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telemetry bandwith of 35.5 Kbps. The data are processed by anon-board pipeline, followed on-
ground by a decoding and reconstruction step, to reduce the volume of data to a level compatible
with the bandwidth while minimizing the loss of information. This paper illustrates the on-board
processing of the scientific data used by Planck/LFI to fit theallowed data-rate, an intrinsecally
lossy process which distorts the signal in a manner which depends on a set of five free parameters
(Naver, r1, r2, q, O) for each of the 44 LFI detectors. The paper quantifies the level of distortion
introduced by the on-board processing as a function of theseparameters. It describes the method
of tuning the on-board processing chain to cope with the limited bandwidth while keeping to a
minimum the signal distortion. Tuning is sensitive to the statistics of the signal and has to be
constantly adapted during flight. The tuning procedure is based on a optimization algorithm ap-
plied to unprocessed and uncompressed raw data provided either by simulations, pre-launch tests
or data taken in flight from LFI operating in a special diagnostic acquisition mode. All the needed
optimization steps are performed by an automated tool,OCA2, which simulates the on-board pro-
cessing, explores the space of possible combinations of parameters, and produces a set of statistical
indicators, among them: the compression rateCr and the processing noiseεQ. For Planck/LFI it
is required thatCr = 2.4 while, as for other systematics,εQ would have to be less than 10% of
rms of the instrumental white noise. An analytical model is developed that is able to extract most
of the relevant information on the processing errors and thecompression rate as a function of the
signal statistics and the processing parameters to be tuned. This model will be of interest for the
instrument data analysis to asses the level of signal distortion introduced in the data by the on-
board processing. The method was applied during ground tests when the instrument was operating
in conditions representative of flight. Optimized parameters were obtained and inserted in the on-
board processor and the performance has been verified against the requirements with the result that
the required data rate of 35.5 Kbps has been achieved while keeping the processing error at a level
of 3.8% of the instrumental white noise and well below the target 10% level.

KEYWORDS: Data compression; On-board data handling; Space instrumentation; Instruments for
CMB observations
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1 Introduction

One of the most challenging aspects in the design of an astronomy mission in space is the ability to
send the collected data to the ground for the relevant analysis within the allowable telemetry band-
width. In fact the increasing capabilities of on-board instruments generates ever larger ammounts
of data whereas the downlink capability is quite constant being mainly governed by the power of
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the on-board transmitter and the length of the time window which can be allocated for data down-
linking [1]. In the case of the ESA satellite Planck, which will observethe CMB from the second
Lagrangian point (L2) of the Earth-Sun system, 1.5×106 Km far from Earth, the down-link rate
is limited to about 1.5 Mbps, and Planck can be in contact withthe ground station (located at New
Norcia, Western Australia) for no more than a few hours each day, thus reducing the effective band-
width by an order of magnitude. In addition, Planck carries two scientific instruments: the Planck
Low Frequency Instrument (Planck/LFI), to which this paperis devoted, and the Planck High Fre-
quency Instrument (Planck/HFI). Both share the bandwidth to download data with other internal
spacecraft services and the up-link channel. The result is that LFI has only about 53.5 Kbps average
down link rate while producing a unprocessed data rate of about 5.7 Mbps. It is evident that some
kind of on-board data compression must be applied to fit into the available telemetry bandwidth.

It is well known that the theoretical maximum compression rate achievable for a given data
stream decreases with its increasing variance. Thus it is very advantageous before applying any
compression algorithm to preprocess the data to reduce its inherent variance. In the ideal case
the preprocessing would not alter the original data, but in practice some information loss can not
be avoided. Thus the on-board preprocessing algorithm should be tunable through some kind of
free processing-parameters in order to asses at the same time the required compression rate at
the cost of a minimal degradation of the data. This paper addresses the problem of the on-board
processing and the corresponding ground processing of the scientific data and the impact on its
quality for the Planck/LFI mission. This has also been the topic of two previous papers, the first
regarding the exploration of possible lossless compression strategies [2], and the second focused to
the assessment of the distortions introduced by a simplifiedmodel of the on-board plus on-ground
processing [3]. Here the work presented by [3] is completed by introducing in section2 a brief
description of the instrument followed by a quantitative model of the on-board plus on-ground
processing applied in Planck/LFI. The processing can be tuned with the statistical properties of the
signal and introduce as small as possible distortion. This can be obtained by using a set of control
parameters, as anticipated in [3], which are tuned on the real signal. The tuning algorithm, which
has not been discussed previously, is the most important contribution to the Planck/LFI programme
presented in this work and it is discussed in section3. The whole procedure has been validated
both with simulations and during the pre-flight ground testing. The most significative results are
reported in section4. Of course, processing has an impact on Planck/LFI science whose complete
analysis is outside the scope of this paper but however is briefly analyzed in section5. At last
section6 reports the final remarks and conclusions, while some technical details are presented in
appendicesA, B andC.

2 Radiometer model and acquisition chain

Planck/LFI [15] is based on an array of 22 radiometers assembled in 11Radiometric Chain As-
semblies(RCA) in the Planck focal plane. Each RCA has 4 radio frequency input lines and 4
radio frequency output lines, hence the number of radio frequency outputs to be measured by the
on-board electronics is 44. Each feed horn has one orthomodetransducer with two outputs: each
extracting one of the two orthogonal components of linear polarization in the signal received from
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Figure 1. A schematic view of the main flow of scientific data for a single RCA of Planck/LFI. Each
RCA has two detectors, but in this scheme only the first is represented and schematized. For graphical
purposes the scheme represents just the first detector whileconnected to the reference-load, while Detector
2 would be connected to sky. At a change of the clock phase the two detectors will switch their connections.
The block arrows represents the flow of digitized data and telemetry toward the spacecraft and the flow of
telecommands from the spacecraft.

the sky and feeding one of the radio frequency input lines of aradiometer, the other radio frequency
input line is connected to a reference-load held at the constant temperature of 4.5 K.

A schematic representation of the flow of information in a single radiometer belonging to a
RCA is given in figure1. Each radiometer acts as a pseudo-correlation receiver [17] measuring
the difference in antenna temperatures,∆T, between the sky signal,Tsky, and the reference-load
Tload, [18]. However, given the sky and the reference-load have different mean temperatures the
reference samples have to be scaled by aGain Modulation Factor, r, which balances the difference
betweenTsky andTload to a mean[∆T] = 0 so that

∆T = Tsky− rTload. (2.1)

A proper choice ofr will allow near cancellation of most of the first order systematic errors [4, 19],
assuring in this way optimal rejection of systematics, in particular drifts and the 1/ f noise [16]. As
a first approximation it is possible to put

r ≈ mean
[

Tsky
]

+Tnoise

mean[Tload]+Tnoise
, (2.2)

whereTnoise is the noise temperature. Eq. (2.2) makes evident how different values ofr are needed
in the various phases of the mission. In particular three cases are important: ground tests, in-flight
cooling phase and finally in-flight operations with the instrument in nominal conditions. As an
example consider the case of the 30 GHz channel, which is the least noisy channel of Planck/LFI
having an expectedTnoise≈ 10 K. During on-ground testing mean

[

Tsky
]

≈ mean[Tload] and sor ≈ 1
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([15, 16]). In flight mean
[

Tsky
]

≈ 2.725 K but during the cooling mean[Tload] varies from≈ 20 K
down to the nominal mean[Tload] ≈ 4.5 K. Thus r varies from≈ 0.4 when the instrument starts
to cool-down to≈ 0.88 at the end of the process, when it reaches its nominal temperature. With
higher values ofTnoise the other channels will show smaller departures in theirr from 1 as well as
a lower sensitivity to the environmental conditions.

To acquire sky and reference-load signals each radiometer has two separate radio frequency
inputs, and correspondingly two radio frequency outputs, each one connected to a radio frequency
detector and to an acquisition chain ending in a 14 bit analog-to-digital converter (ADC) housed
in the Digital Acquisition Electronicsbox (DAE) [15, 17]. The output of the DAE is sent to
theRadiometer Electronics Box Assemblybox (REBA)1 which processes the data from the DAE,
interpretes and executes telecommands, and interfaces theinstrument with the spacecraft Central
Data Management Unit (not represented in figure1). This unit produces the scientific packets to be
sent to the ground [22].

The DAE applies a individually programmable analogue offset to each input signal prior to
applying individual programmable gains and performing digitization. The contribution to the read-
out noise budget from the ADC quantization is in general considered marginal. AppendixB dis-
cusses the case in which this hypothesis is no longer valid. The offset and the gain are adjustable
parameters of the DAE and it is assumed that their calibration is independent from the REBA cal-
ibration [20] with an exception which is discussed in appendixC. The ADCs are fetched in turn
and the data are sent to the Science Processing Unit (SPU), aDigital Signal Processor(DSP) based
computer which is part of the REBA not represented in figure1 [22]. The SPU stores the data in
circular buffers for subsequent digital processing and then applies the on board software pipeline to
the data, in the process the 14 bit single samples are convertto 16 bits signed integers. The content
of each ADC buffer is processed separately by the on-board processing pipeline and sent to ground.

As usual in these kinds of receivers, the required stabilityof the device is assured by switching
each radiometer between the sky and reference-load. Thus each output alternatively holds the sky
and the reference-load signal (or the reference-load and the sky) with opposed phases between the
two channels. Hence, each buffer contains strings ofinterlacedsky–reference-load (or reference-
load–sky) samples in increasing order of acquisition time,t i.e.

TADC
sky,t=0,T

ADC
load,t=1,T

ADC
sky,t=2,T

ADC
load,t=3, . . . , (2.3)

or

TADC
load,t=0,T

ADC
sky,t=1,T

ADC
load,t=2,T

ADC
sky,t=3, . . . . (2.4)

The switching frequency is fixed by the LFI internal clock at 8192 Hz. The switch clock gives also
the beat for the ADCs, which are then synchronized with the switching output, and it is sensed by
the on-board processor, which uses it to reconstruct the ordering of the signals acquired from the
ADCs and to synchronize it with the on-board time. This frequency also synchronises the ADCs
with the input and is used by the SPU to reconstruct the ordering of the signals acquired from the
ADCs and to synchronise them with the on board time.

1LFI has two redundant REBA units, but since they are perfectly equivalent in what regard the on-board data pro-
cessing, in this paper we will consider LFI as having one REBAonly.
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Figure 2. Schematic representation of the scientific onboard and ground processing for the Planck/LFI.
Cyan boxes represent REBA operations, yellow boxes ground operations. Green pads specify the parameters
needed by each operation. TOI could be produced both in undifferentiated form (Tsky, Tload stored separately)
or in differentiated form.

The data flow of raw data is equivalent to 5.7 Mbps, a large amount of data that cannot be
fully downloaded to the ground. The allocated bandwidth forthe instrument is equivalent to only
53.5 Kbps including all the ancillary data, less than 1% of the overall data generated by LFI. The
strategy adopted to fit into the bandwidth relies on three on-board processing steps: downsam-
pling, preprocessing the data to ensure lossless compression, and lossless compression itself. To
demonstrate these steps, a model of the input signal shall beused. It has to be noted that while the
compression is lossless, the preprocessing is not, due to the need to rescale the data and convert
them in integers, (a process named data requantizzation). However, the whole strategy is designed
to asses a strict control of the way in which lossy operationsare done, of the amount of information
loss in order to asses optimal compression rate with minimalinformation loss.

2.1 Signal model

We describe quantitatively the kind of signal the pipeline has to process by modeling the output of
the DAE as a function of time,t, as

Tsky(t) = Tsky+ ∆Tsky(t)+nsky, (2.5)

Tload(t) = T load+ ∆Tload(t)+nload. (2.6)
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whereTsky, T load are the constant part of the signal.∆Tsky, and∆Tload a possible deterministic time
dependent parts, representing drifts, dipoles, oscillations and so on,nsky andnload represents the
random noise whose moments areσ2

n,sky, σ2
n,load, and whose covariance isσn,sky,load.

The pipeline described in the following sections needs to betuned to obtain a proper level
of data compression which is largely determined by the covariance matrix of the signal whose
components are

σ2
sky = var

[

∆Tsky
]

+ σ2
n,sky (2.7)

σ2
load = var[∆Tload]+ σ2

n,load (2.8)

σsky,load = cov
[

∆Tsky,∆Tload
]

+ σn,sky,load (2.9)

where it has been assumed that the random and deterministic parts are uncorrelated. It is useful to
identify two extreme cases: the data stream is signal dominated, when var

[

∆Tsky
]

+var[∆Tload] ≫
σ2

n,sky + σ2
n,load, or the data stream is noise dominated, when var

[

∆Tsky
]

+ var[∆Tload] ≪ σ2
n,sky +

σ2
n,load. In the noise dominated case, the statistics of data will be largely determined by the statistics

of noise, which in general could be considered normally distributed and uncorrelated over short
time scales, given the 1/ f -noise will introduce correlations over long time scales. In the signal
dominated case the statics of data will be instead determined by the kind of time dependence in
the signal. As an example, if|Tsky−T load| is large compared to the noise while∆Tsky and∆Tload

are negligible, the histogram of the signals will resemble the sum of two Dirac’s delta functions
δ (x−Tsky)+ δ (x−T load) convolved with the distribution of noise.

If a linear time dependence of the kind∆T(t) = Ȧt +C is present, then the distribution of the
samples will be uniform and bounded betweenT ± Ȧτ/2, whereτ is the time interval relevant for
the signal sampling. The variance will beA2

τ/12 whereAτ = Ȧτ is the drift amplitude over the time
scaleτ . The signal could be considered noise dominated ifτ <

√
12σ/|Ȧ|. From the point of view

of data compression, in determining whether a signal is noise dominated or not, the critical factor
is the time scaleτ . For our coupled signals, denoting witḣAsky andȦload the drift rate in the sky
and reference-load signals, and withAsky,τ , Aload,τ the relative amplitudes, the relevant components
of the covariance matrix will be

var
[

∆Tsky
]

τ =
A2

sky,τ

12
(2.10)

var[∆Tload]τ =
A2

load,τ

12
(2.11)

cov
[

∆Tsky,∆Tload
]

τ =
Asky,τAload,τ

12
(2.12)

In this regard, the most importantτ to be considered is the time span for the chunk of data contained
in a packet, which is the minimum unit of formatted data sent by the REBA to the ground. Each
scientific packet produced by the REBA has a maximum size corresponding to 1024 octects, part
of which has to be allocated for headers carring ancillary informations such as the kind of data in
the packet or the time stamp. So, even taking into account data compression, only a small amount
of data can be stored in a packet corresponding to about 6–22 secs., which depends on details
such as the attained compression rate and the frequency channel involved, as will be shown in
section2.3. More complicated distributions may occur for a polynomialtime dependence of the
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kind ∆T ∝ tn, or for a sinusoidal time dependence of periodP: ∆T ∝ sin(2πt/P), but in most cases
a simple linear drift∆T ∝ t could be taken as a reference model given that non periodic drifts are
bounded in amplitude by corrective actions commanded from the ground station, while periodic
variations have periods much longer than the time span of a packet. Also in general it is assumed
that mean

[

∆Tsky
]

= 0 and mean[∆Tload] = 0 but it is interesting to discuss even the case in which
this is not strictly true.

2.2 Data compression and on-board processing

The strategy adopted to remain inside the downlink bandwidth is based on three processing steps: i)
signal downsampling, ii) signal conditioning and entropy reduction, iii) loss-less compression [6,
15]. A schematic representation of the sequence in which thesesteps are applied on-board and
whenever possible reversed on-ground is given in figure2. The figure refers to a single radiometer
chain and is ideally splitted into two parts: the upper part depicts the on-board processing with cyan
boxes denoting the main steps. The corresponding on-groundprocessing is depicted in the lower
part with the main steps coloured in yellow. Green pads represents the processing parameters.
The first four of them are refered to as REBA parameters, and they are applied both on-board
and on-ground. The parameters are: the number of ADC raw samples to be coadded to form an
instrumental sample,Naver, the two mixing parametersr1, r2, the offsetO to be added to data
after mixing and prior to requantization, and the requantization stepq. The exact meaning of each
of these parameters will be explained later in the text, wheneach step will be explained in full
detail. It is important to recall that the on-board parameters are imposed by telecommands sent
from the ground. They are copied in each packet carring scientific data and on-ground they are
recovered from the packets to be applied by the on-ground processing. Ther factor is a parameter
of the ground processing and is computed from the total powerdata received on ground. The final
products in the form ofTime Ordered Data(TOI) either in total power or differentiated are stored
in an archive represented by the light-blue cylinder.

Before entering into the details of the various steps it has to be noted that in principle a factor
of two compression would be immediately gained by directly computing the difference between
sky and reference-load on-board, i.e. sending differentiated data to Earth. Although on-board dif-
ferentiation seems straightforward,2 it implies at least a couple of major disadvantages. First, once
the difference is made, separate information about the sky and the reference-load is lost, preventing
an efficient detection and removal of other second order systematics. Second a set of 44r factors
could be in principle easily uploaded on-board and applied to the data, but ther for each detector
has to be fine-tuned on the real data. This would mean that the optimal r should be continuously
monitored and adjusted to avoid uncontrolled drifts for each radiometer, but this is inpractical,
having just 3 hours of connection per day. In addition, an error in calibrating ther will cause an
irremediable loss of data. Therefore, the best solution is to downlink the sky and the reference-load
samples separately allowing the application on the ground of the optimalr.

2This was the baseline of the on-board processing for [2, 3].
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2.3 Downsampling

Each sky sample contains the sky signal integrated over a skyarea as wide as the beam, but since
each radiometer is sampled at a frequency of 8192 Hz the sky issampled at an apparent resolution
of about 1/2 arcsec. On the other hand the beam size for each radiometer goes from 14 arcmin
for the 70 GHz to 33 arcmin for the 30 GHz. Consequently it is possible to co-addNaver consec-
utive samples producing averaged samples whose sampling time correspond to a more reasonable
resolution without any loss of information.

The downsampling algorithm 1) takesNaver couples of sky–reference-load (reference-load–
sky) samples from a given ADC; 2) separates the two subsets ofsignals; 3) computes the sum of
sky and load subsets (represented by 32-bits signed integers); 4) interlaces them; and 5) stores them
as sky–reference-load (reference-load–sky) couples in ancircular buffer for subsequent processing.
In normal processing the REBA converts these sums into averages by converting them into floating-
point format and then dividing them byNaver prior to perfom the subsequent steps of mixing,
requantization and compression. In the case of diagnostic data processing the REBA transfers
directly as output these sumsas they arei.e. without any other processing or compression. In this
case the ground-segment pipeline has the task of convertingthem into averages. This is a trade-off
between the need for packets to carry just data represented by 16 or 32 bits integers, and the need to
avoid uncontrolled round-off errors in the conversion of floating-point averages in integer values.
Note that the diagnostic telemetry is very limited in flight by the telemetry bandwith.

The value ofNaver depends on the beam-width,brad, for the given detector

Naver=
ωspinnoversinβ

brad fsampling
(2.13)

ωspin [rad/sec] is the rate at which the satellite spins about its spin axis [8–10], β is the boresight
angle between the telescope line-of-sight and the spin axis, andnover = 3 is the the number of
samples per beam. Nominal values for theNaver are 126, 88, 53 respectively for the 30 GHz,
44 GHz and 70 GHz frequency channels. The corresponding sampling frequencies in the sky
are then 32.5 Hz, 46.5 Hz and 77.3 Hz, while samples are produced at a rate twice the sampling
frequency. This drastically reduces the data rate that becomes about 85 Kbps without introducing
an important loss in scientific information.

The output of the downsampling stage can be seen as a sequenceof sky–reference-load couples
ordered according to the generation timet

(

Tsky

Tload

)

t=0

,

(

Tsky

Tload

)

t=δt

,

(

Tsky

Tload

)

t=2δt

, . . . ,

(

Tsky

Tload

)

t=nδt

, . . .

whereδt = 2Naver/ fsampling the samples are interlaced to generate a string of time ordered sam-
ples as

Tsky,0,Tload,0,Tsky,δt
,Tload,δt

,Tsky,2δt
,Tload,2δt

, . . . ,Tsky,nδt
,Tload,nδt

, . . .

in a manner similar to the output of the ADC. But while sky and reference-load samples in each
ADC output buffer are consecutive in time, this is no longer true for the downsampled values. As
an example, assuming a sequence from the ADC where even samples areTADC

sky and odd samples
areTADC

load (i.e., Tsky, Tload sequences), then anyTskyt will be the sum ofNaver samples with times
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betweent and t + 2(Naver− 1)/ fsampling while Tloadt will span the time ranget + 1/ fsampling and
t +2Naver/ fsampling. While this small time shift is not very important when observing sky sources,
it might be relevant when attempting to correlate the observed signal with internal sensors, such as
those used to determine the level of perturbation introduced by the active cooling. However, this
problem is probably more theoretical than real as internal temperature variations do not occur on
very short timescales. For simplicity, in the remainder of the text we will omit to specify time in
our formulas unless needed.

2.4 Lossless compression, packeting and processing error

To better understand the intermediate processing step, i.e. mixing and requantization, it is nec-
essary to introduce here the last step of lossless compression. The familiar technique of lossless
compression is based on the ability of the compression software to recode a stream of symbols
by using codewords which on average are shorther than those used in input, and in a way which
could be fully recovered on ground by adecompressioncode. The coding for the data stream in
output to the compressor has to be optimized by taking into account the statistical distributions of
the symbols in the input data stream. For this reason, lossless compressors maintain an internal
representation of the data distribution, such as the histogram or similar statistical indicators. In our
case the selected compression scheme is based on a 16-bit, zero order, adaptive arithmetic entropy
encoder [22]. The compressor assumes that the data stream is represented by an uninterrupted list
of couples of 16-bit integers. It does not take any particular interpretation of the content of the
samples or of the order in which they are presented. It simplykeeps coding and storing data in the
packet until the maximum length is reached. The packet is then closed and a new packet is opened.
The compressor uses an adaptive scheme to decide the best coding for the input data as they are
produced by the previous steps of the on-board pipeline. On ground the decompressor extracts the
samples from each packet in the same order in which they have been introduced by the compressor.
In this sense the compressor/decompressor couple act as a First In – First Out device, and becomes
nearly transparent in the scientific processing of the data.

The basic requirement for the packets produced by the compression stage is that ofpacket

independencyi.e. it must be possible to interpret the content of each packet independently of all
the others. For LFI it means that the pipeline in the ground segment shall be allowed to generate
from each single packet chunks of differentiated data. So the compressor must store consecutive
couples of sky–reference-load samples within each packet together with the information needed
by the decompressor to interpret the compressed packets. Inaddition the compressor must be able
to self-adapt its coding scheme to the statistics of the input signal, without the need of any prior
information on it. Finally, the compressor must be fast enough to allow real-time elaboration of
data with limited memory consumption. These requirements suggest the use of a compression
scheme in which the compressor updates its internal statistical table each time it receives a sample.
An empty statistical table is then imposed at the beginning of the compression of a new packet,
therefore assuring complete independence. When a symbol not present in the table is received
as input, a pseudo-symbol corresponding to a “stop message”is issued and is followed by the
uncompressed new symbol, after that the internal statistical table is updated. If the symbol is in the
table, the corresponding entry is updated and the symbol is compressed accordingly. On ground
the decompressor starts with the same empty internal statistical representation assuming the first
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symbol is a stop followed by a new symbol, and it updates the table accordingly as it receives
symbols to decode or stop symbols.

The efficiency of a compressor is typically measured by the, so called, compression rateCr:
the ratio between the length of an output stringLout derived from the compression of an input string
of lengthLin

Cr =
Lout

Lin
. (2.14)

Of course, to accomodate a given data rateRdatainside a given bandwidthBdataa target compression
rate has to be obtained leading to the obvious definition

CTgt
r =

Rdata

Bdata
. (2.15)

It is well known that any lossless compressor based on entropy encoding has an upper limit for the
highest compression rate

CTh
r =

Nbits

H
, (2.16)

whereNbits is the number of bits used for coding the samples andH is Shannon’s entropy for
the signal, which in turns depends on itsProbability Distribution Function(PDF). For an optimal
compressor the theoreticalCTh

r for a digitized signal represented by integers in the rangeQmin ≤
Q≤ Qmax is given by

CTh
r =

Nbits

H
, (2.17)

H = −
Qmax

∑
Q=Qmin

fQ log2 fQ : (2.18)

whereH is the Shannon entropy for the data stream,fQ is the frequency by which the symbol
or valueQ occurs in the data stream, having limfQ→0 fQ log2 fQ = 0, and∑Qmax

Q=Qmin
fQ = 1. Non-

idealities in the signal and in the compressor cause the effectiveCr to be different from the expected
CTh

r havingCTh
r > Cr. Usually this is accounted for by scalingCTh

r by a multiplicative efficiency
factorη . However its exact determination is a complex task described in some detail in section3.4
and for the time being we will neglect it.

From eq. (2.17) and (2.18), to maximizeCr we need to minimizeH for the input signal, forcing
the reduction of its variance by requantizing the data, i.e.dividing the data by a quantization step,
q, and rounding off the result to the nearest integer

Q = round

(

X +O

q

)

, (2.19)

whereO is an additive constant usually defined by asking

mean[X +O] = 0. (2.20)

On ground the data are then decompressed and reconstructed by multiplying them byq.

X̃ = q[Q−O]. (2.21)
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Some information is lost in the process and causes a processing distortion,εq, which in the simplest
case is approximated by

εq = rms
[

X̃−X
]

≈ q√
12

. (2.22)

In [2, 3] we studied the caseX = ∆T, there it had been shown that for Planck/LFI the statistics
of the differentiated data stream was approximated by a nearly univariate normal distribution with
σ = rms[∆T], and that after re quantization and reconstruction bothCTh

r and εq where largely
parameterized by theσ/q ratio with

CTh
r ≈ Nbits

log2

(√
2πeσ

q

) , (2.23)

εq

σ
≈ 1√

12

(

σ
q

)−1

. (2.24)

Of course we need to assure thatεq/σ < 1 which is expected to be satisfied “by design” for
Planck/LFI. In this regard, it has to be recalled how the limit to any instrumental residual error for
Planck/LFI was assessed in the context of the overall error budget (including thermal, radiometric,
optical and data-handling effects), driven by the ultimaterequirement of a cumulative systematic
error per pixel smaller than 3µK (peak-to-peak) at the end of the mission. The 10% limit for the
on-board processing-related errors has been set as a reachable requirement which should lead to a
nearly-negligible impact on science.

We are now in the position of deriving the expected time spansfor the compressed chunks
of data contained in Planck/LFI packets which have been reported at the end of section2.1. It is
sufficient to consider that each packet may carry a maximum numberNsmp of Nbits code-words
representing scientific data, each representing on averageCTgt

r samples either sky or reference-load
and that the sampling period after the downsampling isfsampling/Naver to obtain

τpck ≈
2NaverNsmpC

Tgt
r

fsampling
, (2.25)

where the factor of 2 in front ofNaver comes from the fact that the sky-reference-load cycle has
half the frequency of the ADC sampling. For Planck/LFINsmp= 490, while aCTgt

r = 2.4 would
be sufficient to allow proper data compression. Of course, some level of variability among the
detectors has to be allowed in order to cope with non stationarities in the time series, or with the
need to share the bandwidth among different detectors in different manners. So a good fiducial
range of values forCTgt

r for individual detectors is 2< CTgt
r < 3, leading the expected values for

τpck to vary over 15–22 sec., 10–16 sec. and 6–9 sec. respectivelyfor the 30 GHz, 44 GHz and
70 GHz frequency channels.

2.5 The mixing algorithm

In general a data stream made of alternate sky and reference-load samples can not be approximated
by a normal, univariate distribution. Two different populations of samples, with different statistical
properties are mixed together. In this case theCr could be reduced with respect to the univariate
case. Furthermore, most of the first order instabilities, such as drifts and 1/ f -noise, come from
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the radiometers, and produces spurious correlated signalsin Tsky and Tload. For these reasons,
undifferentiated time-lines forTsky andTload are much more unstable than the corresponding∆T
timelines further reducingCr. In particular, fast drifts may rapidly force the compressor to saturate
the packet filling it with the decoding information, in the worst case resulting inCr < 1. According
to eq. (2.23) it is possible to increaseq to keepCr within safe limits, but its log2(q) dependence
will drive εq/σ to rapidly grow towardsεq/σ >∼1. Alternatively, a more complex compression
scheme could be implemented, which takes into account the sky-reference load correlation. But
this would be computationally demanding and would increasethe amount of decoding information
to be placed in each packet.

One is left with the need to recover the advantage of differentiated data, i.e. reduced instabili-
ties and more homogeneous statistics, without losing the opportunity to have sky and reference-load
separately on ground. The adopted solution is inspired by the principle of the pseudo-correlation
receiver. Instead of sending to ground(Tsky,Tload) couples, LFI delivers(T1,T2) couples where
eachT1, T2 is an independent linear combination of the correspondingTsky andTload. Couples are
then quantized and compressed. On ground, data are decompressed and dequantized recovering
the original data [5]. The most general formula for the linear combinations is

(

T1

T2

)

=

(

M1,sky M1,load

M2,sky M2,load

)(

Tsky

Tload

)

. (2.26)

Here the matrix,M, in eq. (2.26) is namedmixing matrix (actually it represents a mixing and
a scaling unless|M| = 1), its inverseM−1 is the correspondingde-mixing matrix. The demixing
matrix is applied on ground to recover the string of(Tsky,Tload) out of the received string of(T1,T2),
which imposes|M| 6= 0. The structure ofM determines the kind of coding strategy. A particular
structure forM could better fit a given subset of constrains rather than another. Both theCr andεq

are determined byq as well asM. In particular it is obvious that the processing distortionwill have
the tendency to diverge for a nearly singularM. A detailed analysis of the whole set of possible
structures forM is outside the scope of this paper, but in generalM shall be optimized in order to
i) equalize as much as possible theT1 andT2 statistics, ii) reduce as much as possible the effects of
first-order drifts, iii) maximize theCr, iv) minimize εq. For Planck/LFI the following form forM
has been selected,

M =

(

1, −r1

1, −r2

)

; (2.27)

|M| = r2− r1; (2.28)

M
−1 =

1
r2− r1

(

r2, −r1

1, −1

)

. (2.29)

which is not completely optimal, since it allows optimization only on a subset of possible cases, but
has the advantage of having a reduced amount of free parameters to be uploaded for each detector3

and it is directly suggested by eq. (2.1). Since|M|= r2− r1, for any givenq the distortion increases
when|r2− r1| decreases. In nominal conditions mean

[

Tsky
]

= 2.735 K, mean[Tload] = 4 K, and a

3Packets independency imposes that all the free parameters (Naver, q, O, r1 and r2) have to be stored within each
packet.
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Figure 3. The effect of mixing and interlacing on time series (top frames) and distributions (low frames). in
the output to the radiometer. Frame a) is an input time series, for sky (red dashed–line) and reference-load
(blue dashed–line), and the corresponding mixed quantitiesQ1 (red full–line),Q2 (blu full–line) after mixing
with r1 = 3/4, r2 = 1/2. The range of values allowed by noise within±5σ are represented in both mixed and
not mixed quantities by the upper and lower dotted lines. Theinput time series has identical drifts on sky and
reference-load equivalent to several noiseσs and corresponds to a signal dominated time serie as defined in
section2.1. Frame b) are the signals as seen from the compressor after interlacing, full–line without mixing,
dashed–line after mixing. Frame c) is the effect on a normal distribution and on a ramp, green before mixing
and red after mixing. Frame d) shows the effect on the projected distributions after interlacing.

possible choice forr1 andr2 is r1 = 1, r2 = r = 0.85. But a tuning procedure is required to determine
the best parameters for each radiometer.

The effect of mixing with respect to both signals and distributions is illustrated in figure3
which refers to the case of a data-stream which is signal dominated (see page5). In this figure
dashed-lines represent the input signals, full-lines the corresponding mixed signals. Dotted-lines
the limits for the variability induced by the noise. So the ramp in frame a) of figure3 represents
a model signal forTsky(t) (blue dashed line) andTload(t) (red dashed line). The corresponding
interlaced data are shown in figure3b (blue dashed-line), where the limits of variability induced by
noise are not represented in order to avoid confusion. The time lines forT1(t) andT2(t) calculated
for r1 = 3/4, r2 = 1/2, are represented in figure3a and figure3b as full-lines, and they are shifted to
avoid overlapping with the previous plots. The reduction inthe variance associated with drifts in the
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mixed data is evident. Mixing transforms the bi-variate PDFwhich is forTsky, Tload signals into that
for T1, T2. Figure3c represents its effect on the bi-variate PDF for the noise and the drift. Looking
at the normal distributions of randomly variable signals inTsky andTload, g(Tsky,Tload), the line for
which g(Tsky,Tload)/g(Tsky,T load) = 1/2 is a dashed line, and the equivalent line forg(T1,T2) is a
full-line. The distribution for the deterministic signal (either a ramp, a drift or a triangular wave)
is represented by a segment, plotted again as a dashed line todenote theTsky, Tload signal and as
a full line to denote theT1, T2. The effect of mixing is a combination of a non-uniform scaling, a
rotation and a shift. The circle transforms into an ellipse.The line changes its tilt and length. In
other terms, the covariance matrix for mixed data will be different from the original ones. A very
interesting consequence is in the case of a normally distributed noise: in this case a correlated noise
will appear in the mixed space even if the input noise is not correlated. In general after mixing the
major axis of the two figures has the tendency to align with thex = y line and the center of the two
figures shifts. In this case|M| = r2− r1 = 1 and the size of the two figures changes proportionally
to |M|. Interlacing transforms the bi-variate PDFs into univariate ones. Figure3d represents the
effect of mixing on the PDF of interlaced data. Again, dashedlines represents the distributions
before mixing and the full-lines after mixing. As in figure3b, red indicatesTload or T1 and blue
indicatesTsky or T2. The bottom part of figure3d represents the resulting distribution of interlaced
signals, before (dashed) and after (full) the mixing.

How these distributions have to be decomposed in terms of theprojected distributions is shown
in the top part of figure3d, which shows separately the distributions of the random and determin-
istic components, respectively a normal and a box distributions for Tsky and Tload, the resulting
distribution will be the convolution of the two, forTsky andTload are very similar to a box distribu-
tion. Of course the drift makes the overall signal non Gaussian, in particular forTload. The central
part of figure3d is the equivalent for the mixed signal. Here the drift is reduced and the convoluted
signals are more similar to the original normal distributions of noises. I.e. mixing not only reduces
the distance between the two components but, by reducing thedrift, make them more normally
distributed.

After mixing, the(T1,T2) couples are re-quantized produce the quantized couples(Q1,Q2)

which are interlaced and sent to the compressor

Qi = round

(

Ti +O

q

)

, i = 1,2, (2.30)

whereO is an offset in order to force(Q1,Q2) to stay within the range[−215,+215].4 On ground,
packets are entropy decoded, the data streams are de-interlaced and the corresponding(Q1,Q2) are
used to reconstruct the sky and reference-load samples

T̃α = ∑
i=1,2

M−1
α ,i [q(Qi −O)], α = sky, load, (2.32)

4As anticipated in section2.3, to reduce the roundoff error, the division byNaver is applied generating(Q1,Q2), in
addition the parameter for digitization is notq but Sq = 1/q, so that eq. (2.30) shall be written

Qi = round

(

Sq (Ti +O)

Naver

)

, i = 1,2; (2.31)

however for consistency with [2, 3] in the following we will omit the division byNaver and we will continue to useq in
place ofSq.
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whereM−1
α ,i are the components ofM−1, and the and a tilde over a symbol (e.g. ˜x) is used to

distinguish a reconstructed quantity out of a processed onex.
Mixing will map sky–reference-load statistics in the corresponding mixed statistics

T i = Tsky− r iT load, i = 1,2; (2.33)

∆Ti = ∆Tsky− r i∆Tload, i = 1,2; (2.34)

σ2
i = σ2

sky+ r2
i σ2

load−2r iσsky,load; (2.35)

σ2
1,2 = σ2

sky+ r1r2σ2
load−

r1 + r2

2
σsky,load. (2.36)

A simplification for the components of the covariance matrixcan be obtained by assumingσsky

unitary, then definingT̆α = Tα/σsky, α = sky, load; and incorporatingRσ = σsky/σload in the r i

factors. This gives the following normalized parameters:

∆T̆ = T̆sky− rT̆load, (2.37)

σ̆2
i = 1+ r̆2

i −2r̆ iρsl , (2.38)

σ̆2
1,2 = 1+ r̆1r̆2−

r̆1 + r̆2

2
ρsl , (2.39)

whereρsl = σsky,load/(σskyσload), r̆ i = r i/Rσ . The corresponding transforms for the expectations is

more complex. Of coursĕTα = Tα
σsky

,α = sky, load, but

T̆ i = T̆sky−Rσ r̆ iT̆ load, i = 1,2, (2.40)

∆T̆i = ∆T̆sky−Rσ r̆ i∆T̆load, i = 1,2. (2.41)

However these normalizations are very useful in discussingthe compression rate, especially after
having defined the obvious ˘q = q/σsky.

2.6 Modelling the statistical distribution of processed data

We want here to define an approximation to assesCr ≥ CTh
r in a simple way. For this reason we

need to model the entropy for the signal entering the compressor. Of course the accuracy to which
it is possible to predict the finalCr is directly connected to the accuracy to which the entropy is
predicted. In the following we present two approximations for the entropy of the signal, a lower
accuracy approximation and a high accuracy approximation.

2.6.1 The low accuracy approximation

Considering the usual reference cases of a noise dominated signal and a signal dominated by a
linear drift, in the first case the PDF can be approximated by anormal distribution, in the second
case the PDF can be approximated by a uniform distribution with fQ = q/A values andσ = A/

√
12.

But in any case forσ/q≫ 1

H = log2kpdf
σ
q

, (2.42)

with kpdf a constant depending on the type of PDF and ranging from
√

12 for a uniform distribution
to
√

2πe for a normal distribution. The difference inH between these two extreme cases is 0.25 bits.
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The argument of the logarithm is the number of symbols in the distribution. SoH can be written
also asH = log2Neff

symb with Neff
symb = kpdfσ/q. Of course in the case of the uniform distribution

Neff
symb= Nsymb. The PDF for the interlaced signals gives the probability tohave a symbolQ either

from processesQ1 or Q2. Then

P(Q) =
P1(Q)+P2(Q)

2
, (2.43)

with Pi(Q), i = 1, 2 the marginal PDF for theQi drawn from the bi-variate PDFP(Q1,Q2). For
our extreme cases bothPi(Q) are uniformly distributed or normally distributed according to the
original PDF from which they are drawn.5 This allows one to neglect, in estimating the entropy
of the interlace signal, their mutual correlation. Then theentropy for the interlaced data is just a
function of the RMS for the two distributionsσ1, σ2, and their separation,̆∆distr,

∆̆distr =
2

kpdf

E
[

T̆2
]

−E
[

T̆1
]

σ̆1+ σ̆2
, (2.44)

which is a normalized measure of the distance between the twopeaks. After some algebra

∆̆distr = 2
r̆1− r̆2

kpdf

T̆ load

σ̆1 + σ̆2
. (2.45)

Then the entropy will be just a function ofσ̆1, σ̆2 and∆̆distr. An exact analytical expression forH
can not be obtained for this case. However, it is easy to see that in the limit|∆̆distr| ≫ 1 the entropy
takes the limiting value

H∞ =
H1 +H2

2
+1, (2.46)

giving
H∞ = log2(kpdf)+ log2(

√

σ̆1σ̆2)− log2 q̆+1. (2.47)

On the other side, if̆∆distr = 0 andσ̆1 = σ̆2 the two PDFs collapse givingH0 = H1 = H2. In all the
other casesH0 ≤ H(∆distr) ≤ H∞. The important point here is the assumption that

H ≈ H∞, (2.48)

would never overestimate the entropy by more than 1 bit or≈ 30%. Therefore, neglecting the
compressor inefficiencies, a sufficient condition to assesCr ≥CTgt

r would be

H∞ < Htgt , (2.49)

with Htgt = Nbits/CTgt
r , or

√

σ̆1σ̆2 < q̆
2Nbits/CTgt

r

2kpdf
, (2.50)

and so

4
√

(1+ r̆2
1−2r̆1ρsl)(1+ r̆2

2−2r̆2ρsl) < q̆
2Nbits/CTgt

r

2kpdf
. (2.51)

5In this case the central limit theorem does not apply to the signal with a uniform PDF given its deterministic nature.
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Figure 4. Iso-countour lines of the left side of Eq. (2.52) forρsl = −1 (left), ρsl = 0 (center) andρsl = 1
(right). In the first case the function is minimal in the(−1,−1) point, in the second in the(0,0) point, while
in the third in the(1,1) point.

Eq. (2.48), eq. (2.49), eq. (2.50) and eq. (2.51) represent our low-order approximation for the
optimization of REBA parameters. In particular, eq. (2.51) puts a lower limit to ˘q (andq) for a
givenCr. In fact for r̆1 = r̆2 = 0, q̆ must be larger or equal to

qmin(C
Tgt
r ) =

2kpdf

2Nbits/CTgt
r

. (2.52)

As shown in figure4 for ρsl = 0, the left side of eq. (2.51) in the(r̆1, r̆2) plane has a minimum
at (0,0). Its iso-contour lines are closed, all centered on the origin, having four axis of symmetry
r̆1 = 0, r̆2 = ±r̆1, and ˘r2 = 0. The maximum distance from the origin of iso-contour linesoccurs
for r̆1 = 0 or r̆2 = 0, and the minimum occurs along the ˘r2 = ±r̆1 line. Changingρsl = 0 toward
negative or positive values the iso-contour lines are againclosed but their symmetry changes taking
a more “cuspidal” shape, which is symmetrical about the ˘r1 = ρsl and the ˘r2 = ρsl lines. In any
case, the value of the function decreases near the ˘r2 = r̆1 = ρsl point where it has a minimum. From
the figure it is evident that when converting(r̆1, r̆2) to (r1, r2) a largerq/qmin ratio or a smaller
σload/σsky increases the size of the region enclosed by each contour. Eq. (2.51) and eq. (2.52)
define in this low order approximation the optimalq for whichCr = CTgt

r

q̆opt = qmin(C
Tgt
r ) 4

√

(1+ r̆2
1−2r̆1ρsl)(1+ r̆2

2−2r̆2ρsl) (2.53)

from whichqopt is simply derived asqopt = σskyq̆opt. This equation does not constrain completely
qopt and for this reason we have to take into account the processing error as explained in section2.7.

2.6.2 The high order accuracy approximation

The accuracy by whichqopt is determined by eq. (2.53) is solely determined by the accuracy of
imposingH = H∞. Given the statistics of the input signal, it would be not a problem to calculate by
numerical integrationH as a function ofr1, r2 andq. But of course this would be quite expensive
from a computational point of view. For this reason in appendix A a high accuracy algorithm to
computeH is derived using simple equations from whichqopt could be readily obtained. However
from the conceptual point of view the high accuracy method does not introduce any new detail
in the discussion and therefore the remaining part of this section refers only to the low-accuracy
method unless otherwise stated.
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2.7 Processing error of the mixing/demixing algorithm

The most important way to quantify the processing error is the measure of the distortion in the
undifferentiated or differentiated data. The statistics of such distortions are taken as metrics of the
quality of the process. For the undifferentiated data

δα = T̃α −Tα , (2.54)

with α = sky, load. By following the methods of [3] from eq. (2.32) and eq. (2.54) it is easy to
derive the covariance matrix of the quantization error,Eq,α ,β = cov

[

δα ,δβ
]

Eq =
q2

12
1

(r2− r1)2

(

r2
1 + r2

2, r1 + r2

r1 + r2, 2

)

. (2.55)

The distortion of differentiated data is instead expressedby

δdiff = (T̃sky− r̃T̃load)− (Tsky− rTload), (2.56)

where ˜r is ther determined on the processed data, which in general will be slightly different from
the r determined on the original ones. However, assuming ˜r ≈ r from eq. (2.55) the variance of
δdiff is

ε2
q,diff =

q2

12
(r2− r)2 +(r1− r)2

(r2− r1)2 . (2.57)

The first important fact which has to be stressed is that the variances of both errors are pro-
portional toq2/(r2− r1)

2. Of course a nearly singular matrix withr2 ≈ r1 will result in very large
errors. In addition, eq. (2.55) shows that, despite quantization errors forQ1 andQ2 are uncorrelated,
application of demixing causes processing errors inTsky andTload to be correlated unless

r1 + r2 = 0. (2.58)

However, expanding the numerator of eq. (2.57) producesε2
q,diff ∝ r2

1 + r2
2 +2r2−2r(r1 + r2) sug-

gesting the important result that a not null correlation in the quantization errors may lead to a
reduction of the error distortion in the differentiated data

Another very important case isr1 = r or r2 = r. In this case eq. (2.57) reduces to

ε2
q,diff =

q2

12
. (2.59)

which is the same result we would have got quantizing differentiated data (see [3]). This fact has
been used in the first version of the optimization software, designed for the first run of the ground
tests (the RAA tests described in [15]) to increase its speed, together with the fact thatCr andεq

are not sensitive to an interchange ofr1 andr2 but rather to|r2− r1|. However, in the subsequent
tests the more general and accurate procedure described here has been successfully applied.
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2.8 Saturation

Saturation occurs when the argument of they = round[x] function exceeds the maximum range of
values allowed by the computer to represent the results. Indeedy= round[x] returns anNbits signed
integer. If|x| > 2Nbits−1 an overflow or an underflow will occur. Depending on the implementation
of they= round[x] function the value ofy could be either forced to be±215 with the sign depending
onx, or modular arithmetic could be applied so that as an examplea too largex> 0 could be mapped
into y < 0. In all cases the whole subsequent reconstruction will produce meaningless results. So
it is fundamental to avoid saturation.

The level of filling of the allowed dynamical range is measured by the instantaneousQack

ratio6

Qack,i(t) =
Ti(t)

q2Nbits−1 , i = 1,2. (2.60)

Saturation occurs if at some time|Qack,i(t)| ≥ 1 and the non-saturation condition is

|Qack,1(t)| < 1∧ |Qack,2(t)| < 1; ∀ t (2.61)

in general this will put limits onr1, r2, q andO. Assuming to have applied the optimized offset of
eq. (3.1) the linear combinations are

Qack,1(t) =
∆Tsky(t)− r1∆Tload(t)+ r2−r1

2 T load±nσn,1

q2Nbits−1 , (2.62)

Qack,2(t) =
∆Tsky(t)− r2∆Tload(t)− r2−r1

2 T load±nσn,2

q2Nbits−1 , (2.63)

wheren≈ 5 is used to assess a safety region against random fluctuations.
In computingQack the effect of mutual cancellation of extremal values must beconsidered. A

conservative estimate would be to propagate the modulus of each variation

max(∆Ti) = max|∆Tsky|+ |r i|max|∆Tload|+
∣

∣

∣

∣

r2− r1

2

∣

∣

∣

∣

|T load|+nσi, (2.64)

with min(∆Ti) = −max(∆Ti), but it is better to explore the various combinations of minima and
maxima within eq. (2.62), producing a set of partialQack indexes which have to be independently
satisfied. An example of such method is illustrated in figure5 and figure6.

In general, the separation betweenT1 andT2 is a function of time, whose measure is given by
the divergence∇T, a parameter just sensitive to∆Tload andT load

∇T(t) = −2
(r2− r1)(∆Tload(t)+T load)

kpdf(σ1 + σ2)
, (2.65)

of course|∇T| will be constant when∆Tload = 0.
To determine the region of parameter spacer1, r2 which satisfies eq. (2.61) it is most convenient to
work in the(r1, r2− r1) space, there the most general condition is

r1(a−1)−b < r2− r1 < r1(a−1)−c, (2.66)

6From QUantization Alarm Check.
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Figure 5. Example of analysis ofQack factors in the(r1, r2− r1) space. Various cases for different values
of Tsky andTload are considered. The yellow region is the allowed region whenall theQack,i < 1, the blue
region is the forbidden one. Thin dashed lines are the limitsof allowed regionsQack,1 with positive (red)
or negative (yellow) drifts andQack,2 for positive (green) or negative (violet) drifts. Thin fulllines are the
allowed regions forQack,1 andQack,2 whose intersection is marked with a white thick line. Valuesof Tsky,
σsky, ∆Tsky and the corresponding forTload are between parentesis in the title of each frame in the order
(mean, sigma, drift).

c− (r2− r1)(a−1) < (a−1)r1 < b− (r2− r1)(a−1) , (2.67)

with the dimensionless coefficients

a =

(

2∆Tload

T load
+1

)

, (2.68)

b± =
2

T load

(

∆Tsky+q2Nbits−1±nσ
)

, (2.69)

c± =
2

T load

(

∆Tsky−q2Nbits−1±nσ
)

, (2.70)

σ = max(σ1,σ2). (2.71)
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Figure 6. Example of analysis ofQack factors. See caption of figure5 for explanation of symbols.

For n = 0 those conditions define a diamond-shaped region whose vertices are

A :
(

c+b(a−1)
a(a−1) , c−b

a

)

, B :
(

b
a−1,0

)

,

C :
(

b+c(a−1)
a(a−1) ,− c−b

a

)

, D :
(

c
a−1,0

)

,

Note thatB andD lie on r2− r1 = 0 line, whileA andD are above and below it, the exact ordering
depending on the signs. The center of the diamond-shaped region is locate on((b+c)/(a−1),0).
If b+c= 0 the region is centered on the origin of the Cartesian system, A, C andB, D are mutually
opposed. In the casea = 1 the region degenerates into a band parallel tor2− r1 = 0, and bounded
by −b < r2− r1 < −c.

First, considering the stationary case∆Tsky = 0, ∆Tload = 0, thena = 1, b = −c are the con-
straints forn = 0. In this caseQack,1 andQack,2 defines the same condition

|r2− r1|
Tload,0

2
< qNsat. (2.72)

identifying simply a band around ther1 = r2 line. The effect of noise is taken in account by
putting n > 0, a difference arises betweena+ anda− so thatQack,1 defines a vertical band and
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Qack,2 a diagonal band whose intersection is the diamond-shaped region of figure5a. Changing
the ratio betweenσn,2/σn,1 will not change the shape but just the size of the region, see figure5b.
ChangingTsky andT load instead will change the shape of the allowed region, as shownin figure5c,
figure 5d and figure6a. If T load = 0 the saturation condition becomes|1− r i | · |A(t)| < qNsat i.e.:
1−qNsat/Amax≤ r i ≤ 1+qNsat/Amax, with Amax = max(|A(t)|). This defines a rectangular region
with diagonalr1 = r2. In the limiting case forn = 0, Amax → 0 the allowed region becomes the
whole plane, while in the opposite caseAmax→ ∞ the allowed region shrinks towardr1 = r2 = 1.

Perturbations in the sky channel, such as the cosmological dipole, introduce a fluctuation
which affects just the sky, in this case∆Tload = 0 anda = 1. Even here the simplest cases are
Tload,0 = 0, or the forbiddenr1 = r2. So max(|D(t)|) < qNsat is a sufficient condition which puts
a limit just onq. In the most general case from eq. (2.66) the limits of the allowed region are
−2∆Tsky/Tload,0−2qNsat/Tload,0 < r2− r1 < −2∆Tsky/Tload,0 +2qNsat/Tload,0

Other effects, such as instabilities of the 4-K reference-load, could affect justTload and∆Tsky =

0, b = 2qNsat/Tload,0 = −c. Even here the simplest caseT load = 0, and max(|A(t)|) < qNsat is a
sufficient condition which puts a limit just onq. In general a diamond-shaped region symmetrical
around the origin represents the allowed region as shown in figure6c.

Drifts in the gain of the amplifiers in the radiometers, such as those produced by thermal
effects, add correlated or anticorrelated signals in sky and reference-load. So the model case to be
considered is the one in whichA(t) ≈ ∆Tsky(t) ≈ ∆Tload(t). In this case witha = (b+ c)/2 and
eq. (2.62) and eq. (2.65) define the regions in figure6b and figure6d.

Before to conclude, it is interesting to consider the range of values assumed byP1 andP2

whenA in the rangeAlow < A < Aup then|Pi,Up−Pi,Low| = |Aup−Alow| · |1− r i |. To have identical
ranges, eitherr1 6= r2 andr2 + r1 = 2, or (r2− r1) = 2−2r1.

At last it is important to recall how in flightTsky,0 ≈ 2.73 K, Tload,0 ≈ 4 K while Tsky, Tload

fluctuations are expected at the level of at most some 10−2 K giving ∆Tload/Tload,0 ≈ ∆Tsky/Tload,0 ≈
some× 10−2, and hencea ≈ 1, b ≈ −c. But this condition could be severely violated at ground
during the ground tests, or in flight while the instrument is cooling down.

3 Optimizing the on-board processing

The optimization of the algorithm consists in determining the “best” combination of the set of
processing parameters i.e. the “best” n-tupleNaver, r1, r2, O, Sq or q. It is mandatory that the
optimization procedure will keep within safe limitsCr = CTgt

r .
The classical approach would require a function of merit anda searching algorithm through

the correspondingN×R4 parameters space to be applied to each of the 44 detectors. However a
reduction of the cardinality of space comes from the fact that, by-requirement, the nominalNaver

is fixed by the oversampling factor for the beam, so apart fromthe cases in which a different
oversampling is required, theNaver in nominal conditions is fixed. The only cases in whichNaver

could be varied are: i.) sampling of planets for beam reconstruction; ii.) ground testing and
diagnostics. The first case occurs when the beam has to be reconstructed with higher detail than the
one reachable with the nominal oversampling factornover = 3. So it is possible to ask the on-board
processor to decreaseNaver increasing proportionally the data-rate from the feed-horns which will
be affected by a planet. To arrange the higher-throughput ofscientific telemetry,q will have to be
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increased, increasing proportionallyεq. In the second case the value ofNaver could be varied either
to increase the time resolution, as an example if sampling ofsome perturbation characterized by
time scales compatible toNaver/ fsamplinghas to be investigated, or if some temporary shortage in the
telemetry rate is imposed, asking in this case to increaseNaver. Also while testing on ground for long
term drifts, the sky is replaced by a dummy load at constant temperature. In this case time resolution
is no longer an asset andNaver could be increased. A further reduction of the parameter space to be
explored comes from the fact that usuallyO is optimized in order to have mean[Tinterlaced+O] = 0
whereTinterlacedare the interlaced samples produced after by eq. (2.27). It is then easy to derive that
mean[Tinterlaced+O] = mean[T1] + mean[T2] + 2O so thatOoptimal = −(mean[T1] + mean[T2])/2,
and with some simple algebra

Ooptimal = −Tsky+
r1 + r2

2
T load, (3.1)

where the mean has to be computed over a suitable time span. What remains is aℜ3 parameter
space to be explored(r1, r2,q).

3.1 Target function

The target functionχ(r1, r2,q) for the optimization would i.) assesCr = CTgt
r to be kept within safe

limits; ii.) assesεq to be kept as small as possible; iii.) asses additive constrains. These constrains
do not allow a unambiguous definition of a target function. Asan example, even for a stationary
signal dominated by white noise,Cr computed on each packet is a random variable. So the question
is whetherCr = CTgt

r has to be interpreted strictly, i.e. forcing each packet to haveCr = CTgt
r or on

average leaving space for lower and higherCr? In general it would not be critical if some fraction
of the packets would be compressed at a rate lower thanCTgt

r . The requirement onεq is even worse
defined. Of whichεq the optimization has to refer to? As shown in section2.5 it is evident that
there is not a general definition forεq. Depending on the scope of the data acquisition it could be
more interesting to have a lowεq for Tsky or Tload or ∆T computed for some referencer. More over
neitherεq nor εq,diff are functions with a minimum and they vary over the full rangeof positive
values. In addition within a pointing periodN repeated sky samples are acquired. In making maps
repeated samples are averaged andεq will be reduced by a factor 1/

√
N [3]. So a relatively highεq

could be acceptable at the level of single samples when observing stationary sources. However the
ratio betweenεq and the noise will not change after averaging. So a convenient choice would be
to considerεq/σ , whereσ could be the RMS ofTsky, Tload or ∆T depending on the case. The only
hard constraint which has to be considered is that saturation must be avoided.

The general formula for the target function is

χ(Θ) = ∏
c

Qc(Θ)Πc, (3.2)

Θ is a vector in the parameter space,Qc is a function varying over the range[0,1] with Qc(Θ) = 1.
If Θ fits the particular criterionc for which the function is defined,Qc(Θ) = 0 if Θ does not fit
this criterion. Intermediate values may be also defined in the [0,1] range measuring the goodness
of fit. As an example, a criterion for optimalq is to haveγdiff = min(γdiff ), the corresponding
criterion function isQc(Θ) = min(γdiff )/γdiff . The exponentsΠc ≥ 0, with ∑c Πc = 1, are weights
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Table 1. List of possible criteria for parameters optimisation.

Condition Criterium

εq,diff = min(εq,diff ) Qc = min(εq,diff )/εq,diff

εq,sky = min(εq,sky) Qc = min(εq,sky)/εq,sky

εq,load = min(εq,load) Qc = min(εq,load)/εq,load

εq,load = εq,diff Qc = 1−|εq,load− εq,diff |/max(εq,load+ εq,sky)

εq,load = εq,sky Qc = 1−|εq,load− εq,sky|/max(εq,load+ εq,sky)

εq,diff = εq,sky Qc = 1−|εq,diff − εq,sky|/max(εq,diff + εq,sky)

defining the relative importance of each criterion within a given policy. In general it is better to
haveQc(Θ) functions which are derivable. In some case it is necessary to deal with poles that have
to be avoided. A method is to define a metricµc(Θ)≥ 0 with a single pole for whichµc(Θ) → +∞
and to takeQc(Θ) = e−µc(Θ) or Qc(Θ) = 1/(1+e−µc(Θ)). Typical criteria are shown in table1.

3.2 Analytical optimization

Analytical optimization (AO) is based on analytical formulas assuming either normally distributed
or uniformly distributed signals. At the root of AO is the requirement of minimizing the pro-
cessing errors, as an example theεq,diff . However given they diverge atr1 = r2 it is necessary to
consider the maximization of their inverse, as an example defining for εq,diff the functionΓdiff =

min(εq,diff )/εq,diff . These functions become 0 for ˘r1 = r̆2, unless either ˘r1 = r̆ or r̆2 = r̆ . Again it is
convenient to use the normalized parameters ˘r i , in this case the covariance matrix of the processing
errors is

Ĕq =
q̆2

12
1

(r̆2− r̆1)2

(

r̆2
1 + r̆2

2,
r̆1+r̆2

Rσ
r̆1+r̆2

Rσ
, 2

R2
σ

)

. (3.3)

In the framework of the low-level approximation forqopt calculation, after replacing eq. (2.53) into
theεq,diff from eq. (2.57), substitutingr i → r̆ i , q→ q̆ andr → r̆ = r/Rσ , its reciprocal is

Γdiff =
(r̆2− r̆1)

2

[(r̆1− r̆)2 +(r̆2− r̆)2] 4

√

(1+ r̆2
1−2r̆1ρsl)(1+ r̆2

2−2r̆2ρsl)
. (3.4)

Γdiff is symmetrical with respect to the axis ˘r1 = r̆2 and has a maximum where the processing error
has a minimum. There is no analytical way to maximizeΓdiff . However, figure7 shows the contour
plot for the various components of this function. The denominator is the product of a function
which is constant over circles centered on ˘r1 = r̆2 = r̆ (or r1 = r2 = r) and which increases with
the radius, and of

√
σ̆1σ̆2 which has a more or less elliptical form and that forρsl = 0 is centered

on r̆1 = r̆2 = 0. The numerator is null on the ˘r1 = r̆2 line, and it is constant over lines parallel to
r̆1 = r̆2 increasing with the distance from that line. Hence theΓdiff maxima must be symmetrically
aligned along a line normal to ˘r1 = r̆2. The line has to cross the ˘r1 = r̆2 line at r̆1 = r̆2 = r̆c, with
0≤ r̆c ≤ r̆, so that the maxima forΓdiff are located at

r̆1 ≃ r̆c±
1√
2
ℓ̆min, (3.5)
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Figure 7. Iso contour lines for the functions enteringεq,diff andεq,diff as a function of (r1, r2). Vertical blue
dashed linesσ1, horizontal blue dashed linesσ2, black dashed lines(r2 − r1)

2, blue contours(r1 − r)2 +

(r2 − r)2, red dashed contours
√

σ1σ2, and the red contours are the resultingεq,diff . The width of the lines
varies with the value of the function.

r̆2 ≃ r̆c∓
1√
2
ℓ̆min; (3.6)

whereℓ̆min measures their distance from the ˘r1 = r̆2 line. Numerically it is possible to show that in
the caseρsl = 0 sufficient numerical approximations toℓ̆min and ˘rc as a functions of ˘r are,

r̆c ≈ 0.6994˘r +0.2722, (3.7)

ℓ̆min ≈











0, 0 < r̆ ≤ 0.701,

−3.0836˘r2 +6.7034˘r +3.0969, 0.701< r̆ < 1,

−0.3985˘r2 +0.3367˘r −0.4369, 1≤ r̆ ≤ 10.

(3.8)

Figure8a represents a typical pattern forΓdiff (r1, r2) (the r̆ i are converted intor i), and it is assumed
r = 1/Rσ . The optimization produced by maximizing eq. (3.4) could be improved by using the
approximation for the entropy in sectionA which takes into account of possible overlaps between
the Q1 andQ2 distributions, allowing a better approximation toqopt(r1, r2). So in the figureΓdiff

have been computed by using the method in appendixA but black contour lines are those obtained
assumingH = H∞ at the root of eq. (3.4), it is evident that the two approximations agree quite well.
Crosses mark the position of maxima calculated with the approximated solution described above.
The Qack factor for this case does not reveal any saturation. So it is possbile to look for other
combinations of optimized parameters. As an example: figure8b) and c) are the equivalent ofΓdiff

computed forεq,sky, andεq,load. Of course whileΓsky has well defined maxima this is not true for
Γload given εq,load has not an upper limit. Figure8d) represents the product ofΓdiff andΓsky. We
may look at combinations of parameters where,εq,sky = εq,load or εq,sky = εq,diff or εq,load = εq,sky as
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Figure 8. Iso contour lines identifiing the regions in the (r1, r2) space where min(εq,diff )/εq,diff top–left,
min(εq,sky)/εq,sky top–right, min(εq,load)/εq,load bottom–left, and where all of theεq are as near as possible
at their minima, bottom–right. The lines are isocontours ofmin(x)/x which is 1 when the minimum is
reached. For the bottom–right frame the iso–contours are the cubic root of the product of the other frames.
In the top–left frame white+ denotes the positions of the analytical solution, the blackthick contour is
for min(εq,diff )/εq,diff = 0.5, the black thin contour lines are for min(εq,diff )/εq,diff assumingH ≡ H∞. The
simulation is forTsky = T load = 0, σsky = σload = 10 ADU, r = 1. No drifts are included.

in figure9a,b and c, orεq,diff ≈ εq,load ≈ εq,sky. Thus the product of the second group of criteria in
table1 can be used, assuming all theΠc = 1/4, as shown in figure9d.

3.3 Dealing with saturation

A more complex situation could arise if the selected optimalr1, r2 andqopt lead to saturation. In
this case either a(r1, r2,qopt) far from theΓdiff peak has to be selected orqopt has to be increased
in order to reduce the correspondingQack factor. In the first case the requirementCr = CTgt

r will be
assessed but the quantization error will be larger than the optimal one. To limit this error the new
(r1, r2,qopt) would have to be selected as much as possible along the ridge near theΓdiff peak ad as
much as possible far from ther1 = r2 line. In the second case we consider the fact thatQack ∝ 1/q
so it is possible to taker1 andr2 at theΓdiff peak but to take

qopt,Qack = SftQ
max
ack,1qopt(r

peak
1 , rpeak

2 )
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Figure 9. Comparison forεq,diff = εq,sky top–left,εq,diff = εq,load top– right,εq,sky = εq,load bottom–left and
the corresponding best fit regions bottom–right; as a function of (r1, r2). The lines are iso–contours of
exp(−|x|) wherex is the difference between the two arguments to be compared. For the bottom–right frame
the iso–contours are tracked for cubic root of the product ofthe comparison functions. The simulation is for
Tsky = T load = 0, σsky = σload = 10 ADU, r = 1. No drifts are included.

whereQmax
ack,1 = max(|Qpeak

ack,1|, |Q
peak
ack,2|) andSft > 1 is a safety factor which typically isSft = 2. Of

course in this case the data are compressed at an higher rate thanCTgt
r while the processing error

will be increased by a factorSftQ
max
ack,1.

3.4 OCA2K, non idealities and numerical optimization

Non-idealities in the signal and in the compressor cause theeffectiveCr to be different from the
expectedCTh

r , and in generalCTh
r > Cr. A formal way to account for this is to define a compression

efficiencyηCr ≤ 1 defined as:

ηCr =
Cr

CTh
r

, (3.9)

which could be decomposed in the product of the contributions of each non-ideality. In general
it is very difficult to account in a satisfactory way for even the most important non idealities as is
illustrated by the following examples.
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A group of non-idealities comes from the fact that each time anew symbol is discovered in
the data stream the compressor adds at the compressed outputa “stop” pseudo-symbol followed
by the uncompressed symbol. Then the compressor is coding the symbols in the input data stream
plus the “stop” pseudo-symbol and consequently the entropyfor the compressed data stream to be
introduced into eq. (2.17) is changed by a factorη−1

stop

η−1
stop= − ϕstop

1+ ϕstop
log2

ϕstop

1+ ϕstop
+

1+ log2(1+ ϕstop)

H(1+ ϕstop)
, (3.10)

whereϕstop = Nsymb/nsamples, Nsymb is the number of different symbols in the packet,nsamplesthe
number of samples stored in the packet andH comes from eq. (2.17). Note that forϕstop→ 0,
η−1

stop→ 1. In general for smallϕstop the addition of stopping symbols increases the entropy leading
to ηstop < 1, but whenϕstop is sufficiently large the compressed data chunk is diluted ina large
number of repeated symbols, reducing the entropy of the signals and givingηstop> 1. However the
potential gain inCTh

r is compensated by the need to add uncompressed symbols. IfNbits,code is the
number of bits needed to store the information used to decodea symbol, andLpck is the length of
the packet, then from the condition

nsamplesNbits

CTh
r

+NsymbNbits,code≤ Lpck;

and fromLin = nsamplesNbits, assuming the optimal caseLout = Lpck the dumping factor for the
compression efficiency is derived

ηstore=

[

1+
Nsymb

nsamples

Nbits,code

Nbits
CTh

r

]−1

. (3.11)

In general, for a stationary signalNsymb≪ nsamplesso thatηstore is a second order correction which
will be neglected in the remaining of the text, but it becomesimportant in the case of non-stationary
signals for whichNsymb≈ nsamples, which could occur in case of fast drifts.

Two non-idealities very complicated to be analyzed are the difference between the expected
entropy and the sampling entropy, and the compressor inertia. The theoretical estimates of entropy
and hence of the expected compression rate, gives the expected entropy calculated on an ideally
infinite number of realizations of samples. This means that even very infrequent symbols for the
samples are considered by theory. But the compressor storesa few hundreds of samples for each
packet leading to a truncated distribution of samples and consequently to a sampled entropy which
in general is smaller than both the theoretical expectationand the entropy measured on a long
data stream. In theory ifG(Q) is the cumulative PDF for the distribution of samples, and ifQ is
bounded betweenQinf andQsup it would be sufficient to rescale thefQ by 1/(G(Qsup)−G(Qinf))

and redefine accordingly the sum in the definition of the Shannon entropy. As an example, in the
case of a simple normal distribution cutting the distribution respectively at 1, 2, 3 and 4σ will
reduce the entropy as predicted from eq. (2.42) respectively by a factorηCr = 0.79, 0.89, 0.95
and 0.98. However, the difference between theoretical entropy, or even the entropy measured on
long data streams, and the sampling entropy measured on short packets could be changed by the
presence of correlations in the signals on scales longer than the typical time scale of a packet. The
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compressor inertia instead arises from the fact that the compressor takes some time to optimize its
coding scheme, leading to a further loss in compression efficiency.

The effect of all of these non idealities are too complicatedto be introduced in the theoretical
model, so that the tuning of REBA parameters based on the theoretical models has to be refined
by numerical optimisation. Numerical optimisation allowsto handle difficult cases in which the
hypothesis of the theoretical model fails, it allows experimentation with artificial perturbations
introduced in the signal and it includes higher order effects such as the packet-by-packet variability
of Cr. In addition numerical simulations must be used to verify the optimized parameters before
uploading them to the instrument.

With these aims the Onboard Computing Analysis (OCA) software was developed, composed
of a scanner, able to run the same test on different combinations of REBA parameters; an analyzer,
able to automatically extract relevant statistics on each test; an optimizer, able to apply different
policies defining when a combination of parameters is optimal or not selecting the best combina-
tions; a report generator, used to generate automated reports. Apart from REBA optimization the
development of theOCA libraries has been driven by the need to have a flexible environment for
testing ground segment operations as explained in [13]. Hence,OCA is able to read, decode, and
process small amounts of raw data coming from the Planck/LFIscientific pipeline from packets to
complete timelines.

At the core of the part of theOCA software dedicated to the REBA optimization there is aC++

kernel, (OCA2K) which processes the input data for each combination of REBAparameters perform-
ing: i. on-board mixing and quantization by using the real algorithm; ii. on-board compression by
using the on-board algorithm; iii. on ground decompressionand reconstruction.

It has to be noted thatOCA2K uses the sameC code for compression operated on-board. So it
does not emulate the compressor but uses the real compressor. In addition the validation of proper
emulation of the on-board and on-ground processing has beenprovided by using data generated in
the framework of the validation of Level-1. of the Planck/LFI DPC [13]. In that way we demon-
strated thatOCA2K processes the data in the same manner as the real processing chain.

The input ofOCA andOCA2K are short data streams of raw data downloaded from the instrument
just before on-board averaging or just after it (see figure2) depending on whetherNaver has to
be optimized or not. In outputOCA2K provides packet-by-packet measures ofCr and its related
quantities such as the estimated packet entropy, or the measured compression efficiencyηoca2k. It
provides also sample-by-sample estimates of critical parameters asεq, andQack.

DespiteOCA2K is written in C++, it remains a heavy, offline tool, which can not be directly
used for a crude exhaustive real-time optimization. This isthe reason for which analytical methods
have been developed. On the contraryOCA has the ability to use the analytical models to focus on
the relevant region of parameters space.

OCA allows the determination of the optimum parameters according to different optimization
strategies and constraints. This is important given the different ways in which REBA parameters
are optimized during ground tests and in flight. During ground testing the usual procedure has been
to stabilize the instrument and its environment, calibratethe DAE and then to acquire chunks of
about 15 minutes of averaged data to be analyzed byOCA to optimize the REBA parameters [20].
After setting the REBA parameters another session of 15 minutes of acquisition, this time with the
nominal processing described in figure2, is executed as a cross-check. In flight the procedure will
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be to acquire continuously data by using the nominal processing. Short chunks of unprocessed data
will be daily acquired in turn from each detector. The comparison of unprocessed with processed
data will allow to monitor of the processing error. In addition the REBA tuning might be repeated
daily on the chunk of unprocessed data in order to test whether some REBA parameters on-board
the satellite should be changed or not.

OCA could be used as a stand-alone application, but different interfaces forOCA to other pack-
ages have been created for different applications. For ground segment testingOCA provided an
IDL andC++ library used in a stand-alone program. The same occurred forthe Planck/LFI simu-
lation pipeline where parts of theOCA2K simulating on-board preprocessing and ground process-
ing, (excluding compression and decompression) have been included in the Planck/LFI simulation
pipeline. For the REBA optimization during the ground tests, OCA has been used within theLIFE
framework [21]. For routine operations in flightOCA has been included in thePEGASO [21] software
tool designed to monitor the instrument health and performances at the Planck/LFI DPC.

3.5 The OCA2 optimization algorithm

As a premise to REBA processing optimization, a value forNaver, aCTgt
r and a function of meritχ

appropriate to the case under analysis have to be fixed. As explained, in generalNaver is already
fixed by other considerations than REBA processing optimization. A slightly higher than needed
CTgt

r is taken in order to allow some margin. While theΓdiff is considered a sufficient function of
merit, but more complex functions, such as those in the family of functions presented in eq. (3.2)
are used as well.

To allow optimization, a data chunk long enough to allow the generation of about a hundred
compressed packets is acquired for each radiometer. In general, the data chunk is on-board pro-
cessed by allowing just coadding for the the givenNaver. For that chunk relevant statistics such as
Tsky, T load, σsky, σload, σsky,load, ∆Tsky, ∆Tload are measured and from themr andRσ are evaluated.

The analytical optimization is performed in order to i) determine in an approximate way the
region ofr1, r2 where the function of merit could have a peak; ii) to grid the regionr1, r2 (typically
by regular sampling); iii) to determine for each point in theregion the function of meritχ(r1, r2)

and (roptim
1 , roptim

2 ) as well as the(r1, r2) for which χ(r1, r2) has its absolute maximum; iv) and
finally for the previously determined(roptim

1 , roptim
2 ) to determine theOoptim = O(roptim

1 , roptim
2 ) and

the qth
optim = qopt(r

optim
1 , roptim

2 ). After that max(|Q1
ack(r

optim
1 , roptim

2 )|) i.e. the maximum value of
|Qack,i(t)| among theQack values determined on the data chunck forq = 1 (see eq. (2.60)) is
measured. From max(|Q1

ack|) qth
optim is corrected for saturation if needed. In fact, if max(|Q1

ack|) <

(1−Sft)qth
optim the analytical optimization returnsqth

optim as the best estimate ofq otherwise it forces
qth

optim = max(|Q1
ack|)/(1−Sft). In the latter caseqth

optim is said to besaturation-limitedand of

course in that case it is expected to haveCr > CTgt
r .

After the analytical optimization theqth
optim has to be numerically refined in order to take into

account the non-idealities of the compressor. Ifqth
optim is not saturation-limited theOCA2K is oper-

ated to determine, by a polynomial search, the bestqopt allowingCr = CTgt
r for given roptim

1 , roptim
2 ,

andOoptim. In general the search is performed forq in the range max(|Q1
ack(r

optim
1 , roptim

1 )|)/(1−
Sft) and 2qth

optim. If qth
optim is saturation-limited the numerical procedure could be in principle

skipped. However non-idealities could causeCr < CTgt
r even in this case and to check for this a
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single run of the numerical optimization is performed for the selected parameters. IfCr > CTgt
r the

procedure is concluded, otherwise the polynomial search isapplied.
When qopt have been numerically refined the numerical code forroptim

1 , roptim
2 , Ooptim and

qth
optim is runned once again to asses the processing error and the histogram of the packet-by-packet

compression rates.
The typical time to perform the optimization sampling(r1, r2) with a grid of 25×25 samples

and a TOI of about 15 minutes of data, is about 20 sec, so that the optimization of the whole set of
44 detectors takes less than 15 minutes including the overheads for data IO.

4 Results

As an examplification the results of REBA calibration and optimization in the framework of the
Planck/LFI ground tests are presented here. At first a singletest is analyzed to compare the analyt-
ical and the numerical optimization. After that the resultsof the calibration for the whole set of 44
detectors are presented for a real case.

The results of analytical v.z. numerical optimisation are compared by using real Planck/LFI
data acquired during the RAA tests of the instrument performed at Thales Alenia Space (Italy),
during the summer of 2006. Figure10a shows 12 min of data withNaver= 52, equivalent to about
56715 samples, while table2a gives the relevant statistics for the TOI. During the test the instrument
and its environment were stable, no strong drifts are present in the data. A clear correlation between
sky and reference-load is evident in the plot explaining theρsl ≈ 1 and the factor of six reduction
of the RMS when passing from undifferentiated to differentiated data. Also the separation between
sky and reference-load is not large being just 18σ . So after mixing the distributions forP1 and
P2 will stay well separated, with|∆distr|> 100, when|r2− r1|& 0.2. In this case it is reasonable to
expect that both the low-accuracy and high-accuracy methods to estimate analytically the entropy
will give comparable results. Indeed, both models to optimize the REBA parameters forCTgt

r = 2.4
give the same results as shown in the second column of table2b and table2c.

To test the goodness of the AO,OCA2K was run imposingq = 1 and taking the same values of
r1, r2 used for the AO. The predicted entropy of the processed TOI is compared in figure10b. There
the relative difference between the entropy measured all over the TOI and the entropy computed
analytically by using both methods is reported. Patches define intervals of accuracy in steps of
0.5% up to 3%. Both methods to estimate the entropy are good predictors of the measured entropy,
apart from the region marked with the white boxes where the low accuracy method overestimated
the entropy.

In a similar manner in figure10c the measuredCr and the predicted value from the high accu-
racy model are compared. Again the model is able to reproducewithin 20% or better the measured
Cr. As discussed before the differences can be ascribed mainlyto the difference between the sam-
pling entropy and the expected entropy ([2]) and the not-ideal behavior of the compressor ([2]). In
general the effect of the sampling entropy would result in a higherCr than expected while non ide-
alities in a lowerCr. Different ways can be used to calibrate these effects, however their interplay
with the statistic of the signal is complicated and it is preferable to use OCA2K to fine tune the
REBA parameters optimized by analytical mean, given that ingeneral the corrections required to
properly tune with respect to the analytical predictionq are at most of about a factor of two.
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a) b) c)

d) e) f)

Figure 10. Example of signal for the detector 2300 acquired during thetests and its optimization. Frame a:
are the sky and reference-load and∆T samples in analog–to–digital units (ADU). The differentiated signal
has been shifted up, having null mean. Relevant statistics are reported in table2a. Frame b: represents the
accuracy by which the analytical model is able to predict theentropy measured on the quantized signal as a
function ofr1 andr2 for q = 1. Contours of regions are for accuracies of 0.5%, 1%, 1.5%, 2%, 2.5%. White
boxes denote the regions where an accuracy worst than 3% is obtained by the simplest analytical model.
Outside these regions the two models are completelly equivalent. Frame c: represents the accuracy by which
the most sophisticated analytical model presented in Appendix A is able to predict theCr for q = 1. Contour
lines are for accuracies of 5%, 10%, 15%, 20%, 25%, and 30%. Frame d: comparesΓdiff for the analytical
model withΓdiff computed for the numerical model. Colours are forΓdiff analytical equal to 0.1, 0.2, 0.3,
0.4, 0.7, and 0.9 while contours are for the same values ofΓdiff numerical. The black hexagon identifies
the regions for the peaks ofΓdiff analytical, the crosses for the peaks ofΓdiff numerical. Frame e: the same
as of Frame d, but forΓsky. Frame f: in black on the left, the histogram ofCr obtained on the 111 packets
produced by the compression procedure with the optimized parameters of table2b. The figure gives also the
5% and 95% percentiles (p05 and p95) and the mean, and in red a gaussian fit of the histogram. In addition
the figure shows in red at the right theCr expected from the entropy directly measured on each packet,and
the theoretical compression rate expected from the theroretical model (CrTh) and from the entropy measured
on the whole quantized TOI.
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Table 2. Table for the optimization example illustrated in figure10. Subtable A) reports sky and reference-
load statistics together with their correlation, and the derived r andRσ . Subtable B) reports the optimized
REBA parameters, obtained respectivelly with the analytical approximation, and subsequently with a nu-
merical scan of the parameter space. The processing statistics are reported in the Subtable C) where the
processing errors and theCr expected from the analytical model are compared with the numerical results.
The third column of the subtable gives the theoretical expectations after replacingq obtained from theory
with q obtained by numerical means.

A) TOI Statistics
sky reference-load Combined

Mean [ADU] 12041.29 12313.63
RMS [ADU] 9.72 10.06
Slope [ADU/sec] 0.026 0.027
ρsl 0.9988
r 0.9779
Rσ 0.9659
RMS(∆T) [ADU] 1.45

B) Optimized Parameters
Analytical Numerical

r1 1.25 1.25
r2 0.83 0.83
O 785.41 784.39
q 0.203 0.317

C) Processing Statistics
Analytical with

Analytical Numerical Numerical q

Npck 97 111 –
∆distr 479.1 478.9 –
σ1 [ADU] 3.291 3.292 –
σ2 [ADU] 1.885 1.884 –
εq,diff [ADU] 0.043 0.067 0.068
εq,sky [ADU] 0.211 0.330 0.329
εq,load [ADU] 0.199 0.310 0.311
(σ/q)eff 9.7 6.2 6.2
max(|Qack|) 0.388 0.228 0.248
HTot bits 6.667 6.023 6.021
MeanH bits – 5.489 –
Mean ηoca2k – 0.828 –
Min Cr – 2.286 –
5% Cr – 2.333 –
Median Cr – 2.413 –
Mean Cr 2.4 2.414 2.657
95% Cr – 2.469 –
Max Cr – 2.510 –
RMS Cr – 0.045 –
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The numerically refined optimal parameters are reported in the third column of table2c, as it is
evident the only variation is just forq, the reason is explained by the contour plots in figure10d and
figure10e which compares the predicted analyticalΓdiff andΓsky with theΓdiff andΓsky obtained
for the numerically refined parameters. Very good agreementis obtained in the location of the
peaks which determines the optimalr1, r2 and in turn theO. For completeness the last column
of table 2d reports the theoretically estimatedQack, εq,diff , εq,sky and εq,load after replacing the
analytical optimalq with the numerical one. The very good agreement between the theory and the
experiment is evident.

As expected the quantization error for the differentiated data is smaller by about a factor of four
than the error for sky or reference-load and anyway the errorwill be a fraction of ADU, but larger
or comparable to the quantization error introduced by the ADC converter, which forNaver= 52 is
equivalent to≈ 0.04 ADU.

Eq. (2.24) expresses the processing error for an univariate normal distribution as a function of
theσ/q ratio, but from section2.5 it is evident that in the present case theσ/q ratio is not a good
measure of the processing error. At the opposite, it is possible to define an effectiveσ/q ratio in
terms of the processing error as

(

σ
q

)

eff
=

σdiff√
12εq,diff

; (4.1)

which expresses the number of independent quantization levels which could be accommodated
within 1σ . So this ratio gives an idea of how well the histogram of the differentiated data is sampled
assuming it could be represented by an univariate normal distribution.7 A proper sampling would
assure at least(σ/q)eff > 2 which is the case for this work as it is evident from table2c having
(σ/q)eff > 6.

Before concluding this comparison it is worth commenting the way in which the experimental
Cr is reported in table2c. This is best done by looking at figure10f where the histogram for theCr

of the 111 packets produced in the test is shown. Given the trueCr is a random variable, varying
from packet to packet we take the 5% and 95% percentiles assessing that in less than 5% theCr

will be respectively smaller or larger than the quotedCr, as well as the mean and the median (not
quoted in the figure) of the measuredCr. In this case it is evident that the targetCr >∼2.4 is achieved
in something less than half of the packets. So it would be better to introduce some safety factor as
an example, by requiringCTgt

r ≈ 2.6 or by requiring the medianCr to be 2.4, or better by asking the
5% percentile of theCr distribution to be≈ 2.4.

Figure 11 is representative of the results of the calibration for a whole set of 44 detectors
obtained during the Planck/LFI CSL test campaign in 2008 [20]. Data have been collected over
two acquisitions, the first one being used for the calibration itself and the second one to verify
the calibration performances. The environmental set-up and the onboard electronics were kept in
a stable state during both acquisitions. During the first acquisition, called “calibration run”, the
on-board computer was configured to apply just the downsampling step to the data but skipping
mixing, requantization and compression. The acquired datahave been ingested intoOCA2K to
generate a list of optimized processing parameters for a targetCr = 2.4. Having produced a set of
parameters for the REBA, the second acquisition, the “verification run”, has been obtained while

7The(σ/q)eff could be used to characterize the processing in the case the value ofεq,sky andεq,load is not relevant.

– 34 –



2
0
0
9
 
J
I
N
S
T
 
4
 
T
1
2
0
1
8

the instrument was set up to acquire data in nominal conditions, by using the same processing steps
that are going to be used during flight. At the same time data have been also acquired in the raw
format used in the “calibration run”. So for each detector couples of data streams with and without
on-board processing were obtained which have been comparedin order to measure the processing
error, following a procedure similar to the one described in[13].

Figure11 compares the meanCr, εq,sky/σsky, εq,load/σload, εq,diff /σdiff , whereσdiff is the r.m.s.
for the differentiated data. Bars in light colours are for results obtained by processing the data
taken in the calibration run with theOCA2 simulator. Bars in dark colours are the results from the
data processed by the instrument in the verification run. In both cases the same set of optimal
REBA parameters have been used. There is good agreement between the two runs, despite the
presence of a few systematics. Such differences are due to slight changes in the environmental
conditions between the two runs.8 Differences in channels belonging to the same radiometer (00
and 01, 10 and 11) are due to the fact that in the warm back end the two channels go through
separate acquisition lines, each of them being characterized by different noise properties [15].
Such differences are usually small, e.g. detectors (00, 01)and (10, 11) of Feed-Horn #19. In a
few cases however larger differences occurs, e.g. detectors (10, 11) of Feed-Horn #25. Again, the
relative processing errors for sky and reference-load are very similar, and in 95% of the detectors
they are below 0.4 with some extreme deviations such as detectors 10 of Feed Horn #25 and 11 of
Feed Horn #26 for whichεq,sky/σsky ≈ εq,load/σload>∼1. Here the optimalqopt is not peculiar with
respect to the values required for the other detectors, but optimal r1 andr2 are very similar having
|r2 − r1| = 0.04 which is the resolution of the search grid in the(r1, r2) space. Such relativelly
“coarse” resolution in the search grid for optimal(r1, r2) was imposed by constraining the need to
optimize the REBA parameters within a few minutes after the data acquisition. The coarseness of
the(r1, r2) grid is also the reason for the apparent coincidence of the mean values ofr1 andr2 for
different frequency channels in table3. In flight such time constraints will be removed allowing
a multi-step iteration of the optimization procedure and the use of a thinner grid. However, even
in those extreme cases, the correlation between sky and reference-load processing errors leads to a
much smaller error for the differentiated data, in all casesthe final processing error is always less
than 3.8% of the instrumental white noise. By scaling those numbersto the calibrated sensitivity
per sample and per detector, the calibrated processing error, ∆Tq, was derived. It is reported in
units of µK per sample and per detector in line 10 of table3. On average∆Tq is below the 3µK
level taken as a threshold for systematics [14] apart the detector 01 of the Feed-Horn #24 for which
∆Tq ≈ 3.2 µK.

The values for the optimal REBA parameters are mainly determined by the frequency of the
radiometric channel with some dispersion from detector to detector. Table3 gives representative
median values forr1, r2, q = 1/Sq from the CSL tests as well as for the quantities in figure11 and
the resulting data rate.O is omitted since it is the most variable parameter and it has no significative
impact onεq andCr. Table3 reports also the number of detectors for each frequency channel, the
Naver values which are kept constant, the compressed data rate perdetector, per frequency channel
and for the instrument as a whole. Quantities are reported inthe formx±δx whereδx represents

8In the CSL tests the satellite has been kept within a large cryogenic vacuum chamber which was not as stable as the
L2 environment is.
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Figure 11. Results for a typical session of REBA parameters tuning during the CSL test campaign. From
top to bottom the figure reports for each detector the meanCr, εq,sky/σsky, εq,load/σload, εq,diff /σdiff where
σdiff is the r.m.s. of the differentiated data. The red line in background of the top frame denotes the target
CTgt

r = 2.4. Values are represented by bars. Light-bars are the results from the calibration phase, where raw
data from the instrument are processed byOCA2. Dark-bars are results from the verification phase, where
processing is performed on-board. The second frame from Topgives an example for detector 00 of Feed-
Horn #19. Feed-horns are numbered according to the internalPlanck/LFI convetion assigning at Planck/LFI
the Feed-Horns numbers from #18 to #28. Detectors belongingto the same Feed-Horn are grouped together
as shown in the third frame from top.
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Table 3. Representative REBA Parameters, the measuredCr and relative processing errors from the CSL
tests for Planck/LFI. Detectors are grouped by frequency channel, for each quantityx the table reports its
group median and group standard deviationδx as a measure of the group internal dispersion,δx must be not
considered as an error.

Frequency Channel
30 GHz 44 GHz 70 GHz

Detectors 8 12 24
Naver 126 88 53

r1 1.042±0.032 1.042±0.024 1.042±0.012
r2 0.917±0.065 0.917±0.025 0.958±0.020

q [ADU] 0 .297±0.034 0.198±0.044 0.279±0.048

Cr 2.400±0.024 2.440±0.019 2.380±0.023
(εq/σ)sky 0.420±0.278 0.269±0.184 0.177±0.063

(εq/σ)load 0.432±0.267 0.271±0.183 0.178±0.063
(εq/σ)diff 0.0341±0.0016 0.0369±0.0010 0.0351±0.0010
∆Tq [µK] 1.759±0.148 2.412±0.356 1.905±0.287

Data Rate per Detector [bits/sec] 454.9±4.1 640.8±4.7 1108.2±9.8
Data Rate per Frequency Channel 3641.8 7689.9 26600.3

[bits/sec]
Total Data Rate [bits/sec] 37932

the standard deviation taken as a measure of the internal dispersion ofx within the given subset of
detectors. Of course this number must not be interpreted as an error and it must not be propagated.

The total data-rate in table3 is just 7% higher than the target data-rate 35.5 bits/sec. Again
this departure is mainly due to the limited resolution in thesearch grid as well as small changes in
the environmental conditions between the two runs. In orderto cope with this problem it is likely
that during operations a saferCTgt

r = 2.5 target will be set in place of the nominal 2.4.

Finally it is worth to consider the gain in the accuracy of theREBA optimization obtained
by the complex procedure described in section3 with respect to the fairly simple scheme used
in the earlier RAA test campaign [15]. During the RAA tests a simplified algorithm had been
applied based on the fact that puttingr1 = r the processing error for the differentiated data reduces
to eq. (2.59) which is independent ofr1 and r2. Hence, the only free parameters whereq and
r2 6= r. The optimization was performed by imposingCr = 2.4 and selecting those parameters for
which εq,sky ≈ εq,load≈ εq,diff . Even in this case the requiredCr = 2.4 was achieved butεq,diff /σdiff

was between[0.08,0.14], when compared to the currentεq,diff /σdiff ≤ 0.038 it is evident how this
procedure represents a substantial improvement. In particular LFI has as a target of keeping all of
the instrumental systematics and non gaussian noises in thedifferentiated data below 10% of the
instrumental white noise [15]. The optimization scheme described here allows the reduction of the
processing error on the differentiated data by a factor of four pushing it below this ambitious target.
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5 The impact of the on-board processing noise on the Planck scientific performances

A detailed analysis of the effect of on-board plus on-groundprocessing on the final scientific prod-
ucts of Planck is beyond the scope of this paper. The subject is simply too complex to be analyzed
here, and the analysis has to be specialized to take into account each specific kind of product ob-
tained from the Planck data i.e.: calibrated time lines, frequency maps, component maps, angular
power spectra for those maps and cosmological parameters. Neglecting in this discussion the role
of r1 and r2 it is enough to say that for most of these products the effect of processing could be
reduced to the effect of processing on the signal spectral decomposition in the time or in the spatial
domain. Without to enter in to too many details, some consideration could be derived from the
analysis reported in [3] and from a forthcoming work in progress [11].

In the extent in which the processing error for differentiated data is small when compared
to the fluctuations in the signal, the noise model for the quantization error could be applied to
derive the level of degradation in the noise properties of the instrument. In the Planck/LFI case, for
differentiated data(εq,diff /σwn) < 0.1 by using eq. (7) of [3] the final instrumental performances
will be degraded approximately by a factor

√

1+(εq,diff /σwn)2 < 1.01. This immediately applies
to the amplitudes of the spectral decomposition of the signal. Since processing acts as stationary
white noise it will increase by less than 1% the power excess introduced by the white noise. On
the other hand the effect on the phases will be similar to to random scrabling over the[0,2π]

interval, but even in this case the effect of quantization will be to increase by few percent the
effect of the instrumental white noise. It is immediately possible to extend these results to the
Planck/LFI calibration which will be based on measurents ofthe amplitude of the cosmological
dipole, to understand how, when compared to the white noise effect, the calibration accuracy will
be worsened by less than 1% by the processing noise.

The case of the Planck/LFI sensitivity to primordial non-gaussianities is more complex. In [3]
the level of perturbation to the measurements of primordialnon-gaussianities introduced by the
quantization were compared to the level of perturbation introduced by the residuals astrophysical
foregrounds concluding that they are very small. However, it is worth analyzing the effect of
processing on non-gaussianities even assuming an ideally perfect separation of the foregrounds.
To the extent that the quantizer has null expectation, null skewness and in general null central
moments of odd order, no effect is expected on tests of primordial non-gaussianity which are just
sensitive to central moments of odd orders. Of course a symmetrical quantizer will alter the central
moments of even order, such as the kurtosis. To estimate thiseffect it is sufficient to compare the
distribution of the processing noise from a uniform quantizer with the case of normal white noise
while taking the average overN repeated measures. In the white noise case the central moments of
even order areµn = Cg(n)σn/Nn/2, with Cg(n) = n!/(2n/2(n/2)!)σn. In the case of the quantizer
µ̃n(N,q) = C̃(N,n)(q/

√
12)n/Nn/2, whatever the form of̃C(N,n) is the Central Limit Theorem

assures that for anyn
lim

N→∞
C̃(N,n) = Cg(n) ,

but givenN is finite, a bias in the estimator for each moment of ordern will appear. Expanding
C̃(N,n) about 1/N up to the leading term

C̃(N,n) ≈Cg(n)

(

1+
An

Nn/2−1

)

,
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whereAn is a serie of coefficients having|An|< 1 whose first three elements areA2 = 0, A4 =−2/5,
A6 = −6/5, A8 = −12/7. Since for Planck/LFIN ≈ 60 the bias in the expectation of higher order
moments will be very small. In addition, sinceN is a characteristic parameter of a mission, any
bias due to processing in the estimators of central moments could be predicted and removed.

In closing these considerations it is worth noting that for Planck/LFI the most important lim-
itation to apply an hard requantization of data comes from the need to limit the effect on the total
power data rather than on the differential data. Firstly it has to be noted that the cancellation effect
of quantizzation errors on sky and reference-load from which eq. (2.57) is derived, applies only to
the(P1,P2) space of mixed data to the extent in whichq/σi <

√
12/3 for anyi = 1, 2. Another limit

in the maximum amount of processing noise which could be introduced in total power arises when
it is taken in consideration the fact that measurements in total power on the reference-load signal
have the potential to be a valuable tool as a source of diagnostics of instrumental systematics. An
example is given by the study of thermal effects induced by the instability of the reference-load
which could be detected by cross-correlatingTload with measurements of temperatures acquired
by thermometers located in the Planck focal plane, which limits the quantization onTload to be
εq,load/σload≤ 1/2 [11].

6 Final remarks and conclusions

As for many past, present and future scientific space missions, the ESA Planck mission has a
limited bandwidth to download the scientific data produced by its two instruments. The allocatable
bandwidth for the Planck/LFI is about 2.4 times lower than the raw data flow produced by the 44
detectors comprising the instrument, which is made of an array of 22 pseudo-correlation receivers,
each one comparing the signal received from the sky with a reference signal. To fit the allocated
bandwidth, data have to be preprocessed on-board and loss-less compressed prior to transfer to the
ground, where each step of the on-board preprocessing has tobe reversed to recover the original
information. Since not all of these steps are completely reversible, a overall reduction of the quality
of the data occurs, which has to be quantified and reduced as more as possible, in order not to
degrade the instrument performace.

This paper has presented a detailed discussion of the on-board plus on-ground processing for
Planck/LFI and of its free parameters which can be adjusted in order to fit the compressed data-rate
to the allowed bandwidth. In addition, this paper has presented a model to quantify the level of
distortion in the scientific data as a function of the free parameters for the on-board processing
and as a function of the attainable compression rate. At lastthe paper has reported on the way
these parameters are optimized to cope with the required bandwidth while limiting the processing
distortion.

Three new results about the way in which the output of a pseudo-correlation receiver could be
handled are presented. First, a new algorithm: mixing followed by requantization and interlacing
to prepare the data stream for compression, limiting at the same time the amount of processing
distortion is introduced. This method is effective, since most of the time variations in the sky and
reference-load data streams are correlated. Mixing reduces the effective variance of the signal to be
compressed, therefore relaxing the need for requantizing the data. At the same time the processing
errors in the mixed data are correlated, so that on-ground demixing introduces cancellation effects
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which reduce the re-quantization error in the differentiated signal. Second, a model which quanti-
fies the level of distortion in the scientific data as a function of the free parameters of the on-board
processing and as a function of the attainable compression rate is given. Third, it presents a general
procedure to search for optimized processing parameters which has to cope with the proper use
of the allocated bandwidth, requiring a nominal compression factor of 2.4, which has to limit as
much as possible the processing distortion, and has to be fast given that both in the pre-launch tests
campaign and in flight only a short time could be allocated foroptimization.

The optimization procedure is based on a combination of the analytical model and of a soft-
ware simulator, all integrated into a single applicative program calledOCA2 which takes as input an
uncompressed Planck/LFI data stream applying to it the whole on-board and on-ground processing
to measure the processing distortion and the data-rate. Thetwo approaches complement each other:
the analytical model is very fast and could be used to rapidlyselect regions of interesting combi-
nations of parameters; the simulator is able to handle conditions which hardly can be analytically
modelled and is used to refine the parameters identified by theanalytical model. The input data for
OCA2 can be provided indifferently by the Planck/LFI flight simulator [7] or from specific acquisi-
tion sessions performed during the test campaign or in flight. A wide selection of combinations of
processing parameters and optimization criteria can be explored by this code. In practice this work
shows that the analytical model is refined enough to allow a full optimization of all of the process-
ing parameters apart from the on-board re-quantization step, q, which has to be tuned numerically,
in order to account for a number of non-idealities in the dataand in the compressor, part of which
have been discussed in the paper. However, it is interestingto see that in no cases the difference
between the analytical and the numerical model in the optimizedq is larger than a factor two.

The last part of this work reports the performances of the optimized on-board algorithm in the
framework of the pre-launch tests required for instrument qualification. In that case it has been
demonstrated that the 2.4 compression factor required to operate Planck/LFI could be attained
introducing a modest quantization noise equivalent to a 3.8% of unprocessed signal rms, which is
equivalent to an increment in the final instrumental noise ofless than 1%. In particular processing
is not harmful to the scientific exploitation of Planck/LFI data such as as an example in the study
of primordial non-gaussianities.

In conclusion it is worth noting that the application of mixing followed by requantization is of
general use and could be extended outside the case of the Planck/LFI since it could be used in any
situation in which data alternatively taken from a signal source and a reference source are sent to a
remote station.
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A Approximation of the bivariate entropy

This section presents the approximation of the entropy for an interlaced bivariate distribution for
the two limiting cases of a uniform distribution or a normal distribution.

The case of two uniform distributions. This case is analyzed by defining the intervals where the
distributions are not null asQ1,l ≤Q1 ≤Q1,r andQ2,l ≤Q2 ≤Q2,r, and their widthsN1 = Q1,r−Q1,l,
N2 = Q2,r −Q2,l, their centersQ̄1 = (Q1,l + Q1,r)/2, Q̄2 = (Q2,l + Q2,r)/2. Without any loss of
generality alsoN1 ≤ N2 is assumed. The entropy is a linear function of|∆| =

∣

∣Q̄2− Q̄1
∣

∣ bounded
between the lower limit

Hmin =
1
2

(

1− N1

N2

)

H2−
N1

2

(

1
N1

+
1
N2

)

log2

(

1
N1

+
1
N2

)

+1, (A.1)

occurring the case the two distributions are completely overlapped, and the upper limit

H∞ = log2N1 + log2 N2+1, (A.2)

for the case of complete separation of the two distributions. So that

H =











|∆| < N2−N1
2 , Hmin

N2−N1
2 ≤ |∆| ≤ N2+N1

2 , (H∞ −Hmin)
2|∆|−N2+N1

2N1
+Hmin

N2+N1
2 < |∆|, H∞

. (A.3)

The case of two normal distributions. Without any loss of generality, it is possible to reduce to
the case of two sources of normal-distributed interlaced signals having respectively variances equal
to 1 andσ2 ≥ 1, and quantized with a quantization stepq < 1.

An approximation forH(∆distr,q,σ) can not be derived analytically, but in a manner similar
to the case of the uniform distribution the entropy is bounded between a lower limit,Hmin, and an
upper limitH∞, while varying∆distr. Figure12a shows how the entropy varies as function of∆distr

for three different values ofσ . In addition bothH, H∞ andHmin are proportional to− log2q so that
their differences does not depend onq. For this reason it is convenient to define theNormalized
Entropy

h =
H −H∞

Hmin−H∞
, (A.4)

which is just a function of∆distr andσ as shown in figure12b (as full lines) for three values ofσ .
Havingh, H −H∞ andq

H = H∞ − log2q+(H∞ −Hmin)h, (A.5)

note that there is no need to estimateHmin, and thatH∞ could be readily estimated from eq. (A.6)
by puttingσ1 = 1, σ = σ2/σ1, and expressingq in units ofσ1.

The difference(H∞ −Hmin) ≤ 1 bit is always positive and just function ofσ . It is null in the
limit σ → +∞ as shown in figure12c. The figure displays with a dotted line an approximation
obtained numerically for 1≤ σ2 ≤ 4000 for which

H∞ −Hmin = exp

[

5

∑
n=1

An(logσ2)
n +A0

]

, (A.6)
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Figure 12. Frame a: entropy variation for a couple of normally distributed signals as a function of∆distr

for three values ofσ . The reference entropy isH∞. Frame b: normalized entropy for a couple of normally
distributed signals as a function of∆distr for three values ofσ . Full lines: numerical integration. Frame c:
normalized entropy differenceH∞−Hmin as a function ofσ for a couple of normally distributed signals. Full
lines: numerical integration. Dots: approximated formula. Frame d: theσ∗ parameter as a function ofσ for
a couple of normally distributed signals. Full lines: numerical integration. Dots: approximated formula.

with A0 = 1.0893× 10−2, A1 = −8.3819× 10−2, A2 = −2.3699× 10−1, A3 = 4.8141× 10−2,
A4 = −5.1620×10−3, A5 = 2.1425×10−4 within an accuracy of±1.1%.

Forh a numerical approximation at a level of a±1% accuracy is

h≈ e
− ∆2

distr
2σ2∗ . (A.7)

Hereσ∗ is just a function ofσ , and it is bounded between 0.25558≤ σ∗ ≤ 0.30797 with an≈
21% variation, as shown in figure12d. An upper limit forh is derived by puttingσ∗ = 0.30797
which overestimae the entropy of at most(

√
H∞ −Hmin)0.16≤ 0.16. Howeverσ∗ is a function of

(H∞ −Hmin) allowing to derive numerically

σ∗ =
√

6.8497×10−2 +2.5965×10−2(H∞ −Hmin)+ ε (A.8)

with |ε | ≤ 2×10−2.
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With this approximation the typical accuracy in estimatingH is better than 0.01÷0.03 bits and the
optimalq for a givenHtgt can be derived from

log2 qopt = (Hmin−H∞)h+H∞ −Htgt, (A.9)

within a relative numerical accuracy of about 3%.
In short, the algorithm of optimization for givenr1, r2, q, σ1, σ2, T1, T2 is: i.) computeσ ,

∆distr, ii.) computeσ∗, h, H∞, H∞ −Hmin, iii.) computeqopt.

B ADC quantization

Throughout this work it is assumed that the ADC quantizationis not relevant. However, it is worth
to briefly recall its impact, in particular looking at the conditions at which the ADC noise could be
neglected.

For the Planck/LFI 14 bits ADC, the resolution, or quantization step,qADC is given by(Vmax−
Vmin)/214 Volts/ADU, and after averaging byNaver samplesqADC is reduced by a factor 1/

√
Naver.

The effect of the ADC resolution is to add in quadrature a non-Gaussian noise to the signals of
RMS 1/

√
12 before averaging and 1/

√
12Naver after averaging. In addition the ADC itself adds

a random read-out noise ofσADC ADU which after averaging is reduced toσADC/
√

Naver. When
combined these two noises define the readout noise whose RMS is σron =

√

1/12+ σADC before
averaging andσron =

√

1/12+ σADC/
√

Naver after averaging
When a signal of RMSσ0 is input to the DAE a gain,G, is applied and then the measured

RMS is
σ =

√

σ2
ron+G2σ2

0 , (B.1)

depending on the ratioσron/Gσ0. The measured RMS will be dominated by the ADC noise or
by the signal RMS. Signals whose RMS is comparable to the read-out noise are defined as weak
signals. Of course in the case of weak signals the read-out noise is no more negligible when, as
an example, theσ0 has to be measured in order to estimate theTsys. The same is true when the
variation of the RMS of the signal tacking in account of variations ofG has to be estimated [20].
In addition, given the 1/12 factor in front of the variance induced by the ADC contribution, the
read-out noise could be dominated by the ADC noise whenσADC > 0.3. As a practical example if
σADC ≈ 0.5 andσ0 ≈ 1 thenσron ≈ 0.57 and the bias in estimatingσ0 will be ≈ 15%.

C DAE tuning

In an ideal scheme of operations, the various stages of a complex instrument such as Planck/LFI
would have to be calibrated sequentially, so that the calibration of the REBA parameters would
be the last step of the calibration procedure [20] and would have no effect on the previous stages
of calibration. Practical experience has shown that there is a case in which the tuning of the ac-
quisition electronics has consequences on the subsequent tuning of the REBA parameters. Indeed,
the hypothesis at the root of the whole compression scheme isthat the noise variance of the input
signal is large. This is in general true but this hypothesis could fail if the variance of the signal after
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ADC quantization, on-board coadding and mixing becomes toosmall. In that case the signal will
be over compressed withCr > CTgt

r and the squared quantization error will be larger or equal tothe
signal variance. To avoid this case either the DAE gainG andNaver have to be properly tuned, or a
set of particular combinations ofr1, r2 values has to be excluded.

The problem is to ensureσ1 andσ2 to be greater than a minimalσtgt typically assumed to be at
least 2 ADU in a suitable range ofr1, r2 values. From eq. (2.35) it is evident that theσ2

i as a function
of r i defines two identical concave parabolas with a minimum inr1 = r2 = rmin = σsky,load/σ2

load,
where bothσ1 andσ2 takes the value

σmin = σsky

√

1−ρ2
sl, (C.1)

whereρsl is the correlation coefficient between sky and reference-load. Note thatσmin = 0 just as
in the case of a perfect correlation between sky and reference-load. So a sufficient condition to
asses proper DAE calibration is

σtgt < σsky

√

1−ρ2
sl, (C.2)

which puts a constraint on the minimumG/
√

Naverwhich could be accepted. In particular assuming
the quantization and the readout noise are small with respect to the sky and reference-load RMS,
at first order

G√
Naver

>
σtgt

σsky,0

√

1−ρ2
sl

, (C.3)

whereσsky,0 is the sky RMS withG = 1 and no averaging is applied.

It could happen that in some cases the condition (C.3) can not be full-filled for any reasonable
value ofG andNaver. So aforbidden regionin ther1, r2 space is defined by the need to haveσtgt <

min(σ1,σ2). This defines a “cross” centered intor1 = r2 = rmin = σsky,load/σ2
load, see figure13,

with “harms” parallel to the two axis of ther1, r2 space and having for each harm a width

∆r = 2
σsky

σload

√

(

σtgt

σsky

)2

− (1−ρ2
sl) . (C.4)

During DAE calibration the evolution of∆r asG/
√

Naver varies can be monitored. In general the
optimization ofr1 and r2 is performed by scanning a rectangular region in the(r1, r2) space of
limited width, thus an informative parameter to avoid to prevent a proper REBA calibration after
DAE calibration is to check the fraction of area of the regionof interest excluded by the DAE
calibration fDAE,excl. It is not possible of course to write a general formula for all the possible
cases, but ofρ2

sl is small the excluded region has a center nearr1 = r2 = 0, while the optimization
region is a square, centered on the origin with−r lim ≤ r1, r2 ≤ +r lim in that case

fDAE,excl =
(4r lim −∆r)∆r

4r2
lim

. (C.5)
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Figure 13. The region of ther1, r2 space excluded by the conditionσ1,σ2 > σtgt, red. The width of the two
crossing bands,∆r, is given by eq. (C.4). In this casefDAE,excl ≈ 0.35.
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