MESSA A PUNTO DI UN METODO PER LA VALUTAZIONE DI ANTICORPI ANTI-NR2 PER LO STUDIO DELLA LORO ASSOCIAZIONE CON DISTURBI COGNITIVI SU BASE AUTOIMMUNE (MED/09)

Tesi di Dottorato di Ricerca di:
Dr.ssa Valentina Broggin
Matricola R07521

Tutor: Prof. Pier Luigi Meroni
Coordinatore Del Dottorato: Prof. Carlo Vergani

Anno Accademico 2009/2010
INDICE

SUMMARY 5

INTRODUZIONE

Autoimmunità 9

Le malattie reumatiche autoimmuni 10

Autoanticorpi 11

Anticorpi anti-nucleo (ANA) 13
Anticorpi anti-ENA 13
Anticorpi anti-dsDNA 14
Anticorpi antifosfolipidi (anti-Cl e anti-β2GPI) 16

Il Lupus Eritematoso Sistemico (LES) 17

Eziopatogenesi 19
Quadro clinico 21

La Sindrome da Anticorpi Antifosfolipidi 22

Quadro clinico 24

Manifestazioni neurologiche nel LES e nell’APS 25

Eziopatogenesi 28

SCOPO DELLA TESI 34

MATERIALI E METODI

Pazienti e controlli 35

Determinazione di anticorpi anti-NR2 36
Determinazione dei livelli di cut off, della specificità e della sensibilità 38

Altri autoanticorpi indagati 38

Test neuropsicologici

- Mini Mental State Examination (MMSE) 42
- Test delle Matrici (Visual Search) 42
- Trail Making Test (TMT) 43
- Aprassia Costruttiva 43
- Street’s Completion Test 44
- Matrici Progressive di Raven 44
- Test per l’Acalculia 45
- Token Test 45
- Fluenze Verbali 46
- Test delle 15 Parole di Rey 47
- Torre Di Londra 47
- Clock Drawing Test 47
- Stroop Color Word Interference Test 48
- Digit Span 48
- Test Di Apprendimento Di Coppie Di Parole 49
- Test Di Corsi 49
- Breve Racconto 50

Strumenti psicodiagnostici

- State -Trait Anxiety Inventory - Forma Y (STAI - Y) 50
- Beck Depression Inventory (BDI) 51
- Symptom Check List (SCL-90) 52
- Profile Of Mood States (POMS) 53
- Questionario SF-36 53

Analisi statistiche 54

RISULTATI

- Protocollo ELISA per anti-NR2 con decapeptide 55
- Cut-off 57
- Specificità 58
Indice

Sensibilità 58

Livelli di anti-NR2 nelle diverse popolazioni e confronto risultati ELISA con decapeptide e con peptide ramificato 59

Profilo anticorpale di LES e PAPS 61

Cross-reattività tra anticorpi 61

Test neuropsicologici

Test cognitivi tradizionali 62
Test psico-emotivi 64

Associazione profili anticorpali – performance cognitive 66

DISCUSSIONE 68

BIBLIOGRAFIA 74
Cognitive impairment is a worrying problem in aging, and it is a common cause of disability, with considerable social, economical and health costs.

Frequently it is not a consequence of pathological events, like stroke, ischemic lesions, head injury, infections etc... but the mechanisms are unknown. Some pathologies, like Systemic Lupus Erithematosus (SLE) and Antiphospholipid Syndrome (APS) may contribute to the onset of cognitive impairment. SLE and APS patients display an increased risk of developing cognitive impairment as a consequence of central nervous system (CNS) involvement, mediated by vasculopathy of intracranial vessels, local or systemic production of inflammatory mediators and generation of specific autoantibodies (autoAbs). Recently a subset of anti-dsDNA autoAbs, cross-reacting with the NMDA glutamate receptor subunit NR2, has been detected in SLE patients. There is also evidence from in vitro experiments and in murine models that these autoAbs may be responsible for cognitive impairment. However a clear clinical association between these autoAbs and cognitive defects is still matter of debate in human studies. Lack of standardization in both the classification of neuropsychiatric (NP) events and the methodology used for autoAbs detection are likely the causes for the contrasting results reported in literature.

Anti-NR2 autoAbs are reported with a prevalence of 30% in SLE, instead no data are available on the occurrence of these autoAbs in primary APS (PAPS).

The aims of this study were i) to compare the sensitivity/specificity of different techniques for anti-NR2 titration, ii) to investigate whether anti-NR2 autoAbs can be detectable in PAPS and iii) to evaluate the incidence of cognitive impairment in LES and PAPS patients, iv) to evaluate whether the presence of anti-NR2 Abs could be potentially able to predict the appearance of NP manifestations in these patients.

We performed two different immunoenzymatic assays for anti-NR2 autoAbs detection using two different antigenic forms of NR2, a decapeptide and a
branched peptide. The cut-off, the sensibility and the sensitivity of both tests were calculated.

We enrolled 20 SLE and 33 PAPS patients with or without CNS involvement and they were tested for anti-NR2, as well as for ANA, ENA, anti-nucleosome (anti-NCS), LAC, anti-CL, and anti-β2GPI Abs.

Among patients, 19 SLE and 15 PAPS underwent an extensive neuropsychological and psychodiagnostic assessment. Attention, executive functions, language, memory, visuo-spatial pianification, praxis and visual discrimination were investigated. Psychological status was assessed with Symptom Checklist, Beck Depression Inventory, State-Trait Anxiety Inventory-Y and Short-Form Health Survey-36.

The two different assays for anti-NR2 detection showed high heterogeneity in terms of specificity, ranged from 70% in decapeptide ELISA to 89% in branched peptide ELISA, respectively. The assay sensitivity was statistically comparable, with a percentage of positive SLE sera near to the expected 30% in both decapeptide and branched peptide ELISA.

In PAPS the prevalence of Anti-NR2 autoAbs varied from 61% to 24% when the decapeptide or branched peptide were used as antigenic target, but in both cases no association with CNS involvement was found.

67% and 80% of PAPS sera with high antiB2GPI activity were negative for anti-NR2 using as antigen decapeptide or branched peptide, respectively, suggesting that there is not any association between these antibodies (Rj = 0,05; Rj = 0,14) and a cross-reactivity is unlikely.

About association between anti-NR2 and anti-NCS autoAbs, only 25% PAPS sera with medium/high titer of anti-NCS were negative for anti-NR2 (Rj = 0,44) using decapeptide. The percentage increases to 50% with branched peptide (Rj 0,044). These differences might be due to a higher stickiness of the decapeptide.
Qualitative and quantitative differences were detected in neuropsychological profiles between APS and SLE patients: SLE patients had significantly bad performance in calculation, executive functions, frontal inhibition, visuospatial planning, memory; 80% PAPS had at least a cognitive impairment and they had significantly bad performance in lexical evocation, visual discrimination. Moreover, psychoemotional tests revealed that PAPS patients show more frequently anxiety, while SLE patients are more prone to depression.

Positive and negative correlations were found between anti-dsDNA, anti-CL or anti-b2GPI and different neuropsychological and psychoemotional tests.

Our results suggest that anti-NR2 assay using branched peptide as antigen seems to be more specific than the one using decapeptide. As different techniques give different results more set up experiments are needed in order to select the best assay for anti-NR2 autoAbs detection.

Anti-NR2 Abs may be found both in SLE and PAPS. This finding is in line with the fact that several autoAbs against nuclear antigens can be found in PAPS making the two diseases close each other.

Neuropsychological profiles demonstrate that SLE and PAPS patients both present a mild cognitive impairment, that could have a significant influence on patient’s lifestyle. So SLE and PAPS patients could be at risk of developing dementia.

A not clear association between anti-NMDA Abs and cognitive impairment was observed. Probably Abs couldn’t pass the emato-encephalic barrier and damage brain cells or the tests could have been performed in a remissive phase of the cognitive damage.
INTRODUZIONE

I disturbi cognitivi sono uno degli aspetti dell’invecchiamento che suscitano maggiore preoccupazione. La componente cognitiva dell’invecchiamento è molto legata all’involuzione della struttura del Sistema Nervoso Centrale e sostanzialmente alla riduzione progressiva del numero delle cellule nervose e delle loro connessioni. Tra i fattori cerebrali dell’invecchiamento, la perdita neuronale, la riduzione delle connessioni interneuroniche e le modificazioni dei neuromediatore hanno una diretta ripercussione sull’assetto cognitivo.

Il deficit cognitivo rappresenta una delle cause più diffuse di disabilità, con costi sociali, economici e sanitari rilevanti. I soggetti affetti da demenza infatti perdono progressivamente la capacità lavorativa e di relazione fino a divenire completamente dipendenti. Questo a sua volta determina un notevole costo ed ha un notevole impatto economico sia diretto, correlato all’assistenza medica, che indiretto, in termini di tempo attivo perso dai pazienti e dai loro familiari.

Il declino cognitivo può presentarsi con diversi livelli di gravità, fino al quadro più estremo di questo processo, ossia la demenza. Molto spesso non è conseguente ad eventi patologici come ictus, lesioni ischemiche, traumi cranici, malattie neurodegenerative encefaliche, infezioni, etc. ma le cause ed i processi rimangono ignoti. Alcune patologie possono contribuire a determinare l’insorgenza di questi deficit, tra cui le patologie autoimmuni sistemiche, quali il Lupus Eritematoso Sistemico (LES) e la Sindrome da Anticorpi Antifosfolipidi (APS), che possono determinare un deficit cognitivo già in giovane età e contribuire a un grado più severo di deficit in età avanzata.

Negli ultimi anni le maggiori conoscenze dei meccanismi patogenetici che sono alla base delle malattie autoimmuni sistemiche hanno portato allo sviluppo di terapie sempre più efficaci e ad un conseguente consistente allungamento della sopravvivenza (1,2).

Il prolungamento dell’aspettativa di vita in questi pazienti ha fatto emergere negli ultimi anni alcune problematiche correlate all’età avanzata. Tra questi, il
coinvolgimento del sistema nervoso centrale riveste una particolare importanza a causa della morbilità ad esso correlata.

AUTOIMMUNITÀ

Le malattie autoimmuni (MAI) sono condizioni patologiche differenti per importanza clinica, per rilevanza epidemiologica e per meccanismi fisiopatologici, ma accomunate dal ruolo patogenetico di reazioni immunologiche conseguenti a fenomeni di autoriconoscimento da parte del sistema immunitario.

E’ ormai noto che il sistema immunitario dispone di molteplici livelli di regolazione per impedire l’insorgenza di autoreazioni immunopatologiche dannose, che comportano l’eliminazione/inattivazione durante la fase maturativa dei cloni dei linfociti T e B ad alta affinità: si può così definire tolleranza immunologica (self tolleranza) l’incapacità del sistema immunitario di generare una risposta patogenica contro auto-antigeni (3,4). La tolleranza immunologica è quindi funzione acquisita durante l’ontogenesi, attraverso la maturazione e la selezione del repertorio (delezione/anergia clonale) ma ad essa concorrono in maniera importante anche meccanismi periferici di regolazione, come la delezione periferica, l’anergia clonale periferica e l’inibizione da parte di linfociti T ad azione regolatoria (5), e non si basa sull’inaccessibilità al contatto col sistema immunitario di potenziali auto-antigeni.

L’alterazione dei meccanismi di tolleranza immunologica determina l’insorgenza di MAI. La patogenesi delle MRA è molto complessa e coinvolge sia componenti dell’immunità innata che acquisita (6,7). Le principali tappe dello sviluppo dell’autoimmunità sono: i) aumento di apoptosi e/o difetto nella clearance del materiale apoptotico con aumento della presentazione degli auto-antigeni; ii) attivazione e differenziazione dei linfociti B e T autoreattivi; iii) danno d’organo mediato da autoanticorpi, immuno-complessi, complemento e linfociti T. Lo sviluppo di una patologia autoimmune può essere comunque condizionato dalle concentrazioni di auto-antigeni presenti in circolo, e quindi da alterazioni della
Introduzione

sua clearance e dalle modalità della processazione e presentazione antigenica. Per la diagnosi di MAI la presenza di autoanticorpi è condizione necessaria ma non sufficiente, in quanto la definizione di malattia prevede evidenze cliniche di danno d’organo o interessamento sistemico. D’altra parte è possibile riscontrare autoanticorpi, transitori o permanenti, anche in assenza di malattia.

Le malattie autoimmuni si distinguono in organo-specifiche e non-organo specifiche o sistemiche (MAIS) in base della localizzazione della malattia e a differenze patofisiologiche. Le organo-specifiche presentano autoanticorpi specificamente diretti verso costituenti di tessuti e/o organi (es. anti-cellule parietali gastriche) e interessamento prevalente di un singolo tessuto/organo. Le MAIS sono caratterizzate dalla presenza di autoanticorpi diretti contro antigeni ubiquitari (es. acidi nucleici, proteine nucleari, immunoglobuline) e da lesioni di tipo infiammatorio, in parte dipendenti da meccanismi anticorpo-mediati (per es. deposizione di immunocomplessi), a carico di differenti organi o apparati in diversi distretti dell’organismo.

Studi in vivo, in pazienti e modelli animali depongono per una eziopatogenesi multifattoriale delle malattie autoimmuni che coinvolge sia fattori genetici/endogeni predisponenti che possibili fattori esogeni.

Le malattie reumatiche autoimmuni

Tra le MAIS sono comprese le malattie reumatiche autoimmuni (MRA) in cui è possibile identificare due aspetti caratteristici: il coinvolgimento dell’apparato muscoloscheletrico, regione per cui vengono classificate tra le malattie reumatiche, e la patogenesi autoimmune. L’eziologia di tali patologie non è ancora completamente nota ma sembrano essere coinvolti sia fattori predisponenti come quelli genetici e ormonali, sia fattori scatenanti quali agenti infettivi (virus, batteri), fattori ambientali (raggi UV, esposizione ad agenti chimici) e alcuni farmaci.

Le principali sono l’artrite reumatoide (AR), il lupus eritematoso sistemico (LES), la sclerosi sistemica o sclerodermia (SSc), la polimiosite-dermatomiosite (PM-
Introduzione

DM), la sindrome di Sjögren (SS), la connettivite indifferenziata (UCTD), le connettiviti in overlap, la sindrome da anticorpi antifosfolipidi (APS) e le vasculiti.

Gli autoanticorpi rappresentano l’alterazione immunologica più caratteristica nella patogenesi delle MRA. Sono anticorpi di classe IgG monospecifici ad alta affinità per l’antigene, che possono essere non-organo e non-specie specifici e che hanno come bersaglio un ampio spettro di molecole intracellulari nucleari e/o citoplasmatiche (8). Sono presenti a titolo elevato e numerose evidenze cliniche e sperimentali dimostrano come la loro comparsa preceda lo sviluppo delle malattie autoimmuni. Gli autoanticorpi rappresentano importanti marker per la diagnosi delle MRA e alcuni sono specifici per una singola malattia, come l’anti-DNA nativo e l’anti-Sm per il LES (9).

GLI AUTOANTICORPI

La dimostrazione di una risposta umorale e/o cellulo-mediata ed il riconoscimento di uno specifico auto-antigene costituiscono i due principali criteri patogenetici proposti ed utilizzati per riconoscere l’origine autoimmune di una malattia.

Gli auto-antigeni ed i correlati anticorpi rappresentano i fondamentali protagonisti dell’interazione autoimmune; essi differiscono tra loro per localizzazione tissutale, sede cellulare, struttura e ruolo biologico.

Non sono ancora completamente noti i meccanismi molecolari che trasformano un normale componente cellulare in auto-antigene, né le ragioni per cui solo alcune molecole acquisiscono questo ruolo.

Gli autoanticorpi coinvolti nelle malattie autoimmuni sono costituiti da immunoglobuline prevalentemente di classe IgG ma anche di classe IgM e IgA e la loro comparsa può precedere l’insorgenza di manifestazioni cliniche. Possono svolgere il ruolo di marcatori patogenetici, predittivi, diagnostici e/o prognostici di malattia.
Autoanticorpi come marcatori patogenetici

Sebbene in molti casi gli autoanticorpi sembrano costituire una manifestazione secondaria nelle malattie autoimmuni sistemiche, per alcuni di essi si ipotizza un diretto ruolo patogenetico. Generalmente, questo tipo di anticorpi sono in grado di indurre le alterazioni tipiche della malattia in modelli sperimentali che mimano la malattia nell’uomo, presentano un titolo che correla in modo significativo con il grado delle alterazioni tipiche della malattia, e la loro presenza nel siero di soggetti sani precede la comparsa della malattia clinicamente evidente.

Ad esempio nel LES, gli anticorpi anti-DNA a doppia elica e gli anticorpi antinucleosomi possono essere direttamente responsabili dell’interessamento renale attraverso la formazione di immunocomplessi (10,11), mentre gli anticorpi antiproteine ribosomiali si legano ad uno specifico recettore di membrana e penetrano nelle cellule viventi inducendo citolisi ed apoptosi dei linfociti (12).

Autoanticorpi come marcatori predittivi di malattia

Alcuni autoanticorpi compaiono molto precocemente e spesso precedono la fase clinica acquisendo il ruolo di indicatori in grado di predire l’insorgenza di una specifica malattia autoimmune. Numerose sono le evidenze cliniche sul ruolo predittivo di alcuni autoanticorpi, come per esempio gli anti-dsDNA e gli anti-antigene Smith (anti-Sm) nel LES (13, 14).

Autoanticorpi come marcatori diagnostici di malattia

Alcuni autoanticorpi caratterizzano specificamente alcune malattie autoimmuni e rientrano nei criteri diagnostici come parametri serologici. Tra questi ci sono anti-nucleosomi, anti-dsDNA e anti-Sm per il LES, e gli aPL per l’APS. In alcuni casi, gli autoanticorpi sono associati a specifici sottotipi di malattia autoimmune, caratterizzati da particolari interessamenti d’organo (11,13,14).

Gli autoanticorpi riscontrabili nelle MRA costituiscono un gruppo eterogeneo comprendente anticorpi anti-nucleo (ANA), anti-antigeni nucleari estraibili (anti-
Introduzione

ENA), anti-dsDNA e antifosfolipidi (aPL: anti-cardiolipina [aCL] e anti-beta2 glicoproteina I [anti-b2GPI]).

Anticorpi anti-nucleo (ANA)

Gli anticorpi anti nucleo sono un gruppo eterogeneo di autoanticorpi non organo specifici diretti contro vari auto-antigenti nucleari e citoplasmatici (ad es. DNA, centromero, nucleoli). Vengono utilizzati come test di I livello per la diagnosi di MAI.

Sebbene il LES sia la patologia che tipicamente presenta positività agli ANA, tali autoanticorpi sono rilevabili in una serie di altre condizioni autoimmunitarie, come la sindrome di Sjogren, la connettivite mista, la sclerosi dermica progressiva (PSS), l'artrite reumatoide. Gli ANA si riscontrano positivi anche in circa un terzo di persone sane che non hanno alcuna patologia autoimmunitaria, anche se a titolo basso, ed il fenomeno è tanto più marcato quanto più avanzata è l'età dei soggetti (18).

Anticorpi anti-ENA

Gli anticorpi anti-ENA sono diretti verso antigeni di natura proteica che rivestono un ruolo essenziale per la vita della cellula, in quanto coinvolti in processi di proliferazione e sintesi proteica. Gli ENA più importanti per la diagnosi di MAI sono SSA/Ro, SSB/LA, Scl70, Sm, RNP e P-ribosomiale.

In pazienti con LES sono spesso presenti anticorpi anti-Sm e anti-RNP. Sm e RNP sono complessi ribonucleoproteici presenti nel nucleo che mediano la processazione dell’RNA (16). Gli anticorpi anti-Sm sono diretti contro 7 proteine (B/B’, D1, D2, D3, E, F, G) che formano il core comune di piccole particelle ribonucleoproteiche. Gli anticorpi anti-RNP reagiscono con proteine (A, C di 70 Kd) associate all’RNA U1, formando il complesso U1snRNP. Gli anti-Sm e gli anti-RNP sono entrambi diretti contro epitopi sia discontinui che lineari presenti nella sequenza proteica o derivanti da modificazioni post-traduzionali. Gli anticorpi
anti-Sm sono rilevabili nel 5-30% di sieri di pazienti LES mentre quelli anti-RNP nel 25-47% dei pazienti (14).

Anticorpi anti-dsDNA

Gli anticorpi anti-dsDNA, diretti contro il DNA a doppio filamento, sono considerati marker di diagnosi e prognosi per il LES. Il titolo sierico di questi anticorpi è correlato con la fase della malattia e la presenza di immunocomplessi DNA-anti-dsDNA a livello dei tessuti danneggiati suggerisce un loro coinvolgimento nel meccanismo patogenetico del LES (10). Come dimostrato attraverso studi di selezione del sito attivo, gli anti-dsDNA riconoscono preferenzialmente specifiche sequenze di DNA con triplette di adenosina e lunghi tratti di purine (17). Il loro meccanismo patogenetico dipende soprattutto dal reclutamento di cellule infiammatorie attraverso il legame dei recettori Fc e dall’attivazione del complemento attraverso le IgG (18).

Dal momento che il DNA è una molecola con basso potere antigenico, è stato proposto che la risposta autoimmune sia diretta verso complessi DNA-proteine (nucleosomi). La diffusa apoptosi e una ridotta clearance delle cellule apoptotiche da parte dei fagociti può portare ad un aumento dell’esposizione dei nucleosomi apoptotici, in particolare di alcuni epitopi normalmente non accessibili, al sistema immunitario. Ciò può portare ad autoimmunità, attraverso l’attivazione di cellule T autoreattive contro i nucleosomi e successivamente alla produzione di autoanticorpi anti-nucleosomi, anti-istoni e anti-dsDNA. Alcuni anti-nucleosomi sono patogenici e risultano coinvolti nel LES nefritico. Differenti studi hanno dimostrato come: i) l’aumento dei nucleosomi circolanti nel plasma è correlato alla patologia attiva; ii) i nucleosomi si depositano a livello glomerulare e della membrana basale della pelle non danneggiata in pazienti LES; iii) esiste una stretta correlazione tra la nefrite e presenza di anticorpi anti-nucleosomi. Recentì studi hanno inoltre evidenziato la presenza di questi autoanticorpi in pazienti APS (11).
Inoltre alcuni studi hanno dimostrato che gli anticorpi anti-dsDNA possono cross-reagire con una sequenza pentapetidica presente nel recettore per l’acido glutammico, il recettore N-Metil-D-Aspartato (NMDA) di tipo 2 (NR2), sia nei topi che nell’uomo. Infatti attraverso l’inoculo di anticorpi monoclonali anti-dsDNA, De Giorgio et al. hanno dimostrato che una particolare classe di anti-dsDNA è in grado di interagire con i recettori NMDA e induce in tal modo morte neuronale per via apoptotica (19). Questi particolari anti-dsDNA sono stati denominati Anticorpi anti-NR2 e recentemente sono stati descritti in pazienti affetti da LES. In media gli anticorpi anti-NMDA sono presenti nel 30% circa di pazienti con LES e sono evidenziabili sia nel siero che nel fluido anche se sembrano maggiormente associati a disturbi neuropsichiatrici quando presenti nel fluido (20).

Il recettore NMDA appartiene alla classe dei recettori ionotropici attivati dal glutammato, il principale neurotransmettitore eccitatorio a livello di corteccia cerebrale e dell’ippocampo, le regioni cognitive e della memoria. Come tutti i recettori ionotropici, possono essere formati dall’assemblaggio di molti tipi di subunità, codificate da geni distinti, e denominate in questo caso NMDA receptor (NR)1, 2A, -2B, -2C e -2D. Generalmente questi recettori sono permeabili al calcio ed infatti, quando il canale è aperto, si verifica ingresso di Ca++, oltre che di sodio Na+, e fuoriuscita di K+. Tuttavia, la sola stimolazione da parte del glutammato non è sufficiente perché il canale si apra, in quanto esiste un blocco voltaggio-dipendente del Mg++ extracellulare. Quindi, in assenza di uno stimolo elettrico, anche in presenza di glutammato, il canale non conduce corrente perché è ostruito dalla presenza di uno ione Mg++ di provenienza extracellulare. Al contrario, quando invece si verifica depolarizzazione della membrana cellulare, il Mg++ viene espulso per repulsione elettrostatica e quindi il canale risulta libero e gli ioni Ca++ possono passare (21).

Quando il recettore è iperstimolato, sia a causa di una aumentata sensibilità sia per un aumento dei livelli di glutammato, si può verificare un accumulo eccessivo di calcio all’interno dei neuroni che risulta in un fenomeno definito eccitotossicità, responsabile alla fine della morte delle cellule. Questo tipo di
danno neuronale dovuto a iperstimolazione è stato osservato per esempio in pazienti affetti da Alzheimer (22,23). E’ stato ipotizzato che gli anticorpi anti-NR2, legandosi al recettore, si comportano come agonisti e attivano le cellule neuronalì fino alla morte per apoptosi delle cellule stesse dovuta a iperstimolazione (19). E’ stato però dimostrato che il danno neuronale insorge se la barriera emato-encefalica (BEE) mostra una maggiore permeabilità alle molecole, che permette agli autoanticorpi di raggiungere le cellule neuronalì (24). Nei pazientì con patologie autoimmuni, questa condizione potrebbe essere stimolata dagli alti livelli di citochine proinfiammatorie riscontrati.

Anticorpi antifosfolipidi (anti-Cl e anti-β2GPI)

Gli aPL sono una famiglia eterogenea di autoanticorpi il cui target principale è rappresentato da proteine plasmatiche che legano i PL negativi di membrana o, eventualmente, da complessi PL-proteina. Tra le proteine più importanti riconosciute dagli aPL ci sono β2GPI e protrombina (PT) (25). Gli anticorpi antifosfolipidi sono in grado di indurre un effetto trombofilico agendo a diversi livelli della cascata coagulativa: i) interferiscono con i meccanismi anticoagulanti naturali (proteina C/S, Annessina V), ii) inibiscono la fibrinolisi, iii) interagiscono con le cellule coinvolte nella cascata della coagulazione (endotelio, monociti circolanti, piastrine), inducendo l’espressione di un fenotipo pro-coagulante, iv) attivano l’aggregazione piastrinica (26).

Il coinvolgimento diretto degli aPL nella patogenesi dell’APS è supportato anche da studi in vivo in modelli animali. Anticorpi purificati da sieri di pazientì con APS inoculati in topì sottoposti a danno meccanico (“pinch” del muscolo cremasterico), determinano un aumento della dimensione dei trombi e del numero di leucociti adesi all’endotelio (27,28). Analogamente aPL somministrati a ratti pre-trattati con Lipopolisaccaride (LPS) inducono la formazione di trombi. Queste osservazioni indicano che gli aPL per sé sono in grado di indurre perturbazione endoteliale con fenotipo proadesivo e procoagulante (“first hit”), anche se sembra necessario un ulteriore stimolo (“second hit”) perché compaia il danno trombotico (28,29).
Un ruolo fondamentale nell’induzione degli effetti patogenetici aPL-mediati è svolto dalle molecole di adesione, come è stato dimostrato in topi KO per VCAM1 e E-Selettina (30).

IL LUPUS ERITEMATOSO SISTEMICO (LES)

Il LES è una malattia infiammatoria cronica a patogenesi autoimmune caratterizzata da un coinvolgimento multi organo (31). È’ una delle principali MRA con varie e molteplici manifestazioni ma in cui i sintomi a carico dell’apparato muscolo-scheletrico rappresentano le manifestazioni più comuni all’esordio e nelle fasi di riacutizzazione della malattia (32,33). Colpisce prevalentemente le donne con un rapporto maschi:femmine 1:9, soprattutto tra i 20 ed i 40 anni di età. Si presenta con eritema, specie al volto, dolori articolari e artrite, nefrite con proteinuria, pleurite, pericardite, endocardite e vari disturbi del sistema nervoso. Può determinare febbre, debolezza, e calo di peso e possono presentarsi anche anemia e leucopenia. Tutti questi quadri possono essere concomitanti oppure comparire in varie associazioni, in tempi diversi e con diversa gravità. La prognosi è oggi soddisfacente se la malattia viene diagnosticata in fase precoce e trattata subito in modo adeguata (31).

La diagnosi si basa su precisi criteri rielaborati dall’ACR (American College of Rheumatology) nel 1997 per la classificazione del LES (Tab. I), secondo i quali un paziente viene classificato come malato di LES se presenta contemporaneamente o in successione almeno quattro degli undici criteri elencati in tabella che includono aspetti clinici e parametri di laboratorio (34). Questi criteri hanno dimostrato una sensibilità del 93% in una coorte di 213 pazienti affetti da LES e una specificità dell’88% in 212 pazienti affetti da altre MRA (35).

Questi criteri classificativi sono utilizzati negli studi epidemiologici per valutare la prevalenza del LES, cioè il numero di soggetti con la malattia in un campione della popolazione generale. L’incidenza del LES, ossia il numero di nuovi casi che
Introduzione

si verificano nell’unità di tempo in una determinata popolazione, viene invece valutata utilizzando criteri meno restrittivi per individuare anche casi precoci.

CRITERI

1. Eritema a farfalla
2. Eritema discoide
3. Fotosensibilità
4. Ulcere orali
5. Artrite
6. Sierosite (pleurite; pericardite)
7. Glomerulonefrite
8. Alterazioni neurologiche
9. Alterazioni ematologiche
 a. Anemia emolitica
 b. Leucopenia
 c. Linfocitopenia
 d. Trombocitopenia
10. Alterazioni immunologiche
 a. Autoanticorpi anti-dsDNA
 b. Autoanticorpi anti-Sm
 c. Positività degli anticorpi antifosfolipidi:
 - aumentati livelli di anticardiolipina di tipo IgG o IgM
 - positività del lupus anticoagulant
11. Anticorpi antinucleoANA

TAB I. Criteri ACR per la diagnosi di LES

L’incidenza del LES è stata valutata in numerosi studi con risultati diversi: si passa da 1/100000 abitanti per anno in Alabama (36) a 63,7/100000 in Georgia (37). Lo studio più recente ha riscontrato un’incidenza di 5,1/100000 sempre negli Stati Uniti (38). Le ragioni di queste differenze possono essere in gran parte metodologiche, tuttavia possono incidere anche variazioni geografiche ed epoca di osservazione.

La prevalenza del LES varia tra lo 0,006% (17) e lo 0,1% (39) ed è in aumento in seguito al miglioramento della prognosi e alla conseguente aumentata sopravvivenza dei pazienti LES. Non esistono studi italiani sull’epidemiologia del LES. La frequenza del LES negli ultimi anni è in aumento sia per un reale incremento dei casi, sia per il miglioramento delle capacità diagnostiche.
Eziopatogenesi

L’eziologia del LES è ancora sconosciuta e sono coinvolti fattori genetici, endocrini e ambientali che incidono sulla predisposizione, sullo sviluppo e sulla riacutizzazione della malattia. Dal punto di vista patogenetico, il LES è considerato una tipica malattia reumatica autoimmune.

Durante l’apoptosi si verifica l’attivazione di specifiche endonucleasi che clivano il DNA generando nucleosomi (40). Queste strutture rappresenterebbero i principali antigeni contro cui si formano gli anticorpi specifici. Le cellule presentanti l’antigene (APC), soprattutto le cellule dendritiche, presentano l’antigene alle cellule T che attivano le cellule B con la produzione di autoanticorpi (41).

Fattori predisponenti:

- Fattori genetici: la malattia ha una predisposizione familiare. È stato dimostrato che un individuo con familiarità per LES ha un rischio 8-9 volte maggiore di sviluppare la malattia rispetto ad un soggetto senza familiarità. È stata inoltre osservata un’aggregazione razziale per esempio nelle popolazioni del sud-est asiatico, negli afro-americani e afro-asiantici. L’ereditarietà sembra essere di tipo poligenico. Risulta significativa l’associazione tra la malattia e alleli di classe II e III del sistema maggiore di istocompatibilità (HLA). Tra gli alleli di classe II i più importanti sembrano essere i DR e i DQ e in molte popolazioni il LES è
Introduzione

associato al DR2 e al DR3; per quanto riguarda gli alleli di classe III, si è notata un’associazione con i geni che codificano con le prime frazioni del complemento (C2 e C4). Altri studi suggeriscono un’associazione anche con geni non appartenenti al sistema HLA, come per esempio i recettori CR1 e CR2 del complemento, e specifici polimorfismi del T cell receptor (TCR) (42).

- Fattori endocrini: la netta prevalenza della malattia nelle donne in età fertile fa supporre che gli ormoni sessuali giochino un ruolo importante nella patogenesi del LES. Studi sperimentali condotti su topi dimostrano come la malattia colpisca in maniera più grave le femmine e che la sopravvivenza aumenta se gli animali vengono trattati con sostanze anti-estrogene. Inoltre è stato osservato sempre nel topo che la somministrazione di estrogeni aumenta la produzione di anticorpi anti-DNA mentre, al contrario, gli androgeni la riducono (42).

Fattori scatenanti:

Fattori ambientali: questi fattori sembrerebbero agire in individui geneticamente suscettibili provocando l’esordio o la riacutizzazione della malattia (43). È stato ipotizzato un coinvolgimento virale nell’eziologia della malattia, in particolare per il virus della rosolia, dell’herpes simplex di tipo 1 e della varicella zoster, in quanto le infezioni virali stimolerebbero l’apoptosi dei linfociti (42).

Anche i raggi UV sembrano essere coinvolti nell’eziopatogenesi del LES anche se non è ancora chiaro se siano in grado di causare la malattia o solo di farne precipitare la riacutizzazione. Alcuni studi dimostrano come l’esposizione ai raggi UV possa aumentare l’apoptosi dei cheratinociti con induzione del meccanismo precedentemente descritto (44). Infine, altri lavori sottolineano come alcuni farmaci siano in grado di aggravare o far riacutizzare la malattia o di indurla (45,46); si parla quindi di lupus da farmaco che costituisce un’entità clinico-patologica ben definita.
Introduzione

Quadro clinico

Nel LES sono state descritte manifestazioni a carico di ogni distretto dell’organismo. Il quadro clinico è estremamente polimorfo, comprende segni e sintomi di tipo sistemico ed alterazioni dovute all’impegno di vari organi e apparati.

I segni ed i sintomi generali, presenti in quasi tutti i pazienti all’esordio e nelle fasi di attività della malattia, sono rappresentati da astenia e malessere generale, che nell’80% dei casi si dimostrano dovuti ad anemia o depressione che può associarsi al LES.

Il coinvolgimento delle articolazioni si verifica in più del 90% dei casi all’esordio o nelle fasi più gravi. Il coinvolgimento muscolare è frequente e si manifesta generalmente con astenia e mialgie. Inoltre può essere presente una vera e propria miosite, con aumento degli enzimi muscolari, o una miopatia da farmaci, in particolare da corticosteroidi.

Dopo quelle articolari, le manifestazioni cutanee sono quelle più frequenti in corso di LES. Spesso rappresentano il quadro clinico d’esordio della malattia e ricompaiono come segno di riacutizzazione (47). Sono estremamente polimorfe e possono essere suddivise in manifestazioni specifiche, tipiche del LES, il cui quadro istologico consente di fare una diagnosi di malattia, e manifestazioni aspecifiche che possono essere presenti anche in altre condizioni morbose.

Le manifestazioni mucose presentano aspetti istopatologici simili a quelle cutanee e interessano labbra, cavità orali, congiuntiva, mucose genitali, anali e perianali.

L’impegno renale rappresenta un importante e frequente coinvolgimento d’organo che interessa circa la metà dei pazienti affetti da LES. Generalmente le manifestazioni renali compaiono durante i primi cinque anni di malattia e comportano un aggravamento della prognosi.
Introduzione

Anche le manifestazioni ematologiche sono molto frequenti nei pazienti affetti da LES. La leucopenia (<4000/μL) è presente in circa il 50% dei casi ed è dovuta principalmente ad anticorpi anti-leucociti. Anche l’anemia (Hb<11mg/dL) colpisce oltre la metà dei pazienti e tipicamente si manifesta con astenia e affaticabilità. Nella maggior parte dei casi è di natura non-immunologica, ma nel 10-15% dei casi è causata dalla presenza di anticorpi anti-emazie. La piastrinopenia (<150000/μL) rappresenta un altro evento frequente. Viene attribuita ad anticorpi anti-piastrine ma può rappresentare anche un elemento caratteristico della sindrome da anticorpi antifosfolipidi.

Le manifestazioni cardiache sono piuttosto frequenti e possono interessare il pericardio, il miocardio, l’endocardio, gli apparati valvolari e il letto coronarico. La pericardite asintomatica è l’evento più comune (10-20%).

Il coinvolgimento polmonare è frequente: nel 50% circa dei casi si manifesta la pleurite che talvolta rappresenta l’esordio della malattia.

Infine notevole importanza ha il coinvolgimento del sistema nervoso centrale (SNC) in corso di LES che verrà discusso in dettaglio nei capitoli seguenti.

LA SINDROME DA ANTICORPI ANTIFOSFOLIPIDI

La Sindrome da Anticorpi Antifosfolipidi (APS), nota anche come sindrome di Hughes, è una patologia autoimmune sistemica autoanticorpo-mediata caratterizzata da eventi tromboembolici ricorrenti (venosi e/o arteriosi), poliabortività e presenza di anticorpi antifosfolipidi (aPL). Questi anticorpi sono un gruppo eterogeneo di autoanticorpi che possono riconoscere varie combinazioni di fosfolipidi a carica negativa, proteine ad alta affinità per i fosfolipidi o complessi fosfolipidi-proteine. Tra gli aPL coinvolti, gli anticardiolipina (aCL), gli anti-beta2glicoproteina I (anti-β2GPI) ed il lupus anticoagulant (LAC) hanno un ruolo importante nella diagnosi della sindrome (48).
L’APS è stata inizialmente identificata come manifestazione clinica associata al LES, ma successivamente è stata riscontrata come entità a sé stante anche in pazienti non affetti da altre patologie autoimmuni sistemiche. Può essere quindi primitiva (PAPS) o secondaria (SAPS) (49,50).

Esistono criteri classificativi che hanno lo scopo di rendere omogenee le casistiche. Un primo accordo è stato raggiunto in occasione dell’8° Simposio Internazionale sugli antifosfolipidi, tenutosi a Sapporo in Giappone nell’ottobre 1999, dove erano stati proposti dei criteri preliminari per la classificazione della APS (50).

Questi criteri avevano una sensibilità del 71% ed una specificità del 98% e prevedevano per la classificazione della sindrome la positività di almeno un criterio di laboratorio e di un criterio clinico (51).

In occasione del congresso sull’APS svoltosi a Sydney nel 2004 è stata proposta una modifica dei criteri di Sapporo (Tab II): per la definizione di APS è fondamentale la contemporanea presenza di un quadro clinico specifico e la positività per autoanticorpi tra aCL, anti-β2GPI e LA (48,52).

CRITERI CLINICI

1. Uno o più episodi di trombosi venosa, arteriosa o di piccoli vasi di ogni organo o tessuto
2. Complicanze ostetriche:
 a) una o più morti fetali a ≥ 10 settimane
 b) uno o più parti a < 34 settimane per: eclampsia o preeclampsia grave o segni di insufficienza placentare
 c) tre o più aborti consecutivi a < 10 settimane

CRITERI LABORATORISTICI

1. Positività al LAC, secondo i criteri del Sottocomitato del Lupus Anticoagulants/phospholipids Dependent Antibodies
2. Anti-cardiolipina, IgG e/o IgM a titolo medio/alto
3. Anti-β2GPI, IgG e/o IgM a titolo medio/alto

TAB II. Criteri per la diagnosi di APS
Introduzione

Quindi, tra i criteri di laboratorio, è stata aggiunta la positività degli anticorpi anti-β2GPI e si è anche stabilito che per considerare un paziente affetto da APS la distanza tra il referto di positività anticorpale e la comparsa dei disturbi clinici deve essere inferiore a cinque anni. E’ stato infine sottolineato come il rischio di sviluppare trombosi o di avere perdite fetali sia direttamente proporzionale al numero delle positività anticorpali.

Dal punto di vista epidemiologico l’APS presenta una prevalenza nella popolazione generale del 2-5% (2) e costituisce la principale causa di trombofilia acquisita (10-15% dei soggetti con episodi di trombosi venosa profonda e 30% circa degli infarti in pazienti con età inferiore ai 50 anni) (53) e il più frequente fattore di rischio acquisito trattabile per le problematiche gestazionali (pre-eclampsia precoce o tardiva e aborti ricorrenti) (48,54).

La sindrome è primaria nel 50% dei casi, mentre risulta associata ad altre condizioni autoimmuni (soprattutto LES) nel 40% dei casi (53).

Nei soggetti normali la prevalenza di anticorpi antifosfolipidi varia tra l’1% nelle donne gravide (55) e il 5,6% in donatori di sangue (56). Negli anziani, gli anticorpi antifosfolipidi sono presenti in una percentuale ancora maggiore di soggetti normali che può arrivare al 12% (57). In gruppi selezionati di pazienti, per esempio con LES, la prevalenza di anticorpi antifosfolipidi è molto maggiore, variando rispettivamente tra il 17% e l’86% (58).

L’APS colpisce più frequentemente il sesso femminile, con un picco d’incidenza tra la seconda e la terza decade di vita.

Quadro clinico

Negli ultimi 10 anni, con l’aumentare dei casi studiati e seguiti nel tempo, è stato dimostrato che le manifestazioni cliniche associate agli aPL sono in realtà piuttosto varie. Nel caso si verifichi un coinvolgimento polidistrettuale massivo, spesso in un periodo di tempo relativamente breve, l’APS assume la denominazione di “catastrofica” (CAPS) (59).
Nel caso in cui, invece, gli aPL siano presenti in assenza di manifestazioni cliniche conclamate della sindrome, i pazienti vengono definiti “portatori asintomatici” e la patologia “APS asintomatica”.

Come emerge dalla definizione stessa della malattia, uno degli eventi comuni nei pazienti con APS è rappresentato dalla trombosi venosa profonda che colpisce il 30% circa dei pazienti, con tendenza alla recidiva, sovente nella sede primitiva. Circa un terzo dei casi sono complicati da embolia polmonare (2).

La sindrome è anche caratterizzata da abortività precoce ricorrente, morte endouterina tardiva, complicanze ostetriche come eclampsia severa e precoce e parto prematuro (2). Oltre agli eventi trombotici, altre manifestazioni cliniche, non incluse nei criteri classificativi, possono comparire in corso di APS. Le più frequenti sono rappresentate da: valvulopatie, complicazioni dermatologiche ed ematologiche e manifestazioni neurologiche.

MANIFESTAZIONI NEUROLOGICHE NEL LES E NELL’APS

Nel LES le manifestazioni neurologiche sono relativamente frequenti e sembrano interessare, anche se in forme subcliniche, oltre il 50% dei pazienti.

Analogamente a quanto detto a proposito dell'interessamento renale, l'impegno neurologico in corso di LES è associato ad una prognosi sfavorevole. Anche l'interessamento neurologico, pertanto, richiede una diagnosi quanto mai precoce ed un trattamento aggressivo.

L’interessamento neurologico in corso di LES è proteiforme e molteplici manifestazioni sono state correlate alla patologia, tanto che nel 1999 sono stati proposti dall’American College of Rheumatology (60) dei criteri classificativi per facilitarne la diagnosi (Tab III).
Introduzione

<table>
<thead>
<tr>
<th>PATOLOGIE NEUROLOGICHE</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Meningite asettica</td>
</tr>
<tr>
<td>• Ictus e patologia cerebrovascolare</td>
</tr>
<tr>
<td>• Sindromi demielinizzanti</td>
</tr>
<tr>
<td>• Cefalea (inclusa emicrania ipertensione intracranica benigna)</td>
</tr>
<tr>
<td>• Disordini del movimento (corea)</td>
</tr>
<tr>
<td>• Mielopatia</td>
</tr>
<tr>
<td>• Epilessia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MANIFESTAZIONI PSICHIATRICHE</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Stato confusionale acuto</td>
</tr>
<tr>
<td>• Disturbi d’ansia</td>
</tr>
<tr>
<td>• Disfunzioni cognitive</td>
</tr>
<tr>
<td>• Disturbi dell’umore</td>
</tr>
<tr>
<td>• Psicosi</td>
</tr>
</tbody>
</table>

TAB III. Interessamento del sistema nervoso centrale in corso di LES

Benché sin dal 1999 i disturbi cognitivi siano stati inseriti in questa classificazione, solo recentemente sono stati effettuati degli studi per meglio chiarire la loro reale prevalenza, l’evoluzione a lungo termine e soprattutto i meccanismi patogenetici alla base del loro sviluppo.

La demenza è una complicanza raramente descritta in corso di LES ed è principalmente correlata alla positività per anticorpi antifosfolipidi, che facilitando i fenomeni trombotici cerebrali ricorrenti, possono indurre lo sviluppo di demenza multinfartuale (61,62). La prevalenza di deficit cognitivi in pazienti affetti da LES varia nelle diverse casistiche tra il 6% e il 66%.

L'impegno neurologico in corso di LES può essere primitivo e quindi direttamente dovuto al danno causato dalla malattia sul sistema nervoso centrale, oppure secondario a sindromi sistemiche dovute all'interessamento di altri organi (uremia, ipertensione arteriosa, etc...), rientrare nell’ambito di una sindrome da anticorpi antifosfolipidi secondaria, o infine essere secondario a complicanze
infettive della malattia di base (connesse ad esempio alla terapia immunosoppressiva).

Le manifestazioni cliniche dell’APS associate al sistema nervoso centrale sono piuttosto frequenti ed includono eventi trombotici arteriosi, disturbi psichiatrici ed altri sintomi neurologici apparentemente non su base ischemica (Tab IV) (2,63,64).

<table>
<thead>
<tr>
<th>Patologia</th>
<th>Incidenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emicrania</td>
<td>20%</td>
</tr>
<tr>
<td>Ictus cerebri</td>
<td>19%</td>
</tr>
<tr>
<td>Attacco ischemico transitorio</td>
<td>11%</td>
</tr>
<tr>
<td>Epilessia</td>
<td>7%</td>
</tr>
<tr>
<td>Demenza multinfartuale</td>
<td>2.5%</td>
</tr>
<tr>
<td>Corea</td>
<td><1%</td>
</tr>
<tr>
<td>Encefalopatia acuta</td>
<td><1%</td>
</tr>
<tr>
<td>Amnesia transitoria</td>
<td><1%</td>
</tr>
<tr>
<td>Trombosi venosa cerebrale</td>
<td><1%</td>
</tr>
<tr>
<td>Atassia cerebellare</td>
<td><1%</td>
</tr>
</tbody>
</table>

Tab IV. Manifestazioni neurologiche in corso di APS

‘ictus è il quadro patologico di più frequente riscontro e l’età media in cui si può sviluppare un’ischemia cerebrale associata agli aPL è notevolmente più bassa rispetto alla media (65). Inoltre, secondo numerosi studi, i pazienti affetti da sindrome da anticorpi antifosfolipidi vanno più frequentemente incontro a demenza e a meno gravi disturbi cognitivi rispetto alla popolazione generale (61,64,66,67).
Alcuni autori hanno suggerito inoltre che l’età rappresenti un fattore di rischio aggiuntivo per lo sviluppo di demenza in pazienti con APS. Nelle diverse casistiche di pazienti con positività per anticorpi antifosfolipidi, l’incidenza di demenza varia tra il 10% e il 56% ed è in genere secondaria a ictus ricorrente e patologia cerebrale multinfartuale (61,66). In una opposta prospettiva Mosek et al (68) in uno studio caso controllo su una popolazione di anziani affetti da demenza hanno dimostrato che l’incidenza degli anticorpi antifosfolipidi nei pazienti affetti era significativamente superiore rispetto ai controlli sani di età paragonabile (6% vs 0).

Per quanto riguarda invece l’incidenza di deficit cognitivi più lievi rispetto alla demenza, coinvolgenti solo alcuni aspetti cognitivi in pazienti affetti da APS, esistono al momento in letteratura pochi dati. Lo studio più ampio riguarda una popolazione di 60 pazienti con APS, nella quale l’incidenza di deficit cognitivi era del 42% (69).

Eziopatogenesi

L’eziopatogenesi delle lesioni neurologiche in corso di LES e APS non è chiara ma è possibile evidenziare alcuni meccanismi principali che sembrano essere coinvolti:

- **Ischemia su base vascolare**

 E’ generalmente correlata alla presenza di anticorpi antifosfolipidi (anti-CL, anti-β2GPI e Lupus Anticoagulant), anticorpi in grado di indurre una perturbazione endoteliale, che a sua volta facilita la formazione di un trombo in situ a livello del circolo cerebrale. Più raramente l’ictus può essere su base cardio-embolica (67,68,70). I pazienti con APS primitiva o secondaria possono infatti sviluppare alterazioni valvolari caratterizzate da ispessimento e formazione di irregolarità nodulari dei lembi che facilitano la formazione di vegetazioni endocardiche asettiche che possono rappresentare una fonte emboligena (61).
Introduzione

In effetti l’ictus cerebrale è l’unica manifestazione neurologica inclusa nei criteri classificativi ed è, dopo la trombosi venosa profonda, la più comune manifestazione trombotica in corso di APS (61). L’episodio ischemico può essere isolato, ma talvolta può essere ricorrente e portare ad una demenza multinfartuale su base vascolare che coinvolge diverse funzioni cognitive e che presenta caratteristiche indistinguibili dalla malattia di Alzheimer o da altre demenze su base metabolica o tossica (61,71). Questo rappresenta il principale meccanismo patogenetico alla base dello sviluppo di demenza non solo da parte dei pazienti affetti da PAPS, ma anche da LES.

- Autoanticorpi

Più recentemente è stato ipotizzato che alla base delle manifestazioni neuropsichiatriche vi sia la produzione di specifici autoanticorpi, in particolare anticorpi antifosfolipidi (aPL), anticorpi anti-proteina P ribosomiale (anti-P) e anticorpi che legano antigeni neuronali. Nonostante i dati sperimentali preliminari, una possibile associazione tra positività per anticorpi antifosfolipidi e presenza di deficit cognitivi è ancora dibattuta. L’associazione tra patologie del sistema nervoso centrale e APS è avvalorata dall’osservazione che simili disordini sono stati descritti in individui non clinicamente definiti come pazienti APS ma nei quali sono stati identificati livelli significativi di anticorpi diretti contro la membrana fosfolipidica (anti-CL, LAC, antri-β2GPI) (61).

Sieri o frazioni totali di IgG da pazienti con APS sono in grado di interagire direttamente con il tessuto nervoso e di modularne le funzioni (72-74). Tra gli aPL, quelli maggiormente coinvolti sembrano essere gli anticorpi anti-cardiolipina (aCL), essendo stata rilevata un’associazione tra questi autoanticorpi e danni cerebrali microscopici diffusi, mal di testa, neuropatia craniale . Anche gli anticorpi anti-β2GPI sembrano coinvolti ed infatti il nostro gruppo in particolare ha dimostrato per la prima volta la capacità di anticorpi con specificità per β2GPI di riconoscere la molecola
sulla superficie di cellule neuronalı e di interagire con strutture degli *early endosomes* (75).

A supporto di questo meccanismo patogenetico vi sono alcuni modelli sperimentali in vivo che hanno dimostrato un’associazione tra l’inoculo di aPL e la comparsa di deficit di tipo comportamentale e cognitivo, apparentemente in assenza di significative alterazioni di tipo ischemico (74,76). Shoenfeld et al hanno dimostrato in alcuni esperimenti in vivo che topi BALB/C immunizzati con anticorpi monoclonali anti-cardiolipina o anticorpi anti-beta2 glicoproteina I sviluppano alterazioni comportamentali, iperattività e alterazioni della coordinazione motoria (77,78). Più recentemente lo stesso gruppo ha mostrato che la iniezione intratecale di IgG purificate da sieri di pazienti affetti da PAPS era in grado di indurre deficit cognitivi in topi C3H. Inoltre l’esame immunoistochimico del cervello normale di topi C3H, preincubati con IgG purificate da sieri di pazienti affetti da PAPS, mostrava la deposizione di IgG a livello del plesso coroide, del giro dentato e delle cellule piramidali (74). Alcuni autori hanno ipotizzato che gli aPL modificano la permeabilità della BEE, interagendo con la B2GPI espressa sulla sua superficie (79), e facilitano il passaggio di autoanticorpi in grado di cross-reagire con componenti nucleari e con le strutture neuronalı.

Gli anticorpi anti-P ribosomiale sono stati per lungo tempo considerati associati ai disturbi neurologici nei pazienti LES. Tra la fine degli anni ’80 e i primi anni ’90 furono pubblicati numerosi studi che suggerivano una associazione tra la presenza di anticorpi anti-P ribosomiale e psicosi o altre manifestazioni neurologiche, quali depressione ed epilessia, in corso di LES (80-82). Altri autori hanno evidenziato la presenza di elevati titoli di questo anticorpo nel liquido cerebro-spinale di pazienti affetti da LES con interessamento neurologico (83,84). Tuttavia negli anni successivi altri autori non hanno confermato tale relazione (80,82,85,86). Shoenfeld et al hanno dimostrato che anticorpi anti-P ribosomiale purificati da sieri di pazienti affetti da neuro-LES si legano a specifiche aree del cervello di
Introduzione
topo normale, in particolare l’area limbica e olfattiva. Inoltre l’iniezione diretta intraventricolare di tali anticorpi è in grado di indurre nel topo un comportamento simil-depressivo, che migliora con la somministrazione di anti-depressivi (76,87). Alcuni recenti studi su larghe popolazioni di pazienti affetti da LES non hanno evidenziato alcuna correlazione tra la presenza di anticorpi anti-P ribosomiale e qualsiasi manifestazione di neuro-LES (64,88). La questione è ancora dibattuta in quanto studi sperimentali supportano un potenziale effetto di questi anticorpi nella genesi di alcune manifestazioni neurologiche. E’ anche importante ricordare che gli anticorpi anti-P ribosomiale sono presenti in circa il 10% dei pazienti con LES e che potrebbero eventualmente essere in gioco in una piccola percentuale di casi e avere quindi un ruolo clinico poco più che marginale.
Recentemente sta emergendo anche un possibile coinvolgimento degli anticorpi anti-recettore N-Metil-D-Aspartato (NMDA) (19,89-92). Differenti studi condotti in vitro ed in vivo evidenziano un coinvolgimento di questi ultimi autoanticorpi nell’insorgenza di manifestazioni psichiatriche anche se gli studi fino ad ora condotti su pazienti LES non hanno rilevato associazioni convincenti (88,93-96). Alcuni studi avevano dimostrato che gli anticorpi anti-dsDNA possono cross-reagire con una sequenza pentapetidica presente nei recettori NMDA di tipo NR2 sia nei topi che nell’uomo. Attraverso l’inoculo di anticorpi monoclonali anti-dsDNA, De Giorgio et al hanno dimostrato che una particolare classe di anti-dsDNA è in grado di interagire con i recettori NMDA e induce in tal modo morte neuronale per via apoptotica. Tali anticorpi sono stati trovati nel fluido cerebrospinale di pazienti con LES con declino cognitivo (19). Un altro studio ha dimostrato che l’inoculo in topi immunizzati di anticorpi anti-dsDNA e anti-NMDAR (anti-NR2) determina un’intensa deposizione di anticorpi anti-NMDAr, preferenzialmente localizzata nei neuroni dell’ippocampo, che induce morte dei neuroni. La deposizione però si verifica solo se gli animali vengono precedentemente trattati con
lipopolisaccaride (LPS), una molecola che induce permeabilità della BEE (97). Questo fenomeno si traduce in un deficit della memoria e dell’apprendimento (24,98). E’ possibile quindi ipotizzare che gli anticorpi anti-NR2 provochino un danno neuronale solo se riescono a passare la BEE, condizione che nei pazienti con patologie autoimmuni potrebbe essere raggiunta in seguito a rottura causata dagli alti livelli di citochine proinfiammatorie riscontrati oppure attraverso la deposizione di immunocomplessi che causano lesioni dei plessi corioidei. Recentemente è stata dimostrata una significativa correlazione tra anticorpi anti-NR2 e memoria e apprendimento, depressione, schizofrenia, ipomania, come già osservato in precedenti studi. Tuttavia anche in questo caso non tutti i risultati sono concordi. La presenza di anti-NR2 nel fluido spinale potrebbe avere un alto valore predittivo per le manifestazioni neuropsichiatriche (20) e sono quindi stati condotti numerosi studi per valutare l’associazione tra anticorpi anti-NR2, LES e disturbi neuropsichiatrici. Tuttavia gli studi fino ad ora condotti presentavano dei limiti dovuti all’eterogeneità della popolazione di pazienti studiata in merito alla durata della malattia, alla mancanza di standardizzazione sia per la classificazione degli eventi neuropsichiatrici sia per la metodologia usata per la rilevazione degli autoanticorpi (20,88,93,96,99). In vitro questi anticorpi sono stati dimostrati in grado di indurre apoptosi di cellule neuronali in colture di cervello umano fetale e vi è dimostrazione su base istologica che questi anticorpi si localizzano a livello dell’ippocampo. Inoltre anticorpi anti-NMDA, eluiti da encefalo di pazienti con LES e disturbi cognitivi, iniettati nell’animale provocano una perdita neuronale a livello ippocampale. Tuttavia dal punto di vista clinico la correlazione tra presenza di anticorpi anti-NMDA e deficit cognitivi non è univoca e sono necessari ulteriori studi per chiarirne l’effettivo significato (97).
Mediatori dell’infiammazione

Diversi autori hanno evidenziato come il coinvolgimento cerebrale non focale in corso di malattie autoimmuni sistemiche sia correlato alla liberazione locale o sistemica di mediatori infiammatori e alla formazione di immunocomplessi in situ oppure alla deposizione a livello cerebrale di immunocomplessi circolanti, con successiva attivazione complementare e conseguente infiammazione del parenchima cerebrale (100,101). Diversi studi istopatologici hanno dimostrato la presenza di un infiltrato infiammatorio nella parete dei vasi del microcircolo cerebrale, associato alla presenza di microtrombi, in circa il 5% di prelievi autoptici da pazienti affetti da LES con interessamento neurologico (102).

L’infiammazione dei piccoli vasi si accompagna ad una attivazione del sistema del complemento non sostenuta, come in altri distretti vascolari, dal deposito di immuno-complessi, ma piuttosto dall’azione di citochine proinfiammatorie, quali interleuchina-1 (IL-1) e tumor necrosis factor-α (TNF-α) che sono in grado di attivare il complemento e di stimolare l’espressione di molecole di adesione quali ICAM-1 ed e-selectina da parte delle cellule endoteliali. Le frazioni attive del complemento (C3a e C5a) stimolano l’aggregazione piastrinica, la chemiotassi dei neutrofili e la loro adesione all’endotelio mediante legame con ICAM-1 ed e-selectina, determinando l’infiammazione della parete vasale, la liberazione di mediatori tossici come metalloproteasi e chemochine proinfiammatorie e l’occlusione dei vasi di piccolo calibro determinando la formazione di un danno ischemico disseminato. L’infiammazione della parete vasale si accompagna ad un danno della BEE che determina delle alterazioni liquorali caratterizzate da pleocitosi e aumento del livello di proteine, in particolare IgG. La risonanza magnetica in questi pazienti rivela frequentemente la presenza di minute alterazioni della sostanza bianca, a disposizione tipicamente sottocorticale (102).
Obiettivo principale di questo studio è stato quello di mettere a punto un metodo immunoenzimatico per la ricerca di anticorpi sierici anti-NR2 per studiare la loro associazione con disturbi cognitivi su base autoimmune, in particolare nel LES e nella APS.

A tal fine, è stata confrontata la prevalenza degli anticorpi anti-NMDA in pazienti affetti da LES, con o senza positività per anticorpi antifosfolipidi ed in pazienti affetti da APS primitiva, indipendentemente dalla presenza di difetti cognitivi. Successivamente, è stata determinata la presenza di anticorpi anti-NR2 in soggetti con LES o APS e coinvolgimento del SNC.

E’ stata determinata l’incidenza di disturbi cognitivi nella popolazione di pazienti LES, con o senza positività per anticorpi antifosfolipidi e nella popolazione di PAPS, valutando anche se in queste popolazioni vi era un preferenziale interessamento di uno o più domini cognitivi.

Oltre agli anticorpi anti-NR2, è stato indagato anche un profilo anticorpale più ampio per valutare eventuali cross-reattività ed una potenziale correlazione tra più fattori.
PAZIENTI E CONTROLLI

Ogni paziente è stato sottoposto a prelievo di sangue per la ricerca di auto-anticorpi e a visita immunologica con rilievo dei parametri clinici. Le variabili registrate comprendevano età, sesso, scolarità, durata di malattia, terapia in atto, storia clinica precedente e per i pazienti affetti da LES, attività di malattia determinata mediante SLEDAI index. Non essendo disponibile un indice di attività di malattia largamente riconosciuto per i pazienti affetti da PAPS, l’attività di malattia di questi pazienti è stata determinata dal numero cumulativo di manifestazioni presenti per ciascun paziente al momento dell’esecuzione dei test.

I pazienti che ne hanno dato il consenso sono stati sottoposti ad una estesa valutazione neuropsicologica tesa ad indagare differenti domini cognitivi: attenzione, funzioni esecutive, linguaggio, risoluzione di problemi, memoria episodica e a breve termine, pianificazione visuo-spaziale, prassia bucco-facciale e ideomotoria, prassia costruttiva e discriminazione spaziale, come descritto in seguito.
In particolare sono stati arruolati quindici pazienti LES, cinque pazienti neuropsichiatrici LES e trentatre pazienti PAPS con (n.19) e senza (n.14) coinvolgimento del sistema nervoso centrale.

I campioni di siero ottenuti dai pazienti sono stati mantenuti congelati a -20°C fino all’utilizzo.

Sono stati inclusi nello studio novantasei donatori sani (NHS) omogenei per sesso ed età e trentasei pazienti affetti da patologie non autoimmuni.

DETERMINAZIONE DI ANTICORPI ANTI-NR2

In questa tesi sono state confrontate ed ottimizzate due metodiche ELISA home made per la rilevazione di anticorpi anti-NR2 nel siero. Nel primo test è stato utilizzato come forma antigenica un decapetide Asp/Glu Trp Asp/Glu Tyr Ser/Gly Val Trp Leu Ser Asn, contenente la sequenza consensus Asp/Glu Trp Asp/Glu Tyr Ser/Gly, che è stato sintetizzato secondo la descrizione originale dalla Espikem Srl (103). Dall’analisi chimico-fisica effettuata attraverso spettrometria di massa e HPLC, il peptide risulta avere una purezza maggiore del 95%. Nel secondo test è stato utilizzato come antigene una forma ramificata del peptide, gentilmente fornito dalla Dr.ssa Merril (Oklahoma University – USA), con la seguente sequenza: (Asp Trp Glu Tyr Ser Val Trp Leu Ser Asn)₈ Lys₄ Lys₂ Lys-βAla. Anche in questo caso la purezza del peptide era del 95%.

1. **ELISA anti-NR2 con decapetide.**

 Il protocollo è stato messo a punto e perfezionato a partire dalle indicazioni del gruppo norvegese del Prof. Omdal, il quale ci ha gentilmente fornito anche il controllo positivo (al limite del cut-off) denominato ILH e utilizzato per calcolare la “ratio”. Il protocollo di partenza prevedeva quindi: coating su piastra da 96 pozetti (Greiner Bio-One – product number: 655001) con il decapetide, diluito in PBS (pH 7.4) alla concentrazione di 1 µg/ml (100 µl per pozetto) 4°C over
night; bloccaggio con 300 µl/pozzetto con un tampone costituito da PBS e 10% Fetal Calf Serum (FCS) per 1 ora a temperatura ambiente; rimozione del bloccaggio e semina dei campioni di siero, diluiti 1:50 con PBS+10% FCS, (incubazione di 2 ore a temperatura ambiente); 4 lavaggi con PBS; detezione degli anticorpi anti-NR2 legati al decapeptide utilizzando un anti-IgG umano coniugato con fosfataasi alcalina diluito 1:1000 (invece del secondario anti-IgG/M/A coniugato con perossidasi, previsto dal protocollo di partenza) (incubazione di 1 ora a temperatura ambiente); 4 lavaggi con PBS; sviluppo della reazione attraverso l’aggiunta del substrato o-phenyldiamine dihydrochloride (OPD). Dopo 30 minuti di incubazione a temperatura ambiente è stata effettuata la lettura a 405 nm.
I livelli di anticorpo anti-NR2 presenti nei sieri dei pazienti sono stati espressi come valori di OD (Optical Density). È stata anche calcolata la ratio secondo questa formula:
\[
\text{ratio} = \frac{\text{OD medio del campione sottratto del bianco}}{\text{OD medio di ILH sottratto del bianco}}
\]
Sono considerati positivi i campioni con ratio maggiore di 1.

2. **ELISA anti-NR2 con peptide ramificato.**

Il protocollo utilizzato è stato gentilmente fornito dalla Dr.ssa Merril insieme a controlli positivi e negativi e la curva di riferimento. In particolare: coating su piastra da 96 pozzi (Greiner Bio-One – product number: 655001) con il peptide ramificato, diluito in BBS (Borate Buffer Saline) alla concentrazione di 1 µg/ml (50 µl per pozzetto); alcuni pozzi venivano copulati con 300 µl/pozzetto di BBT/1,2% tween 80 ed utilizzati per la valutazione del legame aspecifico, in assenza o presenza di standard di riferimento e controlli; 2 lavaggi con BBS. Bloccaggio con 300 µl/pozzetto di BBT/1,2% tween 80 per 1 ora a temperatura ambiente; 1 lavaggio con BBS; semina dei campioni di siero, diluiti 1:100 con BBT/1,2% tween 80, (incubazione di 2 ore a temperatura ambiente); 5 lavaggi con BBS; detezione degli
anticorpi anti-NR2 legati al peptide ramificato utilizzando un anticorpo anti-IgG umano coniugato con fosfatasi alcalina diluito 1:1000 (incubazione di 1 ora e mezza a temperatura ambiente); 5 lavaggi con BBS; sviluppo della reazione attraverso l’aggiunta del substrato p-nitrophenyl phosphatase (p-NPP) (Sigma). Dopo 45-60 minuti di incubazione a temperatura ambiente al buio è stata effettuata la lettura a 405 nm.
I livelli di anticorpo anti-NR2 presenti nei sieri dei pazienti sono stati espressi come valori di OD (Optical Density).

DETERMINAZIONE DEI LIVELLI DI CUT OFF, DELLA SPECIFICITÀ E DELLA SENSIBILITÀ

I valori di cut off sono stati calcolati come media più tre deviazioni standard (DS) dei livelli di anticorpi anti-NR2 rilevati in 96 donatori sani.

La specificità è stata determinata testando i sieri di 36 pazienti affetti da patologie non autoimmuni, quali malattie infettive (HCV, HBV, HIV), iper-gammaglobulinemia policlonale e gammopatia monoclonale.

La sensibilità dei test è stata valutata come la percentuale di campioni positivi in 51 pazienti LES (valore atteso di circa 30%).

ALTRI AUTOANTICORPI INDAGATI

Sono stati valutati i livelli di altri autoanticorpi:

- ANA, mediante immunofluorescenza indiretta. Brevemente, il siero del paziente è stato diluito in PBS a due differenti concentrazioni (1:40 e 1:160) ed è stato incubato su vetrini del commercio (HEp 2 ANA Slides preparati con la linea cellulare umana HEp-2). Se nel siero sono presenti
gli anticorpi ricercati, questi si legheranno al substrato. L'aggiunta di lsoiotiocianato di Fluoresceina (FITC) coniugato ad anticorpi anti-Ig totali (IgA, IgG, IgM), forma un complesso fluorescente con gli anticorpi del campione legati al substrato. La lettura al microscopio in fluorescenza permette di evidenziare la positività per l'anticorpo ricercato e definire il pattern o la varietà di fluorescenza.

- Anticorpi anti-ENA, rilevati con tecnica dot blot il attraverso il kit in commercio INNO-LIA™ ANA Update (Innogenetics NV, Gent, Belgium) secondo le istruzioni della casa produttrice. Brevemente, il kit INNO-LIA ANA Update è un test immunoblot su striscia per la determinazione e l'identificazione di tredici anticorpi antinucleo (ANA) nel siero umano, in cui antigeni ricombinanti (SmB, RNP-70k, RNP-A, RNP-C, SSA/Ro52, SSB/La, Cemp-B, Topo-I, Jo-1), peptidi sintetici (SmD e P ribosomiale) e proteine naturali (Ro60 e istoni) sono immobilizzati come bande su una membrana di nylon con supporto plastico. In aggiunta a questi auto-antigeni, su ogni strip è prevista anche una banda di controllo dell'avvenuta reazione con il campione di siero. Il campione viene diluito 1:200 con lo specifico diluente. L’incubazione con il coniugato e il substrato permette di individuare la positività per i diversi antigeni. Per l’interpretazione dei risultati si procede prima con l’interpretazione visiva delle strip, comparando le intensità di tutte le bande sulla strip del paziente con quelle corrispondenti sulla strip cut-off, e in un secondo momento con la lettura allo scanner LIA – Scan ANA, sempre comparando le intensità delle bande del paziente con quelle della strip cut-off. Se la banda di controllo ha intensità differente rispetto alla banda di controllo sulla strip cut-off, il software esegue in automatico una ricerca nell’archivio fino a trovare una strip cut-off con la banda di controllo paragonabile a quella del campione (104).

- anti-nucleosomi (NCS) di classe IgG e IgM, utilizzando un ELISA home made come precedentemente descritto (88). Sono state utilizzate piastre ricoperte con l’antigene H1-striped CROMATINA (fornita dal dr.
Burlingame INOVA) ed i campioni sono stati incubati dopo diluizione 1:100 in apposito tampone. Per la rilevazione dei sieropositivi sono stati utilizzati anticorpi anti-IgG e anti-IgM coniugati con fosfatasi alcalina.

Si considera positivo un campione con un valore espresso in AU/ml superiore al valore cut-off. Il cut-off per le IgG è 9 AU/ml, mentre per le IgM è 10 AU/ml.

- Lupus Anticoagulant (LAC), saggio funzionale che misura la capacità di autoanticorpi di qualsiasi isotipo specifici per le proteine plasmatiche legate a superficie fosfolipidi che anioniche (principalmente β2GPI), di inibire la conversione della protrombina a trombina ed interferire con la formazione del coagulo in vitro. Quindi, l’attività LA è caratterizzata in vitro da un prolungamento dei tempi di coagulazione fosfolipide dipendente, in vivo l’attività coagulante non è modificata e raramente il paziente soffre di fenomeni di sanguinamento (105). Le linee guida per l’esecuzione del test per LA sono state delineate da un preposto sottocomitato internazionale (International Society in Thrombosis and Haemostasis Scientific Subcommittee on Lupus Anticoagulants/phospholipids dependent antibodies) secondo una precisa strategia diagnostica a tre livelli indicati come test di screening, mixing e conferma (106). Il test di screening verifica l’allungamento del tempo di coagulazione misurando l’integrità del processo coagulativo contatto-dipendente, fattore tissutale-dipendente o della via finale comune; il test di mixing verifica che il prolungamento sia dovuto alla presenza di un anticoagulante circolante e non ad una carenza di uno o più fattori della coagulazione; il test di conferma verifica che l’anticoagulante sia diretto contro i fosfolipidi o complessi proteine-fosfolipidi e non contro i singoli fattori della coagulazione. L’attività LAC è stata determinata utilizzando per ogni campione i seguenti test commerciali: APTT con attivatore silice (basso livello di fosfolipidi; screening), SCT (attivatore silice micronizzata e fosfolipidi a bassa ed ad alta concentrazione, mixing), DRVVT veleno di vipera Russel (conferma).
- Anticorpi anti-cardiolipin (aCl), utilizzando un ELISA home-made. Brevemente, la piastra è stata copulata con la cardiolipina, i sieri sono stati diluiti 1:50 in PBS/FCS 10% e la rilevazione dei campioni positivi è stata fatta attraverso incubazione con anti-human IgG/fosfatasi alcalina o anti-human IgM/fosfatasi alcalina. Per il calcolo dei risultati sono stati utilizzati dei sieri di riferimento (positivi noti per IgG e per IgM) in diluizione al raddoppio (7 punti da 1:50 fino a 1:3200). Attraverso la costruzione di curve logaritmiche di riferimento, costruite utilizzando i sieri positivi per anti-Cl IgG o IgM, calibrati con i rispettivi riferimenti internazionali, si risale ai valori GPL o MPL dei campioni. Si considera positivo un campione con un valore \(> 10 \) GPL/MPL. Per questo test è possibile individuare tre livelli di positività: bassa (10-20 GPL/MPL), media (21-80 GPL/MPL) e alta (\(\geq 81 \) GPL/MPL).

- Anticorpi Anti-\(\beta \)2-glycoproteina I (anti-\(\beta \)2GPI) utilizzando un ELISA home-made. Brevemente, la piastra è stata copulata con la \(\beta \)2GPI umana, i sieri sono stati diluiti 1:50 in opportuno tampone di diluizione e la rilevazione dei campioni positivi è stata fatta attraverso incubazione con anti-human IgG/fosfatasi alcalina o anti-human IgM/fosfatasi alcalina. I risultati sono espressi come valori medi di OD di ogni singolo paziente. Si considera positivo un campione con un valore in OD superiore al valore cut-off, che è 0.17 per le IgG e 0.27 per le IgM.

TEST NEUROPSICOLOGICI

Diciannove LES e quindici PAPS si sono sottoposti ad una estesa indagine neuropsicologica e psicodiagnostica. Sono state analizzate attenzione, funzioni esecutive, linguaggio, memoria, pianificazione visivo-spaziale, prassi e discriminazione visiva. I test neuropsicologici effettuati sono stati:
- **Mini Mental State Examination (MMSE)**

Valuta lo stato cognitivo globale ed è un test di screening ampiamente utilizzato per l'affidabilità e l'agilità di somministrazione; è particolarmente utile nella valutazione clinica in quanto è in grado di esplorare le varie funzioni cognitive. In particolare, vengono esaminati: l'orientamento temporale e spaziale, la memoria recente (di fissazione o registrazione), la memoria di richiamo, l'attenzione, la capacità di calcolo, il linguaggio (denominazione, ripetizione, comprensione orale e scritta, generazione di frase scritta) e la prassia costruttiva. Il punteggio assegnato va da un minimo di 0 ad un massimo di 30. Il cut-off al di sotto del quale la prestazione viene considerata indicativa di declino cognitivo è 24, mentre al di sopra di 27 generalmente si esclude una demenza, anche se occorre tenere presente che il test non si è rivelato sensibile nel discriminare specifici deficit cognitivi, soprattutto in fase iniziale di malattia e che un punteggio inferiore a 24 al MMSE (corretto per età e scolarità secondo la tabella relativa alla popolazione italiana) ha la funzione di campanello d'allarme e deve indirizzare verso più completi accertamenti neuropsicologici.

- **Test delle Matrici (Visual Search)**

Il test delle Matrici (Visual Search) (107) fornisce una misura circa l’attenzione selettiva. Vengono mostrate al soggetto tre matrici; ciascuna di esse è costituita da 13 righe di 10 numeri da 0 a 9 ciascuna, disposti in una sequenza casuale. Il soggetto deve sbarrare tutti i numeri uguali a quelli stampati in cima alla matrice in un tempo massimo di 45 sec. Viene calcolato il numero di risposte esatte (range 0-60, totale di risposte esatte fornite entro 45 sec nelle 3 matrici); il numero di falsi allarmi (range 0-270, numero di risposte errate fornite entro 45 sec nelle 3 matrici); le omissioni (range 0-60, numero di volte in cui i numeri indicati in testa alla matrice non sono stati segnati dal soggetto). Vengono anche inclusi tutti gli item contenuti nella parte di matrice compilata dal soggetto oltre il tempo massimo (range 0-60). L’analisi statistica tiene conto soltanto del punteggio delle risposte esatte complessivamente.
- **Trail Making Test (TMT) o test dell’esecuzione del tracciato**

Trail Making Test (TMT) o test dell’esecuzione del tracciato (107), originariamente parte della Army Individual Test Battery, è stato ampiamente utilizzato come test di facile somministrazione del tracking concettuale visivo e visuomotorio.

Esso valuta la capacità di pianificazione spaziale in un compito di tipo visuomotorio. È sensibile per la rilevazione del danno cerebrale. Disturbi psicotici, disturbi emotivi e d’ansia di grave entità possono influenzare negativamente la parte B del test, anche se raramente producono prestazioni assimilabili ad un quadro caratterizzato da danno cerebrale. Il TMT è composto da due parti, A e B. Nella parte A il soggetto deve unire in sequenza i numeri dall’1 al 25 nel più breve tempo possibile. Il corretto svolgimento della parte A richiede adeguate capacità di elaborazione visiva, riconoscimento di numeri, conoscenza e riproduzione di sequenze numeriche, velocità motoria. Nella parte B (test di valutazione dell’attenzione divisa visuo-spaiziale) il soggetto deve collegare in ordine progressivo una serie numerica (numeri dall’1 al 13) e una letterale (lettere dalla A alla N) alternandole (es. 1-A-2-B-3-C ecc.). Il corretto svolgimento della parte B, oltre alle predette abilità, necessita di una flessibilità cognitiva e di una capacità di shifting nella norma. Il punteggio è basato sul numero di secondi impiegati per completare il test. Vengono ottenuti tre punteggi (parte A; parte B; differenza B–A). La differenza di tempo tra le due prove (B–A) è anch’essa indice di flessibilità cognitiva e abilità di shifting. Per ogni parte il punteggio grezzo ottenuto deve essere corretto in base all’età e alla scolarità del soggetto.

- **Aprassia Costruttiva**

Il test valutante l’Aprassia Costruttiva (107) consiste nella copia di disegni geometrici tratti da un classico studio sulla prevalenza dei disturbi visuo-costruttivi nei cerebrolesi focali. Si tratta di una prova volta a dare una misura della capacità dell’esaminando di copiare, rispettando le coerenze reciproche, gli elementi costruttivi di disegni geometrici del modello. La prassia costruttiva
studiata in questo caso è quella bi-dimensionale. L’esaminatore presenta uno alla volta una serie di 7 fogli recanti le figure di difficoltà crescente che il soggetto deve copiare nella metà inferiore dello stesso foglio. Si attribuiscono 2 punti a disegni riprodotti correttamente; 1 punto alle copie parzialmente difettose, che consentano tuttavia l’identificazione dello stimolo o almeno di alcune sue parti; 0 punti sono assegnati alla copie irriconoscibili; sempre 0 punti vengono attribuiti qualora si verifichi il fenomeno del “closing-in”, ossia il soggetto segue il contorno della figura da ricopiare. Il punteggio massimo è di 14 punti; la prestazione è influenzata significativamente da età e scolarità, e anche pochi anni di scolarità hanno un’influenza critica sulla prestazione in confronto a soggetti analfabeti.

- **Street’s Completion Test**

Lo Street’s Completion Test (107) ha lo scopo di verificare se il soggetto sia in grado di integrare dei frammenti in un’unica figura realistica (fenomeno della chiusura). Il test valuta la capacità gnosico-appercettiva ed esamina la percezione “gestaltica”. Il test è costituito da 14 figure (più 3 di prova) tratte dalla serie originaria di Street, ciascuna “spezzata” in vari frammenti separati tra loro per le quali il soggetto deve indicare che cosa rappresentano in un tempo massimo di 30 secondi. Il punteggio viene così attribuito: 1 punto: risposta esatta fornita entro il tempo massimo; 0 punti: risposta errata o non-risposta o risposta esatta oltre il tempo massimo. Il range di risposta varia tra 0-14. Il punteggio viene corretto in base ad età e scolarità.

- **Matrici Progressive di Raven**

Le Matrici Progressive (107) sono state elaborate per poter esaminare la massima ampiezza delle abilità mentali e per poter essere somministrate a persone di qualsiasi età, indipendentemente dal livello culturale.

Il test consiste di una serie di problemi, 12 per ognuna delle 3 serie a disposizione, di confronto di modelli visivi e di analogia raffigurati in disegni che non raffigurano oggetti. Il compito è quello di scegliere tra 6 disegni quello che
completa il modello presentato. Le figure modello comprendono dei motivi grafici che si modificano da sinistra a destra secondo una certa logica, e dall'alto verso il basso secondo un’altra; il soggetto deve comprendere queste logiche e applicarle per giungere alla soluzione. Il test richiede dunque di analizzare, costruire ed integrare fra loro una serie di concetti; concettualizzare relazioni spaziali, configurazionali e numeriche che vanno da molto ovvie e concrete a molto complesse e astratte. Questo test mette in evidenza abilità analitiche non dipendenti da nozioni precedentemente apprese. Nella sua soluzione sono implicati comunque anche abilità spaziali e di ragionamento verbale. E’ dunque un test di ragionamento logico.

Le Matrici quindi, inizialmente pensate per essere utilizzate con i bambini, sono un valido strumento per esaminare negli anziani un eventuale scadimento delle capacità di ragionamento produttivo.

- **Test per l’Acalculia**

Il Test per l’Acalculia (107) valuta la presenza di un disturbo della capacità di calcolo, l’acalculia, acquisito in seguito ad una lesione cerebrale. In particolare valuta la forma anaritmetica, consistente nella difficoltà del calcolo in sé, attraverso una prova preliminare e 4 prove di calcolo scritto con limite di tempo, che devono essere eseguite in un’unica seduta. I punteggi ottenuti vengono corretti per età e scolarità secondo la tabella relativa alla popolazione italiana.

- **Token Test**

Il Token Test (TT) è uno strumento che mira a dare una misura delle potenzialità residue di comprensione del linguaggio orale (107). La prova tende anche ad essere impiegata per dare una misura complessiva della gravità dell’afasia. Si fonda sulla non-ridondanza degli ordini verbali dati dall’esaminatore. Il materiale relativo al TT consta di una serie di gettoni, di varia forma e colore, coi quali il soggetto deve eseguire diversi compiti. Vengono in questo modo esaminate la capacità di riconoscere forme, dimensioni e colori e l’abilità del soggetto ad eseguire compiti elementari. La valutazione si fonda sia su elementi quantitativi
che qualitativi. Il TT è stato applicato ad una vasta popolazione di controllo per valutare quali erano le variabili che potevano influenzarne l’esecuzione. È stata così dimostrata un’influenza significativa del livello culturale (espresso in anni di scuola) sul rendimento al test. Analoga influenza non è stata invece dimostrata per il sesso o per l’età. Per escludere l’influenza del livello culturale, il punteggio grezzo ottenuto deve quindi essere corretto. La soglia discriminante che differenzia una prestazione normale da una patologica è stata stabilita calcolando l’intervallo di tolleranza del 90% intorno alla media: si considera quindi patologico un soggetto che ottenga un punteggio corretto inferiore a 29.

- **Fluenze Verbali**

Il test di fluenza verbale (108) è uno degli strumenti volti a dare una misura della capacità di ricerca rapida (simil-automatica) di parole nel lessico interno; e quindi valuta l’ampiezza del magazzino lessicale, la capacità di accesso al lessico e l’organizzazione lessicale. La fluenza verbale per categorie fonemiche viene valutata chiedendo al soggetto di dire tutte le parole che gli vengono in mente e che cominciano con una determinata lettera. Questa parte è tipicamente compromessa nel caso di lesioni frontali sinistre ed in patologie non focali come la schizofrenia e la Corea di Huntington. La fluenza verbale per categorie semantiche viene valutata chiedendo al soggetto di dire tutte le parole che appartengono ad una data categoria. Questa parte non è molto influenzata dalla lateralità della lesione frontale ma si osservano invece prestazioni scadenti nella Malattia di Parkinson e di Alzheimer.

Il soggetto ha a disposizione 1 minuto di tempo per ogni lettera o categoria. Il punteggio totale è la somma delle parole corrette fornite per ciascuna lettera o categoria. Il punteggio grezzo viene corretto, individuando così il punteggio equivalente indicante la collocazione della prestazione nel range normativo di riferimento.
- **Test delle 15 Parole di Rey**

Il Test delle 15 Parole di Rey è un test, di facile somministrazione, che misura lo span di memoria immediata, fornisce una curva di apprendimento, rivela le strategie di apprendimento – o la loro assenza –, mette in luce tendenze all’interferenza retroattiva o proattiva, tendenze alla confusione o alla confabulazione nelle prove di memoria, misura la ritenzione sia a breve sia a più lungo termine in seguito a attività interpolate, consente un confronto tra l’efficacia del recupero e l’apprendimento. È costituito da cinque somministrazioni con rievocazione di una lista di quindici parole e da una sesta prova di rievocazione. La ritenzione può essere esaminata dopo 30 minuti. Inizia come un test di rievocazione immediata dello span di parole.

- **Torre Di Londra**

Il test della Torre Di Londra (107) viene utilizzato per la valutazione delle capacità di pianificazione. Consta di una base con 3 pioli di diversa lunghezza e palline colorate forate inseribili nei pioli. È una prova a tempo per cui si dice al paziente di compiere le operazioni necessarie allo svolgimento del compito nel minor tempo possibile. Il paziente deve collocare le palline colorate sui tre pioli di diversa lunghezza secondo un modello che presenta l’esaminatore, in un numero prestabilito di mosse. L’esaminatore calcola il tempo da quando al soggetto viene mostrata la configurazione fino all’avvenuta prestazione. Il tempo massimo per ogni configurazione è di 60 sec. Il punteggio viene calcolato in base al tempo fornito nella prestazione.

- **Clock Drawing Test**

Il Clock Drawing Test (CDT), ideato per rilevare l’aprassia costruttiva, è stato successivamente proposto come rapido strumento di screening per il deterioramento cognitivo, infatti la sua esecuzione richiede, oltre all’integrità delle capacità visuo-costruttive (lobi parietali), anche quella delle funzioni cognitive interdipendenti quali memoria a lungo termine, memoria visiva, comprensione verbale e numerica, concettualizzazione astratta e capacità di
pianificazione e di esecuzione (lobi fronto-temporal). La versione del CDT proposta consiste nelle prove di disegno a memoria dell’orologio (clock drawing), collocando correttamente i simboli numerici delle ore entro il quadrante dell’orologio, e nelle prove di posizionamento delle lancette all’orario specificato delle “11:10” (clock setting). La raffigurazione corretta dell’orologio suggerisce la presenza di funzioni cognitive intatte, così come un disegno grossolanamente anomalo è indicatore di probabile deterioramento cognitivo da indagare ulteriormente. Rimangono altresì dubbi sulla giusta classificazione e interpretazione degli errori minori.

- **Stroop Color Word Interference Test**

Lo Stroop Color Word Interference Test (107) è un test per la valutazione dell’attenzione visiva, indaga la capacità di controllare le interferenze. Il test si basa su un effetto descritto da Stroop oltre cinquant’anni fa: dire il nome di una macchia di colore richiede più tempo che leggere una denominazione di colore, e dire il nome del colore è molto difficile se il colore in questione viene usato per scrivere il nome di un altro colore. Esistono molte versioni degli stimoli; in Italia sono state pubblicate due forme approssimativamente parallele per contenuto (58 maria).

E’ una prova semplice da somministrare e rapida (richiede 5 minuti per la somministrazione), articolata in tre subtest: leggere una lista di nomi di colori, dire il nome dei colori che presentano alcune macchie di colore, dire il nome del colore in cui sono stampate alcune denominazioni di colore (per esempio: se c’è la parola “verde” scritta in giallo, bisogna dire “giallo”).

- **Digit Span**

Il digit span (107) è un test che misura lo span di memoria verbale (memoria di cifre). Il test consiste nella ripetizione di coppie di sequenze di numeri che l’esaminatore legge, vengono proposte sequenze sempre più lunghe fino a che il soggetto fallisce una coppia di sequenze o ripete correttamente l'ultima sequenza composta da nove numeri.
L’89% dei soggetti normali ha un Forward Span tra 5 e 8; in uno studio di 144 studenti è stato riportato un Digit Forward con un punteggio medio di 7,15 per i soggetti con un alto livello di ansia, e di 7,54, per quelli con un basso livello di ansia. Il range per il Digits Forward è 6 + o - 1: lo span di 6 o + rientra nei limiti di norma, uno span di 5 può essere al margine dei limiti di norma, uno span di 4 è considerato borderline e 3 è deficitario.

- **Test Di Apprendimento Di Coppie Di Parole**

Lo scopo di tale test consiste nel valutare la memoria anterogрадa in condizioni di apprendimento volontario semplice.

L’esaminatore legge al soggetto 10 coppie di parole, cinque “facili” (ad esempio: mese-anno) e cinque”difficili” (ad esempio arco-nome) nell’ordine fissato e, dopo la presentazione, l’esaminatore legge il primo membro della coppia, mentre il paziente deve rispondere con il secondo membro della coppia. La rievocazione avviene in ordine diverso da quello di presentazione.

La procedura viene ripetuta 3 volte, variando l’ordine delle coppie per ciascuna delle tre presentazioni e ripetizioni. Si assegna un punto se il soggetto risponde correttamente nel caso di coppie “difficili”; si assegna mezzo punto per ogni risposta esatta nel caso di coppie “facili”. Il punteggio va da 0 a 22,5 (prestazione perfetta). Il punteggio grezzo viene successivamente corretto per età e scolarità.

- **Test Di Corsi**

Il test di Corsi (107) è un test di misurazione dello span di memoria visuo-spaziale, cioè della quantità di informazioni visuo-spaziali che si riescono a trattenere nella memoria recente o MBT. Lo stimolo è costituito da una tavoletta di legno di cm 32 x 25 cm in cui sono incollati 9 cubetti di 45 mm di lato, disposti in modo asimmetrico. I cubetti sono numerati dal lato rivolto verso l’esaminatore, non da quello rivolto verso il soggetto. Il somministratore è seduto di fronte al soggetto e tocca con l’indice i cubetti in una sequenza standard di lunghezza crescente (da due a 9 cubetti) tornando ogni volta con
l'indice sul tavolo alla fine di ogni toccata. Appena terminata la dimostrazione della sequenza, l'esaminatore chiede al soggetto di riprodurla toccando i cubetti nello stesso ordine. Vengono presentate due sequenze per ogni serie. Se il soggetto riproduce correttamente almeno una sequenza su due, si passa ad esaminare la serie successiva. Il numero di cubetti relativo alla serie più lunga, per la quale sono state riprodotte correttamente almeno due sequenze, costituisce il punteggio del test che rappresenta lo span di memoria spaziale di quel soggetto. Lo span di memoria spaziale medio è circa uguale a 5.

- Breve Racconto

Questo test si occupa di misurare l’abilità di memoria a lungo termine per materiale uditivo-verbale.

Il somministratore legge al soggetto un breve testo di cronaca con l’istruzione di ripetere tutto ciò che ricorda. Dopo la riproduzione da parte del soggetto, il raccontino viene letto di nuovo. Si tiene poi occupato il soggetto per dieci minuti con attività diverse dalla memoria verbale, dopo di che si chiede nuovamente di ripetere la storia ascoltata. Il punteggio globale è basato sul numero delle unità ideative correttamente rievocate nell’insieme delle due ripetizioni. I punteggi devono poi esser corretti per età, scolarità e sesso.

STRUMENTI PSICODIAGNOSTICI

- State -Trait Anxiety Inventory - Forma Y (STAI - Y)

È uno strumento di rilevazione e di misurazione dell’ansia. L’ansia è uno stato affettivo generale e radicale nell’uomo; più che un sintomo o una sindrome delimitata, questa è più considerata come una modalità di esistenza i cui estremi appartengono sempre e comunque al dominio della psicopatologia. L’innegabile rilevanza che l’ansia, lo stress, l’apprensività, l’inquietudine, la paura hanno assunto nella vita sociale e nella pratica clinica giustifica la necessità di avere degli strumenti psicometrici attendibili e validi per rilevare e diagnosticare tali
Materiali e Metodi

stati e tratti, nonché verificare l’efficacia e i benefici della psicoterapia, dei programmi psicosociali e degli interventi psicofarmacologici.

Lo STAI è composto di due scale separate che consentono di misurare due distinti concetti di ansia: l’*ansia di Stato* (definita come uno stato transitorio emotivo o come condizione dell’organismo percepita a livello cosciente come tensione ed apprensione); l’*ansia di Tratto* (si riferisce a differenze individuali relativamente stabili nella disposizione verso l’ansia, cioè nella tendenza a percepire situazioni stressanti come pericolose e minacciose e a rispondere a tali situazioni con diversa intensità). Ciascuna scala è costituita da 20 affermazioni a cui il soggetto deve rispondere valutando, su di una scala likert a 4 punti, l’intensità dei propri sentimenti. La consegna relativa alla scala di Stato consiste nella richiesta al paziente di rispondere in base a come si sente in quel particolare momento (1- per nulla; 2- un po’; 3- abbastanza; 4- moltissimo); invece, nella parte del test relativa alla scala di Tratto, al paziente viene chiesto di indicare come si sente generalmente, valutando la frequenza con cui prova sentimenti di ansia (1- quasi mai; 2- qualche volta; 3- spesso; 4- quasi sempre). L’inventario non ha limiti di tempo.

- **Beck Depression Inventory (BDI)**

È definito il test di depressione per antonomasia, ed è grazie a questo, pur semplice ma sensibile inventario, che è stato possibile conoscere quanto attualmente sappiamo in merito al costrutto di depressione. Il *Beck Depression Inventory* è stato pensato per la popolazione adulta, ma ha trovato applicazione anche tra la popolazione di adolescenti. Scopo del test è di misurare l’intensità della depressione. Tale inventario è costituito da 21 item volti ad indagare: 1) tristezza; 2) pessimismo; 3) senso di fallimento; 4) insoddisfazione; 5) senso di colpa; 6) aspettativa di punizione; 7) delusione verso se stessi; 8) autoaccusa; 9) idee suicide; 10) pianto; 11) irritabilità; 12) ritiro sociale; 13) indecisione; 14) svalutazione della propria immagine corporea; 15) calo d’efficienza lavorativa; 16) disturbo del sonno; 17) faticabilità; 18) calo d’appetito; 9) calo ponderale; 20) preoccupazioni somatiche; 21) calo della libido. Per ogni item vengono proposte
quattro (o cinque) possibili risposte secondo gradi di intensità crescente. In consegna, si richiede al soggetto di segnare la risposta che meglio descrivere «come si è sentito nell’ultima settimana, oggi compreso», per ogni gruppo di item proposto. Il punteggio totale si ottiene sommando il valore (riportato a sinistra di ogni singola affermazione) corrispondente alla risposta scelta dal soggetto per ogni item proposto (si tratta di valori compresi tra 0, corrispondente a “depressione minima o assente”, e 3, punteggio di “depressione massima”, o tra 0-4). Oltre al punteggio totale è possibile calcolare tre ulteriori indici: una subscala riguarda la somma dei punteggi per i primi 13 item (subscala «Cognitivo-affettiva»); la seconda subscala considera il conteggio dell’intervallo di item 14-21 (subscala «Sintomi somatici e prestazionali»); indice dato dal conteggio degli item con risposta non pari a zero, fornisce l’ampiezza della sintomatologia accusata dall’esaminato («risposta non zero»). Il punteggio di cut-off, punteggio di allarme clinico, è 16, al di sopra del quale si ritiene opportuno sottoporre il soggetto ad un esame psicodiagnostico per valutare la presenza o meno di un sospettato spettro depressivo.

Il BDI è una misura di non massima sensibilità agli effetti del trattamento farmacologico o psicoterapeutico.

- **Symptom Check List (SCL-90)**

L’SCL-90 appartiene all’ambito dei Self Report Inventories o questionari ed è un inventario sintomatologico designato a misurare i disordini sintomatici psichici sia di pazienti psichiatrici che non. Il questionario è somministrabile ad adulti di età non inferiore ai 14 anni. L’SCL-90 risulta invalidato nei casi in cui viene somministrato a soggetti con gravi disturbi mentali, psicotici, dislessici, analfabeti o con altre gravi debilitazioni. I 90 item, di cui il test è composto, riflettono il distress psicopatologico in termini di 9 dimensioni di sintomi: somatizzazione, ossessività-compulsività, sensibilità ai rapporti interpersonali, depressione, ansia, ostilità, ansia fobica, ideazione paranoide, psicotismo. Il paziente deve assegnare ad ogni item, scegliendo tra una scala compresa tra 0 e 4, il valore numerico che meglio descrive ed esprime quel particolare problema in
riferimento alla propria persona negli ultimi 15 giorni (valgono le seguenti corrispondenze: 0- per niente; 1- un poco; 2- moderatamente; 3- molto; 4- moltissimo). Uno dei principali vantaggi connessi all’uso dell’ SCL-90 è quello di fornire un profilo multidimensionale dell’esaminato, utile al fine di ottenere i profili sintomatologici e gli indici di distress delle varie sindromi diagnostiche.

- **Profile Of Mood States (POMS)**

Il Profile of Mood States (POMS) è un inventario, un metodo semplice e rapido per identificare e quantificare stati affettivi particolari; misura sei fattori, e altrettanti stati dell’umore, ottenuti dalla compilazione di 58 item, che comprendono: fattore Tensione – Ansia, fattore Depressione – Avvilimento, fattore Aggressività – Rabbia, fattore Vigore – Attività, fattore Stanchezza – Indolenza, fattore Confusione – Sconcerto.

Per ottenere il punteggio di ciascuno dei sei fattori, si sommano i punteggi delle risposte date ai singoli termini che definiscono il fattore stesso. Ad ogni termine, o item, si assegnano da 0 a 4 punti secondo quanto segnato dal soggetto. Sommando i punteggi ottenuti dai sei fattori (col fattore Vigore – Attività valutato con segno negativo) si ottiene un punteggio totale dei disturbi dell’umore.

- **Questionario SF-36**

L'SF-36 è un questionario sullo stato di salute del paziente, componente essenziale della misura della qualità della vita del soggetto. E’ caratterizzato dalla brevità e dalla precisione (lo strumento è valido e riproducibile).

L’SF-36 è il risultato ultimo di una lunga esperienza nella realizzazione di un questionario di breve formato sullo stato di salute mentale in cui sono stati selezionati 8 concetti di salute indagati con 36 domande. I domini in cui è articolato il test sono: AF - attività fisica, RP - limitazioni di ruolo dovute alla salute fisica e RE - limitazioni di ruolo dovute allo stato emotivo, BP - dolore fisico, GH - percezione dello stato di salute generale, VT - vitalità, SF - attività sociali,

ANALISI STATISTICHE

La sensibilità dei due metodi per la ricerca di anticorpi anti-NR2 è stata comparata ad un valore atteso utilizzando il test del Chi-quadro.

Per valutare l’eventuale presenza di differenze nei livelli di anti-NR2 tra la popolazione LES, i LES neuropsichiatrici e le PAPS con e senza coinvolgimento del sistema nervoso centrale, è stato utilizzato il test Kruskal-Wallis con il confronto multiplo di Dunn.

L’associazione tra la presenza di anti-NR2 e gli altri parametri serologici è stata analizzata usando test del Chi-quadro con la correzione di Yates. La forza di tale associazione è stata espressa attraverso il coefficiente di correlazione R.

La possibile associazione tra positività anticorpale e presenza di deficit cognitivi o di alterazioni psico/emotive è stata indagata con il test di Fisher per variabili dicotomiche. La correlazione tra variabili continue è stata analizzata mediante calcolo del coefficiente di correlazione lineare di Pearson.

Un p-value minore di 0,05 è stato considerato statisticamente significativo.

Le analisi statistiche sono state condotte utilizzando il software SPSS13.0.
RISULTATI

Primo obiettivo del lavoro è stato la messa a punto dell’ELISA per anticorpi anti-NR2 utilizzando il decapeptide come antigene. Partendo dal protocollo fornito dal Prof Omdal sono state apportate delle modifiche per ottimizzare il test. Una volta ottenuta la standardizzazione della metodica, identificando anche cut-off, specificità e sensibilità, il test è stato utilizzato per verificare la presenza e la frequenza di anti-NR2 in pazienti LES e PAPS afferenti all’Istituto Auxologico Italiano. Da questa prima indagine è emersa una frequenza di anti-NR2 significativamente più alta nella popolazione PAPS rispetto ai LES. Dal momento che dati di letteratura riportavano anche l’utilizzo di una forma antigenica diversa costituita dal peptide ramificato che, avendo una struttura più complessa, poteva risultare più specifico, i test ELISA sono stati ripetuti con questo nuovo peptide: sono stati calcolati cut-off, specificità e sensibilità del test e sono stati ritestati i sieri dei pazienti appartenenti alle due popolazioni.

Parallelamente sono stati eseguiti i test neuropsicologici su alcuni dei pazienti arruolati.

PROTOCOLLO ELISA PER anti-NR2 CON DECAPEPTIDE

Per la messa a punto del sistema ELISA per la rivelazione degli anticorpi anti-NR2 nel siero dei pazienti sono state confrontate la metodica norvegese originale e quella modificata, considerando le possibili variabili sperimentali sotto elencate:

- Peptide (sintetizzato in Italia / sintetizzato in Norvegia)

- Anticorpo secondario (coniugato con fosfatasi alcalina / coniugato con perossidasi); (anti-IgG / anti-IgGAM)

Tutti i sieri, in duplicato, sono stati testati in parallelo e nelle medesime condizioni presso il Laboratorio di Immunologia di Cusano Milanino e presso il Laboratorio del
Prof Omdal, Stavanger University Hospital, Norvegia secondo il seguente schema sperimentale:

1- test del peptide italiano e di quello norvegese, utilizzando piastre di tipo medium binding (Greiner Bio-One – product number: 655001) e come anticorpo secondario un anti-IgG coniugato con fosfatasi alcalina ad una diluizione finale di 1:1000; la rilevazione è stata effettuata utilizzando come cromogeno/substrato il paranitrofenilfosfato + tampone carbonato/bicarbonato a 37°C per 30 min;

2- test del peptide italiano e di quello norvegese, utilizzando piastre di tipo medium binding (Greiner Bio-One – product number: 655001) e come anticorpo secondario un anti-IgG coniugato con perossidasi ad una concentrazione finale di 4,1 μg/ml; la rilevazione è stata effettuata utilizzando TMB+H₂O₂ a temperatura ambiente per 10 minuti.

Dal confronto dei risultati non emergono differenze significative, infatti utilizzando i due tipi di anticorpi secondari le positività vengono confermate e le due metodiche risultano paragonabili (Fig 1 e 2). Inoltre i dati ottenuti dal nostro laboratorio non si discostano significativamente da quelli ottenuti nel laboratorio norvegese.
Fig 1 e 2. Confronto dei risultati ottenuti con peptide italiano e con peptide norvegese, utilizzando due tipi di anticorpi secondari.

CUT-OFF

I cut-off per i diversi metodi ELISA anti-NR2 messi a punto nel nostro laboratorio sono stati calcolati utilizzando i sieri di 96 donatori sani. Sono stati calcolati il valore medio di OD ottenuto per i diversi sieri e la deviazione standard. La media + 3 deviazioni standard è stata considerata come valore di cut-off. I risultati ottenuti sono mostrati in Tabella V.

<table>
<thead>
<tr>
<th>Test</th>
<th>Antigene/substrato</th>
<th>Numero di NHS</th>
<th>Cut-off</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELISA Indiretto</td>
<td>decapeptide</td>
<td>96</td>
<td>0.130 (OD)</td>
</tr>
<tr>
<td>ELISA Indiretto</td>
<td>peptide ramificato</td>
<td>96</td>
<td>0.452 (OD)</td>
</tr>
</tbody>
</table>

TAB V. Livelli di cut-off per i due test ELISA
SPECIFICITÀ’

Al fine di valutare la specificità delle due metodiche ELISA, ossia la loro capacità di identificare i campioni “veri” negativi per anti-NR2, sono stati testati i sieri di 36 pazienti affetti da patologie non autoimmuni, in particolare 12 con malattie infettive (HCV, HBV, HIV), 12 con gammaglobulinemia policlonale e 12 con gammopatia monoclonale. I due test hanno mostrato specificità significativamente diversa, come riportato in Tabella VI.

<table>
<thead>
<tr>
<th>Antigene/substrato</th>
<th>Specificità</th>
</tr>
</thead>
<tbody>
<tr>
<td>decapeptide</td>
<td>11/36 (70%)</td>
</tr>
<tr>
<td>peptide ramificato</td>
<td>4/36 (89%)</td>
</tr>
</tbody>
</table>

TAB VI. Specificità dei due test ELISA

SENSIBILITÀ’

Al fine di valutare la sensibilità delle due metodiche ELISA, ossia la capacità di identificare i campioni “veri” positivi per anti-NR2, sono stati testati i sieri di 51 pazienti LES e la percentuale di positivi è stata confrontata con il valore atteso del 30% ricavato dalla letteratura. L’analisi statistica non ha evidenziato differenze significative con il valore atteso (Tab VII).

<table>
<thead>
<tr>
<th>Antigene/substrato</th>
<th>Sensibilità</th>
</tr>
</thead>
<tbody>
<tr>
<td>decapeptide</td>
<td>21/51 (41,2%)</td>
</tr>
<tr>
<td>peptide ramificato</td>
<td>16/51 (31%)</td>
</tr>
</tbody>
</table>

TAB VII. Sensibilità dei due test ELISA
LIVELLI DI anti-NR2 NELLE DIVERSE POPOLAZIONI E CONFRONTO DEI RISULTATI ELISA CON DECAPEPTIDE E CON PEPTIDE RAMIFICATO

I sieri di 15 LES senza coinvolgimento del SNC, 5 LES con coinvolgimento neuropsichiatrico (NPLES), 19 PAPS con coinvolgimento del sistema nervoso centrale (PAPS CNS) e 14 PAPS senza disturbi del SNC sono stati indagati per la presenza di anti-NR2 mediante ELISA con decapptide o peptide ramificato. I risultati ottenuti nei due test sono mostrati in Tabella VIII.

<table>
<thead>
<tr>
<th>Gruppo</th>
<th>ELISA con decapptide</th>
<th>ELISA con peptide ramificato</th>
</tr>
</thead>
<tbody>
<tr>
<td>LES</td>
<td>7/15 (47%)</td>
<td>7/15 (47%)</td>
</tr>
<tr>
<td>NPLES</td>
<td>0/5</td>
<td>2/5 (40%)</td>
</tr>
<tr>
<td>PAPS</td>
<td>10/14 (71%)</td>
<td>4/14 (29%)</td>
</tr>
<tr>
<td>PAPS CNS</td>
<td>10/19 (53%)</td>
<td>4/19 (21%)</td>
</tr>
</tbody>
</table>

TAB VIII. Positività in ELISA anti-NR2 su diverse popolazioni di pazienti

8/53 (15%) sieri sono risultati positivi in entrambi i test ELISA, 17/53 (32%) e 8/53 (15%) sono risultati positivi nel test con il decapptide o con il peptide ramificato, rispettivamente.

La figura 3 mostra i risultati ottenuti nel test ELISA con il decapptide.

Non sono state osservate differenze significative tra i livelli sierici di anti-NR2 nei LES e negli NPLES, né tra PAPS e PAPS CNS. Al contrario, è emersa una differenza statisticamente significativa tra LES e PAPS e tra NPLES e PAPS CNS (p < 0.05).

In figura 4 sono invece riportati i risultati ottenuti nel test ELISA con il peptide ramificato.

In questo caso non sono state trovate differenze significative tra i livelli sierici di anti-NR2 nei diversi gruppi di pazienti presi in considerazione.
Fig 3. Livelli di anticorpi anti-NR2 nelle diverse popolazioni arruolate ottenuti usando il decapeptide come antigene. La linea rossa rappresenta il cut-off.

Fig 4. Livelli di anticorpi anti-NR2 nelle diverse popolazioni arruolate ottenuti usando il peptide ramificato come antigene. La linea rossa rappresenta il cut-off.
PROFILO ANTICORPALE DI LES E PAPS

I sieri dei pazienti arruolati nei diversi gruppi testati per anti-NR2 sono stati testati anche per ANA, LAC, anti-CL (IgG ed IgM), anti-β2GPI (IgG ed IgM), anti-ENA.

I risultati ottenuti sono riportati in figura 5.

![Fig 5. Profilo anticorpale dei diversi gruppi di pazienti arruolati.](image)

I pazienti PAPS con e senza coinvolgimento del sistema nervoso centrale sono stati testati anche per la presenza nel siero di anticorpi anti-nucleosomi. I risultati ottenuti sono mostrati in Tabella IX.

<table>
<thead>
<tr>
<th>Gruppo</th>
<th>IgG anti-nucleosomi</th>
<th>IgM anti-nucleosomi</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAPS</td>
<td>64% positivi</td>
<td>36% positivi</td>
</tr>
<tr>
<td>PAPS CNS</td>
<td>42% positivi</td>
<td>42% positivi</td>
</tr>
</tbody>
</table>

TAB IX. Anticorpi anti-cromatina nelle PAPS con e senza coinvolgimento neuronale

CROSS-REATTIVITA’ TRA ANTICORPI

L’elevata positività agli anticorpi anti-NR2 riscontrata nei pazienti PAPS ha fatto ipotizzare una loro possibile cross-reattività con altri autoanticorpi, in particolare
con anti-β2GPI, criterio diagnostico per la patologia, e anti-nucleosomi, dato che gli anticorpi anti-NR2 costituiscono una sottoclasse di anticorpi anti-dsDNA. Dall’analisi è emerso che tra i sieri con una elevata attività anti-β2GPI il 67% era negativo al test per anti-NR2 effettuato con il decapeptide, e l’80% a quello effettuato con il peptido ramificato. Sulla base di questi dati sembra improbabile una cross-reattività/correlazione tra i due anticorpi (Rj = 0,05; Rj = 0,14 rispettivamente).

Tra i pazienti PAPS positivi a medio/alto titolo per anti-nucleosomi, il 25% risultava negativo per anti-NR2 con il decapeptide (R = 0,44) e la percentuale aumentava notevolmente (50%) utilizzando il test con il peptido ramificato (R = 0,044). Poiché la maggioranza dei sieri PAPS (75%) presentava doppia positività per anti-nucleosomi e anti-NR2, almeno nel test con il decapeptide, non è possibile escludere una eventuale cross-reattività tra i due tipi di autoanticorpi.

TEST NEUROPSICOLOGICI

L’esecuzione dei test neuropsicologici richiede complessivamente circa 3 ore; è quindi difficile convincere il paziente a sottoporsi a tale indagine ed è principalmente per tale ragione che i test non sono stati eseguiti su tutti i pazienti arruolati ma su 9 PAPS, 6 PAPS NCS e 14 LES e 5 NPLES.

Test cognitivi tradizionali

I test cognitivi tradizionali hanno messo in evidenza una serie di differenze all’interno delle due popolazioni del campione clinico. Il punteggio medio ottenuto dai pazienti affetti da PAPS era significativamente più discosto dalla normalità rispetto ai pazienti affetti da LES per i seguenti test: *Fluenze Verbalı fonemiche* (p<0.02); *Street’s Completion Test* (p<0.02). I restanti test neuropsicologici, pur mettendo in evidenza differenze rispetto al tipo di dominio maggiormente coinvolto all’interno dei due gruppi, non hanno tuttavia raggiunto livelli di
Risultati
differenza statisticamente significativi. I punteggi ottenuti nelle varie prove sono riassunti nella Tabella X.

I dati suggeriscono una distribuzione diversificata dei domini cognitivi coinvolti che sebbene non statisticamente significativa risulta suggestiva dell’aree cerebrali maggiormente coinvolte in queste due popolazioni: i pazienti LES hanno prestazioni più scadenti in compiti di inibizione frontale (Stroop Colour Word Test – Interference), di pianificazione visuo-spaiziale (Clock Drawing Test), di memoria a breve termine di tipo visuo-spaiziale (Span di Corsi), di memoria a lungo termine uditivo-verbale in rievocazione immediata di stimoli (Test delle 15 Parole di Rey) e di funzioni esecutive (Trail Making Test – Parte B e B-A); i pazienti PAPS, come già parzialmente descritto, hanno prestazioni significativamente più scadenti in compiti di evocazione lessicale (Fluenza Verbale Fonemica – FPL), di discriminazione visiva in compiti di visual closure (Street’s Completion Test) ed in maniera statisticamente non significativa in compiti di calcolo (Test per l’Acalculia), di ragionamento logico-deduttivo (CPM – Matrici di Raven), di memoria a lungo termine uditivo-verbale (Apprendimento di Coppie di Parole).

Analizzando i dati sull’intera popolazione (LES + NPLES + PAPS + PAPS CNS) secondo un criterio di presenza o assenza di un coinvolgimento per singolo dominio cognitivo analizzato, sono emerse interessanti evidenze. Dei pazienti esaminati circa il 24% (10 su 42 pazienti) è risultato esente da disturbi cognitivi, quindi in assenza di prestazioni cognitive deficitarie. Circa il 14% (6 su 42) ha presentato un dominio cognitivo deficitario. Un ulteriore 14% (6 su 42) ha presentato almeno due domini cognitivi deficitari tra quelli indagati.

Il 29% circa del campione ha mostrato la presenza di 3 o 4 domini cognitivi deficitari ed il 19% ha mostrato 5 o più domini cognitivi deficitari, presentando quindi un quadro di deterioramento cognitivo franco. L’incidenza di disturbi cognitivi nella popolazione in esame è molto elevata. Il 76% dei pazienti presentano almeno 1 dominio cognitivo indagato deficitario.
<table>
<thead>
<tr>
<th>Dominio Cognitivo</th>
<th>Media ± Deviazione Standard PAPS</th>
<th>Media ± Deviazione Standard LES</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrici Attenziali</td>
<td>47.300 ± 3.785</td>
<td>48.333 ± 4.860</td>
<td>0,4812</td>
</tr>
<tr>
<td>Barrage mancanti</td>
<td>25.933 ± 22.079</td>
<td>31.350 ± 27.198</td>
<td>0,5327</td>
</tr>
<tr>
<td>Boston</td>
<td>50.533 ± 8.193</td>
<td>51.037 ± 6.466</td>
<td>0,8272</td>
</tr>
<tr>
<td>Token Test</td>
<td>33.000 ± 1.044</td>
<td>33.280 ± 1.308</td>
<td>0,5214</td>
</tr>
<tr>
<td>MMSE</td>
<td>26.951 ± 1.575</td>
<td>27.019 ± 1.461</td>
<td>0,8888</td>
</tr>
<tr>
<td>Fluenze FPL</td>
<td>28.733 ± 8.093</td>
<td>36.259 ± 10.946</td>
<td>0,0251</td>
</tr>
<tr>
<td>Fluenze AFA</td>
<td>40.867 ± 7.558</td>
<td>43.481 ± 10.533</td>
<td>0,4026</td>
</tr>
<tr>
<td>Street 's Completion</td>
<td>1.933 ± 1.387</td>
<td>2.741 ± 0.903</td>
<td>0,0276</td>
</tr>
<tr>
<td>Acalculia</td>
<td>72.733 ± 19.368</td>
<td>74.011 ± 21.531</td>
<td>0,8497</td>
</tr>
<tr>
<td>Clock Drawing Test</td>
<td>4.600 ± 0.507</td>
<td>4.148 ± 1.634</td>
<td>0,1935</td>
</tr>
<tr>
<td>Aprassia Costruttiva</td>
<td>12.367 ± 0.681</td>
<td>11.954 ± 2.019</td>
<td>0,3395</td>
</tr>
<tr>
<td>CPM Raven</td>
<td>27.046 ± 7.791</td>
<td>28.155 ± 5.004</td>
<td>0,6242</td>
</tr>
<tr>
<td>Torre di Londra</td>
<td>25.786 ± 3.683</td>
<td>25.760 ± 3.844</td>
<td>0,9839</td>
</tr>
<tr>
<td>Stroop Word</td>
<td>76.400 ± 13.238</td>
<td>76.037 ± 9.823</td>
<td>0,9199</td>
</tr>
<tr>
<td>Stroop Colour</td>
<td>45.947 ± 9.488</td>
<td>45.930 ± 7.391</td>
<td>0,9949</td>
</tr>
<tr>
<td>Stroop Interference</td>
<td>20.800 ± 6.869</td>
<td>21.226 ± 7.138</td>
<td>0,8520</td>
</tr>
<tr>
<td>Trail Punt A</td>
<td>38.467 ± 15.212</td>
<td>35.519 ± 11.956</td>
<td>0,4916</td>
</tr>
<tr>
<td>Trail Punt B</td>
<td>109.867 ± 38.178</td>
<td>137.481 ± 85.518</td>
<td>0,1581</td>
</tr>
<tr>
<td>Trail Punt B-A</td>
<td>71.400 ± 34.938</td>
<td>102.074 ± 78.662</td>
<td>0,0897</td>
</tr>
<tr>
<td>Memoria Digit Span</td>
<td>6.067 ± 1.193</td>
<td>6.102 ± 1.171</td>
<td>0,9266</td>
</tr>
<tr>
<td>Memoria coppie</td>
<td>13.833 ± 3.839</td>
<td>14.185 ± 3.706</td>
<td>0,7725</td>
</tr>
<tr>
<td>Memoria Cpan Corsi</td>
<td>4.800 ± 0.887</td>
<td>4.491 ± 0.761</td>
<td>0,2414</td>
</tr>
<tr>
<td>Memoria racconto</td>
<td>12.767 ± 4.061</td>
<td>12.556 ± 4.072</td>
<td>0,8728</td>
</tr>
<tr>
<td>REY immediata</td>
<td>46.540 ± 8.499</td>
<td>44.093 ± 8.394</td>
<td>0,3728</td>
</tr>
<tr>
<td>REY differita</td>
<td>9.240 ± 2.698</td>
<td>9.219 ± 2.540</td>
<td>0,9805</td>
</tr>
</tbody>
</table>

TAB X. Medie e deviazioni standard delle performance cognitive ai test neuropsicologici tradizionali nelle due popolazioni

Test psico-emotivi

Emergono interessanti differenze tra i gruppi di pazienti nei punteggi ottenuti alle diverse scale valutative somministrate, sebbene non sempre statisticamente significative. In particolare, i pazienti affetti da PAPS risultano più inclini a sperimentare vissuti o disturbi d’ansia mentre i pazienti affetti da LES risultano più inclini ai vissuti depressivi, come meglio specificato qui di seguito.
STAI

Il punteggio medio ottenuto dal gruppo dei pazienti con LES in questo test non differisce in maniera significativa da quello ottenuto dal gruppo dei pazienti con PAPS.

Tuttavia, analizzando i punteggi emerge una maggior presenza di vissuti d’ansia, sia per quanto riguarda le componenti situazionali che stabili, in pazienti affetti da PAPS rispetto a pazienti affetti da LES. Considerando i singoli casi, il 26.19% dei pazienti, di cui il 63.64% LES e il 36.36% PAPS, avevano un punteggio al di sopra della norma.

BDI

Il punteggio medio ottenuto dal gruppo dei pazienti con LES in questo test non differiva in maniera significativa da quello ottenuto dal gruppo dei pazienti con PAPS. Tuttavia, analizzando i punteggi emerge una maggior presenza di vissuti depressivi, sia per quanto riguarda le componenti cognitive che somato-prestazionali della scala, in pazienti affetti da LES rispetto a pazienti affetti da PAPS.

Considerando i singoli casi, il 50% dei pazienti, di cui il 66.67% LES e il 33.33% PAPS, avevano un punteggio al di sopra della norma.

SCL90

Il punteggio medio ottenuto dal gruppo dei pazienti con LES per ciascuna subscale di questo test non differiva in maniera significativa da quello ottenuto dal gruppo dei pazienti con PAPS.

Tuttavia, analizzando i punteggi emerge una maggior presenza di vissuti depressivi, in pazienti affetti da LES rispetto a pazienti affetti da PAPS. Viceversa, come già osservato in altre scale valutative i pazienti PAPS risultano più ansiosi di quelli LES.
Risultati

POMS

Il punteggio medio ottenuto dal gruppo dei pazienti con LES in questo test non differiva in maniera significativa da quello ottenuto dal gruppo dei pazienti con PAPS.

Tuttavia, analizzando i punteggi emerge una maggior presenza di vissuti depressivi, in pazienti affetti da LES rispetto a pazienti affetti da PAPS. Viceversa, come già osservato in altre scale valutative i pazienti PAPS risultano più ansiosi di quelli LES.

SF-36

Il punteggio medio ottenuto dal gruppo dei pazienti con LES in questo test non differiva in maniera significativa da quello ottenuto dal gruppo dei pazienti con PAPS. La qualità di vita è risultata globalmente più elevata nei pazienti affetti da PAPS rispetto ai soggetti LES.

ASSOCIAZIONE PROFILI ANTICORPALI – PERFORMANCE COGNITIVE

E’ stata ottenuta una correlazione positiva tra gli anticorpi anti-dsDNA e la capacità di discriminazione visiva (Street’s Completion Test – r: 0.32, p<0.04) mentre sono state osservate correlazioni negative per quanto riguarda gli anticorpi anti-cardiolipina IgG e le abilità di discriminazione visiva e di evocazione lessicale (Street’s Completion Test – r: -0.36, p<0.02; Fluenze Fonemiche (FPL) – r: -0.34, p<0.03). Numerose correlazioni negative si registrano per gli anticorpi anti-cardiolipina IgM (Matrice Attentive – r: -0.38, p<0.01) (Boston Naming Test – r: -0.42, p<0.005), (Fluenze Fonemiche (FPL) – r: -0.38, p<0.01), (Fluenze Categoriali (AFA) – r: -0.40, p<0.009), (Street’s Completion Test – r: -0.46, p<0.002), (Test per l’Acalculia – r: -0.38, p<0.01), (CPM – Matrici Progressive di Raven – r: -0.32, p<0.04), (Stroop Interference – r: -0.32, p<0.04), (Digit Span – r: -0.31, p<0.04), (Span di Corsi – r: -0.34, p<0.02). Un’unica correlazione positiva è stata trovata tra
gli anticorpi anti-cardiolipina IgM e l’abilità di attenzione selettiva (*Test ‘Des Deux Barrage’* – r: 0.50, p<0.002) indicativo di un maggior numero di omissioni all’aumentare degli ab anti-cardiolipina IgM. Infine, numerose correlazioni negative per quanto riguarda gli ab anti-β2 glicoprotein IgM sono state evidenziate (*Matrici Attentive* – r: -0.38, p<0.01) (*Fluenze Fonemiche (FPL)* – r: -0.33, p<0.03) (*Fluenze Categoriali (AFA)* – r: -0.31, p<0.04) (*Digit Span* – r: -0.38, p<0.01) (*Boston Naming Test* – r: -0.33, p<0.03). Un’unica correlazione positiva è stata trovata tra gli ab anti-β2 glicoprotein IgM e l’abilità di attenzione selettiva (*Test ‘Des Deux Barrage’* – r: 0.42, p<0.01) indicativo di un maggior numero di omissioni all’aumentare degli ab anti-β2 glicoprotein IgM.

Si registrano, inoltre, correlazioni positive per quanto riguarda gli anticorpi anti-cardiolipina IgG ed il cambiamento percepito nello stato di salute (*SF 36 CS*: r – 0.33, p<0.03). Correlazioni positive si registrano per gli anticorpi anti-cardiolipina IgM e lo stato d’ansia ed il cambiamento nello stato di salute percepiti (*STAI T1* – r: 0.35, p<0.02; *SF 36 CS* – r: 0.40, p<0.009). Infine, un’unica correlazione negativa è stata trovata tra gli anticorpi anti-NMDA e la subscale Ostilità (*SCL 90 HOS* - r: -0.34, p<0.04).
DISCUSSIONE

Il coinvolgimento del sistema nervoso centrale in corso di APS o LES riveste una particolare importanza a causa della morbilità ad esso correlata. Questi disturbi cognitivi hanno un elevato impatto psicologico, emotivo, sociale ed economico sul paziente e sui suoi familiari. L’eziopatogenesi delle lesioni neurologiche in corso di LES e APS non è chiara e sono state formulate diverse ipotesi, come l’ischemia su base vascolare, la liberazione di mediatori dell’infiammazione e la produzione di autoanticorpi. Tra questi ultimi, recentemente sta emergendo un possibile coinvolgimento degli anticorpi anti-recettore N-methyl-D-aspartate (NMDA), in particolare di tipo NR2, anche se il meccanismo patogenetico non è ancora chiaro (19,89-92). Numerosi studi sono stati condotti in merito a ciò ma i risultati ottenuti sembrano piuttosto discordanti. Possibili ragioni di tali differenze potrebbero essere l’eterogeneità della popolazione di pazienti studiata in merito alla durata della malattia e la mancanza di standardizzazione, sia per la classificazione degli eventi neuropsichiatrici sia per la metodologia usata per la rilevazione degli autoanticorpi (20,88,93,96,99). Anche dal punto di vista clinico la correlazione tra presenza di anticorpi anti-NMDA e deficit cognitivi non è univoca e sono necessari ulteriori studi per chiarirne l’effettivo significato (97).

Scopo di questa tesi è stato ottenere una standardizzazione della metodica ELISA per la determinazione degli anticorpi anti-NR2 nel siero di pazienti, da utilizzare per indagare una possibile correlazione tra i livelli di tali anticorpi e la presenza di deficit cognitivi in pazienti LES e APS.

Da un primo screening dei sieri dei pazienti, impiegando il decapeptide come antigene, è emersa una significativa prevalenza di anticorpi anti-NMDA nella popolazione PAPS rispetto ai LES. Al fine di poter verificare tale risultato è stato preso in considerazione una forma diversa dell’antigene, il peptide ramificato.

L’ELISA effettuato utilizzando questo peptide mostra una maggiore specificità che può essere legata ad una maggior complessità antigenica.
Complessivamente nella nostra popolazione di LES è stata osservata una prevalenza di anticorpi anti-NMDA sovrapponibile a quella descritta da studi precedenti (20,88,94,96), nei quali una positività per anticorpi anti-NMDA è osservata in una percentuale che varia dal 19 al 33% nelle diverse casistiche.

Inoltre, nel nostro studio un elevato numero di pazienti con positività per anticorpi antifosfolipidi avevano una positività per anticorpi anti-NMDA. In particolare la prevalenza di questi anticorpi era molto elevata nei pazienti affetti da PAPS. In letteratura esistono pochi dati riguardanti una possibile associazione tra anticorpi anti-NMDA e positività per anti-PL. Nel 2006 Mozes et al. (95) non hanno trovato alcuna correlazione tra la presenza di anticorpi anti-NMDA e anti-cardioliipina in un'ampia popolazione di pazienti affetti da LES. Non esistono invece studi su popolazioni di PAPS. Fattori diversi, legati sia a condizioni sperimentali (tipo di anticorpi ricercati, metodi di determinazione utilizzati) che ai criteri di inclusione dei pazienti in studio, possono influenzare la valutazione della correlazione tra anti-NMDA e anti-PL. In particolare nel nostro studio, a differenza degli studi finora pubblicati, è stato selezionato un gruppo di pazienti con APS primitiva, e non secondaria ad altre patologie autoimmuni, e tra i criteri di inclusione sono stati considerati i tre criteri di laboratorio diagnostici per l’APS come riportato da Miyakis et. al. (52): LAC, anti-CL e anti-b2GPI.

Comunque i risultati ottenuti non permettono di trarre conclusioni definitive sulla correlazione tra anti-PL e anti-NR2.

Nella casistica di PAPS indagata è stata dimostrata la positività contemporanea per anti-nucleosomi e anti-NR2 nel 50-75% dei pazienti. Questo risultato è in linea con l’osservazione che autoanticorpi diretti contro antigeni nucleiari possono essere trovati anche in pazienti APS (11,109,110), ma occorrono ulteriori indagini mirate per poter escludere una eventuale cross-reattività.

Nell’insieme, i dati ottenuti con questa ricerca suggeriscono la necessità di ulteriori studi su casistiche più ampie di pazienti PAPS per valutare quale sia l'effettiva prevalenza degli anticorpi anti-NMDA in questa malattia ed
approfondire le conoscenze sulla loro specificità e/o correlazione con altri autoanticorpi. Inoltre, poiché i due tipi di test da noi utilizzate hanno dato risultati differenti, sarà necessario pianificare altri esperimenti per poter standardizzare la metodica e mettere a punto il test più specifico e sensibile per la determinazione della presenza di anticorpi anti-NMDA nel siero dei pazienti.

Utilizzando test neuropsicologici standardizzati è stata valutata la presenza di lievi o moderati difetti delle funzioni cognitive nei pazienti affetti da LES e PAPS.

L’incidenza di disturbi cognitivi nella popolazione LES esaminata è stata molto elevata: il 76% dei pazienti presenta almeno un dominio cognitivo indagato deficitario. Il deficit più frequente in questa popolazione era rappresentato da un difetto della capacità di calcolo (24.43%), seguito da un impairment nelle funzioni esecutive (35.71%). Piuttosto frequentemente si sono evidenziate difficoltà nelle funzioni attentivo-esecutive, nelle prove di efficienza frontale (16.67%), e di ragionamento logico-deduttivo (16.67%), ed, infine, nelle prove di memoria, nell’abilità di memoria a lungo termine per materiale uditivo-verbale e nella memoria a breve termine per materiale visuo-spaziale (11.90%). Conservati invece sono risultati nella maggior parte dei casi per lo stato cognitivo globale, il linguaggio, la prassia, la pianificazione visuo-spaiziale ed, in misura seppur parziale, la memoria. Da quanto riportato in letteratura, benché i diversi lavori non siano uniformi, né dal punto di vista degli strumenti utilizzati che dei risultati ottenuti, emerge che i deficit cognitivi più frequentemente riscontrati in corso di LES coinvolgono la memoria, l’attenzione, la capacità di reazione e le abilità psico-motorie (111-114).

Lo studio della popolazione dei pazienti affetti da PAPS ha mostrato nella maggior parte dei casi la presenza di deficit cognitivi che coinvolgono più di una funzione. I deficit cognitivi sono frequentemente inseriti tra le manifestazioni neurologiche 'non criterio' in corso di APS, tuttavia, tale inserimento è basato
prevalentemente sulla base di studi su pazienti affetti da LES con APS secondaria, mentre non esistono studi ampi su popolazioni di pazienti con malattia primitiva.

Nel nostro campione l’80% dei pazienti PAPS presenta un seppur minimo, coinvolgimento cognitivo, una percentuale maggiore rispetto ai pazienti LES anche se il grado di severità è globalmente maggiore nei pazienti affetti da LES.

In letteratura, i dati più consistenti sulla APS si ricavano da uno studio caso-controllo su 60 pazienti con APS primitiva o secondaria a LES, che ha mostrato la presenza di lievi deficit cognitivi nel 42% dei soggetti con APS, con un prevalente coinvolgimento della capacità di attenzione e della fluenza verbale (96). Se da questo studio si estrapolano solo i risultati ottenuti dai pazienti con APS primitiva la prevalenza di deficit scende a circa il 38%. Nella nostra casistica la presenza di lievi deficit cognitivi è molto più elevata. Ciò potrebbe essere dovuto all’ampio numero di test neuropsicologici utilizzati nel nostro studio. La gran parte degli studi condotti in letteratura, infatti, è basata su poche prove neuropsicologiche non esploranti tutti i domini cognitivi.

Nel complesso il nostro studio mette in luce una bassa incidenza di quadri dementigeni franchi, ma evidenzia nella maggior parte dei casi, sia LES che PAPS, la presenza di un lieve, spesso parcellare deficit della funzione cognitiva, che configura per i pazienti analizzati un quadro di *Mild Cognitive Impairment (MCI)*. Queste seppur lievi alterazioni delle funzioni cognitive possono tuttavia avere un grosso impatto sulla qualità di vita del paziente. Ciò che sembra emergere è un maggior coinvolgimento delle funzioni cognitive governate dalle aree frontali, con un più parziale e secondario coinvolgimento dell’efficienza mnesica.

I risultati ottenuti suggeriscono che i pazienti affetti da LES e PAPS potrebbero essere a rischio di sviluppare demenza. In quest’ottica sono necessari ulteriori studi longitudinali per meglio chiarire l’evoluzione a lungo termine di questi deficit.
Nel nostro studio non è stata evidenziata alcuna associazione tra la presenza di una positività per anticorpi anti-NMDA e la presenza di deficit cognitivi franchi sia nei LES che nelle PAPS.

I nostri dati sono nel complesso in gran parte sovrapponibili a quanto precedentemente descritto dalla maggior parte degli studi nei quali non è stata evidenziata nel LES una chiara associazione tra gli anticorpi anti-NMDA e la presenza di deficit cognitivi (20,88,94,96).

Tutti questi dati clinici sembrerebbero in contrasto con l'ipotesi di un possibile ruolo patogenetico degli anticorpi anti-NMDA nell’induzione di deficit cognitivi in pazienti affetti da LES, suggeriti dagli studi su modelli animali di Diamond et al (97). Tuttavia vanno tenuti in considerazione almeno 2 fattori, che potrebbero spiegare almeno in parte la difficoltà negli studi clinici di evidenziare una associazione tra anticorpi anti-NMDA e deficit cognitivi. Negli studi sull'animale è stata dimostrata la necessità di una interruzione della barriera emato-encefalica affinché gli anticorpi potessero raggiungere il circolo cerebrale ed espletare la loro azione patogenetica. Pertanto in pazienti arruolati consecutivamente, i quali non necessariamente abbiano incontrato stimoli in grado di aumentare la permeabilità della barriera emato-encefalica, possono essere presenti nel circolo periferico anticorpi anti-NMDA che tuttavia non hanno avuto modo di espletare la loro azione lesiva a livello cerebrale. Inoltre anche in pazienti nei quali vi sia stato in passato un danno della barriera emato-encefalica che abbia permesso agli anticorpi di attraversarla e determinare un danno cognitivo, possono successivamente andare incontro ad un graduale e progressivo recupero del deficit intellettivo una volta che la barriera abbia recuperato la sua funzione e gli anticorpi siano stati eliminati dal circolo cerebrale. In quest'ottica la fotografia resa in un dato momento dall’esecuzione di una batteria di test neurocognitivi potrebbe sottostimare il reale ruolo patogenetico degli ab anti-NMDA e la tendenza ad ottenere nei test punteggi più bassi potrebbe suggerire che nella casistica siano inclusi pazienti che potrebbero aver avuto in passato un deficit e che al momento dei test siano in fase di recupero.
Per quanto riguarda invece l’area psico-emotiva alcuni studi hanno mostrato una associazione tra presenza di anticorpi anti-NMDA e depressione in pazienti affetti da LES (88,93).

Nel nostro studio i test psico-emotivi hanno messo in evidenza una maggior incidenza di depressione in pazienti affetti da LES rispetto a quelli affetti da PAPS, e di disturbi d’ansia maggiormente presenti in pazienti PAPS rispetto a pazienti LES, pur non raggiungendo una significatività statistica. Tuttavia, non si è evidenziata una significativa associazione con la positività per anticorpi anti-NMDA o altri autoanticorpi. Tale osservazione è in linea con quanto riportato da Hanly et al su un’ampia casistica di pazienti studiati al momento della diagnosi e da diversi altri autori (115).

Concludendo, poiché i disturbi cognitivi sono uno degli aspetti dell’invecchiamento che suscitano maggiore preoccupazione e poiché è stato osservato che nell’anziano si verifica un aumento dei livelli di autoanticorpi, potrebbe risultare interessante valutare il coinvolgimento degli anti-NR2 nel declino cognitivo osservato nell’anziano.
BIBLIOGRAFIA

