs5, Ey4 is globally well
defined. Let P. be its complexification and P, = P£1’O) &) Péo’l) the splitting
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of P, into (1,0) and (0, 1) parts, locally spanned by E3 — iE4 and E3 + iE,
respectively. Observe that under a change of Darboux frames, by virtue of
(4.27) we have

Es+iEy = ret"(Es + iEy). (4.28)

On the other hand, if ¢ = ¢} + ip3 is the form that gives M its complex
structure, from (2.7) we deduce that

o =r"te M. (4.29)
From (4.4), (4.28) and (4.29) we conclude that
ps = (L* Fil*) (B3 £iE) ® o ® ¢
are sections of the bundles
POD @ 75110 o 7 A [0 and PO @ 7* 10 @ 7 pr(10)

respectively, which are globally defined on M. Under assumption (4.22) we
can deduce that these sections either vanish identically or have isolated zeros
with positive integer multiplicities. Indeed, since ¢ is a holomorphic section of
T*M™0) | then

D

S

dz

S

0
pe =d(L* F iL4)< )(E3 +iEY) ®@ ¢ + (L® FiL*)D o (E® +iE*) ® ¢
and now, using (4.25), assumption (4.22), and the fact that PEO and POV
are line bundles, we have

D g p | <ML 022 (| B 2 iBY| = vl

for some v € Li, (M). Thus the sections ps satisfy a Cauchy-Riemann type
inequality; we can therefore apply Lemma 4.4 to their local trivializations and
deduce that they are of analytic type.

Assume now M compact. By the Poincaré-Hopf index theorem (see, e.g. [§]

and [9]) we have

Proposition 4.7. Let M be a compact Riemann surface and L a complex line
bundle over M. If s # 0 is a section of L of analytic type, then the Fuler number
of L, x(L), is equal to the sum of the orders of the zeros of s.

By virtue of this result, assuming vy not &+ holomorphic and letting z(pu+)
be the sum of the orders of the zeros of p+, then using the properties of the
Chern classes of line bundles we obtain

{Z(u—) = —2x(M) + x(P{"V) = —2x(M) — x(P)
2(ps) = —2x(M) + x(PY) = 2y (M) + x(P).
We have therefore proved the following

Theorem 4.8. Let f : M — Q4 be an immersed compact surface satisfying
(4.22). Then either vy : M — Qo (IR6) 1s &+ holomorphic or

2x(M) < —|x(P)].
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4.4 Willmore surfaces and the harmonicity of
the conformal Gauss map

Besides &+ holomorphicity of v¢, since M is 2-dimensional, we can also consider
the harmonicity of 7, which in this case only depends on the conformal class
of the Riemann surface.

In order to do so, we introduce another geometric quantity. Consider equa-
tion (4.14), that is

o0, = pirof
(note that in what follows we can consider arbitrary dimension m > 2 and

codimension n). Taking exterior derivative of the above equation and using the
Maurer-Cartan structure equations together with Cartan’s lemma, we obtain

dpf — Ry + P9 + 207 8 — hiid] = piioh (4.30)
with
P = o (4.31)
With a simple but tedious computation, one verifies that under a change of
Darboux frames we have
~ 1
Dy :7°3BgA§A§» (pft + xlhlﬁkt — actxlhlﬁk — xka:lhft — §xlxlhft — thpf — kapt’8> +
+r3B56;; (xla:thﬁ + a:lplﬁ) (4.32)
so that, tracing with respect to ¢ and j
55 = B (vl + (m = 2)(22'9] + o'a'hf})) (4.33)
showing that, when m = 2, the system of equations
p =10 (4.34)

is conformally invariant.

Given the oriented immersed Riemann surface f : M — @, we are now
ready to compute a local version of the tension field 7(ys) of the conformal
Gauss map 75 : M — Q,_(R""?). Towards this aim we observe that

ds* = 3" (6h)?

K3

is in the conformal class of M and we can consider ds? as a local representative of
the metric of M. We compute the Levi-Civita connection forms p’ corresponding
to the local orthonormal coframe {¢§}. To that end we set

b0 = Lk (4.35)
Defining ' 4 .
Ph = Ok + 1kl — 1idh (4.36)
we observe that '
o+ ok =0 (4.37)
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and, because of the Maurer-Cartan structure equations
dgy = —pj, \ b5
Next, we recall that the forms 0% = ¢*®§, %9 = ¢*®% and 0" = ¢* P’
describe the real structure of Q,_»(R"*?). Considering a Darboux frame e
along f and using (4.17) we have
V00 =pRes, 0N = —hfgs. 00T =0
so that
;0 ) 0,
Yk =P e = —hie S =0 (4.38)

Using the connection forms given in (3.10) and (4.36) we compute
) ) Vg ,0pai 2J gt 0, )
Vewadb =dven =15 ok A v 050 R 05 v 067 =
= — dhf}, + hii o}, + PRy — h§id} — Wiy B + hiyundl — Orehfi o =
=(—hips + 0sepg + dirpy + hiypr — 5kth?jﬂj + h?kﬂt)%
so that
Vfg”ti = —hig + 0itp) + 0ukDy + hippik — Srehiyug + hijpr.

Similarly,

0
Vrni =P — Dt — DY + DY idke
0,
vr k,(tl = — hi;.
It follows that
a0« «
Yk = Pk Yfk
We have therefore proved the following

Theorem 4.9. Let f : M — @Q, be an immersed oriented Riemann surface
with conformal Gauss map vf : M — Qp_o (R"+2). Then ~yf is harmonic if
and only if (4.34) is satisfied.

It was proved in [12] and [4] that condition (4.34) is also equivalent to f being
a critical point of the Willmore functional, prompting us to set the following

Definition 4.4. We will say that f : M — @, is a Willmore surface if, for
any compact K C M and any smooth variation f; : M — Q.,, with support in
K, we have

d
dt ‘t:O Wic(fi) =0,

where

Wk(f) = /K W. (4.39)

Theorem 4.10. Let f : M — @, be an immersed oriented Riemann surface
with conformal Gauss map vy : M — Qn,g(]R"*‘z). Then f is a Willmore
surface if and only if 7y is harmonic.
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Proof. By virtue of Theorem 4.9 we only need to compute the Euler-Lagrange
equations of the Willmore functional. Let K be any compact domain in M and
let f; : K — @y, for t € (—¢,¢) and for some € > 0, be a smooth one-parameter
family of immersions with compact support C' C K \ 9K, i.e. fi(p) = f(p)
for every t € (—e,e), p € K\ C’ and such that fy coincides with the given
immersion f. A simple computation shows that we can write (4.39) as

WK(f):/KQf7

where Q0 = —¢¢ A ¢5. Now since K is compact we may assume the variation
to be normal.
To be more precise, let v: K X (—¢,¢) — @, be the smooth variation, that is

ft = U('7 t)
Up to taking a smaller €, we can consider a smooth frame along v, that is a map
e:U x (—e,e) — Mob(n),

where U is a neighbourhood of a given point pg € K, such that 7 oe = v, the
map e; = e(+,t) : U — Mob(n) is a Darboux frame along f; for every t € (—¢,¢),
and

e(p,t) = e(p,0) VpeU\C, t € (—¢,¢), (4.40)

C being a compact such that ¢’ ¢ C C K \ 9K.

For such frames we define, as usual, ¢ = e*® = e~ 'de, so that the components
¢y satisfy the usual symmetry relations and the structure equations.

For each t € (—¢,¢) we denote by ¢(¢) the mob(n)-valued 1-form on U

B(t) = ef P,

with components ¢ (¢) which also satisfy the symmetry relations and the struc-
ture equations. Being ¢ a 1-form on U x (—¢,¢), at any point (p,t) it can be
written as

D(p,t) = O(t)p + Alp, t)dt, (4.41)
where A : U x (—¢,¢) — mob(n) is given by

0 9 de
(p,t) ) - q)et(P) <€*(P,t)at ‘(p,t)) = (I)et(l”) ((%(p, t)) .

A(p,t) =e€* <I><8t

From (4.40) we know that A(p,t) = 0 and ¢, ) = ¢(p,0) for every t € (—¢,¢)
and pe U\ C.
We set \y' = A§' and observe that, since e; is a Darboux frame , then

96 (p.1) = A0 ()t (4.42)

and since ¢@(t), = h$(p,t)¢}(t)p, with h$ = 0, and he;(p,t) = hg;(p,0) for

ij
every pe U\ C, t € (—¢,¢), we have

O oy = 155 (0, )85 (1) + AF (p, 1)t = Wiy (p, )0y + AT (s 1)L, (4.43)
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where A\ = —h%Ag + A$ are smooth functions satisfying A (p,t) = 0 for p €
U\C and t € (—¢,¢).
Differentiating (4.42) and using the structure equations we find

dpg =dN A dt =
= — 05 AGY— O A g — B A ) =
=G0 A dt + A A dt + hiioh A g — Ao A dt =
=AGO A dt+ AFph A dt — Mg A dt,

that is .
(AN — A§P — XF¢h + \go%) Adt =0

and by Cartan’s Lemma there exist smooth functions pu® such that
dXS = A 60 + AT — NG o + utdt.

We remark that a variation v and a frame e with these properties can always
be defined with assigned arbitrary AJ(-,0), as long as supp Ay C C’. For any
t € (—e¢,¢) we have

th = _qb(lx(t) A (bg(t)a

which we can rewrite using (4.41) as
(21), == (05 (uy — ATAE) A (05, — ASlt) =

== WMo Ny T Oy N2+ ATAEN G5 ) =

:—W@@A@@@+“A@WW@@_A%ﬁmQ:

:—ﬁ@@A@mn+ﬁAP%@ﬂmﬁﬁﬂmQ}
Now we set

”mﬂ:‘W@@AW@m+ﬁAP%(?moA@@@ﬂ
and observe that obviously, for any ty € (—¢, ¢),
Qg = W(to)s

and iagw = 0, indeed
t

g 0
g0 = =i 08 N5+ i 03 n65) (68 no) (a7 ) ae =0

We define
g(tO) - WK(fto) = /Kw\t:to

and consider the variation

00 = [ (cq0)|_ = [ [a(ige)+igas] = [ (izas)] .
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where £ denotes the Lie derivative. This expands to

g 0) = [ i (=dter n o) —daos —agon)]

t=0
and, using the structure equations,
—d(¢7 A 95) =07 A (8] A 95 + 6T A p) + &5 A (dg A5 + 67 A o)+
+O5 NG NGF — BT NG NG =
=03 A (69 NG5 + 05 A 69) + 8% A (94 A 85 + 65 A d2)+
+ 05 A (61 A5 — o N g5) =
=66 A ($1 A 05 + ¢ A dD) + o A (05 A 65 + 67 A ¢7).

This allows us to compute

i (d(9F N G5)) =N (YA D5+ BT N BY) — 65 Aig (60 A G5 + BT A B9+

+AQ(60 A 05 + T A dF) — oh A (=A3p(t) + ATGR(1)),

where, for the last term, we computed

ia (85 NG5+ 0% AGE) =

=Ap¢s — A3¢ + ATG) — AjoT =

=3 (800 + Xgdt) — Agoh + AT — A3 (hjo + Agdt) =

=(hf2Ag — hi1 A — A)dp + (h5 A — hS1Af + AT)¢p + Aghgdt — AGATdt =

=X (dF — AGdt) — A3 (dg — Agdt) =

= — A5 p(t) + AT 5 (t)-
Now, restricting to ¢t = 0, we find that

—i o (d(dF N D)), =A5(0)(41(0) A 65 (0) + &5 (0) A $5(0))+
+04(0) A (A5 (0)65(0) — AT(0)¢5(0))
since ¢§(0) = 0 and
$6(0) A 65(0) + 67 (0) A ¢5(0) = (hSy + h5,)dp(0) A ¢5(0) = 0.
Now a tedious but straightforward computation involving (4.30) shows that
—ip (d(&F A 95)),_, = A3(0)(pf1 + p52)85(0) AdE(0) —d[AG (T — p5 o)),y
and thus
50 = [ DEOE + 500 A0 - ax)
where
X = AT(0)95(0) — AZ(0)7(0) + A5 (0) (1 ¢5(0) — p365(0)).

It can be easily checked that y is a well defined, smooth 1-form on M, and

since A\§ and A{ are supported in C' C K, so is x. Therefore, applying Stoke’s
theorem, we obtain

§(0) = /K X5 (0) (51 + p3)68(0) A 63(0)

and, by the arbitrariness of AJ(-,0), the claim is proved. O
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4.5 S-Willmore surfaces and Willmore surfaces

Let us go back to surfaces in Q4. In this context the concepts of harmonicity
and + holomorphicity of the conformal Gauss map both make sense, and since
4 holomorphicity implies harmonicity, we find that + isotropic surfaces in @4
are in particular Willmore surfaces.

In [7], Ejiri has introduced the notion of S-Willmore surface. In our setting,
with respect to a Darboux frame along f, the notion corresponds to the two
following conditions

(@) L%, N L,

(b) k%n//L%q (444)

whose conformal invariance is apparent once we recognize that, at p € M,
condition (4.11a) is equivalent to

L3 LA

=5 7 #0 that is L3LA — L3L* #0,

and by (4.9) this translates to

Kn(p) # 0.

On the other hand, condition (4.11b) can be expressed as
KLY — kL3 =0,

and the quantity on the left-hand side, under a change of Darboux frames, obeys
the transformation law

BLY - FL3 = P33t (k3L — KALP).
Indeed, from (4.3) and
ke = r2BPet <kf’ - %(azl + z‘xQ)Lﬁ>,
we get
KLY — KL% =3¢ (B?Bz - BfBg) (kﬁ + %(ml - z’gc2)Lﬁ>L7 =

; 1
=r3edit <k3 + 5(1;1 + ia:Q)L3) L'+

_ (k4+;(x1+2$2)L4>L3

:r3e3’it(k3L4 _ k4L3).

3
Thus the element of ®T*M(1’O)

=KL K L3)ooe@p (4.45)
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is globally defined on M and condition (4.11b) is satisfied at p € M if and only
if

ap(p) =0.
Ejiri proved that, in the Riemannian setting, an S-Willmore surface is a Will-
more surface. This can be easily checked in our setting, too.

Proposition 4.11. Let f : M — Q4 be an S-Willmore surface, namely an
immersed oriented Riemann surface such that Ky # 0 and oy = 0. Then f is
a Willmore surface.

Proof. Suppose f is S-Willmore. In particular k3L — k*L3 = 0 on M. Differ-
entiating the left-hand side and using the structure equations we find

d(K3L* — K*L3) = = 3(K3L* — K*L3)(¢) + ig3) + %(Q3L4 — Q*L?)p+

1
+ (B3¢ - K)o+ Z(P%kUl - P L?)P, (4.46)

where 1
QY = 5(]9(111 — P52) — ipTy
and ¢* has been defined in (4.26). Indeed,

2d(k°L* — K'L?) =
:d((p? - ipg)(hﬂ - ihzﬁ) - (1041L - ip%)(hzfl - ih:ng)) =
=d(pihiy — ipihiy — ip3hiy — p3hiy — pihiy +ipihiy +ip3hiy + pahiy) =
=ht,dp} + pldhi, —ihiydp} — ipidhi, — ihiydp3 — ip3dhi, — hisdp3+
— padhiy — Iy dpy — pidhiy + ihiydpt + ipydhiy + ity dpy+
+ ip3dhy + hiadps + prdhiy
and recalling that

dpg = ot + il — pl oG — 2880 + pish
and
dhgs = h 6 + heof + i of — hlef — hiiel — oip et
we get
2d(K3L* — K*L3) =
=h1, (P37 + 3107 + h3169 — pios — 2P0 + D1 b6 + Pladi)+
+ 7 (hi1@6 + hiad + a1 97 — b 05 — ki 6 — prep)+
— b, (P33 + By 0 + B3 69 — pio] — 20860 + by dh + Piadd)+
— ip} (Rior@dl + 1103 + hapdt — hiyds — hiadl)+
— ik, (P1h + hiad) + h3ad) — pydi — 20360 + P31 dG + PRadl)+
— ip3 (k06 + Mot + 3y 87 — b 03 — hi1 60 — phde)+
— Iy (P30 + hia0) + hiy 09 — p3dh — 2580 + P oy + Phady)+
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— D3 (hiok@G + M1 93 + hoadt — hisds — hisdh)+
310307 + hi169 + hiy 09 — plos — 2pien + plidh + pladh)+
— P (h]1 96 + hix¢t + h31¢T — hi1 6] — hi1¢g — pies )+
+ihly (P37 + b1 6% + hi 03 — ples — 2p160 + p116G + Plad))+
+ipi (P06 + b1 0b + hiad] — hiadf — hiae0)+
+ihty (p10s + hia8] + hiadh — P33 — 20360 + P31 dp + Pasdy)+
+ip3 (hi1xdf + hiad + h3107 — hi1 o — hi100 — pidt)+
+ h35 (P14 hiad) + 3209 — P3ds — 2p300 + Pa1dp + Paadl)+
+ o (har 0 + hi163 + h3ad — hisd — hisep).
Then, taking into account that hg, = —h{y and cancelling out a few terms,
2d(K3L* — K'L3) =
= (=3pthi, + 3ipthls + 3ip3hiy + 3p3his + 3pihi +
—3ipihiy — 3ipahiy — 3pshiy) do+
+(3p3hiy + 3pThiy — 3ip3hiy + 3ipthiy — 3pahiy +
— 3p1hiy + 3ipshiy — 3ipihi,) di+
+((pl1 01y + Pihty — PPy — Py his — Pahiss+
—phhdy — pihdyy + pipd + payhds + pahls )+
+i(—p}hly — Pihiar — PRy — P31y + PapT+
+ phihis + pihis + po by + pahiy — papl)) do+
+((p12h4111 + Pty — Pips — Pishis — P3hig+
— Plahty — Pih31o + Pip3 + pashly + pahisg)+
+i(—plyhly — Pihlsy — Plahiy — P3R11s + PEP3+
+ Piohis + Pihiss + Poahiy + Pahiis — ap3)) 65
Now, making once again use of (4.18) and cancelling out a few more terms,
2(K*L* — K*L%) =
= —6(K3L* — k*L?) (¢ +i¢3) +
+; {Pnhn +P1h111 pglhéﬁ *pgh%zl *P%lh:fﬁf
—pihi1y + arhis + Pahisy — piahiy — Pihisy — Pohiy+
—P3hira + Piahis + Piiss + aohty + pahiiat
+i[ — piihls — Pihly; — P3 ATy — P3hTyy + PR+
+ pihia; + P35 A3y + pahtiy — plahiy — pihiis + Phohiat
+ P3Py + Pi2hdy + Pihtie — Paohis — pohiss) }<P+
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+ %{P?lh%l +piht — ki — pikin+
+pi Pl + Phohiy — Pihiay — Poohii+
+i[ — phihis — P3hiiy + 203p1 + P11 Rty + P3hT
— 2y} — bty — pihies + by + pihis] |7
Recalling the definitions of Q3L* — Q*L3 and pi,cL4 - pikL:S,
2d(K3L* — K*L3) =
= —6(K*L* — K'L?) (60 + i¢7) +
+{Q3L4 —Q'L*+ %[P?h%n — p3his; — Pih+
+ pahar — PYhisge — Pohi1a + Pihias + p3hiis]+
+ %[ — pihiay — P31y, + Pihie; + pahdi+
— Pihiis + P3hiss + Pihis — pahis] }80+
o {phlt — ph I+
+Pihin + pihise — pihiy — pihis+
+i[ = p3hiyy + 2p5pT + pohi +
— 2k — Pty + Pilies] 7 =
= —6(K3L* — K*L?) (¢ +i¢?) +
+{Q3L4 - Q'L+ %[pi’héllu — p3hia =PI+
+ pahiay — Pihiss — PaRi1a + PihYas + Dol ]+
)

+51

— pihiyy + P3hlay + pihs — péh:{’m] }@"‘

354 354 4,3 4,3
— prhisy — p3hiny + Pihiar + pahig+

(ll?ikLz1 - pikLg)@

DN =

+

Finally, using the definition of k3¢* — k*¢3 and manipulating the remaining
terms,

2d(K*L* — K*L3) =
= —6(KL* — K'L?) (4 +i¢7) +
+{Q3L4 — Q'L* + [ = pihisy — P3hi1o + Pihise+
+ pahis — ipThiay — ipSpT + ip5hiss + ipihis;+
+ ipknl — ipihin) o + %(pikL‘* — i L®)p =
= —6(K*L* — k'L?) (¢ +i¢3) + (Q°L* — QL%+

1
+2(k°C = K + S (0L — P L7
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Now, setting k3L* — k*L3 = 0 in (4.46), we can deduce that in particular
pikﬁ = pikLg-
Assume by contradiction that f is not a Willmore surface, that is, either p3, # 0
or piy # 0, say py, # 0. Then we have
JE— JE— 4 J— E—
iKy = LT3 — T304 = B (1373 _ T313) = 0
Dk

which contradicts (4.11a). O

From the proof of Theorem 4.3, we have that ¢ is £ holomorphic if and
only if k% = #ik* and L3 = +iL*, hence in this case we automatically have
oy = 0, so that

Proposition 4.12. Let f : M — Q4 be a £ isotropic immersed surface. Then
f is S-Willmore if and only if Kn # 0 on M.

The next risult is another application of Lemma 4.4.

Proposition 4.13. Let f : M — Q4 be an immersion without umbilical points
and such that the set of + isotropic points is not discrete. If f satisfies condition
(4.22), then f is S-Willmore.

Proof. By Proposition 4.6, f must be + isotropic. This implies a3 = 0 and

Ky = —i(L*L* — I3L%) = 2|1

= ¥2‘L3|2.

Therefore Ky(p) = 0 if and only if p is an umbilical point, and the result
follows. O

Observe that under a change of Darboux frames we have
Pinl® = P Ll® = r2e® (pi Lt — i L?), (4.47)
therefore, applying once more Lemma 4.4 we have the following

Theorem 4.14. Let f : M — Q4 be an immersion such that

Fye L (M) suchthat |ppL* — pgL?| < y|k°L* — K'L?|  a.e. (4.48)

loc

for some p > 2. Then either oy = 0 or its zero set is discrete. In this latter
case, for M compact we have

Z(al) = _3X(M)7
where z(ay) is the sum of the orders of the zeros of a.

Remark 4.15. If M is a Willmore surface, condition (4.48) is automatically
satisfied. Moreover, if M is a topological 2-sphere, then a; = 0.

Proposition 4.16. Let f : M — Q4 be a Willmore surface. Then oy is holo-
morphic.
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Proof. Let e be a Darboux frame along f and g = ¢} ® ¢} + #3 @ ¢ be the local
metric on M defined by e. There exists a local isothermal coordinate z = x + iy

on M such that g(%,a%) = g(a%va%) = r2; therefore § = r—2¢g is a flat

—-1.0 —-1.0
oz oy
frame for g, we can consider the locally defined, SO(2)-valued function A given

by Al =gj(r12), Al = ¢} (rla%). If we set & = eK, with K defined by

local metric, conformally related to g. Since {7“ r is an orthonormal

’I“_l

0
A
0
0

o O O
O NO O
S OO0 o

then € is a Darboux frame, since K is obviously Gp-valued. Moreover, trivially
Oy @ P + dp @ p3 = g and, from (2.7), the dual frame to the coframe {%} is

just {a%v a%}' Indeed, for instance,

~ /(9 ) , o\ . K]
1Y\ —1Ai 2 g1 Y\, )
d)()(ax) =r AI(Z)O(al,) _(bO(T ax)(bo(/r ax) =L
Now, from the structure equations, we have d@ = (¢Q + ipl) A @ and, denoting
2O 0 nd W =7 we et
“ 9. 2\oz 'oy)® T awese
dp(W, Z) = d(g(W))(Z) — d(¢(2))(W) + &([Z2,W]) = 0
since (W) =0, ¢(Z) =1 and [Z, W] = 0. On the other hand
(86 +i63) A GL(Z,W) = (g + i) (W),

proving that ¢0 +i¢ is of type (1,0), and hence can be expressed as ¢J +ipl =
up, for some locally defined complex valued function p.

Now, with respect to €, (4.45) is the expression of a; in a local holomorphic
trivialization of the bundle ®3 T*M™9 so, in order to check if a; is holo-
morphic (that is, if da; = 0) we only need to check that the differential of its
coefficient in such trivialization, k3L* — k*L3, is a local form of type (1,0). But,
assuming that f is Willmore, (4.46) (with respect to the frame €) shows that
this is exactly the case. O

4.6 O, (R6)—Valued maps and surfaces in ()4

So far we have considered immersions of oriented surfaces in the conformal
sphere Q4 and we have associated to them certain maps with values in the
conformal Grassmannian Qs (]RG), i.e. the conformal Gauss map. This map
has some remarkable properties, for instance it is holomorphic if and only if the
original immersion is — isotropic. Now we are going to do the converse: starting
from a holomorphic map v with values in Qs (IRG) we want to see if, and under
what conditions, it is possible to retrieve a @Q4-valued map whose conformal
Gauss map is exactly the map ~.
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First of all, let us observe that, given a — isotropic immersion f : M — @4, the
conformal Gauss map vy is constant if and only if f is totally umbilical, namely
f(M) C Q2, or equivalently Wk (f) = 0 for any compact domain K C M.

Let M be a Riemann surface and v : M — Q> (R®) a non constant holomor-
phic map. Let ¢ be a (local) (1,0)-form defining the complex structure on M
and let s : U C Q2(R®) — M6b(4) be a local section of 7. Then

(0 =A0, A=Ay, =AM, (4.49)

where (%, ¢¥ and (3 are defined as in (3.11) with respect to the section s. The
vector A of components A%, A*®, A3 is of analytic type, i.e. it either vanishes
identically or has isolated zeros. Indeed, let w be such that dy = iw A ¢; then,
differentiating (4.49) and using (3.11) and the structure equations, we have

d(y*¢%) = dA° A + A%dip = (dA® + iAW) A =
=~*d¢0 = ffy*s*(CI)g + i@g) AN — ’y*s*@g A Akcp.
Hence
(dA° 4+ iA°w + A%y s* (@) + i®3) + AP y*s* ) A =0
and similarly
d(v*¢h) = (dA +iA'w) Ap =
=7 d(t =7 (=" RGN = 5T PY N — it R A = sTRY AP =
= (_on*s*q)(l) B A2'y*s*<1)§ N iAl'y*s*(ﬁé _ A37*s*<I>(1)) A,
implying
(dA 4+ iA" + A% s* Df + A2y*s* D) + iA 'y s* @5 + APy*s* DY) A = 0;

d(v*¢%) = (dA? +iNw) A =
=~*d¢? =~* (—3*@% AP — s DTN —is* DI AR — sTDY A C3) =
= (—on*s*fbg — Ay s ®2 — Ay s DE — A37*s*<I>g) A @,
hence
(dA? 4 iA% + A" s* ®F + A'y*s* @] + iA%y*s* @5 4+ Ay*s™ DY) A = 0.
Finally
d(v*¢%) = (dA® +iN*w) A =
=77 dC® = (5" (®) — i) AP =BG =TRGNP =
= (A?”y*s* (@8 — i@é) — Ay s ®) — A2fy*s*q)(2)) A p,
which gives
(dA® +iA® — APy s (@f — i®3) + A'y*s* D + A*y*s*®F) A =0,
that is,
dA° = —iA° (w + ’y*s*@% — i’y*s*fbg) — Ak’y*s*fbg mod ¢
dAF = —iAF (w + ’y*s*q)§) — Aj'y*s*q)é? — A%*s*@é — A3'y*s*<132 mod ¢
dA3 = —iA3 (w + ¥ st Ps + iv*s*(bg) — AFy*s*Of mod .
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Thus dA® = WZA® modulo ¢, for some gl(4, C)-valued one form ¥ = (¥g),
namely the vector A is a solution of the system

OA 0

9: = ¢ (az) A
and, by Lemma 4.4 (but see also [6] for a direct proof of this case), the claim
follows.
Since we assumed 7y to be non constant, it follows that the zeros of A are isolated,
and in a neighbourhood of any zero, A factorizes as A = 2'A, with A # 0, z a
local holomorphic chart centered at the zero and ¢ € IN.
Since Qo (IRG) can be identified with an open subset of a quadric in P the
map « can be lifted to a smooth, C%\ {0}-valued map {7} = ez + ies, where
e=sovy:U C M — Méb(n) (note that e is not necessarily an immersion,
because in general v is not). Denoting ¢ = e~'de, we have

Al = (0 = "0 + ie" @Y = 6§ + i,
N =7"C = ¢3 +i0],
and since de = eg,

d{v} =i(es +ies)d] + eo(d3 + id]) + ex(ds + id}) + es(d5 + id]) =
= i{y}¢3 4+ (Ao + APep + Ades)p

If p: €%\ {0} — P2 is the canonical projection, then v = po {v} and

d’}/’t = Vrz = p*{w}(m){v}*l = PPx{y}(x) (AOeO + Akek + AS@E’))-

The complex tangent line to the curve (M) at the point v(z) is therefore the
vector space spanned over € by the non-zero vector p, {4} (z) (A%eg+A*er+A3es).
This prompts us to define a new map, called the “derivative” of v, v : M — P
which associates to the point x € M the projectivization of the non-zero vector
A%y + A¥ej, + Aes. This map is trivially well defined and does not depend on
the choice of the section s.

We will need to add the further assumption that 7’ be valued in the quadric
Q>(RS); this happens if and only if the vector ‘(A% A* 0,0, A®) satisfies the
equation

—2A°A% + AFAF = 0.

Definition 4.5. A map v : M — Qs (]R6) will be called a totally isotropic
holomorphic map if it is holomorphic, non constant, and if v' is valued in

Q,(R").

Let 5 be another local section of the bundle 7 : Méb(4) — Q2(RS), and
€ = 5o07. Then € = eK where K takes values in Hy as defined in (3.1). At
any point p € M we can therefore choose a section such that A3 = 0, hence
A? = a, A’ = X and A% = i), for some a,\ € C. Since A is of analytic type,
such sections can be locally smoothly chosen in a neighbourhood of p. The
frame e corresponding to such section will be called an isotropic frame, and
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the isotropy subgroup for such frames is exactly Gp as defined in (2.10). With
this choice of frame, (4.49) rewrites as

v =ap, Y =2dp, P =ide, YE =0 (4.50)

We can associate, to any totally isotropic holomorphic map v, a map J, : M —
Q4 defined as follows. Let e be any isotropic frame along v and set J, = [eg].
In this way J, is well defined, because isotropic frames change by matrices in
Gp. Differentiating the second and third equalities of (4.50), we obtain

d(v"¢t) == g A" = Gy A —igg A= 88 A
=(—agp — irpy — iAd3) Ao,
d(v*¢?) =(—adf — AT + Ap3) A,
but on the other hand v*(? = iy*(!, so we have
(—iady + Ads + Ad3) A @ = (—adf — AdT + Ad3) A

that is, ia(¢g + i¢3) A ¢ = 0. Differentiating the last of (4.50) we get

0=d(y*¢%) = (~Adp — iAG]) N .
Therefore we have obtained

a(¢y +igg) A =0
Ao +igg) A =0

Since A is of analytic type, outside a discrete set (the set of zeros of a and \),
we must have

¢p + ity = pp (4.51)

for some locally defined complex function p, whose vanishing is independent of
the choice of the isotropic frame. Differentiating (4.51), we have

dp N ¢ +ipw A @ = dog + idgs = gy A @ + iudy A,

that is
dp = fiu(w — 3+ Z'(,bg) mod ¢.

Therefore p is of analytic type, and so it either vanishes identically or has
isolated zeros.

Let us now consider an open set U C M where p is nonzero and let e be an
isotropic frame along v defined on U. Then e is trivially a zeroth order frame
along J,, since m o e = J,. Moreover, it is a first order frame, since from (4.50)

0=7"¢* = ¢y + idy,

so ¢ = 0. Also, J, is a conformal immersion on U, since the only points where
J, is not an immersion are the zeros of p. In the case of i vanishing identically,
then J, is constant. Indeed in this case not only ¢§ = 0, but also ¢f = #3 = 0.
So

dJ, = pedeg = p.(eod) + eady) = ¢fpeea =0
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where p : R%\ {0} — P}, is the canonical projection.

Thus, either J, is constant on M or it is a weakly conformal branched immersion.
Assume to be in this latter case; we will prove that an isotropic frame e along
v is a Darboux frame along J,.

To this end we use (4.50) to deduce that

v =i, (4.52)

Now we set, as usual, ¢7* = h{j¢g, hi; = h

Gi» and observe that

and equation (4.52) is equivalent to the following system

3 _ 14
hy; = —hy;
which gives
hil)’l = h%l = —h§2, hil1 = _hgl = _h32-

An alternative proof can be performed by exploiting the holomorphicity of ~.
Consider on U C M the local metric ds* = (¢§)? + (¢3)?, which is in the
conformal class of M. Since ¢7* = hf; J, using the notations of (3.5), we have

7O = —hiieh

7*00,(1 =0

700 = B
where at present we are not able to relate B,‘:’O with hgy, because e is just a first
order frame. We set '

By = —h%, By*=0.

We can also consider on U the tension field 7(y) of the map ~, which, since we
have not fixed a global metric on M, but only a class of conformally related

local metrics, is defined up to a nonzero factor.
Since 7y is holomorphic and both M and Qg (IE{6) are Kahler manifolds, the

tension field 7() of v must vanish. In particular its coefficients Bg}f must
vanish, and we are now going to compute their values.

To this end, let us denote by V the covariant derivative of (M,ds?), and by
V'’ the one on (Q2(R°),dl?). Let {E;} be the orthonormal frame on M dual
to the coframe {(bf)} and {Ya,0, Yo, Yoo} be the frame on Qs (RG) dual to the
coframe {9""0, 9°"i,90’o‘}; then

Yy = (B Yo + By Yok + By Yo.0) @ 64 @ .
First of all observe that, if v € T Qo (IE{G)7 then
v = 90‘70(U)Ya70 + Go’o‘(v)Yoﬁa + 90‘7i(v)Ya’i;

in particular,

’Y*zEj :0070(,},*mEj)(Ya70)’Y(x) + eo’a(’Y*zEj)(YO,oz)fy(x) + ga’k('Y*xEj)(Ya,k)fy(x) =
:'V*ea’o(Ej)(Ya,O)'y(r) + 7*907Q(Ej)(Y0,04)'y(m) + 7*9a7k(Ej)(Ya,k)'y(m) =
:B;?‘,O(Y%O)v(x) + B;X’k(ya,k)'y(x);
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that is ‘
YBj = By oo + B 'y ™Yo

Now, if X is a vector field on M,
-1
Vdy(Ej; X) =V (1Ej) = % VxE;

and VxE; = p?(X)Ek, where ,ok defined as in (4.36), are the connection forms

relative to the orthonormal coframe {qbo}, while V'Y3 = HXZYE, with 9:5 defined
n (3.10). Then we can compute

-1
Vi (wEj) =By (X)y Voo + BV, Yoo+
+ dBf’k(X) “Wos + BOFV! (Yo =
=dBY(X)y W0 + BSOOZ (1. X )y Y+
+dBEM (X)W + BOFOE (. X)y 1Y =
=dB""(X)y a0 + By 000 (X )y Yo+
+ B0y 00 (X)y ™ Vs, + By v 000(X )y Yo a+
a,k a,k % 0 —
+dBSH(X)y Yok + By 000 (X )y Y0+
+ By 00 (X)y Y + B ’“v*@i’,i(xw—lyo,ﬁ
and
Y VxE; = p?(X)’y*Ek = p?(X) (BZ"O’y*lY%o + B,‘:’i'y*lYa’i).
Therefore,
Vdy(E;; X) = (dBj"O + BIOy 058 + B y05 - By Opf) (X)y Waot
+ (dB?“”“ + BP0y 050 + Byl - Bf"kpj) (X)) Yaut
+ (B 055 + By 057 ()7 Yo
y (3.10), 02’3 = 0, so that, taking the Y, , component, one has
BY¢h(X) = By 054(X).
Now, since

=> Vdy(Ej;E
J

vanishes by assumption and, again by (3.10), 92’2 = 5%@’5, then in particular

k%0, K J
0= By 055 (E;) = 65 B of(E)) = B = —hs;
and we have proved that e is a Darboux frame along J,.
Moreover, it is trivial to see that, outside the branch points of .J,, we have
74, =7, and J, is — isotropic, since v, is holomorphic by assumption.
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On the other hand, consider a weakly conformal branched immersion f :
M — Q4 with the property that its Gauss map ~; can be continuously extended
to the branch points, and let e be any Darboux frame along f. If f is — isotropic
(outside the branch points), then 7y is holomorphic, and in this case, with the
notations of (4.49), we have

A® = k? + ik, Alz—%(L3+iL4), A2=—%(L3+¢L4), A =0,

so that
—2AOA3 + Z AFAF =0
k

and 7y is a totally isotropic map. Furthermore, J,, = f.
We have therefore proved the following

Theorem 4.17. Let M be a Riemann surface. There is a bijective correspon-
dence between — isotropic, mon totally umbilical, weakly conformal branched
immersions f : M — Qg, whose conformal gauss map can be continuously ex-
tended at the branch points, and non constant, holomorphic, totally isotropic
maps v : M — Qo (RG) with non constant associated map J,. The bijection is
realized via the conformal Gauss map.

4.7 Qy(Q4)-valued maps and the conformal Gauss
lift

Using an appropriate Grassmann bundle, we can extend the previous result so
as to include the totally umbilical surfaces.

Let us consider the product manifold Q4 X Qo (IR6) and define Q2(Q4) as the
orbit of the point ([no], [e3,€4]) € Q4 x Q2(R®) with respect to the natural left
action (defined componentwise) of the group Méb(4). In other words

Q2(Q4) = {([n], [s1,52]) [ 1 = Pno, s1 = Pes, sy = Pey, P € M6b(4)}. (4.53)

It is trivial to see that Mob(4) acts transitively on Q2(Q4), the action being
given, for P € Mob(4) and ([n)], [s1, s2]) € Q2(Q4), by

P([n], [s1,s2]) = ([Pn], [Ps1, Ps2]).

Let us compute the isotropy subgroup of the point ([no], [e3,€4]). If P € M6b(4)
fixes the point ([no], [€3,€4]), then in particular it must fix the first component,
hence P must be an element of Gy, defined in (1.7), so it is bound to be of the
form
ot otz A Ir|af?
P= 0 A rT
0 0 r

But, for Ples] to belong to [e3,e4], we must have 23 = 0, A} = A2 = 0 and
analogously, imposing Ples] € [e3,e4], we deduce 2% = 0 and Al = A7 = 0.
Putting these conditions together we find that P € Gp. Since in turn any
element of Gp fixes ([no], [e3,€4]), we can conclude that the isotropy subgroup
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is exactly Gp. Hence Q2(Q4) ~ M6b(4)/Gp is realized as a homogeneous space
with projection

T MOb(4) — QQ(Q4)
given by

7 : P ([Pno), [Pes, Pey4)),

that is, 7 = @ x 7. Also, we will denote by 7 : Q2(Q4) — Q4 the canonical
projection

7 : ([0l [s1, s2]) = [n].
Observe that Q3(Q4) has a natural integrable complex structure defined as

follows: let £ be a local section of the bundle 7 : Méb(4) — Q2(Q4); then we

declare the forms
ol =& 0l it dE,

0¥ = {10y + il Py,
of = {1 Of + i P,
0% = £ DY + it*

(4.54)

a local basis of the space of the forms of type (1,0) over Q2(Q4). In order to do
this, first we need to check that the ideal they generate is differential. Setting,
for the sake of simplicity, ¢ = £*® and using the structure equations, we have

dot =— 07" A () +iwd) — o3 Ay — oy A s — ips Ay —ivh A gy =
= — 0 P A (@) Fipd) Fiot A g4 io® A S+ 03 A (k4 p2)

and analogously for the differentials of the other forms. Lastly, one can easily
check that the space generated by these forms is well defined, i.e., it is indepen-
dent of the choice of the section &.

Proposition 4.18. The fibers of 7t : Q2(Q4) — Q4 are integral submanifolds of
the (invariantly defined) Pfaffian system

o l=0
4.55
{03 =0. ( )

Proof. Since Q2(Q4) C Q4 x Q2(R®), for ([], [s1, s2]) € Q2(Q4), we have

T fs1,52)) Q2(Qa) C TiyQu X T, 6, Q2(RP).

Thus, we can regard a tangent vector of Q2(Q4) as a pair (X, V) with X € T}, Q4
and V € T, 4,1 Q2 (RG). Now 7 is the projection on the first component, so

Toa (i [s1,52]) (X, V) = X

and
ker 7, s1,52) = {(0, V) € T [51,521) Q2(Qa) }
We want to prove that

71 _
{U([W];[Sl,sz]) (0, V) =0

3 J—
J([W]»[ShSQ])(O’ V) =0,
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or equivalently that, if £ is a local section of & : Mob(4) — Q2(Q4), then
* A
€720 (. fs1,02 (V) = 0.

To this end we set g = £([n], [s1, s2]) and compute

* A
E G (ol 11,001 (0 V) =0 4 (Eanl f1.,52) (0, V) = (@ (€t o151y (0, V) g =
_ b
=(97"8 (Gl sr.5 (0: V) g

where in the last equality we used the definition of the Maurer-Cartan form for

classical groups:
dp(X)=P'X.

Now take ([7], [$1,52]) in the domain of &, set § = &£([7],[51, $2]) and observe
that

T(&([1], [31,82])) = 7(9) = ([g70], [9e3, Gea])

and, since 7 o £ = id,

([7); [51, 82]) = (7 0 &)([71], [51, 52]) = ([gm0]; (923, gea])-

In particular we have that [1] = [gno] and

[9m0] = [g0] = [(£([7], [81, 52]))o] = [So([7], [$1, 52])],

that is, the projective class of the vector £y([7], [$1,82]) coincides with that of
7. In other words, calling

p: R\ {0} — Py

the canonical projection, we find that p(&0([7], [$1, 52])) = p(7). Hence po&y = &
and

(P °&0) (. 51.5) (0, V) = T 15152 (0, V) = 0,
that is
Pago([7), 51,52 0w (7. [31,5]) (0, V) = 0.

Thus £o.(j7,31,52)) (05 V) € Ker pug, (1, [5,.572))» implying
o (i, 5,50 (0, V) = Ao ([71], [51, 52])
for some A € R. Therefore
b by b

(5*([n],[51,52])(0a V))O - /\(é([n]v [817 52]))0 - AgO
So eventually,

E Y (1 isrsa) (0:V) = Mg~ )il g6 = A6 =

O]

Let us consider the canonical projection ¢ : Q2(Q4) — Qo (IR6) defined by

c([n], [s1, 82]) = [s1, 82],
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which makes the following diagram commutative
Mob

N

Q2(Q4) - Q2 (R®)

that is, T = co 7.

Proposition 4.19. The map ¢ : Q2(Q4) — Qo (RG) defined above is holomor-
phic.

Proof. Fix po = ([n], [s1,s2]) € Q2(Q4) and consider & a local section of the
bundle 7 : M6b(4) — Q2(Qy4), defined on a neighbourhood of py and ¢ a local
section of the bundle 7 : M&b(4) — Q(R®) defined on a neighbourhood of
[s1,82]. We have to show that c¢*¢°, ¢*¢*¥ and ¢*(3, defined as in (3.11), are
forms of type (1,0).

Set go = &(po). As in the proof of Theorem 4.3, we can assume that the section
¢ satisfies <(7(go)) = go, and

(co®)*(®a)go = (20)go-
Then, observing that ¢ = 7 o £, we have that
(€¢"),, = (€77, =& (7 (@g +i®Y)) =€ VG, +i6™ Py, =0y,
and analogously for ¢*¢* and ¢*¢3. O

Definition 4.6. Let f : M — Q4 be an immersed oriented surface. The con-
formal Gauss lift 'y : M — Q2(Q4) is defined as
Ly=Jfxny,

that is, given p € M and e any Darbouz frame along f, defined on a neighbour-
hood of p,
I'y=moe;

in other words,
Ly :p e (leolps [es, ealp)-

We are now ready to state the generalization of Theorem 4.17.

Theorem 4.20. Let M be a Riemann surface. There is a bijective correspon-
dence between — isotropic, weakly conformal branched immersions f : M — Q4
whose conformal Gauss map can be continuously extended at the branch points,
and holomorphic maps T' : M — Q2(Q4), solutions of the Pfaffian system

03 =0
o2 —iol =0

but not of o= = 0. The bijection is realized via the conformal Gauss lift T'y.
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Proof. Let f : M — Q4 be as in the statement of the theorem. Then, in
order to show that the conformal Gauss lift I'y is holomorphic, we proceed
as for the conformal Gauss map 7 in the proof of Theorem 4.3. Let us fix
po € M such that it is not a branch point for f and choose a Darboux frame
e along f defined on a neighbourhood U of py and a section ¢ of the bundle
7 : M6b(4) — Q2(Q4) defined in a neighbourhood of ' (py). We set e(po) = go;
then since 7 o (€ o 7) = 7, there must exist a function K : #71(U) — Gp such
that, for every g € 771(U)
§(7(9)) = 9K (g)
and
(Eom) @y = K(g) "9 'dgK(g) + K(9)'dK,

In particular we have

because K~ 'dK is valued in the Lie algebra of the group Gp. Replacing, if
necessary, the section ¢ with €K (gg) ™!, we can assume that

£(7(g0)) = g0

and hence
(Eom) g, =0f,
—\x 10 _ &0
(om) Py = Pay,
—\* 1k _ &k
(o) Pq, = Pay,
((om)*@g,, = F,,-

Therefore we can compute

(Tjo™),, = ((Eomoe) (g +i97)) = (e"(®g +iDF)), =wp,  (4.56)
and likewise for o* and 3. This proves the holomorphicity of I'y outside the
set of branch points of f. But since f is continuous and by assumption y¢ can
be continuously extended to the branch points, then I'y = f x ¢ is continuous
on M, and therefore holomorphic.

The same computation also proves that I'y is a solution of the Pfaffian system
03 =0, 02 —ioc! =0, since it is easily verified that

Io® =0,
fal = 7§(L3 + 1L4)<p
1—‘?02 =

—%(L?’ +iLY) .
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Moreover, (4.56) assures that
Tio ' #0.

On the contrary, assume I' : M — Q5(Q4) is a holomorphic map such that
I'*o% =0, I'*0? = i[*o! and T'*0~! # 0 and define fr = 7 o I'. For any local
section £ of 7, the map e = £ o I' is a local frame along fr, since

moe=mofol'=Tomolol'=mol = fr.

Moreover, let ¢ be a local (1,0)-form defining the complex structure on M;
then, since T" is holomorphic, there must exist a smooth function pu # 0 such
that

e* (B +i®3) =T 0! = pp.

As usual, we set ¢ = e*®, so that the previous equality becomes ¢} +i¢g = .
Differentiating this last equality and using the structure equation we can deduce
that

dp = —ip(w — ¢3 +idy)  mod ¢,
where w is such that dp = iwAp. Hence p is of analytic type, and its zeros must
be isolated and of finite order, proving that fr is a weakly conformal branched
immersion. In addition, since by assumption I'*¢03 = 0, we know that e is a first
order frame along fr. We can prove that e is actually a Darboux frame along
fr using
0% =il*ot. (4.57)

Indeed, setting as usual ¢ = hf‘j 6, h% = h;?‘i,

[0k = e*(®f +i®}) = —¢f — iy = —(hi; +iht,)d

and equation (4.57) becomes

3 _ 14
hy; = —hy;
which gives
h%l = h%l = _hgm h4111 = _hgl = _hgz-

Now since e = £ o I" is a Darboux frame along fr, it makes sense to consider its
conformal Gauss map, defined as usual as

rYfI‘ = [63764] - 7?06

outside the branch points of fr. We want to prove that . can be continuously
extended at the branch points, and that the extension is holomorphic. To this
end, we define v : M — Q> (R) as follows

y=col (4.58)
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and observe that Proposition 4.19 implies that v is holomorphic. By the com-
mutativity of the following diagram

Mob(4
Q2(Q4) —— Q2(RY)
7 r
y
Qi<——"—"M
fr
we have that, on the open set where vy, is defined,

Ve =Toe=Tolol'=comofol' =col'=+.

Therefore ¢, is holomorphic, hence fr is — isotropic. Lastly, we obviously have

and

so the claim is proved. O
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