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Preface

The thesis deals with the study of transportation problems, and in particular

focuses on developing new exact and heuristic algorithms for obtaining effec-

tive solutions to interesting variants of the very well known Vehicle Routing

Problem and Pickup and Delivery Problem. The studied problems consider

additional real-world requirements, often neglected in the literature. They

lead to more involved problems but on the other hand more realistic ones,

that call for powerful optimization methods in order to tackle such difficult

applications. The proposed algorithms are based on mathematical program-

ming techniques, such as branch-and-price, column generation and dynamic

programming. The performance of the algorithms is analyzed with extensive

computational experiments and compared with the most effective algorithms

from the literature, showing the usefulness of the proposed methods.
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Chapter 1
Introduction

1.1 Transportation Problems

It is needless to underline the importance of developing efficient algorith-

mic techniques for optimization in transportation. Indeed transportation is

undoubtedly one of the most critical elements in managing the global sup-

ply chain, because it represents a relevant factor in the final cost of goods.

The study of transportation problem is a central topic in operations research

and management science, and it represents one of the most successful ap-

plications of operations research solution methods. The complexity of the

problems arising in this context and the possibility to achieve substantial

economic savings calls for powerful optimization and mathematical program-

ming techniques. In this thesis, we study transportation problems and pro-

pose advanced optimization algorithms in order to find optimal and heuristic

solutions. The Vehicle Routing Problem can be considered as the basis of

transportation problems. Many works from the literature study how to solve

different applications of the Vehicle Routing Problem (see e.g. the survey by

Golden et al. [46]). This problem requires to find a set of routes of minimum

cost (including travel cost, travel time and fixed cost for the use of the ve-

hicles) for a fleet of identical vehicles with limited service capacity, with the

aim of serving a given set of customers. Routes start and end at a unique

7



1. Introduction 8

depot and each customer has a given demand which must be served by a

single vehicle of the fleet. However real-world applications often require to

take into account several additional constraints [24]: for instance, visiting

certain locations is allowed only in certain time windows; furthermore, large

companies usually have more than one depot and they often manage a fleet

made of vehicles with different capacities and operating costs. This moti-

vates the study of optimization techniques for transportation problems that

are variants of the classical Vehicle Routing Problem, and which consider

additional real-world characteristics.

Another classical problem that we extend with additional constraints is the

Pickup and Delivery Problem. In this problem a set of pickup locations and

a set of delivery locations are given, and each customer specifies a demand,

which must be picked up at a given location and delivered at a given loca-

tion. Thus, besides the described constraints of the Vehicle Routing Problem,

pairing constraints must be satisfied, i.e. for each customer pickup and de-

livery must be performed in the same route, and precedence constraints are

imposed, i.e. for each customer pickup must precede delivery. Similarly as in

the Vehicle Routing Problem, the goal is to find a set of minimum cost routes

for a fleet of identical vehicles with limited service capacity, which start and

end at the unique depot and that serve the given set of customers, satisfying

pairing and precedence constraints. For comprehensive reviews on routing

problems involving pickups and deliveries, the reader is referred to the works

of Savelsbergh and Sol [81], Cordeau et al. [18] and Parragh et al. [64]. We

extend the classical Pickup and Delivery Problem by considering additional

real-world constraints. In particular, we deal with several depots, consider a

heterogeneous fleet of vehicles and take into account for each customer a soft

time window: usually only hard time windows are considered, i.e. service of

each customer must happen within the given hard time window. However,

sometimes this is too strict, and a more realistic behavior is to allow violation

of the hard time window, and apply a (linear) penalization cost when the

hard time windows is violated.

In the remainder of the chapter, we briefly describe the two problems that
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we studied: the first one is an extension of the Vehicle Routing Problem

and the second one is an extension of the Pickup and Delivery Problem.

For both problems we propose exact and heuristic approaches and perform

computation experiments on benchmark instances from the literature.

1.2 Multi-Depot Heterogeneous Vehicle Rout-

ing Problem with Time Windows

The first problem that we consider is the Multi-Depot Heterogeneous Vehicle

Routing Problem with Time Windows (MDHVRPTW). It is a variation of

the vehicle routing problem with time windows in which the transportation

fleet is made by vehicles with different capacities and fixed costs, based at

different depots. To the best of our knowledge, no exact algorithms have

been proposed for the MDHVRPTW so far.

We introduce a set covering formulation for the problem, with a binary vari-

able for each feasible route, taking value 1 if the route is selected in the

solution. Since the model presents an exponential number of variables, we

adopt column generation techniques for the solution of its Linear Program-

ming (LP) relaxation. Given a depot and a vehicle type, the problem of

finding the most negative reduced cost column (corresponding to a route for

this vehicle type using the considered depot) turns out to be a Resource

Constrained Elementary Shortest Path Problem (RCESPP). This problem

is NP-hard and we solve it using three pricing algorithms: a greedy one, a

heuristic dynamic programming one and an exact dynamic programming one.

They are called in sequence, only if the previous pricing algorithm cannot

find any column with negative reduced cost.

We present a branch-and-cut-and-price algorithm, based on the described

LP-relaxation, for obtaining the exact solution to the problem. The algo-

rithm extends some recent ideas, such as bi-directional dynamic programming

and decremental state space relaxation. In particular, for the exact solution

of the RCESPP we use the technique proposed in [71], which consists of a
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bi-directional extension of node labels. In addition, we use decremental state

space relaxation: the idea is to project the state space of the problem to a

smaller one, by removing some elementarity constraints. One of the main

difficulties with the heterogeneous fleet and multi-depot version of the Vehi-

cle Routing Problem is that the reduced cost of the routes depends on the

depot chosen and the vehicle type. Hence in principle it would be necessary

to execute the pricing algorithm for each combination of vehicle type and

depot. One of the main features of our algorithm is that multiple execution

of the pricing algorithm is avoided. This is done by an aggregated pricing

algorithm. We also consider different cutting techniques: in particular, we

add violated 2-path inequalities, i.e. we search for a set of customers that

are served by less than 2 vehicles in the fractional solution but require at

least 2 vehicles in any integer solution. We embed the dynamic generation of

these inequalities in the column generation scheme. Two branching policies

are considered in the branch-and-cut-and-price algorithm: one consists in

branching on the number of vehicles, and the other one in branching on arcs.

Extensive computational results are reported on the use of the algorithm both

for exact optimization and as a heuristic method. The algorithm is tested on

benchmark instances from the literature and compared with state-of-the-art

algorithms. It is also tested on new instances, showing the behavior when all

the real-life constraints are considered (multi depot and heterogeneous fleet).

The results of the study are presented in [10].

1.3 Multi-Depot Heterogeneous-Fleet Pickup

and Delivery Problem with Soft Time

Windows

The second problem that we consider is the Multi-Depot Heterogeneous-Fleet

Pickup and Delivery Problem with Soft Time Windows (MDHPDPSTW). It

is an extension of the classical Pickup and Delivery Problem with Hard Time

Windows. The problem requires to find a minimum cost routing for a fleet
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vehicles with different capacities and based at different depots, satisfying a

given set of customers. A customer request is associated with two locations:

a source where a certain demand must be picked up and a destination where

this demand must be delivered. Each route must satisfy pairing constraints

(pickup and delivery of a customer must both be visited in the same route)

and precedence constraints (the delivery location must be visited after the

corresponding pickup location). Further, each pickup and delivery location

has a time windows for the service that can be violated at the cost of a lin-

ear penalty. This problem has application in various scenarios, such as urban

courier services, less-than-truckload transportation, door to door transporta-

tion services.

We propose a branch-and-price algorithm for the MDHPDPSTW which com-

bines ideas proposed in [74] with bidirectional label extension and decremen-

tal state space relaxation and use a modified version of the algorithm devel-

oped by Liberatore et al. [57] to handle soft time windows. Bidirectional

label extension is adapted to deal with the Pickup and Delivery Problem,

taking into account pairing constraints and precedence constraints. In addi-

tion, since we are dealing with soft time windows, we have the possibility of

trading cost for time: we are allowed to violate given hard time windows at

a penalty cost. This information is stored in a node label as a cost function

and we adapt label extension to deal with this new feature.

We report computational experiments on several benchmark instances both

to measure the performance of the proposed algorithm and to investigate the

impact of soft time windows on the structure of the optimal solutions. A

preliminary discussion on the study has been presented in [11].

1.4 Original Contributions

The contributions of this thesis follow both theoretical and practical direc-

tions. From a theoretical point of view, new modifications to an existing

method, introduced by Righini and Salani [71, 78], are proposed in order

to deal with very general routing problems. The method was designed for
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solving by branch-and-price the Capacitated Vehicle Routing Problem, the

Vehicle Routing Problem with Distribution and Collection, and the Capaci-

tated Vehicle Routing Problem with Time Windows. Starting from the basic

version of the method, we introduced new changes that allowed us to tackle

routing problems characterized by the following additional features:

• multiple depots instead of just one depot where all the vehicles are

based;

• a heterogeneous fleet of vehicles (i.e. vehicles with different capacities)

instead of a single vehicle type;

• soft time windows (i.e. time windows where a linear penalty is applied

if the vehicle visits the customer outside the specified time window)

instead of the more common hard time windows

• pickup and delivery to the customers instead of just pickup.

The changes that we introduced in order to take into account these additional

features require relevant modifications in the structure of the algorithms used

for the problem solution. In addition, the changes in the methodology implied

substantial changes in the implementation and in particular the use of clever

data structures that could keep the efficiency of the method even in a more

difficult environment. Moreover, the two different studied problems required

very different changes.

Last but not least, to the best of our knowledge, no exact method was de-

signed for routing problems including all these additional features.

From a practical point of view, the additional considered features lead to

more realistic problems, and reduce the gap between theory and practice.

Of course, additional constraints might be considered in a real-world set-

ting. However, the insertion of the described characteristics of the problems

helps in exploring a more realistic setting and in understanding how far the

designed algorithms can go and fulfill the real company requirements. Ex-

tensive computational experiments have been performed in order to compare
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the proposed algorithms with state-of-the-art algorithms that however do

not include these additional features. In addition, computational testing

has been done on more realistic instances, characterized by multiple depots,

heterogeneous fleet of vehicles, pickup and delivery to the customers, soft

time windows. The effectiveness of the algorithms presented in this work is

also encouraging in the study of exact and heuristic methods for real-world

involved problems.

1.5 Outline

The thesis is organized as follows: in Chapter 2 we introduce the very well-

known Vehicle Routing Problem and Pickup and Delivery Problem, and we

present the main results in the literature for these problems. In Chapter 3

we describe the main ideas of the methodology that is the starting point for

the solution methods used in this thesis. In particular, we will describe the

branch-and-price technique applied to the Vehicle Routing Problem, with

details on column generation and on the corresponding arising subproblem.

In Chapter 4 and 5 we will present the study on two variants of the Vehicle

Routing Problem and Pickup and Delivery Problem, respectively. We will

formally describe the problems and we will present new approaches for ob-

taining exact and heuristic solutions to these problems. Finally, in Chapter 6

we will draw some conclusions and we will present possible topics for future

research.



Chapter 2
Vehicle routing and pickup and

delivery problems

In this chapter the basic versions of vehicle routing and pickup and delivery

problems are introduced. They will be useful to describe the main ideas of

the solution method used in this work, without the complications introduced

by the additional constraints present in the variants of the problems studied

in this thesis.

2.1 The Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is a very well-known combinatorial op-

timization problem. It concerns the effective management of the transporta-

tion of goods and services in distribution systems. In this section, we will

describe the problem, we will present the main Integer Linear Programming

models used for it, and finally we will describe the most effective methods

developed for its solution.

14



2. VRP and PDP 15

2.1.1 Problem Description

The VRP (also known as Capacitated VRP) can be defined as follows: given

a set of customers, each one with a demand to be served, given a fleet of

vehicles, each one with a capacity, and given a depot at which the vehicles

are based, it calls for determining an optimal set of routes (to be performed

by the fleet of vehicles), starting and ending at the depot, so that all the

customers’ demands are satisfied. This problem is defined on a graph G =

(V,A) that represents a road network. The set of vertices V = {0, . . . , n}

contains the depot (represented by the vertex 0) and one vertex for each

customer. Each arc (i, j) in the set A corresponds to a road section and

is assigned a nonnegative travel cost cij (generally representing its length)

and a nonnegative travel time tij. Each customer i ∈ {1, . . . , n} has a given

nonnegative demand qi to be served. The fleet is composed of K identical

vehicles, each one with a given capacity Q. The goal is to determine an

optimal set of minimum cost routes (including arc cost and travel cost),

starting and ending at the given depot, with the constraints that the demand

of each customer is served by exactly one route, and that the capacity of the

vehicles is respected.

2.1.2 Mathematical formulation

In this section we recall two basic mathematical programming formulations

for the VRP: a flow model and a set partitioning model. An exhaustive

discussion of mathematical formulations can be found in [88] and [54].

2.1.2.1 A flow model

The three-index vehicle flow model uses O(n2K) binary variables x and

O(nK) binary variables y. Each variable xijk takes value 1 if the vehicle

k traverses arc (i, j) in the solution, 0 otherwise. Each variable yik is equal

to 1 if vehicle k serves customer i.
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minimize
∑

i∈V

∑

j∈V

cij

K
∑

k=1

xijk (2.1)

s.t.
K

∑

k=1

yik = 1 ∀i ∈ V \ {0} (2.2)

K
∑

k=1

y0k = K (2.3)

∑

j∈V

xijk =
∑

j∈V

xjik = yik ∀i ∈ V, k = 1, . . . , K (2.4)

∑

i∈V

qiyik ≤ Q ∀k = 1, . . . , K (2.5)

∑

i∈S

∑

j∈S

xijk ≤ |S| − 1 ∀S ⊆ V, |S| ≥ 2, k = 1, . . . , K (2.6)

xijk ∈ {0, 1} ∀i ∈ V, j ∈ V, k = 1, . . . , K (2.7)

yik ∈ {0, 1} ∀i ∈ V, k = 1, . . . , K (2.8)

where (2.6) is one of the known formulations for the subtour elimination

constraints. The vehicle flow model has been successfully applied in branch-

and-bound and branch-and-cut algorithms for the VRP (see Toth and Vigo

[87] and Naddef and Rinaldi [62]). This model can be extended to represent

constraints on the type of vehicle serving each customer or vehicle-related

constraints, such as different capacities or tour lengths. Details on this topic

can be found in Toth and Vigo [89].

2.1.2.2 A set partitioning model

The set partitioning model presents an exponential number of binary vari-

ables: one for each feasible route. Let Ω be the set of all feasible routes

and let xr for each r ∈ Ω be a binary variable assuming value 1 if the route

is selected in the solution and 0 otherwise. In addition, let air be a binary

coefficient assuming value 1 if and only if customer i ∈ V \ {0} is visited by

route r. We indicate with cr the cost of route r ∈ Ω. The model reads as
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follows:

minimize
∑

r∈Ω

crxr (2.9)

s.t.
∑

r∈Ω

airxr = 1 ∀i ∈ V \{0} (2.10)

∑

r∈Ω

xr = K (2.11)

xr ∈ {0, 1} ∀r ∈ Ω. (2.12)

The objective (2.9) aims at minimizing the cost of the selected routes. Con-

straints (2.10) require that each customer is visited by exactly one route and

constraints (2.11) impose to select exactly one route for each vehicle. The

main advantage of this model is that it can handle many different constraints,

since they are hidden in the definition of the routes. In addition, the linear

programming relaxation of this model is typically very tight. If the cost

matrix satisfies the triangle inequality, then the set partitioning formulation

may be transformed into an equivalent Set Covering model, by replacing

constraints (2.10) with the following constraints:

∑

r∈Ω

airxr ≥ 1 ∀i ∈ V \{0} (2.13)

The main advantage of the latter formulation is that only inclusion-maximal

feasible routes, among those with the same cost, need to be considered in the

definition of Ω, and this reduces the number of variables. In addition, when

using the set covering formulation, the dual space is reduced since dual vari-

ables are restricted to nonnegative values only. One of the main drawbacks

of both model is in the huge number of variables. Column generation tech-

niques help in this direction for solving the linear programming relaxation of

such models.
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2.1.3 Literature Review

Research in the field of vehicle routing started in 1959 with the truck dis-

patching problem by Dantzig and Ramser [20]. Since then a huge number

of works have been proposed in the literature for this problem. For a com-

prehensive survey on solution techniques for the vehicle routing problem we

refer the reader to [19, 16, 89]. We recall here some recent contributions.

A robust branch-and-cut-and-price (BCP) was presented in Fukasawa et al.

[43]. It combined column generation over q-routes with cuts over the edge

CVRP formulation. A q-route is a walk that starts at the depot vertex, tra-

verses a sequence of clients vertices with total demand smaller or equal to

the capacity Q of the vehicle, and returns to the depot (i.e. the elementar-

ity constraint is dropped). While pricing real CVRP routes would lead to

a strongly NP-hard problem, q-routes can be found in pseudo-polynomial

time by dynamic programming. Since the cuts on the edge variables can

be translated in arc costs in the dynamic programming, the pricing remains

tractable. This algorithm was able to solve instances from the literature with

up to 135 customers.

Another successful algorithm has been proposed by Baldacci et al. [4]. It

obtain a good estimate of the optimal dual variables values through cheap

lower bounding procedures. Then a BCP is called with the dual variables

bounded to be above and close to the estimates. Convergence is obtained

with very few calls to the dynamic programming pricing. This algorithm

was able to solve almost all the instances solved by Fukasawa et al., often in

much less time.

Several heuristic algorithms have also been proposed. Toth and Vigo [90] de-

veloped a granular tabu search (GTS) algorithm that a priori removes from

the graph edges that are unlikely to appear in an optimal VRP solution.

Li et al. [56] put forward an algorithm that combines the record-to-record

principle with a variable-length neighbor list whose principle is similar to

GTS. A very large neighborhood search has been proposed by Ergun et al.

[41]. Neighbor solutions are defined by means of 2-opt moves, vertex swaps
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between routes, and vertex insertions in different routes. In order to deter-

mine the best sequence of moves at a given iteration, a shortest path problem

is solved on an auxiliary graph, called improvement graph. Prins [68], and

Berger and Barkaoui [8] proposed memetic algorithms that combines features

of evolutionary strategies with local search procedures. Tarantilis and Ki-

ranoudis [85] have developed a rather effective adaptive memory procedure.

In a first phase a solution is obtained by means of a constructive procedure,

followed by a tabu search procedure. The adaptive memory procedure ini-

tiates new solutions by combining route segments, called bones, extracted

from good quality routes. Mester and Bräysy [61] proposed an iterative two-

stage procedure that combines guided local search with evolution strategies.

Pisinger and Ropke [65] developed an adaptive large neighborhood search

framework to solve five different variants of VRPs. Toth and Tramontani

[86] proposed a local search algorithm based on the exploration of an expo-

nential neighborhood by solving an integer linear programming problem.

2.2 The Pickup and Delivery Problem

2.2.1 Problem Description

The Pickup and Delivery Problem (PDP) is a generalization of the VRP, in

which each customer i is associated with two locations: a source where a

certain demand qi must be picked up and a destination where this demand

must be delivered. Each route must satisfy pairing constraints (pickup and

delivery of a customer must both be visited in the same route) and precedence

constraints (the delivery location must be visited after the corresponding

pickup location). As in the VRP case, the problem is defined on a graph

G = (V,A) that represents a road network. The set of vertices V = {0, . . . , n}

contains the depot (represented by the vertex 0) and one vertex for each

location. The set of arcs represents the set of road sections, and each arc

is assigned a nonnegative travel cost cij and a nonnegative travel time tij.

The fleet is again composed of K identical vehicles, each one with a given
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capacity Q. The PDP calls for determining a set of minimum cost routes,

starting and ending at the given depot, with the constraints that the demand

of each customer is picked up at the customer source and delivered at the

customer destination in the same route, and that the capacity of the vehicles

is respected.

A Set Partitioning Integer Linear Programming Model

The model (2.9)-(2.12) is valid also for this variant of the VRP, indeed the

additional constraints arising in PDP can be dealt with through the definition

of the feasible routes. The considerations on the transformation of the model

to a Set Covering formulation remain valid.

2.2.2 Literature Review

A column generation approach is elaborated by Dumas et al. [40]. They

consider heterogeneous vehicles, time windows as well as multiple depots.

The constrained shortest path problems are solved by means of a forward

dynamic programming algorithm.

Ropke and Cordeau [74] introduce a branch-and-price algorithm with addi-

tional valid inequalities. The elementary constrained shortest path problem

with time windows, capacity, and pickup and delivery restrictions is the nat-

ural pricing problem of the PDPTW. It is solved by means of a label setting

shortest path algorithm. Valid inequalities are added in a branch-and-cut

fashion; their impact on the structure of the pricing problem is discussed.

A branch-and-cut algorithm departing from two different two-index PDPTW

formulations is studied by Ropke et al. [75]. Formulation one makes use of

time variables. In formulation two time related constraints are modelled by

means of infeasible path inequalities. The latter formulation proves more

efficient when used as a basis for the branch and cut algorithm. New valid

inequalities to strengthen the proposed formulations are also discussed.
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Baldacci et al. [3] proposed an exact algorithm based on a set partitioning-

like formulation. They describe a bounding procedure to find near optimal

dual solution of the LP-relaxation of the formulation. The dual solution is

used to generate a restricted problem which is solved by an integer program-

ming solver.

Xu et al. [92] propose a column generation based heuristic algorithm. They

consider several additional constraints, such as multiple time windows at

pickup and delivery locations, loading restrictions, compatibility of goods

and vehicles as well as driver working hours. The column generation master

problem can be solved using a commercial LP solver. The resulting subprob-

lems are solved by means of two heuristics, called merge and two-phase, i.e.

merging trips and greedy deletion and insertion of requests. Lu and Dessouky

[59] elaborate a construction heuristic. It does not only incorporate distance

increase into the evaluation criterion but also time window slack reduction

as well as visual attractiveness (referred to as crossing length percentage).

Pankratz [63] proposes a grouping genetic algorithm for the PDP. It differs

from traditional genetic algorithms in that a group-oriented genetic encoding

is used. The encoding used by [63] corresponds to the cluster of requests

forming a route. The routing aspect, not comprised in the encoding, is

added while decoding the chromosome.

Ropke and Pisinger [76] present an adaptive large neighborhood search al-

gorithm for the PDPTW. Multiple depots as well as the existence of service

times can be handled by the approach at hand. A two-stage hybrid algo-

rithm for the static PDPTW is presented by Bent and van Hentenryck [7].

The first phase uses simulated annealing to decrease the number of vehicles

needed. The second phase consists of a large neighborhood search algorithm

in order to reduce total travel cost. Derigs and Döhmer [23] discuss an in-

direct (evolutionary) local search heuristic for the same problem. In indirect

search solutions are encoded such that the problem of securing feasibility is

separated from the metaheuristic search process. Here a greedy decoding is

used.



Chapter 3
Branch-and-Price for the VRP

Branch-and-price algorithms belongs to the family of branch-and-bound al-

gorithms. Their peculiarity is the use of Column Generation techniques to

compute a dual bound. They have been successfully applied to a wide variety

of optimization problems [31]. In this chapter we describe how the method

works for the capacitated VRP and we refer, in particular, to the method

used by Righini and Salani [78, 72]. It has been also applied to the VRP with

time windows [78] and the VRP with simultaneous pick-up and delivery [22].

In Chapters 4 and 5, we will present a new adaptation of the methodology to

deal with variants of the VRP and PDP, dealing with additional real-world

constraints.

3.1 Column Generation

Let us consider the LP-relaxation of model (2.9)-(2.12), i.e. constraints (2.12)

are replaced by

0 ≤ xr ≤ 1 ∀r ∈ Ω.

This problem is called master problem (MP). At each iteration of the simplex

method we look for a non-basic variable to price out and enter the basis. This

means that, given the dual variables λi i ∈ V \{0} of constraints (2.10) and

22
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the dual variable µ of constraint (2.11), we want to find:

min
r∈Ω







c̄r = cr −
∑

i∈V \{0}

airλi − µ







The complexity of this step depends on |Ω| and can be time consuming when

|Ω| is huge. The idea is to consider a small subset of columns Ω′ ⊆ Ω :

the linear program derived in such way from MP is called restricted master

problem (RMP). If the RMP is feasible, let x∗ and (λ∗, µ∗) be respectively

the primal and dual optimal solutions of the RMP. Then the problem

c∗r = min
r∈Ω







c̄r = cr −
∑

i∈V \{0}

airλ
∗
i − µ∗







is an oracle for pricing. If the solution is non-negative then no reduced cost

coefficient c̄r has a negative value, the restricted master problem cannot be

further improved and x∗ is the optimal solution also for the original master

problem. Otherwise the column which has the reduced cost equal to c∗r is

a candidate to enter the basis and it is added to the RMP. The process is

repeated until no negative reduced cost columns are found. The method

described is known as Column Generation. If the set of negative reduced

cost solutions is finite then the column generation algorithm converges and

is exact. The critical part of the column generation procedure is, of course,

the pricing step. Let ξa (a = (i, j) ∈ A) be a binary variable assuming value 1

if arc a is selected in the solution and zi (i ∈ V ) be a binary variable assuming

value 1 if vertex i is visited. Let δ+(i) and δ−(i) represent the outgoing arcs

and the ingoing arcs of vertex i, respectively. Let n+1 indicate an additional

vertex representing a copy of the depot 0, added for convenience. Recall that

λ∗
i (i ∈ V ) and µ∗ are the optimal dual variables of the RMP, associated

with constraints (2.10) and (2.11) respectively. A new column with minimum
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reduced cost is obtained by solving the following pricing problem:

minimize
∑

a∈A

caξa −
∑

i∈V \{0}

airλ
∗
i − µ∗ (3.1)

s.t.
∑

a∈δ+(0)

ξa = 1 (3.2)

∑

a∈δ−(n+1)

ξa = 1 (3.3)

∑

a∈δ+(i)

ξa = zi i ∈ {1 . . . n} (3.4)

∑

a∈δ−(i)

ξa = zi i ∈ {1 . . . n} (3.5)

∑

a∈δ+(S)

ξa ≥ zi S ⊆ V \{0}, i ∈ S (3.6)

n
∑

i=1

qizi ≤ Q (3.7)

ξa ∈ {0, 1} a ∈ A (3.8)

zi ∈ {0, 1} i ∈ {1 . . . n} (3.9)

The objective (3.1) is to minimize the arc costs, while taking into account

a prize given by the dual variables λi for each visited customer. Since µ

does not depend on the route choice, it is not necessary to consider it in

the subproblem model. Constraint (3.2) (resp. (3.3)) imposes to have one

outgoing (resp. ingoing) arc from the depot. Constraints (3.4) and (3.5)

ensure that if customer i is visited, thus we choose an ingoing and an outgoing

arc for it. Constraints (3.6) avoid to have sub-tours which do not contain

the depot. Constraint (3.7) allows to use at most the available capacity of

the vehicle for satisfying the customers’ demands. This problem is known

as Resource Constrained Elementary Shortest Path Problem (RCESPP) and

the method used for solving it will be described in details in Section 3.3.
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3.2 Branch-and-price

When we have to solve the integer linear program (2.9)-(2.12), we need to

embed the column generation process, described above, into a branch-and-

bound algorithm. The first known attempt dates back to 1961 when Gilmore

and Gomory [45] developed a column generation approach to the cutting

stock problem. Several applications of column generation techniques ap-

peared in the last decades. Desrosiers et al. [32], Desrocher and Soumis

[28], Ribeiro et al [70], Vance et al. [91] and Gamache et al. [44] are but

a few example of successful application of this technique to hard Integer

Programming (IP) problems which can be modeled as set partitioning (or

set covering) ones. In most of the above examples columns have a defined

structure and specific algorithms can be devised to price out new columns.

Indeed, the pricing problem often encodes structures like paths, sets or per-

mutations encoding the knowledge on how the columns are to be constructed.

In this context the branch-and-price algorithm (B&P), which is a generaliza-

tion of branch-and-bound with LP relaxations, allows the generation of new

columns throughout the branch-and-bound process. A branch-and-price al-

gorithm works as follows. The search tree is properly initialized with the root

node. At each node of the search tree the RMP is initialized with a subset

of feasible columns for the active node. Then the RMP is solved by column

generation as described above. If the solution is integer then it is a feasible

solution for the original master problem and it is compared with the current

incumbent solution, in the same manner of standard branch-and-bound. If

the LP solution does not satisfy the integrality conditions then branching

occurs to cut off the current fractional point. As in standard branch-and-

bound, the dual bound is used to avoid exploring nodes of the search tree

that are not promising and cannot lead to an improved solution. At the end

of the search process the best integer solution is the optimal solution for the

original integer linear problem.

A valid branching scheme should cut off the current fractional solution, pro-

duce a balanced search tree and keep the structure of the problem unchanged.

It should be pointed out that conventional integer programming branching on
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variables of the RMP is not very effective on B&P algorithms because it de-

stroys the structure of the pricing problem. While fixing a variable to 1 does

not create troubles at the pricing level, fixing a variable to 0 means that this

column is excluded from the RMP and it should not be generated anymore

by the oracle for the pricing. Unfortunately it is likely to happen because

the excluded column will have profitable dual prizes. Several branching rules

have been proposed in the literature to overcome this last issue.

In the approach of Salani [78], two different branching scheme are applied.

The first one consists in branching on the arc choice. A vertex i, belonging

to several fractional routes in which the arcs entering it or leaving it are

different, is selected. Half of its outgoing arcs are then forbidden in one

branch and the other half are forbidden in the other branch. The second

branching scheme consists in branching on the number of vehicles. We will

see an example of these two schemes applied to the variants of VRP and

PDP studied in the next two chapters.

3.3 The Resource Constrained Elementary

Shortest Path Problem

In this section, we describe the subproblem that arises in the column gen-

eration process and the methodology used for solving it. This method was

introduced by Righini and Salani [78, 72] who modified and improved a pre-

vious approach by Feillet et al. [42]. The solution approach is based on

dynamic programming techniques.

The resource constrained elementary shortest path problem (RCESPP) is

defined as follows: a graph G = (V,A) is given, where the vertex set V is

made by a set of vertices N representing n customers and two vertices s and

t representing the depot. A non-negative prize λi is associated with each

vertex i ∈ N , a non-negative cost λ0 is associated with the depot and a

non-negative cost cij is associated with each arc (i, j) ∈ A. Costs represent

shortest paths and therefore they satisfy the triangle inequality. A vehicle
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must go from s to t, visiting a subset of the other vertices; no cycles are

allowed. The objective is to minimize the cost, given by the sum of the costs

of the arcs traversed minus the sum of the prizes collected at the vertices

visited. Additional constraints must be taken into account, depending on

the kind of vehicle routing problem at hand. All these additional constraints

are modelled as resource constraints. In the case of the classical VRP, we

have only one resource (i.e. the capacity of the vehicles) and a possible ILP

model is (3.1) - (3.9), where λ0 = −µ, s = 0, and t = n + 1.

If the underlying graph may have negative cost cycles (e.g. in a column

generation approach for the VRP), the RCESPP is strongly NP-hard [36].

It is possible to address the pricing problem by optimizing its relaxation,

obtained by dropping the elementarity constraints. Solving a resource con-

strained shortest path problem (RCSPP) requires less computing time but

yields less tight lower bounds, since columns may include cycles. The two

different approaches have been followed for instance by Feillet et al. [42] and

Desrochers et al. [29] to solve the vehicle routing problem with time windows

(VRPTW) through column generation.

In the dynamic programming approach for RCSPP (see Desrochers [27]), a

state is associated to each vertex i: it represents a path from s to i. Each

state has an associated resource consumption vector R whose component Rr

represents the quantity of resource r used along the corresponding path. Each

state has an associated cost C and the optimal solution is the minimum cost

path reaching t. Different states associated with the same vertex i correspond

to different feasible paths reaching i. Hence states are represented by a

label of the form (R,C,i). The dynamic programming algorithm iteratively

selects a vertex and extends its state to all possible successors. When a state

(R,C,i) is extended to generate other feasible states (R′,C ′,j), the cost and

the resource consumption vector of the new state must be computed and

those states for which one or more components of R′ exceed the available

amount of the corresponding resource are fathomed. The cost is initialized
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at 0 at vertex s and it is updated according to the formula

C ′ := C + cij − λi/2 − λj/2 (3.10)

where λi = −λ0 if i = s and λj = −λ0 if j = t while vector R is initialized and

updated according to the specific problem at hand. In addition dominance

rules are applied in order to delete dominated states. For the case of the

classical VRP, where the resource consists of the capacity Q of each vehicle

(i.e. the sum of the demands of the vertices visited by the same vehicle

cannot exceed Q), the constraint is modelled in the state by one resource,

representing the amount of capacity still available along a path. Let χ be the

amount of resource consumed. Each state is represented by a label (χ,C,i).

Every time a node i is visited the corresponding amount of load qi is stored

on board, therefore χ is increased by qi. A state (χ,C,i) is feasible only if

χ ≤ Q.

The same algorithm can be used to solve the RCESPP, where feasible paths

are not allowed to contain cycles. To this purpose Beasley and Christofides

[49] proposed to add to the state an additional binary resource for each vertex

i ∈ N . There is only one unit available for each dummy resource and it is

consumed when the corresponding vertex is visited.

The effectiveness of the dynamic programming algorithm outlined above

heavily relies upon the possibility of fathoming feasible states that cannot

lead to the optimal solution. To this purpose suitable dominance tests are al-

ways performed when states are extended, so that the algorithm only records

non-dominated states. The dominance test is the following. Let (S ′,R′,C ′,i)

and (S ′′,R′′,C ′′,i) be the labels of two states associated to vertex i. Then

(S ′,R′,C ′,i) dominates (S ′′,R′′,C ′′,i) if

• (a) S ′ ≤ S ′′

• (b) R′ ≤ R′′

• (c) C ′ ≤ C ′′
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and at least one of the inequalities is strict. Feillet et al. [42] observed that

it is sometimes possible to identify vertices which cannot be visited in any

extension of a given state, because of the resource limitations. These vertices

are called unreachable. More formally a vertex k is unreachable from state

(S,R,C,i) if there exists a resource r which is non-decreasing, obeys the

triangle inequality and is such that extending state (S,R,C,i) to vertex k

would generate a state (S ′,R′,C ′,k) with R′
r exceeding the maximum amount

of available resource. This implies that vertex k cannot be reached from

(S,R,C,i) in any feasible way. In such cases it is useful to set the consumption

of the dummy resources corresponding to the unreachable vertices to 1, as

if they had already been visited. This enhancement allows the dynamic

programming algorithm to fathom a larger number of states and to reduce

the computation time. Every time a label of vertex i is extended, it generates

as many other labels as the number of possible successors of i. Therefore in

the worst case the number of labels grows exponentially with the number

of arcs in the path. States are fathomed only when they are dominated.

Rghini and Salani [71] proposed to use a bounded bi-directional dynamic

programming method to mitigate this phenomenon.

Bounded bi-directional dynamic programming In the RCESPP when

labels are propagated both forward from s to t and backward from t to s the

algorithm must examine two subsets of states whose size grows exponentially

with the number of arcs in the corresponding forward and backward paths.

Due to the exponential dependence on the number of steps, it is intuitive

that exploring two smaller sets of states may yield a significant advantage in

terms of number of states considered, provided that duplicate solutions are

avoided. This is precisely the effect of bounding, whose purpose is to limit the

length of the paths corresponding to non-dominates states. More precisely,

in bi-directional search states are extended both forward from vertex s to its

successors and backward from vertex t to its predecessors. States, recurrence

equations and domination rules are symmetrical to those presented above.

With each vertex are associated forward and backward states. A path from

s to t is detected each time a forward state and a backward state can be
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feasibly joined. In particular a feasibility test imposes that the same vertex

cannot be visited by both paths and a feasibility test on problem dependent

resources R imposes that for each resource the consumption in the overall

path does not exceed the overall amount of available resource.

As mentioned above, bounding is used to limit the length of forward and

backward paths in order to avoid unnecessary duplications: without bound-

ing the same s-t path would be found twice, as a forward path from s to t

and as a backward path from t to s. The effect of bounding is to stop the ex-

tension of forward and backward paths at “half way” between s and t so that

all feasible matchings of forward and backward paths correspond to all feasi-

ble complete s-t paths without duplications. To stop the extension of paths

we select a critical resource (capacity in the case of classical VRP), whose

consumption is monotone along the paths, and we allow paths to consume at

most half of the available amount of that resource. All non-dominated states

generated in this way are recorded, in both directions. Finally all forward

and backward states are tentatively matched and checked for feasibility: this

produces all feasible s-t paths.

Decremental state space relaxation Christofides et al. introduced the

idea of state space relaxation in order to reduce complexity and computing

time. It consists of mapping each state (S,R,C,i) onto a new state (σ,R,C,i),

where σ represents the length of the path, that is the number of vertices

visited (excluding s). A dynamic programming algorithm based on state

space relaxation must explore only a pseudo-polynomial number of states.

The surrogate resource consumption σ is initialized as 0 and it is increased

by one unit each time a state is extended. Since the state does no longer keep

information about the set of already visited vertices, cycles are no longer

forbidden; therefore the path is guaranteed to be feasible with respect to

the resource constraints but it is not guaranteed to be elementary. In the

state space relaxation algorithm the dominance rule is modified as follows:

(σ′,R′,C ′,i) dominates (σ′′,R′′,C ′′,i) if

• (a) σ′ ≤ σ′′
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• (b) R′ ≤ R′′

• (c) C ′ ≤ C ′′

and at least one of the inequalities is strict. This state space relaxation can

be tightened by eliminating all cycles of length two.

As shown in [72], this idea can be integrated into an exact dynamic program-

ming algorithm for the RCESPP as follows: some vertices are identified as

critical, according to the structure of the optimal RCSPP solution obtained

with state space relaxation. Let S̄ indicate the set of critical vertices at

the current iteration. In the subsequent iteration the dynamic programming

algorithm prevents multiple visits to the vertices in S̄, still allowing multi-

ple visits to the others. This is easily accomplished by extending the state

space relaxation labels with a binary vector restricted only to the critical

vertices. This algorithm is known as decremental state space relaxation. The

algorithm is run iteratively: every time it produces an optimal solution with

cycles, the vertices visited more than once are marked as critical and the

algorithm restarts.



Chapter 4
Multi-Depot Heterogeneous-fleet

Vehicle Routing Problem with Time

Windows

4.1 Introduction

There is a considerable economic interest around algorithmic techniques for

optimization in logistics, since transportation represents a relevant factor in

the final cost of goods.

Many real applications require to find a set of routes of minimum length

for a fleet of vehicles with limited resources, in order to serve a given set

of customers. When routes start and end at a unique depot, each customer

has a given demand which must be served by a single vehicle, and the fleet

is composed by identical vehicles with limited service capacity, the problem

turns out to be a classical Vehicle Routing Problem (VRP) [46].

However these applications often require to take into account several addi-

tional constraints [79] [67]. For instance, in several applications involving

interaction with human personnel or customers, visiting certain locations is

allowed only in certain time windows; furthermore, large companies or con-

sortia of small transportation companies usually have more than one depot

32



4. Multi-Depot Heterogeneous-fleet VRP with Time Windows 33

and they often manage a fleet made of vehicles with different capacities and

operating costs [12].

Therefore, in this work we consider three major extensions of the basic VRP

model, namely time windows, heterogeneous vehicles and multiple depots.

The resulting problem is called Multi-Depot Heterogeneous Vehicle Routing

Problem with Time Windows (MDHVRPTW): we want to simultaneously

determine the optimal composition, placement and routing of a heteroge-

neous fleet of capacitated vehicles in order to satisfy the delivery demands of

a set of customers under time constraints.

We refer the reader to the recent book by Golden et al. [46] for an up-to-date

survey of VRP models and methods. Several variants of the VRP involving

subsets of the features of the MDHVRPTW have been studied in the litera-

ture.

State-of-the-art methods for the VRP with Time Windows (VRPTW) are

able to solve instances with up to some hundreds customers [26] [46].

The Heterogeneous Vehicle Routing Problem with Time Windows (HVRPTW)

in the variant without any limit on the number of available vehicles was first

addressed by Liu and Shen [58] under the denomination of Fleet Size and Mix

VRP with Time Windows; the authors proposed a number of insertion-based

parallel savings heuristics, performing tests on instances with up to 100 cus-

tomers. Later, Dullaert et al. [38] developed three insertion-based heuristics,

that are an extension of Solomon’s [83] sequential insertion heuristic com-

bined with ideas of Golden et al.’s [47]. The authors tested their algorithms

using a slightly different objective function. More recently Belfiore and Fvero

[6] and Dell’Amico et al [21] respectively proposed scatter search and “ruin-

and-recreate” approaches to this problem. State-of-the-art heuristics are able

to provide good quality approximations for problems with 100 customers in

some minutes.

Instead, Polacek et al. [66] studied a Variable Neighborhood Search for the

Multi-Depot Vehicle Routing Problem with Time Windows (MDVRPTW). A

cluster-based optimization approach to the MDHVRPTW has been proposed
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by Dondo et Cerd [33], who also developed a large-scale neighborhood method

to improve the solutions found by their previous heuristic [34]. In this way,

instances with 100 customers can be heuristically solved in a time ranging

from some seconds to one hour.

Baldacci et al. [5] proposed a unified exact method, which is able to solve

different classes of vehicle routing problems, including heterogeneous fleets

and multiple depots (MDHVRP), without time windows; this is based on

the exact solution of an integer linear programming problem and on dual

heuristics. Instances involving up to 100 customers were solved to optimality

in some hours of computing time.

Finally, in [12] a rich vehicle routing problem was considered: it involves

multiple depots, heterogeneous vehicles, time windows and other features.

The authors proposed a column generation heuristic yielding good results on

instances with up to few hundred customers in some hours.

To the best of our knowledge, no exact algorithms have been proposed for

the MDHVRPTW so far. In this paper we present a branch-and-cut-and-

price algorithm for the exact optimization of the MDHVRPTW. The algo-

rithm extends some recent ideas, such as bi-directional dynamic program-

ming and decremental state space relaxation already applied to the VRPTW

and other versions of the VRP. In particular, in Section 4.2 we introduce

an extended formulation for the problem; in Section 5.3.1 we illustrate our

column generation routines and show how the repeated execution of the dy-

namic programming-based pricing algorithm can be made more efficient; in

the same section we also discuss the addition of strengthening inequalities

and branching strategies. In Section 4.4 we report the results of an extensive

experimental campaign, evaluating the effectiveness of our algorithm both as

an exact and as a heuristic optimization method. Section 4.5 ends the paper

with some concluding remarks.
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4.2 Problem formulation

The MDHVRPTW can be formulated as follows. Let G = (N ∪H,A) be a

directed graph whose node set is the union of a set N of customers and a set

H of depots.

Non-negative costs dij and tij are associated with each arc (i, j) ∈ A, rep-

resenting respectively the travel cost and the travel time to reach j ∈ N

starting from i ∈ N . Each customer i ∈ N has a delivery demand qi, a

service time si and a delivery time window [ai, bi].

We consider a set K of vehicle types, with known capacities wk and fixed

costs fk ∀k ∈ K. We assume that the number uk of available vehicles of each

type k ∈ K is limited. The number of routes associated with each depot

h ∈ H is limited by a given value gh. This represents the number of drivers

living close to each depot, who are able to operate routes from it; we assume

drivers to be able to use any type of vehicle.

In the version of the problem we study, we assume that all vehicles can be

freely associated with any depot: this corresponds to the situation in which

the location of the vehicles at the depots is a decision, not a datum.

Finally, vehicles do not necessarily leave their depots at time 0: due to

time windows, it may be convenient to delay the departure time to reduce

waiting time at customer locations. Following [58] we indicate as duration

the difference between the arrival and the starting time of the route, that

is the actual time spent in delivery operations. This cannot exceed a given

limit D, representing the length of driver shifts.

The objective is to minimize the sum of vehicles fixed costs and routing costs,

satisfying the following conditions:

I all customers must be served;

II each customer must be visited by only one vehicle

III the service at each customer must start within the customer time win-

dow;
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IV each route begins at a depot and ends at the same depot;

V the sum of the demands of the customers served in each route must not

exceed the capacity of the associated vehicle;

VI the duration of each route must not be greater than D.

VII the number of available vehicles for each type must not be exceeded;

VIII the number of allowed routes for each depot must not be exceeded;

Our framework allows to easily consider also the version in which the location

of vehicles is fixed, i.e. in each depot a given number of vehicles of each type

are pre-positioned; in this case a bound uhk is imposed on the number of

routes for each depot h ∈ H and for each vehicle type k ∈ K, but the

algorithm does not change. Nevertheless, in the remainder we discuss only

the former version, because it is the only one having terms of comparison in

the literature.

We introduce a set covering formulation of the MDHVRPTW as follows. We

indicate as feasible any route satisfying conditions II, III, IV, V and VI. We

indicate as Ωhk the set of all feasible routes using a vehicle of type k ∈ K

from depot h ∈ H.

We associate a binary variable xr with each feasible route: xr takes value 1 if

and only if route r is selected. We also use binary coefficients air with value

1 if and only if customer i ∈ N is visited by route r. We indicate by cr the

cost of route r; it is equal to the sum of the vehicle fixed cost fk and the

routing costs, i.e. the optimal value of the Traveling Salesman Problem with

Time Windows (TSPTW) on the customer set {i ∈ N|air = 1} starting and

ending at a particular depot. With these definitions we obtain the following
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integer linear programming model:

minimize
∑

h∈H

∑

k∈K

∑

r∈Ωhk

crxr (4.1)

s.t.
∑

h∈H

∑

k∈K

∑

r∈Ωhk

airxr ≥ 1 ∀i ∈ N (4.2)

∑

h∈H

∑

r∈Ωhk

xr ≤ uk ∀k ∈ K (4.3)

∑

k∈K

∑

r∈Ωhk

xr ≤ gh ∀h ∈ H (4.4)

xr ∈ {0, 1} ∀r ∈
⋃

k∈K,h∈H

Ωhk. (4.5)

Constraints (4.2) are standard set covering constraints, modeling condition I,

while (4.3) and (4.4) impose limits on the maximum number of available vehi-

cles of each type and the maximum number of allowed routes for each depot,

modeling conditions VII and VIII. The objective is to minimize the overall

cost of the selected routes. In the remainder we indicate this formulation as

Master Problem (MP).

4.3 Branch-and-cut-and-price

We solve the linear relaxation of the MP to obtain a lower bound which is

used in a tree search algorithm. The number of variables is exponential in the

cardinality of the customer set N , thus we use a column generation approach

[26]. In this section we describe the main components of the resulting branch-

and-cut-and-price algorithm, namely pricing, cut generation and branching.

We also discuss some implementation issues.

4.3.1 Column Generation

We initially consider only a small subset of the variables in the MP. Such

initial Restricted Master Problem (RMP) includes
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• a set of |N | columns, one for each customer, representing the optimal

paths serving one customer at a time,

• a set of columns representing a feasible MDHVRPTW solution, found

using a straightforward greedy policy,

• an additional dummy column r̄ of very high cost, having air̄ = 1∀i ∈ N

and every other coefficient set to 0.

The aim of the dummy column is to ensure feasibility at each node of the

search tree.

We solve the linear relaxation of the RMP, and we search for columns which

are not in the RMP, but have negative reduced cost. If no such column exists,

the solution is optimal for the MP linear relaxation as well, and thus yields a

valid lower bound to the problem. On the opposite, if any negative reduced

cost column is found, it is added to the RMP, and the process is iterated.

Let λ, µ and σ be the non negative dual vectors corresponding respectively

to constraints (4.2), and to constraints (4.3) and (4.4) rewritten as ≥ in-

equalities.

The reduced cost of a column encoding route r has the following form:

cr −
∑

i∈N

λiair + µk + σh.

As stressed before, the routes generated must comply with conditions II, III,

IV, V and VI: it is important to note that the same sequence of customers

may correspond to a feasible or to an infeasible route according to the type

of vehicle and the depot it is associated with. For instance, different types

of vehicles imply different capacities. Moreover, cost cr and dual variables

µk and σh depend on both k and h. Therefore, at each column generation

iteration we have to solve |K| · |H| pricing problems. We also remark that

it is never convenient to perform cycles in a feasible solution, although the

prize structure given by dual variables can make it appealing; therefore, a

search must be performed for elementary routes only.
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Hence, given a particular depot h and vehicle type k, the problem of finding

the most negative reduced cost column encoding a route for vehicle k using

depot h turns out to be a Resource Constrained Elementary Shortest Path

Problem (RCESPP).

The RCESPP is NP-hard [36]; following [78] we solve it using three pricing

algorithms: a greedy one, a heuristic dynamic programming one and an exact

dynamic programming one. They are called in sequence, only if the previous

pricing algorithm cannot find any column with negative reduced cost. In

the remainder we give a description of the pricing problem and of the three

algorithms. For the purpose of better illustrating them, we follow the reverse

order with respect to their execution.

4.3.1.1 Exact Dynamic Programming

Let us consider first the case of a single depot h ∈ H and a single vehicle

type k ∈ K: let s and v be the two distinct copies of depot h, representing

the departure and arrival node and let w = wk be the capacity of vehicle k.

For the exact solution of the RCESPP we use the technique proposed in [71],

which consists of a bi-directional extension of node labels. It associates labels

with each node i ∈ N of the graph: forward labels represent paths from s to

i and backward labels represent paths from i to v. Each label is iteratively

considered and the corresponding path is extended to adjacent nodes.

Label structure. Each label has the form (S, χ, τ, δ, ρ, C, i). This tuple

represents the state of the path associated with the label; C is the cost of

the path, i is the last reached node, S, χ, τ , δ and ρ are either resources

or resource consumptions with the following meaning: S is a set indicating

which nodes have already been visited, χ indicates the amount of capacity

consumed, τ indicates the elapsed time from time 0 up to the earliest point

in time at which service at i can start, δ indicates the minimum duration of

the path from the departure time up to the point in time at which service at

i starts.
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Figure 4.1: Label resources in the dynamic programming RCESPP algo-
rithm.
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Figure 4.2: A time window limiting the time buffer ρ.

The value ρ is needed to update δ at each extension; it represents a time

buffer, indicating the maximum amount of time by which the path defined

so far can be delayed still remaining feasible with respect to the time windows

of the visited nodes.

Figure 4.1 represents a sample instance of two nodes i and j on a time-line.

The bold lines correspond to time spent in travel and service operations, the

dashed lines correspond to waiting time either at an intermediate node or at

the initial depot; the dotted line represents the time buffer ρ. By leaving the

depot at time 0 and visiting node i (top figure), the vehicle has to wait until

the time window of node j allows the service to start. Instead, such waiting

can be avoided by delaying the departure from the depot (bottom figure).

The time buffer ρ is spent to reduce the overall duration δ of the path.

Extension. In forward extensions the set S is initialized at ∅, all resource

consumptions are initialized at 0 at the depot nodes, while ρ is initialized at
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a very large value.

The search is restricted to elementary paths by discarding extensions to any

node j ∈ S. When a label (S, χ, τ, δ, ρ, C, i) is extended forward to a node j,

a new label (S ′, χ′, τ ′, δ′, ρ′, C ′, j) is computed using the following rules.

First, resources S, χ, τ and C are updated as follows:

S ′ = S ∪ {j} (4.6)

χ′ = χ + qj (4.7)

τ ′ = max{τ + si + tij, aj} (4.8)

C ′ = C −
1

2
λi + dij −

1

2
λj; (4.9)

in the updating formula for cost, we consider λs = λv = 0.

In order to update duration δ and time buffer ρ we have to consider a special

case: if the vehicle arrives at j early, it should wait until aj. Let us define

the waiting time at j as ω = max{aj − (τ + si + tij), 0}. Hence the earliest

starting time of service at j is equal to the earliest arrival time τ plus ω. Also

the duration of the route is increased by the service time at i and the travel

time from i to j, but the time buffer can be spent by delaying the departure

from the depot to reduce the waiting time, as in the sample instance reported

in Figure 4.1. It might not be possible to fully avoid waiting: the departure

delay is limited by the amount ρ, which takes into account feasibility with

respect to the time windows of the customers visited up to i, and by the

waiting time, that is min{ρ, ω}; for example, in Figure 4.2 the time window of

node i is tight (top figure), and the time buffer ρ is not enough to compensate

the waiting time at node j (bottom figure).

Besides traveling and service time, the actual increase in duration is therefore

ω −min{ρ, ω}, that is −min{ρ− ω, 0}. By substitution with the expression

of ω, we obtain the following update formula for δ′:

δ′ = δ + (si + tij) − min{ρ − max{aj − (τ + si + tij), 0}, 0}
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The remaining amount of possible delay to absorb future waiting times is ρ′,

which is limited from above both by the remaining buffer due to the time

windows of the customers in S, that is ρ− min{ρ, ω}, and by the constraint

imposed by the time window of customer j, that is bj − τ ′. The update

formula for ρ′ is therefore

ρ′ = min{ρ − min{ρ, max{aj − (τ + si + tij), 0}}, bj − τ ′}.

The new state is feasible if and only if

χ′ ≤ w (capacity constraint) (4.10)

τ ′ ≤ bj (time window constraint) (4.11)

δ′ ≤ D (duration constraint), (4.12)

otherwise it is fathomed.

The updating rules and feasibility tests for backward extension are symmet-

rical. Backward extensions start from time T = maxi∈N{bi + si + tiv} that

is the latest possible arrival time at the final depot. In particular the value

T − τ in a backward label at a generic node j indicates the latest point in

time at which service at the node j can end.

The algorithm iteratively extends each forward and backward label to all

possible successors or predecessors respectively.

In order to limit the extension of forward and backward labels and to reduce

useless duplication of paths, we impose that each partial path can use at

most half of a critical resource whose consumption is monotone along the

paths. The best critical resource is the tightest one. In our case we have two

meaningful choices: either time or duration. Since in the instances from the

literature it is often D = +∞, we chose time as the critical resource.

Join. Forward and backward paths must be joined together to produce

complete s−v paths. The result of the join is a feasible solution if all the re-

source constraints are satisfied. When a forward path (Sfw, χfw, τ fw, δfw, ρfw,
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Figure 4.3: Computation of the waiting time during the join of two labels.

Cfw, i) is joined with a backward path (Sbw, χbw, τ bw, δbw, ρbw, Cbw, j), the fea-

sibility conditions for a vehicle type k are:

Sfw
⋂

Sbw = ∅

χfw + χbw ≤ w

τ fw + si + tij + sj + τ bw ≤ T

Furthermore, the constraint on the maximum duration of the whole path has

to be satisfied. We remark that in backward labels, paths are supposed to

end at time T , but can be shifted up to ρbw time units without violating time

windows of the visited customers. Therefore T − τ bw − ρbw − sj represents

the earliest point in time at which service at the node j can start in the

backward path. The way in which backward paths are built already ensures

T − τ bw − ρbw − sj ≥ aj.

Let us consider the sample three-nodes instance depicted in Figure 4.3. The

structure of the figure is similar to the previous ones: the bolded lines cor-

respond to time spent in travel and service operations, the dashed lines cor-

respond to late departure and early arrival at the depot, the dotted line

represents waiting time. During the join on arc (i, j), the time window of

node k prevents the backward path to be shifted by more than ρbw units in

time. In the same way, the time window of node i prevents the forward path

to be shifted by more than ρfw units in time.

The waiting time needed to join the forward and backward paths is therefore

ω = T − τ bw − ρbw − sj − (τ fw + ρfw + si + tij), the actual waiting time at

node j is max{ω, 0} and the duration of the overall path is

δfw + si + tij + max{ω, 0} + sj + δbw.
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The feasibility conditions on the overall duration of the path is thus the

following:

δfw +si+tij +max{T −τ bw−ρbw−sj−(τ fw +ρfw +si+tij), 0}+sj +δbw ≤ D

The reduced cost of the resulting s − v path is

Cfw −
λi

2
+ dij −

λj

2
+ Cbw + fk + µk + σh.

Dominance test. During the extension of labels, a dominance test is

done to fathom labels that cannot lead to an optimal solution. Let l′ =

(S ′, χ′, τ ′, δ′, ρ′, C ′, i) and l′′ = (S ′′, χ′′, τ ′′, δ′′, ρ′′, C ′′, i) be two labels associ-

ated with node i. Then the former dominates the latter if the following

conditions are satisfied
(a) S ′ ⊆ S ′′

(b) χ′ ≤ χ′′

(c) τ ′ ≤ τ ′′

(d) δ′ ≤ δ′′

(e) ρ′ ≥ ρ′′

(f) C ′ ≤ C ′′

Condition (e) is too restrictive and can be relaxed into the surrogate inequal-

ity

(g) δ′ − ρ′ ≤ δ′′ − ρ′′

without losing the optimality guarantee. It is not hard to show by counter

examples that inequalities (a), (b), (c), (d), (f) and (g) represent a set of

necessary dominance conditions: dropping any of them optimal labels might

be discarded.

Further, as shown in Feillet et al. [42], it is sometimes possible to identify

some node u ∈ N that cannot be reached by any feasible extension of a given

label, because of resource limitations. In this case it is useful to insert u in the

set S of that label: it is easy to check that enlarging set S ′′ helps satisfying

condition (a); at the same time, if a node cannot be reached by extending
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label l′ due to resource limitations, it cannot be reached by extending label

l′′ either, since resource consumption in l′′ is not lower. Therefore, enlarging

each set S allows dynamic programming fathoming a larger number of labels

and hence reducing the computation time.

Decremental state space relaxation. The dynamic programming algo-

rithm is executed iteratively applying decremental state space relaxation [72].

The idea is to project the state space of the problem to a smaller one, by

removing some elementarity constraints. From an algorithmic point of view,

this amounts to identify a set of critical nodes Ñ , and to replace extension

rule (4.6) as

S ′ = (S ∪ {j}) ∩ Ñ

This relaxed problem can be solved more efficiently, since more labels can be

compared in the dominance test.

In order to identify a good critical node set, we initialize Ñ = ∅; then we

iteratively solve the state space relaxation of the pricing problem and insert

in the set Ñ all the nodes visited more than once in the optimal path, until

we find an elementary one.

It may happen that even if the minimum reduced cost route contains a cycle,

other elementary routes with negative reduced cost are found during the

join phase. In this case we interrupt the pricing algorithm and we add these

columns to the master problem. The effect is similar to that of partial pricing

strategies [25]: the cost of the single column generation iteration is reduced

at the expense of an increased total number of iterations.

Bounding. Using ideas similar to [14] and [4], we compute lower bounds in

a preprocessing phase; these are checked during the dynamic programming

iterations to detect suboptimal labels that can be fathomed.

Consider forward labels first: we disregard elementarity constraints, time

windows and duration constraints, and for each node i ∈ N we compute the
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least cost path from i to v that uses exactly p capacity units, for all values

of p in the range [qi, . . . , w].

Such computation requires the search for a capacity constrained shortest

path; this is a weakly NP-hard problem, and can be solved effectively in a

single run for all vertices i and for all values p ∈ [0, . . . , w] as follows. We

build an auxiliary graph with w + 1 layers, one for each value of p in the

range, each containing a copy of the original graph. Then, each copy of

node i in layer p′ is connected to a copy of node j in layer p′′ if and only if

p′′ = p′ + qj, and the cost of the arc connecting them is dij − λi/2 − λj/2;

each copy of i in layer p is also connected to the copy of the same node in

layer p + 1 with a zero-cost arc. Since this auxiliary graph is acyclic, one

can use standard shortest path algorithms, and solve the problem of finding

the optimal path starting from node i by finding the optimal shortest path

tree rooted at node i in layer 0: the optimal path using at most p capacity

units is the one connecting node i in layer 0 with node v in layer p. We note

that the same computation can be done by reversing each arc and finding

an optimal shortest path tree rooted in node v for each layer p. The overall

complexity of this procedure is therefore O(min{|N |, w} · (|N | · w)2).

Let us indicate as Fip the value of the optimal path from node i in layer p to

node v in layer w; since elementarity, time windows and duration constraints

have been relaxed, this is a valid lower bound to the cost of any backward

label associated with node i with χ ≤ p. When the exact dynamic pro-

gramming algorithm is executed, if a forward label (S, χ, τ, δ, ρ, C, i) is such

that

C + Fiχ + fk + µk + σh ≥ 0, (4.13)

the label cannot lead to a negative reduced cost path and, therefore, it can

be discarded.

If the instances are asymmetric, we pre-compute an analogous lower bound

to possibly fathom backward labels applying the same idea in the other

direction. This pre-computation is done once for each column generation

iteration, once the dual values have been obtained from the linear relaxation

of the restricted master problem.
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Preliminary computational results showed that this technique considerably

reduces the overall number of labels explored, with a negligible additional

computational effort.

Aggregated pricing algorithm. One of the main difficulties with the

heterogeneous fleet and multi-depot version of the VRP is that the reduced

cost of the routes depends on the depot chosen and the vehicle type. Hence

in principle it would be necessary to execute the pricing algorithm for each

combination of k ∈ K and h ∈ H. One of the main features of our algorithm

is that multiple execution of the pricing algorithm is avoided.

First, in order to optimize all vehicle types at once, we extend the labels only

once at each column generation iteration, using the capacity of the largest

vehicle. Indeed, feasibility rules for time and duration are satisfied for each

vehicle type, since travel time does not change from one type to another.

Hence, during the join phase a column is generated for each vehicle type

k ∈ K such that wk ≥ χfw + χbw. A similar approach can be applied to

speed-up the bounding technique described above: the values F can be com-

puted just once, considering only the largest capacity value. The drawback

of this approach is that it weakens the bounding condition (4.13); in fact,

in order to perform a valid check, we have to consider at the same time the

capacity of the largest vehicle, and the smallest fixed costs mink∈K{fk +µk}.

Furthermore it is possible to deal with all the depots in a single run as follows.

We enlarge the state space by introducing different reduced cost (Ch), time

consumption (τh), duration (δh) and time buffer (ρh) resources for each depot

h ∈ H. When a forward label is extended from a node i to a node j and

τh + tij + si > bj for a certain h ∈ H, the path is not feasible for depot h:

thus we set τ ′
h

= +∞. A similar argument applies to δh resources.

For what concerns domination rules, whenever two labels l′ and l′′ satisfy

conditions (a), (b), (c), (d), (f) and (g) for a particular depot h, resources τ ′′
h
,

δ′′
h

and C ′′
h

are set to +∞, as label l′′ can never yield an optimal path for

depot h.
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A forward label is fathomed when, due either to extensions, feasibility checks

or dominance, it has τh > T/2 and δh > D for each h ∈ H.

Finally, we observe that in each label reduced costs Ch and resources τh, δh

and ρh for each h ∈ H only differ for an offset given by the first and last arc

in the path. We exploit this observation by avoiding to store a value for each

h ∈ H, and saving memory by computing such offset at each check.

4.3.1.2 Heuristic Dynamic Programming.

The heuristic dynamic programming pricing algorithm uses basically the

same bi-directional label extension described above, but dominance condi-

tion (a) on the set S of visited nodes is dropped.

Since in this way several labels representing promising paths are fathomed,

an additional dominance condition is enforced, as explained hereafter.

For each label, we define a potential R(S, χ) which is an upper bound on the

amount of dual prizes λ that can be collected by completing the path.

In order to get a better evaluation of this potential, we reduce each coefficient

λi by minj∈N\S{dij}, since it is always needed to select an outgoing arc from

each visited node, and cycles are not allowed.

Then we consider the problem of selecting a subset of nodes which are not yet

visited, whose overall demand still fits in the residual capacity of the vehicle

and whose potential is maximum. For a given vehicle type k, such problem

can be formulated as follows:

R(S, χ) = max
∑

i∈N\S

λizi (4.14)

s.t.
∑

i∈N\S

qizi ≤ wk − χ (4.15)

zi ∈ {0, 1} ∀i ∈ N \ S (4.16)
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where S represents the set of visited customers and χ is the sum of their

demands; binary variables zi are 1 if node i is selected, 0 otherwise; constraint

(4.15) is a capacity constraint. The objective (4.14) is to maximize the sum

of the potential corresponding to the selected nodes.

Computing each R(S, χ) value requires to solve a 0–1 Knapsack problem

[60] [51]; therefore, to speed-up the computation we approximate the po-

tential by computing its continuous relaxation R̄(S, χ): this can be done in

O(|N | log |N |) time; furthermore, the computation of R̄(S, χ) after each label

extension can be done in linear time through very efficient re-optimization

techniques.

Therefore, in the heuristic pricing algorithm a label l′ = (S ′, χ′, τ ′, δ′, ρ′, C ′, i)

dominates a label l′′ = (S ′′, χ′′, τ ′′, δ′′, ρ′′, C ′′, i) if the following conditions are

met:
(ã) R̄(S ′, χ′) ≥ R̄(S ′′, χ′′)

(b̃) χ′ ≤ χ′′

(c̃) τ ′ ≤ τ ′′

(d̃) δ′ ≤ δ′′

(f̃) C ′ ≤ C ′′

(g̃) δ′ − ρ′ ≤ δ′′ − ρ′′

and at least one of these inequalities is strict. This results in a much larger

number of dominations and reduces computational time; on the other hand,

these conditions are necessary but not sufficient to allow dominance, and

therefore we loose optimality guarantees on the best path found.

Finally, by changing in sign each value R̄(S, χ) we also obtain a lower bound

on the improvement one can get by extending each label. Therefore, given

the reduced cost φ∗ of the best s − v path found so far, any label having

C − R̄(S, χ) + min
k∈K

{µk} + min
h∈H

{σh} −
λi

2
≥ φ∗

is fathomed, because it cannot provide better solutions.
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4.3.1.3 Greedy.

In the greedy pricing algorithm a single label (S, χ, τ, δ, ρ, C, i) is considered

and iteratively extended to a single node with a nearest neighbor policy.

Given a vehicle type k, we first compute the set R of reachable customers,

that is the set of nodes j ∈ N satisfying the following conditions

j 6∈ S

χ + qj ≤ wk

max{τ + si + tij, aj} ≤ T

δ + (si + tij) − min{ρ − max{aj − (τ + si + tij), 0}, 0} ≤ D.

If R = ∅ we close the path going back to the depot and we stop the search.

Otherwise, among the customers in R, we select the one that minimizes the

path cost, that is

j̄ ∈ argminj∈R {dij − λj} ,

we extend the label to node j̄ using the same update rules described for the

exact pricing algorithm, and we iterate.

It is still possible to simultaneously find routes for the different vehicle types:

if the value χ+ qj̄ exceeds the capacity wk of some vehicle types, we generate

a valid route for these type by closing the path with an arc from i to v. Then,

if the capacity of the largest vehicle is not reached, we add j̄ to the path and

iterate.

This greedy algorithm is repeated for each depot h ∈ H.

We tried different policies for selecting the nearest neighbor at each iteration,

without observing substantial differences.

4.3.2 2-path inequalities

To strengthen the lower bound we add violated 2-path inequalities. These

cuts have been introduced by Kohl et al. [52] for the CVRPTW, extending an
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idea of Laporte et al. [55]. In this paper we use the same heuristic separation

algorithm described in [52]. We search for a subset S ⊂ N such that the

customers in S are served by less than 2 vehicles in the fractional solution of

the master problem, but require at least 2 vehicles in any integer solution.

In particular, this property holds for a set S in the following two cases: (a) if

the capacity of the largest vehicle is not sufficient to satisfy the demand of all

the customers in S, (b) if there is no tour including all customers in S that

respects their time windows, and therefore does not exceed the maximum

length T . While property (a) can simply be checked by inspection, property

(b) requires to compute a feasible Hamiltonian tour of customers in S, that

is to solve an instance of TSP with Time Windows. However, when |S|

is small the TSPTW feasibility problem can be easily solved by dynamic

programming (see Dumas et al. [39]). We remark that the property holds in

other cases as well, but these two are the only easily computable ones.

A 2-path inequality can take two forms. The first one is the following:

∑

h∈H

∑

k∈K

∑

r∈Ωhk

αrSxr ≥ 2 (4.17)

where the coefficient αrS is equal to the number of arcs (i, j) used by the

route r such that i ∈ S and j /∈ S. Coefficients αrS might be larger than 1,

since it is not needed to the nodes in S to be visited consecutively.

The second form is:

∑

h∈H

∑

k∈K

∑

r∈Ωhk|
P

i∈S
air≥1

xr ≥ 2. (4.18)

Since
∑

i∈S air ≥ 1 for each column encoding a path visiting a customer in

S, the inequality forces to select at least two such paths. One can show that

any fractional solution satisfying inequalities (4.18) also satisfies inequalities

(4.17); in fact, each column r whose variable does not appear in inequality

(4.17) has no incoming arcs in S, hence no node in S is visited, and the vari-

able does not appear in inequality (4.18) either; at the same time whenever

a variable appears in (4.18) it also appears in (4.17) with a coefficient not



4. Multi-Depot Heterogeneous-fleet VRP with Time Windows 52

0.5

0.5
0.5 0.5

0.5 0.5

1

0.5 0.5

α = 2

α = 1

α = 1

S

Figure 4.4: Partial fractional solution covering eight nodes of a sample in-
stance.

smaller than (4.18), because it is always needed to select at least an incoming

arc in S to visit its nodes. In the same way, it is easy to show that there ex-

ist fractional solutions satisfying inequalities (4.17) but violating inequalities

(4.18). Therefore, the bound obtained by introducing (4.18) can be stronger

than that found after introducing (4.17).

For example, let us consider Figure 4.4, where three routes (bolded, dotted

and dashed arcs), visit a subset S made by gray nodes. Bolded and dashed

routes enter S once, and have therefore coefficient α = 1, while dotted route

interleaves nodes inside and outside of S, entering S twice and having thus

α = 2. Each route is fractionally selected with value 0.5: the corresponding

amount of flow is reported next to each arc. The total incoming flow in S is

2.0, but the fractional number of routes serving S is 1.5. Hence an inequality

in the form (4.17) is respected, while the corresponding inequality in form

(4.18) is violated.

We embed the dynamic generation of these inequalities in a column genera-

tion scheme separating them at the end of the column generation iterations.

Whenever violated cuts are found, column generation is executed again. This

price-and-cut loop is repeated until neither negative reduced cost columns nor

violated cuts are found.
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When we add 2-path inequalities to the master problem, they induce a new

set of dual variables, which must be taken into account in the solution of

the pricing problem. Let π ≥ 0 be the dual vector associated with these

inequalities. When the weak form (4.17) is used, the expression of the reduced

costs of the routes must be modified by subtracting a term αrSπ(S) for each

2-path inequality. This can simply be obtained considering modified arc costs

d̂ij = dij −
∑

S:i∈S,j∈N\S

π(S).

This does not change the structure of the pricing problem. On the contrary,

when the strong form (4.18) is used each inequality (4.18) requires to intro-

duce a new resource in the state of the dynamic programming algorithm.

Such resource is initialized at 1; after the first visit to a customer in S, the

resource is set to 0, and the reduced cost of the label is decreased by the

value of the corresponding dual variable. No label having one of these re-

sources at 0 can dominate a label having the corresponding resource at 1.

Hence, the pricing problem becomes more and more time consuming as these

inequalities are introduced.

In Section 4.4 we compare different ways of handling 2-path inequalities in

our algorithm.

4.3.3 Branching strategy

We use two branching policies, described hereafter; the tree search policy is

discussed in Section 4.4.

Branching on the number of vehicles. Let x̄r be the (possibly frac-

tional) value of each variable xr in the optimal MP fractional solution and

let yk =
∑

r∈Ωk
x̄r be the (possibly fractional) number of vehicles of type k in

such solution. We select the vehicle type k̄ whose corresponding yk̄ variable

has its fractional part closest to 0.5; then we perform binary branching, im-
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posing to use at least ⌈yk̄⌉ vehicles of type k̄ in one child node and no more

than ⌊yk̄⌋ in the other.

These branching decisions are handled as follows: first, we modify constraints

(4.3) as follows

lk ≤
∑

r∈Ωhk

xr ≤ uk ∀k ∈ K (4.19)

then we set lk̄ = ⌈yk̄⌉ in one child node, uk̄ = ⌊yk̄⌋ in the other.

The advantage of this branching technique is to leave the pricing subproblem

unchanged: dual variables µk still appear as constants in the objective func-

tion of the pricing problem, but they are now unrestricted in sign. On the

other hand constraints (4.19) belong to the MP, which is solved as a linear

programming problem, and tightening them usually results in rather weak

improvements in the lower bound.

Branching on arcs. When yk is integer for all vehicle types k ∈ K, we

apply a different branching rule which forbids the use of some arcs. We choose

the customer i ∈ N that is split among the largest number of routes in the

optimal fractional solution of MP and we forbid half of its outgoing arcs to

be used in the first child node, and the other half to be used in the second

child node. To handle these branching decisions in the pricing problem it is

enough to set travel time of forbidden arcs to +∞.

4.4 Experimental analysis

Implementation and hardware. Our algorithms have been implemented

in C++, using SCIP 1.1 [1] as a branch-and-cut-and-price framework. Our

version of SCIP embeds the CPLEX 11 implementation of the simplex algo-

rithm to solve LP subproblems, and automatically switches between primal

and dual simplex, depending on the characteristics of each instance. SCIP

performs advanced management of the column and row pools, including their

removal and re-insertion. We turned off preprocessing and automatic cut
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generation features, but kept all other parameters at their default values,

including the decision tree search policy.

We also experimented on introducing stabilization techniques and using the

barrier algorithm to solve the LP subproblems.

In both cases we observed a reduction on the number of column generation

iterations needed to converge, but the overall performance improvement was

negligible. This is because stabilization and the barrier methods help to

reduce the number of initial and useless column generation iterations, but in

our case most of the CPU time was spent during few final column generation

iterations, when the exact dynamic programming algorithm is called. The use

of our pricing heuristics can be considered itself as a useful tool to overcome

stability problems.

The results reported in this section are obtained using a single core of an

Intel Core 2 Duo 3GHz workstation, equipped with 2GB of RAM, running

Linux OpenSuse 11.

Benchmark instances. To test our algorithm we used three datasets.

• Dataset 1 is composed by instances for the HVRPTW proposed by Liu

and Shen [58], derived from the VRPTW instances of Solomon [83].

The original dataset contains 56 problems. Each problem has 100 cus-

tomers, whose position are generated in the Euclidean plane, and the

travel time between nodes is equal to their Euclidean distance. These

instances are divided in 6 classes, depending on the geographical dis-

tribution of the customers: random (classes R1 and R2), clustered (C1

and C2) or semi-clustered (RC1 and RC2). Sets R1, C1 and RC1 have

a short scheduling horizon and allow for a small number of customers

per route. Sets R2, C2 and RC2 have a long scheduling horizon and

allow for a large number of customers per route.

Liu and Shen adapted Solomon’s problems to the heterogeneous fleet

version by considering vehicles with different capacities. For each of

the 6 classes, 3 sets of fixed costs for the vehicles were considered,
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obtaining a total of 168 instances. The details of these instances are

reported in Table 4.1: we indicate a vehicle type in each row and a

customer distribution and demand type scenario in each column; each

entry of the table represents the fixed cost of a particular vehicle type

in each customer scenario. The table also includes the capacity of each

vehicle type in each different scenario.

Since several of these instances are too hard to be solved to proven

optimality, we created two new sets of instances by restricting them

respectively to the first 50 and 25 customers in the data files. All

these instances have a single depot, no constraints on maximum route

duration and no limits on the number of vehicles.

Therefore, our Dataset 1 is composed by a total of 504 instances.

• Dataset 2 includes 504 more instances, obtained by simply adding a

second depot to each instance in Dataset 1. The coordinates of this

depot are randomly generated with uniform probability distribution in

the smallest rectangle containing all the customers.

• Dataset 3 contains four instances for the MDVRPTW from Cordeau et

al. [17]. These are the smallest in their dataset and include only one

type of vehicle. In Table 4.2 we report for each instance in the dataset

the number of customers, the number of depots, the maximum allowed

duration of the route and the capacity of the vehicle.

All instances considered are symmetric.

Furthermore, we considered the MDHVRPTW instance discussed in [34]. As

presented in [9], this instance turned out to be very easy to solve using our

algorithms, and therefore we omit further detail.

In the remainder we present the outcome of three different sets of experi-

ments. In Subsection 4.4.1 we studied the trade-off between the computing

time and the tightness of the lower bounds obtained at the root nodes; in

Subsection 4.4.2 we present the performance of the overall branch-and-cut-

and-price algorithm for the exact optimization of the three datasets; in Sub-
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section 4.4.3 we discuss the effectiveness of the same algorithm when it is

used as a column generation-based heuristic technique.

4.4.1 Lower Bounds

It is known that by dropping elementary conditions on the path, that is

running the exact pricing algorithm with decremental state space relaxation

and fixing the core Ñ = ∅, the RCESPP becomes more tractable [72]. At

the same time, paths containing cycles are super-optimal, and by introducing

the corresponding infeasible columns in the RMP the bound is weakened.

Nevertheless, the generation of valid inequalities can help in filling the same

duality gap, and there is a trade-off between the hardness of the pricing

problem, the feasibility of the columns which populate the RMPs and the

strength of the cutting planes introduced.

Therefore, in the first set of experiments we compared the dual bounds that

can be obtained at the root node of the branch-and-bound tree with different

combinations of pricing and cutting strategies.

We considered two pricing strategies: (StrongPrice) to generate columns

using the greedy pricing algorithm, the heuristic dynamic programming pric-

ing algorithm and the exact dynamic programming pricing algorithm in se-

quence, as described in Section 4.3.1; (WeakPrice) to generate columns by

relaxing the elementary path conditions, and using the relaxed pricing pro-

cedure described above.

At the same time, we considered three cut generation strategies: (NoCut)

without 2-path inequalities; (WeakCut) cuts in the weak form (4.17); (Strong-

Cut) cuts in the strong form (4.18). In strategies WeakCut and StrongCut

we used the heuristic described in [52] to perform cut separation.

A time limit of one hour was imposed to each test.

Tables 4.3 - 4.5, 4.6 - 4.8 and 4.9 - 4.11 show the results we obtained on the

instances of Dataset 1 using respectively NoCut, WeakCut or StrongCut.

Each table has one row for each class of instances and their columns indicate
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the class name, the size and the total number of instances for which the time

limit was not exceeded, the average number of column generation iterations

needed to converge, the average number of generated cuts, the average duality

gap with respect to the best known integer solution and the average time

spent during column generation for the two pricing strategies.

As expected, the CPU time increases as the size of the instance increases;

the duality gap is not always small: since it is computed using best known

primal solutions, this might also depend on poor primal bounds.

We notice that even finding a valid bound within the time limit is sometimes

a difficult task; this becomes more evident as more aggressive cut handling

strategies are applied. For instance, a valid bound is obtained on 13 C2

instances with |N | = 100 using StrongPrice, but the price-and-cut loop ter-

minated only 12 times using WeakCut and only 10 times using StrongCut

(see Tables 4.5, 4.8 and 4.11).

No relevant difference can be observed by varying the fixed costs of the

vehicles (instances a, b and c in each class). The most noticeable performance

gap on Dataset 1 is between Type 1 (R1, C1, RC1) and Type 2 (R2, C2,

RC2) instances: the computation successfully terminates on almost all Type

1 instances, with both pricing strategies and with all cut handling strategies,

while timeout expires more often on Type 2 instances as the size of the

instances increases. In fact, Type 2 instances have loose capacity constraints,

long time horizons and large time windows; this means longer feasible routes

and far more labels to manage for the pricing algorithm.

Instances in Class C2 show a particular characteristic: they require more

column generation iterations and less computing time, and the final duality

gap is larger. This can be explained because fractional solutions can exploit

both the cluster structure and the capacity of small vehicles, while integer

solutions in general cannot.

Comparing the results reported on the same rows in each table (different pric-

ing strategies, same cutting strategy) one can see that WeakPrice is much

faster: on average more column generation iterations are needed to converge,
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but the required CPU time is a small fraction of that required by Strong-

Price. In fact, more columns are feasible using WeakPrice: a larger number

of columns has to be explored before reaching convergence, even though each

of them is easier to generate. However, when a valid bound is found us-

ing StrongPrice, the duality gap is significantly smaller. This behavior is

observed for all cut strategies.

Comparing the results reported in the same block in different tables (same

pricing strategy, different cutting strategy), one can see that few cuts are

generated with StrongPrice; however, as expected, many more are found

with WeakPrice. Cuts are especially effective for WeakPrice in class RC;

StrongCut is useful in particular in small R2 and C2 instances, when it is

combined with StrongPrice.

For some instances the use of cuts improves the bound and reduces the time

as well. A preprocessing rule was responsible for this counter intuitive result:

using NoCut when a dual variable λi is 0, the corresponding customer i

is removed from the pricing problem ; when cuts are introduced, π dual

variables can make it appealing to visit such customers: this helps heuristic

pricing in finding “good” columns earlier, and therefore in speeding up the

computation.

We chose to use StrongPrice with WeakCut as the best trade-off. In this

way we were able to complete the price-and-cut loop at the root node within

the time limit for all instances but one, still obtaining tight dual bounds and

allowing the heuristic generation of good columns.

4.4.2 Branch-and-cut-and-price

In the second set of experiments we let our algorithm perform an exact op-

timization of each instance in the three Datasets. For these tests we used

StrongPrice, heuristic separation of inequalities (4.17), WeakCut and the

branching policy described in Subsection 4.3.3. We turned off all SCIP gen-

eral purpose heuristics, but fracdiving and rens which proved effective in

preliminary tests.
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A time limit of one hour was imposed to each test.

Tables 4.12, 4.13, 4.14 show the results we obtained on the instances of

Dataset 1, Dataset 2 and Dataset 3 respectively. As before, each table has

one row for each class of instances. In the columns of each table we report

in turn the class name, the number of instances solved to proven optimality

within the time limit, the average optimality gap on the instances for which

optimality was not proved and the average solution time for the solved in-

stances. We remark that for some instances the time limit did not allow even

to find an initial dual bound, as reported in Tables from 4.3 to 4.11. These

have been excluded from this test.

Type 2 classes confirm to be much harder than Type 1. The exact algorithm

is fully effective only on small instances: almost all Type 1 classes with 25

customers, 1/3 of those with 50 customers and only 5 of the largest ones are

solved to proven optimality. Much less Type 2 instances are solved. On small

instances the algorithm is also fast: few seconds are enough to complete each

computation. An unexpected bad behavior is observed in class RC1a. By

comparing Table 4.12 with Tables 4.6 - 4.8, and Table 4.15a we notice that

the difficulty consist in finding a good primal bound.

Comparing Tables 4.14, 4.12 and 4.13, we conclude that handling multiple

depots is not an issue in our algorithm. In fact, even the instance with 72

customers and 6 depots of Dataset 3, involving identical vehicles, can be

easily solved. Indeed, our feeling is that managing a heterogeneous fleet is

what really complicates the problem: multiple depots naturally favor geomet-

ric partitions of customers, and therefore the generation of less overlapping

routes, without complicating the pricing algorithm. This is not the case for

heterogeneous vehicles: good routes for vehicles with different capacity can

be substantially different, and there are no geometric properties to exploit.

4.4.3 Column generation-based heuristics

While, to the best of our knowledge, no exact algorithm for the MDHVRP

has been proposed so far, in the literature a few algorithms showed to perform
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very well in heuristically solving the problem.

Hence, in the third set of experiments we tuned our algorithm to produce

good integer solutions faster: we truncated the optimization process at the

root node of the branching tree; then, we tried to combine the columns in

the final RMP in a good integer solution. In particular, we considered two

adaptations.

• In Algorithm iRMP, the column generation process is stopped after a

given time limit α, or when no negative reduced cost column is found;

then, integrality conditions on the variables of the RMP are restored,

and CPLEX 11 ILP solver is invoked to optimize the ILP problem

obtained in this way. CPLEX optimization is stopped after a time

limit β, or when optimality is proved.

• In Algorithm Fix&Gen, column generation is performed for up to a

given time limit γ; then, each variable taking value 1 in the final RMP

fractional solution, and the remaining variable with highest fractional

value, are fixed to 1. The reduced problem obtained in this way is

re-optimized by performing again column generation for up to a time

limit γ. This column generation and fixing process is iterated, until a

full integer solution is found.

We compared the results of Algorithms iRMP and Fix&Gen with those ob-

tained by the algorithms of Liu and Shen (LS) [58], Belfiore and Fávero

(BF) [6], Dell’Amico et al (DAMPV) [21]. We restricted our test to Dataset

1, since algorithms LS, BF and DAMPV have been tested on these instances

only.

We remark that, although no a-priori optimality guarantee is given by this

procedure, the dual bound obtained by column generation allows us to control

the quality of the final solution. This cannot be done in any of the LS, BF

and DAMPV algorithms.

In Table 4.15a we report the results of our experiments. The table contains

a row for each class of instances in the dataset, and is composed by different
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blocks, one for each algorithm, as indicated in the leading row. The columns

in the first block report the average value of the best solution found by LS and

the average CPU time spent; each subsequent block includes the percentage

improvement with respect to the value of the LS solution and the average

CPU time spent. The CPU time values for algorithms LS, BF and DAMPV

are taken from the original papers: according to [35] the CPU time reported

in LS, BF, and DAMPV should be scaled respectively by a factor 20, 2 and

10 in order to be equivalent to CPU time in our computer.

First, in order to get roughly the same computing time of DAMPV, we tried

to use iRMP algorithm by fixing α to 10 minutes and β to 5 minutes. In

Type 1 instances iRMP is consistently the best, especially in terms of average

solutions cost. In classes R2a and C2a, however, iRMP performs poorly.

We found out that limit α affects the performance of iRMP more than limit

β: since columns in iRMP are generated to be good for fractional solutions,

their quality for integer solutions is not guaranteed, especially during the first

column generation iterations. Therefore, we also tested iRMP by increasing

both α and β to 60 minutes. No substantial difference was observed in Type

1 classes, since the time limit was almost never exceeded; iRMP improved

solutions on Type 2 classes, but still performed worse than other methods in

classes R2a and C2a.

Then, we tested Fix&Gen setting time limit γ to 1 minute. Indeed, this

heuristic is both faster and more accurate, especially in Type 2 classes. We

also tried to increase the time limit γ up to 3 minutes, and we verified that

the quality of the solutions keeps improving.

Finally, we tested Fix&Gen by fixing γ to 60 minutes for the first iteration

and to 3 minutes for the subsequent iterations. On the average the average

quality of solutions improved, especially in difficult classes (i.e. R2 and C2),

even though in some classes (i.e. R1b, C1b, C1c and RC1c) this is not

the case. This result is obtained at the expense of a significant increase in

computing time.

We also tested our algorithms on Dataset 3, which is difficult because all

vehicles have to be used in any feasible integer solution. This makes, in fact,
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local search more appropriate than iterative route generation. Furthermore,

the fixing of a column is likely to affect the overall solution, or even to make

it impossible to obtain a feasible one; this effect is more evident when time

limit γ is small, and is therefore needed to fix one of the columns produced in

early column generation iterations. Nevertheless, we still obtain good results,

matching the best known solution in 2 instances and obtaining solutions

whose value is within 4% of the best known.

The choice of the right heuristic is obviously instance-dependent. However,

Fix&Gen seems to give the best trade-off between quality of the solution and

computational effort, especially setting γ between 1 and 3 minutes.

4.5 Conclusions

We have exploited the intrinsic flexibility of a known mathematical program-

ming framework to solve an important optimization problem in distribution

logistics, namely the MDHVRPTW.

Besides being flexible the method allows for different combinations of cutting

and pricing strategies. We have presented an experimental evaluation of

these strategies in terms of lower bound tightness and computing time. This

suggests to investigate mixed strategies: for instance it may be appealing

to initialize the RMP using WeakPrice, repair the columns in the RMP by

removing cycles, then switch to StrongPrice, including WeakCut in the price-

and-cut loop. A switch to StrongCut has to be considered only at the end

of this process, if the duality gap is still large. Since the number of column

generation iterations using WeakPrice is sometimes large, the introduction

of a stabilization technique seems appropriate [77]. Since a large amount of

computing time is spent in the few calls to the exact dynamic programming

algorithm, the use of acceleration techniques like early branching [25] may

be beneficial.

When the size of the instance prevents the algorithm to find provably optimal

solutions, it is still possible to use the algorithm as a column generation-based
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heuristic, which is competitive and often better than constructive or local

search-based heuristics from the literature, with the additional advantage of

providing also dual bounds.

Finally our experimental results reveal that what makes the MDHVRPTW

difficult is the number of different vehicle types rather than the presence of

multiple depots. The tightness of the time windows also plays an important

role as already highlighted in the literature.
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Vehicle Capacity R1a R1b R1c

A 30 50 10 5
B 50 80 16 8
C 80 140 28 14
D 120 250 50 25
E 200 500 100 50

Vehicle Capacity C1a C1b C1c
A 100 300 60 30
B 200 800 160 80
C 300 1350 270 135

Vehicle Capacity RC1a RC1b RC1c
A 40 60 12 6
B 80 150 30 15
C 150 300 60 30
D 200 450 90 45

Vehicle Capacity R2a R2b R2c
A 300 450 90 45
B 400 700 140 70
C 600 1200 240 120
D 1000 2500 500 250

Vehicle Capacity C2a C2b C2c
A 400 1000 200 100
B 500 1400 280 140
C 600 2000 400 200
D 700 2700 540 270

Vehicle Capacity RC2a RC2b RC2c
A 100 150 30 15
B 200 350 70 35
C 300 550 110 55
D 400 800 160 80
E 500 1100 220 110
F 1000 2500 500 250

Table 4.1: Details of instances in Dataset 1 and Dataset 2
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instance customers depots duration capacity
pr01 48 4 500 200
pr02 96 4 480 195
pr07 72 6 500 200
pr08 144 6 475 190

Table 4.2: Details of instances in Dataset 3

Set Size StrongPrice WeakPrice
solved iterations LB time solved iterations LB time

R1a 25 12 34.00 0.98% 0.11 12 63.92 1.58% 0.12
R1b 25 12 43.25 0.78% 0.11 12 80.50 2.25% 0.17
R1c 25 12 43.75 0.65% 0.11 12 84.83 2.29% 0.19
R1 25 36 40.33 0.80% 0.11 36 76.42 2.04% 0.16
C1a 25 9 38.56 7.87% 0.20 9 60.44 8.01% 0.11
C1b 25 9 50.00 6.30% 0.47 9 72.00 6.77% 0.11
C1c 25 9 53.22 4.20% 0.26 9 82.78 5.74% 0.16
C1 25 27 47.26 6.12% 0.31 27 71.74 6.84% 0.13
RC1a 25 8 29.88 7.29% 0.24 8 60.25 9.16% 0.12
RC1b 25 8 46.50 2.77% 0.45 8 78.25 8.64% 0.18
RC1c 25 8 52.25 1.52% 0.47 8 82.13 7.76% 0.18
RC1 25 24 42.88 3.86% 0.38 24 73.54 8.52% 0.16
R2a 25 5 143.60 24.46% 563.69 11 219.00 39.83% 39.41
R2b 25 7 124.71 4.94% 41.22 11 119.86 24.69% 3.24
R2c 25 10 113.70 2.70% 200.37 11 116.30 21.89% 3.25
R2 25 22 124.00 8.36% 232.30 33 140.77 26.86% 11.47
C2a 25 6 181.33 26.95% 554.43 8 136.83 29.93% 2.99
C2b 25 7 194.14 21.34% 164.78 8 142.86 29.01% 6.57
C2c 25 7 186.71 11.59% 30.01 8 130.00 21.34% 2.20
C2 25 20 187.70 19.61% 234.50 24 136.55 26.60% 3.96
RC2a 25 6 36.83 7.48% 8.59 8 91.83 12.76% 0.35
RC2b 25 6 54.00 0.00% 87.59 8 109.17 19.73% 1.07
RC2c 25 7 61.29 0.00% 355.52 8 138.14 27.75% 3.36
RC2 25 19 51.26 2.36% 161.35 24 114.37 20.48% 1.69

Table 4.3: Quality of the bound without cut generation, size 25.
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Set Size StrongPrice WeakPrice
solved iterations LB time solved iterations LB time

R1a 50 12 45.17 2.24% 1.17 12 143.08 2.82% 0.97
R1b 50 12 77.00 2.43% 2.30 12 193.00 3.96% 2.02
R1c 50 12 91.92 2.41% 2.76 12 203.00 4.37% 2.15
R1 50 36 71.36 2.36% 2.08 36 179.69 3.72% 1.71
C1a 50 9 74.67 5.04% 2.29 9 119.89 5.14% 0.88
C1b 50 9 88.67 6.74% 2.43 9 149.89 7.03% 0.68
C1c 50 9 95.11 6.14% 3.87 9 178.67 7.59% 1.12
C1 50 27 86.15 5.97% 2.86 27 149.48 6.59% 0.89
RC1a 50 8 65.13 12.36% 2.28 8 133.00 13.58% 0.71
RC1b 50 8 99.63 8.11% 10.72 8 167.50 11.32% 1.24
RC1c 50 8 105.38 8.56% 9.12 8 167.63 12.08% 1.14
RC1 50 24 90.04 9.68% 7.37 24 156.04 12.33% 1.03
R2a 50 1 453.00 10.83% 137.93 2 674.00 16.62% 61.89
R2b 50 3 262.67 13.41% 550.47 11 411.33 27.34% 43.77
R2c 50 3 149.33 6.65% 105.91 11 254.33 20.17% 12.39
R2 50 7 241.29 10.15% 301.01 24 381.57 22.73% 32.91
C2a 50 4 498.75 26.54% 441.47 6 376.25 28.72% 35.94
C2b 50 5 246.60 17.17% 128.49 7 262.00 22.38% 14.63
C2c 50 6 250.00 3.77% 591.72 8 274.67 8.52% 26.28
C2 50 15 315.20 14.31% 397.24 21 297.53 18.53% 24.97
RC2a 50 4 72.50 1.62% 47.38 8 208.50 5.86% 3.25
RC2b 50 4 94.00 0.00% 89.39 8 305.75 16.13% 10.62
RC2c 50 5 125.60 0.00% 470.13 6 448.80 24.68% 238.43
RC2 50 13 99.54 0.50% 222.90 22 330.85 16.26% 95.97

Table 4.4: Quality of the bound without cut generation, size 50.

Set Size StrongPrice WeakPrice
solved iterations LB time solved iterations LB time

R1a 100 12 75.50 3.47% 77.41 12 311.00 3.89% 10.70
R1b 100 11 163.36 4.92% 365.26 12 473.73 6.07% 49.75
R1c 100 12 200.33 5.69% 427.59 12 543.58 7.30% 66.08
R1 100 35 145.91 4.69% 287.94 36 441.89 5.74% 41.96
C1a 100 9 147.22 6.68% 15.88 9 221.44 6.77% 4.47
C1b 100 9 200.33 7.31% 406.34 9 309.44 7.83% 7.80
C1c 100 8 157.13 5.98% 69.12 9 359.88 6.98% 5.71
C1 100 26 168.65 6.68% 167.42 27 294.50 7.20% 6.01
RC1a 100 8 147.75 4.69% 768.52 8 332.75 5.61% 24.97
RC1b 100 8 177.50 8.68% 297.20 8 453.38 11.15% 43.40
RC1c 100 8 179.88 8.69% 217.53 8 451.50 11.81% 37.14
RC1 100 24 168.38 7.35% 427.75 24 412.54 9.52% 35.17
R2a 100 0 - - - 0 - - -
R2b 100 1 676.00 9.95% 1917.91 1 2969.00 15.81% 979.73
R2c 100 1 366.00 6.60% 578.42 2 1584.00 12.89% 291.04
R2 100 2 521.00 8.28% 1248.17 3 2276.50 14.35% 635.39
C2a 100 2 1240.50 10.56% 497.32 6 1239.50 10.95% 298.23
C2b 100 5 972.60 9.67% 1274.22 7 1318.40 11.70% 281.59
C2c 100 6 996.83 9.99% 1163.41 7 1085.83 12.55% 168.31
C2 100 13 1025.00 9.96% 1103.55 20 1198.92 11.98% 231.87
RC2a 100 3 214.67 4.81% 1586.53 7 450.33 6.96% 97.59
RC2b 100 1 168.00 3.51% 331.60 4 710.00 11.97% 93.92
RC2c 100 1 228.00 5.58% 402.83 4 705.00 16.64% 102.35
RC2 100 5 208.00 4.70% 1098.81 15 553.20 9.90% 97.81

Table 4.5: Quality of the bound without cut generation, size 100..
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Set Size StrongPrice WeakPrice
solved iterations cuts LB time solved iterations cuts LB time

R1a 25 12 35.17 1.75 0.73% 0.10 12 66.67 2.25 1.32% 0.11
R1b 25 12 44.25 1.25 0.62% 0.12 12 83.17 2.08 2.06% 0.15
R1c 25 12 43.58 0.50 0.47% 0.12 12 87.83 1.33 2.06% 0.16
R1 25 36 41.00 1.17 0.61% 0.11 36 79.22 1.89 1.81% 0.14
C1a 25 9 37.33 0.00 7.87% 0.11 9 59.22 0.11 8.01% 0.10
C1b 25 9 48.67 0.00 6.30% 0.46 9 74.00 0.56 6.77% 0.10
C1c 25 9 51.22 0.22 4.19% 0.58 9 90.89 1.56 5.72% 0.14
C1 25 27 45.74 0.07 6.12% 0.38 27 74.70 0.74 6.83% 0.11
RC1a 25 8 32.25 0.38 6.95% 0.20 8 69.50 6.13 8.64% 0.11
RC1b 25 8 47.00 0.38 1.62% 0.58 8 91.88 13.25 6.83% 0.20
RC1c 25 8 49.50 0.38 0.13% 0.72 8 97.75 13.63 5.48% 0.22
RC1 25 24 42.92 0.38 2.90% 0.50 24 86.38 11.00 6.98% 0.18
R2a 25 5 150.60 0.00 24.46% 403.66 11 245.60 0.60 41.58% 61.28
R2b 25 7 116.43 0.14 4.92% 47.06 11 123.29 0.00 25.42% 4.29
R2c 25 10 102.70 0.00 2.70% 147.20 11 112.60 0.00 22.10% 3.73
R2 25 22 117.95 0.05 8.35% 173.62 33 146.23 0.14 27.58% 16.99
C2a 25 6 185.50 0.17 22.84% 487.55 8 125.50 0.17 25.81% 3.40
C2b 25 7 164.43 0.14 20.38% 229.06 8 174.71 0.14 28.04% 6.33
C2c 25 7 160.57 0.00 11.59% 17.20 8 124.86 0.00 21.43% 2.95
C2 25 20 169.40 0.10 18.04% 232.46 24 142.50 0.10 25.06% 4.27
RC2a 25 6 33.33 0.00 7.48% 7.86 8 95.17 2.67 12.73% 0.49
RC2b 25 6 61.83 0.00 0.00% 96.09 8 117.00 1.43 16.96% 1.62
RC2c 25 7 52.29 0.00 14.29% 90.98 8 150.43 3.14 28.14% 4.53
RC2 25 19 49.32 0.00 7.62% 66.35 24 122.15 2.40 19.60% 2.30

Table 4.6: Quality of the bound with WeakCut, size 25.

Set Size StrongPrice WeakPrice
solved iterations cuts LB time solved iterations cuts LB time

R1a 50 12 46.75 0.50 2.22% 0.56 12 144.67 2.33 2.78% 0.94
R1b 50 12 80.08 1.00 2.35% 1.89 12 201.92 4.17 3.69% 2.17
R1c 50 12 92.83 0.92 2.31% 2.28 12 214.42 6.17 4.00% 2.32
R1 50 36 73.22 0.81 2.29% 1.58 36 187.00 4.22 3.49% 1.81
C1a 50 9 69.22 0.11 5.04% 1.03 9 120.89 0.44 5.14% 0.81
C1b 50 9 87.33 0.00 6.74% 1.44 9 148.56 2.22 7.03% 0.63
C1c 50 9 93.78 0.00 6.14% 2.44 9 185.33 5.67 7.57% 1.08
C1 50 27 83.44 0.04 5.97% 1.64 27 151.59 2.78 6.58% 0.84
RC1a 50 8 66.88 3.25 11.88% 2.62 8 159.13 30.75 12.77% 0.94
RC1b 50 8 103.38 3.00 6.60% 12.00 8 199.38 33.00 9.21% 1.71
RC1c 50 8 98.50 2.50 6.58% 11.30 8 204.38 29.75 9.10% 1.73
RC1 50 24 89.58 2.92 8.35% 8.64 24 187.63 31.17 10.36% 1.46
R2a 50 1 453.00 0.00 10.83% 137.93 2 1125.00 0.00 16.62% 103.43
R2b 50 3 262.67 0.00 13.41% 550.48 11 391.67 0.00 27.34% 46.46
R2c 50 3 149.33 0.00 6.65% 105.91 11 263.00 0.33 20.19% 16.49
R2 50 7 241.29 0.00 10.15% 301.01 24 441.29 0.14 22.74% 41.76
C2a 50 4 499.00 2.00 26.45% 441.49 6 408.75 3.00 28.61% 30.96
C2b 50 5 246.80 1.60 16.87% 128.50 8 277.00 2.40 22.05% 14.43
C2c 50 6 250.17 1.00 3.23% 591.73 8 282.33 1.67 7.96% 23.15
C2 50 15 315.40 1.47 13.97% 397.25 22 314.27 2.27 18.17% 22.33
RC2a 50 4 72.50 0.00 1.62% 47.38 8 240.25 13.75 5.66% 5.60
RC2b 50 4 94.00 0.00 0.00% 89.39 8 330.50 14.00 15.63% 18.78
RC2c 50 5 125.60 0.00 0.00% 470.13 6 493.20 14.80 33.17% 380.38
RC2 50 13 99.54 0.00 0.50% 222.90 22 365.31 14.23 19.31% 153.80

Table 4.7: Quality of the bound with WeakCut, size 50.
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Set Size StrongPrice WeakPrice
solved iterations cuts LB time solved iterations cuts LB time

R1a 100 12 72.67 1.08 3.47% 4.71 12 310.25 2.67 3.87% 12.99
R1b 100 11 161.00 0.73 4.91% 292.98 12 487.91 5.36 5.98% 66.74
R1c 100 12 192.00 1.08 5.67% 288.37 12 550.58 5.75 7.19% 81.44
R1 100 35 141.34 0.97 4.68% 192.56 36 448.49 4.57 5.67% 53.35
C1a 100 9 144.33 0.11 6.68% 5.77 9 229.89 5.22 6.77% 4.25
C1b 100 9 195.67 0.00 7.31% 251.48 9 313.33 27.22 7.81% 9.89
C1c 100 8 146.75 0.00 5.98% 30.76 9 364.00 65.00 6.90% 6.93
C1 100 26 162.85 0.04 6.68% 98.51 27 300.04 31.23 7.17% 7.02
RC1a 100 8 136.63 4.88 4.60% 632.35 8 378.75 56.00 5.42% 48.14
RC1b 100 8 177.88 5.88 8.39% 385.19 8 520.00 64.13 10.55% 80.55
RC1c 100 8 183.63 5.63 8.36% 267.88 8 516.25 64.00 10.98% 66.34
RC1 100 24 166.04 5.46 7.12% 428.47 24 471.67 61.38 8.98% 65.01
R2a 100 0 - - - - 0 - - - -
R2b 100 1 655.00 0.00 9.95% 2242.91 1 2905.00 14.00 15.63% 1507.09
R2c 100 1 263.00 0.00 6.60% 513.52 2 1545.00 18.00 12.65% 402.84
R2 100 2 459.00 0.00 8.28% 1378.22 3 2225.00 16.00 14.14% 954.97
C2a 100 2 2084.50 0.00 10.56% 1460.67 6 1326.50 17.00 10.93% 317.27
C2b 100 5 1017.40 0.00 9.67% 1636.91 6 1354.00 8.40 11.67% 287.32
C2c 100 5 1017.80 0.00 10.79% 1240.19 7 1075.80 6.20 13.68% 154.60
C2 100 12 1195.42 0.00 10.28% 1442.24 19 1233.50 8.92 12.39% 237.01
RC2a 100 3 208.00 0.00 4.81% 1434.43 7 496.67 13.67 6.89% 143.65
RC2b 100 1 182.00 0.00 3.51% 571.57 3 825.00 34.00 11.52% 192.23
RC2c 100 1 212.00 0.00 5.58% 403.18 3 894.00 39.00 15.90% 214.64
RC2 100 5 203.60 0.00 4.70% 1055.61 13 641.80 22.80 9.62% 167.56

Table 4.8: Quality of the bound with WeakCut, size 100.

Set Size StrongPrice WeakPrice
solved iterations cuts LB time solved iterations cuts LB time

R1a 25 12 35.17 1.75 0.73% 0.11 12 66.92 2.17 1.31% 0.11
R1b 25 12 44.17 1.25 0.62% 0.12 12 83.00 1.92 2.03% 0.15
R1c 25 12 43.67 0.50 0.47% 0.12 12 86.92 1.17 1.99% 0.16
R1 25 36 41.00 1.17 0.61% 0.12 36 78.94 1.75 1.78% 0.14
C1a 25 9 37.33 0.00 7.87% 0.10 9 59.33 0.11 8.01% 0.10
C1b 25 9 48.67 0.00 6.30% 0.46 9 74.78 0.89 6.76% 0.10
C1c 25 9 51.22 0.22 4.19% 0.57 9 91.33 1.44 5.68% 0.16
C1 25 27 45.74 0.07 6.12% 0.38 27 75.15 0.81 6.81% 0.12
RC1a 25 8 32.25 0.38 6.95% 0.20 8 70.38 5.38 8.56% 0.15
RC1b 25 8 47.00 0.38 1.61% 0.58 8 92.50 8.88 5.79% 0.44
RC1c 25 8 49.50 0.38 0.13% 0.73 8 100.00 10.63 3.55% 0.59
RC1 25 24 42.92 0.38 2.90% 0.50 24 87.63 8.29 5.97% 0.39
R2a 25 5 150.60 0.00 24.46% 386.89 11 239.80 0.40 38.55% 63.15
R2b 25 7 116.29 0.14 4.86% 47.46 11 123.29 0.00 25.42% 4.41
R2c 25 10 102.70 0.00 2.70% 152.23 11 112.60 0.00 22.10% 3.84
R2 25 22 117.91 0.05 8.33% 172.23 33 144.91 0.09 26.90% 17.50
C2a 25 6 203.17 0.17 22.84% 465.43 8 144.83 0.17 25.81% 3.47
C2b 25 7 180.00 0.14 20.38% 240.37 8 196.57 0.14 28.04% 6.63
C2c 25 7 160.57 0.00 11.59% 17.45 8 124.86 0.00 21.43% 3.00
C2 25 20 180.15 0.10 18.04% 229.87 24 155.95 0.10 25.06% 4.41
RC2a 25 6 33.33 0.00 7.48% 7.93 8 94.50 1.50 12.60% 0.61
RC2b 25 6 61.83 0.00 0.00% 96.41 8 120.83 2.83 17.79% 2.67
RC2c 25 7 52.29 0.00 0.00% 92.98 8 156.57 2.14 25.62% 5.64
RC2 25 19 49.32 0.00 2.36% 67.20 24 125.68 2.16 19.04% 3.11

Table 4.9: Quality of the bound with StrongCut, size 25.
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Set Size StrongPrice WeakPrice
solved iterations cuts LB time solved iterations cuts LB time

R1a 50 12 46.75 0.50 2.22% 0.56 12 143.83 2.08 2.78% 0.92
R1b 50 12 80.08 1.00 2.34% 1.89 12 201.42 4.42 3.61% 2.19
R1c 50 12 92.83 0.92 2.31% 2.28 12 215.75 5.17 3.89% 2.45
R1 50 36 73.22 0.81 2.29% 1.58 36 187.00 3.89 3.43% 1.85
C1a 50 9 69.22 0.11 5.04% 1.03 9 120.89 0.44 5.14% 0.82
C1b 50 9 87.33 0.00 6.74% 1.44 9 150.44 3.44 7.01% 0.71
C1c 50 9 93.78 0.00 6.14% 2.44 9 185.33 6.33 7.50% 1.32
C1 50 27 83.44 0.04 5.97% 1.64 27 152.22 3.41 6.55% 0.95
RC1a 50 8 66.88 3.25 11.45% 2.62 8 157.13 30.00 12.24% 2.45
RC1b 50 8 103.38 3.00 5.55% 12.00 8 204.88 30.13 6.34% 11.74
RC1c 50 8 98.50 2.50 5.14% 11.30 8 210.00 28.63 6.28% 11.92
RC1 50 24 89.58 2.92 7.38% 8.64 24 190.67 29.58 8.28% 8.70
R2a 50 1 453.00 0.00 10.83% 140.91 2 1125.00 0.00 16.62% 104.26
R2b 50 3 262.67 0.00 13.41% 551.52 11 391.67 0.00 27.34% 47.20
R2c 50 3 149.33 0.00 6.65% 105.84 11 274.00 0.33 19.95% 19.43
R2 50 7 241.29 0.00 10.15% 301.86 24 446.00 0.14 22.64% 43.45
C2a 50 4 498.50 2.00 26.45% 444.72 6 415.75 3.50 28.56% 38.71
C2b 50 5 247.20 1.60 16.87% 129.41 8 283.80 2.40 21.91% 16.40
C2c 50 6 250.00 1.00 3.23% 597.60 8 298.33 2.00 7.79% 25.52
C2 50 15 315.33 1.47 13.97% 400.77 22 324.80 2.53 18.03% 26.00
RC2a 50 4 72.50 0.00 1.62% 49.77 8 235.25 10.75 5.35% 46.05
RC2b 50 4 94.00 0.00 0.00% 90.34 8 404.50 13.75 11.48% 554.58
RC2c 50 5 125.60 0.00 0.00% 474.94 6 576.80 13.00 19.88% 835.26
RC2 50 13 99.54 0.00 0.50% 225.78 22 418.69 12.54 12.83% 506.07

Table 4.10: Quality of the bound with StrongCut, size 50.

Set Size StrongPrice WeakPrice
solved iterations cuts LB time solved iterations cuts LB time

R1a 100 12 72.58 1.08 3.47% 4.76 12 310.58 2.58 3.86% 13.12
R1b 100 11 161.00 1.09 4.91% 285.13 12 492.36 5.73 5.93% 77.50
R1c 100 12 192.08 0.92 5.67% 297.77 12 555.92 5.25 7.11% 88.05
R1 100 35 141.34 1.03 4.68% 193.34 36 451.83 4.49 5.62% 59.04
C1a 100 9 144.33 0.11 6.68% 5.76 9 229.67 5.44 6.77% 4.26
C1b 100 9 195.67 0.00 7.31% 265.03 9 315.78 24.56 7.78% 17.13
C1c 100 8 146.75 0.00 5.98% 31.25 9 373.75 50.00 6.77% 120.71
C1 100 26 162.85 0.04 6.68% 103.35 27 303.81 25.77 7.12% 44.55
RC1a 100 7 124.43 4.57 4.55% 419.13 8 383.86 39.00 5.16% 102.48
RC1b 100 8 180.00 6.50 8.13% 441.86 8 540.75 48.38 9.63% 247.13
RC1c 100 8 186.50 5.88 8.02% 273.86 8 539.13 49.00 9.84% 138.26
RC1 100 23 165.35 5.70 7.00% 376.51 24 492.43 45.74 8.34% 165.24
R2a 100 0 - - - - 0 - - - -
R2b 100 1 655.00 0.00 9.95% 2320.71 1 2924.00 8.00 15.52% 2059.69
R2c 100 1 263.00 0.00 6.60% 521.91 2 1585.00 11.00 12.54% 708.73
R2 100 2 459.00 0.00 8.28% 1421.31 3 2254.50 9.50 14.03% 1384.21
C2a 100 2 2084.50 0.00 10.56% 1509.65 6 1352.50 10.50 10.92% 363.50
C2b 100 4 901.50 0.00 9.72% 1149.08 6 1252.00 3.00 11.31% 239.79
C2c 100 4 997.75 0.00 11.01% 694.66 7 1104.75 2.25 13.73% 141.79
C2 100 10 1176.60 0.00 10.40% 1039.42 19 1213.20 4.20 12.20% 225.33
RC2a 100 3 205.50 0.00 4.97% 1244.61 5 434.00 6.50 7.00% 154.82
RC2b 100 1 182.00 0.00 3.51% 572.60 3 1017.00 25.00 10.04% 1952.98
RC2c 100 1 212.00 0.00 5.58% 425.94 2 1005.00 33.00 14.04% 662.10
RC2 100 5 201.25 0.00 4.76% 871.94 10 722.50 17.75 9.52% 731.18

Table 4.11: Quality of the bound with StrongCut, size 100.
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class size solved gap time set size solved gap time
R1a 25 12 0.00% 3.59 R2a 25 4 40.35% 265.71

50 7 2.61% 452.34 50 1 0.00% 1201.98
100 0 5.04% - 100 0 - -

R1b 25 11 0.55% 1.42 R2b 25 5 4.21% 569.78
50 7 2.91% 186.69 50 1 18.99% 182.77

100 1 8.28% 271.15 100 0 19.88%
R1c 25 12 0.00% 1.88 R2c 25 9 6.59% 433.17

50 8 4.11% 631.20 50 2 18.14% 486.85
100 2 10.50% 394.75 100 0 9.83% -

R1 25 35 0.55% 2.32 R2 25 18 13.84% 433.90
50 22 3.15% 432.85 50 4 18.71% 589.61

100 3 7.76% 353.55 100 0 14.86% -

C1a 25 9 0.00% 7.91 C2a 25 5 65.18% 24.35
50 0 0.67% - 50 3 36.21% 801.53

100 0 2.22% - 100 0 4.77% -
C1b 25 7 0.79% 118.76 C2b 25 7 0.00% 312.46

50 1 1.83% 0.00 50 4 26.20% 162.30
100 0 3.69% - 100 0 16.41% -

C1c 25 8 3.32% 5.44 C2c 25 7 0.00% 30.37
50 1 3.32% 647.69 50 4 0.26% 151.48

100 2 1.27% 1453.95 100 0 12.05% -
C1 25 24 1.63% 39.42 C2 25 19 65.18% 132.71

50 2 1.89% 323.85 50 11 15.73% 332.70
100 2 2.48% 1453.95 100 0 12.65% -

RC1a 25 1 3.23% 120.25 RC2a 25 3 5.36% 167.13
50 0 10.35% - 50 3 3.38% 683.29

100 0 6.01% - 100 0 9.30% -
RC1b 25 8 0.00% 6.27 RC2b 25 6 0.00% 80.47

50 2 6.86% 78.23 50 4 0.00% 95.47
100 0 12.37% - 100 0 9.90% -

RC1c 25 8 0.00% 0.87 RC2c 25 7 0.00% 356.01
50 3 6.66% 55.15 50 5 0.00% 339.04

100 0 10.25% - 100 0 9.40% -
RC1 25 17 3.23% 10.43 RC2 25 16 5.36% 217.26

50 5 8.27% 64.38 50 12 3.38% 343.91
100 0 9.54% - 100 0 9.44% -

Table 4.12: Results of the exact algorithm on instances in Dataset 1.
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class size solved gap time class size solved gap time
R1a 100 0 4.90% - R2a 100 0 - -

50 4 1.92% 351.58 50 0 11.09% -
25 12 0.00% 11.71 25 3 31.85% 145.67

R1b 100 1 9.19% 52.55 R2b 100 0 - -
50 5 3.06% 455.72 50 0 20.55% -
25 10 0.04% 2.87 25 4 11.90% 207.95

R1c 100 1 7.06% 127.23 R2c 100 0 9.67% -
50 7 4.68% 599.23 50 1 18.91% 139.44
25 11 0.00% 1.06 25 6 12.13% 170.72

R1 100 2 6.84% 89.89 R2 100 0 9.67% -
50 16 2.97% 492.47 50 1 18.42% 139.44
25 33 0.02% 5.48 8 13 14.51% 176.39

C1a 100 0 3.45% - C2a 100 0 24.37% -
50 0 0.92% - 50 2 15.38% 180.24
25 8 0.29% 445.40 25 6 0.00% 100.98

C1b 100 0 5.21% - C2b 100 0 22.03% -
50 0 3.32% - 50 4 30.71% 818.75
25 7 2.14% 245.84 25 7 0.00% 134.60

C1c 100 2 1.78% 1948.98 C2c 100 0 14.86% -
50 0 4.13% - 50 3 11.62% 1095.53
25 7 0.31% 305.59 25 7 0.00% 59.73

C1 100 2 3.69% 1948.98 C2 100 0 19.93% -
50 0 2.79% - 50 9 16.06% 769.12
25 22 1.04% 337.42 25 20 0.00% 98.31

RC1a 100 0 7.03% - RC2a 100 0 9.88% -
50 0 11.16% - 50 1 1.59% 114.18
25 1 4.50% 998.31 25 4 7.35% 164.88

RC1b 100 0 11.35% - RC2b 100 0 9.85% -
50 2 9.65% 189.42 50 4 0.00% 592.67
25 8 0.00% 351.47 25 5 0.78% 39.45

RC1c 100 0 9.86% - RC2c 100 0 3.49% -
50 4 10.57% 285.75 50 5 0.00% 619.54
25 8 0.00% 34.08 25 7 0.00% 314.71

RC1 100 0 9.53% - RC2 100 0 8.28% -
50 6 10.53% 253.64 50 10 1.59% 558.26
25 17 4.50% 240.16 25 16 5.71% 191.24

Table 4.13: Results of the exact algorithm on instances in Dataset 2.
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instance customers depots duration capacity UB LB gap time
pr01 48 4 500 200 1074.21 1074.21 0.00% 2.21
pr07 72 6 500 200 1418.22 1418.22 0.00% 834.94
pr02 96 4 480 195 1851.99 1743.53 5.86% 3600.02
pr08 144 6 475 190 - - - -

Table 4.14: Results of the exact algorithm on instances in Dataset 3.
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Set LS BF DAMPV iRMP(10+5min) iRMP(1h+1h) Fix&Gen(1min) Fix&Gen(3min) Fix&Gen(1h+3min)
value time ∆ time ∆ time ∆ time ∆ time ∆ time ∆ time ∆ time

R1a 4398 -4.27% 531 -5.14% 921.95 -4.64% 106.04 -4.64% 134.87 -6.35% 139.89 -6.33% 161.75 -6.33% 112.64
R1b 2054 -5.67% 586 -6.23% 921.57 -6.83% 264.49 -6.83% 424.63 -7.75% 179.69 -7.48% 425.02 -7.27% 859.00
R1c 1700 -3.49% 605 -5.65% 921.53 -6.64% 244.65 -6.64% 318.56 -6.95% 190.41 -6.53% 333.61 -6.60% 502.51
R1 2717 531 -4.48% 574 -5.51% 921.68 -6.04% 205.06 -6.04% 292.68 -6.81% 170.00 -6.64% 306.79 -6.61% 491.38
C1a 8007 -7.31% 644 -11.12% 921.67 -9.25% 32.47 -9.25% 25.96 -11.22% 18.99 -11.22% 18.53 -11.22% 20.03
C1b 2485 -3.63% 629 -4.00% 921.27 -2.48% 98.39 -2.48% 314.08 -2.51% 44.06 -2.66% 52.05 -2.57% 394.95
C1c 1705 -2.00% 665 -4.88% 921.28 -2.87% 105.67 -2.87% 629.88 -1.20% 112.50 -1.26% 180.39 -1.23% 632.06
C1 4065.67 435 -4.32% 646 -8.70% 921.40 -4.87% 78.84 -4.87% 323.30 -7.86% 58.52 -7.90% 83.65 -7.88% 349.01
RC1a 5184 -1.03% 619 -1.61% 921.36 -3.25% 370.77 -3.25% 904.39 -1.94% 218.93 -2.58% 519.56 -2.64% 841.51
RC1b 2235 -2.00% 591 -3.04% 920.86 -1.88% 272.02 -1.88% 454.32 0.57% 167.07 0.42% 272.36 0.31% 378.42
RC1c 1849 -3.18% 621 -3.66% 921.09 -2.50% 183.93 -2.50% 194.78 -0.71% 129.49 -0.11% 199.52 -0.03% 251.25
RC1 3089.33 470 -2.07% 610 -2.35% 921.10 -2.54% 275.57 -2.54% 517.83 -1.08% 171.83 -1.34% 330.48 -1.39% 490.39
R2a 3809 -2.63% 672 -5.29% 921.24 45.64% 859.36 32.35% 4659.52 6.85% 300.52 0.44% 836.42 0.06% 4318.98
R2b 1797 -3.89% 806 -4.78% 896.98 -7.69% 901.42 -16.40% 5618.96 -11.82% 306.99 -17.44% 919.37 -22.39% 4371.23
R2c 1513 -4.87% 794 -3.96% 921.03 -16.27% 924.39 -18.21% 5700.76 -18.51% 313.73 -22.89% 854.65 -26.46% 4307.33
R2 2373 529 -3.80% 757 -4.87% 913.08 7.23% 895.06 -0.75% 5326.41 -2.10% 307.08 -8.07% 870.15 -9.93% 4332.51
C2a 6717 -5.39% 672 -10.69% 921.30 34.21% 766.75 12.40% 5118.5 -4.57% 225.50 -7.21% 582.97 -14.48% 3324.05
C2b 1970 -3.26% 686 -5.57% 921.15 0.35% 730.78 -9.44% 4035.4 -4.82% 175.26 -10.31% 584.03 -11.46% 2680.96
C2c 1288 -0.91% 633 -1.82% 683.24 -2.50% 557.16 -4.80% 2913.88 2.24% 176.52 -1.66% 434.03 -1.87% 2945.29
C2 3325 444 -3.19% 664 -8.43% 841.90 10.69% 684.90 -0.61% 4022.59 -3.69% 192.43 -7.05% 533.67 -12.09% 2983.43
RC2a 5273 -8.76% 834 -12.42% 921.18 -18.64% 819.13 -18.99% 3566.34 -21.60% 601.90 -22.16% 1478.85 -22.40% 4703.58
RC2b 2324 -5.78% 870 -6.64% 921.14 -22.89% 778.20 -23.72% 3582.67 -28.14% 372.07 -28.24% 1118.27 -28.84% 4199.70
RC2c 1978 -4.22% 910 -14.09% 920.90 -26.05% 768.77 -28.01% 3642.37 -32.23% 362.44 -37.35% 1052.91 -39.03% 3992.84
RC2 3191.67 533 -6.25% 871 -11.29% 921.07 -22.52% 788.70 -23.57% 3597.13 -25.23% 445.47 -26.51% 1216.67 -27.08% 4298.71

(a) Dataset 1

file best known iRMP(10+5min) iRMP(1h+1h) Fix&Gen(1min) Fix&Gen(3min) Fix&Gen(1h+3min)
∆ time ∆ time ∆ time ∆ time ∆ time

pr01 1074.12 0.00 2.22 0.00 2.22 0.00 2.70 0.00 2.75 0.00 2.75
pr02 1762.21 0.03 437.82 0.03 437.82 0.02 215.27 0.01 445.19 0.01 696.14
pr07 1418.22 0.00 23.88 0.00 23.88 0.02 40.27 0.02 37.95 0.02 33.63
pr08 2096.73 0.04 640.82 0.03 3600.20 0.13 589.50 0.04 1106.45 0.06 4504.50

(b) Dataset 3

Table 4.15: Evaluation of heuristic algorithms for the MDHVRP.



Chapter 5
Branch-and-price for the multi-depot

heterogeneous-fleet pickup and delivery

problem with soft time windows

5.1 Introduction

Transportation and distribution are major cost factors in the supply chain.

At the same time their complexity is growing due to decentralized production

and distribution schemes. Consequently it is important to develop effective

computational tools for logistics management.

A classical transportation problem is the capacitated vehicle routing problem

(CVRP). It deals with the delivery of goods by a fleet of trucks from a central

depot to many customer locations. The main goal is to find a set of minimum

cost routes for the vehicle fleet in order to meet customers demands and

without violating capacity constraints.

The pickup and delivery problem (PDP) is a generalization of the CVRP in

which each customer demands to pickup a certain amount of goods from an

origin location and to deliver it to a destination location. Each route has

to satisfy pairing constraints (origin and destination must be visited by the

75
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same vehicle, without any transshipment) and precedence constraints (the

origin location must precede the destination in the route).

Real world applications often require to take into account several other de-

tails. In order to be competitive and benefit from economy scale, small and

medium companies tend to aggregate. As a consequence there is the need

to manage several depots and a fleet of highly heterogeneous vehicles, with

different capacities and operating costs; it is also common that customers

impose constraints on the arrival and departure times of the vehicles visiting

them for pickup or delivery operations [12]. It is also possible that the cus-

tomers express preferences on the service time which are not constraints, but

they should be taken into account to gain competitiveness on the market if

a customer is visited out of his preferred time window, a penalty is incurred.

The resulting problem is called multi-depot heterogeneous-fleet pickup and

delivery problem with soft time windows (MDHPDPSTW) and has applica-

tion in various scenarios, such as urban courier services, less-than-truckload

transportation, door to door transportation services. The problem has been

modeled according to the requirements of a real project whose aim is to de-

velop an integrated intelligent system for transportation companies operating

in the urban area of Milan (Italy).

The problem has been widely studied in the version with hard time windows

constraints (PDPTW). Several exact approaches based on branch-and-cut

[15, 75] and branch-and-price [40, 81, 74, 3] have been proposed. For com-

prehensive reviews on routing problems involving pickup and delivery, the

reader is referred to the works of Savelsbergh and Sol [80], Cordeau et al.

[18] and Parragh et al. [64].

The soft time windows case is much less studied. It was addressed in an early

work by Sexton and Choi [82]. They developed a heuristic algorithm based

on Benders’ decomposition. Several heuristic approaches have been proposed

for the vehicle routing problem with soft time windows (VRPSTW): Kosko-

sidis et al. [53] developed an optimization-based heuristic; Balakrishnan [2]

proposed several constructive heuristics, while Taillard et al. [84] and Chiang

and Russell [13] presented tabu search heuristics; Ibaraki et al. [48] studied
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acceleration techniques for local search algorithms in the case of multiple soft

time windows.

Recently, Liberatore et al. [57] and Qureshi et al. [69] proposed branch-and-

price approaches for the vehicle routing problem with soft and semi-soft time

windows respectively.

In this work we propose a branch-and-price algorithm for the MDHPDPSTW

where the pricing problem is solved by a modified version of the algorithm

developed by Liberatore et al. [57] owing to the pickup and delivery con-

straints.

5.2 Problem formulation

Given a set K of vehicle types, a set H of depots and a set N of customer

requests, the problem can be defined on a directed graph G = (V,A), where

V contains a vertex for each depot h ∈ H and for the pickup and delivery

locations of each customer i ∈ N . Let P and D be the sets of vertices

corresponding to all pickup and delivery locations respectively. We denote

with P(i) and D(i) the pickup and delivery vertices of customer i ∈ N and

with N (j) the customer to whom vertex j ∈ P ∪D belongs to. Non negative

weights dij and tij are associated with each arc (i, j) ∈ A: they represent

the transportation cost and the traveling time respectively. In this work we

assume they are independent from the vehicle type. Since we are focusing

on the last mile transportation, the performances of the different vehicles

are quite similar. With each vertex j ∈ V are associated a load variation qj

(positive for pickup and negative for delivery operations), a service time sj,

a hard time window [Aj, Bj] and a soft time window [aj,bj]; if the service at

location j starts inside its time window no penalty is incurred, otherwise a

linear penalty, proportional to the anticipation or delay through non-negative

coefficients αj and βj respectively, has to be paid. Let Tj be the starting time
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of service at location j, the penalty term π(Tj) is defined as follows:

π(Tj) =



















αj(aj − Tj) if Tj < aj

0 if aj ≤ Tj ≤ bj

βj(Tj − bj) if Tj > bj.

Each vehicle type k ∈ K has given capacity wk and fixed cost fk. A limited

number of vehicles is available: at most uhk vehicles of type k ∈ K can be

based at depot h ∈ H. This model the scenario where different companies

(each of them with its own fleet and depot) share their resources.

The objective is to minimize the sum of vehicles fixed costs and routing costs

(including penalties), satisfying the following conditions:

I all customers are served,

II each customer is visited by only one vehicle,

III each route begins at a depot and ends at the same depot,

IV the capacity of the associated vehicle is not exceeded,

V pickup and delivery operations for each customer are performed in the

same route (pairing constraints),

VI the pickup vertices are visited before the corresponding delivery vertices

(precedence constraints),

VII the number of available vehicles of each type for each depot is not

exceeded.

We consider a set covering formulation of the MDHPDPSTW. We say that

a route is feasible if it satisfies conditions II, III, IV, V and VI. Let Ωhk be

the set of all feasible routes using a vehicle of type k ∈ K from depot h ∈ H

and let Ω = ∪h∈H,k∈KΩhk be their union. We associate a binary variable xr

with each feasible route r ∈ Ωhk, which takes value 1 if and only if route r is

selected. Let eir be a binary coefficient with value 1 if and only if customer
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i ∈ N is visited by route r. Let cr be the overall cost of route r, taking

into account vehicle fixed cost fk, routing costs and penalties for soft time

windows violations; With these definitions we obtain the following integer

linear programming model:

min
∑

h∈H

∑

k∈K

∑

r∈Ωhk

crzr (5.1)

s.t.
∑

h∈H

∑

k∈K

∑

r∈Ωhk

eirzr ≥ 1 ∀i ∈ N (5.2)

∑

r∈Ωhk

zr ≤ uhk ∀h ∈ H, k ∈ K (5.3)

zr ∈ {0, 1} ∀h ∈ H, k ∈ K, r ∈ Ωhk (5.4)

Constraints (5.2) are standard set covering constraints, modeling condition

I, while (5.3) impose limits on the maximum number of available vehicles of

each type at each depot, modeling condition VII. The objective is to minimize

the overall cost of the selected routes. In the remainder we indicate this

formulation as Master Problem (MP).

5.3 Branch-and-price

We solve the linear relaxation of the MP to obtain a lower bound which

is used in a tree search algorithm. The number of variables is exponential

in the cardinality of the customer set N , thus we use a column generation

approach.

5.3.1 Column Generation

We initially consider only a small subset of the variables in the MP. Such

initial Restricted Master Problem (RMP) includes

• a set of |N | columns, one for each customer, representing the optimal

paths serving one customer at a time,
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• a set of columns representing a feasible MDHPDPSTW solution, found

using a straightforward greedy policy, described in Section 5.3.3,

• an additional dummy column r̄ of very high cost, having eir̄ = 1∀i ∈ N

and every other coefficient set to 0.

The aim of the dummy column is to ensure feasibility at each node of the

search tree.

We solve the linear relaxation of the RMP, and we search for columns which

are not in the RMP, but have negative reduced cost. If no such column exists,

the solution is optimal for the MP linear relaxation as well, and thus yields a

valid lower bound to the problem. On the opposite, if any negative reduced

cost column is found, it is added to the RMP, and the process is iterated.

Let λ and µ be the non negative dual vectors corresponding respectively to

constraints (5.2), and to constraints (5.3) rewritten as ≥ inequalities. The

reduced cost of a column encoding route r has the following form:

cr −
∑

i∈N

λiair + µhk.

The routes generated must comply with conditions II, III, IV, V and VI: it

is important to note that the same sequence of customers may correspond to

a feasible or to an infeasible route according to the type of vehicle and the

depot it is associated with. For instance, different types of vehicles imply dif-

ferent capacities. Moreover, cost cr and dual variables µhk depend on both

k and h. Therefore, at each column generation iteration we have to solve

|K| · |H| pricing problems. We also remark that it is never convenient to per-

form cycles in a feasible solution, although the prize structure given by dual

variables can make it appealing; therefore, a search must be performed for

elementary routes only. Hence, given a particular depot h and vehicle type

k, the problem of finding the most negative reduced cost column encoding a

route for vehicle k using depot h turns out to be a Resource Constrained El-

ementary Shortest Path Problem (RCESPP); in particular we have capacity,

pickup and delivery, and soft time windows constraints.
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The RCESPP is NP-hard [37]; we solve it using a bi-directional dynamic

programming method, which is based on the algorithm proposed by Libera-

tore et al. [57] for the VRPSTW, modified to deal with pickup and delivery

constraints.

The main difficulty when dealing with soft time windows in column genera-

tion algorithms is that the possibility of trading time versus cost generates

an infinite number of feasible solutions of the pricing problem that do not

dominate one another. In algorithmic terms this means that the pricing al-

gorithm must take into account an infinite number of Pareto-optimal states.

In the algorithm by Liberatore et al. [57] different states are grouped into

labels by means of a cost function that gives the cost of the corresponding

path for each feasible service starting time at the current vertex.

We now describe the modified version of the dynamic programming procedure

we use in our algorithm.

5.3.1.1 Exact Dynamic Programming

Let us consider first the case of a single depot and a single vehicle type: let

s and v be the two distinct copies of the depot, representing the departure

and arrival node and let w be the capacity of the vehicle.

The solving technique consists of a bi-directional extension of node labels.

We propagate forward labels describing partial paths from the starting depot

vertex s and backward labels corresponding to partial paths ending in t. Then

pairs of labels are joined to obtain complete routes.

Modified costs. To compute the cost of the routes in the pricing problem,

we consider modified traveling costs d̄ij for the arcs of the graph that takes

into account the dual values of the constraints of the master problem. The

original cost matrix (dij) satisfies the triangular inequalities, but (d̄ij) usually

does not.

As shown by Ropke and Cordeau [74], it is computationally convenient to

work with a cost matrix that satisfies the delivery triangle inequalities, i.e.
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d̄ij + d̄jk ≥ d̄ik for all j ∈ D. since it allows to apply weaker dominance

rules. We will see further details on this topic later, when discussing the

dominance rules. The authors proposed a method to transform an arbitrary

cost matrix into a cost matrix that satisfies the delivery triangle inequality

while maintaining the optimal solution of the pricing problem.

Since we use a bi-directional dynamic programming method, for backward

search we would like to have the same property on the pickup vertices: d̄ij +

d̄jk ≥ d̄ik ∀j ∈ P. Thus we follow a different strategy: we consider the

following linear program

min v

s.t. d̄ij = (dij − σij) − (αout
i + αin

j ) ∀i, j ∈ N

d̄ij + d̄jk ≥ d̄ik ∀i, j, k ∈ N

ρl = λl − (αin
P(l) + αout

P(l) + αin
D(l) + αout

D(l)) ∀l ∈ R

v ≥ ρl ∀l ∈ R

ρl ≥ 0 ∀l ∈ R

where σij are cost coefficients representing the contribution to the modi-

fied arc costs due to the values of the dual variables of eventual branching

constraints or valid inequalities defined on the arc variables. We obtain a

modified cost matrix (d̄ij) that satisfies the triangular inequalities and a set

of prizes ρl associated to the customers. In the dynamic programming pro-

cedure, we assign to a path the prize of a customer when the pickup vertex

is reached, during forward propagation, when the delivery vertex is reached,

during backward propagation. This way we ensure delivery triangle inequali-

ties in the former case and pickup triangle inequalities in the latter. Moreover

we are sure that the cost of any s–t path does not change if computed with

(d̄ij) and ρ instead of (dij) and λ.

States and labels. In bi-directional dynamic programming we associate

forward states and backward states to the vertices of the graph. A forward

state associated with vertex i ∈ V represents a path from the depot s to



5. B&P for the multi-depot heterogeneous-fleet PDP with soft TW 83

ai bi

Ti

πi

Figure 5.1: A soft time window at a generic vertex i ∈ V : a linear penalty
πi is incurred depending on the service starting time Ti.

i. Different states associated with the same vertex correspond to different

feasible paths reaching that vertex. When a vehicle reaches a vertex it can

start the service immediately or it can wait and start the service at a later

time in order to reduce costs in case of early arrival. Therefore from each

feasible state an infinite number of feasible states can be generated. For

this reason the dynamic programming algorithm must take into account an

infinite number of non-dominated states and this is done by grouping them

into labels. Each label corresponds to an infinite number of states associated

with the same path. A label associated with vertex i ∈ V is a tuple Li =

(S, χ, Ψ, C(Ti), i), where i is the last reached vertex, S is the set of customers

visited along the path, χ is the load of the vehicle after visiting vertex i, Ψ

is the set of “open” customers (the ones for which the pickup operation has

been performed but not yet the delivery), C is the cost of the path, Ti is the

time at which the service at vertex i begins. In each label the continuous

function C(Ti) describes the trade-off between cost and time. This function

is piecewise linear and convex , because it is the sum of piecewise linear and

convex functions, like the one shown in Figure 5.1, one for each visited vertex.

In the same way we define backward states, corresponding to paths from

vertex i to the final depot t represented by labels (S, χ, Ψ, C(Ti), i), where Ti

is the time at which the service at vertex i ends. Of course here Ψ contains

the customers for which the delivery vertex is in the path, but the pickup is

not.
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Extension. The dynamic programming algorithm iteratively extends all

feasible forward and backward labels to generate new ones. The extension of

a forward label corresponds to appending an additional arc (i, j) to a path

from s to i, obtaining a path from s to j, while the extension of a backward

label corresponds to appending an additional arc (j, i) to a path from i to t,

obtaining a path from j to t.

In forward extensions the sets S and Ψ are initialized at ∅, the load χ is set

to 0 and the cost function is C(Ts) = 0 ∀Ts ≥ 0 at the starting depot vertex

s.

The search is restricted to elementary paths by discarding extensions to any

vertex j corresponding to the pickup of a customer already in S. To satisfy

precedence constraints we also discard extension to any vertex j correspond-

ing to the delivery location of a customer not in Ψ. Further, we cannot

exceed the capacity of the vehicle, thus we must have

χ + qj ≤ w.

When a label (S, χ, Ψ, C(Ti), i) is extended forward to a vertex j, a new label

(S ′, χ′, Ψ′, C(Tj)
′, j) is computed using the following rules.

If j is a pickup vertex

S ′ = S ∪ {N (j)} (5.5)

χ′ = χ + qj (5.6)

Ψ′ = Ψ ∪ {N (j)} (5.7)

while if j is a delivery vertex

S ′ = S (5.8)

χ′ = χ + qj (5.9)

Ψ′ = Ψ \ {N (j)} (5.10)

Finally the cost C(Ti) at each extension depends on both traveling time and
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aj bj

πj

C

C ′

time

cost

Figure 5.2: Forward extension of a label to vertex j. The C ′ function resulting
from the extension is the sum of the C function of the source label suitably
shifted (black line) and the penalty function πj.

penalties and it is updated according to the formula:

C(Tj) = C(Tj − (si + tij)) + d̄ij + πj(Tj).

In this expression the cost function of the predecessor is evaluated at Ti =

Tj − (si + tij), which is the latest time instant at which the service at vertex

i should begin to allow starting the service at vertex j at time Tj. Figure 5.2

shows an example of forward extension. In graphical terms, the cost function

C(Ti) is shifted (black line) to the right by the service time at vertex i, that

is si, plus the traveling time tij spent to reach vertex j, and it is shifted

vertically by the traveling cost d̄ij. Then it is summed to the penalty term πj,

which depends on the arrival time Tj. If C(Ti) is continuous and convex, then

the resulting function C(Tj) preserves both these properties. The number of

segments in these piecewise linear functions is increased by at most two at

every extension.

The extension rules for backward propagation are similar, but the role played

by pickup and delivery vertices is switched. When a label (S, χ, Ψ, C(Ti), i)
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is extended backward to a vertex j, a new label (S ′, χ′, Ψ′, C(Tj)
′, j) is com-

puted using the following rules.

If j is a pickup vertex

S ′ = S (5.11)

χ′ = χ + qj (5.12)

Ψ′ = Ψ \ {N (j)} (5.13)

while if j is a delivery vertex

S ′ = S ∪ {N (j)} (5.14)

χ′ = χ + qj (5.15)

Ψ′ = Ψ ∪ {N (j)} (5.16)

The cost C(Tj) is computed according to the formula

C(Tj) = C(Tj + (si + tji)) + d̄ji + π̂j(Tj).

The cost function of the successor is evaluated at Ti = Tj + si + tji which is

the earliest possible time at which the service at vertex i should end in order

to end at time Tj the service at vertex j. Since in backward propagation

times refer to the end of the service, we have to consider also shifted penalty

functions π̂(Ti) = π(Ti − si).

The algorithm iteratively extends each forward and backward labels to all

possible successors or predecessors respectively. In order to limit the ex-

tension of forward and backward labels and to reduce useless duplication of

paths, we impose that each partial path can use at most half of a critical

resource whose consumption is monotone along the paths. The most useful

critical resource is the tightest one. In our case the only meaningful choice

is time.

Cycles of length 2 are automatically forbidden by imposing pickup and de-

livery constraints, i.e. forward (backward) labels are not extended to pickup

(delivery) vertices of customers in Ψ; further, a path containing a cycle must
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satisfy a sequence of at least 5 vertices (the pickup and delivery locations of

the customer visited twice and a vertex associated with another customer).

If the hard time windows are small compared with the travel times, such

a cycle is not common and it may be convenient to solve the sub-problem

without imposing the elementarity on the paths [30]. In this work we want

to model a last-mile delivery application where travel time are usally small;

thus, we decided to keep the elementarity constraints following [74] and [3].

Dominance rules. The ability to reduce the number of states generated

plays a crucial role in the effectiveness of dynamic programming algorithms.

We first remove from each label part of the cost function encoding feasible

states that cannot lead to an optimal solution and then we apply suitable

dominance rules to fathom labels. Let us consider a generic forward label,

like the one in Figure 5.3. Since it is possible to wait at no cost, all the states

corresponding to value of service starting time for which the first derivative

of the cost function is positive are dominated by states of the same label

with smaller cost and time. In graphical terms the rightmost part of the

piecewise linear function is always an unbounded horizontal half line, that

replace all the segments with positive first derivative. Further, any service

starting time Ti that falls outside the hard time window of the last visited

customer is infeasible. Hence, the domain of the cost function is restricted

to the interval [Ai, Bi]. Symmetric arguments can be applied to backward

labels: an unbounded horizontal half line replace the leftmost segments, with

negative slope, and the domain of the function is bounded by the hard time

window of the current vertex.

The second strategy to reduce the number of explored states consists in a

test, based on a set of dominance rules, that allows to identify states that

cannot lead to an optimal solution of the RCESPP. Those states can of course

be discarded without losing the optimality guarantee.

Let l′ = (S ′, χ′, Ψ′, C ′(T ′
i ), i) and l′′ = (S ′′, χ′′, Ψ′′, C ′′(T ′′

i ), i) be two forward

or backward states associated with node i. Then the former dominates the
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C

T

Figure 5.3: A generic forward label cost function. The rightmost part of the
function, with positive first derivative, is replaced by an horizontal segment

latter if the following conditions are satisfied

(a) S ′ ⊆ S ′′

(b) χ′ ≤ χ′′

(c) Ψ′ ⊆ Ψ′′

(d) T ′
i ≤ T ′′

i

(e) C ′(T ′
i ) ≤ C ′′(T ′′

i ).

Since for any label the load of the vehicle is uniquely determined by the open

customer set, condition (b) is implied by condition (c) and it is, therefore,

redundant. Further, as shown in Feillet et al. [42], it is sometimes possible

to identify some vertices u ∈ N that cannot be reached by any feasible

extension of a given label, because of resource limitations. In this case it is

useful to insert u in the set S of that label: it is easy to check that enlarging

set S ′′ helps satisfying condition (a); at the same time, if a node cannot be

reached by extending label l′ due to resource limitations, it cannot be reached

by extending label l′′ either, since resource consumption in l′′ is not lower.

Therefore, enlarging each set S allows dynamic programming fathoming more

labels and hence helps to reduce the computational time.

As shown in [74], the dominance condition (c) is valid for forward labels only

if the delivery triangle inequalities hold. In presence of this property we are
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sure that visiting a delivery node never makes the path cheaper. Without the

delivery triangle inequalities, condition (c) would be Ψ′ = Ψ′′, which is more

restrictive and therefore allows to fathom a smaller number of states. The

same consideration is true for backward labels if we substitute the delivery

triangle inequalities with the pickup triangle inequalities. Earlier in this

section we have described how it is possible to generate suitable modified

cost sets for both forward and backward propagation.

When dominance is applied to single states and the tests succeed, the result

is to remove the dominated one. In our case we have labels each representing

an infinite number of states. The effect of the dominance test is to delete

some parts of the cost functions (see Figure 5.4). The states surviving the

test are those of minimum cost for each feasible starting service time. As a

consequence the resulting cost function may contain gaps and it is not convex

in general.

When a new label is generated, it is tested against all the other labels referred

to the same vertex. If S ′ = S ′′ and Ψ′ = Ψ′′ the two labels are merged into

one. This way at most one piecewise linear function for each combination

of S, Ψ and i. In this case the new function may contain vertical gaps and

concavities, like the one obtained considering the heavy lines (both black and

gray) in Figure 5.4. Instead, if S ′ ⊂ S ′′ or Ψ′ ⊂ Ψ′′ only the states in label l′′

can be dominated while l′ is left unchanged. The new cost function C ′′ may

contain horizontal gaps (black heavy lines in Figure 5.4):

Join. Forward and backward paths must be joined together to produce

complete s−v paths. The result of the join is a feasible solution if all the re-

source constraints are satisfied. When a forward path (Sfw, χfw, τ fw, δfw, ρfw, Cfw, i)

is joined with a backward path (Sbw, χbw, τ bw, δbw, ρbw, Cbw, j), the feasibility

conditions are:
Ψfw = Ψbw

Sfw
⋂

Sbw = Ψfw

T bw
j − T fw

i ≥ si + tij + sj
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time

cost

Gap

Concavity

Figure 5.4: As an effect of the dominance test, some parts of the piecewise
linear functions are deleted. Only the states drawn with heavy lines are
non-dominated and survive the test.

If the join is feasible, then the cost of the resulting path can be obtained as

the minimum of the function

C(T ) = Cfw(T − si −
tij
2

) − d̄ij +
∑

l∈Ψfw

ρl + Cbw(T + si +
tij
2

).

The term
∑

l∈Ψfw ρl is needed because the prizes of the customers in Ψfw =

Ψbw are counted twice, once in the forward and once in the backward label.

This function may have several local minima, as shown in Figure 5.5. How-

ever the detection of the global minimum takes time linear in the number of

discontinuity points of the two piecewise linear functions, since it requires a

merge operation between two sorted lists.

Decremental state space relaxation. The dynamic programming al-

gorithm is executed iteratively applying decremental state space relaxation

[72]. The idea is to project the state space of the problem to a smaller one,

by removing some elementarity constraints. From an algorithmic point of

view, this amounts to identify a set of critical customers R̃, and to replace
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0

C

T

Figure 5.5: When a forward and a backward labels are joined together, the
two corresponding cost functions (red and blue) are summed up. The result-
ing piecewise linear function (green) may have multiple local minima. All its
points below 0 correspond to negative reduced cost routes.

extension rule (5.5) as

S ′ = (S ∪ {N (j)}) ∩ R̃

This relaxed problem can be solved more efficiently, since more labels can be

compared in the dominance test.

In order to identify a good critical node set, we initialize R̃ = ∅; then we

iteratively solve the state space relaxation of the pricing problem and insert

in the set R̃ all the nodes visited more than once in the optimal path, until

we find an elementary one.

Aggregated pricing. In principle the dynamic programming procedure

has to be repeated for all depots and vehicle types. We observe that any

valid state for a certain vehicle type k ∈ K is also feasible for larger vehicles.

Let’s assume that the vehicle types are sorted by non decreasing capacity.

We call the dynamic programming on vehicle type 1. Whenever a label would

have been discarded because χ > w1, we save it in a list L, instead of deleting

it. To solve the RCESPP for the second vehicle type, we keep all the labels
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generated for k = 1, and we extend the labels in L that are feasible for the

new vehicle type, i.e. those with χ ≤ w2, and so on.

5.3.1.2 Heuristic pricing

As stated before, the pricing subproblem is difficult to be solved. Thus we

experiment on the use of two heuristic methods, both based on the dynamic

programming described above, in order to generate negative reduced cost

columns.

Heuristic Dynamic Programming. The heuristic dynamic program-

ming pricing algorithm (HDP) uses a slightly modified version of the bi-

directional label extension described above: in particular, the dominance

condition (a) on the set S of visited nodes is replaced with the surrogate

condition

|S ′| ≤ |S ′′|

Restricted Graph Dynamic Programming. Following [73], we con-

struct a graph G10 in which each vertex i ∈ V is incident with at most

10 outgoing arcs reaching a pickup vertex and 10 outgoing arcs reaching a

delivery vertex. We choose the arcs that are cheapest with respect to dij.

Then we add the arcs connecting the starting depot vertex s with the pickup

vertices and the delivery vertices with the ending depot t. We then call

the dynamic programming method on G10. The described algorithm will be

called Restricted Graph Dynamic Programming (RGDP).

5.3.2 Valid inequalities

The lower bound obtained from the linear relaxation of (5.1) - (5.4) can

be strengthened by means of valid inequalities. We consider a special case

of the subset-row inequalities introduced by Jepsen et al. [50]. Let C =

{C ⊆ N : |C| = 3} be the set of all request triplets, where a request triple
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is any subset of three customers. For C ∈ C, let Ω(C) ⊆ Ω be the subset

of routes servicing at least two requests in C. The following inequalities are

valid:
∑

r∈Ω(C)

zr ≤ 1 ∀C ∈ C (5.17)

The separation of these inequalities can be done by complete enumeration

since their number is polynomial. A new state variable for each active in-

equality has to be considered in the dynamic programming procedure to take

into account the value of the corresponding dual variables.

5.3.3 Primal heuristic

We use a simple greedy heuristic to obtain an initial primal bound. We

start with an empty route and a randomly selected vehicle. We select the

customer (among the ones not yet covered) which can be inserted into the

route with the smallest cost increase and we add it. We recall that each

customer requires to visit two vertices. Thus, we evaluate their insertion

in all the feasible positions along the route. If no customer can be feasibly

inserted, we start a new route. The process is iterated until all customer has

been satisfied. If the limit on the number of available vehicles is tight the

heuristic may fail in finding a complete solution. Nevertheless the columns

identified by the algorithm can be used to initialize the restricted master

problem, as mentioned earlier.

5.3.4 Branching strategy

We use two branching policies, described hereafter; they are similar to those

described in [78] and widely used in the literature for the VRP.

Branching on the number of vehicles. Let x̄r be the (possibly frac-

tional) value of each variable xr in the optimal MP fractional solution and

let yhk =
∑

r∈Ωhk
x̄r be the (possibly fractional) number of vehicles of type k
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in such solution. We select the vehicle type k̄ and the depot h̄ whose corre-

sponding yh̄k̄ variable has its fractional part closest to 0.5; then we perform

binary branching, imposing to use at least ⌈yh̄k̄⌉ vehicles of type k̄ in one

child node and no more than ⌊yh̄k̄⌋ in the other.

These branching decisions are handled as follows: first, we modify constraints

(5.3) as follows

lk ≤
∑

r∈Ωhk

xr ≤ uk ∀h ∈ H, k ∈ K (5.18)

then we set lh̄k̄ = ⌈yh̄k̄⌉ in one child node, uh̄k̄ = ⌊yh̄k̄⌋ in the other.

The advantage of this branching technique is to leave the pricing subproblem

unchanged: dual variables µk still appear as constants in the objective func-

tion of the pricing problem, but they are now unrestricted in sign. On the

other hand constraints (5.18) belong to the MP, which is solved as a linear

programming problem, and tightening them usually results in rather weak

improvements in the lower bound.

Branching on arcs. When yhk is integer for all combinations of depots

h ∈ H and vehicle types k ∈ K , we apply a different branching rule which

forbids the use of some arcs. We choose the customer i ∈ R that is split

among the largest number of routes in the optimal fractional solution of MP

and we forbid half of its outgoing arcs to be used in the first child node,

and the other half to be used in the second child node. Unfortunately we

cannot handle these branching decision by removing the corresponding arcs

from the graph or by setting their travel time to +∞ because we need to

maintain the delivery and pickup triangle inequality properties, as explained

above. The branching decision is then enforced again by adding a cut to the

master problem.

5.4 Experimental analysis

Implementation and hardware. Our algorithms have been implemented

in C++, using SCIP 1.2 [1] as a branch-and-cut-and-price framework. Our
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version of SCIP embeds the CPLEX 12 implementation of the simplex algo-

rithm to solve LP subproblems, and automatically switches between primal

and dual simplex, depending on the characteristics of each instance. SCIP

performs advanced management of the column and row pools, including their

removal and re-insertion. We turned off preprocessing and automatic cut

generation features, but kept all other parameters at their default values,

including the decision tree search policy.

The results reported in this section are obtained using a single core of an

Intel Core 2 Duo 3GHz workstation, equipped with 2GB of RAM, running

Linux OpenSuse 11. The time limit was set to one hour in all tests.

Benchmark instances. To test our algorithm we considered a set of in-

stances (RCL07) proposed by Ropke and Cordeau [74] for the pickup and

delivery problem with time windows. The instances were produced with a

generator similar to that initially proposed by Savelsbergh and Sol [81]. In

all instances, the coordinates of each pickup and delivery location are chosen

randomly, according to a uniform distribution over the [0, 50]× [0, 50] square.

The load qi of request i is selected randomly from the interval [5, Q], where

Q is the vehicle capacity. A planning horizon of length T = 600 is con-

sidered, and each time window has width W . In all instances, the primary

objective consists of minimizing the number of vehicles, and a fixed cost of

104 is thus imposed on each vehicle type. The instances are grouped in four

classes according to the different values of Q and W . The characteristics

of these classes are summarized in Table 5.1. There are 10 instances with

30 ≤ n ≤ 75 for each class. The name of each instance (e.g., AA50) indicates

the class to which it belongs and the number of requests it contains.

Instances RCL07 have hard time windows. In order to test our algorithm,

we introduced three soft time windows patterns:

I ai = Ai, bi = Bi, αi = βi = ∞ ∀i ∈ N ;

II ai = Ai + Bi−Ai

3
, bi = Bi −

Bi−Ai

3
, αi = βi = 1.5 ∀i ∈ N ;

III ai = Ai + Bi−Ai

2
, bi = Bi −

Bi−Ai

2
, αi = βi = 1 ∀i ∈ N .



5. B&P for the multi-depot heterogeneous-fleet PDP with soft TW 96

Class Q W
AA 15 60
BB 20 60
CC 15 120
DD 20 120

Table 5.1: Characteristics of the RCL07 instances

Ai = ai Bi = bi Ai ai bi Bi Ai ai = bi Bi

Figure 5.6: Penalty functions corresponding to the different soft time win-
dows types.

The corresponding penalty functions are depicted in Figure 5.6.

Finally, to study the behavior of the proposed method in presence of an

heterogeneous fleet, we modified the RCL07 with three vehicle types with

capacities 15, 20 and 25. The dataset of instances with heterogeneous fleet

and soft time windows of type II is referred to as RCL07 H.

In the remainder we present the outcome of three different sets of experi-

ments. In Subsection 5.4.1 we show the performance of the column gener-

ation procedure to compute a lower bound; in Subsection 5.4.2 we present

the results of the overall branch-and-price algorithm; in Subsection 5.4.3 we

discuss the impact of the soft time windows on the optimal solutions of the

pickup and delivery problem.

5.4.1 Lower bound

Table 5.2 shows the computation of the root node lower bound either by

using only the exact dynamic programming algorithm or by calling one of

the heuristic algorithms described in Section 5.3.1.2 and the exact dynamic

programming only when the heuristic fails. In particular, for each instance

we show the best known solution (UB), the root node lower bound (LB),

and the behavior of the three considered approaches. For each of them we
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present the computation time in seconds (time) and the number of iterations

(iter) of column generation. In the case of the heuristic approaches, we also

show the number of calls (fail) to the exact dynamic programming (e.g. 1

means that the exact dynamic programming was called just to prove that no

new column was to be generated). As one can see, the heuristic HDP often

finds all the columns, however the computing time is sometimes larger than

that of the exact DP. Instead, RGDP is able to reduce the computing time

(mostly on the largest instances), even if several calls to the exact DP are

necessary.

In Table 5.3, we report the results of the computation of the root node lower

bound for the instances RCL07 H. We show the behavior of the exact dy-

namic programming that considers just one vehicle type at a time (Standard

Pricer) with respect to the aggregated pricer (that considers all vehicle types

at once). The table shows for each of the two pricers the computing time

expressed in second (time), the number of iterations (iter) of column gener-

ation and the number of generated columns (cols). A first consideration is

that these instances are more difficult than the previous ones, indeed it was

not always possible to compute the lower bound within the time limit of one

hour. This is due to the fact that different types of vehicles are involved,

but it is also a consequence of the larger capacities of the vehicles. The ag-

gregated pricer is not helpful in reducing the computing time. One of the

possible explanation for this behavior is the following: when applying the

aggregated pricer, the exact DP starts considering the vehicle type with the

smallest capacity; when paths exceeding this capacity are found, they are

stored and examined for the successive vehicle type with larger capacity and

so on. However, some of these paths would not even need to be considered

when the standard pricer is directly applied for the corresponding vehicle

type, thus leading to a shorter computing time.

Table 5.4 shows the results obtained when inequalities (5.17) are introduced:

for each instance the table shows the gap to the best known solution, the

computing time in seconds and the number of cuts. The gap is reduced by

0.5% on average, but the computing time is 10 times larger. This behaviour



5. B&P for the multi-depot heterogeneous-fleet PDP with soft TW 98

DP HDP RGDP
Instance UB LB time iter time iter fail time iter fail
AA30 31119.1 26171.0 1.65 107 1.53 103 1 3.22 222 107
AA35 31299.8 26361.3 4.31 136 3.80 128 1 7.65 362 97
AA40 31515.9 31506.6 5.29 152 5.02 145 6 9.81 346 131
AA45 31759.8 31759.8 8.56 164 9.17 149 1 13.03 346 108
AA50 41775.0 34092.9 11.64 148 13.00 157 6 20.67 350 116
AA55 41907.8 36988.9 13.79 164 10.67 135 3 23.26 367 141
AA60 42140.7 38887.7 14.05 125 16.33 139 1 28.32 375 115
AA65 42250.2 40017.2 19.78 126 21.09 134 3 35.18 351 100
AA70 42452.3 41239.3 21.55 109 39.21 148 2 38.87 356 79
AA75 52461.6 43163.7 28.10 87 58.22 154 3 54.32 350 69
BB30 31086.3 22628.2 1.10 61 1.27 71 1 2.05 160 49
BB35 31281.2 27057.8 2.04 64 2.07 59 1 3.64 143 49
BB40 31493.4 30303.7 3.29 87 3.34 78 1 6.41 230 63
BB45 41555.1 32753.3 5.94 87 6.97 88 3 9.53 199 62
BB50 41701.0 35928.4 6.00 58 12.95 95 3 11.58 180 43
BB55 41885.7 39781.5 16.17 109 16.77 84 1 19.39 226 61
BB60 62420.1 54925.4 7.26 104 8.83 104 3 18.21 324 78
BB65 62639.1 55910.3 7.42 74 11.27 99 3 17.52 250 56
BB70 62951.0 61532.9 8.85 72 16.23 117 1 23.29 281 57
BB75 63127.5 62229.8 13.52 91 22.18 129 1 33.84 330 63
CC30 31087.7 22810.1 5.70 98 4.66 99 5 10.79 240 48
CC35 31230.6 24248.1 12.19 113 10.34 83 2 27.42 310 63
CC40 31358.5 25289.4 58.61 112 38.56 93 6 71.95 299 94
CC45 31509.1 28939.1 198.40 121 66.15 90 3 128.76 315 54
CC50 41685.3 34058.2 44.26 102 59.95 90 3 51.56 245 48
CC55 41836.3 36425.0 75.58 114 93.77 118 4 80.01 281 63
CC60 42009.3 37838.7 113.24 109 148.19 118 2 128.08 314 59
CC65 42164.0 39480.2 162.46 86 241.72 99 1 162.02 299 63
CC70 52201.7 42116.0 316.28 107 374.05 98 1 311.07 375 70
CC75 52359.0 43562.3 375.02 144 681.53 133 4 332.89 446 82
DD30 21133.3 18702.2 17.05 69 18.09 75 5 28.05 182 43
DD35 31210.9 21524.9 25.64 70 43.83 94 10 42.34 210 50
DD40 31352.2 23138.2 63.76 78 94.50 95 5 99.13 245 68
DD45 31483.9 24872.1 131.53 102 210.37 112 6 154.96 260 64
DD50 31600.9 26587.2 235.32 124 283.00 127 7 243.42 324 85
DD55 31743.3 28831.3 310.05 101 412.85 106 2 286.19 277 61
DD60 32069.2 31458.3 237.65 90 689.97 118 2 263.76 261 61
DD65 42107.3 35313.1 210.87 97 378.63 126 5 156.39 299 60
DD70 42214.2 36690.6 716.85 119 834.35 154 5 634.30 411 75
DD75 42359.9 38759.5 518.75 127 851.77 153 3 514.14 456 68

Table 5.2: Pricing algorithm configuration on dataset RCL07, soft TW type
I.
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Standard pricer Aggregated Pricer
Instance LB time iter cols time iter cols
AA30 21006.1 9.67 121 3231 15.28 94 2802
AA35 24405.8 12.26 101 4905 23.72 109 4981
AA40 31204.6 15.03 104 3460 25.38 94 3132
AA45 31350.1 20.87 108 4257 46.12 100 4117
AA50 31446.4 39.29 111 5968 77.42 105 4789
AA55 33245.4 61.14 130 5889 163.82 128 5894
AA60 33382.4 85.26 133 8453 151.32 105 8153
AA65 33509.9 141.93 127 12735 358.54 135 11857
AA70 34178.3 279.75 150 11489 600.52 150 10111
AA75 35182.8 545.64 142 14702 1570.56 115 13509
BB30 22132.7 1.88 65 2437 2.06 61 2040
BB35 26218.2 3.38 56 3078 4.54 56 3027
BB40 27692.3 7.29 65 4299 9.64 62 3169
BB45 30153.7 8.91 58 5577 16.07 53 4798
BB50 34217.8 23.18 70 6239 49.14 57 5312
BB55 36945.9 25.77 69 6924 72.60 56 6259
BB60 50930.4 8.27 69 3373 13.68 79 3081
BB65 51652.5 10.88 62 5279 18.26 65 4718
BB70 55016.5 16.49 74 5719 30.78 84 5145
BB75 56069.9 24.45 89 6693 49.62 79 5996
CC30 19721.1 91.79 74 3618 353.83 84 3552
CC35 20196.1 536.71 106 4712 646.94 90 4136
CC40 20872.8 866.17 102 7048 3687.50 119 8316
CC45 22878.2 2495.52 116 9045 3640.08 65 8272
CC50 - 3700.36 145 10224 3739.88 63 10662
CC55 - 3604.37 97 11786 3669.76 51 8145
CC60 - 3631.25 85 9966 3652.47 49 11119
CC65 - 3704.41 58 10082 3694.24 40 12541
CC70 - 3669.85 64 9413 3700.38 40 12762
CC75 - 3706.14 64 10855 3706.14 40 8288
DD30 17742.6 64.84 65 3108 206.17 74 2819
DD35 20588.4 199.93 64 4144 383.39 51 3880
DD40 21705.1 707.28 94 4828 1350.68 87 5504
DD45 23102.3 1120.90 83 6189 2443.53 77 7536
DD50 24084.3 3234.46 95 8271 3689.20 102 9457
DD55 26164.7 2385.49 82 8778 3615.46 79 9635
DD60 28380.6 2624.36 89 16525 3630.05 73 16212
DD65 32106.5 3002.32 112 11553 3728.88 102 11192
DD70 - 3916.31 94 11117 3606.89 76 16478
DD75 - 3609.06 109 13945 3655.90 70 14128

Table 5.3: Standard Pricer and Aggregated Pricer on dataset RCL07 H.
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is in line with the statement in [3]. Thus, we decided not to use these

inequalities in the full branch-and-price algorithm.

5.4.2 Branch-and-price

The second set of experiments concerns the branch-and-price algorithm. It

uses the heuristic pricer with the restricted graph (RGDP) combined with

the exact dynamic programming. We consider dataset RCL07 with the three

different types of time windows (type I, II and III), where type I coincides

with hard time windows, and the other two types correspond to soft time

windows. In Tables 5.5, 5.6 and 5.7 we show the results obtained by the

branch-and-price algorithm on instances featuring time windows of type I,

II, and III, respectively. We show average results for each class of instances:

in particular, we present the number of solved instances (out of 10), the aver-

age percentage gap (for the instances not solved to optimality), the average

computing time and average number of explored nodes (for the instances

solved to optimality). As one can see, the number of solved instances is

basically the same despite the considered type of time windows. Thus, the

approach is robust with respect to the specific penalty function considered.

The percentage gap can be high for some instances. Indeed, no sophisticated

primal heuristic has been introduced, as this was not the main focus of this

work. Thus, this gap is probably due to poor upper bound (rather than weak

lower bound). In addition, these instances have very high fixed cost of the

vehicles: as a consequence, a difference of a single vehicle between the primal

and the dual solutions is enough to produce a gap as large as 20-30%.

The approach by Ropke and Cordeau [74] and the one by Baldacci et al. [3]

study the pickup and delivery problem with hard time windows. The case of

hard time windows is considered in our approach, as well (i.e. time windows

of type I). However, the goal of our work is not to design an algorithm for

this specific problem, as we want to deal with a more general setting. Testing

the behavior of our method on type I time windows is especially to show that

our algorithm is stable under different setting, and hard time windows can
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LB LBC
Instance Gap % Time Gap % Time # of cuts
AA30 18.91 1.65 17.33 120.57 1335
AA35 18.73 4.31 15.60 290.52 1419
AA40 0.03 5.29 0.00 6.70 35
AA45 0.00 8.56 0.00 8.56 0
AA50 22.53 11.64 22.46 52.87 558
AA55 13.30 13.79 12.62 40.99 1264
AA60 8.37 14.05 8.26 56.74 509
AA65 5.58 19.78 5.57 29.10 65
AA70 2.94 21.55 2.84 64.61 126
AA75 21.54 28.1 21.42 81.37 95
BB30 37.38 1.1 35.51 10.07 2061
BB35 15.61 2.04 11.77 34.79 611
BB40 3.93 3.29 3.32 67.73 619
BB45 26.87 5.94 26.47 186.94 208
BB50 16.07 6 14.93 61.63 271
BB55 5.29 16.17 5.05 59.61 137
BB60 13.65 7.26 12.93 13.08 659
BB65 12.03 7.42 11.92 12.46 336
BB70 2.30 8.85 1.92 22.54 268
BB75 1.44 13.52 1.09 50.43 273
CC30 36.29 5.7 35.24 3635.80 250
CC35 28.80 12.19 28.02 3285.13 666
CC40 24.00 58.61 23.39 3653.78 734
CC45 8.88 198.4 8.88 4145.11 194
CC50 22.39 44.26 22.11 3865.61 323
CC55 14.86 75.58 14.51 471.38 97
CC60 11.02 113.24 10.88 595.09 232
CC65 6.80 162.46 6.80 162.46 0
CC70 23.95 316.28 23.95 316.28 0
CC75 20.19 375.02 20.16 585.73 39
DD30 13.00 17.05 11.16 139.72 1254
DD35 45.00 25.64 44.59 3768.03 399
DD40 35.50 63.76 35.02 1935.08 833
DD45 26.58 131.53 26.46 1002.08 164
DD50 18.86 235.32 18.73 1146.29 126
DD55 10.10 310.05 10.04 796.59 48
DD60 1.94 237.65 1.92 313.36 22
DD65 19.24 210.87 19.24 210.87 0
DD70 15.05 716.85 14.89 3432.59 49
DD75 9.29 518.75 9.29 1002.78 9

Table 5.4: Lower bound with (LB) and without (LBC) inequalities 5.17 on
dataset RCL07, soft TW type I.
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Class Solved Avg. gap % Avg. time Avg. nodes
AA 8/10 2.87 393.82 68.75
BB 8/10 9.25 43.06 28.00
CC 6/10 18.43 1385.36 129.83
DD 4/10 25.52 808.77 83.00

Table 5.5: BCP average results, dataset RCL07, type I

Class Solved Avg. gap % Avg. time Avg. nodes
AA 8/10 30.88 299.78 15.25
BB 9/10 0.39 913.02 27.22
CC 7/10 24.43 1327.70 35.14
DD 4/10 173.3 1185.13 21.50

Table 5.6: BCP average results, dataset RCL07, type II

be seen as an extreme case of soft time windows. We mention that Ropke

and Cordeau ([74]) solve 30 out of 40 instances to optimality, while Baldacci

et al. ([3]) are able to solve 39 of them in some hours of computing time.

Our algorithm has a similar outcome to that of Ropke and Cordeau ([74]),

as it solves 26 instances within one hour.

In Table 5.8 the same information is shown for instances RCL07 H. As men-

tioned before, these instances are more involved, thus we are able to solve to

optimality a smaller number of them: not only the root node lower bound

is hard to be computed, but the branching on the number of vehicles is less

effective in presence of an heterogeneous fleet.

Class Solved Avg. gap % Avg. time Avg. nodes
AA 8/10 14.41 422.56 22.88
BB 9/10 14.15 478.90 36.56
CC 5/10 22.18 258.66 26.40
DD 4/10 35.45 959.64 12.00

Table 5.7: BCP average results, dataset RCL07, type III
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Class Solved Avg. gap % Avg. time Avg. nodes
AA 6/10 29.07 1292.77 1292.77
BB 4/10 9.32 483.57 483.57
CC 2/10 19.24 2215.63 2215.63
DD 2/10 60.97 1016.47 1016.47

Table 5.8: BCP average results, dataset RCL07 H.

Type I Type II Type III
Class Routing cost Routing cost Avg ∆% Routing cost Avg ∆%
AA 1691.30 1786.71 5.34% 1786.90 5.35%
BB 1757.75 1870.61 6.03% 1889.72 6.98%
CC 1439.69 1631.44 11.75% 1626.18 11.47%
DD 1232.14 1445.38 14.75% 1418.06 13.11%

Table 5.9: Change in the routing costs of the optimal solutions values with
different time windows configurations.

5.4.3 Impact of soft time windows

The last set of experiments was conducted in order to understand the impact

of the soft time windows on the optimal solutions. In the first test we analyze

how the routing cost changes when soft time windows are introduced with

respect to a scenario where only hard time windows are imposed. In Table

5.9, we show average results for the four classes of instances. For each class,

we present the routing cost for each type of time windows and, for type II

and III (i.e. soft time windows), the percentage difference with respect to

type I (i.e. hard time windows). The routing cost increases of up to 15%

when dealing with soft time windows, since in this case one is willing to

travel longer distances in order to reduce the penalty cost. We recall that

in this test instances soft time windows are cut inside the hard ones and,

thus, they are narrower. Hence, in a context where soft time windows do not

represent a real cost, but a customer preference, the penalty functions must

be carefully weighted, since even moderate panalties for soft time windows

violation, may produce significant increase in routing cost.

Let us now consider a different point of view: since it is complicated to
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time

cost

Ai ai bi Bi

Figure 5.7: Representation of soft time window (black), outer hard time
window (blue) and inner hard time window (red) at a generic vertex i ∈ V .

soft TW outer inner
Class value value loss value loss
AA 38675.92 39190.25 514.33 61866.96 22462.43
BB 40540.02 41107.18 567.16 65354.56 19692.36
CC 33960.45 35112.73 1152.29 50284.82 13692.09
DD 28268.47 29447.99 1179.52 39052.05 9777.47

Table 5.10: Impact of soft time windows measured by the increase in the
objective function if inner or outer hard time windows are used.

tackle soft time windows, one may think to approximate the problem using

only hard time windows. We consider instances RCL07 with time windows

type II: each vertex i ∈ V has a hard time window [Ai, Bi] and a smaller

soft time window [ai, bi]. We solve to optimality a problem with only hard

time windows [Ai, Bi], which we call outer time windows, and a problem

with only hard time windows [ai, bi], which we call inner time window (see

Figure 5.7). Then we evaluate the solutions found with respect to the real

penalty functions and we compare them to the optimal solution obtained

when solving the problem with soft time windows. The results are shown

in Table 5.10. For each class of instances we show the optimal objective

function value obtained for the problem with soft time windows, outer time

windows and inner time windows. In addition we show, for outer and inner

time windows, the increase of cost (loss) that is caused by neglecting the soft

time windows. As it can be seen the loss is significant, especially for inner

time windows, where it is often necessary to increase the number of vehicles

used in order to satisfy the strict time constraints.
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5.5 Conclusion

In this work we have proposed an exact method to solve an important op-

timization problem in distribution logistics, namely the MDHPHPSTW. In

particular, we have modified a known branch-and-price scheme to handle dif-

ferent constraints, such as soft time windows. Our experiments have shown

that the approach can solve instances with up to 70 customers. We have also

presented an analysis of the impact of the soft time windows on the optimal

solution both in terms of routing and overall costs.



Chapter 6
Conclusions

In this thesis, we have studied transportation problems, that extend classi-

cal routing problems by introducing more realistic features, such as multiple

depots instead of just one depot where all the vehicles are based, a hetero-

geneous fleet of vehicles (i.e. vehicles with different capacities), soft time

windows (i.e. time windows where a linear penalty is applied if the vehi-

cle visits the customer outside the specified time window) and pickup and

delivery to the customers instead of just pickup. The first studied problem

is the Multi-Depot Heterogeneous Vehicle Routing Problem with Time Win-

dows and the second one is the Multi-Depot Heterogeneous-Fleet Pickup and

Delivery Problem with Soft Time Windows. To the best of our knowledge,

no exact method was designed for routing problems including all these ad-

ditional features. In order to tackle these very general routing problems,

we have extended an effective solution approach introduced by Righini and

Salani, by applying relevant changes both in the structure of the algorithm

and in the data structure implementation. Extensive computational experi-

ments have been performed in order to compare the proposed algorithms with

state-of-the-art algorithms that however do not include these additional fea-

tures. In addition, computational testing has been done on more realistic

instances, containing the described additional characteristics. The outcome

of the proposed approaches is promising on both computational experiments,

and encouraging in further extending the class of studied problems. Future
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research can be devoted to the study of real-world problems, that can be char-

acterized by more involved constraints and larger instances. The presented

methods can be applied and modified either for finding optimal solutions, or

for heuristically solving more involved problems. In addition, the experience

gained during the PhD study will be applied to different fields of Operations

Research, characterized by large scale problems where branch-and-price ap-

proaches are more effective.
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