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Introduction

In this thesis we study the geometry of submanifolds of the conformal sphere
Qn focusing, in particular, on surfaces immersed in Q4.

In Chapter 1 we summarize the basic definitions and facts about the Möbius
group Möb(n), its Lie algebra and its Maurer-Cartan form Φ. We also define
the conformal sphere, realized as a homogeneous space for the Möbius group.

Chapter 2 is devoted to the study of the general theory of submanifolds of
the conformal sphere. Let f : M → Qn be an immersion of an oriented surface
in Qn, let e : U ⊂ M → Möb(n) be a local Darboux frame field along f and
φ = e∗Φ the pull-back of the Maurer-Cartan form on M . Then φ satisfies the
Maurer-Cartan structure equations

dφab = −φac ∧ φcb

and the following conditions:

(i) π ◦ e = f|U , π being the projection π : Möb(n)→ Qn sending a matrix
in Möb(n) to the projectivization of its first column;

(ii) φα0 = 0;

(iii) hαkk = 0, where hαij , symmetric in the lower indices, are the coefficients of
φαi in the local coframe

{
φi0
}

, that is φαi = hαijφ
j
0.

Every immersion admits a Darboux frame, and such frames determine a splitting
of the form φ, enabling us to define a natural Cartan connection on M and a
Riemannian vector bundle over M , called the normal bundle N , locally spanned
by the columns {eα}.
Moreover, a submanifold of Qn is totally umbilical, i.e. hαij = 0 for every α, i, j,
if and only if there exists Qm ⊂ Qn such that f(M) ⊆ Qm.

In Chapter 3 we introduce the conformal Grassmannian of s-planes in Rn+2,
Qs
(
Rn+2

)
, defined as the orbit of the point O = [εα] of the Grassmann bundle,

with respect to the left action (by matrix multiplication) of the group Möb(n),
{εa} being the standard basis of Rn+2. Qs

(
Rn+2

)
can be seen as a homoge-

neous space for Möb(n) and can be endowed with a natural Kähler-Lorentzian
structure. Particular attention is paid to the case s = 2, since in this case we
provide a holomorphic embedding of Q2

(
Rn+2

)
into a quadric in Pn+1

C .
Chapter 4 focuses on the study of surfaces in Q4. With respect to a Dar-

boux frame e, it is a natural, as well as useful, technique to consider the Hopf
transform of the symmetric matrices (hαij), denoted with Lα and defined as

Lα =
1
2

(hα11 − hα22)− ihα12.

1



Introduction 2

Although the Hopf transforms Lα strongly depend on the choice of the Dar-
boux frame, through them we can define the following real 2-forms, which are
independent of the choice of a particular Darboux frame, and therefore globally
defined on M :

ω± =
∣∣L3 ± iL4

∣∣2φ1
0 ∧ φ2

0,

w =
(
|L3|2 + |L4|2

)
φ1

0 ∧ φ2
0,

η = −i
(
L3L4 − L4L3

)
φ1

0 ∧ φ2
0.

These forms are related by the equality

w = ω± ∓ η,

and are significant in the study of the geometry of the immersed surface M .
We will say that f is ± isotropic if, respectively, ω± = 0.
As for the form w, it allows to define the Willmore functional of the immersion
f as

WK(f) =
∫
K

w

where K ⊂M is compact. f is said to be a Willmore surface if, for any compact
set K ⊂M , it is a critical point of the Willmore functional WK .
Lastly, if N indicates the normal bundle introduced in Chapter 2, then η is
connected to the curvature KN of such bundle, in that

η = KNφ
1
0 ∧ φ2

0.

As an immediate application of these formulae we obtain Theorem 4.1, which
states that, in the case of M compact and denoting W (f) := WM (f),

W (f) =
∫
M

ω± ∓ 2πχ(N)

where χ(N) is the Euler number of the bundle N . In particular, if M is a
compact ± isotropic surface, then the Willmore functional is quantized.
Another application of the above formulae is Corollary 4.2, which states that if
M is compact, then ∫

M

ω± ≥ ±2πχ(N)

equality holding if and only if f(M) is a conformal 2-sphere Q2 ⊂ Q4.
In order to further investigate the geometry of surfaces in Q4, we need to

introduce the conformal equivalent of the Gauss map in the Riemannian setting.
This and many other concepts and results studied here have been introduced
in the study of minimal surfaces in the Riemannian four-sphere and even in
oriented Riemannian four-manifolds in general. Two interesting papers in this
direction are [10] and [5].
Given an immersed surface f : M → Q4, we can define its conformal Gauss map
γf : M → Q2

(
R6
)

as the map associating p ∈M to the 2-plane [e3, e4]p, where
e is any Darboux frame defined in a neighbourhood of p.
Since dimRM = 2, it makes sense, even in the conformal setting, to ask if and
when the conformal Gauss map γf is holomorphic, antiholomorphic or harmonic
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and it was first proved in [11] that γf is harmonic if and only if f is Willmore.
Here we also prove the remarkable fact, stated in Theorem 4.3, that γf is ±
holomorphic (that is, holomorphic or antiholomorphic) if and only if f is ∓
isotropic.
In the proof of this latter result, certain important quantities are involved,
namely

kα =
1
2

(pα1 − ipα2 ),

where pαk are the coefficients of φ0
α with respect to φk0 , that is φ0

α = pαkφ
k
0 .

Under the following condition on kα:

∃γ ∈ Lploc(M) such that
∣∣k3 ± ik4

∣∣ ≤ γ∣∣L3 ± iL4
∣∣ a.e. (1)

for some p > 2, we prove that the function
∣∣L3 ± iL4

∣∣ is of analytic type, i.e.
it either vanishes identically or has isolated zeros. Therefore we have that if
f : M → Q4 is an immersion satisfying (1), then either γf is ± holomorphic
or the set I∓ of ∓ isotropic points of M is discrete. This result is stated in
Proposition 4.6.
Condition (1) is very natural in this setting because it allows to employ classical
techniques such as Cauchy-Riemann inequalities and Carleman-type estimates.
An advantage of these results is that they can be combined with classical index
theorems for vector fields and, more generally, for sections of suitable vector
bundles over M . Indeed, as a first result, the same technique, applied to a
slightly more general context, provides, in the case of M compact and not
± isotropic, an upper bound on the Euler characteristic of M , as proved in
Theorem 4.8.

Later on, we consider the notion of S-Willmore surface, first introduced by
Ejiri in [7]. In our setting, with respect to a Darboux frame along f , the notion
corresponds to the two following conditions being fulfilled on M

KN 6= 0,

α1
def= (k3L4 − k4L3)ϕ⊗ ϕ⊗ ϕ = 0,

where ϕ = φ1
0 + iφ2

0 is the (1, 0)-form defining the complex structure of M .
Ejiri proved that, in the Riemannian setting, an S-Willmore surface is a Will-
more surface; this holds true also in our setting, as proved in Proposition 4.11.
Moreover, in Proposition 4.12 we prove that if f : M → Q4 is a ± isotropic
immersed surface, then f is S-Willmore if and only if KN 6= 0 on M . In Propo-
sition 4.13 we also deduce that if f : M → Q4 is an immersion which satisfies
condition (1), without umbilical points and such that the set of ± isotropic
points is not discrete, then f is S-Willmore.

Defining pαij as follows,

pαikφ
k
0 = dpαi − pαkφki + pβi φ

α
β + 2pαi φ

0
0 − hαkiφ0

k,

we consider a condition similar to (1):

∃γ ∈ Lploc(M) such that
∣∣p3
kkL

4 − p4
kkL

3
∣∣ ≤ γ∣∣k3L4 − k4L3

∣∣ a.e. (2)

for some p > 2 and in Theorem 4.14 we prove, using once again the aforemen-
tioned classical techniques, that if f : M → Q4 is an immersion such that (2)
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holds, then either α1 ≡ 0 or its zero set is discrete. In this latter case, for M
compact we have

z(α1) = −3χ(M),

where z(α1) is the sum of the orders of the zeros of α1.
In particular, if M is a Willmore surface, condition (2) is automatically satisfied,
and in fact in this case we prove in Proposition 4.16 that α1 is a holomorphic
section of the vector bundle

⊗3
T ∗M (1,0). Moreover, if M is a topological

2-sphere, then α1 ≡ 0.
The last part of the thesis deals with the following problem: instead of con-

sidering immersions of M in Q4, and associating to them their conformal Gauss
maps, we start from a map γ : M → Q2

(
R6
)

and, under certain suitable con-
ditions, we retrieve a Q4-valued map, called Jγ , whose conformal Gauss map,
where defined, is exactly the original map γ. The map Jγ is not necessarily an
immersion, but it is a weakly conformal branched immersion, and its conformal
Gauss map can be continuously extended at the branch points.
In this way we establish a bijection between − isotropic, non totally umbilical,
weakly conformal branched immersions f : M → Q4, whose conformal Gauss
maps can be continuously extended at the branch points, and non constant,
holomorphic, totally isotropic maps γ : M → Q2

(
R6
)

with non constant associ-
ated map Jγ . The correspondence is realized via the conformal Gauss map and
the result is stated in Theorem 4.17.
This result is further extended so as to include the totally umbilical surfaces. To
this end we introduce an appropriate Grassmann bundle, called Q2(Q4), defined
as the orbit of a fixed point of the product manifold Q4 ×Q2

(
R6
)

with respect
to the natural left action (defined componentwise) of the group Möb(4). Q2(Q4)
can again be seen as a homogeneous space for Möb(4) and has a natural inte-
grable complex structure. The result we obtain, stated in Theorem 4.20, is that
there is a bijection between − isotropic, weakly conformal branched immersions
f : M → Q4, whose conformal Gauss maps can be continuously extended at the
branch points, and holomorphic maps Γ : M → Q2(Q4), solutions of a suitable
Pfaffian system.



Chapter 1

The Möbius group and the
conformal sphere

1.1 The Möbius group

We start by giving an outline of the construction of the conformal sphere Qn
and of the Möbius group. For further details see [14], [13].
Throughout this chapter we shall use the following index convention:

0 ≤ a, b, . . . ≤ n+ 1, 1 ≤ A,B, . . . ≤ n

On Rn+2, consider the standard basis {εa} and the Lorentzian inner product
defined in the usual way: if v = vaεa and w = waεa, then

〈v, w〉 =
(
v0, vA, vn+1

) −1 0 0
0 In 0
0 0 1

 w0

wA

wn+1

 .

We perform the following change of basis: we set

η0 =
1√
2

(ε0 − εn+1), ηA = εA, ηn+1 =
1√
2

(ε0 + εn+1).

In this way the vectors η0 and ηn+1 are light-like and, with respect to this new
basis, the Lorentzian inner product has the following representative matrix:

S =

 0 0 −1
0 In 0
−1 0 0

 . (1.1)

We denote by L the light cone, the set of light-like vectors, that is

L =
{
x ∈ Rn+2 | 〈x, x〉 = 0

}
;

setting, as before, v = xaηa we can write

L =
{
v ∈ Rn+2 | −2x0xn+1 + xAxA = 0

}
,

5



1.1 The Möbius group 6

while the positive light cone is

L+ =
{
v ∈ L | x0 + xn+1 > 0

}
.

We consider the canonical projectivization p : Rn+2 → Pn+1
R with homogeneous

coordinates defined with respect to the new basis {ηa}, i.e. the homogeneous
coordinates of the projective class of the vector v = xaηa are (x0 : xA : xn+1).
We let Qn denote the Darboux hyperquadric, namely the projectivization of the
positive light cone:

Qn := PL+ ⊂ Pn+1
R ;

it is trivial to see that the projective hyperquadric Qn is diffeomorphic to Sn,
an explicit diffeomorphism being given by δ : Qn → Sn, defined as

δ : [x] 7→ t

(
2xn+1 − x0

2xn+1 + x0
,

2xA

2xn+1 + x0

)
, (1.2)

where the square brackets indicate the projective class identified by x ∈ Rn+2.
A standard way of immersing Rn in Qn is through the Dirac-Weyl chart χ :
Rn → Qn defined as

χ : x 7→
(

1 : xA :
1
2
|x|2
)
.

Note that [η0] and [ηn+1] belong toQn, while none of the [ηA] does. Furthermore,
the origin of Rn is sent by χ to [η0], while δ([η0]) = t(−1, 0, . . . , 0) = S, the south
pole of Sn, and δ([ηn+1]) = t(1, 0, . . . , 0) = N , the north pole of Sn. Moreover,
it is immediate to see that χ(Rn) = Qn \ {[ηn+1]} and δ ◦ χ = σ−1

N , the inverse
of the stereographic projection from N , so that [ηn+1] can be regarded as the
point at infinity of Rn.

Now, the group of projective transformations that fix Qn is the projectiviza-
tion of the group

Γ =
{
G ∈ GL(n+ 2) | tGSG = λS for some λ > 0

}
,

that is, the quotient of Γ with respect to the center R∗I of GL(n + 2). The
quotient PΓ is trivially isomorphic to the group

O(n+ 1, 1) =
{
G ∈ GL(n+ 2) | tGSG = S

}
.

This group has four connected components, according to the sign of the deter-
minant and whether the positive light cone is sent onto itself or not. We are
only interested in the identity component, that is{

G ∈ O(n+ 1, 1) | detG = 1, GL+ = L+
}
,

because these transformations can be verified to be the ones that correspond
exactly to the orientation preserving conformal diffeomorphisms of Sn, endowed
with its standard metric, the one induced by the inclusion in Rn+1. We can
therefore set

Definition 1.1. The Möbius group is the Lie subgroup of GL(n+ 2) defined
by

Möb(n) =
{
G ∈ O(n+ 1, 1) | detG = 1, GL+ = L+

}
.
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1.2 The Lie algebra of the Möbius group

We will now briefly study the structure of Möb(n) as a Lie group. The Lie
algebra of Möb(n), which we shall denote by möb(n) is trivially the vector
space of the matrices that satisfy

tAS + SA = 0,

that is

möb(n) =


 −a tw 0

v D w
0 tv a

∣∣∣∣∣∣
a ∈ R,
D ∈ o(n)
v, w ∈ Rn

;

thus it can be split as möb(n) = g−1 ⊕ g0 ⊕ g1, where

g−1 =


 0 0 0

v 0 0
0 tv 0

∣∣∣∣∣∣ v ∈ Rn
 g1 =


 0 tw 0

0 0 w
0 0 0

∣∣∣∣∣∣w ∈ Rn


g0 =


 −a 0 0

0 D 0
0 0 a

∣∣∣∣∣∣ a ∈ R,
D ∈ o(n)

.
The vector space möb(n) is obviously 1

2 (n + 1)(n + 2)-dimensional and a basis
is given by the following matrices

P(0) =

 1 0 0
0 0 0
0 0 −1

 , P(A,0) =

 0 0 0
eA 0 0
0 teA 0


P(0,A) =

 0 teA 0
0 0 eA
0 0 0

 , P(A,B) =

 0 0 0
0 DA,B 0
0 0 0

 A > B,

(1.3)
where eA is the A-th vector of the canonical basis of Rn and {DA,B}A>B is the
standard basis for the vector space of skew-symmetric matrices, i.e. DA,B is
defined as

(DA,B)ab =

 1 if a = A, b = B
−1 if a = B, b = A
0 otherwise.

The Maurer-Cartan form of the Möbius group is the möb(n)-valued 1-form de-
fined as follows: given any G ∈ Möb(n) and denoting by LG the left translation
on Möb(n), then, for every X ∈ TGMöb(n),

ΦG(X) = LG−1∗GX.

From its very definition, one can easily check that Φ is left invariant and that
its expression with respect to the basis (1.3) is the following

Φ = P̃ ∗(0) ⊗ P(0) +
∑
B<A

P̃ ∗(A,B) ⊗ P(A,B) +
∑
A

[
P̃ ∗(A,0) ⊗ P(A,0) + P̃ ∗(0,A) ⊗ P(0,A)

]
,
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where, if X ∈ möb(n), X̃ indicates the vector field on Möb(n) defined by left
translation of X, and

P̃ ∗(0),
{
P̃ ∗(A,B)

}
B<A

, P̃ ∗(A,0), P̃ ∗(0,A)

are the real-valued 1-forms forming the dual coframe of the frame

P̃(0),
{
P̃(A,B)

}
B<A

, P̃(A,0), P̃(0,A).

But the möb(n)-valued 1-form Φ can also be seen as a (n+ 2)× (n+ 2) matrix
of left invariant real-valued 1-forms in the following way:

Φ =


Φ0

0 Φ0
B Φ0

n+1

ΦA0 ΦAB ΦAn+1

Φn+1
0 Φn+1

B Φn+1
n+1

 ,

with the obvious symmetry relations

Φ0
0 = −Φn+1

n+1, ΦAB = −ΦBA , Φ0
n+1 = Φn+1

0 = 0

Φ0
B = ΦBn+1, ΦA0 = Φn+1

A .
(1.4)

We point out that, at each point G ∈ Möb(n), the 1-forms Φ0
0,
{

ΦA0
}

,
{

Φ0
A

}
and

{
ΦAB
}
B<A

form a basis of T ∗GMöb(n). Moreover, the structure equation
writes as

dΦab = −Φac ∧ Φcb,

which, using the symmetries (1.4), can be simplified to

dΦ0
0 = −Φ0

A ∧ ΦA0
dΦA0 = −ΦA0 ∧ Φ0

0 − ΦAB ∧ ΦB0
dΦ0

A = −Φ0
0 ∧ Φ0

A − Φ0
B ∧ ΦBA

dΦAB = −ΦA0 ∧ Φ0
B − ΦAC ∧ ΦCB − Φ0

A ∧ ΦB0

(1.5)

Finally, since Möb(n) is a subgroup of GL(n + 2) and the left translation is a
linear map, we can express the Maurer-Cartan form as

ΦG = G−1dG, (1.6)

meaning that, for every X ∈ TGMöb(n),

ΦG(X) = G−1X,

where the product G−1X is just the ordinary matrix product. This makes sense
since TGMöb(n) can be canonically included in the algebra of (n+ 2)× (n+ 2)
matrices. This expression for Φ, although apparently carrying a slight abuse of
notation, will turn out to be quite useful later on.
For more details on the Möbius group and other classical Lie groups, see [3], [1].
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1.3 The Möbius space

Let us now turn back to the study of the action of Möb(n) on the Darboux
hyperquadric Qn. It can be proved that such action is transitive, therefore we
can realize Qn as a homogeneous space for Möb(n). In other words we can
fix any point of Qn, for instance the point O = [η0], and consider the isotropy
subgroup of such point, that is the subgroup

G0 = {G ∈ Möb(n) | [Gη0] = [η0]}.

Then Qn is diffeomorphic to the manifold whose points are the left cosets of G0

in Möb(n), which we shall denote by Möb(n)/G0.
The explicit expression of G0 can be computed:

G0 =


 r−1 txA 1

2r|x|
2

0 A rx
0 0 r

∣∣∣∣ A ∈ SO(n),
r ∈ R+, x ∈ Rn

 (1.7)

and the natural projection

π : Möb(n)→ Qn

is defined, for G ∈ Möb(n), by

π(G) = [Gη0],

that is, the projectivization of the first column of G. This projection makes
π : Möb(n)→ Qn a principal G0-bundle.
Let us now consider a local section of this bundle, i.e. a smooth map

s : U → Möb(n)

defined on an open subset U of Qn, such that the following diagram commutes

Möb(n)

π

��
U

i //

s
88

Qn

that is, π ◦ s = i, the inclusion map of U into Qn; then we can pull back the
Maurer-Cartan form Φ to U ⊂ Qn and define the local, möb(n)-valued 1-form

ψ = s∗Φ.

Of course, since the pull-back commutes with both the exterior derivative and
the wedge product, ψ satisfies the structure equation as well:

dψab = −ψac ∧ ψcb .

Moreover, using (1.6), we can write

ψ = s∗Φ = s−1ds. (1.8)
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Let s̃ : V → Möb(n) be another local section and set ψ̃ = s̃∗Φ; assuming
U ∩ V 6= ∅, s and s̃ are related by

s̃ = sK,

for some smooth map K : U ∩V → G0. In particular, applying the last equality
to (1.8), we get that the pull-back of the Maurer-Cartan form changes according
to the following formula.

ψ̃ = K−1ψK +K−1dK. (1.9)

Let us focus on the 1-forms
{
ψA0
}

. It is immediate to see that they locally span
the cotangent space of Qn. Indeed, from the very definition of Φ, the forms{

ΦA0
}

span the semibasic forms of the bundle G0 → Möb(n) π→ Qn, that is, the
forms that vanish on the vectors tangent to the fiber. Now if ω is a 1-form on
Qn, then π∗ω is a semibasic form on Möb(n) and therefore π∗ω = αAΦA0 for
some suitable smooth functions αA. It follows that

ω = (π ◦ s)∗ω = s∗π∗ω = (αA ◦ s)ψA0 ,

and thus
{
ψA0
}

is a local basis for the cotangent space of Qn.
This fact allows us to define a local metric in the following way:∑

A

ψA0 ⊗ ψA0 (1.10)

and a nowhere vanishing local n-form as follows:

ψ1
0 ∧ . . . ∧ ψn0 . (1.11)

Under a change of section, the (A, 0)-component of (1.9) gives, in particular,

ψ̃A0 = r−1ABAψ
B
0 ,

so that ∑
A

ψ̃A0 ⊗ ψ̃A0 = r−2
∑
A

ψA0 ⊗ ψA0

and
ψ̃1

0 ∧ . . . ∧ ψ̃n0 = r−nψ1
0 ∧ . . . ∧ ψn0 .

Therefore (1.10) and (1.11) define a conformal class of metrics and an orientation
on Qn, namely a conformal structure, and we can set

Definition 1.2. The Möbius space, or the conformal sphere, is the Dar-
boux hyperquadric Qn endowed with its structure of homogeneous space for
Möb(n) and the conformal structure given by (1.10) and (1.11).

Finally, it is not hard to prove that the diffeomorphism δ : Qn → Sn,
defined in (1.2), becomes a conformal map once Qn and Sn are equipped with
their standard conformal structures.



Chapter 2

The conformal structure of
a submanifold and its
Darboux framing: the
general case

2.1 The frame reduction procedure

In what follows M will always be assumed to be m-dimensional and oriented.
We fix the index ranges

1 ≤ A,B, . . . ≤ n, 1 ≤ i, j, . . . ≤ m, m+ 1 ≤ α, β, . . . n.

Let f : M → Qn be an immersion. We recall that Qn is realized as the homoge-
neous space Möb(n)/G0 where G0 is the isotropy subgroup at O given in (1.7).
The corresponding principal G0-bundle is

π : Möb(n)→ Möb(n)/G0

where π acts on a matrix of Möb(n) by projectivizing its first column.

Definition 2.1. A zeroth order frame field along f is a smooth map e
defined on an open set U ⊆M with values in Möb(n) such that π ◦e = f|U , that
is, the following diagram commutes:

Möb(n)

π

��
U ⊆M

f //

e
66

Qn

From now on, dealing with frames along f , we will omit specifying their
domains of definition since no possible confusion will arise.

Any two zeroth order frame fields e, ẽ on the intersection of their domains
of definition, if not empty, are related by

ẽ = eK (2.1)

11
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where K : Ũ ∩ U → G0 is a smooth function. Setting

φ = e∗Φ

we obtain again equations (1.5) to be interpreted this time on M . Under the
change of frames (2.1), φ̃ = ẽ∗Φ expresses in terms of φ as in (1.9). In particular,
for

K =

 r−1 txA 1
2r|x|

2

0 A rx
0 0 r


A ∈ SO(n), x ∈ Rn, r ∈ R+,

φ̃A0 = r−1 tA(φA0 ) = r−1ABAφ
B
0 ,

As a consequence, at any point p ∈M we can choose a zeroth order frame such
that

φα0 = 0. (2.2)

The isotropy subgroup at this point is given by

G1 =




r−1 txA tyB 1
2r
(
|x|2 + |y|2

)
0 A 0 rx
0 0 B ry
0 0 0 r


∣∣∣∣∣∣
r ∈ R+, A ∈ SO(m),
B ∈ SO(n−m),
x ∈ Rm, y ∈ Rn−m

.
(2.3)

and since G1 is independent of p, smooth zeroth order frame fields such that
(2.2) holds can be chosen in an appropriate neighbourhood of each point of M
by general theory, see [14].

Definition 2.2. A zeroth order frame field e such that (2.2) holds on its domain
of definition is called first order frame.

Any two such frame fields are related by (2.1) where now K takes values in
G1 defined in (2.3).

With the aid of first order frame fields we can define a conformal structure
on M . Indeed, because of (1.9) and (2.3), under a change of first order frame
fields the quadratic form ds2 =

∑
i

φi0 ⊗ φi0 transforms according to the law

d̃s2 = r−2ds2

while the volume form dV = φ1
0 ∧ . . . ∧ φm0 transforms according to

d̃V = r−mdV. (2.4)

It is trivial to see that now the map f becomes a conformal immersion of the
manifold M , endowed with this conformal structure, into Qn, equipped with its
standard conformal structure.
Differentiating (2.2) and using the structure equations of Möb(n) we obtain

0 = −φαi ∧ φi0.
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By Cartan’s lemma there exist some (locally defined) functions hαij such that

φαi = hαijφ
j
0, hαij = hαji. (2.5)

We use (1.9) and (2.3) to obtain under a change of first order frame fields

φ̃αi = BβαA
k
i φ

β
k −B

β
αA

k
i y
βφk0 . (2.6)

Next, for first order frame fields

φ̃j0 = r−1Aljφ
l
0 (2.7)

and using (2.6), (2.7) and the definition of hαij given in (2.5) we finally obtain

h̃αij = rBβαA
l
j(A

k
i h

β
lk −A

l
iy
β), (2.8)

where the meaning of A, B, y, r is given in (2.3). Taking the trace of (2.8) with
respect to i and j we obtain

h̃αii = rBβα(hβkk −my
β).

The next step is therefore to consider at any point p ∈ M a first order frame
such that

hαkk = 0. (2.9)

The isotropy subgroup is given by

GD =




r−1 txA 0 1
2r|x|

2

0 A 0 rx
0 0 B 0
0 0 0 r


∣∣∣∣∣∣
A ∈ SO(m),
B ∈ SO(n−m),
r ∈ R+, x ∈ Rm

 (2.10)

and is again independent of the point p considered, so that first order frames with
the above property can be smoothly chosen in an appropriate neighbourhood of
any point.

Definition 2.3. A Darboux frame field along f is a first order frame field
for which (2.9) holds.

Any two Darboux frame fields are related by (2.1) where now K is a smooth
function taking values in GD.

We observe that for Darboux frames (2.8) becomes

h̃αij = rBβαA
l
jA

k
i h

β
kl. (2.11)

For further details on the generality of the frame reduction procedure, we refer
the reader to [13], [15], [14].

2.2 The geometry of submanifolds of the Möbius
space

Differentiating (2.5), using the structure equations and Cartan’s lemma with
respect to a Darboux frame e we have

dhαij − hαikφkj − hαkjφki + hβijφ
α
β + hαijφ

0
0 + δijφ

0
α = hαijkφ

k
0 , (2.12)
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for some (locally defined) functions hαijk symmetric in the lower indices. To see
this latter fact, we observe that by Cartan’s lemma

hαijk = hαikj .

On the other hand, by (2.12),

dhαji − hαjkφki − hαkiφkj + hβjiφ
α
β + hαjiφ

0
0 + δjiφ

0
α = hαjikφ

k
0 ;

however, hαij = hαji, so that, from the above equality we get

hαjikφ
k
0 = dhαij − hαikφkj − hαkjφki + hβijφ

α
β + hαijφ

0
0 + δijφ

0
α

and comparing with (2.12) we then deduce

hαijk = hαjik

realizing the desired symmetries.
Taking the trace of (2.12) with respect to i and j and using (2.9) we obtain

φ0
α = pαkφ

k
0 (2.13)

where we have set
pαk =

1
m
hαiik. (2.14)

With respect to a Darboux frame e defined on U ⊆ M let us consider the
matrix of 1-forms Ψ defined by

Ψ =

 φ0
0 φ0

i 0
φi0 φij φ0

i

0 φi0 −φ0
0

 . (2.15)

We can clearly think of Ψ as taking values in the Lie algebra of the 1
2 (m +

1)(m+ 2)-dimensional Möbius group.
Under a change of Darboux frames ẽ = eK, where K takes values in GD, we
have

Ψ̃ = K̄−1ΨK̄ + K̄−1dK̄,

with

K̄ =

 r−1 txA r
2 |x|

2

0 A rx
0 0 r

 ,

x ∈ Rm, A ∈ SO(m), r ∈ R+.
We therefore conclude that Ψ defines a Cartan connection on M , whose curva-
ture forms are, as usual, given by the structure equations that we write in this
case as: 

dφ0
0 = −φ0

i ∧ φi0 + Ω0
0

dφi0 = −φi0 ∧ φ0
0 − φij ∧ φ

j
0 + Ωi0

dφ0
i = −φ0

0 ∧ φ0
i − φ0

j ∧ φ
j
i + Ω0

i

dφij = −φi0 ∧ φ0
j − φik ∧ φkj − φ0

i ∧ φ
j
0 + Ωij .

(2.16)

Comparing (2.16) with the structure equations of the group Möb(n) we imme-
diately deduce that

Ω0
0 = 0 = Ωi0
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Ω0
i = −φ0

α ∧ φαi , Ωij = −φiα ∧ φαj
so that using (2.5) and (2.13) we obtain

Ω0
i =

1
2
(
pαkh

α
ij − pαj hαik

)
φj0 ∧ φk0 (2.17)

Ωij =
1
2
(
hαikh

α
jl − hαilhαjk

)
φk0 ∧ φl0 (2.18)

We begin by analysing (2.18). We set

τ ijkl = hαikh
α
jl − hαilhαjk (2.19)

so that (2.18) can be expressed as

Ωij =
1
2
τ ijklφ

k
0 ∧ φl0.

Note that the coefficients τ ijkl satisfy the usual algebraic symmetries of the
Riemann curvature tensor, including the first Bianchi identity.

Making use of (2.11) we observe that, with respect to Darboux frames ẽ, e
we have

τ̃ ijkl = r2AsiA
t
jA

u
kA

v
l τ
s
tuv. (2.20)

We denote by Ej the frame on M dual to φj0, that is, characterized by the
request

φj0(Ek) = δjk.

Using (2.7) we deduce
Ẽk = rAjkEj (2.21)

(already at the level of first order frames). Therefore, using (2.20), (2.7) and
(2.21) we define a global tensor τ on M by locally setting

τ = τ ijklφ
k
0 ⊗ φl0 ⊗ φ

j
0 ⊗ Ei (2.22)

for a Darboux frame along f . We will call τ the generalized Weyl tensor.
Observe that, unlike the usual Weyl tensor, τ is not traceless. Indeed, we have

Njl = −τ ijil = hαilh
α
ij . (2.23)

From (2.20) and (2.7) the above components define a global symmetric tensor
N , locally given by

N = Njkφj0 ⊗ φk0 . (2.24)

We observe that
Njj =

∑
i,j,α

(hαij)
2

and
Ñjj = r2Njj .

Thus, the trace of N does not define a scalar and N = 0 if and only if hαij = 0
for each α, i, j, if and only if Ωij = 0 ∀i, j. Furthermore, if N = 0, then Ω0

i = 0
∀i.

According to Cartan, we set the following
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Definition 2.4. The Cartan connection Ψ on M is normal if N = 0.

The normality condition in the present case is easily analysed. Indeed we
have

Proposition 2.1. Let f : M → Qn be an immersion, M oriented, m =
dimM ≥ 2, for which N ≡ 0. Then, there exists Qm ⊂ Qn such that f(M) ⊆
Qm. Furthermore, if M is compact, f is a diffeomorphism onto Qm.

Proof. We use a standard technique in the method of the moving frame and
therefore we give here only a sketch of the proof. Let e be any Darboux frame
along f . Then, by assumption hαij = 0 and therefore, with respect to e we have

φα0 ≡ 0 ≡ φαi .

Differentiating φαi = 0 and using the structure equations we obtain

0 = φ0
α ∧ φk0 for all k

and, since m ≥ 2, we deduce
φ0
α = 0.

Consider now on Möb(n) the ideal I generated by the forms Φα0 , Φαi , Φ0
α. Using

the Maurer-Cartan structure equations (1.5) and the symmetries (1.4) we see
that I is a differential ideal, that is, dI ⊆ I. The distribution ∆ defined by I
is, at the identity

∆I =




a tx 0 0
y D 0 x
0 0 E 0
0 ty 0 −a


∣∣∣∣∣∣∣∣

D ∈ o(m)
E ∈ o(n−m)
x, y ∈ Rm
a ∈ R


and is obtained at any other point by left translation because of the left invari-
ance of Φ. In particular, its maximal integral submanifold passing through the
identity is the subgroup of Möb(n)


a tZ 0 b
X A 0 Y
0 0 B 0
c tW 0 d


∣∣∣∣∣∣
 a tZ b

X A Y
c tW d

 ∈ Möb(m), B ∈ SO(n−m)

 '
' Möb(m)× SO(n−m)

The image of this subgroup in the quotient Möb(n)/G0 ' Qn is therefore an
m-dimensional sphere Qm, and so is the image of any other maximal inte-
gral submanifold. Now, it is trivial to see that e∗TM ⊆ ∆, so that f∗TM =
π∗e∗TM ⊆ π∗∆ and the connectedness of M grants that f(M) ⊆ Qm. Assum-
ing M compact, f(M) is open and closed in Qm, thus f(M) = Qm and f is a
homeomorphism onto Qm.

Definition 2.5. We say that a point p ∈M is an umbilical point if and only
if N (p) = 0.
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Equivalently, p ∈M is an umbilical point if and only if for some (hence any)
Darboux frame

hαij = 0 at p.

The form (2.10) of the isotropy subgroup GD of Darboux frames along f
suggests the possibility of defining a suitable vector bundle N over M whose
role should parallel that of the normal bundle of an isometric immersion into
a Riemannian manifold. Indeed, let p ∈ M and choose a Darboux frame e
along f with p belonging to its domain of definition. Define the fiber Np to be
the (n −m)-dimensional vector space generated by {eα}. Because of (2.10), a
change of Darboux frames as in (2.1) gives rise to a new basis {ẽα} such that

ẽα = eβB
β
α (2.25)

with B ∈ SO(n − m). It follows that the bundle N is well defined and on it
there is a naturally defined inner product ( , ) for which {eα} is an orthonormal
basis at p.With respect to this inner product we define a metric connection

D : Γ(N)→ Γ(T ∗M ⊗N)

by setting
Deα = φβα ⊗ eβ .

D is well defined, indeed if λ represents the matrix of the connection forms,
then under a change of Darboux frames, according to (1.9), we have

λ̃ = tBλB + tBdB.

On the other hand, D is clearly metric since φαβ + φβα = 0.
As usual the curvature forms Λαβ are defined via the structure equations

dφαβ = −φαγ ∧ φ
γ
β + Λαβ .

Using the structure equations of the group Möb(n) and (2.5), setting

⊥ταβij = hαkih
β
kj − h

α
kjh

β
ki (2.26)

we obtain
Λαβ =

1
2
⊥ταβijφ

i
0 ∧ φ

j
0.

Observe that we have the symmetry relations

⊥ταβij = −⊥ταβji = −⊥τβαij

Moreover, with respect to Darboux frames ẽ, e

⊥τ̃αβij = r2BγαB
ρ
βA

t
iA

v
j
⊥τγρtv

It follows that we can define a tensor ⊥τ by locally setting

⊥τ = ⊥ταβijφ
i
0 ⊗ φ

j
0 ⊗ eα ⊗ eβ .

We will call ⊥τ the normal curvature tensor.



Chapter 3

The conformal
Grassmannian

3.1 The conformal Grassmann bundle as a ho-
mogeneous space

The aim of this chapter is to introduce an appropriate conformal Grassmannian
as an orbit of the Grassmann manifold of oriented s-planes in Rn+2 under the
action of the Möbius group Möb(n).

Its description and structure is given as follows. Set s = n−m ≥ 1 and let
{ε0, . . . , εm, εm+1, . . . , εn, εn+1} be the standard basis of Rn+2. Fix as an origin
in Gs

(
Rn+2

)
the point O = [εm+1, . . . , εn] and consider the orbit Qs

(
Rn+2

)
of the point O under the left action (by matrix multiplication) of the group
Möb(n) onto Gs

(
Rn+2

)
. Then the isotropy subgroup of the action on the orbit

at the point O is given by

H0 =




a tz 0 b
x A 0 y
0 0 B 0
c tw 0 d


∣∣∣∣∣∣∣∣∣

 a tz b
x A y
c tw d

 ∈ Möb(m),

B ∈ SO(s)

 ⊆ Möb(n).

(3.1)
Note that, since H0 ⊆ Möb(n), z, w, x, y, a, b, c, d, A cannot be chosen arbitrarily
but have to satisfy certain compatibility relations between them that will be
essential in determining that certain quantities are globally well defined.

Thus Qs
(
Rn+2

)
is identified with the homogeneus space Möb(n)/H0 with

the canonical projection

π̂ : Möb(n)→ Qs
(
Rn+2

)
given by

π̂ : P 7→ [Pm+1, . . . , Pn] (3.2)

where P0, PA, Pn+1 are the columns of the matrix P .

18
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3.2 The Kähler-Lorentzian structure of the con-
formal Grassmannian

On their common domain of definition two local sections of the bundle π̂ :
Möb(n) → Qs

(
Rn+2

)
are related by s̃ = sK where K is a function taking

values in H0. Considering the components Φ0
α, Φiα, Φα0 of the Maurer-Cartan

form of Möb(n) and setting ϕ = s∗Φ, we find that their pull-backs under the
sections s, s̃ are related by the following transformation laws:

ϕ̃0
α = dϕ0

βB
β
α − yiϕiβBβα + bϕβ0B

β
α

ϕ̃iα = −wiϕ0
βB

β
α +Aki ϕ

k
βB

β
α − ziϕ

β
0B

β
α

ϕ̃α0 = c ϕ0
βB

β
α − xkϕkβBβα + aϕβ0B

β
α

(3.3)

where the meaning of d, c, a, b, y, x, w, z, A,B is given in (3.1). From (3.3) and
the relations defining the group Möb(n), it is not hard to deduce that the
quadratic form dl2 of signature (s, s(m+ 1)) given by

dl2 = −ϕ0
α ⊗ ϕα0 − ϕα0 ⊗ ϕ0

α +
∑
i,α

ϕiα ⊗ ϕiα (3.4)

is well defined on Qs
(
Rn+2

)
and determines a pseudo-metric on it. In particular

the forms ϕ0
α, ϕα0 , ϕiα constitute a (local non orthonormal) coframe onQs

(
Rn+2

)
which thus turns out to be of dimension s(m+ 2), s = n−m. It is convenient
to set

θ0,α = ϕα0 , θα,0 = ϕ0
α, θα,i = ϕiα (3.5)

and to order the pairs (α, 0), (α, i), (0, α) as

(γ, 0) < (β, i) < (0, α) ∀α, β, γ, i
(0, β) < (0, α) iff β < α

(β, j) < (α, i) iff β < α or β = α and j < i

(β, 0) < (α, 0) iff β < α. (3.6)

Thus, representing with the symbols Ã, B̃, . . . the s(m+ 2) indices (α, 0), (α, i),
(0, α), we can write dl2 as

dl2 = g eA eBθ eA ⊗ θ eB (3.7)

with (
g eA eB) =

 0 0 −Is
0 Ism 0
−Is 0 0

 s = n−m. (3.8)

The Levi-Civita connection forms θ eAeB with respect to the previous coframe are
therefore characterized by the equations{

dθ
eA = −θ eAeB ∧ θ eB

g eA eCθ eCeB + g eB eCθ eCeA = 0.
(3.9)
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This allows us to determine the connection forms by simply taking exterior
derivatives of (3.5) and using the structure equations of the group Möb(n). We
obtain

θα,0β,0 = δαβϕ
0
0 + ϕαβ , θα,0β,i = δαβϕ

0
i , θα,00,β = 0

θα,iβ,0 = δαβϕ
i
0, θα,iβ,k = δαβϕ

i
k + δikϕ

α
β , θα,i0,β = δαβϕ

0
i

θ0,α
β,0 = 0, θ0,α

β,i = δαβϕ
i
0, θ0,α

0,β = ϕαβ − δαβϕ0
0

(3.10)

and, by a simple computation, one checks the validity of the skew-symmetry
relations given by the second of (3.9).

It is worth considering the special case s = 2, that is m = n − 2. Indeed,
starting from the 2n independent forms ϕ0

α, ϕiα, ϕα0 we can construct the n
independent forms over C

ζ0 = ϕ0
n−1 + iϕ0

n, ζk = ϕkn−1 + iϕkn, ζn−1 = ϕn−1
0 + iϕn0 . (3.11)

Using the structure equations it is immediate to verify that their differentials
belong to the ideal they generate, showing thatQ2

(
Rn+2

)
is a complex manifold,

in fact complex Lorentzian. Indeed the complex structure J induced by the
forms (3.11) is determined by

ζ0(X + iJX) = ζk(X + iJX) = ζn−1(X + iJX) = 0 ∀X ∈ TQ2

(
Rn+2

)
,

that is

ϕ0
n−1(X) = ϕ0

n(JX) ϕkn−1(X) = ϕkn(JX) ϕn−1
0 (X) = ϕn0 (JX).

It is therefore trivial to verify that the metric dl2 is Hermitian-Lorentzian.

dl2(JX, JY ) =− ϕ0
n−1(JX)ϕn−1

0 (JY )− ϕ0
n(JX)ϕn0 (JY )+

− ϕn−1
0 (JX)ϕ0

n−1(JY )− ϕn0 (JX)ϕ0
n(JY )+

+ ϕin−1(JX)ϕin−1(JY ) + ϕin(JX)ϕin(JY ) =

=− ϕ0
n(X)ϕn0 (Y )− ϕ0

n−1(X)ϕn−1
0 (Y )+

− ϕn0 (X)ϕ0
n(Y )− ϕn−1

0 (X)ϕ0
n−1(Y )+

+ ϕin(X)ϕin(Y ) + ϕin−1(X)ϕin−1(Y ) =

=dl2(X,Y ).

We verify thatQ2

(
Rn+2

)
is Kähler by showing that the differential of the Kähler

form
K(X,Y ) = dl2(JX, Y )

vanishes identically. This is a simple exercise using (3.11) and the Maurer-
Cartan structure equations. Indeed

K(X,Y ) =− ϕ0
n−1(JX)ϕn−1

0 (Y )− ϕ0
n(JX)ϕn0 (Y )+

− ϕn−1
0 (JX)ϕ0

n−1(Y )− ϕn0 (JX)ϕ0
n(Y )+

+ ϕin−1(JX)ϕin−1(Y ) + ϕin(JX)ϕin(Y ) =

=ϕ0
n(X)ϕn−1

0 (Y )− ϕ0
n−1(X)ϕn0 (Y )+

+ ϕn0 (X)ϕ0
n−1(Y )− ϕn−1

0 (X)ϕ0
n(Y )+

− ϕin(X)ϕin−1(Y ) + ϕin−1(X)ϕin(Y ),
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that is,

K =− ϕ0
n−1 ∧ ϕn0 − ϕn−1

0 ∧ ϕ0
n + ϕin−1 ∧ ϕin = (3.12)

=
i

2

(
−ζ0 ∧ ζn−1 − ζn−1 ∧ ζ0 + ζk ∧ ζk

)
.

Therefore

dK =− dϕ0
n−1 ∧ ϕn0 + ϕ0

n−1 ∧ dϕn0 − dϕn−1
0 ∧ ϕ0

n+

+ ϕn−1
0 ∧ dϕ0

n + dϕin−1 ∧ ϕin − ϕin−1 ∧ dϕin =

=(ϕ0
0 ∧ ϕ0

n−1 + ϕ0
k ∧ ϕkn−1 + ϕ0

n ∧ ϕnn−1) ∧ ϕn0 +

− ϕ0
n−1 ∧ (ϕn0 ∧ ϕ0

0 + ϕnk ∧ ϕk0 + ϕnn−1 ∧ ϕn−1
0 )+

+ (ϕn−1
0 ∧ ϕ0

0 + ϕn−1
k ∧ ϕk0 + ϕn−1

n ∧ ϕn0 ) ∧ ϕ0
n+

− ϕn−1
0 ∧ (ϕ0

0 ∧ ϕ0
n + ϕ0

k ∧ ϕkn + ϕ0
n−1 ∧ ϕn−1

n )+

− (ϕi0 ∧ ϕ0
n−1 + ϕik ∧ ϕkn−1 + ϕin ∧ ϕnn−1 + ϕ0

i ∧ ϕn−1
0 ) ∧ ϕin+

+ ϕin−1 ∧ (ϕi0 ∧ ϕ0
n + ϕik ∧ ϕkn + ϕin−1 ∧ ϕn−1

n + ϕ0
i ∧ ϕn0 ) =

=ϕ0
0 ∧ ϕ0

n−1 ∧ ϕn0 + ϕ0
k ∧ ϕkn−1 ∧ ϕn0 + ϕ0

n ∧ ϕnn−1 ∧ ϕn0 +

− ϕ0
n−1 ∧ ϕn0 ∧ ϕ0

0 − ϕ0
n−1 ∧ ϕnk ∧ ϕk0 − ϕ0

n−1 ∧ ϕnn−1 ∧ ϕn−1
0 +

+ ϕn−1
0 ∧ ϕ0

0 ∧ ϕ0
n + ϕn−1

k ∧ ϕk0 ∧ ϕ0
n + ϕn−1

n ∧ ϕn0 ∧ ϕ0
n+

− ϕn−1
0 ∧ ϕ0

0 ∧ ϕ0
n − ϕn−1

0 ∧ ϕ0
k ∧ ϕkn − ϕn−1

0 ∧ ϕ0
n−1 ∧ ϕn−1

n +

− ϕi0 ∧ ϕ0
n−1 ∧ ϕin − ϕik ∧ ϕkn−1 ∧ ϕin − ϕ0

i ∧ ϕn−1
0 ∧ ϕin+

+ ϕin−1 ∧ ϕi0 ∧ ϕ0
n + ϕin−1 ∧ ϕik ∧ ϕkn + ϕin−1 ∧ ϕ0

i ∧ ϕn0 =
=0.

3.3 The projective structure of the conformal
Grassmannian

Finally we describe the complex projective structure of the conformal Grass-
mannian. There is a natural injection of Q2

(
Rn+2

)
in Pn+1

C defined as follows.
Let [Gεn−1, Gεn], with G ∈ Möb(n), be a 2-plane of Q2

(
Rn+2

)
. The map

sending [Gεn−1, Gεn] to the projectivization of the complex, non-zero vector
G(εn−1 + iεn) is well defined and injective, and thus provides a complex projec-
tive representation for the whole conformal Grassmannian of 2-planes in Rn+2.
Indeed, let [Gεn−1, Gεn] and [G′εn−1, G

′εn] be two representatives for the same
2-plane in Q2

(
Rn+2

)
, then G and G′ must differ by an element of the isotropy

subgroup H0, namely G′ = GH for some H ∈ H0. But H has an expression as
in (3.1), with B ∈ SO(2), that is

B =
(

cos θ − sin θ
sin θ cos θ

)
,

for some θ ∈ R, so we have

G′(εn−1 + iεn) =GH(εn−1 + iεn) =
=G(cos θεn−1 + sin θεn − i sin θεn−1 + i cos θεn) =

=e−iθG(εn−1 + iεn)
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which projects to the same complex projective class as G(εn−1 + iεn). As for
injectivity, if G(εn−1 + iεn) and G′(εn−1 + iεn) project to the same projective
class, then there exists ρ > 0 and θ ∈ R such that

G′(εn−1 + iεn) = ρeiθG(εn−1 + iεn) = ρGH(εn−1 + iεn),

where

H =


In−1 0 0 0

0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1


clearly belongs to H0. So [Gεn−1, Gεn] and [G′εn−1, G

′εn] are in fact the same
2-plane in Q2

(
Rn+2

)
.

We will show that, as a matter of fact, Q2

(
Rn+2

)
can be identified with an open

submanifold of the projective quadric of homogeneous equation

−2x0xn+1 +
n∑

A=1

(xA)2 = 0. (3.13)

As we have explained above, the image in Pn+1
C of a 2-plane of Q2

(
Rn+2

)
is

the projective class of a complex vector of the form G(εn−1 + iεn), for some
G ∈ Möb(n). Now, the vector εn−1 + iεn trivially satisfies equation (3.13), and
therefore lies in the quadric. Note that the quadric (3.13) is represented by the
matrix

S =

 0 0 −1
0 In 0
−1 0 0


introduced in (1.1) and, since G ∈ Möb(n),

t[G(εn−1 + iεn)]S[G(εn−1 + iεn)] = t(εn−1 + iεn)tGSG(εn−1 + iεn) =

= t(εn−1 + iεn)S(εn−1 + iεn) = 0.

Therefore G(εn−1 + iεn) lies in the quadric (3.13).
However, the conformal Grassmannian doesn’t cover the whole quadric. Indeed
the points of the quadric coming from a 2-plane in Q2

(
Rn+2

)
are those that

have a representative v + iw ∈ Cn+2 such that, with respect to the Lorentzian
product in Rn+2, ‖v‖2 = ‖w‖2 > 0. This leaves out the projective classes
represented by vectors v + iw where v and w are isotropic and non zero. All
such vectors lie in the quadric but cannot be obtained from εn−1 or εn through a
matrix of Möb(n), because such matrices preserve the Lorentzian norm defined
through the matrix S.



Chapter 4

The geometry of surfaces in
Q4

4.1 Some conformal invariants

Let f : M → Q4 be an oriented immersed surface. Assume that M has been
given the structure of a Riemann surface starting from an assigned metric g
and assume that f is conformal in the sense that the conformal structure that
it induces on M coincides with that of M as a Riemann surface.
We let e : U ⊂ M → Möb(n) be a local first order frame along f , so that,
according to (2.2),

φα0 = 0 3 ≤ α ≤ 4

and the isotropy subgroup is given by (2.3). Then

φαi = hαijφ
j
0, hαij = hαji 1 ≤ i, j ≤ 2 (4.1)

and we have the transformation laws (2.7), (2.8).
Starting from first order frames, we are now going to introduce a number of

geometric invariants. We let Lα denote the Hopf transform of the symmetric
matrix (hαij), that is

Lα =
1
2

(hα11 − hα22)− ihα12. (4.2)

Setting

A =
(

cos t − sin t
sin t cos t

)
and recalling that eit = cos t+ i sin t, using (2.8) we compute

h̃α11 = rBβαA
l
1(Ak1h

β
kl −A

l
1y
β) =

= rBβα(A1
1A

1
1h
β
11 +A1

1A
2
1h
β
21 +A2

1A
1
1h
β
12 +A2

1A
2
1h
β
22 − δ11y

β) =

= rBβα(cos2 t hβ11 + cos t sin t hβ21 + sin t cos t hβ12 + sin2 t hβ22 − yβ) =

= rBβα(cos2 t hβ11 + 2 cos t sin t hβ12 + sin2 t hβ22 − yβ).

23
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Similarly,

h̃α22 = rBβαA
l
2(Ak2h

β
kl −A

l
2y
β) =

= rBβα(A1
2A

1
2h
β
11 +A1

2A
2
2h
β
21 +A2

2A
1
2h
β
12 +A2

2A
2
2h
β
22 − δ22y

β) =

= rBβα(sin2 t hβ11 − 2 sin t cos t hβ12 + cos2 t hβ22 − yβ),

h̃α12 = rBβαA
l
2(Ak1h

β
kl −A

l
1y
β) =

= rBβα(A1
2A

1
1h
β
11 +A1

2A
2
1h
β
21 +A2

2A
1
1h
β
12 +A2

2A
2
1h
β
22 − δ12y

β) =

= rBβα(− sin t cos t hβ11 − sin2 t hβ21 + cos2 t hβ12 + cos t sin t hβ22) =

= rBβα

(
− sin t cos t(hβ11 − h

β
22) + (− sin2 t+ cos2 t)hβ12

)
.

From the above formulae, we can deduce the one expressing the transformation
of Lα under a change of first order frames

L̃α =
1
2

(h̃α11 − h̃α22 − 2ih̃α12) =

=
1
2
rBβα

(
cos2 t hβ11 + 2 cos t sin t hβ12 + sin2 t hβ22 − yβ+

− sin2 t hβ11 + 2 sin t cos t hβ12 − cos2 t hβ22 + yβ+

− 2i
(
− sin t cos t(hβ11 − h

β
22) + (− sin2 t+ cos2 t)hβ12

))
=

=
1
2
rBβα

(
(cos2 t− sin2 t)(hβ11 − h

β
22) + 4 cos t sin t hβ12+

+ 2i sin t cos t(hβ11 − h
β
22)− 2i(− sin2 t+ cos2 t)hβ12

)
=

=
1
2
rBβα

(
(cos2 t− sin2 t+ 2i sin t cos t)(hβ11 − h

β
22)+

− 2i(cos2 t− sin2 t+ 2i sin t cos t)hβ12

)
=

=
1
2
rBβα(cos2 t− sin2 t+ 2i sin t cos t)(hβ11 − h

β
22 − 2ihβ12),

that is
L̃α = re2itBβαL

β . (4.3)

Therefore, setting

B =
(

cos s − sin s
sin s cos s

)
,

L̃3 ± iL̃4 = re2it
(
Bβ3L

β ± iBβ4Lβ
)

=

= re2it
(
cos sL3 + sin sL4 ∓ i sin sL3 ± i cos sL4

)
=

= re2it(cos s∓ i sin s)(L3 ± iL4),

that is
L̃3 ± iL̃4 = re2ite∓is

(
L3 ± iL4

)
(4.4)

Using (2.4) and (4.4), we see that the real, locally defined 2-forms

ω± =
∣∣L3 ± iL4

∣∣2 φ1
0 ∧ φ2

0, (4.5)

are globally defined and smooth.
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Definition 4.1. We will say that f : M → Q4 is + or − isotropic respectively
if ω+ ≡ 0 or ω− ≡ 0.

Note that, when f is at the same time + and − isotropic then

hα12 = 0, hα11 = hα22.

Thus passing to a Darboux frame hαij = 0 for every α, i, j, and f(M) ⊆ Q2 ⊂ Q4

according to Proposition 2.1.
We underline the fact that the forms ω± are invariant with respect to first

order frames.
It is easy to see, using (2.7) and (2.8), that the 2-form

w =
1
4

{∑
α

(hα11 − hα22)2 + 4(hα12)2

}
φ1

0 ∧ φ2
0 =

(
|L3|2 + |L4|2

)
φ1

0 ∧ φ2
0 (4.6)

is globally defined. In particular the form η is globally defined, which satisfies

w = ω± ∓ η. (4.7)

We now identify η. A simple computation, using the definitions of w and ω±
yields

η = −i
(
L3L4 − L4L3

)
φ1

0 ∧ φ2
0. (4.8)

Expressing it in terms of the hαij ’s we obtain

−i
(
L3L4 − L4L3

)
= h3

11h
4
12 − h3

22h
4
12 − h3

12h
4
11 + h3

12h
4
22.

If we specialise to a Darboux frame e along f , since hα11 + hα22 = 0 we obtain

−i
(
L3L4 − L4L3

)
= 2(h3

11h
4
12 − h3

12h
4
11).

We go back to the bundle N introduced in section 2.2 through (2.25). The
curvature KN of this bundle is now given by

Λ3
4 =

1
2
⊥τ3

4ijφ
i
0 ∧ φ

j
0 = KNφ

1
0 ∧ φ2

0

and using (2.26) we deduce that

KN = −i
(
L3L

4 − L4L
3
)

(4.9)

or, in other words
dφ3

4 = KNφ
1
0 ∧ φ2

0 = η. (4.10)

Using (4.7), (4.10) and the generalized Gauss-Bonnet theorem, having set

W (f) =
∫
M

w (4.11)

in the case of M compact, we obtain
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Theorem 4.1. Let f : M → Q4 be an immersion of a compact orientable
surface; then

W (f) =
∫
M

ω± ∓ 2πχ(N) (4.12)

where χ(N) is the Euler number of the bundle N introduced above.

The functional W (f) defined in (4.11) for M compact or, more generally on
compact domains of M , is called the Willmore functional.

Corollary 4.2. Let f : M → Q4 be an immersion of a compact orientable
surface. Then ∫

M

ω± ≥ ±2πχ(N)

equality holding if and only if f(M) = Q2 ⊂ Q4.

Proof. An easy computation shows that

w =
1
2

∑
i,j,α

(hαij)
2φ1

0 ∧ φ2
0,

so clearly W (f) ≥ 0 and W (f) = 0 if and only if f(M) = Q2 ⊂ Q4 by Proposi-
tion 2.1.

Suppose that M is compact and orientable; (4.12) implies that, if M is either
+ or − isotropic, then the values of W (f) are “quantized”.

4.2 The conformal Gauss map of a surface in Q4

Our next goal is to give a geometric interpretation to + and − isotropic im-
mersions. Towards this aim we introduce the conformal Gauss map. We let
Q2

(
R6
)

be the conformal Grassmannian of 2-planes introduced in Chapter 3.
As we have seen, Q2

(
R6
)

has the structure of a complex, Kähler-Lorentzian
manifold with a local basis of (1, 0)-type forms given by

ζ0 = ς∗Φ0
3 + iς∗Φ0

4, ζk = ς∗Φk3 + iς∗Φk4 , ζ3 = ς∗Φ3
0 + iς∗Φ4

0, (4.13)

where ς is any local section of π̂.
Given a Riemann surface M , a map h : M → Q2

(
R6
)

is respectively ± holo-
morphic if the pull-back of the forms ζ0, ζk, ζ3 in (4.13) is respectively of type
(1, 0) or (0, 1)

Definition 4.2. Let f : M → Q4 be an immersed oriented surface and let e be a
(local) Darboux frame along f . The conformal Gauss map γf : M → Q2

(
R6
)

is defined by setting
γf : p 7→ [e3, e4]p

where with [e3, e4]p we denote the oriented 2-plane generated by the vectors e3,
e4 at the point p.

Note that, because of the transformation law (2.25) under a change of Dar-
boux frames, γf is globally well defined, and the orientation of the 2-plane
[e3, e4] is also preserved.
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4.3 Isotropic surfaces and the holomorphicity of
the conformal Gauss map

We introduce some notation. We recall, see (2.13) and (2.14), that under a
Darboux frame e

φ0
α = pαkφ

k
0 with pαk =

1
2
hαiik. (4.14)

We define
kα =

1
2

(pα1 − ipα2 ). (4.15)

We are now ready to prove the next

Theorem 4.3. Let f : M → Q4 be an immersed oriented Riemann surface.
Then f is ± isotropic if and only if γf : M → Q2

(
R6
)

is ∓ holomorphic.

Proof. We begin by observing that if e is any Darboux frame along f , then the
following diagram is commutative.

Möb(4)
bπ

yyttttttttt
π

""FFFFFFFFF

Q2

(
R6
)

Q4

M

γf

eeKKKKKKKKKK

e

OO

f

;;wwwwwwwww

This fact enables us to compute in a simple way γ∗fζ
0, γ∗fζ

k, γ∗fζ
3. Indeed,

setting
θ0,α = ς∗Φα0 , θα,0 = ς∗Φ0

α, θα,i = ς∗Φiα (4.16)

and using (4.14), (4.15) and (4.1) we have:
γ∗fθ

α,0 = pαkφ
k
0

γ∗fθ
α,i = −hαikφk0

γ∗fθ
0,α = 0.

(4.17)

In order to see this, we observe that

γ∗f ς
∗Φ = (π̂ ◦ e)∗ς∗Φ = e∗(ς ◦ π̂)∗Φ.

And since π̂ ◦ (ς ◦ π̂) = π̂, then for every g in the inverse image through π̂ of the
domain of definition of ς, it holds

ς(π̂(g)) = gK̃(g),

where K̃ is an H0-valued function. Therefore

(ς ◦ π̂)∗Φg = K̃(g)−1g−1dgK̃(g) + K̃(g)−1dK̃g,
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and since K̃(g)−1dK̃g has values in the Lie algebra of H0, we deduce that

(ς ◦ π̂)∗Φα0 g0
=
(
K̃(g0)−1g−1

0 dgg0K̃(g0)
)α

0

(ς ◦ π̂)∗Φ0
αg0

=
(
K̃(g0)−1g−1

0 dgg0K̃(g0)
)0

α

(ς ◦ π̂)∗Φαi g0
=
(
K̃(g0)−1g−1

0 dgg0K̃(g0)
)α
i
.

If for a fixed g̃ we replace the section ς with the section ςK̃(g̃)−1 obtained
multiplying ς by a constant matrix, we will have defined a new section ς̃ which
satisfies, at the point g̃ (and in general only there), the equality ς̃(π̂(g̃)) = g̃,
and therefore

(ς̃ ◦ π̂)∗Φα0 eg =
(
g̃−1dgeg)α0 = Φα0 eg

(ς̃ ◦ π̂)∗Φ0
αeg =

(
g̃−1dgeg)0α = Φ0

αeg
(ς̃ ◦ π̂)∗Φαi eg =

(
g̃−1dgeg)αi = Φαi eg.

Now let us fix p0 ∈ M and set g̃ = e(p0). Given a section ς defined in a
neighbourhood of γf (p0), and possibly replacing it with the section ςK̃(e(p0))−1,
which we shall still call ς, we have at the point p0

ς(π̂(e(p0))) = e(p0),

and thus (
γ∗f ς
∗Φα0

)
p0

=
(
e∗(ς ◦ π̂)∗Φα0

)
p0

= (e∗Φα0 )p0
= φα0 p0

= 0(
γ∗f ς
∗Φ0

α

)
p0

= φ0
αp0

= pαk (p0)φk0p0(
γ∗f ς
∗Φαi

)
p0

= φαi p0
= hαik(p0)φk0p0

.

Hence, setting ϕ = φ1
0 + iφ2

0 and observing that, if αk, βk are real-valued func-
tions, one has

(αk + iβk)φk0 =
{
α1 + β2

2
+ i

β1 − α2

2

}
ϕ+

{
α1 − β2

2
+ i

β1 + α2

2

}
ϕ, (4.18)

we get, at the point p0,

γ∗fζ
0 =
(
p3
k + ip4

k

)
φk0 =

=
1
2
{(
p3

1 + p4
2

)
+ i
(
p4

1 − p3
2

)}
ϕ+

1
2
{(
p3

1 − p4
2

)
+ i
(
p4

1 + p3
2

)}
ϕ =

=
(
k3 + ik4

)
ϕ+

(
k3 − ik4

)
ϕ

and similarly, using (4.2),

γ∗fζ
1 = −1

2
{(
h3

11 − ih3
12

)
+ i
(
h4

11 − ih4
12

)}
ϕ− 1

2
{(
h3

11 + ih3
12

)
+ i
(
h4

11 + ih4
12

)}
ϕ =

= −1
2
(
L3 + iL4

)
ϕ− 1

2

(
L3 − iL4

)
ϕ
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and

γ∗fζ
2 = −1

2
{(
h3

21 − ih3
22

)
+ i
(
h4

21 − ih4
22

)}
ϕ− 1

2
{(
h3

21 + ih3
22

)
+ i
(
h4

21 + ih4
22

)}
ϕ =

= −1
2
{(
h3

21 + ih3
11

)
+ i
(
h4

21 + ih4
11

)}
ϕ− 1

2
{(
h3

21 − ih3
11

)
+ i
(
h4

21 − ih4
11

)}
ϕ =

= − i
2
(
L3 + iL4

)
ϕ+

i

2

(
L3 − iL4

)
ϕ.

Namely, at the point p0,

γ∗fζ
0 =

(
k3 + ik4

)
ϕ+

(
k3 − ik4

)
ϕ

γ∗fζ
1 = −1

2
(
L3 + iL4

)
ϕ− 1

2

(
L3 − iL4

)
ϕ

γ∗fζ
2 = − i

2
(
L3 + iL4

)
ϕ+

i

2

(
L3 − iL4

)
ϕ

γ∗fζ
3 = 0.

It is therefore clear, using (4.5), that if γf is ∓ holomorphic then f is ± isotropic.
To prove the converse we need to show that

L3 ± iL4 = 0 implies k3 ± ik4 = 0. (4.19)

Towards this aim we differentiate the first of (4.19) and we use (2.12) to perform
the computations. Note that, since we are using Darboux frames along f ,

Lα = hα11 − ihα12.

A simple check yields

dh3
11 =h3

11kφ
k
0 + 2h3

12φ
2
1 + h4

11φ
4
3 − h3

11φ
0
0 − p3

kφ
k
0

dh3
12 =h3

12kφ
k
0 − 2h3

11φ
2
1 + h4

12φ
4
3 − h3

12φ
0
0

dh4
11 =h4

11kφ
k
0 + 2h4

12φ
2
1 − h3

11φ
4
3 − h4

11φ
0
0 − p4

kφ
k
0

dh4
12 =h4

12kφ
k
0 − 2h4

11φ
2
1 − h3

12φ
4
3 − h4

12φ
0
0,

and we can compute

d
(
L3 ± iL4

)
=d
((
h3

11 ± ih4
11

)
− i
(
h3

12 ± ih4
12

))
=

=dh3
11 ± idh4

11 − idh3
12 ± dh4

12 =

=h3
11kφ

k
0 + 2h3

12φ
2
1 + h4

11φ
4
3 − h3

11φ
0
0 − p3

kφ
k
0+

± i(h4
11kφ

k
0 + 2h4

12φ
2
1 − h3

11φ
4
3 − h4

11φ
0
0 − p4

kφ
k
0)+

− i(h3
12kφ

k
0 − 2h3

11φ
2
1 + h4

12φ
4
3 − h3

12φ
0
0)+

± (h4
12kφ

k
0 − 2h4

11φ
2
1 − h3

12φ
4
3 − h4

12φ
0
0) =

=
(
h3

11k − p3
k ± h4

12k

)
φk0 ± i

(
h4

11k − p4
k ∓ h3

12k

)
φk0+

+ 2h3
12φ

2
1 + h4

11φ
4
3 − h3

11φ
0
0 ± 2ih4

12φ
2
1 ∓ ih3

11φ
4
3 ∓ ih4

11φ
0
0+

+ i2h3
11φ

2
1 − ih4

12φ
4
3 + ih3

12φ
0
0 ∓ 2h4

11φ
2
1 ∓ h3

12φ
4
3 ∓ h4

12φ
0
0 =
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=
(
h3

11k − p3
k ± h4

12k

)
φk0 ± i

(
h4

11k − p4
k ∓ h3

12k

)
φk0+

+ 2
(
h3

12 ± ih4
12 + ih3

11 ∓ h4
11

)
φ2

1 +
(
h4

11 ∓ ih3
11 − ih4

12 ∓ h3
12

)
φ4

3+

+
(
−h3

11 ∓ ih4
11 + ih3

12 ∓ h4
12

)
φ0

0 =

=
(
h3

11k − p3
k ± h4

12k

)
φk0 ± i

(
h4

11k − p4
k ∓ h3

12k

)
φk0+

+ 2i
(
h3

11 − ih3
12 ± ih4

11 ± h4
12

)
φ2

1 ∓ i
(
h3

11 − ih3
12 ± ih4

11 ± h4
12

)
φ4

3+

−
(
h3

11 − ih3
12 ± ih4

11 ± h4
12

)
φ0

0 =

=(h3
11k − p3

k ± h4
12k)φk0 ± i(h4

11k − p4
k ∓ h3

12k)φk0+

+ (L3 ± iL4)
[
i(2φ2

1 ∓ φ4
3)− φ0

0

]
,

namely

d
(
L3 ± iL4

)
=(h3

11k − p3
k ± h4

12k)φk0 ± i(h4
11k − p4

k ∓ h3
12k)φk0+

+ (L3 ± iL4)
[
i(2φ2

1 ∓ φ4
3)− φ0

0

]
. (4.20)

Hence, if the first of (4.19) holds, we have

0 =
{

(h3
11k − p3

k ± h4
12k)± i(h4

11k − p4
k ∓ h3

12k)
}
φk0 ,

that is,
h3

11k − p3
k ± h4

12k = 0 = h4
11k − p4

k ∓ h3
12k.

Therefore, using the symmetries of the hαijk’s and the definitions of pαk ,

0 = (h3
111 − p3

1 ± h4
121)∓ (h4

112 − p4
2 ∓ h3

122) = h3
111 + h3

122 − p3
1 ± p4

2 = p3
1 ± p4

2

and similarly

0 = (h3
112−p3

2±h4
122)± (h4

111−p4
1∓h3

121) = ±(h4
122 +h4

111)−p3
2∓p4

1 = −p3
2±p4

1.

Hence

2(k3 ± ik4) =
(
p3

1 − ip3
2 ± i(p4

1 − ip4
2)
)

= (p3
1 ± p4

2) + i(−p3
2 ± p4

1) = 0.

Let us now further analyze the quantities kα as defined in (4.15). It is not
hard to show that under a change of Darboux frames

k̃3 ± ik̃4 = r2eite∓is
{
k3 ± ik4 +

1
2

(x1 + ix2)(L3 ± iL4)
}
. (4.21)

Indeed

2(k̃3 ± ik̃4) =(p̃3
1 − ip̃3

2)± i(p̃4
1 − ip̃4

2) =

=r2Bβ3

(
Ak1

(
pβk + hβkjx

j
)
− iAk2

(
pβk + hβkjx

j
))

+

± ir2Bβ4

(
Ak1

(
pβk + hβkjx

j
)
− iAk2

(
pβk + hβkjx

j
))

=

=r2
(
Bβ3 ± iB

β
4

)(
Ak1 − iAk2

)(
pβk + hβkjx

j
)

=
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=r2
(
B3

3 ± iB3
4

)(
A1

1 − iA1
2

)(
p3

1 + h3
1jx

j
)
+

+ r2
(
B3

3 ± iB3
4

)(
A2

1 − iA2
2

)(
p3

2 + h3
2jx

j
)
+

+ r2
(
B4

3 ± iB4
4

)(
A1

1 − iA1
2

)(
p4

1 + h4
4jx

j
)
+

+ r2
(
B4

3 ± iB4
4

)(
A2

1 − iA2
2

)(
p4

2 + h4
2jx

j
)

=

=r2(cos s∓ i sin s)(cos t+ i sin t)
(
p3

1 + h3
1jx

j
)
+

+ r2(cos s∓ i sin s)(sin t− i cos t)
(
p3

2 + h3
2jx

j
)
+

+ r2(sin s± i cos s)(cos t+ i sin t)
(
p4

1 + h4
1jx

j
)
+

+ r2(sin s± i cos s)(sin t− i cos t)
(
p4

2 + h4
2jx

j
)

=

=r2
(
e∓iseit

(
p3

1 + h3
1jx

j
)
− ie∓iseit

(
p3

2 + h3
2jx

j
)
+

± ie∓iseit
(
p4

1 + h4
4jx

j
)
± ie∓is

(
−ieit

)(
p4

2 + h4
2jx

j
))

=

=r2e∓iseit
((
p3

1 − ip3
2

)
± i
(
p4

1 − ip4
2

)
+

+
(
h3

1j − ih3
2j

)
± i
(
h4

1j − ih4
2j

)
xj
)

=

=r2e∓iseit
(

2
(
k3 ± ik4

)
+
((
h3

11 − ih3
21

)
± i
(
h4

11 − ih4
21

))
x1+

+
((
h3

12 − ih3
22

)
± i
(
h4

12 − ih4
22

))
x2
)

=

=r2e∓iseit
(
2
(
k3 ± ik4

)
+
(
L3 ± iL4

)
x1 +

(
iL3 ∓ L4

)
x2
)

=

=r2eite∓is
{

2
(
k3 ± ik4

)
+ (L3 ± iL4)(x1 + ix2)

}
.

For p > 2, consider the condition

∃γ ∈ Lploc(M) such that
∣∣k3 ± ik4

∣∣ ≤ γ∣∣L3 ± iL4
∣∣ a.e. (4.22)

Of course we have to check that this condition actually makes sense, since the
quantities involved strongly depend on the choice of the Darboux frame. To
this end we use (4.21) and (4.4) and observe that if condition (4.22) holds for
some Darboux frame, then for any other Darboux frame we can estimate∣∣∣k̃3 ± ik̃4

∣∣∣ = r2

∣∣∣∣k3 ± ik4 +
1
2

(x1 + ix2)(L3 ± iL4)
∣∣∣∣ ≤

≤ r2

(
γ +

1
2

∣∣x1 + ix2
∣∣)∣∣L3 ± iL4

∣∣ = r

(
γ +

1
2

∣∣x1 + ix2
∣∣)∣∣∣L̃3 ± iL̃4

∣∣∣.
Therefore condition (4.22) still holds provided we replace γ with another suitable
function in Lploc(M). We recall the following result by Eschenburg and Tribuzy
(see [8]).

Lemma 4.4. Let U ⊂ C be an open domain containing 0 and f : U → Cn a
smooth function satisfying the Cauchy-Riemann condition∣∣∣∣∂f∂z̄

∣∣∣∣ ≤ γ|f | (4.23)

for some Lp-function γ with p > 2. Then, in a neighbourhood of the origin,
either f ≡ 0 or

f(z) = zkf0(z)

for some nonnegative integer k and a continuous function f0 such that f0(0) 6= 0.
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This result prompts us to set the following

Definition 4.3. Let M be a Riemann surface and E → M a complex vector
bundle. A smooth section s of E is said to be of analytic type if it either
vanishes identically or near any zero p, we have

s = zks0

for some positive integer k and some continuous section s0 with s0(p) 6= 0, where
z is any holomorphic chart centered at p.

Sections of analytic type, and particularly functions of analityc type, are
quite useful in many different settings, and have therefore been studied thor-
oughly (e.g. see [2]).
In order to prove Lemma 4.4, we need the following

Lemma 4.5. Let g : U \ {0} → Cn be a C1-function which is bounded near 0
and satisfies ∣∣∣∣∂g∂z̄

∣∣∣∣ ≤ γ|g|
for some Lp-function γ on U with p > 2. Then lim

z→0
g(z) exists, and for a

suitably small closed disc D ⊂ U of radius R centered at 0, the Lq-norms on D
and its boundary ∂D are related by

‖g‖q,D
‖g‖q,∂D

≤ CR
1
p

with q−1 + p−1 = 1 and for a constant C depending only on ‖γ‖p.

Proof of Lemma 4.5. Let 0 6= ζ ∈ Int(D) and consider the 1-form

η =
g(z)− g(ζ)
z − ζ

dz

on Dε = D \ (Bε(0) ∪Bε(ζ)), ε small. Applying Stokes’ theorem we get∫
Dε

dη =
∫
Dε

∂g

∂z̄
(z − ζ)−1 dz̄ ∧ dz =

∫
∂D

η −
∫
∂Bε(ζ)

η −
∫
∂Bε(0)

η,

and ∫
∂D

η =
∫
∂D

g(z)
z − ζ

dz − 2πi g(ζ),∫
∂Bε(ζ)

η = 0,
∫
∂Bε(0)

η → 0 as ε→ 0.

Therefore, letting ε→ 0, we have

2πi g(ζ) =
∫
∂D

g(z)
z − ζ

dz −
∫
D

∂g

∂z̄
(z − ζ)−1 dz̄ ∧ dz (4.24)

for every ζ ∈ Int(D) \ {0}.
Since ∂g

∂z̄ ∈ L
p, we can show that the right-hand side of (4.24) has a limit for
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ζ → 0. In order to do this, we will show that, for h ∈ Lp, the function Ph
defined by

Ph(ζ) =
∫
C

h(z)
∣∣∣∣ 1
z − ζ

− 1
z

∣∣∣∣|dz̄ ∧ dz|
is continuous at ζ = 0. Let us first observe that the integral defining Ph
converges, since h ∈ Lp and

1
z − ζ

− 1
z

=
ζ

z(z − ζ)
∈ Lq.

Indeed 1 < q < 2, so the integral of |z(z − ζ)|−q converges at 0, at ζ and at
infinity.
Therefore, by Holder’s inequality,

|Ph(ζ)| ≤ |ζ|‖h‖p

∥∥∥∥ 1
z(z − ζ)

∥∥∥∥
q

and, performing the change of variable z = ζZ, we have∥∥∥∥ 1
z(z − ζ)

∥∥∥∥
q

=
(∫

C

|z(z − ζ)|−q|dz̄ ∧ dz|
) 1
q

=

=|ζ|
2−2q
q

(∫
C

|z(z − 1)|−q|dz̄ ∧ dz|
) 1
q

= |ζ|−
2
p

∥∥∥∥ 1
z(z − 1)

∥∥∥∥
q

.

Now, setting Kp =
∥∥∥ 1
z(z−1)

∥∥∥
q

and observing that Kp depends only on p, we get

|Ph(ζ)| ≤ Kp‖h‖p|ζ|
1− 2

p

and so we have∣∣∣∣∫
D

∂g

∂z̄

1
z − ζ

dz̄ ∧ dz −
∫
D

∂g

∂z̄

1
z
dz̄ ∧ dz

∣∣∣∣ ≤∫
D

∣∣∣∣∂g∂z̄
∣∣∣∣∣∣∣∣ 1
z − ζ

− 1
z

∣∣∣∣|dz̄ ∧ dz| =
=|Ph(ζ)| ≤ Kp‖h‖p|ζ|

1− 2
p

where h is defined as
∣∣∣∂g∂z̄ ∣∣∣ on D, and is zero elsewhere.

This shows that g(z) has limit as z → 0.
Let us now estimate the Lq-norm of g. Since q ≤ 2, the function

z 7→ g(z)(z − ζ)−1

is Lq on D. Hence we can use Holder’s inequality on the second term in the
right-hand side of (4.24) and get∣∣∣∣∫

D

∂g

∂z̄

1
z − ζ

dz̄ ∧ dz
∣∣∣∣ ≤∫

D

γ |g(z)||z − ζ|−1|dz̄ ∧ dz| ≤

≤‖γ‖p

(∫
D

|g(z)|q|z − ζ|−q|dz̄ ∧ dz|
) 1
q

.
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Elevating (4.24) to the q (a convex operation, because q > 1),

(2π)q|g(ζ)|q =
∣∣∣∣∫
∂D

g(z) (z − ζ)−1 dz −
∫
D

∂g

∂z̄

1
z − ζ

dz̄ ∧ dz
∣∣∣∣q ≤

≤

(∫
∂D

|g(z)| |z − ζ|−1 |dz|+ ‖γ‖p

(∫
D

|g(z)|q|z − ζ|−q|dz̄ ∧ dz|
) 1
q

)q
≤

≤ 2q
(

1
2

(∫
∂D

|g(z)| |z − ζ|−1 |dz|
)q

+
1
2
‖γ‖qp

∫
D

|g(z)|q|z − ζ|−q|dz̄ ∧ dz|
)
.

We use Holder’s inequality to estimate∫
∂D

|g(z)| |z − ζ|−1 |dz| ≤ (2πR)
1
p

(∫
∂D

|g(z)|q|z − ζ|−q |dz|
) 1
q

so that we have

(2π)q|g(ζ)|q ≤(4πR)q−1

∫
∂D

|g(z)|q|z − ζ|−q |dz|+

+ 2q−1‖γ‖qp
∫
D

|g(z)|q|z − ζ|−q|dz̄ ∧ dz|.

Integrating with respect to ζ over D, we get

(2π)q‖g‖qq,D ≤(4πR)q−1

∫
D

[∫
∂D

|g(z)|q|z − ζ|−q |dz|
]∣∣dζ̄ ∧ dζ∣∣+

+ 2q−1‖γ‖qp
∫
D

[∫
D

|g(z)|q|z − ζ|−q|dz̄ ∧ dz|
]∣∣dζ̄ ∧ dζ∣∣.

Applying Fubini’s theorem and setting

α = sup
z∈D

∫
D

|z − ζ|−q
∣∣dζ̄ ∧ dζ∣∣,

we can write

(2π)q‖g‖qq,D ≤ (4πR)q−1α‖g‖qq,∂D + 2q−1‖γ‖qpα‖g‖
q
q,D.

But α→ 0 as R→ 0, so that, up to choosing R sufficiently small, we can assume

(2π)q − 2q−1‖γ‖qpα > 0.

Therefore
‖g‖qq,D
‖g‖qq,∂D

≤ (4π)q−1α

(2π)q − 2q−1‖γ‖qpα
Rq−1,

which proves the claim.

Proof of Lemma 4.4. Let us assume (4.23) is satisfied and, without loss of gen-
erality, let us take z0 = 0. Assume f 6≡ 0 in a neighbourhood of 0, i.e. for every
disc D of radius R centered at 0 there exists z1 ∈ D such that f(z1) 6= 0, and
set r := |z1| < R. First we shall show that in this case we cannot have

f(z) = o(|z|k)



4.3 Isotropic surfaces and the holomorphicity of the conformal Gauss map 35

for every k ∈ N. To this end, we set

gk =
f

zk

and observe that, since |f(z1)| > 0, there exists a constant a, independent of k,
R and r, such that

‖gk‖q,D ≥ ar
−k.

On the other hand
‖gk‖q,∂D ≤ bR

−k.

for a suitable constant b independent of k, R and r. Hence we have

‖gk‖q,D
‖gk‖q,∂D

≥ a

b

(
R

r

)k
,

that goes to infinity as k → +∞. Since gk obviously satisfies the hypotheses of
Lemma 4.5 with the function γ of (4.23) depending only on f and not on k, the
quotient

‖gk‖q,D
‖gk‖q,∂D

must be bounded as k → +∞, a contradiction.
Now let k be the degree of the first nonzero Taylor polynomial of f at 0 and set
g = f/zk. Then, by Lemma 4.5, g has a limit for z → 0 and

lim
z→0

g(z) = a 6= 0

by the assumption on k. Hence we can write g(z) = a+ h(z) for some function
h = o(1) as z → 0, that is

f(z) = zk(a+ h(z)).

By assumption, a+ h(z) 6= 0 on a suitable neighbourhood of 0, so we have the
desired claim.

This result has many applications in this context, starting with the following

Proposition 4.6. Let f : M → Q4 be an immersion satisfying (4.22). Then
either γf is ± holomorphic or the set I∓ of ∓ isotropic points of M is discrete.

Proof. From (4.20) and (4.18) we obtain

d
(
L3 ± iL4

)
= (L3± iL4)

[
i(2φ2

1 ∓ φ4
3)− φ0

0

]
+ (ζ3± iζ4)ϕ+ (k3± ik4)ϕ (4.25)

where we have set
ζα = kα − i(hα112 − ihα122). (4.26)

Indeed (
h3

11k − p3
k ± h4

12k + i(±h4
11k ∓ p4

k − h3
12k)

)
φk0 =

=
1
2

{
h3

111 − p3
1 ± h4

121 ± h4
112 ∓ p4

2 − h3
122+

± ih4
111 ∓ ip4

1 − ih3
121 − ih3

112 + ip3
2 ∓ ih4

122

}
ϕ+

+
1
2

{
h3

111 − p3
1 ± h4

121 ∓ h4
112 ± p4

2 + h3
122+

± ih4
111 ∓ ip4

1 − ih3
121 + ih3

112 − ip3
2 ± ih4

122

}
ϕ,
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and we have

h3
111 − p3

1 ± h4
121 ± h4

112 ∓ p4
2 − h3

122+

±ih4
111 ∓ ip4

1 − ih3
121 − ih3

112 + ip3
2 ∓ ih4

122 =

=− i
(
h3

112 − ih3
122

)
+ h3

111 − p3
1 ± h4

121 ± h4
112+

∓ p4
2 ± ih4

111 ∓ ip4
1 + ip3

2 ∓ ih4
122 − ih3

121 =

=− i
(
2h3

112 − ih3
122

)
+

1
2
h3

111 −
1
2
h3

221 ± h4
121+

± h4
112 ∓ p4

2 ± ih4
111 ∓ ip4

1 + ip3
2 ∓ ih4

122 =

=− i
(
2h3

112 − ih3
122

)
+ p3

1 − h3
221 ± h4

121+

± h4
112 ∓ p4

2 ± ih4
111 ∓ ip4

1 + ip3
2 ∓ ih4

122 =

=− 2i
(
h3

112 − ih3
122

)
+ (p3

1 + ip3
2)± h4

121+

± h4
112 ∓ p4

2 ± ih4
111 ∓ ip4

1 ∓ ih4
122 =

=− 2i
(
h3

112 − ih3
122

)
+ (p3

1 + ip3
2)± h4

121+

± h4
112 ∓ p4

2 ± ih4
111 ∓

i

2
h4

111 ∓
i

2
h4

221 ∓ ih4
122 =

=− 2i
(
h3

112 − ih3
122

)
+ (p3

1 + ip3
2)± i(p4

1 + ip4
2)± 2(h4

121 − ih4
122) =

=2
(
ζ3 ± iζ4

)
and

h3
111 − p3

1 ± h4
121 ∓ h4

112 ± p4
2 + h3

122+

±ih4
111 ∓ ip4

1 − ih3
121 + ih3

112 − ip3
2 ± ih4

122 =

=(h3
111 + h3

122)− p3
1 + (±p4

2 − ip3
2)∓ ip4

1+

± i(h4
111 + h4

122)± h4
121 ∓ h4

112 − ih3
121 + ih3

112 =

=p3
1 + (±p4

2 − ip3
2)± ip4

1 =

=2(k3 ± ik4).

Now we use (4.22) in order to apply Lemma 4.4 to the functions L3 ± iL4.

Let us now consider the canonical projection p : R6\{0} → P5
R, sending x to

its projective class [x]. Given two Darboux frames e and ẽ along f : M → Q4,
we have

p∗ee0 ẽα = rBβαp∗e0eβ .

Indeed, since p(λx) = p(x) for every λ ∈ R∗ and for every x ∈ R6 \ {0}, then
p∗λxλ∗xv = p∗xv, that is p∗λxλv = p∗xv. Therefore

p∗ee0 ẽα = p∗r−1e0 ẽα = p∗e0(rẽα) = rBβαp∗e0eβ

Hence, setting Eα = p∗e0eα, we get

Ẽα = rBβαEβ . (4.27)

It follows that the bundle P over M locally spanned by E3, E4 is globally well
defined. Let Pc be its complexification and Pc = P

(1,0)
c ⊕ P (0,1)

c the splitting
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of Pc into (1, 0) and (0, 1) parts, locally spanned by E3 − iE4 and E3 + iE4

respectively. Observe that under a change of Darboux frames, by virtue of
(4.27) we have

Ẽ3 ± iẼ4 = re∓is(E3 ± iE4). (4.28)

On the other hand, if ϕ = φ1
0 + iφ2

0 is the form that gives M its complex
structure, from (2.7) we deduce that

ϕ̃ = r−1e−itϕ. (4.29)

From (4.4), (4.28) and (4.29) we conclude that

µ∓ =
(
L3 ∓ iL4

)
(E3 ± iE4)⊗ ϕ⊗ ϕ

are sections of the bundles

P (0,1)
c ⊗ T ∗M (1,0) ⊗ T ∗M (1,0) and P (1,0)

c ⊗ T ∗M (1,0) ⊗ T ∗M (1,0)

respectively, which are globally defined on M . Under assumption (4.22) we
can deduce that these sections either vanish identically or have isolated zeros
with positive integer multiplicities. Indeed, since ϕ is a holomorphic section of
T ∗M (1,0), then

D ∂
∂z̄
µ∓ = d(L3 ∓ iL4)

(
∂

∂z̄

)
(E3 ± iE4)⊗ ϕ2 + (L3 ∓ iL4)D ∂

∂z̄
(E3 ± iE4)⊗ ϕ2

and now, using (4.25), assumption (4.22), and the fact that P (1,0)
c and P

(0,1)
c

are line bundles, we have∥∥∥D ∂
∂z̄
µ∓

∥∥∥ ≤ γ|L3 ∓ iL4|
∥∥E3 ± iE4

∥∥ = γ‖µ∓‖

for some γ ∈ Lploc(M). Thus the sections µ∓ satisfy a Cauchy-Riemann type
inequality; we can therefore apply Lemma 4.4 to their local trivializations and
deduce that they are of analytic type.
Assume now M compact. By the Poincaré-Hopf index theorem (see, e.g. [8]
and [9]) we have

Proposition 4.7. Let M be a compact Riemann surface and L a complex line
bundle over M . If s 6≡ 0 is a section of L of analytic type, then the Euler number
of L, χ(L), is equal to the sum of the orders of the zeros of s.

By virtue of this result, assuming γf not ± holomorphic and letting z(µ∓)
be the sum of the orders of the zeros of µ∓, then using the properties of the
Chern classes of line bundles we obtain{

z(µ−) = −2χ(M) + χ
(
P

(0,1)
c

)
= −2χ(M)− χ(P )

z(µ+) = −2χ(M) + χ
(
P

(1,0)
c

)
= −2χ(M) + χ(P ).

We have therefore proved the following

Theorem 4.8. Let f : M → Q4 be an immersed compact surface satisfying
(4.22). Then either γf : M → Q2

(
R6
)

is ± holomorphic or

2χ(M) ≤ −|χ(P )|.
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4.4 Willmore surfaces and the harmonicity of
the conformal Gauss map

Besides ± holomorphicity of γf , since M is 2-dimensional, we can also consider
the harmonicity of γf , which in this case only depends on the conformal class
of the Riemann surface.

In order to do so, we introduce another geometric quantity. Consider equa-
tion (4.14), that is

φ0
α = pαkφ

k
0

(note that in what follows we can consider arbitrary dimension m ≥ 2 and
codimension n). Taking exterior derivative of the above equation and using the
Maurer-Cartan structure equations together with Cartan’s lemma, we obtain

dpαi − pαkφki + pβi φ
α
β + 2pαi φ

0
0 − hαkiφ0

k = pαikφ
k
0 (4.30)

with
pαik = pαki. (4.31)

With a simple but tedious computation, one verifies that under a change of
Darboux frames we have

p̃αij =r3BβαA
k
iA

t
j

(
pβkt + xlhβlkt − x

txlhβlk − x
kxlhβlt −

1
2
xlxlhβkt − 2xtpβk − 2xkpβt

)
+

+ r3Bβαδij

(
xlxthβlt + xlpβl

)
(4.32)

so that, tracing with respect to i and j

p̃αii = r3Bβα

(
pβtt + (m− 2)

(
2xlpβl + xlxthβlt

))
(4.33)

showing that, when m = 2, the system of equations

pαii = 0 (4.34)

is conformally invariant.
Given the oriented immersed Riemann surface f : M → Qn we are now

ready to compute a local version of the tension field τ(γf ) of the conformal
Gauss map γf : M → Qn−2

(
Rn+2

)
. Towards this aim we observe that

ds2 =
∑
i

(φi0)2

is in the conformal class of M and we can consider ds2 as a local representative of
the metric ofM . We compute the Levi-Civita connection forms ρij corresponding
to the local orthonormal coframe

{
φi0
}

. To that end we set

φ0
0 = µkφ

k
0 . (4.35)

Defining
ρik = φik + µkφ

i
0 − µiφk0 (4.36)

we observe that
ρik + ρki = 0 (4.37)
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and, because of the Maurer-Cartan structure equations

dφi0 = −ρik ∧ φk0 .

Next, we recall that the forms θ0,α = ς∗Φα0 , θα,0 = ς∗Φ0
α and θα,i = ς∗Φiα

describe the real structure of Qn−2

(
Rn+2

)
. Considering a Darboux frame e

along f and using (4.17) we have

γ∗fθ
α,0 = pαkφ

k
0 , γ∗fθ

α,i = −hαikφk0 , γ∗fθ
0,α = 0

so that
γf
α,0
k = pαk , γf

α,i
k = −hαik, γf

0,α
k = 0. (4.38)

Using the connection forms given in (3.10) and (4.36) we compute

γf
α,i
k,tφ

t
0 =dγf

α,i
k − γf

α,i
j ρjk + γf

β,0
k θα,iβ,0 + γf

β,j
k θα,iβ,j + γf

0,β
k θα,i0,β =

=− dhαik + hαijφ
j
k + pαkφ

i
0 − hαjkφij − h

β
ikφ

α
β + hαitµkφ

t
0 − δkthαijµjφt0 =

=(−hαikt + δitp
α
k + δikp

α
t + hαitµk − δkthαijµj + hαikµt)φ

t
0

so that

γf
α,i
k,t = −hαikt + δitp

α
k + δikp

α
t + hαitµk − δkthαijµj + hαikµt.

Similarly,

γf
α,0
k,t =pαkt − pαkµt − pαt µk + pαi µiδkt

γf
0,α
k,t =− hαkt.

It follows that
γf
α,0
k,k = pαkk, γf

α,i
k,k = 0 = γf

0,α
k,k .

We have therefore proved the following

Theorem 4.9. Let f : M → Qn be an immersed oriented Riemann surface
with conformal Gauss map γf : M → Qn−2

(
Rn+2

)
. Then γf is harmonic if

and only if (4.34) is satisfied.

It was proved in [12] and [4] that condition (4.34) is also equivalent to f being
a critical point of the Willmore functional, prompting us to set the following

Definition 4.4. We will say that f : M → Qn is a Willmore surface if, for
any compact K ⊆ M and any smooth variation ft : M → Qn with support in
K, we have

d

dt

∣∣∣
t=0

WK(ft) = 0,

where
WK(f) =

∫
K

w. (4.39)

Theorem 4.10. Let f : M → Qn be an immersed oriented Riemann surface
with conformal Gauss map γf : M → Qn−2

(
Rn+2

)
. Then f is a Willmore

surface if and only if γf is harmonic.



4.4 Willmore surfaces and the harmonicity of the conformal Gauss map 40

Proof. By virtue of Theorem 4.9 we only need to compute the Euler-Lagrange
equations of the Willmore functional. Let K be any compact domain in M and
let ft : K → Qn, for t ∈ (−ε, ε) and for some ε > 0, be a smooth one-parameter
family of immersions with compact support C ′ ⊂ K \ ∂K, i.e. ft(p) = f(p)
for every t ∈ (−ε, ε), p ∈ K \ C ′ and such that f0 coincides with the given
immersion f . A simple computation shows that we can write (4.39) as

WK(f) =
∫
K

Ωf ,

where Ωf = −φα1 ∧ φα2 . Now since K is compact we may assume the variation
to be normal.
To be more precise, let v : K × (−ε, ε)→ Qn be the smooth variation, that is

ft = v(·, t).

Up to taking a smaller ε, we can consider a smooth frame along v, that is a map

e : U × (−ε, ε)→ Möb(n),

where U is a neighbourhood of a given point p0 ∈ K, such that π ◦ e = v, the
map et = e(·, t) : U → Möb(n) is a Darboux frame along ft for every t ∈ (−ε, ε),
and

e(p, t) = e(p, 0) ∀p ∈ U \ C, t ∈ (−ε, ε), (4.40)

C being a compact such that C ′ ⊂ C ⊂ K \ ∂K.
For such frames we define, as usual, φ = e∗Φ = e−1de, so that the components
φab satisfy the usual symmetry relations and the structure equations.
For each t ∈ (−ε, ε) we denote by φ(t) the möb(n)-valued 1-form on U

φ(t) = e∗tΦ,

with components φab (t) which also satisfy the symmetry relations and the struc-
ture equations. Being φ a 1-form on U × (−ε, ε), at any point (p, t) it can be
written as

φ(p,t) = φ(t)p + Λ(p, t)dt, (4.41)

where Λ : U × (−ε, ε)→ möb(n) is given by

Λ(p, t) = e∗Φ
(
∂

∂t

∣∣∣
(p,t)

)
= Φet(p)

(
e∗(p,t)

∂

∂t

∣∣∣
(p,t)

)
= Φet(p)

(
∂e

∂t
(p, t)

)
.

From (4.40) we know that Λ(p, t) = 0 and φ(p,t) = φ(p,0) for every t ∈ (−ε, ε)
and p ∈ U \ C.
We set λA0 = ΛA0 and observe that, since et is a Darboux frame , then

φα0 (p,t) = λα0 (p, t)dt, (4.42)

and since φαi (t)p = hαij(p, t)φ
j
0(t)p, with hαii = 0, and hαij(p, t) = hαij(p, 0) for

every p ∈ U \ C, t ∈ (−ε, ε), we have

φαi (p,t) = hαij(p, t)φ
j
0(t)p + Λαi (p, t)dt = hαij(p, t)φ

j
0(p,t) + λαi (p, t)dt, (4.43)
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where λαi = −hαijΛ
j
0 + Λαi are smooth functions satisfying λαi (p, t) = 0 for p ∈

U \ C and t ∈ (−ε, ε).
Differentiating (4.42) and using the structure equations we find

dφα0 =dλα0 ∧ dt =

=− φα0 ∧ φ0
0 − φαi ∧ φi0 − φαβ ∧ φ

β
0 =

=λα0φ
0
0 ∧ dt+ λαi φ

i
0 ∧ dt+ hαijφ

i
0 ∧ φ

j
0 − λ

β
0φ

α
β ∧ dt =

=λα0φ
0
0 ∧ dt+ λαi φ

i
0 ∧ dt− λ

β
0φ

α
β ∧ dt,

that is
(dλα0 − λα0φ0

0 − λαi φi0 + λβ0φ
α
β) ∧ dt = 0

and by Cartan’s Lemma there exist smooth functions µα such that

dλα0 = λα0φ
0
0 + λαi φ

i
0 − λ

β
0φ

α
β + µαdt.

We remark that a variation v and a frame e with these properties can always
be defined with assigned arbitrary λα0 (·, 0), as long as suppλα0 ⊂ C ′. For any
t ∈ (−ε, ε) we have

Ωft = −φα1 (t) ∧ φα2 (t),

which we can rewrite using (4.41) as

(Ωft)p =−
(
φα1 (p,t) − Λα1 dt

)
∧
(
φα2 (p,t) − Λα2 dt

)
=

=− φα1 (p,t) ∧ φ
α
2 (p,t) + φα1 (p,t) ∧ Λα2 dt+ Λα1 dt ∧ φα2 (p,t) =

=− φα1 (p,t) ∧ φ
α
2 (p,t) + dt ∧

(
Λα1φ

α
2 (p,t) − Λα2φ

α
1 (p,t)

)
=

=− φα1 (p,t) ∧ φ
α
2 (p,t) + dt ∧

[
i ∂
∂t

(
φα1 (p,t) ∧ φ

α
2 (p,t)

)]
.

Now we set

ω(p,t) = −φα1 (p,t) ∧ φ
α
2 (p,t) + dt ∧

[
i ∂
∂t

(
φα1 (p,t) ∧ φ

α
2 (p,t)

)]
and observe that obviously, for any t0 ∈ (−ε, ε),

Ωft0 = ω(·,t0),

and i ∂
∂t
ω = 0, indeed

i ∂
∂t
ω = −i ∂

∂t
(φα1 ∧ φα2 ) + i ∂

∂t
(φα1 ∧ φα2 )−

[
(φα1 ∧ φα2 )

(
∂

∂t
,
∂

∂t

)]
dt = 0.

We define
g(t0) = WK(ft0) =

∫
K

ω|t=t0

and consider the variation

g′(0) =
∫
K

(
L ∂
∂t
ω
)∣∣∣
t=0

=
∫
K

[
d
(
i ∂
∂t
ω
)

+ i ∂
∂t
dω
]
t=0

=
∫
K

(
i ∂
∂t
dω
)∣∣∣
t=0

,
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where L denotes the Lie derivative. This expands to

g′(0) =
∫
K

[
i ∂
∂t

(−d(φα1 ∧ φα2 ))− d(Λα1φ
α
2 − Λα2φ

α
1 )
]
t=0

,

and, using the structure equations,

−d(φα1 ∧ φα2 ) =φα0 ∧ (φ0
1 ∧ φα2 + φα1 ∧ φ0

2) + φ0
α ∧ (φ1

0 ∧ φα2 + φα1 ∧ φ2
0)+

+ φαβ ∧ φ
β
1 ∧ φα2 − φα1 ∧ φαβ ∧ φ

β
2 =

=φα0 ∧ (φ0
1 ∧ φα2 + φα1 ∧ φ0

2) + φ0
α ∧ (φ1

0 ∧ φα2 + φα1 ∧ φ2
0)+

+ φαβ ∧ (φβ1 ∧ φα2 − φ
β
1 ∧ φα2 ) =

=φα0 ∧ (φ0
1 ∧ φα2 + φα1 ∧ φ0

2) + φ0
α ∧ (φ1

0 ∧ φα2 + φα1 ∧ φ2
0).

This allows us to compute

−i ∂
∂t

(d(φα1 ∧ φα2 )) =λα0 (φ0
1 ∧ φα2 + φα1 ∧ φ0

2)− φα0 ∧ i ∂
∂t

(φ0
1 ∧ φα2 + φα1 ∧ φ0

2)+

+ Λ0
α(φ1

0 ∧ φα2 + φα1 ∧ φ2
0)− φ0

α ∧
(
−λα2φ1

0(t) + λα1φ
2
0(t)

)
,

where, for the last term, we computed

i ∂
∂t

(
φ1

0 ∧ φα2 + φα1 ∧ φ2
0

)
=

=Λ1
0φ
α
2 − Λα2φ

1
0 + Λα1φ

2
0 − Λ2

0φ
α
1 =

=Λ1
0

(
hα2jφ

j
0 + λα2 dt

)
− Λα2φ

1
0 + Λα1φ

2
0 − Λ2

0

(
hα1jφ

j
0 + λα1 dt

)
=

=
(
hα12Λ1

0 − hα11Λ2
0 − Λα2

)
φ1

0 +
(
hα22Λ1

0 − hα21Λ2
0 + Λα1

)
φ2

0 + Λ1
0λ
α
2 dt− Λ2

0λ
α
1 dt =

=λα1
(
φ2

0 − Λ2
0dt
)
− λα2

(
φ1

0 − Λ1
0dt
)

=

=− λα2φ1
0(t) + λα1φ

2
0(t).

Now, restricting to t = 0, we find that

−i ∂
∂t

(d(φα1 ∧ φα2 ))|t=t0 =λα0 (0)
(
φ0

1(0) ∧ φα2 (0) + φα1 (0) ∧ φ0
2(0)

)
+

+ φ0
α(0) ∧

(
λα2 (0)φ1

0(0)− λα1 (0)φ2
0(0)

)
since φα0 (0) = 0 and

φ1
0(0) ∧ φα2 (0) + φα1 (0) ∧ φ2

0(0) = (hα11 + hα22)φ1
0(0) ∧ φ2

0(0) = 0.

Now a tedious but straightforward computation involving (4.30) shows that

−i ∂
∂t

(d(φα1 ∧ φα2 ))|t=t0 = λα0 (0)(pα11 + pα22)φ1
0(0)∧φ2

0(0)−d
[
λα0
(
pα1φ

2
0 − pα2φ1

0

)]
t=0

and thus
g′(0) =

∫
K

{
λα0 (0)(pα11 + pα22)φ1

0(0) ∧ φ2
0(0)− dχ

}
where

χ = Λα1 (0)φα2 (0)− Λα2 (0)φα1 (0) + λα0 (0)
(
pα1φ

2
0(0)− pα2φ1

0(0)
)
.

It can be easily checked that χ is a well defined, smooth 1-form on M , and
since λα0 and λαi are supported in C ⊂ K, so is χ. Therefore, applying Stoke’s
theorem, we obtain

g′(0) =
∫
K

λα0 (0)(pα11 + pα22)φ1
0(0) ∧ φ2

0(0)

and, by the arbitrariness of λα0 (·, 0), the claim is proved.
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4.5 S-Willmore surfaces and Willmore surfaces

Let us go back to surfaces in Q4. In this context the concepts of harmonicity
and ± holomorphicity of the conformal Gauss map both make sense, and since
± holomorphicity implies harmonicity, we find that ± isotropic surfaces in Q4

are in particular Willmore surfaces.
In [7], Ejiri has introduced the notion of S-Willmore surface. In our setting,

with respect to a Darboux frame along f , the notion corresponds to the two
following conditions

(a) Lαeα//\Lαeα
(b) kαeα//L

αeα
(4.44)

whose conformal invariance is apparent once we recognize that, at p ∈ M ,
condition (4.11a) is equivalent to∣∣∣∣∣ L3 L4

L3 L4

∣∣∣∣∣ 6= 0 that is L3L4 − L3L4 6= 0,

and by (4.9) this translates to

KN (p) 6= 0.

On the other hand, condition (4.11b) can be expressed as

k3L4 − k4L3 = 0,

and the quantity on the left-hand side, under a change of Darboux frames, obeys
the transformation law

k̃3L̃4 − k̃4L̃3 = r3e3it(k3L4 − k4L3).

Indeed, from (4.3) and

k̃α = r2Bβαe
it

(
kβ +

1
2
(
x1 + ix2

)
Lβ
)
,

we get

k̃3L̃4 − k̃4L̃3 =r3e3it
(
Bβ3B

γ
4 −B

β
4B

γ
3

)(
kβ +

1
2
(
x1 + ix2

)
Lβ
)
Lγ =

=r3e3it

[(
k3 +

1
2
(
x1 + ix2

)
L3

)
L4+

−
(
k4 +

1
2
(
x1 + ix2

)
L4

)
L3

]
=

=r3e3it(k3L4 − k4L3).

Thus the element of
3⊗
T ∗M (1,0)

α1 = (k3L4 − k4L3)ϕ⊗ ϕ⊗ ϕ (4.45)
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is globally defined on M and condition (4.11b) is satisfied at p ∈M if and only
if

α1(p) = 0.

Ejiri proved that, in the Riemannian setting, an S-Willmore surface is a Will-
more surface. This can be easily checked in our setting, too.

Proposition 4.11. Let f : M → Q4 be an S-Willmore surface, namely an
immersed oriented Riemann surface such that KN 6= 0 and α1 = 0. Then f is
a Willmore surface.

Proof. Suppose f is S-Willmore. In particular k3L4 − k4L3 = 0 on M . Differ-
entiating the left-hand side and using the structure equations we find

d(k3L4 − k4L3) =− 3(k3L4 − k4L3)(φ0
0 + iφ1

2) +
1
2

(Q3L4 −Q4L3)ϕ+

+ (k3ζ4 − k4ζ3)ϕ+
1
4

(p3
kkL

4 − p4
kkL

3)ϕ, (4.46)

where
Qα =

1
2

(pα11 − pα22)− ipα12

and ζα has been defined in (4.26). Indeed,

2d(k3L4 − k4L3) =

=d
(
(p3

1 − ip3
2)(h4

11 − ih4
12)− (p4

1 − ip4
2)(h3

11 − ih3
12)
)

=

=d
(
p3

1h
4
11 − ip3

1h
4
12 − ip3

2h
4
11 − p3

2h
4
12 − p4

1h
3
11 + ip4

1h
3
12 + ip4

2h
3
11 + p4

2h
3
12

)
=

=h4
11dp

3
1 + p3

1dh
4
11 − ih4

12dp
3
1 − ip3

1dh
4
12 − ih4

11dp
3
2 − ip3

2dh
4
11 − h4

12dp
3
2+

− p3
2dh

4
12 − h3

11dp
4
1 − p4

1dh
3
11 + ih3

12dp
4
1 + ip4

1dh
3
12 + ih3

11dp
4
2+

+ ip4
2dh

3
11 + h3

12dp
4
2 + p4

2dh
3
12

and recalling that

dpαi = pαkφ
k
i + hαkiφ

0
k − p

β
i φ

α
β − 2pαi φ

0
0 + pαikφ

k
0

and
dhαij = hαijkφ

k
0 + hαikφ

k
j + hαkjφ

k
i − h

β
ijφ

α
β − hαijφ0

0 − δijpαkφk0 ,

we get

2d(k3L4 − k4L3) =

=h4
11(p3

2φ
2
1 + h3

11φ
0
1 + h3

21φ
0
2 − p4

1φ
3
4 − 2p3

1φ
0
0 + p3

11φ
1
0 + p3

12φ
2
0)+

+ p3
1(h4

11kφ
k
0 + h4

12φ
2
1 + h4

21φ
2
1 − h3

11φ
4
3 − h4

11φ
0
0 − p4

kφ
k
0)+

− ih4
12(p3

2φ
2
1 + h3

11φ
0
1 + h3

21φ
0
2 − p4

1φ
3
4 − 2p3

1φ
0
0 + p3

11φ
1
0 + p3

12φ
2
0)+

− ip3
1(h4

12kφ
k
0 + h4

11φ
1
2 + h4

22φ
2
1 − h3

12φ
4
3 − h4

12φ
0
0)+

− ih4
11(p3

1φ
1
2 + h3

12φ
0
1 + h3

22φ
0
2 − p4

2φ
3
4 − 2p3

2φ
0
0 + p3

21φ
1
0 + p3

22φ
2
0)+

− ip3
2(h4

11kφ
k
0 + h4

12φ
2
1 + h4

21φ
2
1 − h3

11φ
4
3 − h4

11φ
0
0 − p4

kφ
k
0)+

− h4
12(p3

1φ
1
2 + h3

12φ
0
1 + h3

22φ
0
2 − p4

2φ
3
4 − 2p3

2φ
0
0 + p3

21φ
1
0 + p3

22φ
2
0)+
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− p3
2(h4

12kφ
k
0 + h4

11φ
1
2 + h4

22φ
2
1 − h3

12φ
4
3 − h4

12φ
0
0)+

− h3
11(p4

2φ
2
1 + h4

11φ
0
1 + h4

21φ
0
2 − p3

1φ
4
3 − 2p4

1φ
0
0 + p4

11φ
1
0 + p4

12φ
2
0)+

− p4
1(h3

11kφ
k
0 + h3

12φ
2
1 + h3

21φ
2
1 − h4

11φ
3
4 − h3

11φ
0
0 − p3

kφ
k
0)+

+ ih3
12(p4

2φ
2
1 + h4

11φ
0
1 + h4

21φ
0
2 − p3

1φ
4
3 − 2p4

1φ
0
0 + p4

11φ
1
0 + p4

12φ
2
0)+

+ ip4
1(h3

12kφ
k
0 + h3

11φ
1
2 + h3

22φ
2
1 − h4

12φ
3
4 − h3

12φ
0
0)+

+ ih3
11(p4

1φ
1
2 + h4

12φ
0
1 + h4

22φ
0
2 − p3

2φ
4
3 − 2p4

2φ
0
0 + p4

21φ
1
0 + p4

22φ
2
0)+

+ ip4
2(h3

11kφ
k
0 + h3

12φ
2
1 + h3

21φ
2
1 − h4

11φ
3
4 − h3

11φ
0
0 − p3

kφ
k
0)+

+ h3
12(p4

1φ
1
2 + h4

12φ
0
1 + h4

22φ
0
2 − p3

2φ
4
3 − 2p4

2φ
0
0 + p4

21φ
1
0 + p4

22φ
2
0)+

+ p4
2(h3

12kφ
k
0 + h3

11φ
1
2 + h3

22φ
2
1 − h4

12φ
3
4 − h3

12φ
0
0).

Then, taking into account that hα22 = −hα11 and cancelling out a few terms,

2d(k3L4 − k4L3) =

=
(
−3p3

1h
4
11 + 3ip3

1h
4
12 + 3ip3

2h
4
11 + 3p3

2h
4
12 + 3p4

1h
3
11+

−3ip4
1h

3
12 − 3ip4

2h
3
11 − 3p4

2h
3
12

)
φ0

0+

+
(
3p3

2h
4
11 + 3p3

1h
4
12 − 3ip3

2h
4
12 + 3ip3

1h
4
11 − 3p4

2h
3
11+

− 3p4
1h

3
12 + 3ip4

2h
3
12 − 3ip4

1h
3
11

)
φ2

1+

+
(
(p3

11h
4
11 + p3

1h
4
111 − p3

1p
4
1 − p3

21h
4
12 − p3

2h
4
121+

− p4
11h

3
11 − p4

1h
3
111 + p4

1p
3
1 + p4

21h
3
12 + p4

2h
3
121)+

+i(−p3
11h

4
12 − p3

1h
4
121 − p3

21h
4
11 − p3

2h
4
111 + p3

2p
4
1+

+ p4
11h

3
12 + p4

1h
3
121 + p4

21h
3
11 + p4

2h
3
111 − p4

2p
3
1)
)
φ1

0+

+
(
(p3

12h
4
11 + p3

1h
4
112 − p3

1p
4
2 − p3

22h
4
12 − p3

2h
4
122+

− p4
12h

3
11 − p4

1h
3
112 + p4

1p
3
2 + p4

22h
3
12 + p4

2h
3
122)+

+i(−p3
12h

4
12 − p3

1h
4
122 − p3

22h
4
11 − p3

2h
4
112 + p3

2p
4
2+

+ p4
12h

3
12 + p4

1h
3
122 + p4

22h
3
11 + p4

2h
3
112 − p4

2p
3
2)
)
φ2

0.

Now, making once again use of (4.18) and cancelling out a few more terms,

2d(k3L4 − k4L3) =

= −6
(
k3L4 − k4L3

)(
φ0

0 + iφ2
1

)
+

+
1
2

{
p3

11h
4
11 + p3

1h
4
111 − p3

21h
4
12 − p3

2h
4
121 − p4

11h
3
11+

−p4
1h

3
111 + p4

21h
3
12 + p4

2h
3
121 − p3

12h
4
12 − p3

1h
4
122 − p3

22h
4
11+

−p3
2h

4
112 + p4

12h
3
12 + p4

1h
3
122 + p4

22h
3
11 + p4

2h
3
112+

+i
[
− p3

11h
4
12 − p3

1h
4
121 − p3

21h
4
11 − p3

2h
4
111 + p4

11h
3
12+

+ p4
1h

3
121 + p4

21h
3
11 + p4

2h
3
111 − p3

12h
4
11 − p3

1h
4
112 + p3

22h
4
12+

+ p3
2h

4
122 + p4

12h
3
11 + p4

1h
3
112 − p4

22h
3
12 − p4

2h
3
122

]}
ϕ+
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+
1
2

{
p3

11h
4
11 + p3

1h
4
111 − p4

11h
3
11 − p4

1h
3
111+

+p3
1h

4
122 + p3

22h
4
11 − p4

1h
3
122 − p4

22h
3
11+

+i
[
− p3

11h
4
12 − p3

2h
4
111 + 2p3

2p
4
1 + p4

11h
3
12 + p4

2h
3
111+

− 2p3
1p

4
2 − p3

22h
4
12 − p3

2h
4
122 + p4

22h
3
12 + p4

2h
3
122

]}
ϕ

Recalling the definitions of Q3L4 −Q4L3 and p3
kkL

4 − p4
kkL

3,

2d(k3L4 − k4L3) =

= −6
(
k3L4 − k4L3

)(
φ0

0 + iφ2
1

)
+

+
{
Q3L4 −Q4L3 +

1
2
[
p3

1h
4
111 − p3

2h
4
121 − p4

1h
3
111+

+ p4
2h

3
121 − p3

1h
4
122 − p3

2h
4
112 + p4

1h
3
122 + p4

2h
3
112

]
+

+
i

2
[
− p3

1h
4
121 − p3

2h
4
111 + p4

1h
3
121 + p4

2h
3
111+

− p3
1h

4
112 + p3

2h
4
122 + p4

1h
3
112 − p4

2h
3
122

]}
ϕ+

+
1
2

{
p3
kkL

4 − p4
kkL

3+

+ p3
1h

4
111 + p3

1h
4
122 − p4

1h
3
111 − p4

1h
3
122+

+ i
[
− p3

2h
4
111 + 2p3

2p
4
1 + p4

2h
3
111+

− 2p3
1p

4
2 − p3

2h
4
122 + p4

2h
3
122

]}
ϕ =

= −6
(
k3L4 − k4L3

)(
φ0

0 + iφ2
1

)
+

+
{
Q3L4 −Q4L3 +

1
2
[
p3

1h
4
111 − p3

2h
4
121 − p4

1h
3
111+

+ p4
2h

3
121 − p3

1h
4
122 − p3

2h
4
112 + p4

1h
3
122 + p4

2h
3
112

]
+

+
i

2
[
− p3

1h
4
121 − p3

2h
4
111 + p4

1h
3
121 + p4

2h
3
111+

− p3
1h

4
112 + p3

2h
4
122 + p4

1h
3
112 − p4

2h
3
122

]}
ϕ+

+
1
2
(
p3
kkL

4 − p4
kkL

3
)
ϕ.

Finally, using the definition of k3ζ4 − k4ζ3 and manipulating the remaining
terms,

2d(k3L4 − k4L3) =

= −6
(
k3L4 − k4L3

)(
φ0

0 + iφ2
1

)
+

+
{
Q3L4 −Q4L3 +

[
− p3

1h
4
122 − p3

2h
4
112 + p4

1h
3
122+

+ p4
2h

3
112 − ip3

1h
4
121 − ip3

2p
4
1 + ip3

2h
4
122 + ip4

1h
3
121+

+ ip4
2p

3
1 − ip4

2h
3
122

]}
ϕ+

1
2
(
p3
kkL

4 − p4
kkL

3
)
ϕ =

= −6
(
k3L4 − k4L3

)
(φ0

0 + iφ1
2) + (Q3L4 −Q4L3)ϕ+

+2(k3ζ4 − k4ζ3)ϕ+
1
2

(p3
kkL

4 − p4
kkL

3)ϕ.
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Now, setting k3L4 − k4L3 = 0 in (4.46), we can deduce that in particular

p3
kkL

4 = p4
kkL

3.

Assume by contradiction that f is not a Willmore surface, that is, either p3
kk 6= 0

or p4
kk 6= 0, say p3

kk 6= 0. Then we have

iKN = L3L4 − L3L4 =
p4
kk

p3
kk

(L3L3 − L3L3) = 0

which contradicts (4.11a).

From the proof of Theorem 4.3, we have that γf is ± holomorphic if and
only if k3 = ±ik4 and L3 = ±iL4, hence in this case we automatically have
α1 = 0, so that

Proposition 4.12. Let f : M → Q4 be a ± isotropic immersed surface. Then
f is S-Willmore if and only if KN 6= 0 on M .

The next risult is another application of Lemma 4.4.

Proposition 4.13. Let f : M → Q4 be an immersion without umbilical points
and such that the set of ± isotropic points is not discrete. If f satisfies condition
(4.22), then f is S-Willmore.

Proof. By Proposition 4.6, f must be ± isotropic. This implies α1 = 0 and

KN = −i(L3L4 − L3L4) = ∓2
∣∣L4
∣∣2 = ∓2

∣∣L3
∣∣2.

Therefore KN (p) = 0 if and only if p is an umbilical point, and the result
follows.

Observe that under a change of Darboux frames we have

p̃3
kkL̃

4 − p̃4
kkL̃

3 = r3e3it
(
p3
kkL

4 − p4
kkL

3
)
, (4.47)

therefore, applying once more Lemma 4.4 we have the following

Theorem 4.14. Let f : M → Q4 be an immersion such that

∃γ ∈ Lploc(M) such that
∣∣p3
kkL

4 − p4
kkL

3
∣∣ ≤ γ∣∣k3L4 − k4L3

∣∣ a.e. (4.48)

for some p > 2. Then either α1 ≡ 0 or its zero set is discrete. In this latter
case, for M compact we have

z(α1) = −3χ(M),

where z(α1) is the sum of the orders of the zeros of α1.

Remark 4.15. If M is a Willmore surface, condition (4.48) is automatically
satisfied. Moreover, if M is a topological 2-sphere, then α1 ≡ 0.

Proposition 4.16. Let f : M → Q4 be a Willmore surface. Then α1 is holo-
morphic.
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Proof. Let e be a Darboux frame along f and g = φ1
0⊗φ1

0 +φ2
0⊗φ2

0 be the local
metric on M defined by e. There exists a local isothermal coordinate z = x+ iy

on M such that g
(
∂
∂x ,

∂
∂x

)
= g

(
∂
∂y ,

∂
∂y

)
= r2; therefore g̃ = r−2g is a flat

local metric, conformally related to g. Since
{
r−1 ∂

∂x , r
−1 ∂

∂y

}
is an orthonormal

frame for g, we can consider the locally defined, SO(2)-valued function A given
by Ai1 = φi0

(
r−1 ∂

∂x

)
, Ai2 = φi0

(
r−1 ∂

∂y

)
. If we set ẽ = eK, with K defined by

K =


r−1 0 0 0
0 A 0 0
0 0 I 0
0 0 0 r


then ẽ is a Darboux frame, since K is obviously GD-valued. Moreover, trivially
φ̃1

0 ⊗ φ̃1
0 + φ̃1

0 ⊗ φ̃2
0 = g̃ and, from (2.7), the dual frame to the coframe

{
φ̃i0

}
is

just
{
∂
∂x ,

∂
∂y

}
. Indeed, for instance,

φ̃1
0

(
∂

∂x

)
= r−1Aj1φ

j
0

(
∂

∂x

)
= φj0

(
r−1 ∂

∂x

)
φj0

(
r−1 ∂

∂x

)
= 1.

Now, from the structure equations, we have dϕ̃ = (φ̃0
0 + iφ̃1

2) ∧ ϕ̃ and, denoting

Z =
∂

∂z
=

1
2

(
∂

∂x
− i ∂

∂y

)
and W = Z we get

dϕ̃(W,Z) = d(ϕ̃(W ))(Z)− d(ϕ̃(Z))(W ) + ϕ̃([Z,W ]) = 0

since ϕ̃(W ) = 0, ϕ̃(Z) = 1 and [Z,W ] = 0. On the other hand

[(φ̃0
0 + iφ̃1

2) ∧ ϕ̃](Z,W ) = −(φ̃0
0 + iφ̃1

2)(W ),

proving that φ̃0
0 + iφ̃1

2 is of type (1, 0), and hence can be expressed as φ̃0
0 + iφ̃1

2 =
µϕ̃, for some locally defined complex valued function µ.
Now, with respect to ẽ, (4.45) is the expression of α1 in a local holomorphic
trivialization of the bundle

⊗3
T ∗M (1,0) so, in order to check if α1 is holo-

morphic (that is, if ∂̄α1 = 0) we only need to check that the differential of its
coefficient in such trivialization, k3L4−k4L3, is a local form of type (1, 0). But,
assuming that f is Willmore, (4.46) (with respect to the frame ẽ) shows that
this is exactly the case.

4.6 Q2
(
R6
)
-valued maps and surfaces in Q4

So far we have considered immersions of oriented surfaces in the conformal
sphere Q4 and we have associated to them certain maps with values in the
conformal Grassmannian Q2

(
R6
)
, i.e. the conformal Gauss map. This map

has some remarkable properties, for instance it is holomorphic if and only if the
original immersion is − isotropic. Now we are going to do the converse: starting
from a holomorphic map γ with values in Q2

(
R6
)

we want to see if, and under
what conditions, it is possible to retrieve a Q4-valued map whose conformal
Gauss map is exactly the map γ.
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First of all, let us observe that, given a − isotropic immersion f : M → Q4, the
conformal Gauss map γf is constant if and only if f is totally umbilical, namely
f(M) ⊆ Q2, or equivalently WK(f) = 0 for any compact domain K ⊂M .

Let M be a Riemann surface and γ : M → Q2

(
R6
)

a non constant holomor-
phic map. Let ϕ be a (local) (1, 0)-form defining the complex structure on M
and let s : U ⊂ Q2

(
R6
)
→ Möb(4) be a local section of π̂. Then

γ∗ζ0 = Λ0ϕ, γ∗ζk = Λkϕ, γ∗ζ3 = Λ3ϕ, (4.49)

where ζ0, ζk and ζ3 are defined as in (3.11) with respect to the section s. The
vector Λ of components Λ0, Λk, Λ3 is of analytic type, i.e. it either vanishes
identically or has isolated zeros. Indeed, let ω be such that dϕ = iω ∧ ϕ; then,
differentiating (4.49) and using (3.11) and the structure equations, we have

d(γ∗ζ0) = dΛ0 ∧ ϕ+ Λ0dϕ =
(
dΛ0 + iΛ0ω

)
∧ ϕ =

= γ∗dζ0 = −γ∗s∗(Φ0
0 + iΦ4

3) ∧ Λ0ϕ− γ∗s∗Φ0
k ∧ Λkϕ.

Hence (
dΛ0 + iΛ0ω + Λ0γ∗s∗

(
Φ0

0 + iΦ4
3

)
+ Λkγ∗s∗Φ0

k

)
∧ ϕ = 0

and similarly

d(γ∗ζ1) =
(
dΛ1 + iΛ1ω

)
∧ ϕ =

= γ∗dζ1 = γ∗
(
−s∗Φ1

0 ∧ ζ0 − s∗Φ1
2 ∧ ζ2 − is∗Φ4

3 ∧ ζ1 − s∗Φ0
1 ∧ ζ3

)
=

=
(
−Λ0γ∗s∗Φ1

0 − Λ2γ∗s∗Φ1
2 − iΛ1γ∗s∗Φ4

3 − Λ3γ∗s∗Φ0
1

)
∧ ϕ,

implying(
dΛ1 + iΛ1 + Λ0γ∗s∗Φ1

0 + Λ2γ∗s∗Φ1
2 + iΛ1γ∗s∗Φ4

3 + Λ3γ∗s∗Φ0
1

)
∧ ϕ = 0;

d(γ∗ζ2) =
(
dΛ2 + iΛ2ω

)
∧ ϕ =

= γ∗dζ2 = γ∗
(
−s∗Φ2

0 ∧ ζ0 − s∗Φ2
1 ∧ ζ1 − is∗Φ4

3 ∧ ζ2 − s∗Φ0
2 ∧ ζ3

)
=

=
(
−Λ0γ∗s∗Φ2

0 − Λ1γ∗s∗Φ2
1 − iΛ2γ∗s∗Φ4

3 − Λ3γ∗s∗Φ0
2

)
∧ ϕ,

hence(
dΛ2 + iΛ2 + Λ0γ∗s∗Φ2

0 + Λ1γ∗s∗Φ2
1 + iΛ2γ∗s∗Φ4

3 + Λ3γ∗s∗Φ0
2

)
∧ ϕ = 0.

Finally

d(γ∗ζ3) =
(
dΛ3 + iΛ3ω

)
∧ ϕ =

= γ∗dζ3 = γ∗
(
s∗
(
Φ0

0 − iΦ4
3

)
∧ ζ3 − s∗Φ1

0 ∧ ζ1 − s∗Φ2
0 ∧ ζ2

)
=

=
(
Λ3γ∗s∗

(
Φ0

0 − iΦ4
3

)
− Λ1γ∗s∗Φ1

0 − Λ2γ∗s∗Φ2
0

)
∧ ϕ,

which gives(
dΛ3 + iΛ3 − Λ3γ∗s∗

(
Φ0

0 − iΦ4
3

)
+ Λ1γ∗s∗Φ1

0 + Λ2γ∗s∗Φ2
0

)
∧ ϕ = 0,

that is,
dΛ0 = −iΛ0

(
ω + γ∗s∗Φ4

3 − iγ∗s∗Φ0
0

)
− Λkγ∗s∗Φ0

k mod ϕ

dΛk = −iΛk
(
ω + γ∗s∗Φ4

3

)
− Λjγ∗s∗Φkj − Λ0γ∗s∗Φk0 − Λ3γ∗s∗Φ0

k mod ϕ

dΛ3 = −iΛ3
(
ω + γ∗s∗Φ4

3 + iγ∗s∗Φ0
0

)
− Λkγ∗s∗Φk0 mod ϕ.
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Thus dΛa = Ψa
bΛb modulo ϕ, for some gl(4,C)-valued one form Ψ = (Ψa

b ),
namely the vector Λ is a solution of the system

∂Λ
∂z̄

= Ψ
(
∂

∂z̄

)
Λ

and, by Lemma 4.4 (but see also [6] for a direct proof of this case), the claim
follows.
Since we assumed γ to be non constant, it follows that the zeros of Λ are isolated,
and in a neighbourhood of any zero, Λ factorizes as Λ = ztΛ̃, with Λ̃ 6= 0, z a
local holomorphic chart centered at the zero and t ∈ N.
Since Q2

(
R6
)

can be identified with an open subset of a quadric in P5
C the

map γ can be lifted to a smooth, C6 \ {0}-valued map {γ} = e3 + ie4, where
e = s ◦ γ : U ⊂ M → Möb(n) (note that e is not necessarily an immersion,
because in general γ is not). Denoting φ = e−1de, we have

Λ0ϕ = γ∗ζ0 = e∗Φ0
3 + ie∗Φ0

4 = φ0
3 + iφ0

4,

Λkϕ = γ∗ζk = φk3 + iφk4 ,

Λ3ϕ = γ∗ζ3 = φ5
3 + iφ5

4,

and since de = eφ,

d{γ} = i(e3 + ie4)φ3
4 + e0(φ0

3 + iφ0
4) + ek(φk3 + iφk4) + e5(φ5

3 + iφ5
4) =

= i{γ}φ3
4 + (Λ0e0 + Λkek + Λ3e5)ϕ

If p : C6 \ {0} → P5
C is the canonical projection, then γ = p ◦ {γ} and

dγx = γ∗x = p∗{γ}(x){γ}∗x = ϕp∗{γ}(x)

(
Λ0e0 + Λkek + Λ3e5

)
.

The complex tangent line to the curve γ(M) at the point γ(x) is therefore the
vector space spanned over C by the non-zero vector p∗{γ}(x)(Λ0e0+Λkek+Λ3e5).
This prompts us to define a new map, called the “derivative” of γ, γ′ : M → P5

C

which associates to the point x ∈M the projectivization of the non-zero vector
Λ0e0 + Λkek + Λ3e5. This map is trivially well defined and does not depend on
the choice of the section s.
We will need to add the further assumption that γ′ be valued in the quadric
Q2

(
R6
)
; this happens if and only if the vector t(Λ0,Λk, 0, 0,Λ3) satisfies the

equation
−2Λ0Λ3 + ΛkΛk = 0.

Definition 4.5. A map γ : M → Q2

(
R6
)

will be called a totally isotropic
holomorphic map if it is holomorphic, non constant, and if γ′ is valued in
Q2

(
R6
)
.

Let s̃ be another local section of the bundle π̂ : Möb(4) → Q2

(
R6
)
, and

ẽ = s̃ ◦ γ. Then ẽ = eK where K takes values in H0 as defined in (3.1). At
any point p ∈ M we can therefore choose a section such that Λ3 = 0, hence
Λ0 = a, Λ1 = λ and Λ2 = iλ, for some a, λ ∈ C. Since Λ is of analytic type,
such sections can be locally smoothly chosen in a neighbourhood of p. The
frame e corresponding to such section will be called an isotropic frame, and
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the isotropy subgroup for such frames is exactly GD as defined in (2.10). With
this choice of frame, (4.49) rewrites as

γ∗ζ0 = aϕ, γ∗ζ1 = λϕ, γ∗ζ2 = iλϕ, γ∗ζ3 = 0. (4.50)

We can associate, to any totally isotropic holomorphic map γ, a map Jγ : M →
Q4 defined as follows. Let e be any isotropic frame along γ and set Jγ = [e0].
In this way Jγ is well defined, because isotropic frames change by matrices in
GD. Differentiating the second and third equalities of (4.50), we obtain

d(γ∗ζ1) =− φ1
0 ∧ γ∗ζ0 − φ1

2 ∧ γ∗ζ2 − iφ4
3 ∧ γ∗ζ1 − φ0

1 ∧ γ∗ζ3 =

=
(
−aφ1

0 − iλφ1
2 − iλφ4

3

)
∧ ϕ,

d(γ∗ζ2) =(−aφ2
0 − λφ2

1 + λφ4
3) ∧ ϕ,

but on the other hand γ∗ζ2 = iγ∗ζ1, so we have(
−iaφ1

0 + λφ1
2 + λφ4

3

)
∧ ϕ =

(
−aφ2

0 − λφ2
1 + λφ4

3

)
∧ ϕ

that is, ia
(
φ1

0 + iφ2
0

)
∧ ϕ = 0. Differentiating the last of (4.50) we get

0 = d(γ∗ζ3) =
(
−λφ1

0 − iλφ2
0

)
∧ ϕ.

Therefore we have obtained

a
(
φ1

0 + iφ2
0

)
∧ ϕ = 0

λ
(
φ1

0 + iφ2
0

)
∧ ϕ = 0

Since Λ is of analytic type, outside a discrete set (the set of zeros of a and λ),
we must have

φ1
0 + iφ2

0 = µϕ (4.51)

for some locally defined complex function µ, whose vanishing is independent of
the choice of the isotropic frame. Differentiating (4.51), we have

dµ ∧ ϕ+ iµω ∧ ϕ = dφ1
0 + idφ2

0 = µφ0
0 ∧ ϕ+ iµφ1

2 ∧ ϕ,

that is
dµ = −iµ

(
ω − φ1

2 + iφ0
0

)
mod ϕ.

Therefore µ is of analytic type, and so it either vanishes identically or has
isolated zeros.
Let us now consider an open set U ⊂ M where µ is nonzero and let e be an
isotropic frame along γ defined on U . Then e is trivially a zeroth order frame
along Jγ , since π ◦ e = Jγ . Moreover, it is a first order frame, since from (4.50)

0 = γ∗ζ3 = φ3
0 + iφ4

0,

so φα0 = 0. Also, Jγ is a conformal immersion on U , since the only points where
Jγ is not an immersion are the zeros of µ. In the case of µ vanishing identically,
then Jγ is constant. Indeed in this case not only φα0 = 0, but also φ1

0 = φ2
0 = 0.

So
dJγ = p∗de0 = p∗(e0φ

0
0 + eAφ

A
0 ) = φA0 p∗eA = 0
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where p : R6 \ {0} → P5
R is the canonical projection.

Thus, either Jγ is constant onM or it is a weakly conformal branched immersion.
Assume to be in this latter case; we will prove that an isotropic frame e along
γ is a Darboux frame along Jγ .
To this end we use (4.50) to deduce that

γ∗ζ2 = i γ∗ζ1. (4.52)

Now we set, as usual, φαi = hαijφ
j
0, hαij = hαji, and observe that

γ∗ζk = e∗(Φk3 + iΦk4) = −φ3
k − iφ4

k = −(h3
kj + ih4

kj)φ
j
0

and equation (4.52) is equivalent to the following system{
h3

1j = h4
2j

h3
2j = −h4

1j

which gives
h3

11 = h4
21 = −h3

22, h4
11 = −h3

21 = −h4
22.

An alternative proof can be performed by exploiting the holomorphicity of γ.
Consider on U ⊆ M the local metric ds2 = (φ1

0)2 + (φ2
0)2, which is in the

conformal class of M . Since φαi = hαijφ
j
0, using the notations of (3.5), we have

γ∗θα,i = −hαikφk0
γ∗θ0,α = 0

γ∗θα,0 = Bα,0k φk0 ,

where at present we are not able to relate Bα,0k with hαik because e is just a first
order frame. We set

Bα,ik = −hαik, B0,α
k = 0.

We can also consider on U the tension field τ(γ) of the map γ, which, since we
have not fixed a global metric on M , but only a class of conformally related
local metrics, is defined up to a nonzero factor.
Since γ is holomorphic and both M and Q2

(
R6
)

are Kähler manifolds, the
tension field τ(γ) of γ must vanish. In particular its coefficients B0,α

kk must
vanish, and we are now going to compute their values.
To this end, let us denote by ∇ the covariant derivative of (M,ds2), and by
∇′ the one on (Q2

(
R6
)
, dl2). Let {Ei} be the orthonormal frame on M dual

to the coframe
{
φi0
}

and {Yα,0, Yα,i, Y0,α} be the frame on Q2

(
R6
)

dual to the
coframe

{
θα,0, θα,i, θ0,α

}
; then

∇dγ =
(
Bα,0ij Yα,0 +Bα,kij Yα,k +B0,α

ij Y0,α

)
⊗ φi0 ⊗ φ

j
0.

First of all observe that, if v ∈ TQ2

(
R6
)
, then

v = θα,0(v)Yα,0 + θ0,α(v)Y0,α + θα,i(v)Yα,i;

in particular,

γ∗xEj =θα,0(γ∗xEj)(Yα,0)γ(x) + θ0,α(γ∗xEj)(Y0,α)γ(x) + θα,k(γ∗xEj)(Yα,k)γ(x) =

=γ∗θα,0(Ej)(Yα,0)γ(x) + γ∗θ0,α(Ej)(Y0,α)γ(x) + γ∗θα,k(Ej)(Yα,k)γ(x) =

=Bα,0j (Yα,0)γ(x) +Bα,kj (Yα,k)γ(x),
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that is
γ∗Ej = Bα,0j γ−1Yα,0 +Bα,ij γ−1Yα,i.

Now, if X is a vector field on M ,

∇dγ(Ej ;X) = ∇γ
−1

X (γ∗Ej)− γ∗∇XEj

and ∇XEj = ρkj (X)Ek, where ρkj , defined as in (4.36), are the connection forms

relative to the orthonormal coframe
{
φi0
}

, while ∇′Y eA = θ
eBeAY eB , with θ eBeA defined

in (3.10). Then we can compute

∇γ
−1

X (γ∗Ej) =dBα,0j (X)γ−1Yα,0 +Bα,0j ∇
′
γ∗XYα,0+

+ dBα,kj (X)γ−1Yα,k +Bα,kj ∇
′
γ∗XYα,k =

=dBα,0j (X)γ−1Yα,0 +Bα,0j θ
eB
α,0(γ∗X)γ−1Y eB+

+ dBα,kj (X)γ−1Yα,k +Bα,kj θ
eB
α,k(γ∗X)γ−1Y eB =

=dBα,0j (X)γ−1Yα,0 +Bα,0j γ∗θβ,0α,0(X)γ−1Yβ,0+

+Bα,0j γ∗θβ,iα,0(X)γ−1Yβ,i +Bα,0j γ∗θ0,β
α,0(X)γ−1Y0,β+

+ dBα,kj (X)γ−1Yα,k +Bα,kj γ∗θβ,0α,k(X)γ−1Yβ,0+

+Bα,kj γ∗θβ,iα,k(X)γ−1Yβ,i +Bα,kj γ∗θ0,β
α,k(X)γ−1Y0,β

and

γ∗∇XEj = ρkj (X)γ∗Ek = ρkj (X)
(
Bα,0k γ−1Yα,0 +Bα,ik γ−1Yα,i

)
.

Therefore,

∇dγ(Ej ;X) =
(
dBα,0j +Bβ,0j γ∗θα,0β,0 +Bβ,kj γ∗θα,0β,k −B

α,0
k ρkj

)
(X)γ−1Yα,0+

+
(
dBα,kj +Bβ,0j γ∗θα,kβ,0 +Bβ,ij γ∗θα,kβ,i −B

α,k
i ρij

)
(X)γ−1Yα,k+

+
(
Bβ,0j γ∗θ0,α

β,0 +Bβ,kj γ∗θ0,α
β,k

)
(X)γ−1Y0,α.

By (3.10), θ0,α
β,0 = 0, so that, taking the Y0,α component, one has

B0,α
ij φi0(X) = Bβ,kj γ∗θ0,α

β,k(X).

Now, since
τ(γ) =

∑
j

∇dγ(Ej ;Ej)

vanishes by assumption and, again by (3.10), θ0,α
β,k = δαβϕ

k
0 , then in particular

0 = Bβ,kj γ∗θ0,α
β,k(Ej) = δαβB

β,k
j φk0(Ej) = Bα,jj = −hαjj

and we have proved that e is a Darboux frame along Jγ .
Moreover, it is trivial to see that, outside the branch points of Jγ , we have
γJγ = γ, and Jγ is − isotropic, since γJγ is holomorphic by assumption.
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On the other hand, consider a weakly conformal branched immersion f :
M → Q4 with the property that its Gauss map γf can be continuously extended
to the branch points, and let e be any Darboux frame along f . If f is − isotropic
(outside the branch points), then γf is holomorphic, and in this case, with the
notations of (4.49), we have

Λ0 = k3 + ik4, Λ1 = −1
2
(
L3 + iL4

)
, Λ2 = − i

2
(
L3 + iL4

)
, Λ3 = 0,

so that
−2Λ0Λ3 +

∑
k

ΛkΛk = 0

and γf is a totally isotropic map. Furthermore, Jγf = f .
We have therefore proved the following

Theorem 4.17. Let M be a Riemann surface. There is a bijective correspon-
dence between − isotropic, non totally umbilical, weakly conformal branched
immersions f : M → Q4, whose conformal gauss map can be continuously ex-
tended at the branch points, and non constant, holomorphic, totally isotropic
maps γ : M → Q2

(
R6
)

with non constant associated map Jγ . The bijection is
realized via the conformal Gauss map.

4.7 Q2(Q4)-valued maps and the conformal Gauss
lift

Using an appropriate Grassmann bundle, we can extend the previous result so
as to include the totally umbilical surfaces.
Let us consider the product manifold Q4 × Q2

(
R6
)

and define Q2(Q4) as the
orbit of the point ([η0], [ε3, ε4]) ∈ Q4 ×Q2

(
R6
)

with respect to the natural left
action (defined componentwise) of the group Möb(4). In other words

Q2(Q4) = {([η], [s1, s2]) | η = Pη0, s1 = Pε3, s2 = Pε4, P ∈ Möb(4)}. (4.53)

It is trivial to see that Möb(4) acts transitively on Q2(Q4), the action being
given, for P ∈ Möb(4) and ([η], [s1, s2]) ∈ Q2(Q4), by

P ([η], [s1, s2]) = ([Pη], [Ps1, Ps2]).

Let us compute the isotropy subgroup of the point ([η0], [ε3, ε4]). If P ∈ Möb(4)
fixes the point ([η0], [ε3, ε4]), then in particular it must fix the first component,
hence P must be an element of G0, defined in (1.7), so it is bound to be of the
form

P =

 r−1 txA 1
2r|x|

2

0 A rx
0 0 r

 .

But, for P [ε3] to belong to [ε3, ε4], we must have x3 = 0, A1
3 = A2

3 = 0 and
analogously, imposing P [ε4] ∈ [ε3, ε4], we deduce x4 = 0 and A1

4 = A2
4 = 0.

Putting these conditions together we find that P ∈ GD. Since in turn any
element of GD fixes ([η0], [ε3, ε4]), we can conclude that the isotropy subgroup
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is exactly GD. Hence Q2(Q4) ' Möb(4)/GD is realized as a homogeneous space
with projection

π̄ : Möb(4)→ Q2(Q4)

given by
π̄ : P 7→ ([Pη0], [Pε3, P ε4]),

that is, π̄ = π × π̂. Also, we will denote by π̌ : Q2(Q4) → Q4 the canonical
projection

π̌ : ([η], [s1, s2]) 7→ [η].

Observe that Q2(Q4) has a natural integrable complex structure defined as
follows: let ξ be a local section of the bundle π̄ : Möb(4) → Q2(Q4); then we
declare the forms

σ−1 = ξ∗Φ1
0 + iξ∗Φ2

0,

σ0 = ξ∗Φ0
3 + iξ∗Φ0

4,

σk = ξ∗Φk3 + iξ∗Φk4 ,

σ3 = ξ∗Φ3
0 + iξ∗Φ4

0

(4.54)

a local basis of the space of the forms of type (1, 0) over Q2(Q4). In order to do
this, first we need to check that the ideal they generate is differential. Setting,
for the sake of simplicity, ϕ = ξ∗Φ and using the structure equations, we have

dσ−1 =− σ−1 ∧ (ϕ0
0 + iϕ1

2)− ϕ1
3 ∧ ϕ3

0 − ϕ1
4 ∧ ϕ4

0 − iϕ2
3 ∧ ϕ3

0 − iϕ2
4 ∧ ϕ4

0 =

=− σ−1 ∧ (ϕ0
0 + iϕ1

2) + iσ1 ∧ ϕ4
0 + iσ2 ∧ ϕ3

0 + σ3 ∧ (ϕ1
3 + ϕ2

4)

and analogously for the differentials of the other forms. Lastly, one can easily
check that the space generated by these forms is well defined, i.e., it is indepen-
dent of the choice of the section ξ.

Proposition 4.18. The fibers of π̌ : Q2(Q4)→ Q4 are integral submanifolds of
the (invariantly defined) Pfaffian system{

σ−1 = 0
σ3 = 0.

(4.55)

Proof. Since Q2(Q4) ⊂ Q4 ×Q2

(
R6
)
, for ([η], [s1, s2]) ∈ Q2(Q4), we have

T([η],[s1,s2])Q2(Q4) ⊂ T[η]Q4 × T[s1,s2]Q2

(
R6
)
.

Thus, we can regard a tangent vector ofQ2(Q4) as a pair (X,V ) withX ∈ T[η]Q4

and V ∈ T[s1,s2]Q2

(
R6
)
. Now π̌ is the projection on the first component, so

π̌∗([η],[s1,s2])(X,V ) = X

and
ker π̌∗([η],[s1,s2]) =

{
(0, V ) ∈ T([η],[s1,s2])Q2(Q4)

}
We want to prove that {

σ−1
([η],[s1,s2])(0, V ) = 0
σ3

([η],[s1,s2])(0, V ) = 0,
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or equivalently that, if ξ is a local section of π̄ : Möb(4)→ Q2(Q4), then

ξ∗ΦA0 ([η],[s1,s2])(0, V ) = 0.

To this end we set g = ξ([η], [s1, s2]) and compute

ξ∗ΦA0 ([η],[s1,s2])(0, V ) =ΦA0 g(ξ∗([η],[s1,s2])(0, V )) =
(
Φg(ξ∗([η],[s1,s2])(0, V ))

)A
0

=

=(g−1)Ab
(
ξ∗([η],[s1,s2])(0, V )

)b
0
,

where in the last equality we used the definition of the Maurer-Cartan form for
classical groups:

ΦP (X) = P−1X.

Now take ([η̃], [s̃1, s̃2]) in the domain of ξ, set g̃ = ξ([η̃], [s̃1, s̃2]) and observe
that

π̄(ξ([η̃], [s̃1, s̃2])) = π̄(g̃) = ([g̃η0], [g̃ε3, g̃ε4])

and, since π̄ ◦ ξ = id,

([η̃], [s̃1, s̃2]) = (π̄ ◦ ξ)([η̃], [s̃1, s̃2]) = ([g̃η0], [g̃ε3, g̃ε4]).

In particular we have that [η̃] = [g̃η0] and

[g̃η0] = [g̃0] = [(ξ([η̃], [s̃1, s̃2]))0] = [ξ0([η̃], [s̃1, s̃2])],

that is, the projective class of the vector ξ0([η̃], [s̃1, s̃2]) coincides with that of
η̃. In other words, calling

p : R6 \ {0} → P5
R

the canonical projection, we find that p(ξ0([η̃], [s̃1, s̃2])) = p(η̃). Hence p◦ξ0 = π̌
and

(p ◦ ξ0)∗([eη],[es1,es2])(0, V ) = π̌∗([eη],[es1,es2])(0, V ) = 0,

that is
p∗ξ0([eη],[es1,es2])ξ0∗([eη],[es1,es2])(0, V ) = 0.

Thus ξ0∗([eη],[es1,es2])(0, V ) ∈ ker p∗ξ0([eη],[es1,es2]), implying

ξ0∗([eη],[es1,es2])(0, V ) = λξ0([η̃], [s̃1, s̃2])

for some λ ∈ R. Therefore(
ξ∗([η],[s1,s2])(0, V )

)b
0

= λ(ξ([η], [s1, s2]))b0 = λgb0.

So eventually,

ξ∗ΦA0 ([η],[s1,s2])(0, V ) = λ(g−1)Ab g
b
0 = λδA0 = 0.

Let us consider the canonical projection c : Q2(Q4)→ Q2

(
R6
)

defined by

c([η], [s1, s2]) = [s1, s2],
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which makes the following diagram commutative

Möb(4)
π̄

���������� bπ
��???????

Q2(Q4) c // Q2

(
R6
)

that is, π̂ = c ◦ π̄.

Proposition 4.19. The map c : Q2(Q4) → Q2

(
R6
)

defined above is holomor-
phic.

Proof. Fix p0 = ([η], [s1, s2]) ∈ Q2(Q4) and consider ξ a local section of the
bundle π̄ : Möb(4) → Q2(Q4), defined on a neighbourhood of p0 and ς a local
section of the bundle π̂ : Möb(4) → Q2

(
R6
)

defined on a neighbourhood of
[s1, s2]. We have to show that c∗ζ0, c∗ζk and c∗ζ3, defined as in (3.11), are
forms of type (1, 0).
Set g0 = ξ(p0). As in the proof of Theorem 4.3, we can assume that the section
ς satisfies ς(π̂(g0)) = g0, and

(ς ◦ π̂)∗(Φ0
α)g0 = (Φ0

α)g0 .

Then, observing that c = π̂ ◦ ξ, we have that(
c∗ζ0

)
p0

=
(
ξ∗π̂∗ζ0

)
p0

= ξ∗
(
π̂∗ς∗(Φ0

3 + iΦ0
4)
)
g0

= ξ∗Φ0
3g0

+ iξ∗Φ0
4g0

= σ0
p0
,

and analogously for c∗ζk and c∗ζ3.

Definition 4.6. Let f : M → Q4 be an immersed oriented surface. The con-
formal Gauss lift Γf : M → Q2(Q4) is defined as

Γf = f × γf ,

that is, given p ∈M and e any Darboux frame along f , defined on a neighbour-
hood of p,

Γf = π̄ ◦ e;

in other words,
Γf : p 7→ ([e0]p, [e3, e4]p).

We are now ready to state the generalization of Theorem 4.17.

Theorem 4.20. Let M be a Riemann surface. There is a bijective correspon-
dence between − isotropic, weakly conformal branched immersions f : M → Q4

whose conformal Gauss map can be continuously extended at the branch points,
and holomorphic maps Γ : M → Q2(Q4), solutions of the Pfaffian system{

σ3 = 0
σ2 − iσ1 = 0

but not of σ−1 = 0. The bijection is realized via the conformal Gauss lift Γf .
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Proof. Let f : M → Q4 be as in the statement of the theorem. Then, in
order to show that the conformal Gauss lift Γf is holomorphic, we proceed
as for the conformal Gauss map γf in the proof of Theorem 4.3. Let us fix
p0 ∈ M such that it is not a branch point for f and choose a Darboux frame
e along f defined on a neighbourhood U of p0 and a section ξ of the bundle
π̄ : Möb(4)→ Q2(Q4) defined in a neighbourhood of Γf (p0). We set e(p0) = g0;
then since π̄ ◦ (ξ ◦ π̄) = π̄, there must exist a function K : π̄−1(U) → GD such
that, for every g ∈ π̄−1(U)

ξ(π̄(g)) = gK(g)

and
(ξ ◦ π̄)∗Φg = K(g)−1g−1dgK(g) +K(g)−1dKg

In particular we have

(ξ ◦ π̄)∗Φk0g =
(
K(g)−1g−1dgK(g)

)k
0

(ξ ◦ π̄)∗Φ0
αg =

(
K(g)−1g−1dgK(g)

)0
α

(ξ ◦ π̄)∗Φkαg =
(
K(g)−1g−1dgK(g)

)k
α

(ξ ◦ π̄)∗Φα0 g =
(
K(g)−1g−1dgK(g)

)α
0
,

because K−1dK is valued in the Lie algebra of the group GD. Replacing, if
necessary, the section ξ with ξK(g0)−1, we can assume that

ξ(π̄(g0)) = g0

and hence

(ξ ◦ π̄)∗Φk0g0
= Φk0g0

(ξ ◦ π̄)∗Φ0
αg0

= Φ0
αg0

(ξ ◦ π̄)∗Φkαg0
= Φkαg0

(ξ ◦ π̄)∗Φα0 g0
= Φα0 g0

.

Therefore we can compute(
Γ∗fσ

−1
)
p0

=
(
(ξ ◦ π̄ ◦ e)∗(Φ1

0 + iΦ2
0)
)
p0

=
(
e∗(Φ1

0 + iΦ2
0)
)
p0

= ϕp0 (4.56)

and likewise for σk and σ3. This proves the holomorphicity of Γf outside the
set of branch points of f . But since f is continuous and by assumption γf can
be continuously extended to the branch points, then Γf = f × γf is continuous
on M , and therefore holomorphic.
The same computation also proves that Γf is a solution of the Pfaffian system
σ3 = 0, σ2 − iσ1 = 0, since it is easily verified that

Γ∗fσ
3 = 0,

Γ∗fσ
1 = −1

2
(
L3 + iL4

)
ϕ

Γ∗fσ
2 = − i

2
(
L3 + iL4

)
ϕ.



4.7 Q2(Q4)-valued maps and the conformal Gauss lift 59

Moreover, (4.56) assures that

Γ∗fσ
−1 6= 0.

On the contrary, assume Γ : M → Q2(Q4) is a holomorphic map such that
Γ∗σ3 = 0, Γ∗σ2 = iΓ∗σ1 and Γ∗σ−1 6= 0 and define fΓ = π̌ ◦ Γ. For any local
section ξ of π̄, the map e = ξ ◦ Γ is a local frame along fΓ, since

π ◦ e = π ◦ ξ ◦ Γ = π̌ ◦ π̄ ◦ ξ ◦ Γ = π̌ ◦ Γ = fΓ.

Moreover, let ϕ be a local (1, 0)-form defining the complex structure on M ;
then, since Γ is holomorphic, there must exist a smooth function µ 6≡ 0 such
that

e∗(Φ1
0 + iΦ2

0) = Γ∗σ−1 = µϕ.

As usual, we set φ = e∗Φ, so that the previous equality becomes φ1
0 + iφ2

0 = µϕ.
Differentiating this last equality and using the structure equation we can deduce
that

dµ = −iµ
(
ω − φ1

2 + iφ0
0

)
mod ϕ,

where ω is such that dϕ = iω∧ϕ. Hence µ is of analytic type, and its zeros must
be isolated and of finite order, proving that fΓ is a weakly conformal branched
immersion. In addition, since by assumption Γ∗σ3 = 0, we know that e is a first
order frame along fΓ. We can prove that e is actually a Darboux frame along
fΓ using

Γ∗σ2 = iΓ∗σ1. (4.57)

Indeed, setting as usual φαi = hαijφ
j
0, hαij = hαji,

Γ∗σk = e∗(Φk3 + iΦk4) = −φ3
k − iφ4

k = −(h3
kj + ih4

kj)φ
j
0

and equation (4.57) becomes {
h3

1j = h4
2j

h3
2j = −h4

1j

which gives
h3

11 = h4
21 = −h3

22, h4
11 = −h3

21 = −h4
22.

Now since e = ξ ◦ Γ is a Darboux frame along fΓ, it makes sense to consider its
conformal Gauss map, defined as usual as

γfΓ = [e3, e4] = π̂ ◦ e

outside the branch points of fΓ. We want to prove that γfΓ can be continuously
extended at the branch points, and that the extension is holomorphic. To this
end, we define γ : M → Q2

(
R6
)

as follows

γ = c ◦ Γ (4.58)
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and observe that Proposition 4.19 implies that γ is holomorphic. By the com-
mutativity of the following diagram

Möb(4)
π̄

���������� bπ
��???????

Q2(Q4) c //

π̌

���������
Q2

(
R6
)

Q4 M
fΓ

oo

Γ

__???????? γ

??~~~~~~~~

we have that, on the open set where γfΓ is defined,

γfΓ = π̂ ◦ e = π̂ ◦ ξ ◦ Γ = c ◦ π̄ ◦ ξ ◦ Γ = c ◦ Γ = γ.

Therefore γfΓ is holomorphic, hence fΓ is − isotropic. Lastly, we obviously have

ΓfΓ = π̄ ◦ e = π̄ ◦ ξ ◦ Γ = Γ

and
fΓf = π̌ ◦ Γf = π̌ ◦ π̄ ◦ e = π ◦ e = f,

so the claim is proved.
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and a Bernstein-type theorem, Manuscripta Math., vol. 81 (1993), pp. 203–
222.

[13] Schiemangk, C., Sulanke, R., Submanifolds of the Möbius space, Math.
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